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Abstract Addressed here is the occurrence of point singularities which owe to the fo-
cusing of short or long waves, a phenomenon labeled dispersive blow-up. The context of
this investigation is linear and nonlinear, strongly dispersive equations or systems of equa-
tions. The present essay deals with linear and nonlinear Schrödinger equations, a class of
fractional order Schrödinger equations and the linearized water wave equations, with and
without surface tension.

Commentary about how the results may bear upon the formation of rogue waves in
fluid and optical environments is also included.
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1 Introduction

1.1 General setting

The notion of a dispersive singularity has its roots in some remarks in [4], in the context of
the linearized Korteweg-de Vries equation

ut + ux + uxxx = 0 for (x, t) ∈ R × (0,∞) (1.1)

(sometimes referred to as the Airy equation). The gist of the analysis sketched in [4] was that
an initial wave profile u(x, 0) = u0(x) which was infinitely smooth, bounded and possessed of
finite energy (a square integrable function) could result in a solution u = u(x, t) that blows up
in L∞-norm in finite time. Moreover, the blow-up point (x∗, t∗) could be specified arbitrarily
in the upper half plane R × (0,∞).
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This result was elaborated and given mathematical precision in [8] where these solutions
were shown to be smooth and bounded at all points (x, t) ∈ R × (0,∞) except the singular
point (x∗, t∗). The term dispersive blow-up was coined to describe this situation, and the theory
extended from (1.1) to include the full, nonlinear Korteweg-de Vries equation (KdV-equation
henceforth) and its generalizations

ut + ux + upux + uxxx = 0 (1.2)

for integers p ≥ 1.
A key observation that allowed extension of the theory to a nonlinear setting was the smooth-

ing property of the double integral term∫ t

0

∫
R

1
(t− s)

1
3
Ai

(x− z + s

(t− s)
1
3

)
up(y, s)uy(y, s)dyds

in the Duhamel representation of the solution. Here, Ai is the unique, non-trivial, bounded
solution of Airy’s ordinary differential equation (5.7), normalized so that∫

R

Ai (z)dz = 1.

(The last integral is an improper Riemann integral, as are many of the integrals appearing
below.) This regularity property was obtained in [8] by developing a suitable theory for the
Cauchy problem for equation (1.2) in weighted spaces and in [20] (but only for p ≥ 2) by using
Strichartz-type estimates.

It deserves remark that smooth, bounded initial data that lead to dispersive blow-up can be
found having arbitrarily small L2- and L∞-norm, thus emphasizing that such singularities are
not induced by nonlinear effects. Indeed, dispersive blow-up phenomena are related to the fact
that evolution equations like the Airy equation or the linear Schrödinger equation are ill-posed
in L∞, or what is the same, that eiξ3

and ei|ξ|2 are not Fourier multipliers in L∞ (see, e.g.,
[17]). Actually, dispersive blow-up can be viewed as a striking expression of this ill-posedness.

In the original, physical variables, dispersive blow-up is a focusing phenomenon which is due
to both the unbounded domain in which the problem is set and the propensity of the dispersion
relation to propagate energy at different speeds. These two aspects allow the possibility that
widely separated, small disturbances have the potential of coming together locally in space-time,
thereby resulting in a large deviation from the rest position. In this light, the idea has possible
relevance for explaining the genesis of rogue waves on the surface of large bodies of water (see,
e.g., [15, 18, 19]) and in optical networks (see, e.g., [14, 23]). In a little more detail, one of
the proposed routes to oceanic rogue-wave formation is what we here call concurrence. This is
exactly the idea that the ambient wave motion in a big body of water possesses a large amount
of energy which could, in the right circumstances, temporarily coalesce in space, thereby leading
to giant waves. Related remarks apply to the optical situation, where a range of frequencies
input at one end of an optical cable over a relatively large fetch of time can coalesce, thereby
forming a spike in space-time.

Oceanic rogue waves, or freak waves as they are sometimes termed, occur in both deep and
shallow water (see [15, 18, 19, 26]). While the free surface Euler equations could be taken as
the overall governing equations in both deep and shallow water, there is much to be learned
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from approximate models. These differ in deep and shallow water regimes. Our earlier work
dealt with the shallow water situation, exemplified by the Korteweg-de Vries equation and
Boussinesq-type systems of equations.

In the present script, interest is initially focussed upon the deep water regime for surface
water waves. The development begins with the linear Schrödinger equation and the linear
theory then informs an analysis of the equation with cubic and other power nonlinearities. The
ideas pertaining to the Schrödinger equation are easily generalized to include related models
for the propagation of pulses in fiber optics cables, and so to perhaps bear upon rogue wave
formation in this context. Guided by the work on the Schrödinger equation, attention is then
turned to the linearization about the rest state of the full water wave system. As an offshoot of
the framework erected in the analysis of the foregoing situations, results for a class of fractional
order Schrödinger equations are also brought forth.

An important point that appears in the analysis is that the dispersive blow-up phenomenon
has a certain robustness to it that makes it more likely to be observed in reality (see Remarks
2.3 and 2.5 in Section 2). This robustness was already introduced in our earlier work [8] on
KdV-type equations.

1.2 Organization of the paper

The paper proceeds as follows. In Section 2, the dispersive blow-up properties are stated
precisely and proved to hold for linear and nonlinear Schrödinger-type equations. The develop-
ment begins with the linear Schrödinger equation. The linear theory is then used to complete
an analysis of dispersive blow-up for nonlinear Schrödinger equations. Potential application of
the ideas to explain the formation of rogue waves in optical fibers is then discussed. A similar
discussion applies to the hyperbolic Schrödinger equation in the context of deep-water, oceanic
rogue waves. In Section 3, attention is turned to the linearized water-wave equations, both with
and without surface tension. A central ingredient in the analysis of dispersive blow-up for this
system is the precise asymptotic estimates, obtained in [21] and [27], of the Fourier transform of
kernels of the form Ka(|ξ|) = ψ(|ξ|)ei|ξ|a , 0 < a < 1, where ψ is a C∞-function which vanishes
in a neighborhood of the origin and is identically one for large values of ξ. The same type of
estimates that are effective when used on the water wave equations is applied in Section 4 to
prove dispersive blow-up results for fractional order Schrödinger equations of the form

iut + (−Δ)
a
2 u = 0, 0 < a < 1,

which occur as the linearization of weak turbulence models (see [12]). Finally, Section 5 con-
tains various auxiliary remarks, in particular on the distinction between weakly dispersive and
strongly dispersive equations or systems. There is also further discussion of rogue waves and of
some possible extensions of the present results.

1.3 Notation

Partial differentiation with respect to, say, x or t of a function u is denoted indifferently
by ∂xu or ux (respectively, ∂tu or ut). The standard Lebesgue spaces are denoted by Lp(Rd)
and the norm of a function f defined on Rd is written as |f |p (1 ≤ p ≤ ∞). The Fourier
multiplier notation f(D)u is defined by F(f(D)u)(ξ) = f(ξ)û(ξ), where F and ·̂ both connote
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the Fourier transform. The standard notation Hs(Rd), or simply Hs if the underlying domain
is clear from the context, is used for the L2-based Sobolev spaces; their norm is written as | · |Hs .

For a Banach space X , Cb(R+;X) denotes the space of continuous and bounded functions
defined on [0,+∞) with values in X .

2 Dispersive Blow-Up for the Schrödinger Equation

The body of the paper commences with analysis of Schrödinger equations. The crux of the
matter is the linear case, dealt with first. This analysis then informs a companion development
for nonlinear problems. Commentary on rogue wave formation appears in Subsection 2.3.

2.1 The linear case

Considered here is the linear Cauchy problem{
i∂tu+ Δu = 0 for (x, t) ∈ Rd × R+,

u(x, 0) = φ(x) for x ∈ Rd,
(2.1)

where Δ is the d-dimensional Laplacian. The main result of this subsection is the following
theorem.

Theorem 2.1 Let (x∗, t∗) ∈ Rd × (0,+∞) be given. There exist functions φ lying in the
class C∞(Rd) ∩ L∞(Rd) ∩ L2(Rd) such that the corresponding solution u of (2.1) satisfies

(1) u ∈ Cb(R+;L2(Rd)),
(2) u is a continuous function of (x, t) on Rd × ((0,+∞) \ {t∗}),
(3) u(·, t∗) is a continuous function of x on Rd \ {x∗},
(4)

lim
(x,t)∈R

d×(0,+∞)→(x∗,t∗)
(x,t) �=(x∗,t∗)

|u(x, t)| = +∞.

Remark 2.1 In particular, one deduces from Theorem 2.1 that for any fixed t ∈ (0,+∞) \
{t∗}, the function x �→ u(x, t) is continuous on Rd.

Remark 2.2 A stronger result than that stated in Theorem 2.1 is valid. One can show in
fact that u ∈ C(Rd × (0,∞) \ {x∗, t∗}) (see the earlier paper [8] on KdV-type equations). The
somewhat technical proof of this fact will be developed in subsequent work. A similar comment
applies to all the results in the present essay.

