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Abstract. The water wave equations of ideal free–surface fluid mechanics

are a fundamental model of open ocean movements with a surprisingly subtle
well–posedness theory. In consequence of both theoretical and computational

difficulties with the full water wave equations, various asymptotic approxima-

tions have been proposed, analyzed and used in practical situations. In this
essay, we establish the well–posedness of a model system of water wave equa-

tions which is inspired by recent work of Dias, Dyachenko, and Zakharov (Phys.

Lett. A, 372:2008). The model in question includes dissipative effects and is
weakly nonlinear. The present contribution is a first step in a larger program

centered around the Dias-Dychenko-Zhakharov system.

1. Introduction. The motion of the surface of a large body of water arises in
a wide array of applications. From the interaction of waves with open–ocean oil
rigs, to the formation and movement of underwater sandbars, to the generation
and propagation of tsunamis, models for the “water wave problem” are of great
interest to engineers and scientists alike. From a mathematical perspective, one of
the historically most common and successful models of surface wave propagation
(what is often termed the full water wave equations (2)) has a surprisingly subtle
well–posedness theory (see [16, 17, 10, 1] and the references contained therein for a
description of the current state of affairs concerning this problem).

A natural question arises: Given the centrality and importance of this model,
should we expect that the fundamental task of showing solutions exist requires the
delicate analytical tools evident in the preceding references? Motivated by this
question, we investigate here the possibility of adding “artificial viscosity” terms
to the water wave equations and establishing well-posedness of this system with
viscosity by comparatively simple arguments. In the future, our goal will be to es-
tablish additional estimates which will allow the recovery of solutions of the original,
non-viscous problem by taking a limit as the viscosity vanishes.
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As is not uncommon when embarking on a program such as the one just sug-
gested, it is useful to insert viscosity into the governing equations (2) in a physically
motivated fashion, rather than in some arbitrary fashion. We use as our guide in
this aspect the recent work of Dias, Dyachenko, and Zakharov (DDZ henceforth)
[7] who argued persuasively in favor of the model (7) below. Their system includes
all the correct linear terms, but does not claim to treat nonlinear contributions
adequately. They also recognize the fundamental problem with “viscous potential
flow”; the modeling assumptions inherent in potential flow are incompatible with
the presence of viscosity. However, they found their model useful and we suggest
that theirs is a natural way to add artificial viscosity to the water wave problem
with the goals we have in mind. Before leaving this point, it is worth noting that one
of the authors has used the sequence of ideas set out here to produce numerically
stabilized models for surface wave propagation [8].

The model analyzed here is a weakly nonlinear system which retains accurately
the linear and quadratic terms of the full equations (c.f. the related work of Matsuno
[11] and Choi [3] in the inviscid case). This model is augmented with viscosity in
the DDZ manner. The simplified system with viscosity provides a good example
on which to test the efficacy of our general line of argument. In future work, we
intend to extend this framework to the full DDZ model in three spatial dimensions,
and including finite depth. Our end goal will be to produce an alternate proof of
well–posedness of the water wave equations using the approach of adding artificial
viscosity and then sending the viscosity to zero. The necessary a priori estimates are
beyond the scope of the present contribution, however. To be clear, in the current
work, we establish estimates for the growth of solutions of our model system, and
we use these estimates as the basis of a short-time well-posedness proof. We do
this for any fixed, positive value of the viscosity parameter. The resulting time of
existence for the solutions then depends on the viscosity parameter, and this time
of existence would go to zero if we were to attempt to take the zero viscosity limit
using only the current estimates. Establishing estimates which are uniform in the
viscosity parameter, and which would therefore enable the zero viscosity limit to be
taken, is a subject of the authors’ ongoing work, for both the present system and
related systems.

The paper is organized as follows. In § 2, the governing equations of free–surface,
ideal fluid mechanics and the DDZ model are recalled. Convenient surface variables
are introduced in § 2.1 and various analyticity results for associated non-local op-
erators are set out in § 2.2. A suitable non–dimensionalization is provided in § 2.3
which produces small parameters that provide a formal justification of our weakly
nonlinear model. In § 3 the crucial energy estimates upon which our theory hinges
are discussed. Specific details regarding certain commutator estimates are given in
§ 3.1. These are helpful in § 3.2 where the full set of energy-type inequalities are
established. In § 4 a rigorous existence theory is provided for a mollified system.
The limit as the mollification parameter vanishes is studied in § 5.1. Properties
of the limiting solutions, together with uniqueness and continuous dependence, are
established in § 5.2 and § 5.3.

