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Abstract
The pole dynamics in the complex plane associated with the two-soliton solution
of the Korteweg–de Vries equation are studied in detail. The poles trace smooth
curves as time evolves and fall into one of three categories: those which are
asymptotic for large negative time to the faster soliton, but for large positive
time are asymptotic to the slower soliton, those which follow the opposite
pattern of the previous class, and those which are asymptotic for large positive
and negative time to the faster soliton. Furthermore, the precise position and
time of the interaction is identified. Finally, new examples of finite time blowup
of complex-valued solutions of the Korteweg–de Vries equation are found and
their asymptotic behaviours at blowup are determined.

It is suggested that these findings lend support to the assertions that the
leading, slower moving soliton transforms during the interaction into the faster
moving soliton, and that a mass–energy transfer takes place between the two
solitons.

Mathematics Subject Classification: 35Q53, 35Q51, 37K40, 35A21

1. Introduction

This paper has its origins in some remarks of Kruskal (1974) about the soliton solutions of the
Korteweg–de Vries equation and the present authors’ ruminations concerning the formation
of singularities for nonlinear dispersive wave equations. Kruskal’s general idea was that
interesting properties of solutions of the equation might be deduced from the behaviour of
the poles of their analytic extensions in the spatial variable. Specifically, he had in mind the
interaction of two solitons.
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On the other hand, a major open problem is whether or not the generalized Korteweg–
de Vries equation admits blowing up, real-valued solutions for supercritical powers. In Bona
and Weissler (2001), it was shown that a large class of nonlinear dispersive wave equations,
including the generalized Korteweg–de Vries equation (subcritical, critical and supercritial
powers alike) have solutions that blow up in finite time in response to complex-valued initial
data. Our idea is that, in the case of real-valued initial data, finite time blowup in the supercritical
case could arise as a result of singularities of its analytic extension touching the real axis.

To carry out such a program, one would need to study meromorphic solutions of the
generalized Korteweg–de Vries equation in the complex plane, including the dynamics of
their singularities. The equation is normally posed with real-valued initial data, but some
general theory has been developed concerning complex-valued solutions. One of the earliest
papers to consider complex-valued solutions of the Korteweg–de Vries equation was Kato
and Masuda (1986), which showed short time existence of solutions which are analytic in
a complex strip around the real axis. More recently, Grujic and Kalisch (2002), Bona and
Grujic (2003) and Bona et al (2005) have studied the behaviour of global solutions which,
at each time t , are analytic in a strip. In particular, the dependence on time of the width of
the strip of analyticity has been estimated. Unfortunately, the detailed dynamics of complex
singularities of these solutions has not yet been successfully analysed. In this paper, we carry
out such an analysis for a particular class of solutions of the Korteweg–de Vries equation.
The recent works of Yuan and Wu (2005) and Wu and Yuan (2007) are also concerned with
complex-valued solutions of the Korteweg–de Vries equation, but analyticity plays no role in
their analysis, which is set in Sobolev classes.

The Korteweg–de Vries equation (henceforth also referred to as the KdV equation),

ut + uxxx + uux = 0, (1.1)

where u = u(x, t), is well known to possess single and multiple soliton solutions, all of
which are given by explicit formulae. The two-soliton solution behaves asymptotically for
large (positive and negative) time like two independent solitons of different speeds. The
faster one trails the slower one for large negative time, and at some point overtakes it creating
an interaction. Two solitons emerge from the interaction, having the same speeds as the
original two solitons, but now the faster one is of course leading. One curious fact is that
the faster soliton has been positively shifted in space due to the interaction, while the slower
soliton has been negatively shifted in space. The nature of the interaction is not completely
understood. One early interpretation of the interaction is that the two solitons retain their
individual integrity during the interaction, even as the faster one overtakes the slower one.
On the other hand, the original numerical work by Zabusky and Kruskal (1965), as well as
theoretical work of Lax (1968), show that if the speeds of the two solitons are close to each
other, then the two-soliton solution has two local spatial maxima at all times, corresponding to
the maxima of the two independent solitons at −∞. Thus, the two solitons remain apart, and
seem to exchange roles as a result of the interaction. If the speeds are very different, however,
then the faster soliton appears to swallow the slower soliton during the interaction, thereby
passing through the slower soliton and leaving it intact except for the spatial shift. In this case,
the two maxima come together creating a solution with a single spatial maximum during the
interaction.

Later, Bowtell and Stuart (1983) suggested that for all possible relative speeds, the two
solitons exchange roles during the interaction via some sort of energy transfer. On the other
hand, Hodnett and Maloney (1989) (see also Leveque 1987) argue an opposite perspective,
suggesting that the two solitons ‘always pass through one another, irrespective of the amplitude
ratio’. We will have more to say about these two papers shortly.
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The papers of Bryan and Stuart (1992) and Benes et al (2006) propose decompositions
of the two-soliton solution into three components, with one of the components representing a
transfer of energy between the two solitons. Moreover, the paper of Benes et al (2006) includes
a detailed comparison of all the various decompositions of the two-soliton solution proposed
by a number of authors.

One of the goals of this paper is to better understand the nature of this interaction. Our
approach, following Kruskal’s lead, is to consider these solutions u(x, t) to be defined for
x ∈ C and taking on complex values. (The variable t is still restricted to the reals.) In
particular, the two-soliton solutions are viewed as time dependent meromorphic functions.

The main technical accomplishment here is obtaining a rather complete picture of the
behaviour of the poles of the two-soliton solutions as a function of time. For large positive
and negative time, the poles separate into two distinct groups, travelling at speeds which
asymptotically approach the speeds of the two independent solitons. With the exception of
one special case, the poles all trace out smooth curves in the complex plane for all time, allowing
each pole to be followed individually. The poles whose asymptotic speed for large negative
time is the speed of the faster soliton remain for all time in a trailing position behind the poles
whose asymptotic speed for large negative time is the speed of the slower soliton. Moreover,
not only do the poles which are slower moving for large negative time remain in front but
for large positive time their speeds approach the speed of the faster soliton. Furthermore, the
poles which move faster for large negative time are divided into two classes, namely, those
which switch roles during the interaction and become slower moving for large positive time,
and those whose speeds, also for large positive time, approach the speed of the faster soliton.

In fact, we are able to identify which poles are in each class in terms of their vertical
spacing. Each pole which is slower moving for large negative time is paired with the faster
moving pole whose imaginary part is closest to it for large negative time. These two poles
move vertically closer as time evolves, exchanging their relative vertical position during the
interaction, but retaining their original horizontal ordering. The pole which was slower moving
for large negative time becomes a faster moving one for large positive time and vice versa. The
remaining poles, which are unpaired and which move at the faster speed for large negative and
postive time, also move vertically in time within a specified horizontal strip. There is a unique
time which we call the interaction time which has the following property. For all other times,
no two poles are vertically aligned, except for poles related by symmetries of the equation
(complex conjugation and periodicity in the imaginary direction). At the interaction time, all
the poles which are associated with the fast soliton for both large positive and large negative
time are vertically aligned, while the other poles are symmetrically distributed on either side
of the aligned poles.

In the authors’ view, these results support the interpretation of a change in roles of the
two solitons and a transfer of energy between the two solitons during the interaction for any
combination of speeds. We refer the reader to the last section of the paper for a discussion of
this point.

Another consequence of our analysis is the discovery of new examples of finite time
blowup of complex-valued solutions of the KdV equation and the precise description of their
asymptotic behaviour at blowup. Previously, finite time blowup of complex-valued solutions of
KdV has been shown in Birnir (1987), Bona and Weissler (2001), Yuan and Wu (2005) and Li
(2007). The behaviour of the solutions we exhibit is self-similar, but at a faster blowup rate than
would be predicted from the scaling properties of the equation. Moreover, we give examples of
both single-point blowup and two-point blowup. In all our examples, the solutions continue in
a natural way beyond the blow-up time. On the other hand, global complex-(non-real) valued
solutions are also found to exist.
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Finally, since the interaction time is well defined, one can analytically describe the fusion
of the two solitons, which in turn can be studied as a function of the different soliton speeds.

Another paper which is a direct predecessor to ours is that of Thickstun (1976). This
work, which undertakes the analysis of the dynamics of the poles of the two-soliton solution,
is also motivated by the remarks in Kruskal (1974). The results of Thickstun (1976) have
some overlap with the present analysis. However, a considerably more complete picture is
obtained here. In particular, Thickstun’s paper does not contain the detailed information
about how the poles with given asymptotic speeds for large negative time evolve into
the poles with the two asymptotic speeds for large positive time. Nor does it contain
the specific interaction time. Finally, it treats essentially only what we refer to below as the
commensurable case.

Another line of inquiry related to this paper is the study of the pole dynamics for rational
solutions and elliptic solutions of the Korteweg–de Vries equation. We refer the reader
to Airault et al (1977) and Deconinck and Segur (2000), as well as the references cited
therein.

In the next section, notation is established and the principal results of the paper are stated
precisely. Following that the outline of the rest of the paper is given.

2. Statement of main results

We begin by recalling some well-known facts about the KdV equation, and in particular about
the two-soliton solution. In the KdV equation (1.1), if u = vx , then u satisfies (1.1) if and
only if

d

dx

(
vt + vxxx +

1

2
v2

x

)
= 0. (2.1)

If v is written in the form v = 12(log F)x , it follows that v satisfies

vt + vxxx + 1
2v2

x = 0 (2.2)

if and only if F satisfies

F(Ft + Fxxx)x − Fx(Ft + Fxxx) + 3(F 2
xx − FxFxxx) = 0. (2.3)

Note that a zero of F of order m corresponds to a simple pole of v with residue 12m.
It is well known that if

f (x, t) = exp(−k(x − x0) + k3t),

where k > 0, then

F(x, t) = 1 + f (x, t)

is a solution of (2.3). In this case, the solution u of (1.1) is given by

u(x, t) = 12k2f (x, t)

(1 + f (x, t))2
= 12k2

(ek(x−x0−k2t)/2 + e−k(x−x0−k2t)/2)2

= 3k2sech2

(
k

2
(x − x0 − k2t)

)
.

This is the soliton solution. Note that for a given t , its amplitude is maximal when
f (x, t) = 1, i.e. at

x = x0 + k2t.
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Furthermore, the zeros of F in the complex plane occur when f (x, t) = −1, that is to say, when

x = x0 + k2t +
mπ i

k
, m odd.

In other words, the poles of the soliton solution u of (1.1) are all vertically aligned with the
point of maximum amplitude of the soliton, and they all move rigidly to the right at the same
speed, maintaining the same vertical spacing. Thus, the movement of the soliton, as a real-
valued solution of KdV on R is mirrored by the movement of the poles of that same solution,
considered as a complex-valued solution of KdV on C.

Next, it is known (and easy to verify) that if

f1(x, t) = exp(−k1(x − x1) + k3
1 t) = ek1x1 exp(−k1x + k3

1 t), (2.4)

f2(x, t) = exp(−k2(x − x2) + k3
2 t) = ek2x2 exp(−k2x + k3

2 t), (2.5)

where 0 < k1 < k2 (for example), then

F(x, t) = 1 + f1(x, t) + f2(x, t) +
(k2 − k1)

2

(k2 + k1)2
f1(x, t)f2(x, t) (2.6)

is also a solution of (2.3). This gives the two-soliton solution of the KdV equation. The zeros
of F(·, t) provide the poles of the solution in the complex plane. The goal of this paper is to see
whether or not for the two-soliton solution, the movement of the two solitons, as a real-valued
solution of KdV on R, is somehow reflected in the dynamics of the poles of that same solution,
considered as complex-valued solution of KdV on C. Evidently, the two-soliton solution is
considerably more complex than the single soliton. The expectation is that the analysis of the
poles of the solution will shed some light on the properties of the interacting solitons.

In the analysis of the moving poles, it will sometimes be necessary to distinguish two
cases corresponding to whether or not the real numbers k1 and k2 with 0 < k1 < k2 are
commensurable. If they are, then F given by (2.6) has a periodic structure. More precisely, if
k1 and k2 are commensurable, there exist positive integers p1 and p2 such that

k2

k1
= p2

p1
, gcd(p1, p2) = 1. (2.7)

It follows that F(x, t) is periodic in x with minimal (imaginary) period 2πλi where

λ = p1

k1
= p2

k2
. (2.8)

In this case, which we shall refer to as the commensurable case, since F(·, t) clearly has no
real zeros, it suffices to study the zeros of F(·, t) in the fundamental strip

S = {x ∈ C : 0 < Im x < 2πλ}. (2.9)

Furthermore, F is a polynomial of degree p1 + p2 in e−x/λ, with coefficients depending on
t , and therefore at any given time has precisely p1 + p2 zeros, counted by multiplicity, in the
fundamental strip. If k1 and k2 with 0 < k1 < k2 are not commensurable, then F has no
periodic structure, and so the zeros will be studied in all of C, or equivalently in either the
upper- or lower-half plane.

Our first result concerns the interaction of the two solitons. It turns out that there is a
unique value of t where a large proportion of the poles are vertically aligned in the complex
plane. We refer to this time as the interaction time and the location of this vertical alignment
as the interaction centre.
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Theorem 1. Let F be given by (2.6). There is a unique t0 ∈ R, the interaction time, and a
unique x0 ∈ R, the interaction centre, given explicitly by

t0 = −x2 − x1

k2
2 − k2

1

− 1

(k2 + k1)k1k2
log

k2 + k1

k2 − k1
, (2.10)

x0 = k2
2x1 − k2

1x2

k2
2 − k2

1

− k2
1 + k1k2 + k2

2

(k2 + k1)k1k2
log

k2 + k1

k2 − k1
, (2.11)

and characterized as follows.

(i) If t �= t0, then all zeros of F(·, t) are simple, and have different real parts, unless related
by periodicity or by complex conjugacy.

(ii) If t = t0 and if k1 and k2 with 0 < k1 < k2 are commensurable, with p1 and p2 the
positive integers satisfying (2.7), then if λ is as in (2.8), precisely p2 −p1 zeros in the strip
{0 < Im x < 2πλ}, counted without multiplicity, are vertically aligned, all with real part
equal to x0. If p1 is odd and p2 is even, then one of these zeros is order 3. Otherwise they
are all simple zeros. The other zeros (all simple) are symmetrically located with respect
to (but not on) the vertical axis Re x = x0.

(iii) If t = t0 and if k1 and k2 with 0 < k1 < k2 are not commensurable, then there are
infinitely many zeros of F(·, t0) with Re x = x0. These zeros have an asymptotic density
of (k2 −k1)/2π . The other zeros are symmetrically located with respect to (but not on) the
vertical axis Re x = x0 and have a vertical asymptotic density of 2k1/2π . All the zeros
of F(·, t0) are simple.

