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ABSTRACT. In this paper, attention is given to pure initial-value problems for the gen-
eralized Benjamin-Ono-Burgers (BOB) equation

ut + ux + (P (u))x − νuxx − Huxx = 0,

where H is the Hilbert transform, ν > 0 and P : R → R is a smooth function. We study
questions of global existence and of the large-time asymptotics of solutions of the initial-

value problem. If Λ(s) is defined by Λ′(s) = P (s), Λ(0) = 0, then solutions of the initial-
value problem corresponding to reasonable initial data maintain their integrity for all t ≥ 0
provided that Λ and P ′ satisfy certain growth restrictions. In case a solution corresponding
to initial data that is square integrable is global, it is straightforward to conclude it must

decay to zero when t becomes unboundedly large. We investigate the detailed asymptotics
of this decay. For generic initial data and weak nonlinearity, it is demonstrated that the
final decay is that of the linearized equation in which P ≡ 0. However, if the initial data is
drawn from more restricted classes that involve something akin to a condition of zero mean,

then enhanced decay rates are established. These results extend the earlier work of Dix who
considered the case where P is a quadratic polynomial.

1. Introduction. This paper is concerned with solutions of damped wave equa-
tions of the form

ut + ux + (P (u))x − νuxx −Huxx = 0, (x ∈ R, t > 0) (1.1)

posed with a specified initial condition

u(x, 0) = f(x), (x ∈ R). (1.2)

In the above models, u = u(x, t) is a real-valued function of the two real variables x
and t, subscripts adorning u connote partial differentiation, ν is a positive number
and H is the Hilbert transform defined in the first instance by the principle-value
integral

Hu(x) =
1

π
PV

∫ ∞

−∞

u(y)

x− y
dy.
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The nonlinearity P : R → R belongs to a broad class to be spelled out presently.
When ν = 0 and P = 1

2u
2, (1.1) is the well-known Benjamin-Ono equation

(BO-equation henceforth)

ut + ux + uux −Huxx = 0, (1.3)

originally derived as a model for the propagation of internal waves in deep, stratified
fluids [4, 38]. The Benjamin-Ono equation has attracted a lot of attention, both as
a guide to practical issues and because of its interesting mathematical properties.
The well-posedness of the initial-value problem for the BO-equation and its gener-
alizations, in various function classes, has been studied in a number of papers (see
e.g. [2, 8, 24, 26, 31, 43, 44, 47] and the references contained therein).

The BO-equation (1.3) features a balance between nonlinear and dispersive ef-
fects. When damping is taken into account, an additional dissipative term needs
to be appended to the wave equation (1.3). In [23], equation (1.3) with a dissi-
pative term appended was proposed to describe wave motion supported by intense
magnetic flux tubes in the solar atmosphere. Similar nonlinear dispersive wave
equations with dissipation arise as models in many physical contexts [14, 15, 16, 27,
28, 33, 35, 36, 39]. For instance, the Korteweg-de Vries-Burgers (KdV-B) equation

ut + ux + uux − νuxx + uxxx = 0 (1.4)

and the BBM or regularized long-wave-Burgers (RLW-B) equation

ut + ux + uux − νuxx − uxxt = 0 (1.5)

were considered when the need to account for damping arose in problems involving
bore propagation and other wave phenomena on the surface of water.

When dissipative effects are included in the model, the nature of the large-time
asymptotics of solutions changes. For the BO-equation itself, reasonably large
classes of initial data appear to resolve into a finite sequence of solitary waves
followed by a dispersive tail (cf. [1]). Once the nonlinearity P (u) grows near in-
finity at a critical or supercritical rate, small initial data leads to solutions that
disperse, though of course energy is preserved (see [25]). Large initial data may
blow up in finite time however. When even a small level of dissipation is appended,
there are no longer exact solitary-wave solutions, as energy is constantly removed
from the system. In the absence of external forcing, it is expected that solutions
emanating from a finite-energy initial disturbance will eventually decay to the qui-
escent state u ≡ 0. This issue was first considered by Dix [21, 22] in the BO-case
where P (z) = z2. It is our purpose here to investigate in more detail the decay just
posited. Because other than quadratic nonlinearities occasionally arise in practice,
we focus on the more general version of (1.3) displayed in (1.1).

Logically prior to such an investigation is the question of whether or not the
initial-value problem (1.1)-(1.2) has a solution defined for all t ≥ 0. This issue
will also be studied. The numerical simulations in [9, 10, 11] pertaining to the
generalized KdV-B equation (1.4) with uux replaced by upux and (1.1) for P (u) =
1

p+1u
p+1, p ≥ 1 an integer, indicates that global existence for such equations is

not a forgone conclusion. Writing Λ(r) for the primitive of the nonlinearity P (r)
normalized by the condition Λ(0) = 0, a theory of global well-posedness is developed
based on growth properties of Λ as r → +∞. If Λ = Λ+ − Λ− is broken into
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its positive and negative parts, then in essence we require that Λ− grow at most
exponentially at ±∞ whilst Λ+ is restricted to have at most quartic growth.

To get an idea of what might be true, as far as decay is concerned, it is useful
to recall results for the locally-defined KdV-B equation (1.4) and the RLW-B equa-
tion (1.5). It was shown in [3] that if u is a solution of either of these equations
corresponding to initial data in L2(R), then the L2(R)-norm of u decays at the rate
t−1/4 as t→ +∞. This is exactly the rate that obtains via Fourier analysis for the
equations in which the nonlinear term does not appear. Similar and more detailed
results hold for (1.4) and (1.5) with more general nonlinearities of the form (P (u))x
as in (1.1) (see [3, 6, 7, 12, 13, 20, 21, 37, 42, 45]). Moreover, if the initial data f

has a Fourier transform f̂(y) that vanishes at the origin like |y|α for some α > 0,
then the L2(R)-norm of the solution u decays at the enhanced rate t−1/4−α/2.

Overlapping with and extending the theory developed by Dix in [21, 22], analo-
gous results concerning the L2(R)-norm and other norms are obtained for solutions
of the generalized Benjamin-Ono-Burgers equation (1.1). It is shown generally that
solutions do indeed decay to zero as t → +∞ in various norms. Moreover, in case
the nonlinearity is weak, meaning that for |u| small, |P ′(u)| ≤ c|u|p for some p ≥ 2,
we are able to show that the decay is that of the linear equation (1.1) with P ≡ 0.
Furthermore, rather precise enhanced decay results are available for initial data
whose Fourier transform vanishes suitably at the origin.

The paper is organized as follows. In the next section, notation is briefly reviewed
and precise theorems stated to give focus to the ensuing development. Section 3
contains some preliminary technicalities together with the results on global well-
posedness. Section 4 features some non-optimal decay results for solutions of (1.1)
obtained via energy arguments in both the original and the Fourier-transformed
variables. Sharp decay results are then shown to follow from the preliminary decay
results in Section 5, while Section 6 gives consideration to the situation that obtains
for initial data satisfying a zero-mean type condition.

2 Notation and statement of the main results. Throughout the exposition,
functions will be real-valued. The Lp-norm of a function f which is pth-power
absolutely integrable on R is denoted by |f |p for 1 ≤ p < ∞, and similarly |f |∞ =
∥f∥L∞ . If m ≥ 0 is an integer, Wm,p(R) will be the Sobolev space consisting of
those Lp(R)-functions whose first m generalized derivatives lie in Lp(R), equipped
with the usual norm,

∥f∥Wm,p(R) =

m∑
k=0

|f (k)|p.

The case p = 2 appears frequently and so is given the special notation Hm(R).
The Hm(R)-norm of a function f in Hm(R) will be noted simply ∥f∥m. If m is not
integer, then the norm for Hm(R) is

||f ||2m =

∫ ∞

−∞
(1 + k2)m|f̂(k)|2dk,

where f̂(k) = 1√
2π

∫∞
−∞ e−ikxf(x)dx is the Fourier transform of f. The space Ck

b (R)
connotes the functions defined on R whose first k derivatives are bounded, contin-
uous functions and C∞

b = C∞
b (R) = ∩k≥0C

k
b (R). For 1 ≤ p ≤ +∞, Lp(0, T ;X) is

the Banach space of all measurable functions u: (0, T ) → X, such that t→ ∥u(t)∥X
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is in Lp(0, T ), with the norm

∥u∥Lp(0,T ;X) =

(∫ T

0

∥u(t)∥pXdt
) 1

p

, if 1 ≤ p < +∞

and
∥u∥L∞(0,T ;X) = essential supremum0<t<T(∥u(t)∥X).

Similarly, C(0, T ;X) denotes the subspace of L∞(0, T ;X) of all continuous functions
u : [0, T ] → X with the norm

||u||C(0,T ;X) = sup
0≤t≤T

||u(t)||X .

If T = ∞, then Cb(R+;X) denotes the bounded continuous mappings u : R+ → X.
This, too, is a Banach space with the norm

||u||Cb(R+;X) = sup
R+

||u(t)||X .

Finally, recall that the Hilbert transformation H has the following properties:

H2u = −u, (2.1)∫ ∞

−∞
uHv = −

∫ ∞

−∞
vHu, (2.2)

H(uv) = uHv + vHu+H(Hu ·Hv), (2.3)

all of which hold for arbitrary u and v in L2(R). If instead u ∈ H
1
2 (R), then∫ ∞

−∞
uHux =

1√
2π

∫ ∞

−∞
|y| |û(y)|2dy. (2.4)

Main Results

Let ν > 0, Λ′(r) = P (r) with Λ(0) = 0 and P ′(r) = Q(r). Without loss of
generality, we take it that P (0) = P ′(0) = 0 also. (If P ′(0) ̸= 0, one simply alters
the coefficient of the transport term ux.) Assume Λ = Λ+−Λ− and Q = Q+−Q−,
respectively where Λ+, Λ−, Q+ and Q− are nonnegative functions. Consider initial
data f that is suitably restricted in smoothness and evanescence as x → ±∞. (In
practice, this means f lies in Hs(R) for appropriate values of s and also in L1(R).)
Then there is a unique global solution u of (1.1) corresponding to the initial value
f if Λ+ and Q+ satisfy the restrictions

lim sup
r→+∞

Λ+(r)

r4
= 0 and lim sup

r→+∞

Q+(r)

r2
≤ C, (2.5)

respectively, for some constant C, while Λ− is assumed to be smooth but is otherwise
unrestricted, and Q− is such that for any ϵ > 0, there is a constant Cϵ such that

lim sup
r→+∞

Q−(r)

eϵr2
≤ Cϵ. (2.6)
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In (2.6), the value of ϵ actually used to infer suitable a priori bounds depends upon

the H
1
2 -norm of the initial data in a way to be made precise presently. When the

growth of P is larger than the above restrictions require, there still exists a global
solution for (1.1)-(1.2) if the initial data is small in L2-norm, or if ν is sufficiently
large. In all cases where global existence obtains, u decays to zero as t → +∞ in
L∞-norm. In particular, if P is a weak nonlinearity (|P ′(s)| ≤ c|u|p near u = 0
where c a positive number and p ≥ 2), then there are constants Cj , 1 ≤ j ≤ 3, such
that

|u(·, t)|2 ≤ C1(1 + t)−
1
4 , |u(·, t)|∞ ≤ C2(1 + t)−

1
2 , |ux(·, t)|2 ≤ C3(1 + t)−

3
4 ,

for all t ≥ 0, and

lim
t→+∞

t
1
2 |u(·, t)|22 = lim

t→+∞
t
1
2 |w(·, t)|22, (2.7)

where w is the solution of the linearized equation (1.1) in which the nonlinear term

is simply dropped. In addition, if the initial data f satisfies |f̂ | ≤ C|y|α for all small
values of y, where C and α are positive constants and 0 ≤ α ≤ 1, then

|u(·, t)|2 ≤ C1(1 + t)−
1+2α

4 , |u(·, t)|∞ ≤ C2(1 + t)−
1+α
2 ,

and |ux(·, t)|2 ≤ C3(1 + t)−
3+2α

4 , (2.8)

for all t ≥ 0. Indeed, if 0 ≤ α < 1, then

lim
t→+∞

t
1
2+α|u(·, t)|22 = lim

t→+∞
t
1
2+α|w(·, t)|22. (2.9)

