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Abstract. Studied here are traveling-front solutions φε(x−ct) of a con-
servation law with hyper-dissipation appended. The evolution equation
in question is a simple conservation law with a fourth-order dissipative
term, namely

ut + 2uux + εuxxxx = 0,

where ε > 0. The traveling front is restricted by the asymptotic con-
ditions φε(x) → L± as x → ±∞, where L+ < L−, and the symmetry
condition φε(x)+φε(−x) = L−+L+ for all x ∈ R. Such fronts are shown
to exist and proven to be unique. Unlike the corresponding fronts for the
Burgers’ equation, they do not decay monotonically to their asymptotic
states, but oscillate infinitely often around them. Despite this oscilla-
tion, it is also shown that φε(x) → L+ as ε → 0, for all x > 0, and
φε(x)→ L− as ε→ 0, for all x < 0.

1. Introduction

Investigated here is the existence and some detailed properties of traveling
fronts of the perturbed conservation law

ut + 2uux + εuxxxx = 0, (1.1)

where ε > 0 is a fixed constant. In addition, attention is also given to the
convergence of these fronts as the perturbation parameter ε > 0 tends to

Accepted for publication: May 2011.
AMS Subject Classifications: 34C37, 34D05, 35A24, 35B05, 35B30, 35C07, 35F21,

35K25, 35K55.

917



918 Jerry L. Bona and Fred B. Weissler

zero. By a traveling front, we mean a solution of (1.1) of the form

u(t, x) = φ(x− ct) (1.2),

satisfying the asymptotic conditions

lim
x→±∞

φ(x) = L±, (1.3)

where it is expected that L+ < L−.
Such a program is elementary in case the dissipation is of the form −εuxx,

so that the problem is in fact Burgers’ equation. In this case, there is an
exact formula for a traveling front with the given asymptotic conditions,
namely

uε(t, x) = φε(z) = 1
2γtanh

(
− γ

ε
z
)

+ 1
2c

where z = x−ct, c = L−+L+, and γ = L−−L+. Moreover, the uniqueness of
this front, modulo the translation group in the underlying spatial domain, is
also easily established. Note that in this case, the front is strictly monotone
decreasing over the entire real axis. For Burgers’ equation, these traveling
fronts play a distinguished role in the long-time asymptotics of solutions
whose large-space asymptotes are as in (1.3). A similar result is expected
for (1.1), which is one reason for interest in its traveling-wave solutions.

While the term −εuxx is often appended when dissipation needs to be
inserted in time-dependent models arising in practice (see [1], [2] and [5]
for recent examples), it is not always the correct asymptotic form for real
dissipation in underlying physical systems (see, e.g., [3], [4] and the refer-
ences contained therein, where other types of dissipation arise). One of the
simplest generalization of the classical Burgers’ equation is the model (1.1)
above, as the dissipation is still localized in the spatial variable x. This evo-
lution equation has been considered in some detail by Tadmor [9], who was
interested in the non-dissipative limit of the time-dependent problem. As we
will see, while some of the overall aspects of the traveling fronts of (1.1) are
the same as for the Burgers’ front shown above (e.g., the dependence of the
speed of propagation c on the asymptotic conditions (1.3)), other aspects
differ markedly. And, in any case, so far as we are aware, there is no exact
formula for these traveling fronts.

Substituting a function u of the form (1.2) into (1.1) leads to

−cφ′ + 2φφ′ + εφ′′′′ = 0,

or, what is the same,
(−cφ+ φ2 + εφ′′′)′ = 0.
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Upon integrating once, there appears

−cφ+ φ2 + εφ′′′ = k (1.4)

for some constant k ∈ R.
Applying the asymptotic conditions (1.3) to (1.4) formally yields the equa-

tion
L2 − cL− k = 0,

which both L+ and L− should satisfy. In consequence, it is expected that

L± =
c

2
∓ b (1.5)

where

b =

√
k +

c2

4
. (1.6)

Thus, just as for Burgers’ equation, the speed c of the traveling front is
necessarily related to the spatial asymptotic limits of the front by the relation

c = L+ + L−, (1.7)

and the constant k in (1.4) must be

k = −L+L−. (1.8)

Note that, as long as L+ 6= L−, then if c and k are given by (1.7) and
(1.8), the discriminant k + 1

4c
2 above is positive, and so (1.6) provides a

well-defined, positive real number.
Stated now are the principal results of our study. The proof of these

theorems is the focus of the remainder of the paper.

Theorem 1.1. Fix ε > 0. Let L+ < L− and let c be given by (1.7). There is
a unique traveling-front solution uε(t, x) = φε(x− ct) of equation (1.1) such
that φε : R→ R satisfies
(i) limx→±∞ φε(x) = L± and
(ii) φε(x) + φε(−x) = c for all x ∈ R.

The traveling front φε has the additional property that φε(x) < φε(−x) for
all x > 0. Furthermore, it oscillates infinitely often around L± as x→ ±∞
and satisfies the decay estimates

|φε(x)− L+| ≤ Cb exp
(−b 1

3x

(4ε)
1
3

)
,

|φ′ε(x)| ≤ Cb
(b
ε

) 1
3 exp

(−b 1
3x

(4ε)
1
3

)
,
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|φ′′ε (x)| ≤ Cb
(b
ε

) 2
3 exp

(−b 1
3x

(4ε)
1
3

)
,

for all x ≥ x0, where x0 > 0 is any fixed positive value, b is given by (1.6)
and (1.8), and the constants denoted by C are independent of the parameters,
ε, L±, and c. A similar estimate holds for negative values x ≤ −x0, with
L+ replaced by L− of course.