(iv) The function u(·, t0) is symmetric about the point x0 on both R and C. If t �= t0, then
u(·, t) is not symmetric on R about any point.

In Whitham (1974, chapter 17, p 585), the two-soliton interaction is said to occur in a
neighbourhood of a certain time and x-value, these values being just the first of the two terms
in (2.10) and (2.11). As theorem 1 gives a precise interaction time, it is certainly interesting to
investigate the shape of the solution at this time. Calculations with MAPLE done by L Gouarin
show that if k2/k1 �

√
3, then u(·, t0) has one hump, but if k2/k1 <

√
3, then u(·, t0) has two

humps. The value
√

3 was found by Lax (1968).
In the function F(·, t) given by (2.6), x1 and x2 simply shift the interaction in space and

time, and can be chosen in any convenient way with no loss of mathematical generality. In
light of theorem 1, it is natural to require that the interaction take place at the origin, and at time
0, i.e. x0 = 0 and t0 = 0. It is straightforward to ascertain that these conditions are equivalent
to requiring

ek1x1 = ek2x2 = k2 + k1

k2 − k1
. (2.12)

With these choices of x1 and x2, the function F given in (2.6) becomes

F(x, t) = 1 + γ e−k1x+k3
1 t + γ e−k2x+k3

2 t + e−(k1+k2)x+(k3
1 +k3

2)t , (2.13)

where

γ = k2 + k1

k2 − k1
> 1. (2.14)

In what follows, we shall suppose that the choice (2.12) has been made, so that F is defined
as in (2.13). (In fact, the MAPLE calculations just mentioned were done for F given by (2.13).)
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Theorem 2. Consider the function F given by (2.13). With the exception of the commensurable
case with p1 odd and p2 even, all zeros of F(·, t) are given by analytic curves defined for all
t ∈ R. In the exceptional case (k1 and k2 commensurable, p1 odd and p2 even) the same is
true except for three of the zeros in the fundamental strip S (or in any periodically equivalent
strip S +2πλmi for some integer m). These zeros are described by three non-intersecting
analytic curves defined separately for t < 0 and t > 0, all of which converge to the third
order zero x = πλi (or a periodically equivalent zero) of F(·, 0) as t → 0. Furthermore,
the asymptotic behaviours of all these curves as t → −∞ and as t → ∞ are described as
follows.

(i) For every odd integer m ∈ Z there exists a unique curve xm,s−(t) of zeros of F(·, t)
such that

xm,s−(t) = k2
1 t +

1

k1
log γ +

mπ i

k1
+ o(1), (2.15)

as t → −∞.
(ii) For every odd integer m ∈ Z there exists a unique curve xm,s+(t) of zeros of F(·, t) such that

xm,s+(t) = k2
1 t − 1

k1
log γ +

mπ i

k1
+ o(1), (2.16)

as t → ∞.
(iii) For every odd integer n ∈ Z there exists a unique curve xn,f −(t) of zeros of F(·, t) such that

xn,f −(t) = k2
2 t − 1

k2
log γ +

nπ i

k2
+ o(1), (2.17)

as t → −∞.
(iv) For every odd integer n ∈ Z there exists a unique curve xn,f +(t) of zeros of F(·, t) such that

xn,f +(t) = k2
2 t +

1

k2
log γ +

nπ i

k2
+ o(1), (2.18)

as t → ∞.
For all t < 0 we have

Re xn,f −(t) < k2
2 t < k2

1 t < Re xm,s−(t), (2.19)

and for all t > 0, we have

Re xm,s+(t) < k2
1 t < k2

2 t < Re xn,f +(t). (2.20)

Finally, the above possibilities describe all curves of zeros of F(·, t).
The poles described in (i) and (ii) above are associated with the slower soliton as t → ∓∞,

respectively. However, it turns out that the zeros of F(·, t) which behave as (2.15) as
t → −∞ do not move continuously into the zeros of F(·, t) which behave as (2.16) as
t → ∞. Note, however, that (2.15) and (2.16) show the well-known backward shift of the
slower wave (see Whitham 1974, chapter 17, p 585). Likewise, the poles described in (iii)
and (iv) above are associated with the faster soliton as t → ∓∞, respectively. However,
as we shall see, while some of the zeros of F(·, t) which behave as (2.17) as t → −∞
move continuously into the zeros of F(·, t) which behave as (2.18) as t → ∞, others
‘change affiliation’ and become associated with the slower soliton as t → ∞. But again,
(2.17) and (2.18) show the forward shift of the faster wave (see, again, Whitham 1974,
chapter 17, p 585).

The next main result describes in much more detail the movement of the poles as t moves
from −∞, past 0 and towards ∞. In order to state this result, we need to define a pairing
which associates with each ‘slow’ pole (as t → −∞) a certain ‘fast’ pole, the one which is
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vertically closest as t → −∞. For every odd integer m ∈ Z, let dm denote the asymptotic
vertical distance (as t → −∞) of the ‘slow’ pole which satisfies (2.15) to the set of poles
associated with the faster soliton, namely,

dm = inf
n∈Z,n odd

∣∣∣∣mk1
− n

k2

∣∣∣∣.
With one exception, which is described in proposition 4.5, the minimum is realized by a
unique odd integer, which we call nm. The fast pole which behaves like (2.17) with n = nm

as t → −∞ is said to be paired with this slow pole. In the exceptional case, which can occur
only if k1 and k2 are commensurable and p1 is odd and p2 is even, the minimum is realized by
two odd integers n. In this exceptional case, we let nm denote either of the two minimizers,
and the slow pole is ‘associated’ with the two corresponding fast poles. This exceptional
situation occurs once in each periodic strip. Thus, as t → −∞, the poles fall into one of three
categories: poles associated with the slow soliton, poles associated with the fast soliton which
are paired with slow poles and the poles associated with the fast soliton, but which are not
paired with a slow pole. Finally, given n ∈ Z the asymptotic vertical distance (as t → −∞)

of the ‘fast’ pole which satisfies (2.17) to the set of poles associated with the slow soliton is

Dn ≡ inf
m∈Z,m odd

∣∣∣∣mk1
− n

k2

∣∣∣∣.
Theorem 3.

(i) If t �= 0, no two poles have the same real part, except those related by complex conjugacy
or by periodicity (in the commensurable case). If t < 0 the real parts of the poles are
ordered as follows. The poles associated with the slow soliton are to the right of all the
poles associated with the fast soliton. Among themselves, the real parts of the slow poles
are in opposite order of the dm. In other words, the closer the imaginary part of a given
slow pole is to the imaginary parts of the set of fast poles, asymptotically as t → −∞,
the larger is its real part for all t < 0. On the other hand, the real parts of the poles
associated with the fast soliton are in the same order as the Dn. In other words, the
closer the imaginary part of a fast pole is to the imaginary parts of the set of slow poles,
asymptotically as t → −∞, the more to the left (negative) is its real part, for all t < 0.
In particular, all the unpaired fast poles remain to the right of all the paired fast poles,
for all t < 0.

(ii) Let x(t) represent a curve of zeros of F(·, t). In the non-commensurable case, Im x ′(t) �= 0
for all t < 0. Furthermore, paired slow and fast poles move vertically towards each other
for all t < 0, in such a way that at t = 0, they have the same imaginary parts and
non-zero real parts which differ only by a sign. It is still true that Im x ′(0) �= 0 for the
paired poles. The paired pole which has been associated with the slow soliton for t < 0
has a positive real part at t = 0, and the paired pole which has been associated with
the fast soliton for t < 0 has a negative real part at t = 0. These paired poles are
symmetrically located about, but not on, the imaginary axis. At t = 0, the unpaired fast
poles all have real part 0 and Im x ′(0) = 0. In the commensurable case, the same is
true with the following exceptions. If Im x(t) → πλ as t → −∞ (where λ is given by
(2.8)), then in fact, Im x(t) = πλ for all t ∈ R, and so x ′(t) ∈ R when it is defined. If
p1 and p2 are both odd, then there are two such poles, which form a paired couple of
slow and fast poles, which move in perfectly horizontal fashion with x ′(t) > 0 for all
t ∈ R, for both poles. At t = 0 they are symmetrically located about, but not on, the
imaginary axis. If p1 is even and p2 is odd, there is one such pole, which is an unpaired
fast pole with x ′(t) > 0 for all t ∈ R. At t = 0 it is purely imaginary. Finally, if p1 is
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odd and p2 is even, there is one such pole, which is the slow pole ‘paired’ with two fast
poles. At t = 0 this slow pole and its two associated fast poles all converge to the point
πλi. The slow pole approaches πλi from the right, and x ′(t) → −∞ as t → 0−. The
two curves of associated fast poles approach πλi from the angles 2π/3 and 4π/3, their
derivatives becoming infinite as t → 0−. The asymptotic behaviour of the three poles as
they converge to πλi is independent of the values of p1 and p2. This exceptional situation
is repeated in a 2πλi periodic fashion.

(iii) Let x(t) represent a curve of zeros of F(·, t) which corresponds to an unpaired fast pole
for t < 0. Then x(t) remains an unpaired fast pole for all t > 0 and x(t) = −x(−t) for
all t ∈ R. Let x(t) and y(t) represent two curves of zeros of F(·, t) which correspond
when t < 0 to a paired set of poles, one slow and one fast. Then x(t) = −y(−t) for all
t ∈ R. In particular, the curve corresponding to a slow pole when t < 0 then corresponds
to a fast pole when t > 0, and vice versa. Finally, in the exceptional case where k1 and
k2 are commensurable and p1 is odd and p2 is even, let x(t) denote the slow pole with
Im x(t) = πλ for all t < 0, and let y1(t) and y2(t) represent the two associated fast poles
for t < 0. It follows that Im (y1(t) + y2(t)) = 2πλ. Furthermore, all three curves can
be extended continuously by requiring x(0) = y1(0) = y2(0) = πλi and x(t) = −x(−t)

and y1(t) = −y2(−t) for all t ∈ R. With this convention, x(t) remains a slow pole for
t > 0, and the other two curves are its associated fast poles for t > 0. Of course this last
configuration of poles repeats itself with period 2πλi.

Remark.The situation where k1 and k2 are commensurable and p1 is odd while p2 is even will
often be referred to as the ‘exceptional case’ or ‘exceptional situation’.

It is interesting to observe that Kruskal (1974) anticipated parts of theorem 3 in two
examples. The first example he considered is k1 = 2 and k2 = 4 in our notation. In this
case, the fundamental strip S is 0 < Im x < π ; it contains precisely three poles, counted
with multiplicity, at any given time. This is an example of the exceptional case described at
the end of part (ii) of theorem 3. Kruskal correctly observed that these ‘three poles coalesce
equi-angularly’. The second example he considered is k1 = 6 and k2 = 7. In this case, he
correctly noted that ‘some of the poles of the larger soliton (those whose imaginary parts are
farthest from those of the smaller)’ transfer from the trailing to the leading soliton.

In the exceptional situation, one of the poles actually turns around and moves in the
direction opposite to the motion of the solitons. It is worth noting that this phenomenon is in fact
more general. Indeed, the location of zeros of F(·, t) depends continuously on the parameters
k1 and k2 (by Rouché’s theorem), and so if k1 and k2 are close to the exceptional case where this
turnaround occurs, then necessarily some curve of zeros of F(·, t) will be moving backwards.
(This phenomenon was previously observed by Thickstun (1976).) Unfortunately, we have
not found satisfactory criteria to describe this phenomenon in general (see proposition 3.9 for
some partial results). Also, it would be interesting to find a manifestation of the backward
movements of a pole in the trace of the movement of the two solitons, when restricted to x ∈ R.

In addition, the fact that the asymptotic nature of the triple pole in the exceptional case does
not depend on the particular values of k1 and k2 leads to the idea that this singularity is intrinsic
to equation (1.1). Indeed, the function F(x, t) = x3 + 12t is a solution of equation (2.3), and
the resulting solution u = 12(log F)xx of (1.1) exhibits this singularity at t = 0 and x = 0.

At this point we are able to explain the relevance of the work of Bowtell and Stuart (1983).
See, in particular, section V of that paper. Their point of view is to use the wave–particle
duality as a model to study the interaction of the solitons, with the poles representing moving
particles. As they require a faithful representation of the two solitons by particles, they are
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interested only in pairs of poles. For reasons which are not clear to us, but perhaps based
on their results in Bowtell and Stuart (1977) concerned with the Sine–Gordon equation, they
consider only those pairs of poles which move in a perfectly horizontal fashion. As indicated
in theorem 3, this can only occur in the commensurable case with p1 and p2 both odd. To get
around this restriction, they allow complex phase shifts x1 and x2 in formulae (2.4) and (2.5).
(In fact they set x1 = 0 and allow complex x2.) They prove that for all positive values of k1

and k2, one can find an appropriate purely imaginary phase shift x2 for which there exist a pair
of poles moving on the same horizontal line. As in the case of theorem 3, these poles switch
affiliation between the slow and fast moving solitons during the interaction, never touching
each other. Furthermore, the real part of the trailing pole is a concave function of time, and
the real part of the leading pole is a convex function of time. Bowtell and Stuart interpret this
as a repulsive interaction between the two solitons.

In the paper of Hodnett and Maloney (1989), an explicit decomposition of the two-soliton
solution u in the form u = u1 + u2 into what they term ‘soliton elements’ is presented. They
then study the evolution of the centres of mass of the two soliton elements and, in particular,
determine the point in space–time at which the two centres of mass coincide. This turns out
to be exactly the interaction point found in theorem 1. Moreover, they find that the centre of
mass of the slower soliton element becomes negatively infinite at this intersection point. It is
interesting that their results using a spatial decomposition are parallel to what we obtain by
analysis of the poles.

We next turn to the question of finite time blowup of complex-valued solutions to (1.1). As
noted in the introduction, this phenomenon has already been studied by a number of authors.
The point here is that the explicit two-soliton solutions of (1.1) give new examples of finite
time blowup, because of the vertical movement of the poles. Let u = 12(log F)xx , where F

is given by (2.13), be the two-soliton solution of (1.1). Fix α ∈ R and set

uα(x, t) = u(x + iα, t),

where now we consider only x ∈ R. As long as F(·, t) has no zero with imaginary part equal
to α, then uα(·, t) is a smooth solution of (1.1). If F(·, t) has a zero which at a given time T has
imaginary part α, then the solution uα(·, t) blows up at time T . Since the solution is explicit,
it is straightforward to determine the asymptotic form of this blowup. In fact, the analyticity
of F allows us to show that this blowup is always asymptotically self-similar, but with respect
to a scaling different from the scaling which leaves (1.1) invariant. More precisely, we have
the following theorem.