Remark 2.3 As a technical aside, because of the Sobolev embedding theorem and conser-
vation laws associated to dispersive equations such as (2.1) in d spatial dimensions, d = 1, 2, · · · ,
solutions which become unbounded in finite time cannot be associated with initial data taken
from Hk(Rd) if k > d

2 . However, we shall see that our results imply as a corollary that there are
Hk-initial data that are everywhere small, but which become as large as we like at a given point
(x∗, t∗), t∗ > 0. Indeed, given ε > 0 small and M > 0 large, there are elements u0 ∈ Hk(Rd),
k > d

2 , and an r > 0 such that for any v0 in the ball Br(u0) in Hk(Rd), |v0|∞ < ε, but the
solution v of (2.1) associated to v0 has |v(x∗, t∗)| ≥ M. In physical terms, this means that
the property of large solutions emanating from small data is robust in that it applies to whole
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neighborhoods of smooth data. This point, which is valid for all the equations considered in
this essay, is expounded at more length presently.

Proof of Theorem 2.1 Without loss of generality, take it that (x∗, t∗) = (0, 1
4 ). For any

φ ∈ L2(Rd), the unique solution u of (2.1) has the representation

u(x, t) =
1

(4iπt)
d
2

∫
Rd

e
i|x−y|2

4t φ(y)dy, (2.2)

where the integral is taken in the improper Riemann sense. (As mentioned already, many of
the integrals appearing below are taken in this sense.) Choose the initial data φ in (2.1) to be

φ(y) =
e−i|y|2

(1 + |y|2)m
. (2.3)

If m is chosen in the range m > d
4 , then the function φ does in fact lie in the space C∞(Rd) ∩

L∞(Rd) ∩ L2(Rd). Formally, the solution u(x, t) of (2.1) corresponding to the initial data φ in
(2.3), when evaluated at (x, t) = (0, 1

4 ), has the value

C

∫
Rd

dy
(1 + |y|2)m

dy,

where C is a non-zero constant of no consequence. The latter integral is divergent provided
m ≤ d

2 . As we want the solution to become infinite at this point, it seems propitious to presume
that

d

4
< m ≤ d

2
. (2.4)

With the restriction (2.4) in force, fix a point (x, t) ∈ Rd × (0,∞) \ {(0, 1
4 )}. The analysis

proceeds in two steps.
Step 1 Assume first that t = 1

4 , but that x 	= 0. In this case, the value of u at the point
(x, t) is

u
(
x,

1
4

)
= Cei|x|2

∫
Rd

e−2ix.y dy
(1 + |y|2)m

.

The integral in the last formula is essentially the Fourier transform of a Bessel potential, and
is in fact equal to

C|x|m− d
2K d

2−m(|x|),
where C is a non-zero constant and Kν is the modified Bessel function of order ν (see [1]).
Recall that Kν is even and smooth on Rd \ {0}, decays exponentially to zero as |x| → +∞ and
has a singularity at x = 0 of the form

K0(|x|) ∼ − log |x|, as x→ 0,

Kν(|x|) ∼ C

|x|ν , ν 	= 0, as x→ 0

(see, again, [1]). In any case, the function x �→ C|x|m− d
2K d

2−m(|x|) is continuous for x 	= 0 and
decays rapidly to 0 at infinity, thus verifying part (3) of the theorem with the choice (2.3) for
the initial data φ.
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Step 2 Consider now the case where t 	= 1
4 , x ∈ Rd. When d = 1, write the solution u in

the form

u(x, t) =
C

t
1
2
ei x2

4t

∫
R

e−
2ixy
4t

eiy2(−1+ 1
4t )

(1 + y2)m
dy =

C

t
1
2
ei x2

4t I(x, t).

The integral I just introduced may be broken into two parts, i.e.,

I(x, t) =
∫
|y|≤1

e−iαxy eiβy2

(1 + y2)m
dy +

∫
|y|≥1

e−iαxy eiβy2

(1 + y2)m
dy = I1(x, t) + I2(x, t)

with α = 1
2t and β = 1

4t −1 both non-zero. By the Riemann-Lebesgue Lemma, I1 is continuous
in x and t and tends to zero as |x| → ∞, though not necessarily uniformly with respect to t.

Integrate I2 by parts to reach the formula

I2(x, t) =
C

β

∫
|y|≥1

1
y

( −iαx
(1 + y2)m

− 2my
(1 + y2)m+1

)
e−iαxyeiβy2

dy +
1
β
F (x),

where F is a bounded, continuous function. Observe that the integrand in the last integral is
an L1

y-function; hence the Riemann-Lebesgue Lemma again implies that I2 is continuous in x

and t (and grows at most linearly in x at infinity).
When d ≥ 2, write

u(x, t) =
C

t
d
2
ei

|x|2
4t I(x, t),

as in the one-dimensional case, where

I(x, t) =
∫

Rd

e−iαx·y eiβ|y|2

(1 + |y|2)m
dy

=
∫
|y|≤1

e−iαx·y eiβ|y|2

(1 + |y|2)m
dy +

∫
|y|≥1

e−iαx·y eiβ|y|2

(1 + |y|2)m
dy

= I1(x, t) + I2(x, t).

As above, the Riemann-Lebesgue Lemma implies that I1 is continuous and tends to zero as
|x| → ∞. Change variables in the integral I2, setting y = rω, ω ∈ Sd−1 and r ≥ 0, so that

I2(x, t) =
∫

Sd−1

∫ +∞

1

e−iαr(x.ω)eiβr2

(1 + r2)m
rd−1drdω,

where dω is the Lebesgue measure on S
d−1. The inner integral has the form

C

β

∫ +∞

1

1
r

d
dr

( e−iαr(x.ω)

(1 + r2)m
rd−1

)
eiβr2

dr.

Integrating by parts with respect to r yields the expression

1
β
F (x, ω) +

C

β

∫ ∞

1

eiβr2

r
e−iαr(x·ω)

[ (n− 1)rd−2

(1 + r2)m
− iα(x · ω)rd−1

(1 + r2)m
− 2mrd

(1 + r2)m+1

]
dr

for the inner integral, where F (x, ω) = Ce−iα(x·ω) is bounded and continuous in both x and
ω. The mildest decay to 0 in the variable r in the integrand is O( 1

r2m+d−2 ) as r → +∞. The
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integrand therefore belongs to L1
r provided that m > d−1

2 . This in turn is implied by (2.4) when
n = 2, but (2.4) is henceforth strengthened to

d− 1
2

< m ≤ d

2
(2.5)

in case the dimension d ≥ 3.
To conclude the proof, observe that the r-integrability is uniform for ω ∈ Sd−1, t ∈ (0,∞)

and on bounded sets of x, so that Lebesgue’s dominated convergence theorem implies that I2
is a continuous function of x and t.

Remark 2.4 The principle of superposition allows us to organize initial data φ lying in
C∞(Rd) ∩ L∞(Rd) ∩ L2(Rd) such that the solution u of (2.1) associated to φ is continuous
in Rd × (0,∞) \ {(xj , tj)}∞j=1, but blows up at the isolated, countable set of points {(xj , tj)}
in Rd × (0,∞). Also, as remarked earlier, by considering the initial value u(x, 0) = δφ(x) and
taking δ small, but positive, there obtain solutions that blow up dispersively, the norm of whose
initial data is arbitrarily small.

Remark 2.5 It might appear from our proof that dispersive blow-up is a special phenom-
enon, subsisting upon very delicate spatial organization of energy. In fact, the phenomenon is
much more robust than one might imagine. In favor of the persistence of the phenomenon, two
arguments present themselves. First, suppose u0 to be initial data that exhibits the dispersive
blow-up as in Theorem 2.1. Let v be any Hk(Rd)-function where k > d

2 . Then it is clear from
standard properties of the Schrödinger group that the solution u(x, t) of the initial-value prob-
lem (2.1) with initial data φ = u0 + v also features dispersive blow-up. Thus, at least at the
linear level, dispersive blow-up is stable to smooth perturbations.

Second, let φ be initial data as in (2.3) which leads to dispersive blow-up at (x, t) = (0, 1
4 ).

As mentioned in Remark 2.3, and which is obvious from Sobolev embedding theory, a solution
u can not experience dispersive blow-up if it starts out in Hk(Rd) with k > d

2 . However, notice
that if we define

φR(y) = ρ
( |y|
R

)
φ(y),

where ρ is a non-negative, C∞-function with compact support that is identically 1 on [−1, 1],
and vanishes for |y| ≥ 2, then φR ∈ Hk(Rd) for all k. Let δ > 0 be small and M > 0 large be
given. Take for initial data in (2.1) u0(y) = δφR(y). Then, clearly u0 ∈ Hk(Rd) and

|u0|∞ = O(δ)

as δ → 0. But if u = uR,δ is the solution of (2.1) associated to u0, then

u
(
0,

1
4

)
= δ

∫
Rd

ρ
( |y|

R

)
(1 + |y|2)m

dy ≥ δ

∫
|y|≤R

1
(1 + |y|2)m

dy.

