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Abstract. Considered here is the well-posedness of a KdV-type Boussinesq
system modeling two-way propagation of small-amplitude long waves on the
surface of an ideal fluid when the motion is sensibly two dimensional. Solutions
are obtained in a range of Sobolev-type spaces, from the energy level to the
analytic Gevrey spaces. In addition, a criterion for detecting the possibility of
blow-up in finite time in terms of loss of analyticity is derived.

1. Introduction. Consideration is given to the following coupled systems of two
nonlinear dispersive wave equations in one space dimension, namely,

wt + ηx + wwx + ηxxx = 0,
ηt + wx + (wη)x + wxxx = 0,

(1)

and its symmetric version (see [4]),

wt + ηx + 3
2 wwx + 1

2 ηηx + ηxxx = 0,
ηt + wx + 1

2 (wη)x + wxxx = 0.
(2)

These systems have been indicated as models for long waves of small amplitude at
the surface of an ideal fluid in a long rectangular channel with a flat bottom. They
are known to be a valid approximation of the full, two-dimensional Euler equations
for fluid motion under the influence of gravity in suitably small amplitude, long
wavelength regimes (see [1, 2, 4]). The dependent variable η is proportional to the
deflection of the free surface from its rest position, whilst w represents the horizontal
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velocity of the fluid measured at a height of
√

2
3h, where h is the undisturbed depth

of the fluid. The system (1) is a special case of a three-parameter family of long-
wave systems derived in [1]. In [2], the linear and nonlinear well posedness of these
systems was investigated. In general, it was found that whenever a system is linearly
well posed, the same result holds for the nonlinear system. The well posedeness of
(2) was studied in [4]. In these works, a local well-posedness theory was developed
in the L2-based Sobolev class Hs for s > 3

4 . Detailed numerical simulations of
solutions to these systems may be found in [5] and [6].

As is apparent, these systems have a structure related to the Korteweg-de Vries
equation (KdV-equation)

ηt + ηx + ηηx + ηxxx = 0. (3)

This equation has been the subject of a great number of works over the last four
decades. In particular, the last two decades have seen the development of a very
satisfactory theory of existence and uniqueness for the initial-value problem for (3).
The initial-value problem for (3) is known to be globally well posed in all Sobolev
classes with nonnegative index [14, 30]. Indeed, there exist unique global solutions
in the L2-based Sobolev classes Hs down to s ≥ − 3

4 [16, 17, 15, 10]. It can also be

shown that the initial-value problem is not well posed in a strong sense if s < − 3
4 .

The property that fails for very low values of s is that the flow map from initial
data to solution is not of class C2 [15].

Considering the mature state of the theory for (3), it seems natural to develop
corresponding theory for the systems (1) and (2). Here, we focus on existence of
solutions in Sobolev spaces of nonnegative index. In particular, this includes local-
in-time existence in the space of square-integrable functions on the real line, which
is the energy space for the systems in view, as well as global-in-time existence for
the symmetric version (2). Additionally, it will be proved that solutions are analytic
in the spatial variable whenever the initial data are analytic in an appropriate sense
and, for some s > 3

2 , the solutions remain bounded in the Hs-norm. Conversely, if
a solution corresponding to analytic initial data loses analyticity in finite time, this
will preclude the solution from being global in any Sobolev spaceHs, s > 3

2 . In other
words, loss of analyticity is a faithful indicator of a possible finite-time blow-up. The
radius of analyticity is not only useful in the study of possible singularity formation,
but also for proving exponential convergence of numerical approximations obtained
via spectral methods. A study pertaining to the spectral projection method for
approximating solutions of the KdV equation (3) has been conducted in [22, 23].
As already mentioned, numerical simulations of the systems appearing in (1) and
(2) have appeared recently in [5] and [6].

Related theory for similar types of systems include the recent developments of
Bona, Cohen and Wang [3] that develops local and global theory set in Sobolev
classes Hs where s is only restricted by s > − 3

4 , as in the KdV-case. See also the
papers [28] and [29] where related systems are considered. Issues of analyticity are
not addressed in these works, and the range of systems considered in [3] does not
include the present, physically relevant systems.

It is worth remarking that explicit examples in the KdV context may be con-
structed of complex-valued solutions that begin life analytic in a strip and, when
restricted to the real axis, lose smoothness in finite time (see [11], [12] and [13] and
the references therein).
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To decouple the linear part of these systems, define new dependent variables

U = 1
4 (w + η),

V = 1
4 (w − η),

so that the resulting systems for U and V are

Ut + Ux + Uxxx + 3UUx + (UV )x − V Vx = 0,
Vt − Vx − Vxxx − UUx + (UV )x + 3V Vx = 0

(4)

and
Ut + Ux + Uxxx + 3UUx + (UV )x + V Vx = 0,
Vt − Vx − Vxxx + UUx + (UV )x + 3V Vx = 0.

(5)

Since w and η can be easily recovered from U and V , our development of a well
posedness theory will be focused on (4) and (5), with initial data U0 and V0. The
core of the argument used to show well posedness will be to obtain a contraction
mapping in a conormal weighted space-time Sobolev space of Bourgain type. Ba-
nach spaces of this kind have been used extensively by many authors as a means to
overcome the derivative loss inherent in dispersive equations with derivative non-
linearity. However, one problematic issue is that U and V are members of different
Banach spaces, making the proof of the several required nonlinear estimates some-
what delicate. These difficulties are nevertheless overcome by carefully subdividing
the domain of integration in Fourier space, as will be shown in Section 3.

As an overall guide to the rest of the paper, the main theorems to be proved are
now stated. For σ ≥ 0 and s ≥ 0, define Gσ,s to be the subspace of L2 = L2(R) for
which

‖u0‖2
Gσ,s

=

∫ ∞

−∞

(1 + |ξ|)2se2σ(1+|ξ|)|û0(ξ)|2 dξ

is finite. Note that for σ = 0, the definition yields the usual Sobolev spaces, denoted
by Hs. With the definition of Gσ,s in hand, we are ready to state the theorems.

Theorem 1.1. Let σ ≥ 0 and s ≥ 0. For initial data U0, V0 ∈ Gσ,s, there exists a
positive time t0 and a solution U, V ∈ C([−t0, t0];Gσ,s) of the initial-value problems
associated to (4) and (5).

It will appear from the proof of Theorem 1.1 that the solution depends continu-
ously on the initial data, but uniqueness holds only in a smaller class of functions.
As mentioned before, the special case σ = 0 yields existence of a solution for initial
data in Hs, and in particular when s = 0, we obtain existence in the energy class
L2. As the symmetric version (2) formally conserves the L2-norm, it transpires that
local existence of a solution immediately yields global-in-time existence.

The second main theorem to be proved states that the radius of analyticity σ
when regarded as a function of time cannot decrease faster than algebraically.