Theorem 4. Let α, T ∈ R and suppose that z(t) is a smooth curve of zeros of F(·, t) with
Im z(T ) = α which does not have a constant imaginary part (i.e. in the commensurable case
we exclude the values (2q + 1)λπ , where q ∈ Z, as possible values of α).

(i) IfT �= 0, or ifT = 0 and z(0) is either a slow pole or its paired fast pole, then Im z′(T ) �= 0.
It follows that uα(·, t) blows up at time T at the point x0 = Re z(T ) and

lim
t→T

(T − t)2uα(x0 + y(T − t), t) = −12

(y + z′(T ))2

uniformly for y contained in any fixed compact subset of R. If T �= 0, this is a single-point
blowup. If T = 0, this is a two-point blowup, at two points symmetrically located around
the origin.

(ii) If T = 0 and z(0) is an unpaired fast pole, then Im z′(0) = 0 and Re z′(0) > 0. In this
case the solution uα(·, t) blows up at time t = 0 and

lim
t→0

(−t)2uα(x0 + y(−t), t) = −12

(y + Re z′(0))2
.
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uniformly for y contained in any fixed compact subset of R \ {−Re z′(0)}. This is a
single-point blowup.

In all cases, the solution continues past blowup, and the limits are realized in both directions
of time, as t → T from below and above.

This theorem calls for several remarks. First, observe that the asymptotic profile at blowup
satisfies the equation vxxx + vvx = 0. This is not unexpected since the rescaled solutions
(T − t)2uα(x0 + y(T − t), t) satisfy a rescaled version of (1.1), which becomes vxxx + vvx = 0
as t → T . Next, in situation (ii) of theorem 4, the limiting profile is itself singular. To rectify
this would require a further rescaling, but the correct choice depends on the properties of
the higher derivatives of Im z(t) at t = 0 (which we have not investigated). For example, if
Im z′′(0) �= 0, then

(−t)4uα(x0 + Re z′(0)t + y(−t)2, t) → −12

(y + z′′(0)/2)2
.

Furthermore, it might be argued that the ‘natural’ rescaling for blowup is

(T − t)2/3uα(x0 + y(T − t)1/3, t)

since (1.1) is invariant under the transformation u(x, t) → µ2/3u(µ1/3x, µt). To produce such
behaviour, the imaginary part of the moving zero would have to behave like

Im z(t) ∼ Im z(T ) + c(T − t)1/3

at the blowup time. This is the observed behaviour of two of the curves of zeros at the
exceptional point where there is a triple zero. Unfortunately, the other curve of zeros moves in
a horizontal fashion with α = (2q + 1)λπ with q integer, so the associated solution uα(·, t) is
singular at all times t . These are precisely the values excluded in theorem 4. Moreover, these
curves are not smooth at T = 0, which again means that theorem 4 does not apply.

It is interesting to observe how the maximal horizontal strip where the solution is analytic
behaves as t approaches a blowup time. At the two-point blowup, i.e. where a slow pole
and a fast pole move vertically towards each other, ending up with the same imaginary part
at t = 0, but symmetrically located off of the imaginary axis, this band shrinks to width 0
since a singularity approaches from above and below the solution uα(·, t). In the other cases
of blowup, as described in theorem 4, the singularity approaches from only one side, so at
blowup, the solution uα(·, t) is the boundary value of a solution analytic in a horizontal strip
in the complex plane.

In a similar vein, it is interesting to study the behaviour as t → ∞ of the largest symmetric
strip in C around which a solution on R has an analytic extension. More precisely, if we fix
α = mπ/k1 with m ∈ Z odd, or α = nπ/k2 with n ∈ Z odd (in the non-commensurable
case, to make things simpler), then by proposition 3.4, uα(·, t) = u(x + iα, t) is a regular
(complex-valued) solution of (1.1) for all t, x ∈ R. Also, by theorem 2, the width of the
largest symmetric strip around the real axis on which uα(·, t) has an analytic extension decays
to 0 as t → ±∞. The question is how fast does it shrink. By formulae (5.8), (5.9) and
(5.11), which refine the asymptotics given in theorem 2, it follows that these widths all decay
exponentially. On the other hand, in Bona and Grujic (2003), it is proved that the width of a
symmetric strip in C where a real-valued solution of (1.1) can be analytically extended must
decay no faster than an inverse power of t as t → ∞. This could be related to the fact that
a real-valued H 1-solution of (1.1) is uniformly bounded for all time, while a complex-valued
global solution could very well blow up as t → ∞.

The plan of the rest of the paper is as follows. In section 3, the zeros F , given by (2.13), are
studied in a stationary frame of reference, i.e. in the variables (x, t). In section 4, we examine
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certain properties which require changing variables to a frame of reference moving with one
of the two solitons. Section 5 is devoted to the completion of the proofs of theorems 1, 2 and 3.
Theorem 4 is proved in section 6. Section 7 is devoted to some rather technical calculations
concerning the direction of the horizontal movement of the poles. The last section contains an
interpretative discussion of some of the results in this paper.

3. General properties of the zeros of F (·, t)

Elucidated here are fundamental properties of the zeros of F given by (2.13) that are instructive
in their own right as well as important for the overall analysis.

Since

F(−x, −t) = e(k1+k2)x−(k3
1 +k3

2)tF (x, t)

and

F(x, t) = F(x, t),

it follows that if F(x, t) = 0 then F(−x, −t) = 0, F(x, t) = 0 and F(−x, −t) = 0. It
is this last identity which we will use repeatedly, since x and −x have the same imaginary
part, and are symmetrically located with respect to the imaginary axis. The locations of the
poles are, for any t , symmetric about the real axis and the locations at t and −t are reflected
in the imaginary axis. Thus, at t = 0, the pole structure is symmetric about both the real and
imaginary axes. Of course if the solution u(x, t) of (1.1) is even in x at t = 0, which is the case
here, it is automatically true that u(x, t) = u(−x, −t) by the uniqueness of the H 1-solutions
of the initial-value problem. Also, recall that in the commensurable case, if F(x, t) = 0, then
F(x + 2qλπ i, t) = F(x + 2qλπ i, t) = 0 for q ∈ Z, where λ is given in (2.8).

Proposition 3.1. For any t ∈ R, the zeros of F(·, t) are simple, except the following special
case. If k1 and k2 are commensurable, and if p1 ∈ N, p2 ∈ N and λ > 0 are given by (2.7) and
(2.8), with p1 odd and p2 even, then there is a third order zero of F(·, 0) at x = (2q + 1)λπ i,
for all integers q.

Proof. Since

F(x, t) = 1 + γ e−k1x+k3
1 t + γ e−k2x+k3

2 t + e−(k1+k2)x+(k3
1 +k3

2)t ,

it follows that

Fx(x, t) = −k1γ e−k1x+k3
1 t − k2γ e−k2x+k3

2 t − (k1 + k2)e
−(k1+k2)x+(k3

1 +k3
2)t .

If x is a zero of order greater than or equal to 2, then F(x, t) = 0 and Fx(x, t) = 0. For purposes
of this proof only, let X = e−k1x+k3

1 t and Y = e−k2x+k3
2 t . Thus, F(x, t) = Fx(x, t) = 0 becomes

1 + γX + γ Y + XY = 0

and
k1

k1 + k2
γX +

k2

k1 + k2
γ Y + XY = 0,

from which it is seen that

γ Y = −k2 + k1

k1
− k2

k1
γX.

Substituting this into the first equation yields

1 + γX − k2 + k1

k1
− k2

k1
γX + X

(
− k2 − k1

k1
− k2

k1
X

)
= 0,
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which reduces to 1 + 2X + X2 = 0, i.e. X = −1, since γ = (k2 + k1)/(k2 − k1). This readily
gives Y = 1.

Thus, if x is a non-simple zero of F(·, t), it must be the case that e−k1x+k3
1 t = −1 and

e−k2x+k3
2 t = 1. It must therefore be that −k1x + k3

1 t and −k2x + k3
2 t are both purely imaginary,

which implies that t = 0 and x is purely imaginary. Furthermore, k1x must be an odd multiple
of π i and k2x must be an even multiple of π i. Thus k2/k1 = p2/p1, where p1 and p2 are
relatively prime positive integers with p1 odd and p2 even. There is precisely one such complex
number x in the fundamental strip S = {x ∈ C : 0 < Im x < 2πλ}, and it is x = πλi, where
λ is given by (2.8).

A straightforward calculation of Fxx and Fxxx (with t = 0) shows this zero to be third
order, thereby concluding the proof.

In what follows, it will be convenient to express the equation F(x, t) = 0 in a way that
emphasizes the imaginary parts of the roots. It turns out to be natural to write

α = −Im x, (3.1)

A1 = e−k1Re x+k3
1 t , (3.2)

A2 = e−k2Re x+k3
2 t . (3.3)

With this change of variables, the equation F(x, t) = 0 becomes

1 + γA1eik1α + γA2eik2α + A1A2ei(k2+k1)α = 0. (3.4)

Multiplying equation (3.4) by e−i(k2+k1)α/2 leads to

e−i(k2+k1)α/2 + γA1e−i(k2−k1)α/2 + γA2ei(k2−k1)α/2 + A1A2ei(k2+k1)α/2 = 0.

Taking the real and imaginary parts of the latter equation, there obtains the system

(1 + A1A2) cos

(
k2 + k1

2

)
α + γ (A1 + A2) cos

(
k2 − k1

2

)
α = 0, (3.5)

(−1 + A1A2) sin

(
k2 + k1

2

)
α + γ (−A1 + A2) sin

(
k2 − k1

2

)
α = 0, (3.6)

which is equivalent to the equation F(x, t) = 0.
Note that replacing A1 and A2 by 1/A1 and 1/A2 leaves system (3.5) and (3.6) invariant.

Thus, if A1, A2 and α solve the system, then so do A′
1, A′

2 and α, where A′
1 = 1/A1

and A′
2 = 1/A2. This is just another reflection of the fact that F(x, t) = 0 if and only

if F(−x̄, −t) = 0.
The following, somewhat technical looking, result will be useful presently.

Lemma 3.2. Suppose F(x, t) = 0 and that either t �= 0 or A1 �= 1 or A2 �= 1, where the
notation is as in (3.2) and (3.3). It follows that

(i) A1 �= 1, i.e. Re x �= k2
1 t ,

(ii) A2 �= 1, i.e. Re x �= k2
2 t ,

(iii) A1A2 �= 1,

(iv)

(
A1+A2

1+A1A2

)2

�=
(

−A1+A2
−1+A1A2

)2

,

(v) (A2 − 1)(A1 − 1) > 0, i.e. Re x − k2
1 t and Re x − k2

2 t have the same sign.
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Proof. We prove the first four statements by contradiction.

(i) Suppose first that A1 = 1. If also A2 = 1, then necessarily t = 0, which is a contradiction.
Thus, we suppose A2 �= 1. System (3.5) and (3.6) thus becomes

cos

(
k2 + k1

2

)
α + γ cos

(
k2 − k1

2

)
α = 0,

sin

(
k2 + k1

2

)
α + γ sin

(
k2 − k1

2

)
α = 0,

from which we obtain the absurdity that exp(i k2+k1
2 )α = −γ exp(i k2−k1

2 )α.
(ii) Suppose next that A2 = 1. If also A1 = 1, then necessarily t = 0, which is a contradiction.

Thus, we suppose A1 �= 1. System (3.5) and (3.6) now becomes

cos

(
k2 + k1

2

)
α + γ cos

(
k2 − k1

2

)
α = 0,

sin

(
k2 + k1

2

)
α − γ sin

(
k2 − k1

2

)
α = 0,

from which we obtain the absurdity that exp(i((k2+k1)/2))α = −γ exp(−i((k2−k1)/2))α.
(iii) Now suppose that A1A2 = 1, but A1 �= A2. In this case we have sin((k2 − k1)/2)α = 0

by (3.6), and so cos((k2 − k1)/2)α = ±1. Then (3.5) gives∣∣∣∣ cos

(
k2 + k1

2
α

)∣∣∣∣ =
∣∣∣∣γ A1 + A−1

1

2

∣∣∣∣ � γ > 1,

which is impossible. Thus A1 = A2 = 1 (since both are positive), and so t = 0.
(iv) Suppose next that

A1 + A2

1 + A1A2
= −A1 + A2

−1 + A1A2
.

A straightforward calculation shows that A1 = 1, which reduces us to (i). If, on the
other hand,

A1 + A2

1 + A1A2
= − −A1 + A2

−1 + A1A2
,

then A2 = 1, which reduces us to (ii).
(v) To prove the last statement, rewrite system (3.5) and (3.6) as

(1 + A1A2) cos

(
k2 + k1

2
α

)
= −γ (A1 + A2) cos

(
k2 − k1

2
α

)
, (3.7)

(−1 + A1A2) sin

(
k2 + k1

2
α

)
= −γ (−A1 + A2) sin

(
k2 − k1

2
α

)
. (3.8)

Squaring both sides of each equation gives

(1 + A1A2)
2 cos2

(
k2 + k1

2

)
α = γ 2(A1 + A2)

2 cos2

(
k2 − k1

2

)
α, (3.9)

(−1 + A1A2)
2 sin2

(
k2 + k1

2

)
α = γ 2(−A1 + A2)

2 sin2

(
k2 − k1

2

)
α. (3.10)
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Dividing each of the equations (3.9) and (3.10) by its coefficient on the left side (recalling
that −1 + A1A2 �= 0 from part (iii)), and adding the two resulting equations, there appears

1 = γ 2 (A1 + A2)
2

(1 + A1A2)2
cos2

(
k2 − k1

2

)
α + γ 2 (−A1 + A2)

2

(−1 + A1A2)2
sin2

(
k2 − k1

2

)
α. (3.11)

It cannot be the case that

(A1 + A2)
2

(1 + A1A2)2
� 1

and

(−A1 + A2)
2

(−1 + A1A2)2
� 1,

since that would imply 1 � γ 2. On the other hand, a simple calculation shows that each
of these last two inequalities is equivalent to (A2

2 − 1)(A2
1 − 1) � 0.

This concludes the proof.

Proposition 3.3. Suppose F(x, t) = 0 and that either t �= 0 or A1 �= 1 or A2 �= 1. In
the commensurable case, it follows that α = −Im x is uniquely determined up to sign and
2πλ periodicity by A1 and A2. In the non-commensurable case, α = −Im x is uniquely
determined up to sign by A1 and A2. In particular, given t �= 0, if F(x1, t) = F(x2, t) = 0,
with Re x1 = Re x2, then x1 and x2 are the same up to symmetries of the equation. The same
is true for t = 0 if Re x1 = Re x2 �= 0.