Theorem 1.2. Let L+ < L− and let c be given as in (1.7). Fix an ε > 0
and let

uε(t, x) = φε(x− ct)
be the traveling-front solution of (1.1) with the properties described in The-
orem 1.1. Then, for any x0 > 0,

lim
ε→0

φε(x) = L+,

uniformly for x ≥ x0 > 0, and

lim
ε→0

φε(x) = L−

uniformly for x ≤ −x0 < 0.

The results in Theorem 1.2 are consistent with those obtained by Tadmor
[9] for the limit ε→ 0 of the time-dependent problem (1.1).

Thanks to the scaling properties of equation (1.1), which are inherited by
equation (1.4), the proof of Theorem 1.1 can be reduced to the case ε = 1,
c = 0 and k = 1. Indeed, fix ε > 0, let L+ < L−, and let c and k be given

by (1.7) and (1.8). Put b =
√
k + c2

4 . It follows that a function v : R → R
is a solution of

v′′′ = −v2 + 1 (1.9)

if and only if the function φε : R→ R given by

φε(x) = bv
((b

ε

) 1
3
x
)

+
c

2
(1.10)

is a solution of equation (1.4). Moreover,

lim
x→±∞

φε(x) = L± if and only if lim
x→±∞

v(x) = ∓1.

Theorems 1.1 and 1.2 are therefore immediate consequences of formula
(1.10) and the following result.
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Theorem 1.3. There exists a unique, regular, odd solution v : R→ R of the
ordinary differential equation (1.9) such that v(x) → ∓1 as x → ±∞. This
solution has the additional property that v(x) < 0 for all x > 0. Furthermore,
the solution oscillates infinitely often around −1 as x→∞ and satisfies the
inequalities

|v(x) + 1| ≤ Cexp
(
− x

2
2
3

)
,

|v′(x)| ≤ Cexp
(
− x

2
2
3

)
, |v′′(x)| ≤ Cexp

(
− x

2
2
3

)
,

uniformly for x > x0, where x0 > 0 is fixed and the various constants denoted
C depend only upon x0.

Of course, it would be interesting to prove that any solution v of (1.9) for
which v(x)→ ∓1 must in fact be odd (up to a spatial translation).

Equation (1.9) has been studied previously. Kopell and Howard [6] proved
the existence part of Theorem 1.3, as well as “local” uniqueness by showing
that the stable manifold of the stationary solution v ≡ −1 transversally
intersects the manifold of solutions given by the initial conditions v(0) =
v′′(0) = 0. Bounded solutions to (1.9) can also be proved to exist using the
Conley index. See Smoller’s book [8] for an exposition of Conley’s treatment
of (1.9). This equation is also treated in the upcoming book by Hastings
and McLeod [7], and we refer the reader to this work for more historical
information. Thanks go to Stuart Hastings for providing these references.

Our proof uses an elementary shooting argument to show the existence
part of Theorem 1.3. The exponential, oscillatory decay to the asymptotic
boundary values follows from an auxiliary, dynamical systems argument.
Uniqueness depends on some delicate calculations, not unlike some of those
found in [6], but we obtain more than “local” uniqueness. We thank Bill
Troy for sharing some numerical simulations which suggested the uniqueness
proof.

2. Proof of Theorem 1.3

Theorem 1.3 will be established via a shooting argument. To this end,
consider the initial-value problem

v′′′ = −v2 + 1, (2.1)

v(0) = v′′(0) = 0, (2.2)

v′(0) = α ∈ R. (2.3)
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Because v(0) = 0, (2.1) implies that v′′′(0) = 1. Also, if v is a solution
of (2.1) with the above initial conditions, so is w, where w(x) = −v(−x).
Since the solution of (2.1) with specified initial conditions v(0), v′(0), and
v′′(0) is unique, it follows that v = w, which is to say that v is an odd
function. The parameter α ∈ R plays the role of the “shooting parameter”
in the proof of existence of a solution to (2.1) with the desired properties.
Since any solution of the initial-value problem (2.1)–(2.3) is odd, it suffices
to consider the behavior of the solution for x > 0. In developing an argument
for existence of a solution, three auxiliary functions will prove to be useful,
viz.

E(x) = v′(x)v′′(x)− v(x) + 1
3v(x)3,

F (x) =
(
v(x)2 − 1

)
v′(x) + 1

2v
′′(x)2 = −v′(x)v′′′(x) + 1

2v
′′(x)2,

and
G(x) = 3

2E(x)− v′(x)v′′(x).
Note that

E′(x) = v′′(x)2 ≥ 0, F ′(x) = 2v(x)v′(x)2, and G′(x) = F (x).

Of these three auxiliary functions, E(x) plays the major role in our develop-
ment, so the reader should especially take note of it. Observe that E(x) is in
fact an increasing function, not just nondecreasing. Indeed, if E′(x) = v′′(x)2

were to vanish on any interval, it would follow that v′′′(x) vanishes on that
same interval, and so by (2.1), v would be constant on that interval. By
uniqueness of the initial-value problem associated to (2.1) at any point, it
would follow that v is either identically equal to 1 or to −1 for all x ∈ R,
which is excluded by (2.2). This is formalized in the following proposition.