2. Governing equations. Suppose that an ideal (inviscid, irrotational, incom-
pressible) fluid occupies a semi–infinite domain bounded above by a free air–fluid

interface y = η = η(x, t), x ∈ Rd−1, d = 2, 3. The well–known model for the motion



WATER WAVES WITH VISCOSITY 1115

of the fluid and the interface are the water wave equations [9]

∆ϕ = 0 y < η(x, t) (1)

∂yϕ→ 0 y → −∞ (2)

∂tη = ∂yϕ−∇xη · ∇xϕ y = η(x, t) (3)

∂tϕ = −gη − 1

2
|∇xϕ|2 −

1

2
(∂yϕ)2 y = η(x, t), (4)

where ϕ is the velocity potential (so that the velocity field ~u = (∇xϕ, ∂yϕ)) and g
is the gravity constant. These equations are supplemented with initial conditions

η(x, 0) = η0(x), ϕ(x, y, 0) = ϕ0(x, y), (5)

and appropriate lateral boundary conditions. For simplicity we take the classical
periodic boundary conditions, with period γ :

ϕ(x+ γ, y, t) = ϕ(x, y, t), η(x+ γ, t) = η(x, t). (6)

Our discussion is specialized to two–dimensional waves, but the generalization to
three dimensions in the weakly nonlinear context is straightforward.

As mentioned already, the DDZ model

∆ϕ = 0 y < η(x, t), (7a)

∂yϕ→ 0 y → −∞, (7b)

∂tη = ∂yϕ+ 2ν∆xη −∇xη · ∇xϕ y = η(x, t), (7c)

∂tϕ = −gη − 2ν∂2yϕ−
1

2
|∇xϕ|2 −

1

2
(∂yϕ)2 y = η(x, t), (7d)

where ν is the constant of viscosity, will also be central to our work. This system
was introduced by Dias, Dyachenko and Zakharov [7] to study weak viscous effects
in the water wave equations. Of course, the introduction of viscosity is prohibited
in ideal fluid flow (there is no longer a velocity potential, for example), but DDZ
argue convincingly that their choice of viscous terms gives the correct linear viscous
behavior. We use the DDZ model as a starting point for introducing artificial
viscosity into the water wave equations.

2.1. Surface variables. It is convenient to follow the approach pioneered by Za-
kharov [18] and developed in detail by Craig & Sulem [5]. Note that to solve (7), it
is sufficient to find the pair of functions (η(x, t), ξ(x, t)) where

ξ(x, t) := ϕ(x, η(x, t), t) (8)

is the velocity potential at the free surface. Once η and ξ are known, the velocity
potential in the interior of the fluid domain can be found from an appropriate
integral formula (see, again, [5]).

It is clear from (7) that it will be necessary to have in hand first- and second-
order derivatives of ϕ at the free boundary y = η(x, t) to provide a closed system
of equations for (η, ξ). The following maps will be useful in this endeavor. If v is
the unique solution of the prototypical elliptic problem (c.f. (7a), (7b))

∆v = 0 y < σ(x), (9a)

∂yv → 0 y → −∞, (9b)

v = ξ y = σ(x), (9c)

v(x+ γ, y) = v(x, y), (9d)
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define

X(σ)[ξ] := ∂xv(x, σ), Y (σ)[ξ] := ∂yv(x, σ), Z(σ)[ξ] := ∂2yv(x, σ). (10)

Here, σ and ξ are putative surface deformations and surface velocity potentials,
respectively. In terms of these operators, the first of the two surface equations (7c)
can be written as

∂tη = Y (η)[ξ] + 2ν∂2xη − (∂xη)X(η)[ξ].

Using (8) and (7d), one verifies straightforwardly that

∂tξ = ∂yϕ(∂tη) + ∂tϕ

= Y (η)[ξ]
{
Y (η)[ξ] + 2ν∂2xη − (∂xη)X(η)[ξ]

}
− gη − 2νZ(η)[ξ]− 1

2
(X(η)[ξ])

2 − 1

2
(Y (η)[ξ])

2

= −gη − 2νZ(η)[ξ] +
1

2
(Y (η)[ξ])

2 − 1

2
(X(η)[ξ])

2

+ 2ν(∂2xη)Y (η)[ξ]− (∂xη)X(η)[ξ]Y (η)[ξ].

Thus, the surface formulation of the DDZ equations (7) (the water wave equations
with viscosity) is

∂tη = Y (η)[ξ] + 2ν∂2xη − (∂xη)X(η)[ξ] (11a)

∂tξ = −gη − 2νZ(η)[ξ] +
1

2
(Y (η)[ξ])

2 − 1

2
(X(η)[ξ])

2

+ 2ν(∂2xη)Y (η)[ξ]− (∂xη)X(η)[ξ]Y (η)[ξ], (11b)

supplemented with initial conditions

η(x, 0) = η0(x), ξ(x, 0) = ξ0(x),

and the periodic boundary conditions

η(x+ γ, t) = η(x, t), ξ(x+ γ, t) = ξ(x, t).

2.2. Analytic dependence of the surface integral operators. An important
aspect of the operators X, Y , and Z defined in (10) is that they depend analytically
upon the surface deformation σ. More precisely, if we set σ(x) = εf(x), then the
series

X(εf) =

∞∑
n=0

Xn(f)εn, Y (εf) =

∞∑
n=0

Yn(f)εn, Z(εf) =

∞∑
n=0

Zn(f)εn, (12)

all converge strongly in an appropriate function spaces provided that f is sufficiently
smooth (see [4, 6, 14]). Our aim in this paper is to study a set of equations formally
derived from (11) in the weakly nonlinear regime. The derivation depends upon
having expressions for the operators X0, X1, Y0, Y1, Z0, and Z1.