Theorem 1.2. Let σ0 > 0 and s > 1
2 , and let T ≥ t0. Let U0, V0 ∈ Gσ0,s, and

suppose that the associated solution pair U, V ∈ C([−4T, 4T ]; Hs+1). Then

U, V ∈ C([−T, T ]; Gσ(T )/2,s),

where σ(T ) is given by

σ(T ) = min
{
σ0,K(1 + T )−12

}
,

for some constant K.
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This shows in particular that if the initial data are analytic in some strip about
the real axis and if for some s > 3

2 , the Sobolev Hs-norm of the solution stays finite,
then the solution will remain analytic for all time.

The proofs of these two theorems are developed in the following way. In the next
section, notation and some basic properties of function spaces will be recorded.
In Section 3, some linear estimates are recalled, laying the groundwork for the
multilinear estimates which form the heart of the analysis. The multilinear estimates
will be established in Section 4. Finally, a proof of Theorem 1.1 will given in Section
5, whilst Theorem 1.2 is established in Section 6.

2. Functional setting. The Fourier transform û0 of a function u0 belonging to
the Schwartz class is taken to be

û0(ξ) =
1√
2π

∫ ∞

−∞

u0(x)e
−ixξ dx.

For a function u(x, t) of two variables, the spatial Fourier transform is denoted by

Fxu(ξ, t) =
1√
2π

∫ ∞

−∞

u(x, t)e−ixξ dx,

whereas the notation û(ξ, τ) designates the space-time Fourier transform

û(ξ, τ) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

u(x, t)e−ixξe−itτ dx dt.

Define Fourier multiplier operators A and Λ by

Âu(ξ, τ) = (1 + |ξ|)û(ξ, τ)

and

Λ̂u(ξ, τ) = (1 + |τ |)û(ξ, τ).
The following notation is used to signify the Lp

x-Lq
t norms;

‖u‖LpLq
=

{∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞

|u(x, t)|q dt
∣∣∣∣

p
q

dx

} 1
p

.

The usual modification applies for L∞-norms. Sometimes, Lp-Lq norms are used in
Fourier variables, and this will be indicated by using subscripts, viz. Lp

ξL
q
τ . A class

of analytic functions suitable for our analysis is the analytic Gevrey class Gσ,s,
introduced in the context of nonlinear evolution equations by Foias and Temam
[19]. Gσ,s may be defined as the domain of the operator AseσA in L2, and as was
mentioned in the introduction, the analytic Gevrey norm of a function u0 = u0(x)
is defined by

‖u0‖2
Gσ,s

=

∫ ∞

−∞

(1 + |ξ|)2se2σ(1+|ξ|)|û0(ξ)|2 dξ.

It is straightforward to check that a function in Gσ,s is the restriction to the real
axis of a function which is analytic on a strip symmetric about the real axis of width
2σ. This strip, {z = x + iy : |y| < σ}, will be denoted by Sσ. If s = 0, we write
simply Gσ for Gσ,0. The following proposition shows that if u0 ∈ Gσ and ε is such
that 0 < ε < σ, then u0 and all of its derivatives are bounded on the smaller strip
Sσ−ε.
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Proposition 2.1. Let ε with 0 < ε < σ and n ∈ N be given, and suppose that
u0 ∈ Gσ. Then there exists a constant c depending on ε and n, such that

sup
x+iy∈Sσ−ε

|∂n
xu0(x + iy)| ≤ c‖u0‖Gσ

.

Proof. This is a direct consequence of the Sobolev embedding theorem and the
inequality

‖u0‖Gσ−ε,n+1 ≤ cn,ε‖u0‖Gσ
(6)

which holds for n ∈ N. The inequality (6) follows from the relation

sup
ξ∈R

{
e−ε(1+|ξ|)(1 + |ξ|)n+1

}
= cn,ε,

for a constant cn,ε.

The space C([−T, T ];Gσ,s) of continuous functions on the interval [−T, T ] with
values in Gσ,s is denoted by CT,σ,s. This space is a Banach space when equipped
with the norm

|u|CT,σ,s
= sup

−T≤t≤T
‖u(·, t)‖Gσ,s

.

To efficiently exploit the dispersive effects inherent in (1), we consider a space
that is a blend between the analytic Gevrey space and a space of Bourgain-type.
More precisely, for σ ≥ 0, s ∈ R, and b ∈ [−1, 1], define X+

σ,s,b to be the Banach
space equipped with the norm

‖v‖2
X+

σ,s,b
=

∫ ∞

−∞

∫ ∞

−∞

(1 + |τ + ξ − ξ3|)2b(1 + |ξ|)2se2σ(1+|ξ|)|v̂(ξ, τ)|2 dξdτ

and define X−
σ,s,b using the norm

‖v‖2
X−

σ,s,b
=

∫ ∞

−∞

∫ ∞

−∞

(1 + |τ − ξ + ξ3|)2b(1 + |ξ|)2se2σ(1+|ξ|)|v̂(ξ, τ)|2 dξdτ.

For σ = 0, X±
σ,s,b coincides with the spaces X±

s,b introduced by Bourgain, and Kenig,
Ponce and Vega, whose norms are

‖v‖2
X±

s,b

=

∫ ∞

−∞

∫ ∞

−∞

(1 + |τ ± ξ ∓ ξ3|)2b(1 + |ξ|)2s|v̂(ξ, τ)|2 dξdτ.

These spaces are effective because the Fourier weight is well adapted to the linear
part of the evolution equations. To see how this works, let W (t)± be the solution
groups associated with the homogeneous linear problems

ut + ux + uxxx = 0,
u(x, 0) = u0(x),

}

and
vt − vx − vxxx = 0,
v(x, 0) = v0(x),

}

respectively. These groups have the representations

u(x, t) = W+(t)u0 =
1

2π

∫ ∞

−∞

eixξe−itξeitξ3

û0(ξ) dξ

and

v(x, t) = W−(t)v0 =
1

2π

∫ ∞

−∞

eixξeitξe−itξ3

v̂0(ξ) dξ.
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It follows immediately that
∥∥W±(t)f

∥∥
X±

σ,s,b

= ‖AseσAΛbf‖L2L2 . (7)

When b > 1
2 , the spaces X±

σ,s,b are included in the space of continuous functions
with values in Gσ,s.

Proposition 2.2. If b > 1
2 , then the spaces X±

σ,s,b are embedded in C([−T, T ];Gσ,s).

Proof. It follows directly from (7) and the Sobolev embedding theorem that the
inequalities

sup
t∈[−T,T ]

‖v(·, t)‖Gσ,s
≤ c ‖v‖X±

σ,s,b

and

sup
t∈[−T,T ]

‖v(·, t)‖Hs ≤ c ‖v‖X±

s,b

hold for b > 1
2 . This proves the proposition.