The last integral is bounded below by a quantity of the form δO(Rd−2m) when m < d
2 and of

the form δO(logR) when m = d
2 , as R → ∞. Thus, while smooth data does not lead to blow

up, such data can be organized to be as small as we like in L∞(Rd), but to be such that the
associated solution of (2.1) can have very large values at a specified, dispersive blow-up point.
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Remark 2.6 With some modifications, similar analysis applies to what is sometimes called
the “hyperbolic” Schrödinger equation, namely{

i∂tu+ ∂xxu− ∂yyu = 0, in R2 × R+,

u(x, 0) = φ(x), for x ∈ R
2.

(2.6)

This equation is the linearization about the rest state of a model for surface gravity waves on
deep water (see [29]).

The fundamental solution of the hyperbolic Schrödinger equation (2.6) is

G(x1, x2; t) =
1

4iπt
ei

x2
1−x2

2
4t .

Inspired by the construction of blowing-up solutions appearing in the proof of Theorem 2.1,
take

φ(y) = φ(y1, y2) =
e−i(y2

1−y2
2)

(1 + y2
1)m(1 + y2

2)p

with 1
4 < m, p ≤ 1

2 , so that

φ ∈ C∞(R2) ∩ L∞(R2) ∩ L2(R2).

Fix a value t > 0, with t 	= 1
4 . The solution of problem (2.6) with the initial data just

indicated is
u(x, t) =

C

t
ei

x2
1−x2

2
4t I(x, t),

where

I(x, t) =
∫

R2
e−iα(x1y1−x2y2)

eiβ(y2
1−y2

2)

(1 + y2
1)m(1 + y2

2)p
dy

=
∫ ∞

−∞
e−iαx1y1

eiβy2
1

(1 + y2
1)m

dy1
∫ ∞

−∞
eiαx2y2

e−iβy2
2

(1 + y2
2)p

dy2,

where α = 1
2t and β = 1

4t − 1 are both non-zero. The issue of dispersive blow-up in this case is
now reduced to that of the ordinary linear Schrödinger equation (2.1) in one space dimension,
analyzed already in Theorem 2.1.

2.2 The nonlinear case

Attention is now turned to the nonlinear Cauchy problem{
iut + uxx + ε|u|pu = 0, x ∈ R, t > 0, ε = ±1,
u(x, 0) = u0(x), x ∈ R.

(2.7)

The following result is built upon the linear analysis appearing in Theorem 2.1.

Theorem 2.2 Let t∗ > 0 and x∗ ∈ R be given and suppose that 1 ≤ p < 3. There is initial
data u0 ∈ L2(R) ∩ L∞(R) ∩ C∞(R) for which the associated solution of (2.7) is such that

(1) u ∈ Cb(R+;L2(R)) ∩ Lq(R∗
+;Lr(R)) ∩ L2

loc(R
∗
+;H

1
2
loc(R)), where r ∈ [2,+∞] and 2

q =
(1
2 − 1

r ),
(2) the conclusions (2)–(4) of Theorem 2.1 hold for u.
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Proof Part (1) of this theorem comprises well-known facts about the one-dimensional
initial-value problem (2.7) (see, for instance, [25]).

Again, without loss of generality, we take it that (x∗, t∗) = (0, 1
4 ). Let u0 ∈ L2(R)∩L∞(R)∩

C∞(R) be the initial data constructed in the proof of Theorem 2.1 which leads to dispersive
blow-up at the point (x, t) = (0, 1

4 ). The Schröthe dinger group S(t) = eitΔ and the Duhamel’s
formula can be used to obtain the representation

u(x, t) = S(t)u0 + C

∫ t

0

∫
R

1
(t− s)

1
2
ei (x−y)2

4(t−s) |u|pu(y, s)dyds

=: S(t)u0 + CI(x, t), (2.8)

where C is a non-zero constant. If the integral term I(x, t) in (2.8) is a continuous function of
(x, t) ∈ R × R+, then the desired results follow from what is already known about S(t)u0 from
Theorem 2.1. Continuity of this double integral will follow from Lebesgue’s theorem as soon as
it is known to be locally bounded as a function of x and t. The provision of such bounds is the
next order of business. By the Hölder’s inequality, for all x ∈ R,

|I(x, t| ≤
∫ t

0

1
(t− s)

1
2
|u(·, s)|p+1

p+1ds ≤
(∫ t

0

ds
(t− s)

γ
2

) 1
γ
(∫ t

0

|u(·, s)|γ′(p+1)
p+1 ds

) 1
γ′
, (2.9)

where γ ∈ (1, 2) and 1
γ′ = 1 − 1

γ will be fixed presently. The standard Strichartz estimates
enunciated in part (1) of the theorem assert that for any T > 0, u ∈ Lq(0, T ;Lr(R)), where q
and r are restricted as already noted. Take r = p + 1 (implying p ≥ 1). The corresponding
value of q is q = 4(p+1)

p−1 . The condition γ′(p + 1) ≤ q entails that γ′ ≤ 4
p−1 , which is to say,

1
γ′ = 1 − 1

γ ≥ p−1
4 or γ ≥ 4

5−p . This choice is compatible with γ < 2 if and only if p < 3. Thus,
for p < 3, the integral I is a bounded function of x and t in R× [0, T ] for any T > 0. The proof
is completed.

2.3 Possible connexion with optical rogue waves

The analysis of optical rogue-wave formation in [14] (see also [13]) is based on the generalized
nonlinear Schrödinger equation

∂A

∂t
+
α

2
A−

∑
k≥2

ik+1

k!
βk
∂kA

∂zk
= iγ

(
1 + iτshock

∂

∂z

)(
A(z, t)

∫ +∞

−∞
R(z′)|A(z′, t)|2dz′

)
.

It deserves remark that in the application, the variable here denoted by t in fact connotes
distance along the fiber, whereas z is in reality the temporal variable. The physical problem
is in fact a boundary-value problem, but this is normally converted to an initial-value problem
by viewing the independent variables as indicated in the present notation. On the other hand,
when interpreting predictions of the model, one must keep in mind that space and time have
been traded in the partial differential equation.

In this generalized Schrödinger equation, the dispersion is represented by its Taylor series
and the nonlinearity features what is usually called a response function of the form R(z) =
(1− fR)δ+ fRhR(z), where δ is the Dirac mass. Thus the nonlinearity generally includes both
instantaneous electronic and delayed Raman contributions.

Sketched here is a proof that dispersive blow-up also occurs in this model, thus providing a
rigorous account of a possible explanation of optical rogue wave formation.
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Consider first the linear part and for convenience, truncate the Taylor expansion of the
dispersion so the linear model becomes⎧⎪⎨⎪⎩

∂A

∂t
+
α

2
A−

∑
2≤k≤K

ik+1γk
∂kA

∂zk
= 0,

A(x, 0) = A0(x),
(2.10)

where γK 	= 0. By changing the independent variable from A to B = e−αtA, one may take it
that the damping coefficient α is zero.

Demonstrating dispersive blow-up for the linear equation (2.10) can be reduced (by pertur-
bation arguments very similar to those used below for the linearized water-wave equation) to
showing dispersive blow-up for the linear equation with homogeneous dispersion, i.e.,⎧⎨⎩

∂A

∂t
− iK+1 ∂

KA

∂zK
= 0,

A(x, 0) = A0(x),
(2.11)

where γK is set equal to 1 without loss of generality. Equation (2.11) specializes to the linear
KdV-equation and the linear Schrödinger equations as particular cases when K = 3 and 2,
respectively. When K ≥ 4 one can use [22] or [3] to evaluate the corresponding fundamental
solution and then construct suitable smooth initial data (a weighted version of the fundamental
solution) which leads to dispersive blow-up.

This linear theory may then be extended to the nonlinear case. When the coefficient
τshock = 0, the equation is “semilinear” and the result follows by using Strichartz estimates as
for the one-dimensional nonlinear Schrödinger equation. (This is especially transparent when
the instantaneous electronic contribution vanishes, that is when fR = 1, but it holds without
this restriction.)

When τshock 	= 0, the nonlinear term involves a derivative with respect to z. Assume now
that K ≥ 3. The crux of the matter is to analyze the double integral term in the Duhamel
representation of the solution and to show that it defines a continuous function of space and
time. When K = 3, we are reduced to the Korteweg-de Vries case which was dealt with already
in [8] by using a theory of the Cauchy problem in weighted L2-spaces. This analysis was also
extended in [8] to a class of fifth-order Korteweg-de Vries equations. This extension is easily
made for any odd value of K greater than 7. When K ≥ 4 is even, the equation is of Schrödinger
type and the weighted space theory (which is used in a crucial way that the phase velocity of
the linear equation has a definite sign) does not appear to work. One has to rely instead on
the higher-order smoothing properties of the linear group that appertains to the higher-order
dispersion.