The method of Operator Expansions [13, 5], to be described presently, is used in
determining these lowest-order operators. Consider the harmonic function

ϕp(x, y) = eipx+|p|y, p ∈ Γ′ = {2nπ/γ : n ∈ Z}

which satisfies (9a), (9b) and (9d). Focusing upon the operator Y (σ)[ξ], it follows
from its definition in (10) that

Y (σ)
[
eipx+|p|σ

]
= |p| eipx+|p|σ.
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Setting σ = εf and substituting in the expansion for Y in (12) and the Taylor series
for the exponential, it transpires that( ∞∑

n=0

Yn(f)εn

)[
eipx

∞∑
n=0

(f(x))n

n!
|p|n εn

]
= |p| eipx

∞∑
n=0

(f(x))n

n!
|p|n εn. (13)

Equating the order zero terms on both sides of (13), we find

Y0(f)[eipx] = |p| eipx

implying, if we use Fourier multiplier notation, that

Y0(f)[eipx] = |D| eipx,

where D := (1/i)∂x. Since any function of interest here can be represented via its
Fourier series, it is concluded that

Y0(f)[ξ(x)] = |D| ξ(x). (14)

At order one in (13), we find

Y1(f)[eipx] + Y0(f)[f |p| eipx] = f |p|2 eipx,

so that

Y1(f)[eipx] + Y0(f)[f |D| eipx] = f |D|2 eipx.
Again, representing a generic ξ in terms of its Fourier series, it is seen that

Y1(f)[ξ(x)] = f |D|2 ξ(x)− Y0(f)[f |D| ξ],

and using (14), it follow that

Y1(f)[ξ(x)] = f |D|2 ξ(x)− |D| [f |D| ξ]. (15)

In a similar manner, the formulas

X0(f)[ξ] = iDξ = ∂xξ (16a)

X1(f)[ξ] = f(iD) |D| ξ − (iD)[f |D| ξ] = f∂x |D| ξ − ∂x[f |D| ξ] = (∂xf)(|D| ξ)
(16b)

Y0(f)[ξ] = |D| ξ (16c)

Y1(f)[ξ] = f |D|2 ξ − |D| [f |D| ξ] (16d)

Z0(f)[ξ] = |D|2 ξ (16e)

Z1(f)[ξ] = f |D|3 ξ − |D|2 [f |D| ξ]. (16f)

for X0, X1, Z0 and Z1 may be determined. Since the zeroth-order operator X0 is
independent of f , it is written simply X0 rather than X0(f). The same goes for Y0
and Z0.

2.3. Non-dimensionalization and the weakly nonlinear model. The equa-
tions (11) can be non-dimensionalized using the classical scalings

x = λx′, y = λy′, t =
λ√
gλ

t′, η = aη′, ξ = a
√
gλ ξ′,

where λ denotes a typical wavelength (which we will set to 2π/γ), and a is a typical
amplitude. Defining the nondimensional quantities

α :=
a

λ
, β :=

ν√
gλ3

,
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equation (11) in the new variables is

∂tη = |D| ξ + 2β∂2xη + α
{
η |D|2 ξ − |D| [η |D| ξ]− (∂xη)∂xξ

}
+O(α2), (17a)

∂tξ = −η − 2β |D|2 ξ + α
{
−2βη |D|3 ξ + 2β |D|2 [η |D| ξ]

+
1

2
(|D| ξ)2 − 1

2
(∂xξ)

2
+ 2β(∂2xη) |D| ξ

}
+O(α2), (17b)

where the primes have been dropped for ease of reading. If we ignore terms of order
α2 and then return to dimensional variables, we come to our weakly nonlinear model
equations, viz.

∂tη = |D| ξ + 2ν∂2xη + η |D|2 ξ − |D| [η |D| ξ]− (∂xη)∂xξ, (18a)

∂tξ = −gη − 2ν |D|2 ξ − 2νη |D|3 ξ + 2ν |D|2 [η |D| ξ]

+
1

2
(|D| ξ)2 − 1

2
(∂xξ)

2 + 2ν(∂2xη) |D| ξ. (18b)

This system will be considered along with the initial data

η(x, 0) = η0(x), ξ(x, 0) = ξ0(x), (19)

both of which are presumed to be periodic of period 2π, say.
The following is the main theorem of the paper. (Here, a period cell is denoted by

X and the usual spaces of real-valued, periodic functions in the L2-based Sobolev
classes Hs are written Hs(X)).

Theorem 2.1. Let s be a sufficiently large positive integer. Let η0 ∈ Hs(X) and
ξ0(x) ∈ Hs(X) be given. Then there exists T > 0 and a unique solution (η, ξ) ∈
C([0, T ];Hs(X)) to the initial-value problem (18), (19). For any s′ ∈ R with 0 ≤
s′ < s, the solution depends continuously on the initial data, when the norm of the
solution is measured in the space C([0, T ];Hs′(X)).

Remark 1. In the above theorem, we indicate that s should be “sufficiently large.”
We are simply saying that there is an absolute constant K̄ such that the theorem
requires s ≥ K̄. We have not kept careful track of the minimum such value of K̄,
but a dedicated reader could deduce such a value from the proof. Certainly, s ≥ 5
suffices to justify all the calculations that follow.