Proof. It follows from (3.11) that[
(A1 + A2)

2

(1 + A1A2)2
− (−A1 + A2)

2

(−1 + A1A2)2

]
cos2

(
k2 − k1

2

)
α = γ −2 − (−A1 + A2)

2

(−1 + A1A2)2
.

Lemma 3.2 assures us that the coefficient on the left is non-zero, thereby yielding an
explicit expression for cos2((k2 − k1)/2)α. By an analogous calculation, dividing each of
equations (3.9) and (3.10) by the coefficients on the right (if A1 �= A2), we get a similar explicit
expression for cos2((k2 + k1)/2)α. If A1 = A2, (3.10) implies that sin2((k2 + k1)/2)α = 0, so
that cos2((k2 + k1)/2)α = 1.

Thus, the quantities cos2((k2 +k1)/2)α and cos2((k2 −k1)/2)α are explicitly and uniquely
determined. Since cos 2θ is a polynomial in cos2 θ , it follows that cos(k2 + k1)α and
cos(k2 − k1)α are both explicitly and uniquely determined.

Next, multiply equation (3.7) by cos((k2−k1)/2)α and equation (3.8) by sin((k2−k1)/2)α.
This gives cos((k2 + k1)/2)α cos((k2 − k1)/2)α and sin((k2 + k1)/2)α sin((k2 − k1)/2)α in
terms of determined quantities. Using the formulae for the cosine of the sum and difference
of two angles, we see that cos k1α and cos k2α are therefore determined explicitly.

The following quantities are therefore all determined: cos k1α, cos k2α, cos(k2 + k1)α,
cos(k2 − k1)α. For arbitrary integers m, n ∈ Z,

cos[(mk2 + nk1)α] = cos(mk2α) cos(nk1α) − sin(mk2α) sin(nk1α).

By the binomial theorem, cos(mk2α) and cos(nk1α) are polynomials in cos(k2α) and cos(k1α),
respectively, and so both are determined. Furthermore, sin(mk2α) is the product of sin(k2α)

with a polynomial in cos(k2α) and sin(nk1α) is the product of sin(k1α) with a polynomial in
cos(k1α). Thus sin(mk2α) sin(nk1α) is the product of sin(k2α) sin(k1α) with a determined
expression, i.e. polynomials in cos(k2α) and cos(k1α). Since

2 sin(k2α) sin(k1α) = cos(k2 − k1)α − cos(k2 + k1)α,
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where the right-hand side is also a determined quantity, it follows that sin(mk2α) sin(nk1α) is
determined.

Thus, cos[(mk2 +nk1)α] is determined, for all m, n ∈ Z. In the non-commensurable case,
the set {mk2 + nk1 : m, n ∈ Z} is dense in R, and so clearly α is determined up to sign. In the
commensurable case, let m, n ∈ Z be such that mp2 + np1 = 1, where p1 and p2 are given by
(2.7). It follows that mk2 +nk1 = 1/λ where λ is given by (2.8). Thus, cos(α/λ) is determined,
which determines α up to sign and 2πλ periodicity.

Proposition 3.4. Given α ∈ R for which there exists a solution F(x, t) = 0 with Im x = −α,
and such that either sin k1α �= 0 or sin k2α �= 0, then in fact neither can equal 0, and it follows
there are at most two values of x (i.e. x and −x) and of t (i.e. t and −t) such that Im x = −α

and F(x, t) = F(−x, −t) = 0. In other words, on a horizontal line in the complex plane at
distance α from the real axis, where sin k1α �= 0 or sin k2α �= 0, F(·, t) vanishes for at most
two values of t ∈ R.

Proof. Multiplying (3.4) by 1 + γA1e−ik1α yields

|1 + γA1eik1α|2 + A2eik2α(γ + A1eik1α + γ 2A1e−ik1α + γA2
1) = 0.

The imaginary part of this equation is

A2
1 sin k2α + A1

(
1

γ
sin(k2 + k1)α + γ sin(k2 − k1)α

)
+ sin k2α = 0. (3.12)

A similar calculation reveals that

A2
2 sin k1α + A2

(
1

γ
sin(k2 + k1)α − γ sin(k2 − k1)α

)
+ sin k1α = 0. (3.13)

If sin k2α = 0, then (3.12) implies that A1((1/γ ) − γ ) sin k1α = 0, and so sin k1α = 0.
Similarly, if sin k1α = 0, then (3.13) implies sin k2α = 0.

Thus sin k1α �= 0 and sin k2α �= 0. It then follows from (3.12) and (3.13) that A1 and A2

are determined up to reciprocals. By lemma 3.2, it follows that, if t �= 0, they must either both
be bigger than 1 or both less than 1.

This implies, by (3.2) and (3.3), that Re x − k2
1 t and Re x − k2

2 t are each determined up to
sign, and if t �= 0, then they both must have the same sign.

This concludes the proof.

Proposition 3.5. Suppose F(x, t) = 0, and set Im x = −α. If either sin k1α �= 0 or
sin k2α �= 0 (so both are non-zero by proposition 3.4), then in fact sin k1α and sin k2α have
opposite signs.

Proof. The real and imaginary parts of (3.4) are

1 + γA1 cos k1α + γA2 cos k2α + A1A2 cos(k2 + k1)α = 0 (3.14)

and

γA1 sin k1α + γA2 sin k2α + A1A2 sin(k2 + k1)α = 0. (3.15)

Multiplying (3.14) by sin(k2 + k1)α, and (3.15) by cos(k2 + k1)α, and subtracting the second
equation from the first leads to the equation

sin(k2 + k1)α + γA1 sin k2α + γA2 sin k1α = 0. (3.16)
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Combining (3.15) with (3.16) yields(
A2 − 1

A2

)
sin k1α +

(
A1 − 1

A1

)
sin k2α = 0. (3.17)

If t �= 0, or if t = 0 and Re x �= 0, then proposition 3.2 implies thatA2−(1/A2) andA1−(1/A1)

are non-zero and have the same sign. Thus sin k1α and sin k2α have opposite signs.
In the case t = 0 and Re x = 0, then A1 = A2 = 1. Simple trigonometric identities show

that (3.15) may be written as

(γ + cos(k2α)) sin(k1α) + (γ + cos(k1α)) sin(k2α) = 0.

As the quanities γ + cos(k1α) and γ + cos(k2α) are both positive, the stated result is seen to
be valid in this case as well.

Proposition 3.6. Suppose t = 0 and fix integers m < n. The number of solutions of
F(x, 0) = 0 with Re x = 0 and −Im x = α ∈ [mπ/k2, nπ/k2] is equal to the number
of solutions of eik1α + eik2α = 0 in that same interval. The same is true on the interval
[mπ/k1, nπ/k1].

Proof. We prove the first case, the second case being similar. The zeros of F(·, t) given by
(2.13) when t = 0 occur when

1 + γ e−k1x + γ e−k2x + e−(k1+k2)x = 0.

If x lies on the imaginary axis, so x = −iα, say, then,

1 + γ eik1α + γ eik2α + ei(k1+k2)α = 0.

This is equivalent to the condition

eik1α +
1 + γ eik2α

γ + eik2α
= 0,

which is equivalent to

eiρβ +
1 + γ eiβ

γ + eiβ
= 0,

where β = k2α and ρ = k1/k2. This suggests considering the equation

eiρβ = φ(eiβ),

where

φ(ζ ) ≡ −1 + γ ζ

γ + ζ
.

One easily checks that φ maps the unit circle S1 into itself and that φ(−1) = 1 and φ(1) = −1.
Moreover, φ maps the open upper and lower-half circles bijectively onto each other. Define a
continuous function θ : [mπ, nπ ] → R by

eiθ(β) = φ(eiβ), θ(mπ) = (m − 1)π.

It follows from the properties of φ that θ(nπ) = (n − 1)π .
It is clear that eiρβ = φ(eiβ) if and only if eiρβ = eiθ(β). The number of solutions is the

same as the number of times that

f (β) ≡ θ(β) − ρβ
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is an integer multiple of 2π . We claim that f is a (strictly) increasing function. To see this, it
will be shown that θ ′(β) > ρ except at a finite number of points. By implicit differentiation,
it follows that

eiθ(β)iθ ′(β) = iφζ (e
iβ)eiβ

so that

θ ′(β) = (γ 2 − 1)

|γ + eiβ |2 � (γ 2 − 1)

(γ + 1)2
= ρ,

where the inequality is strict except when eiβ = 1.
To compute the number of times f (β) equals a multiple of 2π , note that

f (mπ) = (m − 1)π − ρmπ,

f (nπ) = (n − 1)π − ρnπ,

and that

f (nπ) − f (mπ) = (1 − ρ)(n − m)π.

It follows that the number of times that f (β) equals a multiple of 2π on the interval [mπ, nπ ]
is precisely equal to the number of solutions to

eiρβ + eiβ = eik1α + eik2α = 0.

This concludes the proof.

Corollary 3.7. Let n ∈ Z be an odd integer.

(i) If m ∈ Z is an odd integer such that∣∣∣∣mk1
− n

k2

∣∣∣∣ <
1

k2
,

then there is no solution of F(x, 0) = 0 with Re x = 0 and such that −Im x = α is in the
closed interval whose endpoints are mπ/k1 and nπ/k2.

(ii) If ∣∣∣∣mk1
− n

k2

∣∣∣∣ >
1

k2
,

for all odd integers m ∈ Z, then there is precisely one solution of F(x, 0) = 0 with
Re x = 0 and −Im x = α ∈ [(n − 1)π/k2, (n + 1)π/k2].

Proof. We begin by remarking that every solution of the equation

eik1α + eik2α = 0

is of the form

α = (2l + 1)π

k2 − k1

for some integer l. Denote by I the interval

I =
[
(n − 1)π

k2
,
(n + 1)π

k2

]
.

(i) The assumed condition on m and n can be restated as

n − 1

k2
π <

m

k1
π <

n + 1

k2
π.
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These inequalities imply
n − m − 1

k2 − k1
π <

n − 1

k2
π <

n + 1

k2
π <

n − m + 1

k2 − k1
π.

Since n − m − 1 and n − m + 1 are two successive odd integers, this shows there are no
solutions of the equation eik1α + eik2α = 0 in I . Thus by proposition 3.6, there are no solutions
of F(x, 0) = 0 with Re x = 0 and such that −Im x = α ∈ I . This proves the stated result
since the interval I contains the closed interval whose endpoints are mπ/k1 and nπ/k2.
(ii) The assumed condition on n implies that there exists an even integer m ∈ Z such that

m − 1

k1
π <

n − 1

k2
π <

n + 1

k2
π <

m + 1

k1
π.

It is straightforward to check that these inequalities imply
n − 1

k2
π <

n − m

k2 − k1
π <

n + 1

k2
π.

Since n−m is odd, this shows the existence of a solution α ∈ I of the equation eik1α +eik2α = 0.
The result now follows from proposition 3.6.

Proposition 3.8. Let x(t) be a smooth curve such that F(x(t), t) = 0 and Fx(x(t), t) �= 0. It
follows that Im x ′(t) has the same sign as the quantity(

A1 − 1

A1

)
sin k2α = −

(
A2 − 1

A2

)
sin k1α,

where α = −Im x(t).

Proof. Let x(t) be a smooth curve such that F(x(t), t) = 0 and Fx(x(t), t) �= 0. Implicit
differentiation gives

x ′(t) = − Ft(x(t), t)

Fx(x(t), t)
= k3

1γA1eik1α + k3
2γA2eik2α + (k3

1 + k3
2)A1A2ei(k1+k2)α

k1γA1eik1α + k2γA2eik2α + (k1 + k2)A1A2ei(k1+k2)α

= k3
1γA1e−ik2α + k3

2γA2e−ik1α + (k3
1 + k3

2)A1A2

k1γA1e−ik2α + k2γA2e−ik1α + (k1 + k2)A1A2

= (k3
1γA1e−ik2α + k3

2γA2e−ik1α + (k3
1 + k3

2)A1A2)(k1γA1eik2α + k2γA2eik1α + (k1 + k2)A1A2)

|k1γA1e−ik2α + k2γA2e−ik1α + (k1 + k2)A1A2|2 .

The imaginary part of the numerator in this last expression is equal to

k1k2(k
2
2 − k2

1)γ
2A1A2 sin(k2 − k1)α

+(k1(k
3
1 + k3

2) − k3
1(k1 + k2))γA2

1A2 sin k2α + (k2(k
3
1 + k3

2)

−k3
2(k1 + k2))γA1A

2
2 sin k1α,

which is proportional via a positive real number to

γ sin(k2 − k1)α + A1 sin k2α − A2 sin k1α,

which therefore has the same sign as Im x ′(t). If equation (3.16) is used to eliminate A2 sin k1α,
the latter expression becomes

γ sin(k2 − k1)α + A1 sin k2α + (1/γ ) sin(k2 + k1)α + A1 sin k2α =
(

A1 − 1

A1

)
sin k2α,

where equation (3.12) has also been utilized. The other part of the conclusion now follows
from (3.17).

This concludes the proof.
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A more delicate issue is the sign of Re x ′(t). Intuitively, one would expect this always
to be positive, but as indicated in theorem 3, there are some exceptions. As mentioned in
the introduction, we have not yet found satisfactory conditions which enable us to determine
when this behaviour occurs. Here is a partial result which gives some sufficient conditions
that Re x ′(t) > 0.

Proposition 3.9. Let x(·) be a smooth curve such that F(x(t), t) = 0 and Fx(x(t), t) �= 0.
Fix t0 in the domain of definition of x(·), and let α = −Im x(t0). Suppose that sin k1α �= 0
and sin k2α �= 0.

(i) If cos k1α cos k2α > 0, then Re x ′(t0) > 0.
(ii) If t0 = 0 and Re x(0) = 0 then Re x ′(0) > 0.

The proof of proposition 3.9 is postponed to section 7.

4. Moving frames

Some aspects of the equation F(x, t) = 0 are more conveniently studied in a moving frame
of reference corresponding to one or the other of the solitons. Thus, define

z = x − k2
1 t, (4.1)

w = x − k2
2 t, (4.2)

r = exp(k2(k
2
2 − k2

1)t), (4.3)

s = exp(k1(k
2
2 − k2

1)t), (4.4)

so that

rk1 = sk2 . (4.5)

If

G(z, r) ≡ 1 + γ e−k1z + rγ e−k2z + re−(k1+k2)z = 1 + γ e−k1z + re−k2z(γ + e−k1z) (4.6)

and

H(w, s) ≡ s + γ e−k1w + sγ e−k2w + e−(k1+k2)w = s(1 + γ e−k2w) + e−k1w(γ + e−k2w), (4.7)

then

F(x, t) = G(x − k2
1 t, ek2(k

2
2−k2

1 )t ) = e−k1(k
2
2−k2

1 )tH(x − k2
2 t, ek1(k

2
2−k2

1 )t ). (4.8)

and

G(z, r) = r−k1/k2H

(
z − log r

k2
, rk1/k2

)
, H(w, s) = sG

(
w +

log s

k1
, sk2/k1

)
. (4.9)

Once the zeros of G or H have been identified, one then obtains the corresponding zeros
of F using the inverse of formulae (4.1) and (4.2), namely,

x = k2
1 t + z,

x = k2
2 t + w.