If α = 1, however, one has

lim
t→+∞

t
3
2 |u(·, t)− w(·, t)|22 =

1

4ν(8νπ)
1
2

(∫ ∞

0

∫ ∞

−∞
P (u)dxdt

)2
. (2.10)

If f̂(y) = iyĝ(y) for some g ∈ L1(R), then

lim
t→+∞

t
3
2 |u(·, t)|22 =

1

4ν(8νπ)
1
2

(∫ ∞

−∞
g(x)dx−

∫ ∞

0

∫ ∞

−∞
P (u(x, t))dxdt

)2
. (2.11)

Furthermore, if xf(x) ∈ L1(R) and d
dxg(x) = f(x) with xg(x) → 0 as x → ±∞, it

follows that

lim
t→+∞

t
3
2 |u(·, t)|22 =

1

4ν(8νπ)
1
2

(∫ ∞

−∞
xf(x)dx+

∫ ∞

0

∫ ∞

−∞
P (u(x, t))dxdt

)2
. (2.12)

3 Properties of the linear BOB equation & global well-posedness. Some
technical results are presented here connected with the linear semigroup correspond-
ing to (1.1) without its nonlinear term and with the nonlinear well-posedness theory.
All of these will find use later.

The linearized Benjamin-Ono-Burgers initial-value problem

wt + wx − νwxx −Hwxx = 0, (3.1a)
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w(x, 0) = f(x), (3.1b)

can be solved by formally taking the Fourier transform of equation (3.1a) with
respect to the spatial variable x. One deduces at once that for f ∈ H1(R),

ŵ(y, t) = exp
(
− νy2t− iyt+ i|y|yt

)
ŵ(y, 0), (3.2)

and therefore that

w(x, t) =
1√
2π

∫ ∞

−∞
exp

(
− νy2t− iyt+ i|y|yt+ iyx

)
f̂(y)dy. (3.3)

The integral on the right-hand side of (3.3) will be denoted by S(t)f(x). Here are
some straightforward results about the decay of solutions of (3.1).

Lemma 3.1. If f ∈ H1(R) ∩ L1(R), then

(a) lim
t→∞

t
1
2

∫ ∞

−∞
w2(x, t)dx = lim

t→∞
t
1
2 |S(t)f(x)|22

= (8νπ)−
1
2

(∫ ∞

−∞
f(x)dx

)2
and

(b) lim
t→∞

t
3
2

∫ ∞

−∞
w2

x(x, t)dx = (128ν3π)−
1
2

(∫ ∞

−∞
f(x)dx

)2
.

Proof. (a) By Parseval’s theorem,∫ ∞

−∞
w2dx =

∫ ∞

−∞
|ŵ|2dy =

∫ ∞

−∞
e−2νy2t|f̂(y)|2dy. (3.4)

Let ϵ > 0 be given and choose δ = δ(ϵ) ∈ (0, 1) such that∣∣∣|f̂(y)|2 − |f̂(0)|2
∣∣∣ < ϵ, (3.5)

for all |y| < δ. (The continuity of f̂ follows from the Riemann-Lebesgue Lemma.)
The integral in (3.4) may be written in the form

|w(·, t)|22 =

∫ δ

−δ

e−2νy2t|f̂(0)|2dy +
∫
|y|>δ

e−2νy2t|f̂(y)|2dy

+

∫ δ

−δ

e−2νy2t
[
|f̂(y)|2 − |f̂(0)|2

]
dy. (3.6)

The second term on the right-hand side of (3.6) is bounded via∫
|y|>δ

e−2νy2t|f̂(y)|2dy ≤ e−2νδ2t

∫
|y|>δ

|f̂(y)|2dy ≤ e−2νδ2t|f |22. (3.7)

The final term in (3.6) may be bounded by means of the inequality

ϵ

∫ δ

−δ

e−2νy2tdy <
ϵ√
2νt

∫ ∞

−∞
e−y2

dy = ϵ

√
π

2νt
, (3.8)
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because of (3.5). Using (3.7) and (3.8) in (3.6) yields

lim
t→+∞

t
1
2 |w(·, t)|22 = 0(ϵ) + lim

t→+∞
t
1
2 |f̂(0)|2

∫ δ

−δ

e−2νy2tdy

= 0(ϵ) +

√
π

2ν
|f̂(0)|2,

as ϵ→ 0+. Upon letting ϵ tend to zero, result (a) follows.

(b) Parseval’s theorem gives

|w2
x(·, t)|22 =

∫ ∞

−∞
y2|ŵ(y, t)|2dy =

∫ ∞

−∞
y2e−2νy2t|f̂(y)|2dy. (3.9)

Applying the same argument as appeared in part (a), we obtain that

lim
t→+∞

t
3
2 |w(·, t)|22 = 0(ϵ) + lim

t→+∞
t
3
2 |f̂(0)|2

∫ δ

−δ

y2e−2νy2tdy

= 0(ϵ) +

√
π

32ν3
|f̂(0)|2,

as ϵ→ 0+. Upon letting ϵ tend to zero, result (b) follows. �

Lemma 3.2. Let ϕ be defined by its Fourier transform ϕ̂ as

ϕ̂(y, r) = exp

((
νy2 + iy − i|y|y

)
r

)
.

Then it follows that

sup
t>0

∫ ∞

−∞
|ϕ(x,−t)|dx <∞. (3.10)

If ψ̂ is given by

ψ̂(y, r) = y exp

((
νy2 + iy − i|y|y

)
r

)
,

then

sup
t>0

t
1
2

∫ ∞

−∞
|ψ(x,−t)|dx <∞. (3.11)

Proof. The proofs follow the line of argument exposed in proving a similar lemma
for the linearized BBM-Burgers equation in [3] (see also [12]). The proofs of (3.10)
and (3.11) are very similar, and so we content ourselves with a demonstration of the
former. The estimation of |ϕ(x,−t)|1 is made by breaking the range of integration
into pieces, viz.∫ ∞

−∞
|ϕ(x,−t)|dx =

∫
|x|≤1

|ϕ(x,−t)|dx+

∫
|x|≥1

|ϕ(x,−t)|dx. (3.12)
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Since the range of integration appearing in the first term on the right-hand side of
(3.12) is bounded, a time-independent bound on |ϕ(x,−t)| implies boundedness of
this term. By its definition, it is seen that

|ϕ(x,−t)| =
∣∣∣ 1√

2π

∫ ∞

−∞
eixy exp

(
− νy2t− iyt+ i|y|yt

)
dy
∣∣∣

≤ 1√
2π

∫ ∞

−∞
e−νy2tdy ≤ Ct−

1
2 ,

as t→ ∞.
To control the second term on the right-hand side of (3.12), write h(y, t) for

ϕ̂(y,−t). Integration by parts shows that

√
2πϕ(x,−t) = −

∫ ∞

−∞

eixy

ix
∂yh(y, t)dy = −

∫ ∞

−∞

eixy

x2
∂2yh(y, t)dy.

If |y| ≥ 1, and t ≥ 1, say, it is straightforward to check that∫
|y|≥1

∣∣∂2yh(y, t)∣∣dy ≤ C

∫ +∞

1

(1 + y2t)te−νy2tdy ≤ Cte−νt,

and hence that

|ϕ(x,−t)| ≤
∣∣∣ ∫

|y|≥1

eixy

x2
∂2yh(y, t)dy

∣∣∣+ ∣∣∣ ∫
|y|≤1

eixy

x2
∂2yh(y, t)dy

∣∣∣
≤ C

t

x2
e−νt +

∣∣∣ ∫ 1

−1

eixy

x2
∂2yh(y, t)dy

∣∣∣.
Note that since

∂yh(y, t) =
[
− 2νyt− it+ 2isign(y)yt

]
exp

(
− νy2t− iyt+ i|y|yt

)
, (3.13)

it follows that
|∂yh(±1, t)| ≤ Cte−νt,

and therefore that

|ϕ(x,−t)| ≤ C
t

x2
e−νt +

∣∣∣ ∫ 1

−1

ieixy

x
∂yh(y, t)dy

∣∣∣. (3.14)

Define H by

H(x, t) =

∫ 1

−1

ieixy

x
∂yh(y, t)dy,

and then write it as

H(x, t) =
i

x

∫ 1

−1

eiy(x−t)
[
− 2νyt− it+ 2isgn(y)yt

]
exp

(
− νy2t+ i|y|yt

)
dy. (3.15)

Integrating by parts twice leads to the estimate

|H(x, t)| ≤ Ct
1
2

|x(x− t)|
+

Ct
3
2

|x(x− t)2|
.
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Hence, to prove the lemma, it suffices to show that∫
|x|≥1

|H(x, t)|dx ≤ C.

Divide the range of integration into four pieces, namely (−∞,−1), (−1, t−
√
t), (t+√

t,∞) and (t−
√
t, t+

√
t) where we assume that t ≥ 1. The arguments for bounding

the integral over the first three intervals are similar, and therefore only one is worked
out in detail.∫ −1

−∞
|H(x, t)|dx ≤ C

∫ −1

−∞

( t
1
2

|x(x− t)|
+

t
3
2

|x(x− t)2|

)
dx

= Ct−
1
2

∫ ∞

1/t

( 1

y(y + 1)
+

1

y(y + 1)2

)
dy ≤ C

ln t

t
1
2

≤ C,

for values of t away from 0. To estimate the integral over (t−
√
t, t+

√
t), use (3.15)

to ascertain that

|H(x, t)| ≤ C

|x|

∫ 1

0

(1 + t) exp
(
− 1

2
νy2t

)
dy ≤ C

t
1
2

|x|
,

whence ∫ t+
√
t

t−
√
t

|H(x, t)|dx ≤ Ct
1
2

(
ln(t+

√
t)− ln(t−

√
t)
)
≤ C

for t ≥ 1. The proof of the lemma is complete. �

Local well-posedness results for the initial-value problem (1.2)-(1.3) can be found
in [2, 24, 26, 31, 47] for example. For the problem (1.1)-(1.2), the reader may consult
[46, 47]. A global well-posedness result obtains if the growth of nonlinearity P is
limited appropriately.

Proposition 3.3. Suppose P : R → R is C∞ with P (0) = P ′(0) = 0. Define Λ
and Q by Λ′(r) = P (r) with Λ(0) = 0 and Q(r) = P ′(r) for r ∈ R, as above. Let
a Sobolev exponent s ≥ 1 be given. The initial-value problem (1.1)-(1.2) is globally
well posed for arbitrary-sized data in Hs(R) if there exists a constant C for which

(a) lim sup
r→+∞

Λ+(r)

r4
= 0, (b) lim sup

r→+∞

Q+(r)

r2
≤ C, (3.16a)

and for every ϵ > 0, there is a constant Cϵ such that

(c) lim sup
r→+∞

Q−(r)

eϵr2
≤ Cϵ. (3.16b)

If Q(u) grows faster than quadratically at infinity, the conclusion that ||u(·, t)||1 is
globally bounded remains without presuming (a)-(b)-(c) provided that ||f ||1 is small
enough.