Proposition 2.1. Let v be a non-constant solution of (2.1). Then the func-
tion E, given by

E(x) = v′(x)v′′(x)− v(x) +
1
3
v(x)3,

is strictly increasing.

The two sets A = {α ∈ R : v(x0) ≥ 0 for some x0 > 0} and B = {α ∈ R :
for all x > 0, v(x) < 0, and F (x0) < 0 for some x0 > 0} are also central to
the shooting argument. Clearly, they are disjoint.

The proof of Theorem 1.3 is made in several stages. The strategy is
to show that A and B are both non-empty open subsets of R. It follows
immediately from this that there exists α /∈ A ∪B. In fact, it will transpire
that there is exactly one such value of α. One then needs to establish that
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if α /∈ A ∪B, the resulting solution of (2.1) has the desired properties. The
uniqueness part of Theorem 1.3 is proven by showing that if α ∈ A or if
α ∈ B, then the associated solution v of (2.1)–(2.3) cannot converge to −1
as x→∞.

The argument in favor of Theorem 1.3 proceeds as follows. Existence
and uniqueness of α 6∈ A ∪ B is the object of Corollary 2.12 below. The
fact that if α ∈ B, then v(x) cannot converge to −1 as x→∞ is proved in
Proposition 2.4. The asymptotic behavior of v(x) in case α 6∈ A∪B is proved
in Propositions 2.13–2.16. Finally, the somewhat technical proposition that
if α ∈ A, then v(x) can not converge to −1 as x→∞ is proved in Section 3.

Proposition 2.2. There exists α0 < 0 such that (α0,∞) ⊂ A.

Proof. If α > 0, then obviously α ∈ A. Consider α = 0 and let v0 be the
solution of (2.1) with

v0(0) = v′0(0) = v′′0(0) = 0.

It follows that v′′′0 (x) > 0 in a neighborhood of 0, and hence that v′0 is strictly
convex in a neighborhood of 0. Thus v′0(0) = 0 is a strict local minimum
for v′0. This means that v′0(x) > 0, and thus v0(x) > 0 for x > 0 near 0. In
particular, 0 ∈ A.

Fix x1 > 0 such that v0(x1) > 0. By continuous dependence, it follows
that if α < 0 is sufficiently close to 0, then the resulting solution vα of the
initial-value problem (2.1)–(2.3) is positive at x1. The proposition is thereby
established.

Proposition 2.3. The set A is open.

Proof. Let α ∈ A, α < 0, and let v be the resulting solution of the initial-
value problem (2.1)–(2.3). Let x0 > 0 be the smallest positive value such that
v(x0) = 0. By continuous dependence on initial data, it is enough to prove
that v′(x0) > 0. Since necessarily v′(x0) ≥ 0, it suffices to prove v′(x0) 6= 0.
To see this is the case, note first that E(0) = 0 since v(0) = v′′(0) = 0. By
Proposition 2.1, it is known that E(x0) = v′(x0)v′′(x0) > 0, so of course,
v′(x0) 6= 0.

Proposition 2.4. Let α < 0 and let v be the resulting solution of the initial-
value problem (2.1)–(2.3). The following are equivalent.

(i) For all x > 0, v(x) < 0 and there exists an x0 > 0 with F (x0) < 0,
i.e., α ∈ B.

(ii) For all x > 0, v(x) < 0 and there exists an x0 > 0 such that F (x) < 0,
for all x ≥ x0.
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(iii) There exists an x0 > 0 such that v(x) < 0 for all x ∈ (0, x0],
v(x0) < −1, and F (x0) < 0.

Furthermore, when any of the above conditions hold, it cannot happen that
v(x) converges to −1 as x→∞.

Proof. That (i) and (ii) are equivalent is an immediate consequence of the
fact that F ′(x) = 2v(x)v′(x)2.

To prove that (ii) implies (iii), it suffices to show that if x0 is as in the
statement (ii), then there exists x1 ≥ x0 such that v(x1) < −1. Suppose to
the contrary that v(x) ≥ −1 for all x ≥ x0. Since F (x) < 0 for all x ≥ x0

it follows that (v(x)2 − 1)v′(x) < 0 for all x ≥ x0. Since −1 ≤ v(x) < 0 for
all x ≥ x0, it follows that v(x)2 − 1 < 0 and so v′(x) > 0 for all x ≥ x0.
Hence v is an increasing function for x ≥ x0, which implies that v(x) → L
as x → ∞, where necessarily −1 < L ≤ 0, i.e., L2 6= 1. This implies, by
(2.1), that v′′′(x) has a nonzero limit as x→∞, which is clearly impossible
(since then v would then behave asymptotically as a cubic polynomial).

Finally, attention is turned to the assertion that (iii) implies (i) and to
the last statement of the proposition. Let x0 be as in statement (iii). Then
it must be the case that v′(x) < 0 for all x ≥ x0. To see this, first observe
that since v(x0) < −1 and F (x0) < 0, it follows that v′(x0) < 0. Suppose
it is false that v′(x) < 0 for all x ≥ x0, and let x1 > x0 be the first point
where v′(x1) = 0. Then F ′(x) ≤ 0 on [x0, x1] (since v(x) < 0 on [x0, x1]),
and so F (x1) ≤ F (x0) < 0. On the other hand, v′(x1) = 0 implies that
F (x1) ≥ 0. This establishes the claim. The advertised conclusions follow
since v(x) < v(x0) < −1 for all x > x0.