Remark 4.1. Zeros of G which remain localized in the complex plane, independently of r

either as r → 0 or as r → ∞, correspond to poles associated with the slow soliton (as t → −∞
or as t → ∞, respectively), and zeros of H which remain localized independently of s either
as s → 0 or as s → ∞, correspond to poles associated with the fast soliton (as t → −∞ or
as t → ∞, respectively).
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Proposition 4.2. No complex number can be a root of G(·, r) for two different values of r � 0.
Similarly, no complex number can be a root of H(·, s) for two different values of s � 0.

Proof. The proofs for G(·, r) and H(·, s) are essentially the same. We treat the former case.
If G(z, r2) = G(z, r1) with r1 �= r2, then G(z, r2)−G(z, r1) = (r2 − r1)e−k2z(γ + e−k1z) = 0,
and so e−k1z = −γ . Substituting this into G(z, r1) = 0 yields γ 2 = 1, a contradiction.

Proposition 4.3. For every odd integer m ∈ Z there exists a smooth curve zm(r), defined in
some interval of r � 0, such that G(zm(r), r) = 0, and

zm(r) = 1

k1
log γ +

mπ i

k1
− 4k2

k2
2 − k2

1

γ −k2/k1 e− k2
k1

mπ i
r + o(r) (4.10)

as r → 0+. For every odd integer n ∈ Z there exists a smooth curve wn(s), with
H(wn(s), s) = 0, defined in some interval of s � 0, such that

wn(s) = − 1

k2
log γ +

nπ i

k2
+

4k1

k2
2 − k2

1

γ −k1/k2 e
k1
k2

nπ i
s + o(s) (4.11)

as s → 0+.

Proof. The proof begins by examining the zeros of G(·, 0) and H(·, 0). The condition
G(z, 0) = 0, which is to say,

1 + γ e−k1z = 0,

is equivalent to

z = 1

k1
log γ +

mπ i

k1
,

for some odd integer m ∈ Z. Similarly, the condition H(w, 0) = 0, i.e.

γ + e−k2w = 0,

is equivalent to

w = − 1

k2
log γ +

nπ i

k2
,

for some odd integer n ∈ Z.

Fix a zero of G(z, 0) = 0, z0 = (1/k1) log γ +(mπ i/k1) for some fixed odd m ∈ Z. By the
implicit function theorem, there exists a smooth curve of zeros z(r), such that G(z(r), r) = 0
and z(0) = z0. To calculate z′(0), differentiate the relation G(z(r), r) = 0 to find that

(k1γ e−k1z + k2rγ e−k2z + (k1 + k2)re−(k1+k2)z)z′(r) = e−k2z(γ + e−k1z),

where z = z(r). Setting r = 0 and using e−k1z(0) = −1/γ gives

z′(0) = − 1

k1
e−k2z(0)(γ − 1/γ ) = − 4k2

k2
2 − k2

1

γ −k2/k1 e− k2
k1

mπ i
.

For future reference, note that

Re z′
m(0) = − 4k2

k2
2 − k2

1

γ −k2/k1 cos
k2mπ

k1
. (4.12)
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Similarly, if we fix a zero w0 = −(1/k2) log γ + (nπ i/k2), for some fixed odd integer
n ∈ Z, of H(w, 0) = 0, then by the implicit function theorem, there exists a smooth curve
of zeros w(s), such that H(w(s), s) = 0 and w(0) = w0. Differentiating the equation
H(w(s), s) = 0 with respect to s gives

(k1γ e−k1w + k2sγ e−k2w + (k1 + k2)e
−(k1+k2)w)w′(s) = 1 + γ e−k2w,

so at s = 0, there obtains

e−k1w(0)(k1γ + (k1 + k2)e
−k2w(0))w′(0) = 1 − γ 2,

since e−k2w(0) = −γ . In consequence

w′(0) = (1 − γ 2)

−k2γ
ek1w(0) = (γ − 1/γ )

k2
ek1w(0) = 4k1

k2
2 − k2

1

γ −k1/k2 e
k1
k2

nπ i
.

For future reference, note that

Re w′
n(0) = 4k1

k2
2 − k2

1

γ −k1/k2 cos
k1nπ

k2
. (4.13)

Lemma 4.4.

(i) Let p, q ∈ Z be odd integers, and let θ, η ∈ R be such that |p − θ | < |q − η| � 1. It
follows that cos θπ < cos ηπ .

(ii) Let p, q ∈ Z be odd integers, and let θ, η ∈ R be such that 0 < |p − θ |, |q − η| < 1 and
(p − θ)(q − η) < 0. It follows that sin θπ and sin ηπ are non-zero and have opposite
signs.

Proof.

(i) Since

cos(p − θ)π = − cos θπ and cos(q − η)π = − cos ηπ,

it suffices to prove that

cos(p − θ)π > cos(q − η)π.

But this is clear since both (p − θ)π and (q − η)π are in the interval [−π, π ] and the
cosine function is symmetrically decreasing away from 0 on this interval.

(ii) Since

sin(p − θ)π = sin θπ and sin(q − η)π = sin ηπ,

it suffices to prove that sin(p − θ)π and sin(q − η)π have opposite signs. But, again,
this is obvious since both (p − θ)π and (q − η)π are in the interval (−π, π) and sin is
negative on (−π, 0) and postive on (0, π).

For every odd integer m ∈ Z, define the distance

dm ≡ inf
n∈Z,nodd

∣∣∣∣mk1
− n

k2

∣∣∣∣, (4.14)

and for every odd integer n ∈ Z, define the distance

Dn ≡ inf
m∈Z,modd

∣∣∣∣mk1
− n

k2

∣∣∣∣. (4.15)

The proof of the following proposition is elementary and will be omitted.
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Proposition 4.5. In the case where

(i) k1 and k2 are commensurable,
(ii) p1 is odd and p2 is even, where p1 ∈ N, p2 ∈ N are given by (2.7),

(iii) there exists an odd integer q ∈ Z such that m = qp1,

it follows that the infimum in (4.14) is realized by two odd integers, n = qp2 ±1. Furthermore,
in this case

dm =
∣∣∣∣qp1

k1
− qp2 ± 1

k2

∣∣∣∣ = 1

k2
.

In all other cases, the infimum in (4.14) is realized by a unique odd integer nm ∈ Z and

dm =
∣∣∣∣mk1

− nm

k2

∣∣∣∣ <
1

k2
. (4.16)

In what follows we will denote the minimizer in (4.14) by nm. In the exceptional case
where nm is not uniquely defined, nm will denote either of the two minimizers.

There is an analogue for Dn of proposition 4.5, but it will not find use here. Denote
by mn the (perhaps not unique) minimizer in (4.15). For the present purposes, it suffices to
observe that

Dn ≡
∣∣∣∣mn

k1
− n

k2

∣∣∣∣ � 1

k1
, (4.17)

with equality only in the exceptional case where the minimizer is not unique. Furthermore,
observe that if the odd integers n and m are such that n = nm, then m = mn and
dm = Dn � 1/k2. On the other hand, if the odd integer n is such that n �= nm for all
odd integers m, then Dn > 1/k2.

Proposition 4.6. Let m, m′, n, n′ all be odd integers.

(i) If dm < dm′ , then cos k2mπ
k1

< cos k2m
′π

k1
.

(ii) If Dn < Dn′ , then cos k1nπ
k2

< cos k1n
′π

k2
.

Proof.

(i) By assumption,∣∣∣∣mk1
− nm

k2

∣∣∣∣ <

∣∣∣∣m
′

k1
− nm′

k2

∣∣∣∣ � 1

k2
,

from which it follows that∣∣∣∣k2m

k1
− nm

∣∣∣∣ <

∣∣∣∣k2m
′

k1
− nm′

∣∣∣∣ � 1.

The result is thus clear after applying the first part of lemma 4.4 with p = nm, q = nm′ ,
θ = k2m/k1 and η = k2m

′/k1.
(ii) The hypotheses imply∣∣∣∣mn − k1n

k2

∣∣∣∣ <

∣∣∣∣mn′ − k1n
′

k2
| � 1.

The result now follows from the first part of lemma 4.4 with p = mn, q = mn′ , θ = k1n/k2

and η = k1n
′/k2.
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Corollary 4.7. Let m, m′, n, n′ all be odd integers, and let zm(r), zm′(r), wn(s), wn′(s) be the
curves of zeros constructed in proposition 4.3.

(i) If dm < dm′ , then Re zm′(r) < Re zm(r) for sufficiently small r > 0.
(ii) If Dn < Dn′ , then Re wn(s) < Re wn′(s) for sufficiently small s > 0.

(iii) If n = nm but n′ is not of the form n′ = nm′ , then Re wn(s) < Re wn′(s) for sufficiently
small s > 0.

Proof. Statements (i) and (ii) follow from propositions 4.3 and 4.6, along with formulae (4.12)
and (4.13). Statement (iii) follows from proposition 4.6 along with the observation made just
after formula (4.17).

Proposition 4.8. Let α > 0 be contained in a non-empty open interval with endpoints mπ/k1

and nmπ/k2 for some odd integer m ∈ N. Then the quantities sin k1α and sin k2α are non-zero
and have opposite signs.

Proof. In the first case described in proposition 4.5, the result is obvious from the specific
information about m and either of the two values of nm. Thus, attention is turned to the case
where nm is uniquely determined. Since∣∣∣∣mk1

− nm

k2

∣∣∣∣ <
1

k2
<

1

k1
,

it follows that sin k1α and sin k2α are non-zero in the interval. To check that they have opposite
signs it suffices to prove that sin k2

k1
mπ and sin k1

k2
nmπ have opposite signs. To prove this, note

that

0 <

∣∣∣∣m − k1nm

k2

∣∣∣∣ < 1

and

0 <

∣∣∣∣k2m

k1
− nm

∣∣∣∣ < 1,

the left-hand inequality holding because the interval is assumed to be non-empty. The result
now follows from the second part of lemma 4.4 with p = m, q = nm, θ = k1nm/k2 and
η = k2m/k1. Note that p − θ is a positive multiple of η − q, so they have the same sign.

To close this section, we study the behaviour of a curve of zeros of F(·, t), given by (2.13),
as it approaches the triple zero described in proposition 3.1. This is more conveniently studied
in one or the other of the moving frames used in this section, as will be seen in the proof of
the following result.

Proposition 4.9. Suppose k1 and k2 are commensurable, and that p1 ∈ N, p2 ∈ N, and λ > 0
are given by (2.7) and (2.8). Suppose further that p1 is odd and p2 is even. Let x(t) be a
smooth curve defined for either t < 0 or t > 0 (or both), t close to 0, such that F(x(t), t) = 0
and x(t) �= λπ i, but that x(t) → λπ i as t → 0. It follows that

lim
t→0

(x(t) − λπ i)3

t
= −12 (4.18)

and

lim
t→0

t2x ′(t)3 = −4

9
. (4.19)
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Remark 4.10. Interestingly, the values of these limits do not depend on the values of k1 and k2.

Proof of proposition 4.9. Let z(r) = x(t) − k2
1 t where r is given by (4.3). It follows from

(4.8) that z(r) is a smooth curve defined for either r < 1 or r > 1 (or both), r close to 1, such
that G(z(r), r) = 0, z(r) �= λπ i and z(r) → λπ i as r → 1. Using (4.6), rewrite the equation
G(z(r), r) = 0 as

r = −ek2z + γ e(k2−k1)z

γ + e−k1z
,

where z = z(r). Differentiating this equation with respect to r , there obtains

1 = − (γ + e−k1z)(k2ek2z + (k2 − k1)γ e(k2−k1)z) − (ek2z + γ e(k2−k1)z)(−k1e−k1z)

(γ + e−k1z)2
z′(r).

Using (2.14), this simplifies to

1 = −k2γ ek2z(1 + e−k1z)2

(γ + e−k1z)2
z′(r),

from which it is deduced that

(1 + e−k1z)2z′(r) = −e−k2z

k2γ
(γ + e−k1z)2 → − 1

k2γ
(γ − 1)2 = −4k2

1

k2(k
2
2 − k2

1)
,

as r → 1. It follows that
d

dr
(1 + e−k1z)3 = 3(1 + e−k1z)2(−k1e−k1z)z′(r) → −12k3

1

k2(k
2
2 − k2

1)
.

Thus, by l’Hopital’s rule, it is seen that

lim
r→1

(1 + e−k1z)3

r − 1
= −12k3

1

k2(k
2
2 − k2

1)
. (4.20)

Since

lim
z→λπ i

1 + e−k1z

z − λπ i
= lim

z→λπ i

e−k1z − e−p1π i

z − λπ i
= lim

z→λπ i

e−k1z − e−k1λπ i

z − λπ i
= −k1e−k1λπ i = k1,

formula (4.20) implies that

lim
r→1

(z(r) − λπ i)3

r − 1
= −12

k2(k
2
2 − k2

1)
. (4.21)

Furthermore, (4.20) also implies that

lim
r→1

(r − 1)2z′(r)3 = lim
r→1

(r − 1)2

(1 + e−k1z)6
(1 + e−k1z)6z′(r)3

=
[
k2(k

2
2 − k2

1)

−12k3
1

]2[ −4k2
1

k2(k
2
2 − k2

1)

]3

= −4

9k2(k
2
2 − k2

1)
. (4.22)

Translating the two limits (4.21) and (4.22) back to the curve x(t) using (4.1) and (4.3), and
in particular the relation (r − 1)/t → k2(k

2
2 − k2

1) as t → 0, it follows that

lim
t→0

(x(t) − k2
1 t − λπ i)3

t
= −12

and, since z′(r) = (x ′(t) − k2
1)/rk2(k

2
2 − k2

1),

lim
t→0

t2(x ′(t) − k2
1)

3 = − 4
9 .