In all these situations, the solution lies in Cb(0,+∞;H1(R)) and in Ck(δ, T ;Hs(R))
for any positive δ and T such that 0 < δ < T and for all k ≥ 0.
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If, the data happens to lie in ∈ W k,1(R) ∩ Hs(R), then for every T > 0, the
associated solution u and all its temporal derivatives lie in C(0, T ;W k,1(R)).
Remark. The simple condition

lim sup
r→+∞

Q(r)

r2
≤ C, (3.17a)

implies (b) and (c) of (3.16). In particular, condition (b) together with (c) implies
that for any ϵ > 0, there is a constant Cϵ such that

lim sup
r→+∞

Q(r)

eϵr2
≤ Cϵ. (3.17b)

Proof. Local well-posedness follows readily from nonlinear semi-group theory or the
contraction-mapping principle (see e.g. [46]). For example, if we take the Fourier
transform of (1.1) in the spatial variable x, view the nonlinear term as known, solve
the resulting ordinary differential equation using Duhamel’s formula and take the
inverse Fourier transform, there appears the integral equation

u(x, t) =
1√
2π

∫ ∞

−∞
ϕ(x−y,−t)f(y)dy+ 1√

2π

∫ t

0

∫ ∞

−∞
ψ(x−y, τ−t)P (u)dydτ

= f0(x, t) + A(u)(x, t) = B(u)(x, t),
(3.18)

where ϕ and ψ are defined in Lemma 3.2. It is straightforward to ascertain that
B is a contraction mapping on any ball BR of radius R about zero in the space
C(0, T ;Hs(R)) or C(0, T ;W k,1(R)), for s ≥ 1 and k ≥ 0, provided R is taken large
enough to encompass the initial data and T = T (R) > 0 is taken small enough.
Note that we only require P to be C2 for this part of the argument. The unique
fixed point of B is straightforwardly inferred to be a solution of (1.1) on the time
interval (0,T). Uniqueness and continuous dependence of the solution on the initial
data follow because of the way the solution is obtained.

With a satisfactory local existence theory in hand, global well-posedness will
follow as soon as supporting a priori bounds are established. Since continuous
dependence is already established, locally in time, the calculations pursued below
in search of appropriate a priori bounds can be justified by regularizing the rele-
vant initial data making the computations with the solutions corresponding to the
regularized data, and then passing to the limit as the regularization is allowed to
evanesce (see e.g. [11]).

Multiplying (1.1) by 2u and then integrating the result over R×[0, t), one obtains
the equation

|u(·, t)|22 + 2ν

∫ t

0

|ux(·, τ)|22dτ = |f |22, (3.19)

by using the elementary properties of the Hilbert transform to conclude that∫ ∞

−∞
uHuxxdx = −

∫ ∞

−∞
uxHuxdx = 0.

If (1.1) is multiplied by the combination Hux − P (u) and the result integrated
over R×[0, t), then after integrations by parts, there appears the formula∫ ∞

−∞
uHuxdx+ ν

∫ t

0

∫ ∞

−∞
uxHuxxdxdτ

=

∫ ∞

−∞
Λ(u)dx+ ν

∫ t

0

∫ ∞

−∞
P ′(u)u2xdxdτ +

∫ ∞

−∞

[
fHfx − Λ(f)

]
dx.

(3.20)
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From this relation and (3.19), it is straightforward to ascertain that if Λ(u) and
P ′(u) = Q(u) satisfy the growth conditions (3.16), then for any δ > 0, there is a
constant C depending on δ and ||f || 1

2
such that∫ ∞

−∞
uHuxdx+ ν

∫ t

0

∫ ∞

−∞
uxHuxxdxdτ

≤ C(||f || 1
2
) +

∫ ∞

−∞
Λ+(u)dx+ ν

∫ t

0

∫ ∞

−∞
Q+(u)u2xdxdτ

≤ C(||f || 1
2
, δ) + Cδ|u(·, t)|44 + C

∫ t

0

∫ ∞

−∞
u2(x, τ)u2x(x, τ)dxdτ.

(3.21)

Applying a standard Sobolev embedding theorem and an interpolation result, it is
deduced that

|u(·, t)|44 + C

∫ t

0

∫ ∞

−∞
u2(x, τ)u2x(x, τ)dxdτ

≤ C||u(·, t)||41
4
+ C

∫ t

0

|u(·, τ)|24|ux(·, τ)|24dτ

≤ C||u(·, t)||21
2
|u(·, t)|22 + C

∫ t

0

|u(·, τ)|2||u(·, τ)|| 1
2
|ux(·, τ)|2||ux(·, t)|| 1

2
dτ.

(3.22)

Using (3.22) in the inequality (3.21) leads to∫ ∞

−∞
uHuxdx+ ν

∫ t

0

∫ ∞

−∞
uxHuxxdxdτ ≤ C(||f || 1

2
, δ) + δC1||u(·, t)||21

2

+

∫ t

0

[
ν

2

∫ ∞

−∞
uxHuxxdx+ C||u(·, τ)||21

2
|ux(·, τ)|22

]
dτ.

(3.23)

The value C1 depends on Sobolev imbedding and interpolation constants and on
|u(·, t)|2, and hence from (3.19), may be chosen independently of t. Thus δ depends
only on |f |2. If δ is chosen so that

δC1 ≤ 1

2
,

it follows from (3.19) and (3.23) that

||u(·, t)||21
2
+
ν

2

∫ t

0

∫ ∞

−∞
uxHuxxdxdτ

≤ C(||f || 1
2
) + C

∫ t

0

||u(·, τ)||21
2
|ux(·, τ)|22dτ.

(3.24)

Applying Gronwall’s Lemma and noticing that for all t ≥ 0,
∫ t

0
|ux(·, τ)|22dτ ≤

1
2ν |f |

2
2, one derives the inequality

||u(·, t)||21
2
+ ν

∫ t

0

∫ ∞

−∞
|y|3|û2(y, τ)|dydτ

≤ C(||f || 1
2
)eC

∫ t
0
|ux(·,τ)|22dτ ≤ C(||f || 1

2
),

(3.25)
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valid for all t ≥ 0.
Multiply (1.1) by 2uxx and integrate the result over R× [0, t). After simplifying,

there appears

|ux(·, t)|22 + 2ν

∫ t

0

|uxx(·, τ)|22dτ = |f ′|22 + 2

∫ t

0

∫ ∞

−∞
uxxP (u)xdxdτ

≤ ||f ||21 + ν

∫ t

0

|uxx(·, τ)|22dτ +
1

ν

∫ t

0

|P ′(u(·, τ))|2∞|ux(·, τ)|22dτ.
(3.26)

At this point, it is helpful to recall the inequality

|g|∞ ≤ C0||g|| 1
2

(
1 + log

(
1 + ||g|| 3

2

)) 1
2

, (3.27)

where C0 is an absolute constant. This is a special case in one space dimension of
the logarithmic Sobolev inequalities of Brezis, Gallouët and Wainger [18, 19] (and
see also Ozawa [40]). Apply the inequality (3.27) to the solution u emanating from
f and use (3.25) for a time-independent bound on ||u(·, t)|| 1

2
to infer existence of a

constant C2 = C2(||f || 1
2
) such that for all t for which the solution exists,

|u(·, t)|2∞ ≤ C2

(
1 + log

(
1 + ||u(·, t)|| 3

2

))
. (3.28)

Hence, from (b) and (c) of (3.16) (see (3.17b)), for any ϵ > 0, there is a constant
Cϵ such that

|P ′(u(·, t))|2∞ ≤ C2
ϵ e

2ϵ|u(·,t)|2∞

≤ C2
ϵ e

2ϵC2

(
1+log

(
1+||u(·,t)|| 3

2

))
≤ C3 + C4||u(·, t)||23

2
,

(3.29)

provided ϵ is chosen small enough that

ϵC2 ≤ 1.

As C2 = C2(||f || 1
2
) is time-independent, ϵ may also be chosen to depend only on

||f || 1
2
. The constants C3 and C4 depend on the fixed value of ϵ satisfying ϵC2 ≤ 1,

through their dependence on Cϵ and on C2, and so they may likewise be taken
to depend only on ||f || 1

2
. With these preliminary ruminations in hand, inequality

(3.26) may be extended thusly;

|ux(·, t)|22 + ν

∫ t

0

|uxx(·, τ)|22dτ

≤ ||f ||21 +
C3

ν

∫ t

0

|ux(·, τ)|22dτ +
C4

ν

∫ t

0

|ux(·, τ)|22||u(·, τ)||23
2
dτ

≤ ||f ||21 +
C3 + C4 supt≥0 |u(·, t)|22

ν

∫ t

0

|ux(·, τ)|22dτ

+
C4

ν

∫ t

0

|ux(·, τ)|22
∫ ∞

−∞
|y|3|û(y, τ)|2dydτ

≤ C(||f ||1, ν) +
C4

ν

∫ t

0

|ux(·, τ)|22
∫ ∞

−∞
|y|3|û(y, τ)|2dydτ.

(3.30)
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Gronwall’s Lemma comes to our aid once more, yielding the time-independent
bound

|ux(·, t)|22 + ν

∫ t

0

|uxx(·, τ)|22dτ

≤ C(||f ||1, ν)e
C4
ν

∫ t
0

∫ ∞
−∞ |y|3|û(y,τ)|2dydτ ≤ C(||f ||1)

(3.31)

on account of (3.25), where the ν-dependence is ignored in the last step. Hence, in
the presence of the growth restrictions (3.16), the H1-norm of solutions is bounded,
independently of t, on account of (3.19) and (3.31).

Assume now that Q grows super-quadratically, so that (3.16b) and (3.16c) are
no longer valid. It may then be presumed that there is a constant C3 for which

|Q(z)| ≤ C3 + z2E(z2),

where E is a continuous, monotone increasing function with limz→+∞E(z) = +∞
and E(0) = 0. In consequence, it is seen that

|P ′(u(·, t))|2∞ ≤ 2C2
3 + 2|u(·, t)|4∞E

(
|u(·, t)|2∞

)2
≤ 2C4 + 2|u(·, t)|22|ux(·, t)|22E

(
|u(·, t)|2|ux(·, t)|2

)2
≤ 2C4 + 2|f |22||ux||2C(0, t;L2(R))E

(
|f |2||ux||C(0, t;L2(R))

)2
,

(3.32)

because of (3.19). By re-estimating (3.26) for |ux(·, t)|2, using (3.19) again and
(3.32), there obtains the inequality

||ux||2C(0, t;L2(R)) + ν

∫ t

0

|uxx(·, τ)|22dτ

≤ ||f ||21 +
1

ν
||P ′(u)||2C(0, t;L∞(R))

∫ t

0

|ux(·, τ)|22dτ

≤ ||f ||21 +
C4

ν2
|f |22 +

|f |42
ν2

E
(
|f |2||ux||C(0, t;L2(R))

)2
||ux||2C(0, t;L2(R)).

(3.33)

If Y (t) and δ are defined by

Y (t) = ||ux||C(0, t;L2(R)) and δ = ||f ||1,

then (3.33) implies that
p(Y (t), δ) ≤ C5δ

2, (3.34)

where

p(Y, δ) = Y 2
[
1− δ4

ν2
E
(
δY
)2]

.

For any δ > 0, p(Y, δ) is positive for Y near 0 since E(0) = 0, and bounded above,
say p(Y, δ) ≤ Cδ, for all Y ≥ 0. Moreover, Cδ is a decreasing function of δ > 0.
Hence, there is a δ0 > 0, such that

sup
Y >0

p(Y, δ0) = Cδ0 = C5δ
2
0 . (3.35)
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For any δ < δ0, there are constants Y−(δ) < Y+(δ) such that (3.34) implies that
either Y ≤ Y− or Y ≥ Y+. As Y = Y (t) is a continuous function of t, it follows that
if Y (0) < Y−, then Y (t) ≤ Y− for all t ≥ 0, which is to say |ux(·, t)|2 is uniformly
bounded.