3. Energy estimate. Rewrite (18) using the fact that the operator |D| can be
written in the form

|D| = H∂x

where H connotes the Hilbert transform whose Fourier symbol is Ĥ = −isgn(k).
Thus, H is skew-adjoint, commutes with differentiation and, for any f with mean
zero, H2f = −f. Because of these facts, (18a) can be rewritten in the form

∂tη = H∂xξ + 2ν∂2xη − η∂2xξ −H[(∂xη)H∂xξ]−H[ηH[∂2xξ]]− (∂xη)∂xξ. (20)

Similarly, equation (18b) is equivalent to

∂tξ = −gη + 2ν∂2xξ + 2νηH[∂3xξ]− 2ν∂2x[ηH[∂xξ]] +
1

2
(H[∂xξ])

2

− 1

2
(∂xξ)

2 + 2ν(∂2xη)(H[∂xξ]). (21)
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This simplifies to

∂tξ = −gη + 2ν∂2xξ − 4ν(∂xη)(H[∂2xξ]) +
1

2
(H[∂xξ])

2 − 1

2
(∂xξ)

2 (22)

due to cancelations that occur when the term 2ν∂2x[ηH[∂xξ]] is worked out in detail.
We proceed now to obtain a priori estimates of solutions to the system (20) and

(22) in the Sobolev space Hs, where s is a sufficiently large integer. It is worth
noting that the upcoming energy-type inequalities apply simultaneously to η and ξ
in the same Sobolev class. This is quite different from the situation that arises in
the absence of viscosity.

The norm of a function u will be written ‖u‖Hs or ‖u‖Lp with the period domain
X suppressed. For convenience, we will also use the notation ‖u‖s for the Sobolev
norm ‖u‖Hs and |u|p for the Lebesgue norm ‖u‖Lp .

3.1. Higher derivatives and commutators. The calculations start by rewriting
terms in the evolution equation (20) in the form

[A,B] = AB −BA,

of commutators of linear operators A and B. Notice that the final four terms in (20)
are precisely the first order (in η) term in the expansion of the Dirichlet-to-Neumann
operator [5] for water waves on an ocean of infinite depth, namely

G1(η)[ξ] = −η∂2xξ −H[(∂xη)H∂xξ]−H[ηH[∂2xξ]]− (∂xη)∂xξ.

This operator has well–known mapping properties (see, e.g., [14, 15]). Guided by
what is known about this operator, we anticipate the following simplifications. Set
ζ := ∂xξ and combine the first and last terms to reach the alternate formula

G1(η)[ξ] = −∂x [ηζ]−H(∂xη)H[ζ] + ηH[∂xζ]

for G1. If the operators H and ∂x are interchanged in the last term, one recognizes
that G1 can be further rewritten as

G1(η)[ξ] = −∂x [ηζ]−H∂x [ηH[ζ]] = −∂x {ηζ +HηH[ζ]} .

Introducing the commutator [H, η], the final term may be expanded, thereby ob-
taining

G1(η)[ξ] = −∂x
{

(η)ζ + (η)H2[ζ] + [H, η](H[ζ])
}

= −∂x {[H, η](H[ζ])} ,

where use has been made of the fact that H2∂x = −∂x. Recalling the definition of
ζ, we realize that the evolution equation (20) for η can be simplified to

∂tη = H∂xξ + 2ν∂2xη − ∂x {[H, η](H[∂xξ])} . (23)

For a positive integer s, apply ∂sx to (23) to obtain the formula

∂t∂
s
xη = H∂s+1

x ξ + 2ν∂s+2
x η − ∂s+1

x {[H, η](H[∂xξ])} . (24)
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Similarly, apply ∂sx to (22) and use the product rule to derive the relation

∂t∂
s
xξ = −g∂sxη + 2ν∂s+2

x ξ − 4ν(∂s+1
x η)(H[∂2xξ])− 4ν(∂xη)(H[∂s+2

x ξ])

− 4νs(∂2xη)(H[∂s+1
x ξ])− 4ν

s−1∑
k=2

(
s

k

)
(∂k+1
x η)(H[∂s−k+2

x ξ])

+ (H[∂s+1
x ξ])(H[∂xξ]) +

1

2

s−1∑
k=1

(
s

k

)
(H[∂k+1

x [ξ]])(H[∂s−k+1
x [ξ]])

− (∂s+1
x ξ)(∂xξ)−

1

2

s−1∑
k=1

(
s

k

)
(∂k+1
x ξ)(∂s−k+1

x ξ). (25)

If Φ is defined by

Φ := −4ν

s−1∑
k=2

(
s

k

)
(∂k+1
x η)(H[∂s−k+2

x ξ]) +
1

2

s−1∑
k=1

(
s

k

)
(H[∂k+1

x ξ])H[∂s−k+1
x ξ]

− 1

2

s−1∑
k=1

(
s

k

)
(∂k+1
x ξ)(∂s−k+1

x ξ),

then

∂t∂
s
xξ = −g∂sxη + 2ν∂s+2

x ξ − 4ν(∂s+1
x η)(H[∂2xξ])− 4ν(∂xη)(H[∂s+2

x ξ])