The product spaces denoted impressionistically by Y = X+×X− have the usual
product norm ‖u‖X+

σ,s,b
+ ‖v‖X−

σ,s,b
. The linear matrix operator W (t) is

W (t) =

(
W+(t) 0

0 W−(t)

)
,

so that for

(
u
v

)
∈ Y , W (t)

(
u
v

)
=

(
W+(t)u
W−(t)v

)
. Finally, for any function space Z,

Z2 will denote the product space Z × Z.

3. Linear estimates. Since the analysis is based on boundedness in Yσ,s,b of an
integral operator given by a variation-of-constants formula, certain estimates of
the solutions of the corresponding linear problem are needed. These estimates
are addressed now. Let ψ be an infinitely differentiable cut-off function such that
0 ≤ ψ ≤ 1 everywhere and

ψ(t) =

{
0, |t| ≥ 2,
1, |t| ≤ 1,

and, for T > 0, let ψT (t) = ψ(t/T ).

Lemma 3.1. Let T > 0, σ ≥ 0, s ≥ 0, b > 1
2 and choose b′ such that b− 1 < b′ < 0.

Then there is a constant c such that
∥∥ψT (t)W±(t)u0

∥∥
X±

σ,s,b

≤ cmax
{
T

1
2 , T

1−2b
2

}
‖u0‖Gσ,s

(8)

and
∥∥∥∥ψT (t)

∫ t

0

W±(t− s)u(s) ds

∥∥∥∥
X±

σ,s,b

≤ cmax
{
T, T 1−b+b′

}
‖u‖X±

σ,s,b′
(9)

Proof. The proof of (8) is immediate from the definition of the Xσ,s,b-spaces and
the linearity of the operator eσA. For the proof of (9), one follows the proof of
Lemma 2.1 in [20] step by step, separating the cases T ≤ 1 and T > 1.
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The second kind of linear estimates needed are Kato-type smoothing inequalities
and maximal function inequalities. For a suitable function f , define F+

ρ and F−
ρ

via their Fourier transforms according to

F̂+
ρ (ξ, τ) =

|f(ξ, τ)|(
1 + |τ + ξ − ξ3|

)ρ

and

F̂−
ρ (ξ, τ) =

|f(ξ, τ)|(
1 + |τ − ξ + ξ3|

)ρ .

Lemma 3.2. [Bourgain] Let ρ > 1
4 be given. Then there is a constant c, depending

on ρ, such that

‖A 1
2F±

ρ ‖L4L2 ≤ c‖f‖L2
ξ
L2

τ
. (10)

For the proof of this lemma, the reader is referred to [14].

Lemma 3.3. [Kenig-Ponce-Vega] Let s and ρ be given. There is a constant c,
depending on s and ρ, such that the following inequalities hold.

(i) If ρ > 1
2 , then

‖AF±
ρ ‖L∞L2 ≤ c‖f‖L2

ξ
L2

τ
. (11)

(ii) If ρ > 1
2 and s > 3ρ, then

‖A−sF±
ρ ‖L2L∞

≤ c‖f‖L2
ξ
L2

τ
. (12)

(iii) If ρ > 1
2 and s > 1

4 , then

‖A−sF±
ρ ‖L4L∞

≤ c‖f‖L2
ξ
L2

τ
. (13)

(iv) If ρ > 1
2 and s > 1

2 , then

‖A−sF±
ρ ‖L∞L∞

≤ c‖f‖L2
ξ
L2

τ
. (14)

The inequality (11) was proved in [26]. The estimates (12) and (14) were estab-
lished in [21], and (13) can be proved analogously using an estimate appearing in
[25]. Finally, note that for any ρ ≥ 0, the trivial estimate

‖F±
ρ ‖L2L2 ≤ c‖f‖L2

ξ
L2

τ
(15)

holds.

4. Bilinear estimates. The purpose of this section is the proof of several useful
bilinear estimates. The first theorem contains the estimates to be used in the proof
of local existence of solutions of (1) and (2).

Theorem 4.1. Let s ≥ 0, σ ≥ 0, 1
2 < b < 3

4 , and b − 1 < b′ < − 1
4 . Then there

exists a constant c depending only on s, b, and b′ such that

‖∂x(uv)‖X+

σ,s,b′
≤ c ‖u‖X+

σ,s,b
‖v‖X+

σ,s,b
,

‖∂x(uv)‖X−

σ,s,b′
≤ c ‖u‖X−

σ,s,b
‖v‖X−

σ,s,b
,

‖∂x(uv)‖X+

σ,s,b′
≤ c ‖u‖X+

σ,s,b
‖v‖X−

σ,s,b
,

‖∂x(uv)‖X+

σ,s,b′
≤ c ‖u‖X−

σ,s,b
‖v‖X−

σ,s,b
,
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‖∂x(uv)‖X−

σ,s,b′
≤ c ‖u‖X+

σ,s,b
‖v‖X−

σ,s,b
,

‖∂x(uv)‖X−

σ,s,b′
≤ c ‖u‖X+

σ,s,b
‖v‖X+

σ,s,b
.

Proof. In the proof, we focus on the case s = 0 and σ = 0 and comment on the
situations wherein s > 0 or σ > 0 at the end. The first two estimates can be proved
as in [27]. Of the remaining four inequalities, the fourth and the sixth are most
demanding. Since the proofs are virtually the same, only the latter estimate will be
proved. First note that the sixth inequality can be written more explicitly as

∥∥∥
(
1 + |τ − ξ + ξ3|

)b′

(iξ) ûv(ξ, τ)
∥∥∥

L2
ξ
L2

τ

≤ c ‖u‖X+
σ,s,b

‖v‖X+
σ,s,b

.

If the functions f and g are defined by

f(ξ, τ) = (1 + |τ + ξ − ξ3|)bû(ξ, τ)

and

g(ξ, τ) = (1 + |τ + ξ − ξ3|)bv̂(ξ, τ),

respectively, then the sought for bilinear estimate is equivalent to

∥∥∥
ξ

(
1 + |τ − ξ + ξ3|

)−b′

∫ ∞

−∞

∫ ∞

−∞

f(ξ1, τ1)(
1 + |τ1 + ξ1 − ξ31 |

)b

× g(ξ − ξ1, τ − τ1)(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dξ1dτ1

∥∥∥
L2

ξ
L2

τ

≤ c‖f‖L2
ξ
L2

τ
‖g‖L2

ξ
L2

τ
.