Once the H1-norm of u is known to be bounded as a function of time, it is
straightforward to deduce bounds on L2-norms of higher derivatives, provided the
initial data also possesses this regularity. For example, differentiating (3.18) twice
with respect to x leads to the equation

uxx(x, t) =
1√
2π

∫ ∞

−∞
ϕ(x−y,−t)f ′′(y)dy

+
1√
2π

∫ t

0

∫ ∞

−∞
ψ(x−y, τ−t)

[
P ′′(u)u2x + P ′(u)uxx

]
dydτ.

(3.36)

Fix T > 0. Since u is known to be uniformly bounded in H1(R) on [0, T ], it follows
that P ′′(u) and P ′(u) are bounded. Consequently, (3.36) implies that

|uxx(·, t)|2 ≤ C6|f ′′|2 + C7

∫ t

0

|uxx(·, s)|
1
2
2 ds+ C8

∫ t

0

|uxx(·, s)|2ds

≤ C6|f ′′|2 + C9 + C10

∫ t

0

|uxx(·, s)|2ds,

where use has been made of Young’s inequality, elementary Sobolev inequalities
and the fact that ||u(·, t)||1, and hence |u(·, t)|∞, are uniformly bounded on [0, T ].
Gronwall’s Lemma then allows the conclusion that u ∈ C(0, T ;H2(R)), as adver-
tised. Similar considerations establish that, for any finite value of T , u is bounded
in C(0, T ;Hk(R)) for larger values of k, provided the initial data also lies in Hk(R).
A more elaborate argument as in that starting with (3.32) reveals the Hk-norm to
be uniformly bounded in time if ||f ||k is small and P vanishes to a suitably high
order at 0, but we do not know such a result for large data.

Attention is now turned to the provision of L1-bounds. Let T > 0 and let u be a
solution of (1.1) on [0, T ] with initial data in H1(R)∩L1(R). The formal path from
(1.1) to (3.18) can be straightforwardly justified for a solution in C(0, T ;H1(R)).
Elementary estimates using (3.18) imply that

|u(·, t)|1 ≤ |ϕ(·,−t)|1|f |1 +
∫ t

0

C|ψ(·, τ − t)|1|u(·, τ)|1dτ,

where C depends only on the L∞-norm of u on R× [0, T ], say. This latter quantity
is bounded on [0, T ] on account of the H1-bound that obtains on [0, T ]. Gronwall’s
Lemma then provides the desired a priori L1-bound.

This argument can be used to derive a priori bounds in W 1,1(R) and then in
W 2,1(R). The W 2,1-bounds imply bounds in W 1,∞(R) and these in turn allow us
to infer W 3,1-bounds. A continuation of this bootstrap-type argument provides
W k,1-bounds for any k such that f ∈W k,1(R).

Finally, consideration is given to the temporal regularity. From (3.18), it follows
that at least in the distributional sense,

ut(x, t) =∂tf0(x, t) +
1√
2π

∫ ∞

−∞
ψ(x−y,−t)P (f(y))dy

+
1√
2π

∫ t

0

∫ ∞

−∞
ψ(x−y, τ − t)P ′(u(y, τ))uτ (y, τ)dydτ.

(3.37)
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Since f0 is the convolution of the initial data f with a kernel that has the same
smoothing properties in Sobolev spaces as does the kernel arising in the solution
of the initial-value problem for the heat diffusion equation, it follows that for any
δ > 0,

f0(x, t) ∈ Ck
b (δ,+∞;Hr(R))

for all k = 0, 1, 2, · · · and r ≥ 0. Of course, the bound in this space depends
inversely upon δ.

Now, fix δ with 0 < δ < T. As u lies in Cb(δ, T ;H
s(R)) where s ≥ 1, so does

P (u). Moreover, one deduces from (3.37) that

||ut(·, t)||Hs(R) ≤ C
(
||∂tf0(·, t)||Hs(R) + C(P ′(||f ||Hs(R))

)∫ t

0

||uτ (·, τ)||Hs(R)dτ.

Then Gronwall’s Lemma implies that ut ∈ Cb(δ, T ;H
s(R)). Because of this latter

fact, the right-hand side of (3.37) is differentiable with respect to t, so it is therefore
concluded that the left-hand side is also, and furthermore, utt ∈ Cb(δ, T ;H

s(R)).
An induction finishes the argument. �
Remark 3.4. In fact, as will appear later, the L1-norm of solutions of the equation
(1.1) with weak nonlinearity is bounded uniformly in t, which is a key point for the
decay results in view.

The following corollary will be useful presently.

Corollary 3.5. Let f ∈ H1(R) and P satisfy the conditions in Proposition 3.3.
Then ux, uxx, ut ∈ L2(R× R+) and u ∈ Cb(R+;H1).

Proof. By (3.19) and (3.31) it follows that ux and uxx are in L2(R×R+), and that
u ∈ Cb(R+;H1). The fact that ut ∈ L2(R × R+) follows from the equation (1.1)
and the results just mentioned. �

The next decay result is a direct corollary of Proposition 3.3.

Corollary 3.6. Let u be the solution of (1.1) corresponding to initial data f ∈
H1(R). Then, it follows that

|ux(·, t)|2 → 0, as t→ +∞,

and
|u(·, t)|∞ → 0, as t→ +∞.

Proof. Define U : R+ → R+ by U(t) = |ux(·, t)|22. Corollary 3.5 implies that
U(t) ∈ L1(R+). Moreover, as we saw in (3.26),

dU(t)

dt
= −2ν

∫ ∞

−∞
u2xxdx+ 2

∫ ∞

−∞
P ′(u)uxuxxdx. (3.38)

Since |u(·, t)|∞ is uniformly bounded, the right-hand side of (3.38) also lies in
L1(R+) on account of Corollary 3.5. In consequence, U ∈ W 1,1(R+) and so U
is continuous and U(t) → 0 as t→ +∞.

The second conclusion now follows because

|u(·, t)|2∞ ≤ |u(·, t)|2|ux(·, t)|2 ≤ ||f ||1|ux(·, t)|2,

and the right-hand side of this inequality clearly tends to zero as t becomes large.
The corollary is then proved. �
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4 Non-optimal Decay Results. In the remainder of the paper, attention is given
to the rate at which solutions of (1.1) decay as t → +∞. Throughout, it will be
assumed that the nonlinearity P satisfies the conditions for globalcon well-posedness
spelled out in Section 3. It will also be presumed that the nonlinearity is weak near
the origin. Precisely, we assume there is a p ≥ 2 and a constant c such that

|P ′(u)| ≤ c|u|p (4.1)

for u near 0.
In fact, we usually just take it that P ′(u) = cup. That results derived under the

latter assumption will lead to the same results for nonlinearities only satisfying (4.1)
requires a moments thought. In fact, according to Corollary 3.6, if u solves (1.1),
then there is a T > 0 such that u(·, t) is near zero for t ≥ T. Thus, the inequality
(4.1) applies uniformly for t ≥ T, The asymptotic analysis only uses (4.1) and not
the specific form P (z) = czp.

The analysis in this section will yield decay rates, albeit non-optimal ones. In
Section 5, these rates are improved to their optimal values.

Lemma 4.1. If u is the solution of equation (1.1) with P ′(u) = cup for some p ≥ 2
corresponding to initial data f ∈ H1(R), then

sup
t∈R

{t|ux(·, t)|22} <∞.

Proof. If (1.1) is multiplied by 2uxx and then the result integrated over R, there
appears

d

dt
|ux(·, t)|22+2ν|uxx(·, t)|22 = 2

∫ ∞

−∞
cupuxuxxdx

≤ ν|uxx(·, t)|22 +
|c|2

ν
|up(·, t)ux(·, t)|22

≤ ν|uxx(·, t)|22 +
|c|2

ν
|u(·, t)|p2|ux(·, t)|

p+2
2 ,

(4.2)

where the inequality |u|2∞ ≤ |u|2|ux|2 has been used in the last step. The differential
inequality (4.2) leads to the related differential inequality

d

dt

(
t2|ux(·, t)|22

)
≤ 2t

(
|ux(·, t)|22 −

νt

2
|uxx(·, t)|22

)
+ C1t

2|ux(·, t)|42. (4.3)

By using Parseval’s theorem and (3.19) in Proposition 3.3, the first term on the
right-hand side of (4.3) can be bounded above, independently of t ≥ T for some
T > 0. In fact, (4.3) reveals that

t
(
|ux(·, t)|22 −

νt

2
|uxx(·, t)|22

)
≤ t

∫
|y|≤

√
2
νt

y2|û(y, t)|2dy

≤ t
(√ 2

νt

)2 ∫
|y|≤

√
2
νt

|û(y, t)|2dy ≤ C

∫ ∞

−∞
|û(y, t)|2dy

= C|u(·, t)|22 ≤ C(|f |22) = C0.

(4.4)
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By using (4.4), (4.3) reduces to

d

dt

(
t2|ux(·, t)|22

)
≤ C0 + C1t

2|ux(·, t)|42, (4.5)

holding for t ≥ T , for some constants T > 0, C0 and C1.
Let Y (t) be the solution of the equation

d Y (t)

dt
= C0 + C1m(t)Y (t)

Y (T ) = C,
(4.6)

where m(t) = |ux(·, t)|22. Then t2|ux(·, t)|22 ≤ Y (t) for all t ≥ T. Of course, Y (t) can
be found exactly as

Y (t) = exp
(
C1

∫ t

T

m(τ)dτ
)[
C + C0

∫ t

T

exp
(
− C1

∫ s

T

m(τ)dτ
)
ds
]
. (4.7)

Note that m(t) = |ux(·, t)|22 ∈ L1(R+) by Lemma 4.1. It follows from (4.7) that

t2|ux(·, t)|22 ≤ C(1 + C0t),

whence
|ux(·, t)|22 ≤ C0t

−1,

for all t ≥ T. Thus the lemma is proved. �

Corollary 4.2. If u is the solution of (1.1) corresponding to initial data f in
H2(R) ∩ L1(R), then there is a constant C̄ such that for any ϵ > 0, there is a

T = T (ϵ) > 0 for which |u(·, t)|∞ ≤ C̄ϵt−
1
4 for all t ≥ T.

Proof. The decay of the L∞-norm of solutions of (1.1) follows from the last result
in Lemma 4.1 since

|u(·, t)|2∞ ≤ |ux(·, t)|2|u(·, t)|2 ≤ Ct−
1
2 |u(·, t)|2 ≤ Ct−

1
2 . (4.8)

It is now shown that the constant C in (4.8) can be chosen to be small for large
values of T. Take the Fourier transform of (1.1) with respect to the spatial variable x
and solve the resulting ordinary differential equation to reach the integral equation

û(y, t) = exp
(
− νy2t− iyt+ iy|y|t

)
f̂(y)

− ci

p+ 1

∫ t

0

y exp
(
(−νy2 − iy + iy|y|)(t− τ)

)
ûp+1(y, τ)dτ,

(4.9)

from whence it follows that

|û(y, t)|2 ≤ 2e−2νy2t|f̂(y)|2 + 2c2

(p+ 1)2

(∫ t

0

|y|e−νy2(t−τ)
∣∣ûp+1(y, τ)

∣∣dτ)2. (4.10)

First note that for any ϵ > 0, we may choose T0 large enough so that∫ ∞

T0

|ux(·, t)|22dt ≤ ϵ.
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This is possible because ux ∈ L2(R × R+). If t > T0 is large enough, say t ≥ T
4/3
0

ϵ2/3
,

then for any γ > 0, one obtains∫
|y|≤

√
γ
t

y2
(∫ T0

0

e−νy2(t−τ)
∣∣ûp+1(y, τ)

∣∣dτ)2dy
≤ 1

2π

∫
|y|≤

√
γ
t

y2dy
(∫ T0

0

∣∣up+1(·, τ)
∣∣
1
dτ
)2

≤ 1

3π

(√γ

t

)3(∫ T0

0

|u(·, τ)|p−1
∞ |u(·, τ)|22dτ

)2
≤ Ct−

3
2T 2

0 ≤ Cϵ.