The desired limits now follow easily since k2
1 t

2/3 → 0 as t → 0.
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5. Proofs of theorems 1, 2 and 3

First observe that it suffices to prove theorem 1 under condition (2.12), in which case
t0 = x0 = 0. To see this, let x̃1 and x̃2 be arbitrary real numbers, and let t̃0 and x̃0 be
the resulting values obtained from formulae (2.10) and (2.11) with x1 = x̃1 and x2 = x̃2. If
we then define

f̃1(x, t) = ek1x̃1 exp(−k1x + k3
1 t),

f̃2(x, t) = ek2 x̃2 exp(−k2x + k3
2 t)

and

F̃ (x, t) = 1 + f̃1(x, t) + f̃2(x, t) +
(k2 − k1)

2

(k2 + k1)2
f̃1(x, t)f̃2(x, t),

then it is easy to check that

F̃ (x, t) = F(x − x̃0, t − t̃0)

where F is given by (2.13). Thus, information about F , given by (2.13), easily implies
corresponding information about F̃ .

We now proceed to the proof of theorems 1, 2 and 3, where F is assumed to be given by
(2.13). The first point to understand is the symmetry of the solution u(·, t) = 12 ln F(·, t)xx

at time t = 0. To see this, note that F(−x, 0) = e(k1+k2)xF (x, 0) and so

ln F(−x, 0) +
(k1 + k2)(−x)

2
= ln F(x, 0) +

(k1 + k2)x

2
.

In other words, ln F(x, 0) + (k1 + k2)x/2 is an even function, and so therefore must be its
second derivative. Thus u(x, 0) = u(−x, 0) for all x ∈ C except at the zeros of F(x, t). Next,
it is checked that there can be no other value t = t1 for which the solution is symmetric about
some point x = x1 ∈ R, for example. Supposing this to be the case, then the poles of u(·, t1)
would be symmetrically placed with respect to the vertical line Re x = x1, which is impossible
by proposition 3.4.

We now turn to the detailed description of the zeros of F(·, t). To this end, let J = J1 ∪J2,
where

J1 = {θ � 0 : sin k1θ = 0} =
{

mπ

k1
: m = 0, 1, 2, 3, . . .

}

and

J2 = {θ � 0 : sin k2θ = 0} =
{

nπ

k2
: n = 0, 1, 2, 3, . . .

}
.

Arrange the elements of J in an increasing sequence, namely,

J = {θ0, θ1, θ2, θ3, . . .},
where θj−1 < θj for all j = 1, 2, 3, . . ., and define the open intervals

Ij = (θj−1, θj )

for j = 1, 2, 3, . . . .
For every odd integer m ∈ N, denote by xs,m(t) the curve of zeros of F(·, t) defined for

large negative t , whose existence was established in proposition 4.3 and which has the form

xs,m(t) = k2
1 t + zm(exp(k2(k

2
2 − k2

1)t)). (5.1)
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Also, for every odd integer n ∈ N, denote by xf,n(t) the curve of zeros of F(·, t) defined for
large negative t , whose existence was established in proposition 4.3 and which has the form

xf,n(t) = k2
2 t + wn(exp(k1(k

2
2 − k2

1)t)). (5.2)

Note that

lim
t→−∞ Im xs,m(t) = mπ

k1
(5.3)

and

lim
t→−∞ Im xf,n(t) = nπ

k2
. (5.4)

More precisely, it follows from (4.10) and (4.11) that

xs,m(t) = k2
1 t +

1

k1
log γ +

mπ i

k1
− 4k2

k2
2 − k2

1

γ −k2/k1 e− k2
k1

mπ iek2(k
2
2−k2

1 )t + o(ek2(k
2
2−k2

1 )t ) (5.5)

and

xf,n(t) = k2
2 t − 1

k2
log γ +

nπ i

k2
+

4k1

k2
2 − k2

1

γ −k1/k2 e
k1
k2

nπ iek1(k
2
2−k2

1 )t + o(ek1(k
2
2−k2

1 )t ) (5.6)

as t → −∞.
By the implicit function theorem, each such curve can be extended smoothly as a curve

of zeros of F(·, t) as long as xs,m(t), respectively, xf,n(t), remains a simple zero, and remains
in a bounded region of C. We first note that each such curve must remain in a bounded region
of C for any bounded region of t . Let x(t) denote one of these curves. By proposition 3.4,
Im x(t) �∈ J \(J1 ∩J2), and so Im x(t) must remain bounded. It follows that if Re x(t) → ±∞
in finite time, then the equation F(x(t), t) = 0 implies 1 = 0. This contradiction shows that
x(t) must remain in a bounded region of C, for any bounded region of t . Next it follows from
proposition 3.1 that, except for one exceptional case which occurs only when k1 and k2 are
commensurable, all the zeros of F(·, t) are simple. In the exceptional case, this is still true
for all t �= 0. Thus these curves can be smoothly extended for all t ∈ R as zeros of F(·, t),
(for all t < 0 in the exceptional case). These curves of zeros of F(·, t) are mutually disjoint,
for large negative t , and cannot intersect one another at the same value of t as long as they
are smoothly extended by the implicit function theorem, i.e. for all t ∈ R, or for t < 0 in the
exceptional case.

Henceforth, consider the curves xs,m(t) and xf,n(t) as defined for all t ∈ R (t < 0 in the
exceptional case). It follows from (5.5) and (5.6) that

Re xf,n(t) < k2
2 t < k2

1 t < Re xs,m(t)

for large negative t , and thus by lemma 3.2 for all t < 0. Hence it transpires that

Re xf,n(0) � 0 � Re xs,m(0),

except of course in the one case where the curves are not defined at t = 0. The precise
horizontal ordering among the various curves xf,n(t) and among the various curves xs,m(t) is
given by corollary 4.7 and (5.1), (5.2) for large negative t . This ordering is preserved for all
t < 0 thanks to proposition 3.3.

5.1. The commensurable case

Let k1 and k2 be commensurable and let p1 ∈ N, p2 ∈ N, and λ > 0 be given by (2.7) and (2.8).
In this case, J1 ∩ J2 = {0, λπ, 2λπ, 3λπ, . . .}, since qλπ = qp1π/k1 = qp2π/k2 ∈ J1 ∩ J2

for all q = 0, 1, 2, · · · . For future reference, note that λπ = θp1+p2−1 and 2λπ = θ2(p1+p2−1)

and that sin k1λπ = sin k2λπ = 0.
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For each t ∈ R, the function F(·, t) is periodic with minimal period 2λπ i and is a
polynomial function in e−x/λ of degree p1 + p2. It follows that for each t ∈ R, F(·, t) has
precisely p1 + p2 zeros (counted with multiplicity) in the fundamental strip

S = {x ∈ C : 0 < Im x < 2λπ},
since F(x, t) �= 0 for all x ∈ R. Note that if x ∈ S and F(x, t) = 0, then likewise
F(x + 2λπ i, t) = 0 and x + 2λπ i ∈ S. Thus, zeros of F(·, t) in S which do not have imaginary
part precisely equal to λπ necessarily come in pairs with the same real parts, and located
symmetrically in S in the vertical direction around the horizontal line {Im x = λπ}.

Consider the curves of zeros of F(·, t) given by xs,m(t) for odd m with 0 < m < 2p1 and
xf,n(t) for odd n in the interval 0 < n < 2p2. There are precisely p1 + p2 such curves, defined
for all t ∈ R (for t < 0 in the exceptional case, which can only occur if p1 is odd and p2 is
even, as described in proposition 3.1) and taking distinct values for any given t . Furthermore,
for large negative t , these curves all lie in S. Since no zero can lie on the boundary of S, it
follows by continuity that these curves remain in S as long as they exist. Thus, this accounts
for all zeros of F(·, t) in S, and therefore by periodicity, for all zeros of F(·, t) in C, for all
t ∈ R (all t < 0 in the exceptional case). The next step is to describe more precisely the
location and movement of these zeros.

Consider the intervals Ij , for 1 � j � 2(p1+p2−1). By proposition 3.4, no zero of F(·, t)
can have imaginary part equal to θj , 1 � j � p1 +p2 −2 or p1 +p2 � j � 2(p1 +p2 −2)−1.
Thus, any zero of F(·, t) located in S must have imaginary part either equal to λπ = θp1+p2−1 or
lie in one of the open intervals Ij , for 1 � j � 2(p1 +p2 −1). Furthermore, by proposition 3.5,
such zeros cannot have imaginary part in Ij with j odd and 1 � j � p1 + p2 − 1 or with
j even and p1 + p2 � j � 2(p1 + p2 − 1). Note that the intervals Ip1+p2−1 and Ip1+p2 are
symmetrically located on either side of the shared common endpoint θp1+p2−1 = λπ .

Let m be an odd integer with 0 < m < p1. By proposition 4.5, there is a unique odd
integer nm satisfying (4.16). It follows that 0 < nm < p2. Thus, mπ/k1 and nmπ/k2 form
the endpoints (in some order) of an interval Ij with j even and j � p1 + p2 − 2. It follows
that Im xs,m(t) ∈ Ij and Im xf,nm

(t) ∈ Ij as long as they can be smoothly continued by the
implicit function theorem. Indeed, as t → −∞ their imaginary parts converge to θj−1 or θj

(by (5.3) and (5.4)), but (for t ∈ R) these imaginary parts cannot equal either θj−1 or θj and
are excluded from the neighbouring strips, with imaginary parts in Ij−1 or Ij+1 since they are
odd numbered. Thus, we avoid the exceptional case, and the curves xs,m(t) and xf,nm

(t) are
defined for all t ∈ R. It follows that Im xs,m(t) ∈ Ij and Im xf,nm

(t) ∈ Ij for all t ∈ R.
For all t ∈ R, there are precisely two zeros of F(·, t) with imaginary part in Ij . This

is true for large negative t , and thus for all t ∈ R by continuous dependence of the zeros of
polynomials on their coefficients, and since no zeros can ever have imaginary part equal to θj−1

or θj . Since corollary 3.7 excludes the possibility of a zero of F(·, 0) with imaginary part in Ij

and real part equal to 0, we see that Re xf,nm
(0) < 0 < Re xs,m(0). Since F(x, 0) = 0 implies

F(−x, 0) = 0, it follows that xf,nm
(0) = −xs,m(0) since otherwise there would be four zeros

of F(·, 0) with imaginary part in Ij , i.e. xs,m(0), xf,nm
(0), −xs,m(0), −xf,nm

(0). Furthermore,
since F(x, t) = 0 if and only if F(−x, −t) = 0, it follows that F(−xs,m(t), −t) =
F(−xf,nm

(t), −t) = 0 for all t ∈ R, and hence that

xf,nm
(−t) = −xs,m(t) (5.7)

for all t ∈ R. Indeed, this is true at t = 0, and therefore at all t ∈ R since there can be
no zeros of F(·, t) with imaginary part in Ij other than xs,m(t) and xf,nm

(t). In particular,
Re xf,nm

(t) < k2
1 t < k2

2 t < Re xs,m(t) for all t > 0. Since A1 �= 1 and A2 �= 1 for all t ∈ R,
where A1 and A2 are given by (3.2) and (3.3), it follows by proposition 3.8 that Im x ′

s,m(t) �= 0
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and Im x ′
f,nm

(t) �= 0 for all t ∈ R with the two zeros moving vertically towards each other for
t < 0, and then separating for t > 0. Also, notice that

lim
t→∞ Im xs,m(t) = nmπ

k2

and

lim
t→∞ Im xf,nm

(t) = mπ

k1
.

More precisely, it follows from (5.5), (5.6) and (5.7) that

xs,m(t) = k2
2 t +

1

k2
log γ +

nmπ i

k2
− 4k1

k2
2 − k2

1

γ −k1/k2 e− k1
k2

nmπ ie−k1(k
2
2−k2

1 )t + o(e−k1(k
2
2−k2

1 )t )

(5.8)

and

xf,nm
(t) = k2

1 t − 1

k1
log γ +

mπ i

k1
+

4k2

k2
2 − k2

1

γ −k2/k1 e
k2
k1

mπ ie−k2(k
2
2−k2

1 )t + o(e−k2(k
2
2−k2

1 )t )

(5.9)

as t → ∞. In particular, the curve xs,m(t), which was associated with a slow moving pole for
large negative t , becomes associated with a fast moving pole for large positive t . The reverse
switch happens for the paired curve xf,nm

(t). The precise horizontal ordering for t > 0 of these
curves can be deduced from the ordering for t < 0 using (5.7). Alternatively, the ordering for
large t can be deduced from the asymptotic expressions (5.8) and (5.9) using proposition 4.6.

For information, note that since Im x ′
s,m(t) �= 0 and Im x ′

f,nm
(t) �= 0, with opposite signs

(by proposition 3.8), since the asymptotic values of Im xs,m(t) and Im xf,nm
(t) are exchanged

between −∞ and ∞, and since the real parts of these curves both go from −∞ to ∞ as
t goes from −∞ to ∞, the curves xs,m(t) and xf,nm

(t) must intersect at least once, but
for different values of t . More precisely, since Re xs,m(t) < 0 for large negative t (by
(5.1)) but Re xs,m(0) > 0, there exists t0 < 0 such that Re xs,m(t0) = 0. It follows that
xf,nm

(−t0) = −xs,m(t0) = xs,m(t0). This is true for any t0 such that Re xs,m(t0) = 0. Since
k2

2 t < Re xs,m(t) for all t > 0, any such t0 must be negative. We do not have a good way
in general to determine how many such t0 might exist. Also, there is no other way for the
curves xs,m(t) and xf,nm

(t) to intersect. Indeed if xs,m(t1) = xf,nm
(t2) and t1 �= −t2 then

xs,m(−t2) = xf,nm
(−t1). But, this would imply that

Im xs,m(−t2) = Im xf,nm
(−t1) = −Im xs,m(t1) = Im xs,m(t1),

contradicting the fact that Im x ′
s,m(t) has the same sign for all t ∈ R. Also, if xs,m(t0) =

xf,nm
(−t0), then necessarily xs,m(t0) = −xs,m(t0) and so must have real part equal to 0.

Finally, if dm � 2/k2, then cos k1θ < 0 and cos k2θ < 0 for all θ ∈ Ij , which implies by
proposition 3.9 that Re x ′

s,m(t) > 0 and Re x ′
f,nm

(t) > 0 for all t ∈ R. In particular, there can
only be one point of intersection of the two curves.