− 4νs(∂2xη)(H[∂s+1
x ξ]) + (H[∂s+1

x ξ])(H[∂xξ])− (∂s+1
x ξ)(∂xξ) + Φ. (26)

Attention is now turned to providing upper bounds on norms of G1 and Φ. First,
the term Φ is a collection of products of derivatives of η and ξ and their Hilbert
transforms. Of course, for any real s, ‖Hf‖Hs ≤ ‖f‖Hs , with equality if the mean
of f is zero. Also, notice that the highest derivative that appears in Φ is order s and,
furthermore, it is never the case that there is a product featuring both ∂sxη and ∂sxξ,
i.e., it is never the case that the highest number of derivatives occurs simultaneously
on both factors. Therefore, assuming η and ξ are both in Hs, at least one of the
factors in every summand lies in L∞. It is therefore routine to derive the inequality

‖Φ‖H0 ≤ c
(
‖η‖Hs ‖ξ‖Hs + ‖ξ‖2Hs

)
.

To bound G1, as well as another commutator that will appear shortly, the fol-
lowing commutator estimate is helpful (c.f. [2]).

Lemma 3.1. For any integer s ≥ 1, if ψ ∈ Hs, then the operator [H,ψ] is bounded
from H0 to Hs−1. If s ≥ 2 then [H,ψ] is bounded from H−1 to Hs−2. Moreover,
in these cases, respectively, there are constants cj such that

‖[H,ψ]g‖Hs−1+j ≤ cj ‖ψ‖Hs ‖g‖Hj ,

for j = 0,−1. Furthermore, if s ≥ 3, the same operator [H,ψ] is bounded from
Hs−2 to Hs, with the corresponding estimate

‖[H,ψ]g‖Hs ≤ c ‖ψ‖Hs ‖g‖Hs−2 .
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3.2. The energy estimate. For a fixed integer s, define the “energy” to be E(t) =
E0(t) + Es(t), where

Ek(t) = Eηk (t) + Eξk(t) :=
1

2

∫
X

(∂kxη)2 dx+
1

2

∫
X

(∂kxξ)
2 dx

for k = 0, 1, · · · . As before, X denotes the period cell [0, 2π]. For each fixed t, E(t)
is equivalent to the square of the Hs ×Hs-norm of (η(·, t), ξ(·, t)).

The aim now is to get control of the growth of E as a function of time. The
strategy is to derive differential inequalities that the energy must respect and then
apply a Gronwall-type argument. In working out the details, Young’s Inequality

ab ≤ εa2

2
+
b2

2ε
, (27)

valid for any real numbers a and b and any positive value of ε, will find frequent
use.

With s chosen sufficiently large, the following differential inequality holds for
E0. By sufficiently large, we mean at the outset that the functions should have
enough derivatives in L2 to justify the formal calculations to follow, including being
able to ignore boundary contributions on the basis of periodicity. The smoothness
restriction can be toned down later after a suitable continuous dependence result is
in hand.

Lemma 3.2. There is a time-independent constant c such that as long as a smooth
solution (η, ξ) of (18) exists, then

dE0

dt
≤ c(E + E3/2). (28)

Proof. Taking the time derivative of E0 yields

dE0

dt
=
dEη0
dt

+
dEξ0
dt

=

∫
X

η∂tη + ξ∂tξ dx.

Using the equations satisfied by η and ξ leads to the formulas

dEη0
dt

=

∫
X

η
{
H∂xξ + 2ν∂2xη − ∂x {[H, η](H[∂xξ])}

}
dx

and

dEξ0
dt

=

∫
X

ξ

{
−gη + 2ν∂2xξ − 4ν(∂xη)(H∂2xξ) +

1

2
(H∂xξ)

2 − 1

2
(∂xξ)

2

}
dx.

The latter two integrals are estimated using Hölder’s inequality and the facts that,
in one dimension and for s > 1

2 , Hs is embedded in L∞ and Hs is an algebra, which
is to say, there are universal constants such that

|f |L∞ ≤ c ‖f‖Hs ≤ c(E
f
0 + Efs )

1
2 ,

‖fg‖Hs ≤ c‖f‖Hs‖g‖Hs ≤ c[(Ef0 + Efs )(Eg0 + Egs )]
1
2 .

Turning to the terms comprising the integral equal to
dEη0
dt , the first is bounded

using Hölder’s inequality while the second falls to an integration by parts, viz.∫
X

ηH[∂xξ] dx ≤ ‖η‖0‖ξ‖1 ≤ E1/2
0 E

1/2
1 ≤ E,∫

X

η(2ν∂2xη) dx = −2ν

∫
X

(∂xη)2 dx ≤ 0.
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For the last term in
dEη0
dt , write out the commutator in the form

−∂x {[H, η](H[∂xξ])} = −∂xH [ηH [∂xξ]]− ∂x(η∂xξ)

and bound the contribution from the first term by using Hölder’s inequality, the
fact that Hs is an algebra and the unitary property ‖Hf‖s ≤ ‖f‖s of the Hilbert
transform. The upshot is the string of inequalities

∫
X

η(∂xH[ηH[∂xξ]]) dx ≤‖η‖0‖H[ηH[∂xξ]]‖1 ≤ c‖η‖0‖η‖1‖ξ‖2

≤cE
1
2
0 E

1
2
1 E

1
2
2 ≤ cE

3
2 .