(4.11)

Note also that ∫
|y|≤

√
γ
t

(∫ t

T0

ye−νy2(t−τ)
∣∣ûp+1(y, τ)

∣∣dτ)2dy
≤ (p+ 1)2

2π

∫
|y|≤

√
γ
t

dy
(∫ t

T0

∣∣upux(·, τ)∣∣1dτ)2
≤ C

√
γ

t

(∫ t

T0

|ux(·, τ)|
3
2
2 dτ

)2
≤ Ct−

1
2 (t− T0)

1
2

(∫ t

T0

|ux(·, τ)|22dτ
) 3

2

≤ Cϵ
3
2 ,

(4.12)

where we have used that for p ≥ 2,

|yûp+1(y, τ)| ≤ p+ 1√
2π

|upux(·, τ)|1

≤ p+ 1√
2π

|u(·, τ)|p−1
∞ |ux(·, τ)|2|u(·, τ)|2 ≤ C|ux(·, τ)|

3
2
2 .

Finally, note that for large t, say t > 1
ϵ2 ,∫

|y|≤
√

γ
t

e−2νy2t|f̂(y)|2dy ≤ Cf t
− 1

2 ≤ Cϵ. (4.13)

Combining (4.11), (4.12) and (4.13), one deduces from (4.10) that for t large
enough,

t

∫
|y|≤

√
γ
t

y2|û(y, t)|2dy ≤ Cϵ. (4.14)

Using the new estimate (4.14) in (4.4), gives a new version of the differential inequal-
ity (4.5) with C0 replaced by Cϵ. It is concluded from the new version of equation
(4.6) that if t > T0 for T0 large enough and fixed, then

|ux(·, t)|22 ≤ C̄ϵt−1. (4.15)

As ϵ > 0 was arbitrary, the corollary follows from (4.8). �
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5. Decay rates for the GBOB equation. With the help of the non-optimal
results derived in Section 4 and the preliminary results in Section 3, we are now
ready to prove the main decay result concerning the BOB equation (1.1) with a
weak nonlinearity. To simplify the argument, it is still assumed that P ′ = cup for
some p ≥ 2. With this assumption, the following decay result obtains for generic
initial data (1.2).

Theorem 5.1. If f ∈ H1(R) ∩ L1(R), then the solution of (1.1) corresponding to
initial data f satisfies

|u(·, t)|2 ≤ C(1 + t)−
1
4 , (5.1)

for all t ≥ 0, where C is independent of t.

To prove Theorem 5.1, more information is needed about solutions of (1.1). The
following lemma is a connection between the result advertised in Theorem 5.1 and
the L1-norms of solutions of (1.1).

Lemma 5.2. Let f ∈ H1(R)∩L1(R) and let u be the solution of (1.1) corresponding
to initial data f. Suppose that

sup
0≤t<∞

|u(·, t)|1 <∞. (5.2)

Then, it must be the case that

sup
0≤t<∞

t
1
2 |u(·, t)|22 <∞.

Proof. Note first that

∣∣û(y, t)∣∣ ≤ 1√
2π

∫ ∞

−∞

∣∣u(x, t)∣∣dx =
1√
2π

|u(·, t)|1. (5.3)

Suppose that (5.2) holds. The use of (3.19), Parseval’s theorem and then (5.3)
shows that

d

dt

(
t|u(·, t)|22

)
= |u(·, t)|22 − 2νt|ux(·, t)|22

=

∫ ∞

−∞
|û(y, t)|2dy − 2νt

∫ ∞

−∞
y2|û(y, t)|2dy

≤
∫
|y|≤ 1√

2νt

|û(y, t)|2dy ≤ 2√
2νt

|û(·, t)|2∞

≤ C1t
− 1

2 |u(·, t)|21 ≤ C2t
− 1

2 ,

where C2 depends on the constant provided by (5.2). Integrating the inequality
with respect to t over [0, t), gives the desired result. �

Lemma 5.2 shows that the decay result stated in Theorem 5.1 follows from de-
riving the time-independent, L1-bound (5.2) for the solution of (1.1). This can be
achieved when the nonlinearity P is weak.
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Proof (of Theorem 5.1). Proceeding as in the derivation of (3.18) leads to the
following formula for the solution u of (1.1);

u(x, t) =
1√
2π

∫ ∞

−∞
ϕ(x− y,−t)f(y)dy

− ci√
2π(p+ 1)

∫ t

0

∫ ∞

−∞
ψ(x− y, τ − t)up+1(y, τ)dydτ,

(5.4)

where ϕ and ψ are defined in Lemma 3.2. The first term on the right-hand side of
(5.4) is in L1(R). In fact, the use of (3.10) in Lemma 3.2 shows that∫ ∞

−∞
|ϕ(x,−t)|dx

∫ ∞

−∞
|f(y)|dy ≤ C(|f |1). (5.5)

Similarly, let

g(x, t) =
ic

(p+ 1)
√
2π

∫ t

0

∫ ∞

−∞
ψ(x− y, τ − t)up+1(y, τ)dydτ (5.6)

connote the second term on the right-hand side of (5.4). Then, one sees that∫ ∞

−∞
|g(x, t)|dx ≤ C

∫ t

0

|ψ(·, τ − t)|1
∫ ∞

−∞
|up+1(y, τ)|dydτ. (5.7)

By Lemma 3.2, there is a constant C such that

|ψ(·,−r)|1 ≤ Cr−
1
2 ,

for all r > 0. Note also that because of Corollary 4.2, there is a constant C̄ for
which, for any ϵ > 0, there is a T > 0 such that for all τ ≥ T,∫ ∞

−∞
|up+1(y, τ)|dy ≤ |u(·, τ)|p∞|u(·, τ)|1 ≤ C̄2ϵ2τ−

1
2 |u(·, τ)|1, (5.8)

since p ≥ 2. Hence, the left-hand side of (5.7) can be bounded above as follows;∫ ∞

−∞
|g(x, t)|dx ≤ C

∫ T

0

|up+1(·, τ)|1√
t− τ

dτ + C̄ϵ

∫ t

T

1√
t− τ

|u(·, τ)|1√
τ

dτ (5.9)

for T large enough and all t ≥ T. Note the convention in force here is that the
second integral does not appear if t ≤ T. The use of (5.5) and (5.9) gives

|u(·, t)|1 ≤ CT + C̄ϵ

∫ t

T

|u(·, τ)|1√
(t− τ)τ

dτ. (5.10)

If ϵ > 0 is chosen to be small enough that

C̄ϵ

∫ 1

0

1√
(1− r)r

dr ≤ 1

2
,

say, then (5.10) implies that

sup
t≥0

|u(·, t)|1 ≤ CT +
1

2
sup
t≥0

|u(·, t)|1,

and the theorem is thereby established. �
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Corollary 5.4. If f ∈H1(R)∩L1(R), then the solution of the initial-value problem
for equation (1.1) with initial data f satisfies

t
3
4 |ux(·, t)|2 ≤ C and t

1
2 |u(·, t)|∞ ≤ C,

for all t ≥ 0, where the constants are independent of t.

Proof. Using (4.2), the inequality

d

dt

(
t
5
2 |ux(·, t)|22

)
≤ 5

2
t
3
2

(
|ux(·, t)|22 −

2νt

5
|uxx(·, t)|22

)
+ Ct

5
2 |up(·, t)ux(·, t)|22

≤ 5

2
t
3
2

∫
|y|≤

√
5

2νt

y2|û(y, t)|2dy + Ct
5
2 |u(·, t)|2p∞|ux(·, t)|22

≤ 5

3
t
3
2

(√ 5

2νt

)3
|û(·, t)|2∞ + Ct

5
2 |u(·, t)|p2|ux(·, t)|

2+p
2

≤ C
(
1 + t

5
2 |ux(·, t)|42

)
,

(5.11)

follows since p ≥ 2 and

|û(·, t)|∞ ≤ |u(·, t)|1 ≤ C, |u(·, t)|2 ≤ C and |ux(·, t)|2 ≤ C.

Applying the arguments around (4.6) and (4.7) in Lemma 4.2 to the present con-
siderations, one determines that

t
5
2 |ux(·, t)|22 ≤ C(1 + t),

and so
|ux(·, t)|22 ≤ C(1 + t)−

3
2 , (5.12)

for all t ≥ 0.
To see the validity of the second result, note that

|u(·, t)|2∞ ≤ |u(·, t)|2|ux(·, t)|2
≤ C(1 + t)−

1
4 (1 + t)−

3
4 = C(1 + t)−1,

where the decay estimates (5.1) and (5.12) have been used. It thus follows that

|u(·, t)|∞ ≤ C(1 + t)−
1
2 ,

and the corollary is proved. �

6 More results on decay rates for the GBOB equation. In this section,
further decay results are obtained. It will be shown that if the initial datum f has
the special property that its Fourier transform vanishes at the origin like |y|α as
y → 0, then the decay rate of the corresponding solutions of equation (1.1) will
increase by α

2 over what can be expected of generic initial data. As in Section 4
and Section 5, we still require the nonlinearity P (u) to vanish at high order for u
near zero. More precisely, it is required that P ′ vanishes at least quadratically at
the origin. We begin with further results about the linear BOB equation (3.1).
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Lemma 6.1. If f ∈ Hr(R) ∩ L1(R), where r ≥ 1 and

|f̂(y)| ≤ C|y|α, (6.1)

for small values of y, where α ≥ 0 and C is a positive constant, then the solution
w of equation (3.1) satisfies

sup
0≤t≤∞

tα+i+ 1
2

∫ ∞

−∞
[∂ixw(x, t)]

2dx <∞, (6.2)

for 0 ≤ i ≤ r. In particular, if

|f̂(y)| = |y|α|ĝ(y)|, (6.3)

for some g ∈ L1(R), then

lim
t→+∞

tα+i+ 1
2

∫ ∞

−∞
[∂ixw(x, t)]

2dx =
Γ
(
i+ α+ 1

2

)
(2ν)α+i+ 1

2

|ĝ(0)|2. (6.4)

where Γ denotes the Gamma function. Specifically, if∫ ∞

−∞
|x|j |f(x)|dx <∞, for 0 ≤ j ≤ k,

with ∫ ∞

−∞
xjf(x)dx = 0, (6.5)

for 0 ≤ j ≤ k − 1, then for 0 ≤ i ≤ r,

lim
t→∞

tk+i+ 1
2

∫ ∞

−∞
[∂ixw(x, t)]

2dx

=
1 · 3 · 5 · · · (2(k + i)− 1)

(8νπ)
1
2 (4ν)k+i

(∫ ∞

−∞
xkf(x)dx

)2
.