This inequality will be obtained by duality. Letting dµ = dξ1dτ1dξdτ , and supposing
h(ξ, τ) to be an arbitrary element of the unit ball of L2(R2), we need to estimate
the quantity

sup
‖h‖

L2
ξ

L2
τ
≤1

∫

R4

h(ξ, τ) |ξ|
(
1 + |τ − ξ + ξ3|

)−b′
f(ξ1, τ1)(

1 + |τ1 + ξ1 − ξ31 |
)b

× g(ξ − ξ1, τ − τ1)(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ. (16)

After changing variables, the domain of integration is split into the two subdomains
where |ξ|2 + |ξ1|2 ≥ 2 and |ξ|2 + |ξ1|2 < 2 (a choice whose genesis will be obvious in
a moment). Thus the integral in (16) can be written as the sum I1 + I2, where

I1 =

∫

|ξ|2+|ξ1|
2≥2

h(ξ + ξ1, τ + τ1) |ξ + ξ1|(
1 + |τ + τ1 − (ξ + ξ1) + (ξ + ξ1)3|

)−b′

× f(ξ1, τ1)(
1 + |τ1 + ξ1 − ξ31 |

)b

g(ξ, τ)
(
1 + |τ + ξ − ξ3|

)b
dµ

and

I2 =

∫

|ξ|2+|ξ1|
2<2

h(ξ + ξ1, τ + τ1) |ξ + ξ1|(
1 + |τ + τ1 − (ξ + ξ1) + (ξ + ξ1)3|

)−b′

× f(ξ1, τ1)(
1 + |τ1 + ξ1 − ξ31 |

)b

g(ξ, τ)
(
1 + |τ + ξ − ξ3|

)b
dµ.
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Focusing on I1, observe the relation

(τ + ξ − ξ3) + (τ1 + ξ1 − ξ31) −
[
(τ + τ1) − (ξ + ξ1) + (ξ + ξ1)

3
]

= −(ξ + ξ1)(2ξ
2 + ξξ1 + 2ξ21 − 2)

= −(ξ + ξ1)(ξ
2 + ξξ1 + ξ21 + ξ2 + ξ21 − 2).

Noticing that ξ2 +ξξ1 +ξ21 ≥ |ξ||ξ1|, and recalling that |ξ|2 + |ξ1|2 ≥ 2 in the present
case, it is clear that

∣∣τ + ξ − ξ3 + (τ1 + ξ1 − ξ31) −
[
(τ + τ1) − (ξ + ξ1) + (ξ + ξ1)

3
]∣∣

≥ |ξ1||ξ + ξ1||ξ| (17)

holds. This implies that one of the cases

(a) |τ + ξ − ξ3| ≥ 1
3 |ξ + ξ1||ξ||ξ1|,

(b) |τ1 + ξ1 − ξ31 | ≥ 1
3 |ξ + ξ1||ξ||ξ1| or

(c) |τ + τ1 − (ξ + ξ1) + (ξ + ξ1)
3| ≥ 1

3 |ξ + ξ1||ξ||ξ1|

always occurs. In case (a), I1 is bounded by

∫

|ξ|2+|ξ1|
2≥2

|h(ξ + ξ1, τ + τ1)| |ξ + ξ1|1−b

(
1 + |τ + τ1 − (ξ + ξ1) + (ξ + ξ1)3|

)−b′

× |f(ξ1, τ1)||ξ1|−b

(
1 + |τ1 + ξ1 − ξ31 |

)b
|g(ξ, τ)||ξ|−bdµ

≤ 2

∫

|ξ|2+|ξ1|
2≥2

|h(ξ + ξ1, τ + τ1)| (1 + |ξ + ξ1|)1−b

(
1 + |τ + τ1 − (ξ + ξ1) + (ξ + ξ1)3|

)−b′

× |f(ξ1, τ1)|(1 + |ξ1|)−b

(
1 + |τ1 + ξ1 − ξ31 |

)b
|g(ξ, τ)|(1 + |ξ|)−bdµ.

Changing to the original variables, it transpires that

I1 ≤ 2

∫

R4

|h(ξ, τ)| (1 + |ξ|)1−b

(
1 + |τ − ξ + ξ3|

)−b′
|f(ξ1, τ1)|(1 + |ξ1|)−b

(
1 + |τ1 + ξ1 − ξ31 |

)b

× |g(ξ − ξ1, τ − τ1)|(1 + |ξ − ξ1|)−b dµ

≤ 2

∫ ∞

−∞

∫ ∞

−∞

A1−bH−
−b′(x, t) A

−bF+
b (x, t) A−bG0(x, t) dx dt

≤ 2 ‖A1−bH−
−b′‖L4L2 ‖A−bF+

b ‖L4L∞
‖A−bG+

0 ‖L2L2

≤ c ‖h‖L2L2‖f‖L2L2 ‖g‖L2L2 .

where Lemmas 3.2 and 3.3 have been used in the last step. It appears immediately
that case (b) is similar to case (a). In case (c), we follow a similar reasoning as in
case (a) to see that I1 is bounded by

2

∫

R4

|h(ξ+ξ1, τ+τ1)| (1+|ξ+ξ1|)1+b′ |f(ξ1, τ1)| (1 + |ξ1|)b′

(
1 + |τ1 + ξ1 − ξ31 |

)b

|g(ξ, τ)|(1 + |ξ|)b′

(
1 + |τ + ξ − ξ3|

)b
dµ.
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Changing back to the original variables, it is then required to estimate the integral

2

∫

R4

|h(ξ, τ)| (1 + |ξ|)1+b′ |f(ξ1, τ1)| (1 + |ξ1|)b′

(
1 + |τ1 + ξ1 − ξ31 |

)b

× |g(ξ − ξ1, τ − τ1)|(1 + |ξ − ξ1|)b′

(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ. (18)

Split the domain of integration into two further subregions, namely the regions
where |ξ1| > |ξ − ξ1| and |ξ1| ≤ |ξ − ξ1|, respectively. In the region where |ξ1| >
|ξ − ξ1|, the integral just displayed is dominated by

2

∫

R4

|h(ξ, τ)| |f(ξ1, τ1)||ξ1|1+b′+b′

(
1 + |τ1 + ξ1 − ξ31 |

)b

|g(ξ − ξ1, τ − τ1)||ξ − ξ1|b
′

(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ.

This integral can be further bounded by

2

∫ ∞

−∞

∫ ∞

−∞

H0(x, t) A
1+2b′Fb(x, t) A

b′Gb(x, t) dxdt

≤ c ‖H0‖L2L2 ‖A1+2b′Fb‖L4L2 ‖Ab′Gb‖L4L∞

≤ c ‖h‖L2L2‖f‖L2L2 ‖g‖L2L2 .

Since the last two factors in the integral (18) have identical structure, the analysis
in the region where |ξ1| ≤ |ξ − ξ1| is the same.