Corollary 2.5. The set B is open in (−∞, 0).

Proof. Let α0 < 0 and let v0 be the resulting solution of the initial-value
problem (2.1)–(2.3) with α = α0 . Suppose that v0 satisfies statement (iii)
in the previous proposition. By continuous dependence of both v and v′ on
the initial data, it is clear that the statement (iii) still holds for the solution
v of (2.1)–(2.3) with α close enough to α0.

Proposition 2.6. Let α ∈ R and let v be the resulting solution of the initial-
value problem (2.1)–(2.3). Suppose there exists an x0 > 0 such that v(x0) =
−
√

3. Then v(x) < −
√

3 for all x > x0. In particular, v(x) cannot converge
to −1 as x→∞.

Proof. Let x0 > 0 be the smallest positive value where v(x0) = −
√

3. Then,
naturally, v′(x0) ≤ 0 and v(x0)2 = 3. Since E is increasing (Proposition 2.1),



Traveling fronts of a conservation law with hyper-dissipation 925

it follows that
E(x0) = v′(x0)v′′(x0) > E(0) = 0.

Since v′(x0) ≤ 0, the latter inequality implies that v′(x0) < 0, v′′(x0) < 0.
We claim that v′(x) < 0 and v′′(x) < 0 for all x > x0. To prove this, suppose
the contrary, and let x1 > x0 be the first point where either v′(x1) = 0 or
v′′(x1) = 0. Since v′(x) < 0 on (x0, x1), it follows that v(x1) < v(x0) = −

√
3,

so that v(x1)2 > 3. As a consequence, the inequality

E(x1) = v′(x1)v′′(x1)− v(x1) + 1
3v(x1)3 = 0 + v(x1)

[
− 1 + 1

3v(x1)2
]
< 0

must hold. On the other hand, this is impossible since E(0) = 0 and E is
increasing. The claim follows and thereby the proposition.

Proposition 2.7. Let α < 0 and let v be the resulting solution of the initial-
value problem (2.1)–(2.3). Suppose there exists x0 > 0 such that v(x) < 0 for
all x ∈ (0, x0] and v(x0) = −

√
3. Then, the parameter α lies in B.

Proof. Repeating the proof of the previous proposition, it transpires that
v(x) < 0 for all x > 0 and that v′(x) < 0 and v′′(x) < 0 for all x > x0.
Furthermore, for all x ≥ x0,

F ′′(x) = 2v′(x)3 + 4v(x)v′(x)v′′(x) < 0.

Since also F ′(x) = 2v(x)v′(x)2 < 0 for all x > 0, it follows that F is decreas-
ing and (strictly) concave for x > x0. Hence, it must ultimately become
negative, which proves that α ∈ B.

Corollary 2.8. If α /∈ A∪B and if v is the resulting solution of the initial-
value problem (2.1)–(2.3), then −

√
3 < v(x) < 0 for all x > 0.

Proposition 2.9. Let α < 0. Suppose there is an x1 > 0 such that

α = −x
2
1

3
−
√

3
x1
.

Then α ∈ B. In particular, B is nonempty.

Proof. Let α < 0 and let v be the resulting solution of the initial-value
problem (2.1)–(2.3). Let x0 > 0 be such that v(x)2 ≤ 3 on [0, x0]. It follows
that v(x)2−1 ≤ 2, and in fact that |v(x)2−1| ≤ 2 on [0, x0]. In other words,
|v′′′(x)| ≤ 2 on [0, x0]. Integrating repeatedly, using the initial conditions
(2.2) and (2.3), there obtains the inequalities

(a) |v′′(x)| ≤ 2x,
(b) |v′(x)− α| ≤ x2,
(c) α− x2 ≤ v′(x) ≤ α+ x2,
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(d) αx− x3/3 ≤ v(x) ≤ αx+ x3/3,

all of which are valid on the interval [0, x0]. In particular, if α+ 1
3x

2
0 < 0, it

follows that v(x) < 0 on the interval (0, x0].
Let x1 be as given. If it happens that v(x)2 ≤ 3 on [0, x1], then the above

analysis shows that v(x) < 0 on (0, x1] and that

v(x1) ≤ αx1 + 1
3x

3
1 = −

√
3.

Thus, in fact, v(x1) = −
√

3 and so α ∈ B. On the other hand, if v(x)2 is
not bounded by 3 on [0, x1], let x0 < x1 be the first value where v(x0)2 = 3.
Since α + 1

3x
2
0 < α + 1

3x
2
1 < 0, it follows from the above that v(x) < 0 on

(0, x0], which again implies that α ∈ B.
The proposition is thus established.

Corollary 2.10. The set {α < 0 : α /∈ A ∪B} is not empty.

Proposition 2.11. The set {α ∈ R : α /∈ A ∪ B} contains at most (and
therefore precisely) one element.