(6.6)

Proof. The proof of the lemma is similar to those provided in the context of
the generalized KdV-Burgers equation (1.7) and the generalized regularized long
wave-Burgers equation (1.8) which can be found in [13, Lemma 2.1] (see also [22]).
Accordingly, the proof is omitted. �

Lemma 6.2. Let f ∈ H1(R) ∩ L1(R) and suppose that |f̂(y)| ≤ C|y|α for small
values of y, where 0 ≤ α ≤ 1 and C is a constant. Then for any fixed γ > 0, the
solution u of equation (1.1) corresponding to the initial data f satisfies

∫
|y|≤

√
γ
t

|û(y, t)|2dy ≤

{
Cf t

−(α+ 1
2 ), if 0 ≤ α < 1,[

Cf + CN

(
log(1 + t)

)2]
t−

3
2 , if α = 1,

(6.7)

for all t ≥ γ, where both Cf and CN are independent of t. The constant Cf depends
only on the initial data f while CN depends on p.
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Proof. As before, take the Fourier transform of (1.1) with respect to the spatial
variable x and solve the resulting ordinary differential equation to reach the integral
equation

û(y, t) = exp
(
− νy2t− iyt+ iy|y|t

)
f̂(y)

− ci

p+ 1

∫ t

0

y exp
(
(−νy2 − iy + iy|y|)(t− τ)

)
ûp+1(y, τ)dτ,

(6.8)

from which one deduces that

|û(y, t)|2 ≤ 2e−2νy2t|f̂(y)|2 + 2c2

(p+ 1)2

(∫ t

0

|y|e−νy2(t−τ)
∣∣ûp+1(y, τ)

∣∣dτ)2. (6.9)

Note that for any γ > 0 fixed and t > 0 large, the inequality∫
|y|≤

√
γ
t

e−2νy2t|f̂(y)|2dy ≤ C2

∫
|y|≤

√
γ
t

|y|2αe−2νy2tdy

≤ C2
(√γ

t

)2α ∫ +∞

−∞
e−2νy2tdy

≤ Cf t
− 1+2α

2

(6.10)

holds because of the hypothesis (6.1) on the initial data. Note also that for any
t ≥ γ, it is clear that∫

|y|≤
√

γ
t

(∫ t

0

|y|e−νy2(t−τ)
∣∣ûp+1(y, τ)

∣∣dτ)2dy
≤ C

∫
|y|≤

√
γ
t

y2dy
(∫ t

0

|up+1(·, τ)|1dτ
)2

≤ 2C

3

(√γ

t

)3(∫ t

0

1

(1 + τ)
p
2

dτ
)2

≤

{
CN t

− 3
2 , if p > 2,

CN t
− 3

2

(
log(t+ 1)

)2
, if p = 2,

(6.11)

where use has been made of the inequality

|ûp+1(y, τ)| ≤ 1√
2π

|up+1(·, τ)|1 ≤ 1√
2π

|u(·, τ)|p∞|u(·, τ)|1

and the fact, garnered from Corollary 5.4, that

|u(·, τ)|∞ ≤ C(1 + τ)−
1
2 .

Combining (6.9), (6.10) and (6.11), there obtains∫
|y|≤

√
γ
t

|û(y, t)|2dy ≤

{
Cf t

−(α+ 1
2 ) + CN t

− 3
2 , if 0 ≤ α < 1,

Cf t
− 3

2 + CN (log(1 + t))2t−
3
2 , if α = 1,

(6.12)

where Cf and CN are independent of t. The constant Cf depends only on the initial

data f, or more precisely on the function ŵ(y, t) = exp
(
− νy2t− iyt+ iy|y|t

)
f̂(y).

The lemma is proved . �
With Lemma 6.1 and Lemma 6.2 in hand, it will be shown that the decay rate of

the L2-norm of solutions of (1.1) increases by order α
2 if the initial data f satisfies

condition (6.1) with 0 ≤ α ≤ 1. First, we have following lemma, valid for the
restricted range 0 ≤ α < 1.
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Lemma 6.3. Let f ∈ H1(R) ∩ L1(R) be such that |f̂(y)| ≤ C|y|α for small values
of y, where 0 ≤ α < 1 and C is a constant. Then there are constants C = Cα such
that the solution u of equation (1.1) satisfies

|u(·, t)|2 ≤ Cαt
− 1+2α

4 and |ux(·, t)|2 ≤ Cαt
− 3+2α

4 , (6.13)

for t ≥ T, where T is suitably large and Cα depends only on f .

Proof. From (4.2), it follows that

d

dt

(
t2+α|ux(·, t)|22

)
≤ t1+α

(
(2 + α)|ux(·, t)|22 − νt|uxx(·, t)|22

)
+ Ct2+α|up(·, t)ux(·, t)|22.

(6.14)

Using Parseval’s theorem, the first term on the right-hand side of (6.14) can be
estimated as follows;

t1+α
(
(2 + α)|ux(·, t)|22 − νt|uxx(·, t)|22

)
≤ t1+α

∫
|y|≤

√
(2+α)

νt

y2|û(y, t)|2dy

≤ t1+α
(√ (2 + α)

νt

)2 ∫
|y|≤

√
(2+α)

νt

|û(y, t)|2dy ≤ Cαt
− 1

2 ,

(6.15)

where Lemma 6.2 has been applied in the last step.
The second term on the right-hand side of (6.14) has the upper bound

t2+α|up(·, t)ux(·, t)|22 ≤ t2+α|u(·, t)|2p∞|ux(·, t)|22 ≤ CN t
−(p−1−α+ 1

2 ), (6.16)

because of the estimates for |u(·, t)|∞ and |ux(·, t)| in Corollary 5.4. Using (6.15)
and (6.16), (6.14) reduces to

d

dt

(
t2+α|ux(·, t)|22

)
≤ Cαt

− 1
2 + CN t

−(p−1−α+ 1
2 ),

from which it follows immediately that

|ux(·, t)|22 ≤ Cαt
−(α+ 3

2 ).

The use of equation (3.19) and Parseval’s formula yields

d

dt

(
tα+1|u(·, t)|22

)
= (1 + α)tα|u(·, t)|22 − 2νt1+α|ux(·, t)|22

= tα
(
(1 + α)|û(·, t)|22 − 2νt

∫ ∞

−∞
y2|û(y, t)|2dy

)
≤ tα

∫
|y|<

√
1+α
2νt

|û(y, t)|2dy ≤ Cαt
− 1

2 ,

(6.17)

where Cα is a constant obtained by an application of Lemma 6.2. Integrating this
inequality with respect to t leads to

t1+α|u(·, t)|22 ≤ C + Cαt
1
2 . (6.18)

From (6.18) one easily obtains the first result in (6.13). The lemma is proved. �
The previous results are now extended to the case α = 1.
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Lemma 6.4. Let f ∈ H1(R) ∩ L1(R) and suppose that

|f̂(y)| ≤ C|y|α,

for small values of y, where 0 ≤ α ≤ 1 and C is a constant. Then the solution of
(1.1) with initial data f satisfies

|u(·, t)|2 ≤ C1
α(1 + t)−

1+2α
4 and

|ux(·, t)|2 ≤ C2
α(1 + t)−

3+2α
4 ,

(6.19)

for all t ≥ 0, where the constants C1
α and C2

α are independent of t and of the form{
Cf , if 0 ≤ α < 1,

Cf + CN , if α = 1.
(6.20)

Corollary 6.5. If f satisfies the conditions in Lemma 6.4, then the corresponding
solution of (1.1) satisfies

|u(·, t)|∞ ≤ Cα(1 + t)−
1+α
2 , (6.21)

for all t ≥ 0, where Cα is a constant which is independent of t.

Proof. The inequality (6.21) follows immediately from those in (6.19) because

|u(·, t)|2∞ ≤ |u(·, t)|2|ux(·, t)|2 ≤ Cα(1 + t)−(1+α).

Hence the corollary is proved. �
Proof (of Lemma 6.4). If α = 0 or 0 < α < 1 the lemma follows from Theorem 5.1
or Corollary 5.4 and Lemma 6.3, respectively. Suppose α = 1, then (6.19) certainly
holds for any α0 ≤ 1

2 , and of course (6.21) holds for the same range of α0. Hence
the solution u of equation (1.1) with the initial data f satisfies

|u(·, t)|∞ ≤ C(1 + t)−
3
4 , (6.22)

for all t ≥ 0. It follows that

|ûp+1(y, t)| ≤ 1√
2π

|u(·, t)|p∞|u(·, t)|1 ≤ C(1 + t)−
3p
4 . (6.23)

Hence, for t ≥ γ, where γ > 0 is fixed, one has∫
|y|≤

√
γ
t

(∫ t

0

|y| exp
(
− νy2(t− τ)

)∣∣ûp+1(y, τ)
∣∣dτ)2dy

≤ C

∫
|y|≤

√
γ
t

y2dy
(∫ t

0

|up+1(·, τ)|1dτ
)2

≤ 2C

3

(√γ

t

)3(∫ t

0

dτ

(1 + τ)
3p
4

)2
≤ CN t

− 3
2 .

(6.24)
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For α = 1 and the same value of γ, it follows at once that∫
|y|≤

√
γ
t

e−2νy2t|f̂(y)|2dy ≤
∫
|y|≤

√
γ
t

|y|2e−2νy2tdy ≤ Cf t
− 3

2 . (6.25)

Using (6.9), (6.24) and (6.25) leads to the conclusion∫
|y|≤

√
γ
t

|û(y, t)|2dy ≤ Cf t
− 3

2 + CN t
− 3

2 ≤ Cαt
− 3

2 . (6.26)

If one chooses γ = 3
ν , then upon applying (6.26), one obtains that

t2
(
3|ux(·, t)|22 − νt|uxx(·, t)|22

)
≤ t2

∫
|y|≤

√
3
νt

y2|û(y, t)|2dy

≤ t2
(√ 3

νt

)2 ∫
|y|≤

√
3
νt

|û(y, t)|2dy ≤ Cαt
− 1

2 .

(6.27)

From (6.22) and the inequality |ux(·, t)|22 ≤ Cαt
−2, it is straightforward to see

t3|up(·, t)ux(·, t)|22 ≤ t3|u(·, t)|2p∞|ux(·, t)|22 ≤ CN t
− 3p−2

2 . (6.28)

By using (6.27) and (6.28), the differential inequality (6.14) in Lemma 6.3 for the
new value α = 1 may be seen to imply that

d

dt

(
t3|ux(·, t)|22

)
≤ Cαt

− 1
2 + CN t

− 3p−2
2 , (6.29)

whence
|ux(·, t)|22 ≤ C2

αt
− 5

2 . (6.30)

Finally, following the line of argument leading to (6.17) and (6.18), but using
(6.26) and (6.30) with the new value α = 1, it is concluded at once that if α = 1,
then

t2|u(·, t)|22 ≤ C + C1
αt

1
2 , or |u(·, t)|22 ≤ C1

αt
− 3

2 ,

for all t and suitable constants C and C1
α. The lemma is proved. �

When p ≥ 2, the decay behavior of solutions of equation (1.1) as t → ∞ is
exactly the same as the decay behavior of solutions of the corresponding linear
BOB equation. To see this scattering result, let u be the solution of equation (1.1)
and w be the solution of the linear equation (3.1) with the same initial data f. If
U = u− w, then U satisfies the initial-value problem

Ut + Ux − νUxx −HUxx + cupux = 0, (6.31a)

U(x, 0) = 0. (6.31b)

Attention is turned to the decay of the difference between the solution of (1.1)
and the solution of the corresponding linear equation (3.1a). The outcome of this
study will provide a decay rate for U in various norms. As a corollary, it is shown
that the leading order, long-time asymptotics of solutions of equation (1.1) is in
various ways the same as that of the solutions of the linear BOB equation.
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Corollary 6.6. Let f ∈ H1(R) ∩ L1(R) and p ≥ 2. Suppose

|f̂(y)| ≤ C|y|α

for small values of y, where 0 ≤ α ≤ 1 and C is a positive constant. Then the
solution U = u− w of (6.31a) and (6.31b) has the properties that for l = 0, 1,

|∂lx(u− w)(·, t)|22 ≤

{
Ct−( 3

2+l), if p > 2; or p = 2 and α ̸= 0,

Ct−( 3
2+l)

(
log(1 + t)

)2
, if p = 2 and α = 0.