Similarly, but more simply,∫
X

η∂x(η∂xξ) dx ≤ ‖η‖0 ‖η∂xξ‖1 ≤ ‖η‖0 ‖η‖1 ‖ξ‖2 ≤ cE
3
2 .

As long as s ≥ 2, it is thus concluded that

dEη0
dt
≤ c(E + E

3
2 ).

The same line of argument applies to
dEξ0
dt with the conclusion that if s ≥ 2, then

dEξ0
dt
≤ c(E + E

3
2 ).

Lemma 3.3. There is a time-independent constant c such that as long as a smooth
solution (η, ξ) of (18) exists, then for s sufficiently large,

dEs
dt
≤ c(E + E2). (29)

Proof. As in Lemma 3.2, begin by computing the left-hand side of the last inequal-
ity;

dEηs
dt

=

∫
X

(∂sxη)∂t∂
s
xη dx

=

∫
X

(∂sxη)(H∂s+1
x ξ) + (∂sxη)(2ν∂s+2

x η)− (∂sxη)(∂s+1
x {[H, η](H∂xξ)}) dx.

Apply Young’s Inequality to the first and third term on the right-hand side of the
last equation and integrate the middle term by parts, leading to the inequality

dEηs
dt
≤ σ1

2

∫
X

(∂sxη)2 dx+
1

2σ1

∫
X

(H∂s+1
x ξ)2 dx− 2ν

∫
X

(∂s+1
x η)2 dx

+
σ2
2

∫
X

(∂sxη)2 dx+
1

2σ2

∫
X

(
∂s+1
x {[H, η](H[∂xξ])}

)2
dx,

where the positive values of the functions σi = σi(t) will be determined presently.
The last term in the previous display is bounded thusly;∫
X

(
∂s+1
x {[H, η](H[∂xξ])}

)2
dx ≤ ‖[H, η](H[∂xξ])‖2Hs+1 ≤ c ‖η‖2Hs+1 ‖H∂xξ‖2Hs−1
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where we have used Lemma 3.1 for the final estimate. Since the Hs+1-norm is
equivalent to the sum of the L2 norms of the function and its (s + 1)st derivative,
another application of Young’s Inequality yields∫

X

(
∂s+1
x {[H, η](H[∂xξ])}

)2
dx ≤ c̃

(
‖η‖2H0 +

∥∥∂s+1
x η

∥∥2
H0

)
‖ξ‖2Hs

≤ c̃
(
E0 +

∫
X

(∂s+1
x η)2 dx

)
E.

Putting the above estimates together yields

dEηs
dt
≤ σ1

2
Es +

1

2σ1

∫
X

(∂s+1
x ξ)2 dx− 2ν

∫
X

(∂s+1
x η)2 dx

+
σ2
2
Es +

c̃

2σ2

(
E0 +

∫
X

(∂s+1
x η)2 dx

)
E. (30)

Attention is now given to estimating the growth in time of Eξs (t). Proceeding as
before and making routine estimates leads to

dEξs
dt

=

∫
X

(∂sxξ)∂t∂
s
xξ dx

≤ 1

2

∫
X

(∂sxξ)
2 dx+

g2

2

∫
X

(∂sxη)2 dx− 2ν

∫
X

(∂s+1
x ξ)2 dx

+ 4ν
∣∣H[∂2xξ]

∣∣
L∞

(
σ3
2

∫
X

(∂sxξ)
2 dx+

1

2σ3

∫
X

(∂s+1
x η)2 dx

)
+ I + 4νs

∣∣∂2xη∣∣L∞ (σ52
∫
X

(∂sxξ)
2 dx+

1

2σ5

∫
X

(H[∂s+1
x ξ])2 dx

)
+ |H[∂xξ]|L∞

(
σ6
2

∫
X

(∂sxξ)
2 dx+

1

2σ6

∫
X

(H[∂s+1
x ξ])2 dx

)
+ |∂xξ|L∞

(
σ7
2

∫
X

(∂sxξ)
2 dx+

1

2σ7

∫
X

(∂s+1
x ξ)2 dx

)
+

1

2

∫
X

(∂sxξ)
2 dx+

1

2

∫
X

Φ2 dx. (31)

The most challenging term appears to be

I := −4ν

∫
X

(∂sxξ)(∂xη)(H[∂s+2
x ξ]) dx.

To obtain control of this term, begin by interchanging a derivative with the Hilbert
transform and integrating by parts to reach the inequality

I = 4ν

∫
X

∂x {(∂sxξ)(∂xη)} (H[∂s+1
x ξ]) dx

= 4ν

∫
X

(∂sxξ)(∂
2
xη)(H[∂s+1

x ξ]) dx+ 4ν

∫
X

(∂s+1
x ξ)(∂xη)(H[∂s+1

x ξ]) dx

≤ 4ν
∣∣∂2xη∣∣L∞ (σ42

∫
X

(∂sxξ)
2 dx+

1

2σ4

∫
X

(H[∂s+1
x ξ])2 dx

)
+ I ′

≤ 4νE
1/2
3

(
σ4
2
Es +

1

2σ4

∫
X

(H[∂s+1
x ξ])2 dx

)
+ I ′, (32)
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where

I ′ = 4ν

∫
X

(∂s+1
x ξ)(∂xη)(H[∂s+1

x ξ]) dx.