Next, consider a curve of zeros xf,n(t) where n is odd, 0 < n < p2 − 1 and n is not equal
to nm for some odd integer m with 0 < m < p1. Since Im xf,n(t) → nπ/k2 as t → −∞,
this curve will satisfy Im xf,n(t) ∈ Ij , where Ij is one of two intervals with endpoint nπ/k2,
the one which is even numbered. The other endpoint of the interval Ij is necessarily either
(n + 1)π/k2 or (n − 1)π/k2. Here again we avoid the exceptional case, since n + 1 < p2,
and so xf,n(t) is defined for all t ∈ R. Furthermore, for all t ∈ R there is precisely one zero
of F(·, t) with imaginary part in Ij . (This is true for large negative t , and so by continuous
dependence of zeros of a polynomial on its coefficients, for all t ∈ R.) It follows from (5.2)
and proposition 4.3 that Re xf,n(t) < k2

2 t < 0 for large negative t , and thus by lemma 3.2
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for all t < 0. Furthermore, corollary 3.7 implies that there must be a zero of F(·, 0) with
real part 0 and imaginary part in [(n − 1)π/k2, (n + 1)π/k2], hence in Ij . We conclude that
Re xf,n(0) = 0 and so xf,n(0) = −xf,n(0). Since F(−xf,n(t), −t) = F(xf,n(t), t) = 0, it
transpires that

− xf,n(t) = xf,n(−t) (5.10)

for all t ∈ R. It then follows from (5.6) that

xf,n(t) = k2
2 t +

1

k2
log γ +

nπ i

k2
− 4k1

k2
2 − k2

1

γ −k1/k2 e− k1
k2

nπ ie−k1(k
2
2−k2

1 )t + o(e−k1(k
2
2−k2

1 )t )

(5.11)

as t → ∞.
Corollary 4.7 tells us that for large negative t , the real parts of the curves xf,n(t), where

n is not of the form nm for some odd m, are situated between the slow poles to the right, and
the paired fast poles to the left. Corollary 4.7 also gives the precise horizontal ordering of
these curves. By proposition 3.3, this order is maintained for all t < 0. In particular, it is the
case that

Re xf,nm
(t) < Re xf,n(t) < k2

2 t < k2
1 t < Re xs,m(t)

for all t < 0. By (5.7) and (5.10), it follows that

Re xf,nm
(t) < k2

1 t < k2
2 t < Re xf,n(t) < Re xs,m(t)

for all t > 0.
Finally, by proposition 3.8, Im x ′

f,n(t) �= 0 for all t �= 0, with xf,n(t) moving away from
the horizontal line with imaginary part nπ/k2 for t < 0, and moving back towards that line
asymptotically for t > 0. Clearly, Im x ′

f,n(0) = 0. By proposition 3.9, Re x ′
f,n(0) > 0.

5.1.1. The commensurable case: p1 and p2 both odd integers. In this case, all the zeros
of F(·, t) are simple for all t ∈ R and all the curves of zeros can be smoothly extended for
all t ∈ R. Among the curves of zeros already found, there are (p1 − 1)/2 curves xs,m(t)

with m odd, 0 < m < p1, and (p1 − 1)/2 associated curves xf,nm
(t). There are precisely

(p2 − p1)/2 remaining curves xf,n(t) with n odd, 0 < n < p2 − 1. This accounts for a total
of (p2 + p1 − 2)/2 zeros of F(·, t) in the fundamental strip S, given by (2.9). But all of these
are in the open lower half of S, i.e. {x ∈ C : 0 < Im x < λπ}. Thus, each of these curves has
a reflection above the line {x ∈ C : Im x = λπ}, which thus accounts for a total of p2 + p1 − 2
zeros in S, for each t ∈ R.

In addition, there are two curves of zeros whose imaginary parts converge to λπ as
t → −∞, i.e. xs,m(t) with m = p1, which we call xs(t), and the curve xf,n(t) with n = p2,
which we call xf (t). Also, in this case, the intervals Ip1+p2−1 and Ip1+p2 are, respectively,
odd and even numbered, and so there cannot exist a zero with imaginary part in Ip1+p2−1,
or in Ip1+p2 . It follows that Im xs(t) = Im xf (t) = λπ for all t ∈ R. Moreover, since
dp1 = Dp2 = 0 (defined in (4.14) and (4.15)) it follows from corollary 4.7 that, for large
negative t , Re xf (t) < Re x(t) < Re xs(t) for every other curve x(t) of zeros in S. This
is true for all t < 0 by proposition 3.3. Furthermore, one checks directly that, in this case,
F(λπ i, 0) �= 0, and so Re xf (0) < 0 < Re xs(0). Since these are the only two remaining
zeros for t > 0, it must be the case that

xf (−t) = −xs(t) (5.12)

for all t ∈ R. By proposition 3.3, it now follows that Re xf (t) < Re x(t) < Re xs(t) for every
other curve x(t) of zeros in S, for all t ∈ R. More precisely, the ordering of the real parts of
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all the zeros in S for large negative t is given by corollary 4.7, and so, by proposition 3.3, is
preserved for all t < 0 (all t ∈ R for the zeros not on the imaginary axis at t = 0). By (5.7),
(5.10) and (5.12), this ordering is then continued for all t > 0 for all the zeros in the strip S.

Counting the number of zeros of F(·, 0) in S whose real part vanishes, we see that there
are precisely p2 − p1 of them, corresponding to the curves xf,n(t) and their reflected curves
on the top half of S. That leaves 2p1 zeros of F(·, 0) in the strip S off the imaginary axis.

Finally, direct substitution into formula (7.5), which is derived in section 7 in the proof of
proposition 3.9, shows that Re x ′

f (t) > 0 and Re x ′
s(t) > 0 for all t ∈ R. For this purpose, one

uses A1 + 1/A1 � 2 and likewise for A2, as well as the fact that Im xf (t) = Im xs(t) = λπ for
all t ∈ R. Do not forget that p1 and p2 are both odd. Indeed, the quantity in (7.5), multiplied
by γ , is bounded below by

−k4
1(1 − 2γ + γ 2) − k4

2(1 − 2γ + γ 2) + k1k2(k
2
1 + k2

2)(−1 + γ 2)

= −(k4
1 + k4

2)(γ − 1)2 + k1k2(k
2
1 + k2

2)(−1 + γ 2)

= −(k4
1 + k4

2)
4k2

1

(k2 − k1)2
+ k1k2(k

2
1 + k2

2)
4k1k2

(k2 − k1)2

= 4k2
1

(k2 − k1)2
[−(k4

1 + k4
2) + k2

2(k
2
1 + k2

2)] = 4k4
1

k2
2 − k2

1

(k2 − k1)2
> 0.

5.1.2. The commensurable case. p1 even and p2 odd. In this case, all the zeros of F(·, t) are
simple for all t ∈ R and all the curves of zeros can be smoothly extended for all t ∈ R. Among
the curves of zeros already found, there are p1/2 curves xs,m(t) with m odd, 0 < m < p1, and
p1/2 associated curves xf,nm

(t). There are precisely (p2 − p1 − 1)/2 remaining curves of the
form xf,n(t) with n odd, 0 < n < p2 − 1. This accounts for a total of (p2 + p1 − 1)/2 zeros
of F(·, t) in the fundamental strip S, given by (2.9). But all of these are in the open lower half
of S, i.e. {x ∈ C : 0 < Im x < λπ}. Thus, each of these curves has a reflection above the line
{x ∈ C : Im x = λπ}, which accounts for a total of p2 + p1 − 1 zeros in S, for each t ∈ R.
Hence, there is one zero in S, given by (2.9), so far unaccounted for.

There is one curve of zeros whose imaginary part converges to λπ as t → −∞, i.e. the
curve xf,n(t) with n = p2, which is denoted here by xf (t). In this case the intervals Ip1+p2−1

and Ip1+p2 are, respectively, even and odd numbered, and so there might not be a zero with
imaginary part in Ip1+p2−1 or in Ip1+p2 . On the other hand, by symmetry, if there is a zero of
F(·, t) whose imaginary part is in Ip1+p2−1, there must be one also whose imaginary part is in
Ip1+p2 . But since all but one zero of F(·, t) in S have been accounted for (and their imaginary
parts are not in Ip1+p2−1 or in Ip1+p2 ), it follows that Im xf (t) = λπ for all t ∈ R. A direct
calculation shows that F(λπ i, 0) = 0; and so xf (0) = λπ i, and by the reasoning already used
several times,

xf (−t) = −xf (t). (5.13)

Also, in this case, Dn = 1/k1 where n = p2 and Dn is defined by (4.15). It then follows from
(4.17) and propositions 4.7 and 3.3 that

Re xf,n(t) < Re xf (t) < k2
2 t < k2

1 t < Re xs,m(t)

for all t < 0, for all odd m and all odd n, except if xf,n(t) is related to xf (t) by a symmetry
operation. On the other hand, (5.7), (5.10) and (5.13) imply that for t > 0,

Re xf,nm
(t) < k2

1 t < k2
2 t < Re xf (t) < Re xf,n(t) < Re xs,m(t),

for all odd m and (on the right side) all odd n �= p2 not of the form n = nm for some m and
not related to xf (t) by symmetries.
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Counting the number of zeros of F(·, 0) in S whose real part vanishes, we see that there
are p2 −p1 − 1 of them corresponding to curves of the form xf,n(t) with n odd not of the form
nm for some m odd. In addition, there is the zero xf (0) = λπ i. This makes a total of p2 − p1

zeros of F(·, 0) in the strip S on the imaginary axis, and 2p1 zeros of F(·, 0) in the strip S off
the imaginary axis. Note that 2p1 is divisible by 4.

Finally, using again formula (7.5) and substituting directly yields that Re x ′
f (t) > 0 for

all t ∈ R. Using the fact that p1 is even and p2 is odd, it is seen that the expression in (7.5),
multiplied by γ , equals

k4
1 + k1k2(k

2
1 + k2

2) + k4
2 + [k4

1 − k1k2(k
2
1 + k2

2) + k4
2]γ 2

+ γ [k4
2(A1 + 1/A1) − k4

1(A2 + 1/A2)].

However, A2 → γ and A1 → ∞ as t → −∞. (This follows from (3.2), (3.3), (4.4), (5.2)
and proposition 4.3.) Thus, by lemma 3.2, it follows that A2 > 1 and A1 > 1 for all t < 0.
Also, we must have A1 > A2 > 1 for all t < 0 since it is true for large negative t , and if ever
A1 = A2 for some t < 0, it follows from (3.8) that sin(p1 + p2)π/2 = 0. But this is not true
since p1 + p2 is odd. Thus A1 > A2 > 1 for all t < 0, and likewise A1 < A2 < 1 for all
t > 0, which shows that Re x ′

f (t) > 0 for all t ∈ R.

5.1.3. The commensurable case. p1 odd and p2 even. Among the curves of zeros already
found, there are (p1 −1)/2 curves xs,m(t) with m odd, 0 < m < p1, and (p1 −1)/2 associated
curves xf,nm

(t). There are precisely (p2 − p1 − 1)/2 remaining curves of the form xf,n(t)

with n odd, 0 < n < p2 − 1. This accounts for a total of (p2 + p1 − 3)/2 zeros of F(·, t)
in the fundamental strip S, given by (2.9). Again, all of these are in the open lower half of
S, i.e. {x ∈ C : 0 < Im x < λπ}. Thus, each of these curves has a reflection above the line
{x ∈ C : Im x = λπ}, which thus accounts for a total of p2 +p1 −3 zeros in S, for each t ∈ R.
All of these curves are defined for all t ∈ R. On the other hand, there are three zeros in S so
far unaccounted for. These are the curves xs,m(t) with m = p1, which we henceforth refer to
as xs(t), as well as the curves xf,n(t) with n = p2 ± 1. These two last curves are reflections of
each other about the line {x ∈ C : Im x = λπ}. The curve xf,n(t) with n = p2 − 1 is referred
to here as xf (t) and the curve xf,n(t) with n = p2 + 1 as x̃f (t).

Since Im xf (t) → (p2 − 1)π/k2 = θp1+p2−2 as t → −∞, and since p1 + p2 − 2 is
odd, it follows that for t < 0, Im xf (t) must lie in the interval Ip1+p2−1. Similarly, or by
reflection, Im x̃f (t) must be in Ip1+p2 for all t < 0. Indeed, if for any t < 0 it would happen
that Im xf (t) = λπ , then the same would be true for Im x̃f (t), thus giving a double zero. By
proposition 3.1, this is impossible. Finally, in order to preserve the right number of zeros for
all t < 0 it must be that Im xs(t) = λπ for all t < 0. If not, there would be another zero
obtained by reflection about the line {x ∈ C : Im x = λπ}, which would make too many zeros.

At t = 0 there is a triple zero of F(·, 0) at x = λπ i. For t �= 0, there are only simple zeros.
By continuous dependence of zeros of a polynomial on its coefficients, we conclude that all
three of the curves, xs(t), xf (t) and x̃f (t) converge as t → 0− to λπ i. The behaviour of these
curves as t → 0− is given by proposition 4.9. More precisely, let us first consider xs(t), so
that Im xs(t) = λπ for all t < 0. In this case xs(t) − λπ i = Re xs(t) and x ′

s(t) = Re x ′
s(t).

Thus, (4.18) and (4.19) imply that

Re xs(t) ∼ −(12t)1/3 = (12|t |)1/3

and

Re x ′
s(t) ∼ − 4

9t2
(5.14)
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as t → 0−. In particular, the curve xs(t) has passed through the point λπ i at some t < 0
into the right half plane, and then turned around to approach λπ i from the right, and at infinite
speed. As for the curve xf (t), we know that Im xf (t) ∈ Ip1+p2−1 for t < 0. In particular,
Im xf (t) < λπ . In this case, (4.18) and (4.19) imply that

xf (t) − λπ i ∼ (12|t |)1/3e4π i/3

and

x ′
f (t) ∼

(
4

9t2

)1/3

eπ i/3

as t → 0−. Similarly,

x̃f (t) − λπ i ∼ (12|t |)1/3e2π i/3

and

x̃ ′
f (t) ∼

(
4

9t2

)1/3

e5π i/3

as t → 0−. In view of these relations, it is natural to set, for t > 0,

xs(t) = −xs(−t), (5.15)

xf (t) = −x̃f (−t) (5.16)

and

x̃f (t) = −xf (−t). (5.17)

With these choices, we have the following behaviour as t → 0+:

Re xs(t) ∼ −(12t)1/3,

Re x ′
s(t) ∼ − 4

9t2
,

xf (t) − λπ i ∼ (12t)1/3eπ i/3,

x ′
f (t) ∼

(
4

9t2

)1/3

eπ i/3,

x̃f (t) − λπ i ∼ (12t)1/3e5π i/3,

x̃ ′
f (t) ∼

(
4

9t2

)1/3

e5π i/3.