With the integral I1 appropriately bounded, we turn to the estimation of I2. It
is clear that I2 can be dominated by

c

∫

R4

h(ξ, τ)
(
1 + |τ − ξ + ξ3|

)−b′
f(ξ1, τ1)(

1 + |τ1 + ξ1 − ξ31 |
)b

× g(ξ − ξ1, τ − τ1)(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ. (19)

Split the domain of integration into the two subregions D1 = {|ξ1| > |ξ − ξ1|} and
D2 = {|ξ1| ≤ |ξ − ξ1|} as in case (c) above. Again using Lemmas 3.2 and 3.3 along
with the trivial estimate (15), the integrand appearing in (19), when integrated over
D1 and D2, respectively, has the upper bounds

‖H−b′‖L2L2‖A
1
2Fb‖L4L2 ‖A− 1

2Gb‖L4L∞
≤ c ‖h‖L2L2‖f‖L2L2 ‖g‖L2L2 ,

and

‖H−b′‖L2L2‖A− 1
2Gb‖L4L∞

‖A 1
2Fb‖L4L2 ≤ c ‖h‖L2L2‖f‖L2L2 ‖g‖L2L2 .

It thus transpires that

sup
‖h‖

L2
ξ

L2
τ
≤1

∫

R4

h(ξ, τ) |ξ|
(
1 + |τ − ξ + ξ3|

)−b′
f(ξ1, τ1)(

1 + |τ1 + ξ1 − ξ31 |
)b

× g(ξ − ξ1, τ − τ1)(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ ≤ c ‖f‖L2L2 ‖g‖L2L2

as advertised.
In the case when s or σ are nonzero, define the functions f and g as

f(ξ, τ) = (1 + |τ + ξ − ξ3|)b(1 + |ξ|)seσ(1+|ξ|)û(ξ, τ)
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and

g(ξ, τ) = (1 + |τ + ξ − ξ3|)b(1 + |ξ|)seσ(1+|ξ|)v̂(ξ, τ),

then use the inequality e(1+|ξ|) ≤ e(1+|ξ1|)e(1+|ξ−ξ1|) and observe that positive values
of s actually aid the procedure of the proof.

Next, a bilinear estimate to be used in the proof of large time estimates in Section
6 is stated and proved.

Theorem 4.2. Let σ > 0, s ≥ 0, b > 1
2 and b′ ≤ − 3

8 . Then there exists a constant
c depending only on s, b, and b′ such that

‖∂x(uv)‖X+

σ,s,b′
≤ c ‖u‖X+

s,b
‖v‖X+

s,b
+ c σ

1
4 ‖u‖X+

σ,s,b
‖v‖X+

σ,s,b
,

‖∂x(uv)‖X−

σ,s,b′
≤ c ‖u‖X−

s,b
‖v‖X−

s,b
+ c σ

1
4 ‖u‖X−

σ,s,b
‖v‖X−

σ,s,b
,

‖∂x(uv)‖X+

σ,s,b′
≤ c ‖u‖X−

s,b
‖v‖X+

s,b
+ c σ

1
4 ‖u‖X−

σ,s,b
‖v‖X+

σ,s,b
,

‖∂x(uv)‖X+

σ,s,b′
≤ c ‖u‖X−

s,b
‖v‖X−

s,b
+ c σ

1
4 ‖u‖X−

σ,s,b
‖v‖X−

σ,s,b
,

‖∂x(uv)‖X−

σ,s,b′
≤ c ‖u‖X−

s,b
‖v‖X+

s,b
+ c σ

1
4 ‖u‖X−

σ,s,b
‖v‖X+

σ,s,b
,

‖∂x(uv)‖X−

σ,s,b′
≤ c ‖u‖X+

s,b
‖v‖X+

s,b
+ c σ

1
4 ‖u‖X+

σ,s,b
‖v‖X+

σ,s,b
.

Proof. The first two cases have essentially been proved in [8]. The proofs of the third
and fifths case are symmetric, as are the proofs of the fourth and sixth cases. We
prove only the fifth case which is somewhat more straightforward than the fourth,
because no change of variables is necessary. Only the case s = 0 is treated; the case
s > 0 is straightforwardly reduced to the case s = 0. The elementary inequality

eσ(1+|ξ|) ≤ e+ σ
1
4 (1 + |ξ|) 1

4 eσ(1+|ξ|) (20)

will play a role at a certain point in the proof of the theorem.
As in the proof of Theorem 1, the estimate may be rewritten in the form
∥∥∥
(
1 + |τ − ξ + ξ3|

)b′

eσ(1+|ξ|)|ξ| ûv(ξ, τ)
∥∥∥

L2
ξ
L2

τ

≤ c ‖u‖X−

s,b
‖v‖X+

s,b

+ c σ
1
4 ‖u‖X−

σ,s,b
‖v‖X+

σ,s,b
.

Setting

f(ξ, τ) = (1 + |τ − ξ + ξ3|)beσ(1+|ξ|)û(ξ, τ)

and

g(ξ, τ) = (1 + |τ + ξ − ξ3|)beσ(1+|ξ|)v̂(ξ, τ),

it is required to bound appropriately the quantity

∫

R4

h(ξ, τ) |ξ| eσ(1+|ξ|)

(
1 + |τ − ξ + ξ3|

)−b′
f(ξ1, τ1) e

−σ(1+|ξ1|)

(
1 + |τ1 − ξ1 + ξ31 |

)b

× g(ξ − ξ1, τ − τ1) e
−σ(1+|ξ−ξ1|)

(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ (21)
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uniformly for h belonging to the unit ball B in L2(R2). As before, the notation
dµ = dξ1dτ1dξdτ has been employed. Using the inequality (20), the integral (21) is
bounded by the sum of the two terms

I = e

∫

R4

|h(ξ, τ)||ξ|
(
1 + |τ − ξ + ξ3|

)−b′
|f(ξ1, τ1)| e−σ(1+|ξ1|)

(
1 + |τ1 − ξ1 + ξ31 |

)b

× |g(ξ − ξ1, τ − τ1)| e−σ(1+|ξ−ξ1|)

(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ

and

J = σ
1
4

∫

R4

|h(ξ, τ)| |ξ|(1 + |ξ|) 1
4 eσ(1+|ξ|)

(
1 + |τ − ξ + ξ3|

)−b′
|f(ξ1, τ1)| e−σ(1+|ξ1|)

(
1 + |τ1 − ξ1 + ξ31 |

)b

× |g(ξ − ξ1, τ − τ1)| e−σ(1+|ξ−ξ1|)

(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ.