The term I ′ requires further rewriting. Using the skew–adjointness of the Hilbert
transform, introducing a commutator and integrating by parts leads to the formula

I ′ = −4ν

∫
X

H
[
(∂s+1
x ξ)(∂xη)

]
(∂s+1
x ξ) dx

= −4ν

∫
X

(∂xη)H
[
(∂s+1
x ξ)

]
(∂s+1
x ξ) dx− 4ν

∫
X

[H, ∂xη]
(
(∂s+1
x ξ)

)
(∂s+1
x ξ) dx

= −I ′ + 4ν

∫
X

∂x
{

[H, ∂xη]
(
(∂s+1
x ξ)

)}
(∂sxξ) dx.

Solving for I ′ and estimating further yields

I ′ = 2ν

∫
X

∂x
{

[H, ∂xη]
(
(∂s+1
x ξ)

)}
(∂sxξ) dx

≤ 2ν

{
1

2

∫
X

(∂sxξ)
2 dx+

1

2

∫
X

(
∂x
{

[H, ∂xη]
(
(∂s+1
x ξ)

)})2
dx

}
≤ 2ν

{
1

2
Es +

1

2

∥∥[H, ∂xη]
(
(∂s+1
x ξ)

)∥∥2
H1

}
≤ 2ν

{
1

2
Es +

1

2
c ‖η‖2Hs ‖ξ‖

2
Hs

}
≤ 2ν

{
1

2
Es +

1

2
cE2

s

}
. (33)

Assembling (30), (31), (32) and (33), and using the simple inequality Es ≤ E,
provides the differential inequality

dEs
dt
≤
(
σ1
2

+
σ2
2

+
c̃

2σ2
E0 +

1

2
+
g2

2
+ 4νE

1/2
3

σ3
2

+ 4νE
1/2
3

σ4
2

+ ν + νcEs

+4νsE
1/2
3

σ5
2

+ E
1/2
2

σ6
2

+ E
1/2
2

σ7
2

+
1

2
+
c

2
Es

)
E

+

(
1

2σ1
− 2ν + 4νE

1/2
3

1

2σ4
+ 4νsE

1/2
3

1

2σ5
+ E

1/2
2

1

2σ6

+E
1/2
2

1

2σ7

)∫
X

(∂s+1
x ξ)2 dx

+

(
−2ν +

c̃

2σ2
E + 4νE

1/2
3

1

2σ3

)∫
X

(∂s+1
x η)2 dx.

We choose the functions σi to be

σ1 =
5

8ν
, σ4 =

5E
1/2
3

2
, σ5 =

5sE
1/2
3

2
, σ6 =

5E
1/2
2

8ν
, σ7 =

5E
1/2
2

8ν
,

and

σ2 =
c̃E

4ν
, σ3 = E

1/2
3 .

These choices, together with the fact that Ek ≤ cE for all 0 ≤ k ≤ s, lead to the
further inequality

dEs
dt
≤ c(E + E2)− ν

∫
X

(∂s+1
x η)2 + (∂s+1

x ξ)2 dx.
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As the integrand in the integral is non-negative, the desired result

dEs
dt
≤ dEs

dt
+ ν

∫
X

(∂s+1
x η)2 + (∂s+1

x ξ)2 dx ≤ c(E + E2)

follows.

Remark 2. Lemma 3.2 and Lemma 3.3 combine to yield

dE

dt
≤ c(E + E2).

This differential inequality implies the upper bound

E(t) ≤ E(0)ect

1 + E(0)(1− ect)

as long as ect ≤ 1.

Remark 3. While the last results provide a bound on the growth of E in terms of
E, a more precise result is available via the preceding arguments, namely

d

dt
‖(η, ξ)‖Hs + ν

∫
X

(∂s+1
x η)2 + (∂s+1

x ξ)2 dx ≤ F (‖(η, ξ)‖Hs−1)‖(η, ξ)‖Hs ,

for some continuous function F. The energy inequality takes this form simply be-
cause, after any equation is differentiated, the highest derivatives appear linearly,
as a consequence of the chain rule. Furthermore, integrating with respect to time,
one obtains control of the solution in L2([0, T ];Hs+1); this is the typical smoothing
one would expect from these sort of damping terms.