(5.18)

As for the ordering of the various curves, in this case we have dp1 = Dp2±1 = 1/k2. It
follows from corollary 4.7 and proposition 3.3, as well as (5.15), (5.16) and (5.17), that

Re xf,nm
(t) < Re xf (t) = Re x̃f (t) < Re xf,n(t) < k2

2 t < k2
1 t < Re xs(t) < Re xs,m(t)

for all t < 0 and

Re xf,nm
(t) < Re xs(t) < k2

1 t < k2
2 t < Re xf,n(t) < Re xf (t) = Re x̃f (t) < Re xs,m(t)

for all t > 0.
Finally, if the zeros in the fundamental strip S on the imaginary axis at t = 0 are counted,

there is the triple zero at λπ i, as well as the p2 − p1 − 1 unpaired fast poles. This makes for
a total of p2 − p1 + 2 zeros counted with multiplicity, and therefore p2 − p1 counted without
multiplicity, in the fundamental strip S on the imaginary axis at t = 0, and thus 2(p1 − 1)

zeros in the fundamental strip S lie off the imaginary axis at t = 0.
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5.2. The non-commensurable case

If k1 and k2 are not commensurable, then J1 ∩ J2 = {0}, and so each θj , j � 1, belongs
precisely to one of the sets J1 or J2. It follows from proposition 3.4 that no zero of F(·, t) can
have imaginary part equal to any θj , and by proposition 3.5 such zeros cannot have imaginary
part in Ij with j odd. Thus, the analysis of the curves of zeros xs,m(t) and xf,nm

(t) and of
the curves xf,n(t) when n �= nm, which was carried out in the commensurable case under the
assumptions 0 < m < p1 and 0 < n < p2 − 1, can be repeated for the non-commensurable
case, for any odd integers n and m. The only difficulty is to show that no other zeros are
present. In other words, since there is no polynomial function in the background, it is not
immediately clear when all the zeros have been accounted for.

This can be handled by the following limiting procedure. For each q ∈ N, let k1,q

and k2,q be commensurable, 0 < k1,q < k2,q , and such that k1,q → k1 and k2,q → k2.
Let p1,q , p2,q , λq , θj,q , Ij,q and Fq(x, t) have the obvious meanings. Clearly, Fq → F

uniformly on compact subsets of C x R. Note also that λq → ∞. To see this, observe that
λq = p1,q/k1,q � 1/k1,q → 1/k1. Thus, if λq has a bounded subsequence, it has a convergent
subsequence, with limit λ∞, say, which is finite and positive. It would follow that F(·, t) is
periodic with period 2λ∞π i, which is impossible. Thus, θj,q → θj and, for given j , we have
θj,q < λqπ for sufficiently large q. Since Ij,q → Ij , the number of zeros of F(·, t) with
imaginary part in Ij must be the limit of the number of zeros of Fq(·, t) with imaginary part
in Ij,q by Rouché’s theorem.

Also, on account of (5.14) and (5.18), it can happen that Re x ′(t) < 0 for some value of
t , for some curve of zeros x(t) and for some non-commensurable values of k1 and k2. Indeed,
suppose k1 and k2 are commensurable, with p1 odd and p2 even, and xs(t) is the curve which
verifies (5.14) and (5.18). Then by continuous dependence, if k1 and k2 are approached by a
sequence of non-commensurable numbers k1,q and k2,q , then xs(t) will be approached by a
sequence of curves of zeros xq(t), which for q sufficiently large must have Re x ′

q(t) < 0 for
some values of t .

Next, consider the asymptotic density of zeros of F(·, 0) which are purely imaginary. For
example, consider the number of zeros which are purely imaginary and whose real part is
contained in an interval of the form [0, nπ/k2] for some fixed n ∈ N. By proposition 3.6, it
follows that this is the same as the number of solutions of the equation eik1α + eik2α = 0 with
α ∈ [0, nπ/k2]. But such solutions are of the form

α = (2l + 1)π

k2 − k1

for some integer l. For large values of n there are (up to an error of less than 1) n(k2 − k1)/2k2

such values of α. This give a density of

n(k2 − k1)/2k2

nπ/k2
= k2 − k1

2π
.

The overall density of zeros whose imaginary parts are in a certain strip is easily found as the
limit of densities in the commensurable cases, which are all easy to count.

6. Blowup: proof of theorem 4

Let z(t) be a smooth curve of zeros of F(·, t). As we know, z(t) is always a simple zero. (The
only non-simple zero occurs where z′(t) becomes infinite, and only in the commensurable
case.) It follows that for each t , F(·, t) can be expressed locally near z(t) by a development



Pole dynamics of interacting solitons and blowup of complex-valued solutions of KdV 345

of the form

F(x, t) = c(t)(x − z(t)) + (x − z(t))2v(x, t)

= (x − z(t))[c(t) + (x − z(t))v(x, t)],

where v(·, t) is analytic in x and c(t) �= 0. It follows that

Fx(x, t) = c(t) + 2(x − z(t))v(x, t) + (x − z(t))2vx(x, t),

and so locally near z(t),

Fx(x, t)

F (x, t)
= 1

x − z(t)
+ w(x, t),

where w is smooth. Thus u = 12(log F)xx is given locally near z(t) by

u(x, t) = −12

(x − z(t))2
+ wx(x, t).

Let z(T ) = x0 + iα, for some x0 ∈ R and z′(T ) = a + ib, for some a, b ∈ R with b �= 0.
Thus, for t near T , z has the form

z(t) = x0 + iα − (T − t)(a + ib) + (T − t)2h(x, t),

for some smooth function h(x, t), and so

u(x, t) = −12

(x − x0 − iα + (T − t)(a + ib) − (T − t)2h(x, t))2
+ wx(x, t),

or,

uα(x, t) = u(x + iα, t) = −12

(x − x0 + (T − t)(a + ib) − (T − t)2h(x, t))2
+ wx(x + iα, t).

Set y = (x − x0)/(T − t), so x = x0 + y(T − t) and

(T − t)2uα(x0 + y(T − t), t)

= −12

(y + (a + ib) − (T − t)h(x0 + y(T − t), t))2

+ (T − t)2wx(x0 + y(T − t) + iα, t).

By proposition 3.8 and lemma 3.2, if T �= 0 then always b �= 0. In this case, by
proposition 3.4, there is only one pole with imaginary part α when t = T . This corresponds
to a single-point blowup. Furthermore, by lemma 3.2 it follows that if T = 0 and z(0)

corresponds to a slow pole or its paired fast pole, then also b �= 0, and in this case, there are
two poles with the same imaginary part, so there is also adduced a two-point blowup. In these
cases, since b �= 0, it follows that

(T − t)2uα(x0 + y(T − t), t) → −12

(y + (a + ib))2
,

uniformly for y contained in any fixed compact subset of R.
Finally, if at T = 0, z(0) corresponds to an unpaired fast pole, then b = 0 since

z(t) = −z(−t), and so

z(t) − z(0)

t
= −z(−t) + z(0)

t
= z(−t) − z(0)

−t
.

On the other hand, a > 0 by proposition 3.9. In this case it is clear that

(T − t)2uα(x0 + y(T − t), t) → −12

(y + a)2
,

uniformly for y contained in any fixed compact subset of R \ {−a}.
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7. Horizontal movement of poles: proof of proposition 3.9

The proof of proposition 3.9 begins with the first formula in the proof of proposition 3.8.
This is a formula for x ′(t) where x(t) is a smooth curve of zeros of F as in the statement of
propositions 3.8 and 3.9. The real part of x ′(t) has the same sign as does the quantity

� = k4
1A

2
1|A2 + γ eik2α|2 + k4

2A
2
2|A1 + γ eik1α|2

+ k1k2(k
2
1 +k2

2)A1A2(A1A2 + A1γ cos k2α+ A2γ cos k1α+ γ 2 cos(k2− k1)α).

(7.1)

Replacing A1 and A2 in (3.4) by 1/A1 and 1/A2, respectively (which corresponds to writing
F(−x, −t) = 0), we obtain the equation

A2(A1 + γ eik1α) + γA1eik2α + ei(k2+k1)α = 0.

Multiplying this by (A1 + γ e−ik1α) yields

A2|A1 + γ eik1α|2 = −[A1 cos(k2 + k1)α + γ (A2
1 + 1) cos k2α + γ 2A1 cos(k2 − k1)α]. (7.2)

Similarly, we may derive

A1|A2 + γ eik2α|2 = −[A2 cos(k2 + k1)α + γ (A2
2 + 1) cos k1α + γ 2A2 cos(k2 − k1)α].

(7.3)

Furthermore, multiplying (3.14) by cos(k2 + k1)α and (3.15) by sin(k2 + k1)α, and adding the
two resulting equations gives

A1A2 + A1γ cos k2α + A2γ cos k1α = − cos(k2 + k1)α. (7.4)

Substituting (7.2), (7.3) and (7.4) into (7.1), the quantity � in (7.1) is seen to satisfy the relation

�

γA1A2
= −k4

1[γ −1 cos(k2 + k1)α + (A2 + 1/A2) cos k1α + γ cos(k2 − k1)α]

−k4
2[γ −1 cos(k2 + k1)α + (A1 + 1/A1) cos k2α + γ cos(k2 − k1)α]

+ k1k2(k
2
1 + k2

2)(−γ −1 cos(k2 + k1)α + γ cos(k2 − k1)α). (7.5)

Observe that (7.5) has the same sign as Re x ′(t) even without the assumption that sin k1α �= 0
and sin k2α �= 0.

Now, using the hypotheses that sin k1α �= 0 and sin k2α �= 0, we simplify each line of
(7.5) separately. Dividing (3.13) by A2 sin k1α leads to

A2 + 1/A2 = −γ −1 sin(k2 + k1)α − γ sin(k2 − k1)α

sin k1α
,

and therefore (after simplification)

γ −1 cos(k2 + k1)α + (A2 + 1/A2) cos k1α + γ cos(k2 − k1)α =
(

γ − 1

γ

)
sin k2α

sin k1α
.

Next we treat the second line of (7.5). Dividing (3.12) by A1 sin k2α yields

A1 + 1/A1 = −γ −1 sin(k2 + k1)α + γ sin(k2 − k1)α

sin k2α
,

whence (again, after simplification)

γ −1 cos(k2 + k1)α + (A1 + 1/A1) cos k2α + γ cos(k2 − k1)α =
(

γ − 1

γ

)
sin k1α

sin k2α
.
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The third line of (7.5) is rewritten using trigonometric identities, namely,

−γ −1 cos(k2 + k1)α + γ cos(k2 − k1)α

=
(

γ − 1

γ

)
cos k2α cos k1α +

(
γ +

1

γ

)
sin k2α sin k1α.

Putting this together, it is seen that the quantity in (7.5) is equal to

−k4
1

(
γ − 1

γ

)
sin k2α

sin k1α
− k4

2

(
γ − 1

γ

)
sin k1α

sin k2α

+ k1k2(k
2
1 + k2

2)

[(
γ − 1

γ

)
cos k2α cos k1α +

(
γ +

1

γ

)
sin k2α sin k1α

]
.

Next, divide by k4
1(γ − 1

γ
) and multiply by − sin k1α sin k2α, which is positive by

proposition 3.5. This gives the expression

sin2 k2α + R4 sin2 k1α − R(1 + R2) cos k2α cos k1α sin k2α sin k1α

−
(

(1 + R2)2

2

)
sin2 k2α sin2 k1α, (7.6)

where R = k2/k1. The quantity in (7.6) has the same sign as (7.5), which has the same sign
as Re x ′(t). Note that A1 and A2 are absent from (7.6), which is the main point of the above
calculation. One observes that (7.6) can be re-written as
1
2 (sin k2α cos k1α − R2 sin k1α cos k2α)2 + 1

2 (sin k2α + R2 sin k1α)2

+ R2(− sin k2α sin k1α − sin2 k2α sin2 k1α)

− R(1 − R + R2) cos k2α cos k1α sin k2α sin k1α. (7.7)

The first three terms are always positive, since sin k2α sin k1α < 0. If cos k2α cos k1α > 0,
then the last term is also positive. This proves part (i) of proposition 3.9.

To prove the second assertion, begin by remarking that since Re x(0) = 0, it follows that,
at t = 0, A1 = A2 = 1. Substituting this into (7.1) gives

� = k4
1(1 + 2γ cos k2α + γ 2) + k4

2(1 + 2γ cos k1α + γ 2)

+ k1k2(k
2
1 + k2

2)(1 + γ cos k2α + γ cos k1α + γ 2 cos(k2 − k1)α),

which needs to be shown to be positive. Next, putting A1 = A2 = 1 in (3.4), multiplying by
e−ik1α , and then taking the real part, there obtains

γ 2 + γ cos k2α + γ cos k1α + γ 2 cos(k2 − k1)α = 0.

Thus, it suffices to show that

k4
1(1 + 2γ cos k2α + γ 2) + k4

2(1 + 2γ cos k1α + γ 2) + k1k2(k
2
1 + k2

2)(1 − γ 2) > 0.

It is straightforward to check that

k4
1(1 + 2γ + γ 2) + k4

2(1 − 2γ + γ 2) + k1k2(k
2
1 + k2

2)(1 − γ 2) = 0.

Thus, it is sufficient to show that

k4
1(cos k2α − 1) + k4

2(cos k1α + 1)) > 0.

To prove this, note that solving (3.4) for eik2α , with A1 = A2 = 1 gives

eik2α = −1 + γ eik1α

γ + eik1α
= − (1 + γ eik1α)(γ + e−ik1α)

|γ + eik1α|2 .
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Taking the real part leads to

cos k2α − 1 = − (γ + 1)2[cos k1α + 1]

γ 2 + 2γ cos k1α + 1
.

Since cos k1α + 1 > 0 (because sin k1α �= 0), it now suffices to check that

−k4
1(γ + 1)2 + k4

2(γ
2 + 2γ cos k1α + 1) > 0.

But, using (2.14), one concludes that

−k4
1(γ + 1)2 + k4

2(γ
2 + 2γ cos k1α + 1) > −k4

1(γ + 1)2 + k4
2(γ − 1)2 > 0,

thereby completing the proof of statement (ii), and thus the proposition.

8. Discussion

The original idea of Kruskal (1974) was that the properties of the two solition solution of
(1.1) are reflected in the dynamics of the poles of that solution in the complex plane. For
large positive and negative time, the poles separate naturally into two groups which travel
asymptotically at the two speeds of the independent solitons. This suggests that each set of
poles represents the corresponding soliton. Since each pole can be followed individually as
time evolves, one can therefore interpret this evolution as the evolution of the (real-valued)
solitons. Since the poles which travel at the slow speed for large negative time all travel at
the faster speed for large positive time, it seems reasonable to say that the soliton which for
large negative time leads the other one and is slower, is not really overtaken by the fast soliton,
but rather becomes the fast soliton during the interaction. Similarly, some of the poles which
travel with the faster soliton for large negative time slow down and travel at the slower speed
for large positive time. It is consistent with our interpretation to say that the solition which
is faster for large negative time evolves into the slower one. The interaction consists of the
re-alignment of some of the poles travelling with the trailing soliton to the leading soliton.
In the authors’ view, this supports the idea of energy and mass transfer between the solitons
during the interaction.
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