3 The Linearized Water-Wave Equations

Dispersive equations like the KdV-equation and the nonlinear Schrödinger equation are
typically well-posed in L2-based Sobolev classes. When such an equation features dispersive
blow-up, it is clear that they are not well-posed in L∞, however. Indeed, as we have seen, there
will be initial data that is arbitrarily small in both L2 and L∞, but while it remains small in
L2, it becomes unbounded in L∞ in finite time, indeed in small time if we so desire.
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While model equations such as the KdV-equation and the Schrödinger equation exhibit
aspects that are indicative of important phenomena actually arising in physical situations, the
issue of real oceanic rogue wave formation in either shallow or deep water is most convincingly
understood in the context of the full water wave equations. And, while singularity formation in
finite time might point to the formation of rogue waves, a lack of well-posedness in L∞-spaces
reveals the same qualitative behavior that we associate with rogue-wave formation.

So, attention is focused on the full surface water wave equations linearized about the rest
state (flat free surface and zero velocity) in both one and two horizontal dimensions. The
question in front of us is whether or not they are well-posed in L∞. In both one and two spatial
dimensions, d = 1, 2, the full linear equations reduce to the single, evolution equation⎧⎪⎨⎪⎩

ηtt + ω2(|D|)η = 0, x ∈ Rd, t ∈ (0,∞),
η(x, 0) = η0(x),
ηt(x, 0) = η1(x)

(3.1)

for the elevation η = η(x, y, t) (or η(x, t) in case the motion does not vary much in the y

direction) of the wave (see, e.g., [28]). Here, ω(|k|) is the usual linearized dispersion relation

ω2(|k|) = g|k| tanh(|k|h0) (3.2)

for water waves, where h0 is the undisturbed depth, k = (k1, k2) and |k| = (k2
1 + k2

2)
1
2 when

d = 2. The phase velocity is therefore

c(k) =
ω(k)
|k| k̂ = g

1
2

(tanh(|k|h0)
|k|

) 1
2
k̂,

where k̂ is the unit vector in the k-direction. For waves of extreme length wherein |k| → 0,
the phase velocity tends to

√
gh0 k̂. For water waves on an infinite layer (corresponding to

h0 = +∞), the phase velocity is

c(k) = g
1
2

1
|k| 12 k̂.

Thus, on deep water, plane waves travel faster and faster as the wavelength becomes large, con-
trary to the cases of the linear KdV or linear Schrödinger equation where large phase velocities
occur for short waves (large wavenumbers k).

Considered also will be the case of gravity-capillary waves whose linear dispersion relation
is

ω2(|k|) = g|k| tanh(|k|h0)
(
1 +

T

ρg
|k|2

)
, (3.3)

where ρ is the density and T is the surface tension coefficient. In this case, the phase velocity
is

c(k) =
ω(k)
|k| k̂ = g

1
2

(tanh(|k|h0)
|k|

) 1
2
(
1 +

T

ρg
|k|2

) 1
2
k̂,

whose modulus tends to infinity as |k| tends to +∞, that is in the limit of short wavelengths.
In the infinite depth case, the phase velocity tends to infinity in the limit of both infinitely long
and infinitely short waves.
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In the sequel, when the depth is finite, the equations are scaled so that the gravity constant
g and the mean depth h0 are both equal to 1.

The solution of (3.1) with the dispersion law (3.2) is easily computed in Fourier transformed
variables to be

η̂(k, t) = η̂0(k) cos[t(|k| tanh |k|) 1
2 ] +

sin[t(|k| tanh |k|) 1
2 ]

(|k| tanh |k|) 1
2

η̂1(k). (3.4)

In consequence, the Cauchy problem is clearly well-posed in L2-based Sobolev classes. More
precisely for any (η0, η1) ∈ Hk(Rd) × Hk− 1

2 (Rd), k ≥ 0, (3.1) possesses a unique solution
η ∈ C(R, Hk(Rd)).

To establish ill-posedness in L∞, it suffices to consider the situation wherein η̂1 = 0. Ill-
posedness then amounts to proving that for each t 	= 0, the kernel

mt(k) = eit(|k| tanh |k|) 1
2

is not a Fourier multiplier in L∞, which is the same as showing its Fourier transform is not a
bounded Borel measure.

Let t > 0 be fixed and focus on mt(k). The first point to note is that

(|k| tanh |k|) 1
2 = |k| 12

(
1 − 2

1 + e2|k|

) 1
2

= |k| 12 + r(|k|), (3.5)

where r ∈ C(R)∩C∞(R\{0}) and r(|k|) behaves like − |k| 12
1+e2|k| as |k| → +∞ and like −|k| 12 (1−

|k| 12 ) as |k| → 0. Note that r ≡ 0 when the depth h0 is infinite.
Decompose the kernel mt as follows:

eit(|k| tanh |k|) 1
2 = eir(|k|)teit|k| 12 = (1 + ft(|k|))eit|k| 12 , (3.6)

where
ft(|k|) = 2i sin

(r(|k|)t
2

)
ei r(|k|)t

2

is continuous, smooth on Rd \ {0}, and decays exponentially to 0 as |k| → +∞, uniformly on
bounded temporal sets, since r(k) does so. This decomposition leads to an associated splitting
of the Fourier transform It(x) of mt(k), namely

It(x) =:
∫

Rd

eit|k| 12 eik·xdk +
∫

Rd

ft(|k|)eit|k| 12 eik·xdk = I1
t (x) + I2

t (x). (3.7)

Study of I2
t (x) Because ft decays rapidly to 0 as |k| becomes large, the Riemann-Lebesgue

Lemma implies that I2
t is a bounded, continuous function of x and thus locally integrable, in

both dimensions 1 and 2. In fact, when d = 1, it is actually a continuous L1-function. To see
this, restrict to |x| ≥ 1 and integrate by parts to obtain the formula

I2
t (x) = − 1

ix

∫ +∞

−∞

d
dk

(ft(k)eit|k| 12 )eikxdk

= − 1
ix

∫ +∞

−∞
eikxeit|k| 12

[
f ′

t(k) +
it sgnk
2|k| 12 ft(k)

]
dk.
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The term in square brackets decays exponentially to 0 as |k| → ∞ and has a singularity of order
|k|− 1

2 at the origin, coming from f ′
t(k) (note that ft(k)|k|− 1

2 is bounded at 0). It is therefore the
Fourier transform of an Lp-function, where 1 ≤ p < 2, and so, by the Riesz-Thorin theorem,
must itself be an Lq-function where 2 < q ≤ +∞. Since 1

x ∈ Ls(|x| ≥ 1) for any s > 1, the
Hölder’s inequality thus insures that I2

t ∈ L1(R).
Study of I1

t (x) The analysis of I1
t relies on detailed results about the Fourier transform

of the kernel ψ(|k|)ei|k|a , for a in the range 0 < a < 1, where ψ ∈ C∞(R), 0 ≤ ψ ≤ 1, ψ ≡ 0
on [0, 1], ψ ≡ 1 on [2,+∞). For 0 < a < 1 and k ∈ R

d, let Fa(x) = F(ψ(|k|)ei|k|a)(x) be the
Fourier transform of the kernel. Since k �→ ψ(|k|)ei|k|a ∈ S′(Rd), ψ(|k|)e−ε|k|ei|k|a converges to
ψ(|k|)ei|k|a as ε→ 0, at least in the sense of distributions. It follows that F(ψ(|k|)e−ε|k|ei|k|a) →
F(ψ(|k|)ei|k|a) as ε→ 0.

For the readers’ convenience, we recall the following general result of Wainger [27, Theorem
9] and Miyachi [21, Proposition 5.1].

Theorem 3.1 (see [21, 27]) Let 0 < a < 1, b ∈ R and define F ε
a,b(x) =: F(ψ(|k|)|k|−b

exp(−ε|k| + i|k|a))(x) for ε > 0 and x ∈ Rd. The following is true of the function F ε
a,b.

( i ) F ε
a,b(x) depends only on |x|.

( ii ) Fa,b(x) = lim
ε→0+

F ε
a,b(x) exists pointwise for x 	= 0 and Fa,b is smooth on Rd \ {0}.

( iii ) For all N ∈ N, and μ ∈ N
d, |( ∂

∂x)μFa,b(x)| = O(|x|−N ) as |x| → +∞.

( iv ) If b > d(1 − a
2 ), Fa,b is continuous on Rd.

( v ) If b ≤ d(1 − a
2 ), then for any m0 ∈ N, the function Fa,b has the asymptotic expansion

Fa,b(x) ∼ 1

|x| 1
1−a (d−b−ad

2 )
exp

( iξa
|x| a

1−a

) m0∑
m=0

αm|x| ma
1−a + o(|x|) (m0+1)a

(1−a) + g(x), (3.8)

as x → 0, where ξa ∈ R, ξa 	= 0, and g is a continuous function.
( vi ) When a > 1 and b ∈ Rd, Fa,b is smooth on Rd and has the asymptotic expansion

Fa,b(x) ∼ C(a, b, d)|x|
b−d+ da

2
1−a exp{iB(a)|x|− a

1−a } + o(|x|
b−d+ da

2
1−a ), (3.9)

as |x| → +∞, where C(a, b, d) and B(a) are explicit positive constants.
(vii) For any b ∈ R, F1,b is smooth on Rd \ {|x| = 1} and for every μ ∈ Nd and N ∈ N,∣∣∣( ∂

∂x

)μ

F1,b(x)
∣∣∣ = O(|x|−N ), as |x| → +∞.