Proof. Suppose α1, α2 /∈ A ∪ B. Then, of course both are negative and
we suppose that α2 > α1, say. Let v1 and v2 be the solutions of the initial-
value problem (2.1)–(2.3) with α = α1 and α = α2, respectively. Setting
w = v2 − v1, it transpires that

w′′′ = −v2
2 + v2

1 = −(v2 + v1)w,

and w(0) = 0 with w′(0) = α2 − α1 > 0. It follows that w′(x) > 0 and
w(x) > 0 for small x > 0. Since −(v2(x) + v1(x)) > 0 for x > 0, it follows
that w′′′(x) > 0 for small x > 0, and since w′′(0) = 0, it also follows that
w′′(x) > 0 for small x > 0.

We claim that w(x) > 0 for all x > 0. Suppose not, and let x0 be the
first positive zero of w. Then, it must be the case that w′′′(x) > 0 on (0, x0),
whence w′′(x) > 0 and so w′(x) > 0 on (0, x0). This of course makes it
impossible to have w(x0) = 0, and proves the claim.

It is thus seen that w(x) > 0, w′(x) > 0, w′′(x) > 0, and w′′′(x) > 0
for all x > 0. This certainly implies that w(x) → ∞ as x → ∞, which is
impossible since w = v2 − v1 and both v1 and v2 are bounded functions (by
Corollary 2.8).

This proposition is proved.

Corollary 2.12. There exists α0 < 0 such that A = (α0,∞) and B =
(−∞, α0).
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Remark. Numerical simulations made by Bill Troy indicate that α0 ≈
−1.06076533.

The properties of the solution of the initial-value problem (2.1)–(2.3) with
α = α0 /∈ A ∪B are now examined.

Proposition 2.13. Let α = α0 < 0 be the unique real number not lying in
A ∪B. If v is the resulting solution of the initial-value problem (2.1)–(2.3),
then

lim
x→∞

v(x) = −1, lim
x→∞

v′(x) = lim
x→∞

v′′(x) = lim
x→∞

v′′′(x) = 0.

Proof. Since α /∈ A ∪ B, we know that −
√

3 < v(x) < 0 and F (x) ≥ 0 for
all x > 0. Consequently, it must be the case that G′(x) = F (x) ≥ 0 and so
G(x) has a limit (positive or infinite) as x → ∞. Also E′(x) ≥ 0, and so
E(x) has a limit (positive or infinite) as x → ∞. In fact, both these limits
have to be finite. Suppose, for example, that E(x) → ∞ as x → ∞. Since
v(x) is bounded, it follows that the only remaining term in the definition
of E(x), i.e., v′(x)v′′(x), must go to ∞ as x → ∞. But this implies that
d
dxv
′(x)2 → ∞ as x → ∞, which contradicts the fact that v is bounded.

Thus E(x) has a finite limit as x→∞, and likewise G(x).
Because F andG both have finite limits as x→∞, the quantity v′(x)v′′(x)

= 3
2E(x)−G(x) also has a finite limit as x→∞. In other words, d

dxv
′(x)2

has a limit as x → ∞. This limit has to be zero since v is bounded. It
next follows from the definition of E that −v(x) + 1

3v(x)3 has a limit as
x → ∞. This clearly implies that v(x) has a limit as x → ∞ (contained in
the interval [−

√
3, 0]). Equation (2.1) now implies that v′′′(x) has a (finite)

limit as x→∞, which must be zero since v is bounded. That v(x)→ −1 is
again a consequence of (2.1).

The final statement of Proposition 2.13 follows from the next result.

Proposition 2.14. Let v : [0,∞) → R be any solution of (2.1) such that
v(x)→ −1 as x→∞. It follows that E(x)→ 2

3 as x→∞. Furthermore,

lim
x→∞

v′(x) = lim
x→∞

v′′(x) = lim
x→∞

v′′′(x) = 0.

Proof. Since E(x) is nondecreasing, it must have a limit, finite or infinite,
as x→∞. Since v(x)→ −1 as x→∞, it follows from the definition of E(x)
that v′(x)v′′(x) has a limit, finite or infinite, as x→∞. In other words, the
derivative d

dxv
′(x)2 has a limit as x→∞. This limit must be zero since v is

bounded. That E(x)→ 2
3 as x→∞ now follows immediately.
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Since E(x) has a finite limit as x → ∞ and E′(x) ≥ 0, it follows that
E′ ∈ L1(0,∞). In consequence, it must be the case that v′′ ∈ L2(0,∞).
Furthermore, since F ′(x) = 2v(x)v′(x)2 ≤ 0 for x > 0 sufficiently large, it
follows that F (x) must have a limit (finite or negative infinity) as x → ∞.
In fact, this limit is also finite. Indeed, if the limit is negative infinity, then
(v(x)2 − 1)v′(x) → −∞ as x → ∞. Since v(x)2 − 1 → 0 it must be that
|v′(x)| → ∞, which contradicts v being bounded. Hence, F ′ ∈ L1(0,∞),
and so v′ ∈ L2(0,∞). Putting this together, since v′ and v′′ are both in
L2(0,∞), the product v′v′′ is in L1(0,∞), which implies that v′(x)2 has a
limit as x→∞. Since v is bounded, this limit must be 0. Finally, since F ,
v and v′ all have limits as x→∞, so must v′′(x)2, and this limit must again
be 0.