(6.32)

Proof. Note first that from (6.31a), û− ŵ has the representation

û− ŵ = − ci

p+ 1

∫ t

0

y exp
(
(−νy2 − iy + iy|y|)(t− τ)

)
ûp+1(y, τ)dτ. (6.33)

Note also that by Lemma 6.4, one has

|u(·, t)|22 ≤ Ct−( 1
2+α) and |ux(·, t)|22 ≤ Ct−( 3

2+α). (6.34)

Straightforward interpolation then implies

|u(·, t)|∞ ≤ Ct−
1+α
2 . (6.35)

By using (6.33), (6.34) and (6.35), one demonstrates that∫
|y|≤

√
γ
t

|û− ŵ|2dy ≤ C

∫
|y|≤

√
γ
t

y2
(∫ t

0

e−νy2(t−τ)ûp+1(y, τ)dτ
)2
dy

≤ C

∫
|y|≤

√
γ
t

y2dy
(∫ t

0

|u(·, τ)|p−1
∞ |u(·, τ)|22dτ

)2
≤ Ct−

3
2

(∫ t

0

(1 + τ)−( 1
2+α+

(1+α)(p−1)
2 )dτ

)2
≤

{
Ct−

3
2 , if 1

2 + α+ (1+α)(p−1)
2 > 1,

Ct−
3
2

(
log(1 + t)

)2
, if 1

2 + α+ (1+α)(p−1)
2 = 1,

=

{
Ct−

3
2 , if p > 2; or p = 2 and α ̸= 0,

Ct−
3
2

(
log(1 + t)

)2
, if p = 2 and α = 0,

= Ct−( 1
2+α+δ),

(6.36)

where

δ =

{
1− α, if p > 2; or p = 2 and α ̸= 0,

1−, if p = 2 and α = 0,

and δ = 1− is defined in such a way that t−( 1
2+δ) = t−

3
2

(
log(1 + t)

)2
.

The differential inequality

d

dt
|(u− w)(·, t)|22 + ν|∂x(u− w)(·, t)|22 ≤ c2

ν(p+ 1)2
|up+1(·, t)|22, (6.37)
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is easily derived from (6.31a). Inequality (6.37) is equivalent to

d

dt

(
t1+α+δ|(u− w)(·, t)|22

)
≤ c2t1+α+δ

ν(p+ 1)2
|up+1(·, t)|22

+ tα+δ
[
(1 + α+ δ)|(u− w)(·, t)|22 − νt|∂x(u− w)(·, t)|22

]
,

(6.38)

and the right-hand side of (6.38) is bounded above by

C1t
α+δ

∫
|y|≤

√
1+α+δ

tν

|(û− ŵ)(y, t)|2dy + C2t
1+α+δ|u(·, t)|22|u(·, t)|2p∞

≤ C1t
− 1

2 + C2t
−( 1

2+p−1+pα−δ).

The estimate (6.34) and (6.36) have been used in the derivation of inequality (6.38).
Note that p − 1 + pα − δ ≥ 0 by the definition of δ. It follows immediately from
(6.38) that

t
1
2+α+δ|(u− w)(·, t)|22 ≤ C.

Again, direct appeal to (6.31a) leads to

d

dt
|∂x(u− w)(·, t)|22 + ν|∂2x(u− w)(·, t)|22 ≤ c2

ν
|upux(·, t)|22, (6.39)

which is equivalent to

d

dt

(
t2+α+δ|∂x(u− w)(·, t)|22

)
≤ t2+α+δc2

ν
|upux(·, t)|22

+ t1+α+δ
[
(2 + α+ δ)|∂x(u− w)(·, t)|22 − νt|∂2x(u− w)(·, t)|22

]
.

(6.40)

By using (6.36), the first two terms on the right-hand side of (6.40) can be bounded
above by

t1+α+δ
[
(2 + α+ δ)|∂x(u− w)(·, t)|22 − νt|∂2x(u− w)(·, t)|22

]
≤ C1t

1+α+δ

∫
|y|≤

√
2+α+δ

tν

y2|(û− ŵ)(y, t)|2dy ≤ C1t
− 1

2 .
(6.41)

Then, using (6.34) and (6.35), the last term on the right-hand side of (6.40) can be
bounded as follows;

t2+α+δ

ν
|upux(·, t)|22 ≤ C2t

2+α+δ|ux(·, t)|22|u(·, t)|2p∞

≤ C2t
−( 1

2+p−1+pα−δ).

(6.42)

Applying (6.41) and (6.42) reduces (6.40) to the simple inequality

d

dt

(
t2+α+δ|∂x(u− w)(·, t)|22

)
≤ C1t

− 1
2 + C2t

−( 1
2+p−1+pα−δ). (6.43)

Since p− 1 + pα− δ ≥ 0, (6.43) yields

t
3
2+α+δ|∂x(u− w)(·, t)|22 ≤ C, (6.44)

and the corollary is established. �
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Corollary 6.7. Let f satisfy the conditions specified in Corollary 6.6. Then the
solution u of equation (1.1) and the solution w of equation (3.1) corresponding to
the initial data f have the properties

lim
t→+∞

t
1
2+l+α

∣∣∣|∂lxu(·, t)|22 − |∂lxw(·, t)|22
∣∣∣ ={ 0, if 0 ≤ α < 1,

Cl
N , if α = 1,

(6.45)

where Cl
N is a constant and l = 0, 1.

Proof. By the triangle inequality,∣∣|∂lxu(·, t)|22 − |∂lxw(·, t)|22
∣∣ ≤ |∂lx(u− w)(·, t)|2

[
|∂lxu(·, t)|2 + |∂lxw(·, t)|2

]
. (6.46)

From Lemma 6.4, when p ≥ 2, one has

lim
t→+∞

t
1+2(l+α)

4 |∂lxu(·, t)|2 = C (6.47)

where C is a positive constant, and the same result is easily seen to hold for w. It
follows from (4.46) that

lim
t→+∞

t
1
2+l+α

∣∣∣|∂lxu(·, t)|22 − |∂lxw(·, t)|22
∣∣∣

≤ lim
t→+∞

t
1+2(l+α)

4 |∂lx(u− w)(·, t)|2 lim
t→+∞

(
t
1+2(l+α)

4

[
|∂lxu(·, t)|2+|∂lxw(·, t)|2

])
.
(6.48)

Corollary 6.6 implies the first limit on the right-hand side of (6.48) to be 0 when
0 ≤ α < 1, whereas it is a positive constant if α = 1. The result follows. �
Remark 6.8. Corollary 6.7 shows that the asymptotic behavior of solutions of
equation (1.1) is exactly the same as that of solutions of the linear equation (3.1)
when equation (1.1) features higher-order nonlinearity.

When α = 1, the L2-norm of the solution u of equation (1.1) and the solution

w of equation (3.1) both decay like t−
3
4 , but it turns out their asymptotic states

limt→+∞ t
3
4 | · |2 are different. This was also noticed for the GKdV-Burgers equation

(1.7) and GRLW-Burgers equation (1.8) in [13]. Next, we compute the limits of
u − w and u in L2-norm when α = 1. The results imply that further decay of
solutions of equation (1.1) depends on the nonlinear term.

Corollary 6.9. Let f satisfy the conditions in Corollary 6.6 and suppose α = 1.
Then the difference between the solution u of equation (1.1) with P ′ = cup for p ≥ 2
and the solution w of equation (3.1), both with initial value f, has the property

lim
t→+∞

t
3
2 |u(·, t)− w(·, t)|22 =

c2

4ν(8νπ)
1
2 (p+ 1)2

(∫ ∞

0

∫ ∞

−∞
up+1dxdt

)2
.

If f̂(y) = iyĝ(y) for some g ∈ L1(R), then

lim
t→+∞

t
3
2 |u(·, t)|22 =

1

4ν(8νπ)
1
2

(∫ ∞

−∞
g(x)dx−

∫ ∞

0

∫ ∞

−∞

cup+1(x, t)

p+ 1
dxdt

)2
.
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In particular, if xf(x) ∈ L1(R) and d
dxg(x) = f(x) with xg(x) → 0 as x → ±∞,

one has

lim
t→+∞

t
3
2 |u(·, t)|22 =

1

4ν(8νπ)
1
2

(∫ ∞

−∞
xf(x)dx+

∫ ∞

0

∫ ∞

−∞

cup+1(x, t)

p+ 1
dxdt

)2
.

Proof. First, write the equations (1.1) and (3.1a) in a form that is convenient
for the analysis in view. Let u be the solution of equation (1.1) and w be the
solution of equation (3.1) with the same initial data f. If U(x, t) = u(x + t, t) and
W (x, t) = w(x+ t, t), then V = U −W satisfies the initial-value problem

Vt − νVxx −HVxx + cUpUx = 0, (6.49a)

V (x, 0) = 0. (6.49b)

Note that for any j = 0, 1, · · · , the relevant norms

|∂jxU(·, t)|2 = |∂jxu(·, t)|2 and |∂jxW (·, t)|2 = |∂jxw(·, t)|2 (6.50)

are finite. Hence U and u, and W and w have the same L2-norm decay rates. Note
also that

|V (·, t)|2 = |(U −W )(·, t)|2 = |(u− w)(·, t)|2.

Thus, the asymptotic behavior of u − w in L2-norm is exactly the asymptotic be-
havior of V in L2-norm.

Take the Fourier transform of equation (6.49a) with respect to the spatial variable
x and solve the resulting ordinary differential equation to reach the integral equation

Û(y, t)− Ŵ (y, t) = − ci

p+ 1

∫ t

0

y exp
(
(−νy2 + iy|y|)(t− τ)

)
Ûp+1(y, τ)dτ. (6.51)

Since α = 1, Lemma 6.4 asserts that

|u(·, t)|2 ≤ C(1 + t)−
3
4 , and |ux(·, t)|2 ≤ C(1 + t)−

5
4 ,

for t ≥ 0. Hence, one has

|Up+1(·, t)|1 ≤ |u(·, t)|p−1
∞ |u(·, t)|22 ≤ C(1 + t)−

3
2 . (6.52)

In consequence,
∫ +∞
0

∫∞
−∞ up+1(x, τ)dxdτ is a finite number. For ϵ > 0 small and

t ≥ 1, say,∣∣∣ ∫ t

t1−ϵ

e−(νy2−iy|y|)(t−τ)ÛpUx(y, τ)dτ
∣∣∣ ≤ 1√

2π

∫ t

t1−ϵ

|UpUx(·, τ)|1dτ

≤ C

∫ t

t1−ϵ

(1 + τ)−2dτ ≤ C(1 + t1−ϵ)−1 ≤ Ctϵ−1,

(6.53)

where the inequality

|UpUx(·, τ)|1 ≤ |u(·, τ)|p−1
∞ |u(·, τ)|2|ux(·, τ)|2

≤ C(1 + τ)−2
(6.54)
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has been used in the second step. Remark also the elementary relation

| exp
(
(−νy2 + iy|y|)(t− τ)

)∣∣
1
=

C√
t− τ

. (6.55)

With the preceding information in hand, one determines that

lim
t→+∞

t
3
2

∣∣∣ ∫ t

t1−ϵ

e(−νy2+iy|y|)(t−τ)ÛpUx(y, τ)dτ
∣∣∣2
2

≤ lim
t→+∞

Ct
3
2 tϵ−1

∣∣∣ ∫ t

t1−ϵ

e(−νy2+iy|y|)(t−τ)ÛpUx(y, τ)dτ
∣∣∣
1

≤ lim
t→+∞

Ct
1
2+ϵ

∫ t

t1−ϵ

∣∣∣e(−νy2+iy|y|)(t−τ)
∣∣∣
1
|UpUx(·, τ)|1dτ

≤ lim
t→+∞

Ct
1
2+ϵ

∫ t

t1−ϵ

1√
t− τ(1 + τ)2

dτ

≤ lim
t→+∞

Ct
1
2+ϵ

(1 + t1−ϵ)
3
2

∫ t

t1−ϵ

1√
(t− τ)(1 + τ)

dτ

≤ lim
t→+∞

Ct−1+ 5ϵ
2

∫ 1

0

1√
(1− τ)τ

dτ = 0,

(6.56)

if, say, 0 < ϵ < 2
5 , where the estimate (6.53) has been used at the first step,

while (6.54) and (6.55) have been used at the third step. Henceforth, the positive
parameter ϵ is fixed in the range (0, 25 ).