If b < d+1
2 , then

F1,b(x) = C(b)
(
1 − |x| + i0

)b− d−1
2
, as |x| → 1.

Remark 3.1 The previous theorem will be used with b = 0. For notational convenience,
set Fa,0 = Fa. If a = 1

2 , the first three terms in the asymptotic expansion of Fa are, respectively,

α0|x|−3d
2 exp{θ}, α1|x|−3d+2

2 exp{θ} and α2|x|−3d+4
2 exp{θ}, where θ = iξa|x|

−a
1−a . Notice that

Fa /∈ L1
loc(R

d), but that it is defined as a distribution since, because of its oscillatory nature,
it is locally integrable around 0 in the sense of generalized Riemann integration. For example,
when d = 1, one has

F 1
2
(x) =

1
|x| 32 exp

{
i
ξ

|x|
}

+G(x),
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where ξ 	= 0 and G ∈ L1(R). For any A > 0, integration by parts reveals that∫ A

−A

|x|− 3
2 exp

{
i
ξ

|x|
}
dx = 2

∫ A

0

ei ξ
r

r
3
2

dr = 2
i
ξ

√
A ei ξ

A − i
ξ

∫ A

0

1√
r
ei ξ

r dr.

The last integral exists in the L1(0, A)-sense. Thus, F 1
2

can be defined as a distribution by
writing it as F 1

2
= G+ F, where G ∈ L1

loc(R), and for any test function φ ∈ C∞
0 (R),

〈F, φ〉 = − i
2ξ

∫ +∞

0

ei ξ
x√
x

[φ(x) − φ(−x)]dx − i
ξ

∫ +∞

0

ei ξ
x
√
x [φ′(x) − φ′(−x)]dx.

Returning to the study of I1
t (x), notice first that for dimensions d = 1, 2,

I1
t (x) =

1
t2d

∫
Rd

ei|k| 12 eik· x
t2 dk =

1
t2d

J
( x
t2

)
,

where
J(x) =

∫
Rd

ei|k| 12 eik·xdk.

Introducing a truncation function ψ as above which is zero near the origin and one near infinity,
the integral J can be broken down as

J(x) =
∫

Rd

ψ(|k|)ei|k| 12 eik·xdk +
∫

Rd

(1 − ψ(|k|))ei|k| 12 eik·xdk =: J1(x) + J2(x). (3.10)

Arguing as in the analysis of I2
t , one checks that in dimension d = 1, the continuous function

J2 lies in L1(R). In dimension d = 2, J2 is a bounded continuous function of x.

But, Theorem 3.1 implies that (1 − ψ(|k|))ei|k| 12 is not an L∞(Rd)-multiplier. These con-
siderations allow the following conclusion.

Proposition 3.1 In both one and two horizontal spatial dimension, d = 1, 2, the linearized
water-wave problem (3.1) is ill-posed in L∞(Rd).

Proof Take η1 ≡ 0 in (3.1) and an appropriate choice of η0 (see the proof of Theorem 3.2
for more details).

This proposition is reinforced by the following, more specific, dispersive blow-up result.

Theorem 3.2 Let (x∗, t∗) ∈ Rd × (0,+∞) (d = 1, 2) be given. There exists η0 ∈ C∞(Rd \
{0})∩C0(Rd)∩L∞(Rd)∩L2(Rd) such that the solution η ∈ Cb(R;L2(Rd)) of (3.1) with η1 ≡ 0
is such that

( i ) η is a continuous function of x and t on R × ((0,+∞) \ {t∗})),
( ii ) η(·, t∗) is continuous in x on R \ {x∗},
(iii) lim

(x,t)∈R
d×(0,+∞)→(x∗,t∗)
(x,t) �=(x∗,t∗)

|η(x, t)| = +∞.

Proof One may assume that (x∗, t∗) = (0, 1). Again, take η̂1 = 0 in (3.1) so that the
corresponding solution is

η(·, t) = η0 � F−1(exp{i[t(|k| tanh |k|) 1
2 ]}).
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Using the notation introduced in our earlier ruminations, we write

η(·, t) = η0 � F−1(ψ(|k|)eit|k| 12 + (1 − ψ(|k|))eit|k| 12 + ft(|k|)eit|k| 12 )

= η0 � F−1(f1(t,k) + f2(t,k) + f3(t,k))

= N1(·, t) +N2(·, t) +N3(·, t).
In spatial dimension d = 1, it has already been shown that for any fixed t ∈ (0,+∞), F−1f2(·, t)
and F−1f3(·, t) are integrable functions of x, and, as is easily confirmed, uniformly so on compact
subsets of t ∈ (0,+∞). Thus, the functions N2 and N3 are continuous on R× (0,+∞), for any
η0 ∈ L2(R) ∩ L∞(R) ∩ C(R). In dimension d = 2, for a fixed t ∈ (0,+∞), F−1f2(·, t) and
F−1f3(·, t) are bounded continuous functions of x, and uniformly so on compact subsets of
t ∈ (0,+∞).

Choose the initial value η0 to be η0(x) = |x|λK(x) for x ∈ R, where 3d
2 ≤ λ ≤ 2d and

K = F−1(ψ(|k|)ei|k| 12 ).

In the notation arising in Theorem 3.1, this amounts to taking b = 0 and setting K(x) = F 1
2
(x),

the overbar connoting complex conjugation. Using the results of Theorem 3.1 along with the
choice of λ, it is easily seen that η0 ∈ C(Rd) ∩L∞(Rd) ∩ C∞(Rd \ {0})∩ L1(Rd). In particular,
η0 is an L2-function.

Note that although η0 ∈ L1(Rd), for t 	= 0, the solution η(·, t) does not necessarily belong
to L∞(Rd) since F−1(exp{i[t(|k| tanh |k|) 1

2 ]}) is not an L∞-function. This is in strong contrast
with what obtains for the linear KdV-equation (1.1) or the linear Schrödinger equation (2.1).
However, the preceding commentary does show that N2(·, t) and N3(·, t) are convolutions of an
L1-function with a bounded, continuous function of x. Hence, they are themselves bounded
and continuous in x, and uniformly so on compact temporal subsets.

Theorem 3.1 applied to N1 implies that as (x, t) → (0, 1), the solution η(x, t) tends to

C1 + C2

∫
Rd

|K(y)|2|y|λdy = +∞,

since λ ≤ 2d.
It is now demonstrated that η is continuous on Rd × (0,+∞) \ {(0, 1)}, which is to say,

everywhere except at the dispersive blow-up point. Since N2 and N3 are already known to be
continuous in x and t, it remains to consider N1(·, t) = η0 � F−1(ψ(|k|)eit|k| 12 ).

We first show that N1(·, 1) is a continuous function of x on Rd \ {0}. According to the
definition of η0, we get

N1(x, 1) =
∫

Rd

|x− y|λF 1
2
(x− y)F 1

2
(y)dy. (3.11)

Let δ > 0 be fixed and suppose that |x| > δ. Decompose the last integral in the form

N1(x, 1) =
∫

B δ
2
(0)

|x− y|λF 1
2
(x− y)F 1

2
(y)dy +

∫
B δ

2
(x)

|x− y|λF 1
2
(x − y)F 1

2
(y)dy

+
∫

Rd\B δ
2
(0)∪B δ

2
(x)

|x− y|λF 1
2
(x− y)F 1

2
(y)dy

= N1
1 (x, 1) +N2

1 (x, 1) +N3
1 (x, 1).
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By Theorem 3.1, N3
1 (·, 1) is a continuous function of x. By our choice of λ, N2

1 (·, 1) is a
continuous function of x. The treatment of N1

1 (·, 1) is a bit more delicate and makes use of the
oscillatory nature of the integrand. By Theorem 3.1, F 1

2
(x) behaves like[ α1

|x| 3d
2

+
α2

|x| 3d
2 −1

+
α3

|x| 3d
2 −2

+ g(x)
]
eiC3|x|−1

(3.12)

for x near 0, where g is continuous.
When d = 1, only the first term in (3.12) gives trouble as regards the continuity of N1

1 (·, 1).
Integration by parts reveals immediately that the integral∫

B δ
2
(0)

|x− y|λF 1
2
(x − y)

eiC3|y|−1

|y| 32 dy

defines a continuous function of x.
When d = 2, the first two terms in (3.12) both lead to situations that are possibly singular.

We are therefore lead to consider the two integrals∫
B δ

2
(0)

|x− y|λF 1
2
(x − y)

eiC3|y|−1

|y|3 dy (3.13)

and ∫
B δ

2
(0)

|x− y|λF 1
2
(x− y)

eiC3|y|−1

|y|2 dy. (3.14)

Straightforward integration by parts shows that both these integrals define continuous functions
of x.