Proposition 2.15. If α = α0 does not lie in A∪B and if v is the resulting
solution of the initial-value problem (2.1)–(2.3), then there exists an infinite
sequence {xn}∞n=1 with xn →∞ such that v(xn) = −1 for all n = 1, 2, 3, · · · .

Proof. Suppose not. Then, either v(x) > −1 for all sufficiently large x > 0
or v(x) < −1 for all sufficiently large x > 0.

Consider first the possibility that v(x) > −1 for all sufficiently large x > 0.
Since v(x) < 0, for all x > 0, it follows from (2.1) that v′′′(x) > 0 for all
sufficiently large x > 0, and so v′′ is increasing near infinity. Since v′′(x)→ 0
as x→∞, it follows that v′′(x) < 0 for sufficiently large x. Thus, v is strictly
concave for large x. However, since v(x) > −1 for large x and v(x) → −1,
there must be points x1, arbitrarily large, where v′(x1) < 0. By concavity,
v′(x) ≤ v′(x1) < 0 for x > x1, which contradicts the fact that v(x)→ −1.

Similarly, if v(x) < −1 for all sufficiently large x > 0, then v′′′(x) < 0
for sufficiently large x > 0, which means that v′′(x) is decreasing for large x
and tends to 0. Thus, v′′(x) > 0 for large x, which means that v is strictly
convex. This is impossible since v(x) < −1 for large x and v(x)→ −1.

Proposition 2.16. If α = α0 does not lie in A∪B and if v is the resulting
solution of the initial-value problem (2.1)–(2.3), then for any x0 > 0, there
exists C = C(x0) such that

|v(x) + 1| ≤ Cexp
(
− x

2
2
3

)
, |v′(x)| ≤ Cexp

(
− x

2
2
3

)
,

|v′′(x)| ≤ Cexp
(
− x

2
2
3

)
,

for all x ≥ x0.
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Proof. If we set w = v′ and z = v′′, then equation (2.1) is the same as the
system

v′ = w,

w′ = z,

z′ = 1− v2.

This system, when linearized about the stationary point (−1, 0, 0), becomes
the constant coefficient system characterized by the matrix M =

(
0 1 0
0 0 1
2 0 0

)
.

The three eigenvalues of M are 2
1
3 and 2

1
3 (−1

2 ± i
√

3
2 ) = − 1

2
2
3
± i
√

3

2
2
3

. The

result follows since if α = α0 /∈ A∪B, then (v, w, z) is on the stable manifold
of (−1, 0, 0).

3. Completion of the Proof of Theorem 3.1

The goal of this section is to prove that if α ∈ A, then the solution does
not converge to −1. This will complete the proof of uniqueness and with it
the proof of Theorem 1.3.

We already know, by Proposition 2.6, that if the solution v(x) → −1 as
x → ∞, then v(x) > −

√
3 for all x > 0. Proposition 3.2 below shows, in

addition, that in this situation, v(x) < 2 for all x > 0.

Lemma 3.1. Let v : [0,∞) → R be a solution of (2.1) such that v(0) = 0
and E(0) ≥ 0. Let x1 > 0 be such that v(x1) > 0. Then there exists x2 > x1

such that v(x2) < 0.

Proof. Suppose not. Then v(x) > 0 for all x > x1. Let x0 ≥ 0 be such that
v(x0) = 0 and v(x) > 0 for all x with x0 < x < x1. (It may be that x0 = 0.)

Consider x > x0. Observe that if 0 < v(x) <
√

3, then neither v′(x)
nor v′′(x) can equal 0. Indeed, that would imply E(x) < 0 (impossible by
Proposition 2.1). Thus v′(x) > 0 and v′′(x) > 0 as long as 0 < v(x) <

√
3.

This implies that v must attain the value of
√

3, and so we let x3 > x0 be the
first point where v(x3) =

√
3. Clearly, then, v′(x3) > 0. Since E(x3) > 0,

it follows that v′′(x3) > 0. Suppose v′(x) ≥ 0 for all x > x3. It follows
that v is nondecreasing for x > x3, and so has a limit L >

√
3 as x → ∞.

Thus v′′′(x) → −L2 + 1 < 0 as x → ∞, which implies, after integrating
three times, that v(x) ultimately becomes negative. Thus, there must exist
x4 > x3 such that v′(x4) = 0 and v′′(x4) ≤ 0. Since v(x4) >

√
3, it follows

from (2.1) that v′′′(x4) < 0, and so v′′(x) < 0, v′(x) < 0, and v(x) < v(x4)
for x > x4 and close to x4. But now, neither v′(x) nor v′′(x) can equal zero
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as long as x > x4 and 0 ≤ v(x) < v(x4) since at such a point one would have
E(x) < E(x4). This concludes the proof.

Proposition 3.2. Let v : [0,∞)→ R be a solution of (2.1) such that v(0) =
0 and E(0) ≥ 0. Suppose there exists x1 > 0 such that v(x1) ≥ 2. Then
there exists x2 such that E(x2) ≥ 2

3 and so v(x) can not converge to −1 as
x→∞.

Proof. By Lemma 3.1, there exists x2 > 0 such that v(x2) ≥ v(x1) ≥ 2 and
v′(x2) = 0. For example, take x2 such that v(x) assumes its maximum on
the bounded open interval containing x1 where v(x) > 0. Since E(x2) ≥ 2

3
and since E(x) is increasing, the conclusion follows from Proposition 2.14.