To analyze I, proceed as in the proof of Theorem 4.1 to split the domain of
integration into the region where |ξ|2+|ξ1|2 < 2 and the region where |ξ|2+|ξ1|2 ≥ 2.
In the first region, the proof is the same as the corresponding part of the proof of
Theorem 1. In the second region, use the inequality

∣∣τ − ξ + ξ3 + (τ1 − ξ1 + ξ31) −
[
(τ − τ1) + (ξ − ξ1) − (ξ − ξ1)

3
]∣∣ ≥ |ξ1||ξ − ξ1||ξ|,

which is derived in a similar way as (17), to conclude that one of the cases

(a) |τ − ξ + ξ3| ≥ 1
3 |ξ + ξ1||ξ||ξ1|,

(b) |τ1 − ξ1 + ξ31 | ≥ 1
3 |ξ + ξ1||ξ||ξ1| or

(c) |τ − τ1 + (ξ − ξ1) − (ξ − ξ1)
3| ≥ 1

3 |ξ − ξ1||ξ||ξ1|
(22)

always occurs. After noticing that the factors e−σ(1+|ξ1|) and e−σ(1+|ξ−ξ1|) are
always less than 1, the estimation of I then proceeds along the lines of the proof of
Theorem 4.1.

Attention is next turned to the task of estimating J . Because of the relation
e(1+|ξ|) ≤ e(1+|ξ1|)e(1+|ξ−ξ1|), it is plain that J can be dominated by

σ
1
4

∫

R4

|h(ξ, τ)| (1 + |ξ|) 5
4

(
1 + |τ − ξ + ξ3|

)−b′
|f(ξ1, τ1)|(

1 + |τ1 − ξ1 + ξ31 |
)b

× |g(ξ − ξ1, τ − τ1)|(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ.

Again splitting the domain of integration into the region where |ξ|2 + |ξ1|2 ≥ 2 and
the region where |ξ|2 + |ξ1|2 < 2 leads to the need to estimate the integrals

J1 = σ
1
4

∫

|ξ|2+|ξ1|
2≥2

|h(ξ, τ)| (1 + |ξ|) 5
4

(
1 + |τ − ξ + ξ3|

)−b′
|f(ξ1, τ1)|(

1 + |τ1 − ξ1 + ξ31 |
)b

× |g(ξ − ξ1, τ − τ1)|(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ
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and

J2 = σ
1
4

∫

|ξ|2+|ξ1|
2<2

|h(ξ, τ)| (1 + |ξ|) 5
4

(
1 + |τ − ξ + ξ3|

)−b′
|f(ξ1, τ1)|(

1 + |τ1 − ξ1 + ξ31 |
)b

× |g(ξ − ξ1, τ − τ1)|(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ.

As before, it is shown that for J1, one of the cases (a), (b) or (c) in (22) must occur.
In case (a), J1 is bounded by

2 σ
1
4

∫

R4

|h(ξ, τ)| |ξ| 54+b′
(
1 + |ξ1|

)b′ |f(ξ1, τ1)|
(
1 + |τ1 + ξ1 − ξ31 |

)b

×
(
1 + |ξ − ξ1|

)b′ |g(ξ − ξ1, τ − τ1)|
(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ.

At this point, the domain of integration is again split into two further subregions,
|ξ1| > |ξ − ξ1| and |ξ1| ≤ |ξ − ξ1|. In the region where |ξ1| > |ξ − ξ1|, the quantity
in the just displayed integral is dominated by

2 σ
1
4

∫

R4

|h(ξ, τ)|(1 + |ξ|)b′+ 3
8

(
1 + |ξ1|

) 7
8+b′ |f(ξ1, τ1)|

(
1 + |τ1 + ξ1 − ξ31 |

)b

×
(
1 + |ξ − ξ1|

)b′ |g(ξ − ξ1, τ − τ1)|
(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ.

The latter integral can be further bounded above by

2 σ
1
4

∫ ∞

−∞

∫ ∞

−∞

Ab′+ 3
8H−

0 (x, t) A
7
8+b′F−

b (x, t) Ab′G+
b (x, t) dx dt

≤ c ‖Ab′+ 3
8H−

0 ‖L2L2 ‖A 7
8+b′F−

b ‖L4L2 ‖Ab′G+
b ‖L4L∞

≤ c ‖h‖L2L2‖f‖L2L2 ‖g‖L2L2 .

Since the last two factors in the integral have identical structure, the analysis in the
region where |ξ1| ≤ |ξ − ξ1| is the same. In case (b), J1 is dominated by

2 σ
1
4

∫

R4

|h(ξ, τ)| (1 + |ξ|) 5
4−b

(
1 + |τ − ξ + ξ3|

)−b′
|f(ξ1, τ1)|(
1 + |ξ1|

)b

× |g(ξ − ξ1, τ − τ1)|(
1 + |ξ − ξ1|

)b(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ.

We split the domain of integration into the same two subregions as before. In the
region where |ξ1| > |ξ − ξ1|, J1 is dominated by

2 σ
1
4

∫

R4

|h(ξ, τ)| (1 + |ξ|) 5
4−2b

(
1 + |τ − ξ + ξ3|

)−b′
|f(ξ1, τ1)|

× |g(ξ − ξ1, τ − τ1)|(
1 + |ξ − ξ1|

)b(
1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|

)b
dµ,
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and the latter can be bounded by

2 σ
1
4

∫ ∞

−∞

∫ ∞

−∞

A
5
4−2bH−

−b′(x, t) , F0(x, t) A
−bG+

b (x, t) dx dt

≤ c σ
1
4 ‖A 5

4−2bH−
−b′‖L4L2 ‖F0‖L2L2 ‖A−bG+

b ‖L4L∞

≤ c σ
1
4 ‖h‖L2L2‖f‖L2L2 ‖g‖L2L2 .

In the region where |ξ1| ≤ |ξ − ξ1|, the integral is dominated by

2 σ
1
4

∫

R4

|h(ξ, τ)| (1 + |ξ|)1−b

(
1 + |τ − ξ + ξ3|

)−b′
|f(ξ1, τ1)|(
1 + |ξ1|

)b

× (1 + |ξ − ξ1|)
1
4 |g(ξ − ξ1, τ − τ1)|(

1 + |ξ − ξ1|
)b(

1 + |τ − τ1 + ξ − ξ1 − (ξ − ξ1)3|
)b

dµ,

which in turn is bounded above, viz.

2 σ
1
4

∫ ∞

−∞

∫ ∞

−∞

A1−bH−
−b′(x, t) A

−bF0(x, t) A
1
4−bG+

b (x, t) dx dt

≤ c σ
1
4 ‖A1−bH−

−b′‖L4L2 ‖A−bF−‖L2L2 ‖A 1
4−bG+

b ‖L4L∞

≤ c σ
1
4 ‖h‖L2L2‖f‖L2L2 ‖g‖L2L2 .

The proof in case (c) in (22) is similar to the proof in case (b). Finally, the estimation
of J2 is carried out as in the corresponding case in the proof of Theorem 4.1.