For similar small positive values of ϵ, one may also compute that

lim
t→+∞

t
3
2

∣∣∣ ∫ t1−ϵ

0

exp
(
(−νy2 + iy|y|)(t− τ)

)
ÛpUx(y, τ)dτ

∣∣∣2
2

= lim
t→+∞

t
3
2

∣∣∣ i

p+ 1

∫ t1−ϵ

0

y exp
(
(−νy2 + iy|y|)(t− τ)

)
Ûp+1(y, τ)dτ

∣∣∣2
2

= lim
t→+∞

t
3
2

∫ ∞

−∞

y2

(p+ 1)2

∣∣∣ ∫ t1−ϵ

0

e(−νy2+iy|y|)(t−τ)Ûp+1(y, τ)dτ
∣∣∣2dy

= lim
t→+∞

∫ ∞

−∞

s2e−2νs2

(p+ 1)2

∣∣∣ ∫ t1−ϵ

0

e(νs
2−is|s|) τ

t Ûp+1(
s√
t
, τ)dτ

∣∣∣2ds
=

1

(p+ 1)2

∫ ∞

−∞
s2e−2νs2

∣∣∣ ∫ ∞

0

Ûp+1(0, τ)dτ
∣∣∣2ds

=
1

(p+ 1)2

∫ ∞

−∞
s2e−2νs2ds

( 1√
2π

∫ ∞

0

∫ ∞

−∞
Up+1(x, τ)dxdτ

)2
=

1

2π(p+ 1)2(2ν)
3
2

∫ ∞

0

s
1
2 e−sds

(∫ ∞

0

∫ ∞

−∞
up+1(x, τ)dxdτ

)2
=

1

4ν(8νπ)
1
2 (p+ 1)2

(∫ ∞

0

∫ ∞

−∞
up+1(x, τ)dxdτ

)2
,

(6.57)

because

exp
(
(νs2 − is|s|)τ

t

)
→ 1 (6.58)
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as t → +∞, for any fixed s and τ ∈ [0, t1−ϵ]. Note that the substitution s = y
√
t

has been used at the third step in (6.57) and that∫ ∞

−∞
Up+1(x, t)dx =

∫ ∞

−∞
up+1(x, t)dx.

The use of (6.56) and (6.57) shows that if

θ(y, t, τ) = e−(νy2−iy|y|)(t−τ)ÛpUx(y, τ),

then, by the Cauchy-Schwarz inequality,

lim
t→+∞

t
3
2

∣∣∣ ∫ ∞

−∞
Re

((∫ t1−ϵ

0

θ(y, t, τ)dτ
)(∫ t

t1−ϵ

θ(y, t, τ)dτ
))

dy
∣∣∣

≤ lim
t→+∞

t
3
2

∣∣∣ ∫ t1−ϵ

0

θ(y, t, τ)dτ
∣∣∣
2

∣∣∣ ∫ t

t1−ϵ

θ(y, t, τ)dτ
∣∣∣
2
= 0,

(6.59)

where Re(z) connotes the real part of z.
Apply Parseval’s Theorem to (6.51), and then use (6.56), (6.57) and (6.59) to

obtain

lim
t→+∞

t
3
2 |u(·, t)− w(·, t)|22 = lim

t→+∞
t
3
2 |U(·, t)−W (·, t)|22

= lim
t→+∞

t
3
2 |Û(y, t)− Ŵ (y, t)|22

= lim
t→+∞

t
3
2

∣∣∣ ∫ t

0

exp
(
− (νy2 − iy|y|)(t− τ)

)
ĉUpUx(y, τ)dτ

∣∣∣2
2

= lim
t→+∞

c2t
3
2

∫ ∞

−∞

∣∣∣( ∫ t1−ϵ

0

+

∫ t

t1−ϵ

)
e−(νy2−iy|y|)(t−τ)ÛpUx(y, τ)dτ

∣∣∣2dy
= lim

t→+∞
c2t

3
2

∫ ∞

−∞

∣∣∣ ∫ t1−ϵ

0

e−(νy2−iy|y|)(t−τ)ÛpUx(y, τ)dτ
∣∣∣2dy

+ lim
t→+∞

c2t
3
2

∫ ∞

−∞

∣∣∣ ∫ t

t1−ϵ

e−(νy2−iy|y|)(t−τ)ÛpUx(y, τ)dτ
∣∣∣2dy

+ lim
t→+∞

c2t
3
2

∫ ∞

−∞
2Re

((∫ t1−ϵ

0

θ(y, t, τ)dτ
)(∫ t

t1−ϵ

θ(y, t, τ)dτ
))
dy

= lim
t→+∞

∫ ∞

−∞

c2s2e−2νs2

(p+ 1)2

∣∣∣ ∫ t1−ϵ

0

exp
(
(νs2 − is|s|)τ

t

)
Ûp+1(

s√
t
, τ)dτ

∣∣∣2ds
=

c2

(p+ 1)2

∫ ∞

−∞
s2e−2νs2

∣∣∣ ∫ ∞

0

Ûp+1(0, τ)dτ
∣∣∣2ds

=
c2

4ν(8νπ)
1
2 (p+ 1)2

(∫ ∞

0

∫ ∞

−∞
up+1(x, τ)dxdτ

)2
.

(6.60)

If f̂(y) = iyĝ(y) for some g ∈ L1(R), then by using the representation (6.8) for
the solution u of (1.1) and following the line of argument laid out from (6.53) to
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(6.60), one concludes that

lim
t→+∞

t
3
2 |u(·, t)|22 = lim

t→+∞
t
3
2 |U(·, t)|22 = lim

t→+∞
t
3
2 |Û(·, t)|22

= lim
t→+∞

t
3
2

∣∣∣Ŵ (y, t)−
∫ t

0

ce−(νy2−iy|y|)(t−τ)ÛpUx(y, τ)dτ
∣∣∣2
2

= lim
t→+∞

t
3
2

∣∣∣f̂(y)e−(νy2−iy|y|)t−
(∫ t1−ϵ

0

+

∫ t

t1−ϵ

ce−(νy2−iy|y|)(t−τ)ÛpUx(y, τ)dτ
)∣∣∣2

2

= lim
t→+∞

t
3
2

∣∣∣iyĝ(y)e−(νy2−iy|y|)t−
∫ t1−ϵ

0

iyc e−(νy2−iy|y|)(t−τ)

(1 + p)
Ûp+1(y, τ)dτ

∣∣∣2
2

= lim
t→+∞

∫ ∞

−∞
s2e−2νs2

∣∣∣ĝ( s√
t
)−

∫ t1−ϵ

0

ce(νs
2−is|s|) τ

t Ûp+1( s√
t
, τ)

(1 + p)
dτ
∣∣∣2ds

=

∫ ∞

−∞
s2e−2νs2ds

∣∣∣ĝ(0)− ∫ ∞

0

cÛp+1(0, τ)

(p+ 1)
dτ
∣∣∣2

=
1

4ν(8νπ)
1
2

(∫ ∞

−∞
g(x)dx−

∫ ∞

0

∫ ∞

−∞

cup+1(x, t)

p+ 1
dxdt

)2
,

(6.61)

where again we have used that e(νs
2−is|s|) τ

t → 1 as t → +∞, for any fixed s and
τ ∈ [0, t1−ϵ].

Furthermore, if xf(x) ∈ L1(R) and d
dxg(x) = f(x) with xg(x) → 0 as x → ±∞,

then ∫ ∞

−∞
g(x)dx = −

∫ ∞

−∞
xf(x)dx, (6.62)

and so (6.61) becomes

lim
t→+∞

t
3
2 |u(·, t)|22 =

1

4ν(8νπ)
1
2

(∫ ∞

−∞
xf(x)dx+

∫ ∞

0

∫ ∞

−∞

cup+1(x, t)

p+ 1
dxdt

)2
.

The corollary is proved. �

Remark 6.10. If the initial data f satisfies |f̂(y)| ≤ C|y|α for α > 1, then the
decay of solutions of (1.1) depends only on

∫∞
0

∫∞
−∞ up+1dxdt. This is because, by

Lemma 6.1, the solution w of (3.1) decays in L2-norm faster than t−
3
4 . The same

observation applies to the decay of solutions to the GKdV-Burgers equation (1.7)
and GRLW-Burgers equation (1.8) as well (see [13]).

Remark 6.11. The results of Corollary 6.9 subsist upon the sharp decay results
already obtained for solutions corresponding to generic initial data. Similar results
are available for solutions of the equations (1.4) and (1.5) for the same reason of
having in hand suitable decay results for generic initial data, and these hold even
for nonlinearities only quadratic near zero (see [3]).The results of Corollary 6.9 are
expected to hold even for quadratic nonlinearities, but this waits upon extending
the results of Section 5 to this level.

Conclusion. The generalized Benjamin-Ono-Burgers equation (1.1) has been the
object of the present investigation. Attention has been given to the pure initial-
value problem in which the solution is specified for all x ∈ R at some given instant
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t = 0, say, of time and inquiry is made into its development for t > 0 under the
Benjamin-Ono-Burgers evolution. While a local well-posedness result is set forth,
our focus has been solutions’ behavior for large time.

A global well-posedness theory is put forward corresponding to growth restric-
tions on the generalized nonlinearity P. These are less stringent than those needed
in the absence of dissipation. Moreover, taking advantage of the dispersion, the
growth restriction is one-sided (see (2.5)-(2.6)).

In situations where global existence obtains, the long-time decay rates of solutions
corresponding to initial data of finite energy are studied. Using the ideas already
appearing in the earlier works [12] and [13] together with some new inequalities,
decay estimates are obtained for nonlinearities P (u) that are at least cubic near
u = 0. Rates are obtained that are sharp for generic data. Moreover, in case the
initial data has some extra structure (its Fourier transform vanishes at the origin
in some particular way), enhanced, but still sharp, decay rates are derived.

A natural successor to the present work is similar theoretical considerations for
the more general class of model equations of the form

ut + ux + P (u)x +Mu− Lux = 0. (∗∗)

Here, both M and L are Fourier-multiplier operators defined in the term of their
symbols α and β by

L̂u(k) = α(k)û(k) and M̂u(k) = β(k)û(k)

for k ∈ R. Typically, α and β are both real-valued, with β > 0, though in some
situations, u might be complex-valued. The symbols α and β represent the effects
of frequency dispersion and dissipation, respectively. Such models arise in a variety
of contexts as models for wave propagation (see e.g. [2, 5, 8, 14, 35]).

Questions similar to those addressed here arise for the regularized version

ut + ux + P (u)x +Mu+ Lut = 0

of equation (**) (see [29, 34]).
There are also questions relating directly to the present line of development

worthy of study. For example, can the growth conditions on the nonlinearity P be
weakened whilst still retaining global well-posedness? And, what can one say about
the long-time asymptotics of solutions corresponding to large initial data when P
vanishes only to second order at the origin (e.g. quadratic nonlinearities)?
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