Attention is now turned to the region D1 = {(x, t); x ∈ Rd, t > 0, t 	= 1}. It will be shown
that N1 is continuous throughout this domain. A first observation is

F−1(ψ(|k|eit|k| 12 )(x) =
1

t
d
2
F−1

(
ψ

( |k|
t

1
2

)
ei|k| 12

)( x

t
1
2

)
. (3.15)

Notice also that

ψ(|k|)ei|k| 12 − ψ
( |k|
t

1
2

)
ei|k| 12 = ψ̃t(|k|)ei|k| 12 ,

where ψ̃t is smooth, compactly supported and vanishes in a neighborhood of 0. Thus, the
inverse Fourier transform of ψ̃t(|k|)ei|k| 12 is smooth and decays rapidly to 0 as |x| → ∞; it is
certainly bounded and continuous on D1. We may therefore write

N1(·, t) =
1

t
d
2
η0 � F 1

2

( ·
t

1
2

)
+G(·, t) =: Ñ1(·, t) +G(·, t), (3.16)

where G is continuous in x and t. Split Ñ1(x, t) as follows:

Ñ1(x, t) =
1

t
d
2

∫
Rd

η0(x− y)F 1
2

( y

t
1
2

)
dy

=
1

t
d
2

( ∫
|y|≤1

η0(x− y)F 1
2

( y

t
1
2

)
dy +

∫
|y|≥1

η0(x− y)F 1
2

( y

t
1
2

)
dy

)
= Ñ1

1 (x, t) + Ñ2
1 (x, t).
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Since η0(x−y) behaves like C|x−y|− 3d
2 +λ when y is close to x, the choice of λ and the properties

of F 1
2

imply that Ñ2
1 is continuous in x and t.

The choice η0 = |x|λK(x) entails

Ñ1(x, t) =
1

t
d
2

∫
|y|≤1

|x− y|λF 1
2
(x− y)F 1

2

( y

t
1
2

)
dy. (3.17)

When x 	= 0, the singularity at y = 0 can be dealt with as in the preceding analysis of N1
1 .

Attention is thus restricted to x = 0 and the aim is to prove that the integral

Ñ1(0, t) =
1

t
d
2

∫
|y|≤1

|y|λF 1
2
(y)F 1

2

( y

t
1
2

)
dy, (3.18)

taken in the sense of generalized Riemann integration, is finite when t 	= 1. According to
Theorem 3.1, the singular part of the integral defining Ñ1(0, t) is

Γ(t) = t
d
4

∫
|y|≤1

|y|λ−3dei
C3
|y| (t

1
2 −1)dy.

This integral is finite, as seen by integration by parts, provided λ > 2d−1, which is compatible
with the restriction

3d
2

≤ λ ≤ 2d

on λ. The proof is completed.

Remark 3.2 As noted previously, the phase velocity g
1
2 ( tanh(|k|h0)

|k| )
1
2 k̂ is a bounded func-

tion of k. This is contrary to the case of the linear KdV-equation (Airy-equation) and the linear
Schrödinger equation, where both the phase velocity and the group velocity become unbounded
in the short wave limit. It is also unlike the case of linear gravity waves on the surface of
an infinite layer of fluid, where the phase velocity is unbounded in the long wave limit. The
dispersive blow-up phenomenon observed here is thus not linked to the unboundedness of the
phase velocity. Further comments on this point appear in Section 5.

Consider now the case of the linearized gravity-capillary waves where the dispersion relation
is given in formula (3.3). Again taking all the physical constants equal to 1 to simplify the
discussion, the solution of (3.1) becomes

η̂(k, t) = η̂0(k) cos[t(|k| tanh |k|) 1
2 (1 + |k|2) 1

2 ]

+ η̂1(k)
sin[t(|k| tanh |k|) 1

2 (1 + |k|2) 1
2 ]

(|k| tanh |k|) 1
2 (1 + |k|2) 1

2
. (3.19)

From this formula, it is readily discerned that for (η0, η1) ∈ Hk(Rd) ×Hk− 3
2 (Rd), k ∈ N, (3.1)

has a unique solution η ∈ Cb(R;Hk(Rd))∩L2
loc(R;Hk+ 1

4
loc (Rd)); the local smoothing property is

a consequence of the general theory supplied in [11], for example.
The next theorem is the analogue of Theorem 3.2 in the capillary-gravity-wave context. It

implies in particular that the Cauchy problem (3.1)–(3.3) is ill-posed in L∞.

Theorem 3.3 For d = 1 or 2, let (x∗, t∗) ∈ Rd × (0,+∞) be given. There exists η0 ∈
C∞(Rd)∩L∞(Rd)∩L2(Rd) such that the solution η ∈ Cb(R;L2(Rd)) of (3.1)–(3.3) with η1 ≡ 0
satisfies
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( i ) η is a continuous function of x and t on R × ((0,+∞) \ {t∗})),
( ii ) η(·, t∗) is continuous in x on R \ {x∗},
(iii)

lim
(x,t)∈R

d×(0,+∞)→(x∗,t∗)
(x,t) �=(x∗,t∗)

|η(x, t)| = +∞.

Proof One may assume that (x∗, t∗) = (0, 1). Again, take η̂1 = 0 in (3.1) and search for an
η0 that leads to dispersive blow-up. Define η0 by

η0(x) =
F 3

2
(x)

(1 + |x|2)m
,

where 3d
4 < m ≤ d and F 3

2
= F 3

2 ,0, defined in Theorem 3.1, is smooth on Rd and is asymptotic

to |x| d
2 eiC|x|3 as |x| → ∞ for a suitable non-zero constant C. It is straightforwardly verified

that η0 ∈ C∞(Rd) ∩ L∞(Rd) ∩ L1(Rd) ∩ L2(Rd). As in the gravity-wave case, the fact that
η0 ∈ L1(Rd) does not imply that η(·, t) ∈ L∞(Rd), t 	= 0, since F 3

2
/∈ L1(Rd).

In place of (3.5), we have the decomposition

(|k| tanh |k|) 1
2 (1 + |k|2) 1

2 = |k| 12 (1 + |k|2) 1
2 + (1 + |k|2) 1

2 r(|k|)
= |k| 12 (1 + |k|2) 1

2 + s(|k|), (3.20)

where the remainder function r is as introduced in (3.5). The function s is continuous, smooth
on Rd \ {0}, and decays exponentially to 0 as |k| → +∞. So, instead of (3.6), there appears

eit(|k| tanh |k|) 1
2 (1+|k|2) 1

2 = eits(|k|)eit|k| 12 (1+|k|2) 1
2 = (1 + gt(|k|))eit|k| 12 (1+|k|2) 1

2 , (3.21)

where
gt(|k|) = 2ie

i
2 ts(|k|) sin

( ts(|k|)
2

)
is continuous, smooth on Rd \ {0}, and decays exponentially to 0 as |k| → +∞.

As for the situation without surface tension, split the crucial, oscillatory integral according
to the decomposition (3.21), i.e.,

Jt(x) =
∫

Rd

eit(|k| tanh |k|) 1
2 (1+|k|2) 1

2 dk

=
∫

Rd

eit|k| 12 (1+|k|2) 1
2 eik·xdk +

∫
Rd

gt(|k|)eit|k| 12 (1+|k|2) 1
2 eik·xdk

= J1
t (x) + J2

t (x). (3.22)

One proves just as in the gravity-wave case that J2
t is bounded, continuous, and tends to 0 as

its argument becomes unbounded (and that it lies in L1 when d = 1). As will be seen presently,
the treatment of J1

t follows a line of argument more akin to that used in the analysis of the
linear KdV-equation and the linear Schrödinger equation, a consequence of what we will, in
Section 5, term the “strongly dispersive” character of its dispersion.

Study of J1
t (x) Define the function α = α(|k|) by

|k| 12 (1 + |k|2) 1
2 = |k| 32 + α(|k|),
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so that

α(|k|) =
|k| 12

(1 + |k|2) 1
2 + |k| . (3.23)

In terms of α, the integral J1
t (x) is written as

J1
t (x) =

∫
Rd

eit|k|32 eik·xdk + 2i
∫

Rd

eit|k| 32 ei α(k)t
2 sin

(α(k)t
2

)
eik·xdk

= J1,1
t (x) + J1,2

t (x).

Theorem 3.1, part (vi) with a = 3
2 and b = 0 implies that, due to its growth at ∞, J1,1

t is not
a bounded measure. More precisely, write

J1,1
t (x) =

∫
Rd

(1 − ψ(|k|))eit|k| 32 eik·xdk +
∫

Rd

ψ(|k|)eit|k| 32 eik·xdk

= K1
t (x) +K2

t (x), (3.24)

where ψ ∈ C∞(R), 0 ≤ ψ ≤ 1, ψ ≡ 0 on [0, 1], ψ ≡ 1 on [2,+∞) is as introduced in the
statement of Theorem 3.1, the Wainger-Miyachi results.