5. Local-in-time existence and global-in-time existence for the symmetric

version in L2. With the inequalities provided in the previous section, local-in-time
existence and uniqueness of solutions in Yσ,s,b to the initial-value problems can be
proved for any s ≥ 0 and σ ≥ 0 with the help of the contraction-mapping theorem.
Consider the integral operator

Γ

(
u
v

)
= ψ(t)

(
W+(t)U0

W−(t)V0

)

− ψt0(t)

∫ t

0

(
W+(t− t′)∂x

(
3
2u

2 + uv − 1
2v

2
)
(t′)

W−(t− t′)∂x

(
3
2v

2 + uv − 1
2u

2
)
(t′)

)
dt′. (23)

Let r = ‖U0‖Gσ,s
+ ‖V0‖Gσ,s

. It will be proved that t0 can be chosen so that Γ is a
contraction in the ball B(2cr) ⊂ Yσ,s,b of radius 2cr centered at 0.

Lemma 5.1. There exists a positive time t0 ≤ 1, such that the operator Γ as defined
in (23) is a contraction in the ball B(2cr).

Proof. We consider the system (4) – the proof in the case of the symmetric version
(5) is the same.
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First, it is proved that Γ is a mapping on B(2cr). Using (8), (9) and the nonlinear
estimates, it is seen that

∥∥∥∥Γ

(
u
v

)∥∥∥∥
Yσ,s,b

≤
∥∥ψ(t)W+(t)U0

∥∥
X+

σ,s,b

+
∥∥ψ(t)W−(t)V0

∥∥
X−

σ,s,b

+ c

∥∥∥∥ψt0(t)

∫ t

0

W+(t− t′)∂x

(
3
2u

2 + uv − 1
2v

2
)
(t′) dt′

∥∥∥∥
X+

σ,s,b

+ c

∥∥∥∥ψt0(t)

∫ t

0

W−(t− t′)∂x

(
3
2v

2 + uv − 1
2u

2
)
(t′) dt′

∥∥∥∥
X−

σ,s,b

≤ c ‖U0‖Gσ,s
+ c ‖V0‖Gσ,s

+ c t1−b+b′

0

∥∥∂x

(
3
2u

2 + uv − 1
2v

2
)∥∥

X+

σ,s,b′

+ c t1−b+b′

0

∥∥∂x

(
3
2v

2 + uv − 1
2u

2
)∥∥

X−

σ,s,b′

≤ cr + c t1−b+b′

0

(
‖u‖2

X+
σ,s,b

+ ‖v‖2
X−

σ,s,b

)

≤ cr + c t1−b+b′

0 (2cr)2 ≤ 2cr

for t0 = cb,b′r
− 1

1−b+b′ . With the same choice of t0, the same set of inequalities yield
the contraction inequality∥∥∥∥Γ

(
u1

v1

)
− Γ

(
u2

v2

)∥∥∥∥
Yσ,s,b

≤ 1

2

∥∥∥∥
(
u1

v1

)
−

(
u2

v2

)∥∥∥∥
Yσ,s,b

.

It follows that Γ has a unique fixed point

Γ

(
U
V

)
=

(
U
V

)
∈ B(2cr).

The functions U and V provide a solution of the initial-value problem associated to
(4), and it is necessarily unique in the class Yσ,s,b. Continuous dependence follows
immediately since the mapping Γ depends continuously on U0 and V0 (cf. [27, 21]).

Remark 5.2. Multiplying the equations in (5) by U and V , respectively, integrating
over the real line, integrating by parts and summing the result reveals that the total

energy,

∫ (
U2 + V 2

)
dx, of the symmetric system is conserved. This combined with

the local-in-time well-posedness yields global-in-time existence for the symmetric
version in L2.

Remark 5.3 Using the estimates of Section 4 combined with techniques used in
[26], see [3], it is also possible to obtain existence of solutions in Sobolev classes of
negative index.

Since the main focus of this paper is on analytic solutions, we do not stop here
to provide an existence result in negative Sobolev classes. However, it would be
interesting to find the critical Sobolev index below which well posedness becomes
impossible, and to compare it to the situation for the initial-value problem associ-
ated to the KdV equation (3). For the related, but simpler systems studied in [3],
well-posedness in Hs ×Hs is known for s > − 3

4 . Presumably this result is sharp
in the same sense it is for (3).
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6. Large time estimates on the radius of analyticity. This section is devoted
to the proof of Theorem 1.2 which is concerned with large time lower bounds on
the uniform radius of spatial analyticity of solutions emanating from analytic initial
data. Recall that Theorem 1.2 states that if initial data (U0, V0) are in an analytic
Gevrey space G2

σ0,s and for some s > 1
2 , the Hs+1-Sobolev norm of the solution

remains bounded, then the solution will remain analytic and the radius of analyt-
icity will decrease at worst at a rate of T−12. This algebraic decrease of the radius
of analyticity in time is a major improvement over previous results for other evolu-
tion equations which provided exponential decrease [24, 7]. The theorem is proved
by first deriving a priori bounds in G2

σ(T ),s on a suitable sequence {(Un, V n)} of

approximations of (U, V ) on the time interval [0, T ] where T > 0 is arbitrary.
One important tool to be used in the proof is the following result relating bound-

edness of a Bourgain-type norm to boundedness of a Sobolev norm.

Lemma 6.1. Let s > 1
2 and −1 < b < 1. Let t0 > 0 be the local existence time

provided by Lemma 5.1, and suppose that (U, V ) is a solution to (4) or (5) in
C([−2T, 2T ];Hs+1)2. Then there exists a constant c = c(s, b, t0) such that

‖ψT (t)U(·, t)‖X+
s,b

+ ‖ψT (t)V (·, t)‖X−

s,b
≤ cT

1
2 (1 + αT (U, V )),

for all T ≥ t0, where

αT (U, V ) ≡ sup
t∈[−2T,2T ]

(‖U‖s+1 + ‖V ‖s+1)
2.

The proof is analogous to the proof of Lemma 4 in [8].
In what follows, the system (4) is examined in detail. An analysis of the sym-

metric version follows exactly along the same lines.
The sequence of approximations {(Un, V n)}∞n=1 is defined by

Un
t + Un

x + Un
xxx = − 3(ηn ∗ ψTU

n)(ηn ∗ ψTU
n)x

− ((ηn ∗ ψTU
n)(ηn ∗ ψTV

n))x

+ (ηn ∗ ψTV
n)(ηn ∗ ψTV

n)x

≡
[
NL(U)

]
n
, (24)

V n
t − V n

x − V n
xxx = − 3(ηn ∗ ψTV

n)(ηn ∗ ψTV
n)x

− ((ηn ∗ ψTU
n)(ηn ∗ ψTV

n))x

+ (ηn ∗ ψTU
n)(ηn ∗ ψTU

n)x

≡
[
NL(V )

]
n
, (25)

supplemented with the initial conditions Un(x, 0) = U0(x), V
n(x, 0) = V0(x) for

n ∈ N and T > 0, where ηn is defined via its Fourier transform to be such that

η̂n(ξ) =

{
0, |ξ| ≥ 2n

1, |ξ| ≤ n

and η̂n is smooth and monotone on (−2n,−n) and (n, 2n).