Suppose now that α ∈ A and let v be the resulting solution of (2.1) with
initial conditions (2.2) and (2.3). We need to show that v(x) 6→ −1 as
x→∞. This conclusion will be obtained by contradiction.

If v is any solution of (2.1) with initial conditions (2.2) and (2.3) such
that v(x)→ −1 as x→∞, then Propositions 2.6 and 3.2 imply

−
√

3 < v(x) < 2, (3.1)

for all x > 0. Moreover, it follows from (3.1) and (2.1) that, for all x > 0

−3 ≤ v′′′(x) ≤ 1. (3.2)

It turns out to be convenient to replace v(x) by v(x+x0) for an appropriate
value x0 ≥ 0. The choice of x0 is made as follows. If α ≥ 0, then x0 = 0.
If α ∈ A and α < 0 so that v(x) < 0 for small x > 0, then let x0 > 0 be
the smallest positive zero of v. In other words, in this latter case, v(x) < 0
on (0, x0) and v(x0) = 0. It is clear that v′(x0) ≥ 0. Since E(x0) > 0
by Proposition 2.1, it follows that v′(x0)v′′(x0) > 0 and thus that both
v′(x0) > 0 and v′′(x0) > 0.

Thus, to establish that v(x) 6→ −1 as x→∞ if α ∈ A, it suffices to prove
the following result.

Proposition 3.3. There does not exist a solution v : [0,∞) → R of (2.1),
with initial conditions

v(0) = 0, (3.3)

v′(0) = α ≥ 0, (3.4)

v′′(0) = β ≥ 0, (3.5)

which verifies (3.1), and thus (3.2), for all x > 0.
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Note that if v satisfies the hypotheses of Proposition 3.3, then E(0) =
αβ ≥ 0 and v(x) > 0, v′(x) > 0, and v′′(x) > 0 for small x > 0.

Proposition 3.3 is proved by contradiction. Let v be a solution whose
existence is denied by Proposition 3.3. The idea is to show that the estimate
(3.2), along with the equation (2.1), renders (3.1) impossible.

The first step is to integrate (3.2) three times, taking into account (3.3)–
(3.5). This yields

αx+
βx2

2
− x3

2
≤ v(x) ≤ αx+

βx2

2
+
x3

6
, (3.6)

for all x > 0. By assumption, the solution respects the bound v(x) ≤ 2 for
all x > 0, and so it must be that

αx+
βx2

2
− x3

2
≤ 2, (3.7)

for all x > 0. In particular, since for x > 0,

αx− x3

2
≤ αx+

βx2

2
− x3

2
≤ 2,

and
βx2

2
− x3

2
≤ αx+

βx2

2
− x3

2
≤ 2,

there obtains the restrictions

α ≤
( 3

2
1
3

)
, β ≤ 3 (3.8)

on α and β. Admittedly, (3.8) is not the sharp consequence of (3.7), but it
suffices for the present purposes. Thus, in the argument by contradiction,
we may restrict ourselves to α ≥ 0 and β ≥ 0 which satisfy (3.8). In fact, to
further simplify matters, we consider α and β such that

0 ≤ α ≤ 3, 0 ≤ β ≤ 3. (3.9)

The next step is to substitute the right-hand side of estimate (3.6) back
into (2.1), thereby obtaining

v′′′(x) = 1− v(x)2 ≥ 1−
(
αx+

β

2
x2 +

1
6
x3
)2

or, what is the same,

v′′′(x) ≥ 1−
(
α2x2 + αβx3 +

(β2

4
+
α

3
)
x4 +

β

6
x5 +

1
36
x6
)
, (3.10)
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for all x > 0. If the inequality (3.10) is integrated three times, taking into
account (3.3)–(3.5), there obtains the lower bound

v(x) ≥ Q(α, β, x), (3.11)

on v(x), valid for all x > 0, where

Q(α, β, x) = αx+
β

2
x2 +

1
6
x3 −

[α2

60
x5 +

αβ

120
x6 +

1
210

(β2

4
+
α

3

)
x7

+
β

2532(7)
x8 +

1
2534(7)

x9
]
.

To complete the proof by contradiction, it is enough to show that for
all (α, β) in the square [0, 3] × [0, 3], there exists some x > 0 such that
Q(α, β, x) ≥ 2; i.e.,

max
x>0

Q(α, β, x) ≥ 2.

Since the smaller powers of x in Q(α, β, x) have positive coefficients and the
larger powers of x have negative coefficients, this maximum is attained at a
unique value x0 = x0(α, β) > 0, i.e.,

Q(α, β, x0(α, β)) = max
x>0

Q(α, β, x).

Moreover, x0(α, β) is the unique zero, as a function of x > 0, of ∂
∂xQ(α, β, x),

and by the implicit-function theorem, x0(α, β) depends smoothly on α ≥ 0
and β ≥ 0. There are no double roots since successive derivatives with
respect to x of Q(α, β, x) are given by the sum of an increasing (or at least
a non-decreasing) function in x > 0 and a decreasing function of x > 0. It
follows that the the solution to the minimax problem

min
0≤α≤3,0≤β≤3

max
x>0

Q(α, β, x) (3.13)

is realized at some point (α, β, x), where x = x0(α, β). The issue under
consideration is thus reduced to showing that Q(α, β, x) ≥ 2.