The first integral in (3.27) is, by the Riemann-Lebesgue lemma, continuous in x and tends
to 0 at infinity. Moreover, as is easily checked via two integrations by parts, the function
x �→ |x|2K1

t (x) is a bounded function of x (and thus an L1-function when d = 1). The modulus
of K2

t grows like |x| d
2 as |x| tends to infinity.

The preceding calculations allow us to express the solution η(·, t) of the linear, capillary-
gravity wave initial-value problem (3.1)–(3.3) in the form

η(·, t) = η0 � (K1
t +K2

t + J1,2
t + J2

t ) = N1
t +N2

t +N3
t +N4

t . (3.25)

Consider first the “singular” term N2
t . By Theorem 3.1, N2

t (x, t) is continuous away from
the point (0, 1), but tends to ∫

Rd

|F 3
2
(y)|2

(1 + |y|2)m
dy = +∞

as (x, t) → (0, 1) because of the restriction imposed on the parameter m.
In consequence of this remark, if it is known that the integrals N i

t, i = 1, 3, 4 all define
continuous functions of (x, t) on R

d×R
+, the result will be established. Of course, N1

t = η0�K
1
t

is continuous since it is a convolution of an L1-function with a bounded, continuous function.
The following result provides the desired information about N3

t .

Lemma 3.1 J1,2
t is a continuous function of (x, t) ∈ Rd × R+ and is a bounded function

of x, uniformly on compact subsets of t ∈ (0,∞).

Proof By its definition,

J1,2
t (x) = 2i

∫
Rd

eit|k| 32 ei α(k)t
2 sin

(α(k)t
2

)
eik·xdk,

where α is defined in (3.23). A straightforward Taylor expansion shows that

ei α(k)t
2 sin

(α(k)t
2

)
=
α(|k|)t

2
+ i

α2(|k|)t2
4

+ r(|k|, t),
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where r(|k|, t) = t3O(α3(|k|)) as α(|k|) → 0, t bounded. Since

α(|k|) =
1

2|k| 12 + O
( 1
|k| 52

)
,

it follows that, uniformly for bounded values of t,

ei α(k)t
2 sin

(α(k)t
2

)
=

t

4|k| 12 +
t2

16|k| + t3O
( 1
|k| 32

)
(3.26)

as |k| → ∞.
With ψ denoting the same cut-off function introduced earlier, one decomposes J1,2

t in a form
that is by now familiar, namely,

J1,2
t (x) = 2i

∫
Rd

ψ(|k|)eit|k| 32 ei α(k)t
2 sin

(α(k)t
2

)
eik·xdk

+ 2i
∫

Rd

(1 − ψ(|k|))eit|k| 32 ei α(k)t
2

(
sin

α(k)t
2

)
eik·xdk

= M1
t (x) +M2

t (x).

The Riemann-Lebesgue Lemma indicates that the second integral M2
t is a bounded, continuous

function of x, the spatial bound being uniform on compact temporal subsets of (0,∞).
Using (3.26), the integral M1

t may be expressed as

M1
t (x) =

it
2

∫
Rd

ψ(|k|)eit|k| 32

|k| 12 eik.xdk +
it2

16

∫
Rd

ψ(|k|)eit|k| 32

|k| eik·xdk

+ 2it3
∫

Rd

ψ(|k|)eit|k| 32 O
( 1
|k| 32

)
eik·xdk

= M1,1
t (x) +M1,2

t (x) +M1,3
t (x).

The integral M1,1
t is essentially F 3

2 , 1
2
. Thus, by Theorem 3.1, it behaves like |x| d

2−1 as |x| → ∞.
Hence, in one and two spatial dimensions, it comprises a bounded, continuous function of x.
Similarly, the integral M1,2

t corresponds to F 3
2 ,1, and so it behaves like |x|−2+ d

2 as |x| → ∞.
It is also a bounded, continuous function of x. The last term M1,3

t can be treated in a similar
way, thereby completing the proof of Lemma 3.1.

Proof of Theorem 3.3 (Continuation) Since J2
t is a bounded, continuous function, N4

t

is likewise a bounded, continuous function of x, and uniformly so on compact temporal subsets
of (0,∞).

To complete the proof of Theorem 3.3, it remains to prove that N2
t is continuous on Rd ×

(0,+∞) \ {(0, 1)}. It is first established that N2
1 (x0) is continuous at any point x0 ∈ Rd \ {0}.

To this end, consideration is given to the integral

I(x) =
∫

Rd

F 3
2
(x− y)

(1 + |x− y|2)m
F 3

2
(y)dy

for, say, x ∈ Bδ(x0), where δ is small enough that this ball does not include x = 0. In view of
Theorem 3.1(vi), it suffices to show that the integral∫

|y|≥1

|x− y| d
2 |y| d

2

(1 + |x− y|2)m
eiC(|y|3−|x−y|3)dy
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is finite in the sense of generalized Riemann integration. (Note that if x = 0, the oscillation
disappears and the following considerations do not apply.) Consider first the one-dimensional
case d = 1. Plainly, it suffices to show that the integral over {y : |y| ≥ |x|} is finite. The
integrals where y ≥ |x| > 0 and y ≤ −|x| < 0 are of a similar nature, so we consider only the
integral

J(x) = e−ix3
∫

y≥|x|

(y − x)
1
2 y

1
2

(1 + (x− y)2)m
e3ix2ye−3ixy2

dy.

Integrating by parts gives

J(x) = −i
e−ix3

6x

∫
y≥|x|

d
dy

[ (y − x)
1
2 y

1
2

y
1
2 (1 + (x − y)2)m

e3ix2y
]
e−3ixy2

dy.

The worst term from the point of view of the present considerations is

1
3
xeix3

∫
y≥|x|

[ (y − x)
1
2

y(1 + (x− y)2)m
e3ix2y

]
e−3ixy2

dy,

which is a convergent integral since the restriction on m implies that m > 1
2 .

To treat the case d = 2, use polar coordinates, writing y = reiθ, and integrate twice by
parts the integral with respect to r on the region {r > |x|}. The computation is analogous to
that made already for the nonlinear Schrödinger equation in the proof of Theorem 2.1, and so
is omitted.

Finally, it is established that N2
t = η0 � F−1(ψ(|k|)eit|k| 32 ) is a continuous function of (x, t)

in the domain D1 = {(x, t) : x ∈ R
d, t > 0, t 	= 1}. A simple rescaling reveals that

F−1(ψ(|k|)eit|k| 32 )(x) =
1

t
2d
3
F−1

(
ψ

( |k|
t

2
3

)
ei|k| 32

)( x

t
2
3

)
. (3.27)

As for the gravity-wave case, one observes that

ψ(|k|)ei|k| 32 − ψ
( |k|
t

2
3

)
ei|k| 32 = ψ̃t(|k|)ei|k| 32 ,

where ψ̃t is smooth, compactly supported and vanishes in a neighborhood of 0. Hence the func-
tion ψ̃t(|k|)ei|k| 32 is likewise smooth and compactly supported, so its inverse Fourier transform
is, as a function of x, smooth, decays rapidly to 0 at ±∞ and is jointly continuous in x and t.
It follows that N2

t can be written in the form

N2
t (·) =

1

t
2d
3
η0 � F 3

2

( ·
t

2
3

)
+ G̃(·, t) =: Ñ2

t (·) + G̃(·, t), (3.28)

where G̃ is continuous in x and t.
Split Ñ2

t in two as follows:

Ñ2
t (x) =

1

t
2d
3

(∫
|y|≤1

+
∫
|y|≥1

)
η0(x − y)F 3

2

( y

t
2
3

)
dy = M̃1

t (x) + M̃2
t (x). (3.29)

Since F 3
2

is a smooth function, M̃1
t (·) is continuous in x and t. By definition of η0,

M̃2
t (x) =

1

t
2d
3

∫
|y|≥1

F 3
2
(x− y)

(1 + |x− y|2)F 3
2

( y

t
2
3

)
dy.
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Again applying Theorem 3.1(vi) reduces the issue of continuity to checking whether or not the
improper Riemann integral

1

t
d
3

∫
|y|≥|x|

|x− y| d
2 |y| d

2

(1 + |x− y|2)m
eiC[ |y|3

t2
−|x−y|3]dy (3.30)

is finite. A straightforward integration by parts comes to our rescue, showing that the integral
is indeed finite. The continuity then follows from standard arguments and the proof of Theorem
3.3 is completed.