Remark 6.2. (i) If (U0, V0) ∈ (Hr)2 and (U, V ) ∈ C([−2T, 2T ];Hr)2 for some
r ≥ 0, standard X±

r,s-estimates applied to (Un − U, V n − V ) show that for n large
enough, (Un, V n) exists on the same time interval and {(Un, V n)} converges to
(U, V ) in C([−2T, 2T ];Hr)2.
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(ii) If (U0, V0) ∈ G2
σ0,s, the proof given in the previous section yields local-in-time

well-posedness for (24) - (25) in Yσ0,s,b with the same interval of existence and the
same bounds.

(iii) If (U0, V0) ∈ G2
σ0,s and (U, V ) ∈ C([−4T, 4T ];Hs+1)2 then for n large enough

(ψTU
n, ψTV

n) belongs to Yσ,s,b for all σ > 0 (this is a consequence of the spatial
convolution with ηn which is an entire function of exponential type; for details see
p. 199 in [9]).

Proposition 6.3. Let σ0 > 0 and s > 1
2 be given, and let b be such that 1

2 < b < 3
4

and b′ be such that b− 1 < b′ < − 3
8 , Let T ≥ t0 where t0 is the local existence time

in Yσ0,s,b. Suppose that (U0, V0) ∈ G2
σ0,s and (U, V ) ∈ C([−4T, 4T ];Hs+1)2. Then

there exists a suitable constant K depending on s, b, ‖(U0, V0)‖G2
σ0,s

and αT (U, V ),

such that {(ψTU
n, ψTV

n)} is bounded in Yσ(T ),s,b, where

σ(T ) = min
{
σ0,K(1 + T )−12

}
.

Proof. Applying the linear estimates from Section 3, the bilinear estimates from
Section 4, and Lemma 6.1 to

ψT (t)Un = ψT (t)W+(t)U0 + ψT (t)
∫ t

0 W
+(t− s)

[
NL(U)

]
n
(s) ds

ψT (t)V n = ψT (t)W−(t)U0 + ψT (t)
∫ t

0
W−(t− s)

[
NL(V )

]
n
(s) ds

yields

‖ψTU
n‖X+

σ,s,b
+ ‖ψTV

n‖X−

σ,s,b

≤ c
(
T

1
2 + t

1−2b
2

0

)(
‖U0‖Gσ0,s

+ ‖V0‖Gσ0,s

)

+ c
(
T + T 1−b+b′

)(
‖ψTU

n‖X+
s,b

+ ‖ψTV
n‖X−

s,b

)2

+ c
(
T + T 1−b+b′

)
σ

1
4

(
‖ψTU

n‖X+
σ,s,b

+ ‖ψTV
n‖X−

σ,s,b

)2

≤ c
(
T

1
2 + t

1−2b
2

0

)(
‖U0‖Gσ0,s

+ ‖V0‖Gσ0,s

)

+ c
(
T + T 1−b+b′

)(
T

1
2 (1 + αT (U, V ))

)2

+ c
(
T + T 1−b+b′

)
σ

1
4

(
‖ψTU

n‖X+
σ,s,b

+ ‖ψTV
n‖X−

σ,s,b

)2

for n large enough and a constant c.
Recall that {(ψt0U

n, ψt0V
n)} is bounded in Yσ0,s,b by the local-in-time theory,

and denote the bound by Mt0 , so that

‖ψt0U
n‖X+

σ0,s,b
+ ‖ψt0v

n‖X−

σ0,s,b
≤Mt0 .

Define T -dependent variables z, a and d by

z(T ) = ‖ψTU
n‖X+

σ,s,b
+ ‖ψTV

n‖X−

σ,s,b

a(T ) = Mt0 + c
(
T

1
2 + t

1−2b
2

0

)(
‖U0‖Gσ0,s

+ ‖V0‖Gσ0,s,b

)

+ c
(
T + T 1−b+b′

)(
T

1
2 (1 + αT (U, V ))

)2

d(T ) = c
(
T + T 1−b+b′

)
.
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Then the bound above implies

z ≤ a+ dσ
1
4 z2. (26)

Consider the inequality (26) for arbitrary T ′, where t0 ≤ T ′ ≤ T and define

σ(T ′) =
δ4

d4(2a)4

for some δ > 0 to be chosen presently. Setting y(T ′) =
z(T ′)

2a(T ′)
, the inequality (26)

becomes

y(1 − δy) ≤ 1

2
.

Choosing δ suitably small yields the following dichotomy; either y ≤ m∗ or y ≥M∗

for some constants m∗,M∗, where 1
2 < m∗ < 1 < M∗. Since z(t0) ≤ Mt0 <

a(t0), it follows that y(t0) < 1/2 < m∗. Finally, note that ‖ψT ′un(T ′)‖X+

σ(T ′),s,b

+

‖ψT ′vn(T ′)‖X−

σ(T ′),s,b

is a continuous function of T ′ on [t0, T ] (see p. 201 in [9] for

a continuity argument in a similar setting). It follows that y(T ′) ≤ m∗ < 1 for all
T ′ with t0 ≤ T ′ ≤ T . In particular, y(T ) < 1, which is to say that z(T ) ≤ 2a(T ), a
bounded quantity.

The proof of Theorem 1.2 is based on a compactness argument that was originally
presented in [8] (see also [9]). Proposition 6.3 gives boundedness of the sequence
{(ψTu

n, ψT v
n)} in Yσ(T ),s,b. Since b > 1

2 , this implies boundedness of the sequence

{(Un, V n)} in G2
σ(T ),s, uniformly on [−T, T ]. Recalling that the analytic Gevrey

norm Gσ is equivalent to the classical Hardy H2-norm on the strip Sσ for any σ > 0,
all the spatial derivatives of (Un, V n) are, via the Cauchy integral formulas, bounded
uniformly on the compact subsets of, say, Sσ(T )/2. The system (24)-(25) satisfied
by the approximations then yields boundedness of all the temporal derivatives and
consequently there obtains uniform boundedness of all spatio-temporal derivatives
on any compact subset of Sσ(T )/2×(−T, T ). The Arzela-Ascoli theorem then implies
locally uniform convergence on Sσ(T )/2×(−T, T ). This allows us to pass to the limit
in the approximations (24) and (25). The limit is an analytic function on Sσ(T )/2

inheriting uniform bounds for all t in [−T, T ]. This, together with the local-in-time
well-posedness, implies the result.

Remark 6.4. While the estimates of the width of the strip of analyticity is surely
not sharp, the fact that it shrinks to zero as the solution looses regularity is shown
explicitly in the examples worked out by Bona and Weissler [13].
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