To study the minimax problem (3.13), observe that the function Q can
also be expressed as a quadratic polynomial in α and β, with coefficients
depending on x, viz.

Q(α, β, x) = −x
5

60

(
α2 +

αβx

2
+
β2x2

14

)
+ αx

(
1− x6

630

)
+
βx2

2

(
1− x6

2432(7)

)
+
x3

6
− x9

2534(7)
.
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For every x > 0, if Q is viewed as a function of (α, β) ∈ R2, then it is
strictly concave and so admits a unique global maximum. Moreover, it is
straightforward to determine that if Q is considered as a function of all three
variables, then its Hessian matrix, which we denote by HQ, has at least two
negative eigenvalues at every point.

Suppose first that 0 < α < 3 and 0 < β < 3, i.e., that the solution to
(3.13) is realized on the interior of the region defined by (3.9). It follows
that (α, β, x) is a critical point of Q. Indeed, if we set

K(α, β) = Q(α, β, x0(α, β)),

then K(α, β) = Q(α, β, x0(α, β)) is a local minimum (in an open set) for K.
Hence (α, β) is a critical point of K. By the chain rule, since ∂Q/∂x = 0 at
all points (α, β, x0(α, β)), it follows that (α, β, x0(α, β)) is a critical point of
Q. Since K has a local minimum at the critical point (α, β), it follows that
the Hessian matrix of K at (α, β), which we denote HK = HK(α, β), must
be positive semi-definite. On the other hand, we have the relation

HK = MTHQM, (3.14)

where HQ = HQ(α, β, x0(α, β)) and M is a 3-by-2 matrix of rank 2 whose
columns are independent tangent vectors to the surface defined by the graph
of x0(α, β) at the point (α, β, x0(α, β)). This can be seen by comparing the
second-order Taylor expansion of K(α, β) around the point (α, β) with the
second-order Taylor expansion of Q(α, β, x) around the point (α, β, x) with
x replaced by x0(α, β), and with x0(α, β) expressed via its first-order Taylor
expansion around (α, β). Since HQ has at least two negative eigenvalues,
(3.14) implies that HK(α, β) has at least one negative eigenvalue, which
is impossible since it is positive semi-definite. Thus, the solution of the
minimax problem (3.13) must be realized on the boundary of the square
given by (3.9), i.e., with α = 0 or 3 or β = 0 or 3.

We therefore consider Q(α, β, x) where α and β are restricted to the
boundary of the square given by (3.9). A somewhat tedious hand calcu-
lation reveals the following facts.

Consider first Q(3, β, x), and in fact choose x = 1. In this case, observe
that

Q(3, 0, 1) = − 9
60

+ 3
(

1− 1
630

)
+

1
6
− 1

2534(7)
> 2,

and

Q(3, 3, 1) = − 1
60

(
9+

9
2

+
9
14

)
+3
(

1− 1
630

)
+

3
2

(
1− 1

2432(7)

)
+

1
6
− 1

2534(7)
> 2.
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Since Q(3, β, 1) is a concave function of β, it follows that Q(3, β, 1) > 2 for
all β with 0 ≤ β ≤ 3; i.e.,

min
0≤β≤3

max
x>0

Q(3, β, x) ≥ min
0≤β≤3

Q(3, β, 1) > 2.

This yields the desired result for the side of the square with α = 3.
Attention is next turned to the side of the square with β = 3. Observe

that
Q(0, 3, 2) = − 8

15

(18
7

)
+ 6
(

1− 4
63

)
+

8
6
− 16

81(7)
> 2,

and

Q(2, 3, 2) = − 8
15

(88
7

)
+ 4
(

1− 64
630

)
+ 6
(

1− 4
63

)
+

8
6
− 16

81(7)
> 2.

Since Q(α, 3, 2) is a concave function of α, it follows that Q(α, 3, 2) > 2 for
all 0 ≤ α ≤ 2, which is to say,

min
0≤α≤2

max
x>0

Q(α, 3, x) > 2.

Furthermore,

Q(2, 3, 1) = − 1
60

(
7+

9
14

)
+2
(

1− 1
630

)
+

3
2

(
1− 1

2432(7)

)
+

1
6
− 1

2534(7)
> 2.

Since Q(3, 3, 1) > 2 it follows in the same way that

min
2≤α≤3

max
x>0

Q(α, 3, x) > 2.

Thus, the side of the square with β = 3 does not present an obstacle to the
general line of argument being pursued.

Wishing to spare the reader the painful details (which are straightfor-
wardly carried out), we note that the side of the square with α = 0 can be
handled using the fact that Q(0, β, x) is a concave function of β, for any
fixed x > 0, coupled with the observations

Q(0, 0, 3) > 2, Q(0, 1/2, 3) > 2, Q(0, 1/2, 2) > 2, Q(0, 3, 2) > 2,

obtained by direct estimation. Similarly, the side with β = 0 follows via the
inequalities

Q(0, 0, 3) > 2, Q(1/2, 0, 3) > 2, Q(1/2, 0, 2) > 2,

Q(2, 0, 2) > 2, Q(2, 0, 1) > 2, Q(3, 0, 1) > 2.
Putting all this together, the proof that the solution of the minimax prob-
lem (3.13) gives a value bigger than 2 is in hand, thus yielding the desired
contradiction.
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