Remark 3.3 It is worth remarking that the dispersive blow-up for the full linear gravity-
wave problem may bear upon one of the suggested routes to the formation of rogue waves.
Many papers in the fluid mechanics and oceanographic literature have recently been devoted
to various aspects of oceanic rogue waves (see, e.g., [18, 19] and the references therein). One
of the puzzling issues that confront scientists interested in rogue waves is their genesis. While
there are several suggestions as to how rogue waves form, a universally accepted explanation
is lacking. One of the suggested routes to rogue wave formation is, roughly speaking, that
small amounts of energy from disparate parts of the ocean might occasionally come together in
space-time and, at least temporarily, result in very large waves. This is precisely what we have
demonstrated is possible in establishing dispersive blow-up (dispersive focusing) in the surface
water-wave environment. More precisely, following on the commentary in Remarks 2.3 and 2.5
in Section 2, there are open sets U in Hk(Rd), k ≥ 3, such that if initial data u0 is taken from
U , then |u0|∞ ≤ ε, but the solution u of (3.1) with u0 as initial data has the property that
|u(·, t∗)|∞ ≥M, where the positive values of ε,M and t∗ are specified.

4 Fractional Schrödinger Type Equations

The methods used and the results obtained in the previous section can be extended to a
class of fractional-order Schrödinger equations of the type{

iut + (−Δ)
a
2 u = 0, 0 < a < 1,

u(·, t) = u0(·)
(4.1)

for (x, t) ∈ R
d ×R

+. These equations, mentioned already in (2.4), occur as the linearization of
some weak turbulence models (see [12]). In Fourier-transformed variables, the solution of (4.1)
is

û(ξ, t) = û0(ξ)eit|ξ|a ,

and so the solution semi-group S(t) is in fact a unitary group on L2 defined by S(t)φ =
F−1(eit|ξ|a φ̂). Observe that the case a = 1

2 is essentially the linearized water-wave system on
an infinitely deep layer with surface tension neglected. Theorem 3.1 will be used to establish
the following dispersive blow-up result for the initial-value problem (4.1).

Theorem 4.1 Let 0 < a < 1. Then (2.4) is ill-posed in L∞(Rd) and displays the dispersive-
blow-up phenomenon. More precisely, for any fixed (x∗, t∗) ∈ Rd × (0,∞), there exists u0 ∈
C∞(Rd\{0})∩C0(Rd)∩L∞(Rd)∩L2(Rd) such that the corresponding solution u ∈ Cb(R;L2(Rd))
of (2.4) is such that

( i ) u is a continuous function of (x, t) on Rd × ((0,+∞) \ {t∗}),
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( ii ) u(·, t∗) is a continuous function of x on Rd \ {x∗}, and
(iii)

lim
(x,t)∈R

d×(0,+∞)→(x∗,t∗)
(x,t) �=(x∗,t∗)

|u(x, t)| = +∞.

Proof The proof is very similar to that of Theorem 3.2 and so is omitted.

Remark 4.1 The class in (4.1) with a > 1 includes the Schrödinger equation (a = 2).
These may also be treated by appropriate use of Theorem 3.1(vi).

5 Comments and Extensions

5.1 Strongly- versus weakly-dispersive equations: short-wave and
long-wave dispersive focussing

In connection with the mathematical analysis of various Boussinesq-type systems for weakly
nonlinear, long surface waves, it was observed in [6] that the dispersive blow-up phenomenon
does not occur for “weakly dispersive” equations or systems of equations. A paradigm problem
of weakly-dispersive type is the generalized BBM-equation

ut + ux + upux − uxxt = 0, (5.1)

where p is a positive integer. Indeed, one of the motivations for introducing the BBM-equation
as a water wave model in [4] was its appropriate behavior with regard to the propagation of
short waves. When more general dispersion relations are involved in the wave propagation
problem at hand, the general class of “regularized” dispersive equations comes to the fore (see,
e.g., [5]). These models have the form

ut + ux + upux + Lut = 0, (5.2)

where the dispersion operator L is defined as a Fourier multiplier operator by

L̂u(ξ) = q(ξ)û(ξ) (5.3)

and q is a non-negative-valued function.
One can show that for a large class of symbols q (those which generate bounded phase

velocities that decay to zero rapidly enough as |k| → ∞), the linearized version{
ut + ux + Lut = 0,
u(·, 0) = u0(·)

(5.4)

of (5.2) is well-posed in L∞ (see [6]). In the commentary to follow, attention is restricted to
pure power symbols of the form p(ξ) = |ξ|κ whose associated dispersion operator L defined as
in (5.3) is denoted by Lκ.

The results in [6] concern the slightly modified version{
(I − ∂2

x)
κ
2 ut + ux = 0,

u(·, 0) = u0(·)
(5.5)
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of (5.4). Notice that when κ = 2, which is the case of the original BBM-equation, the two
formulations coincide.

Stated here is a result established in [6, Proposition 4.5] for (5.5), but put into the context
of (5.4).

Proposition 5.1 The initial-value problem (5.4) is well-posed in L∞(R) if and only if
κ > 1.

Remark 5.1 The phase velocities for (5.4) and (5.5) are

c(k) =
1

1 + |k|κ and c(k) =
1

(1 + |k|2)κ
2
.

In both cases, when κ > 1, the phase velocity decays rapidly enough to 0 as k → ∞ that c(k)
is an L1-function. On the contrary, for the full linearized gravity- or gravity-capillary-wave
problems, the phase velocity behaves like |k|− 1

2 at infinity, which is not a fast enough decay to
prevent dispersion from leading to focussing singularities.

Remark 5.2 Equations (5.4) and (5.5) when κ = 1 are closely related to the linearization
of the Boussinesq systems in [6] which have a phase velocity behaving like 1

|k| as |k| → ∞. The
so-called “BBM-BBM” systems in [6], which do not feature dispersive blow-up, correspond to
κ = 2.

Proof The solution of (5.4) is

u(·, t) = F−1[eit |k|
1+|k|κ ] � u0.

Observe that
eit |k|

1+|k|κ = eit|k|(1+|k|2)− κ
2 [(1 + ht(|k|)],

where ht(|k|) is a smooth function of t and |k|, and is O(|k|−2κ+1) as |k| → +∞, uniformly on
compact subsets of t’s in (0,+∞). Recourse to Theorem 3.1 comes to our aid. The argument
is, by now, familiar and we skip over the details.

This last result is now extended to the nonlinear case. Using the Duhamel formula, the
solution of (5.2) has the representation

u(·, t) = Sκ(t)u0 −
∫ t

0

Sκ(t− s)[upux]ds, (5.6)

where Sκ(t) = eit∂x(I+Lκ)−1
is the associated linear group.

Proposition 5.2 Let κ > 1 and u0 ∈ L∞(R) ∩ L2(R). There exists T > 0 and a unique
solution u ∈ C([0, T ];L∞(R) ∩ L2(R)) of (5.2) with initial data u0.

Proof This follows from a straightforward iterative argument based on the Duhamel for-
mulation (5.6) and will be omitted (see, e.g., the proof of Theorem 2.1 in [7]).

Remark 5.3 It was shown in [9] that the solution of (5.2) in the case κ = 2 and p = 1
(the original BBM equation) is globally well-posed for data residing only in L2(R). The same
well-posedness result is true of the initial-value problem (5.4) for any κ > 3

2 (see [8]).
When κ ≤ 1, both (5.2) and its linearization display the dispersive blow-up phenomenon.
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Proposition 5.3 Let κ ≤ 1 and let (x∗, t∗) ∈ R × (0,+∞) be given. There exists φ ∈
C∞(R)∩L∞(R)∩L2(R) such that the corresponding solution u (respectively, v) of (5.2) (resp.
(5.4)) have the properties

( i ) u, v are continuous in x and t on R × ((0,∞) \ {t∗}),
( ii ) (u, v)(·, t∗) are continuous on R \ {x∗},
(iii)

lim
(x,t)∈R

d×(0,+∞)→(x∗,t∗)
(x,t) �=(x∗,t∗)

|u, v(x, t)| = +∞.

Proof The details are very similar to those appearing previously in this essay, and hence
they are omitted.

5.2 Miscelleanous remarks

(1) Ghidaglia and Jaffard [16] have constructed an explicit, infinite energy solution of (1.1)
displaying dispersive blow-up. They took

u(x, t) =
1
t

1
6
Ai2

( x

t
1
3

)
,

where Ai is the usual Airy-function. The function u is clearly a C∞-function on the half-space
D = {(x, t); x ∈ R, t > 0}. A simple computation using the classical ODE

Ai′′(z) − zAi(z) = 0 (5.7)

defining Ai shows that u solves (1.1) in D. However, one checks that for any fixed t > 0,
u(·, t) ∈ Lp(R) for any p > 2, and

‖u(·, t)‖p
p =

C

t
p
6− 1

3

∫
R

Ai2p(x)dx.

Thus, for any p > 2, the Lp-norms of u(·, t) blow up at t = 0 like C

t
1
6− 1

3p
. In particular, the

sup-norm blows up like C

t
1
6
.

(2) We have so far not been able to extend the dispersive blow-up result from the linear to
the nonlinear Euler equations for the free-surface, water-wave problem. An intermediate step in
this direction would be to extend the results of Section 3 to the case of non constant coefficients.
Especially telling would be an extension to the linearization of the water-wave system about a
non-horizontal free surface.
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versité de Paris 11 during the inception of this work.
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