4. Existence for regularized equations. To proceed from the energy estimate
above to a well–posedness proof, regularize the governing equations so that a (reg-
ularized) solution is straightforwardly adduced. We use Friedrichs’ mollifiers as our
regularization mechanism and find existence via the classical Picard theorem for
ordinary differential equations (the introduction of mollifiers will have the effect of
transforming all the differential operators into bounded operators and local well-
posedness then follows from a Picard iteration). Consider the evolution equation
(22)

∂tξ = −gη + 2ν∂2xξ − 4ν(∂xη)(H[∂2xξ]) +
1

2
(H[∂xξ])

2 − 1

2
(∂xξ)

2,

rewritten here for convenience, and denote by Sε a smoothing operator which ap-
proaches the identity as ε→ 0. Various options are available; perhaps the simplest
is just the truncation

Sε[f(x)] = Sε

[ ∞∑
p=−∞

f̂pe
ipx

]
:=

∑
|p|<1/ε

f̂pe
ipx,

of a function’s Fourier series. Clearly, this choice comprises a non-negative definite,
self-adjoint operator with Sε : Hs → H∞, for any s, where H∞ =

⋂
k≥0H

k. The

operator Sε is introduced into (22) as follows:

∂tξ = −gη + 2νS2ε∂2xξ − Sε
[
4ν(Sε[∂xη])(Sε[H[∂2xξ]])

]
+

1

2
Sε
[
(Sε[H[∂xξ]])

2
]
− 1

2
Sε
[
(Sε[∂xξ])2

]
. (34)
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The smoothing operator Sε is similarly introduced into the evolution equation (23)
for η, viz.

∂tη = HSε∂xξ + 2νS2ε∂2xη − Sε∂x {[H,Sεη](H[Sε∂xξ])} . (35)

The upshot of the introduction of the smoothing operators is that the system
(34)–(35) has solutions corresponding to initial data in Hs ×Hs which exist on a
time interval [0, Tε). Denote these solutions by ηε(x, t) and ξε(x, t). We use the
Continuation Theorem for Autonomous ODEs (see, for instance, Theorem 3.3 of
[12]) to show that the time of existence Tε is bounded below by a positive constant,
independently of ε > 0. To establish this latter assertion, it suffices to show that
the solutions of the approximate equations cannot blow up immediately. For this,
appropriately modified versions of the foregoing energy estimates are called upon.

Generalizing the energy estimate to the regularized equations is a tedious, but
relatively straightforward matter. This owes in part to the way the smoothing has
been introduced. The energy E is defined just as before:

E(t) = E0(t)+Es(t), E0(t) = ‖ηε‖2L2+‖ξε‖2L2 , Es(t) = ‖∂sxηε‖2L2+‖∂sxξε‖2L2 .

Lemma 4.1. For s ≥ 2, there is a constant c independent of ε ∈ (0, 1] and t ≥
0 such that if (ηε, ξε) solves the system (34)–(35), then over its time interval of
existence,

dE

dt
≤ c(E + E2).

Proof. As before, we take the time derivative of Es, starting with Eηs = ‖∂sxηε‖2L2 ;
we find the formula

dEηs
dt

=

∫
X

(∂sxηε)∂t∂
s
xηε dx

=

∫
X

(∂sxηε)(HSε∂s+1
x ξε) + (∂sxηε)(2νS2ε∂s+2

x ηε)

− (∂sxηε)(∂
s+1
x Sε {[H,Sεηε](HSε∂xξε)}) dx.

Young’s Inequality is applied to the first and third terms and the middle term is
integrated by parts (using that Sε is self-adjoint) to reach the inequality

dEηs
dt
≤ σ1

2

∫
X

(∂sxηε)
2 dx+

1

2σ1

∫
X

(HSε∂s+1
x ξε)

2 dx− 2ν

∫
X

(Sε∂s+1
x ηε)

2 dx

+
σ2
2

∫
X

(∂sxηε)
2 dx+

1

2σ2

∫
X

(
∂s+1
x {[H,Sεηε](H[∂xSεξε])}

)2
dx.

Estimating the commutator in exactly the same way as before, it is found that

dEηs
dt
≤ σ1

2
Es +

1

2σ1

∫
X

(Sε∂s+1
x ξε)

2 dx− 2ν

∫
X

(Sε∂s+1
x ηε)

2 dx

+
σ2
2
Es +

c̃

2σ2

(
E0 +

∫
X

(Sε∂s+1
x ηε)

2 dx

)
Es. (36)

The various σi will be chosen in the same way as for the non-regularized case. As
before, these choices are organized to cancel the contributions from terms involving
derivatives of order s+ 1 using the helpful contribution to the energy coming from
the viscous terms. As the details are largely the same as what has gone before in
the earlier formal calculations, partly because of the placement of the smoothing
operators in the regularization, we content ourselves with examining one interesting,
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but representative calculation, namely the final term on the right–hand side of (34).
Define R by

R := −1

2
Sε
[
(Sε[∂xξ])2

]
,

where we have denoted ξε by ξ. Differentiate R s-many times with respect to x to
obtain

∂sxR = −1

2

s∑
j=0

(
s

j

)
Sε
[(
∂jxSε∂xξ

) (
∂s−jx Sε∂xξ

)]
= Rs −

1

2

s−1∑
j=1

(
s

j

)
Sε
[(
∂jxSε∂xξ

) (
∂s−jx Sε∂xξ

)]
,

which has leading-order behavior

Rs = −Sε
[
(Sε[∂xξ])(Sε[∂s+1

x ξ])
]
.

Multiply the result by ∂sxξ and integrate over X. There obtains at leading order
the formula ∫

X

(∂sxξ)Rs dx = −
∫
X

(∂sxξ)Sε
[
(Sε[∂xξ])(Sε[∂s+1

x ξ])
]
dx.

Using the fact that Sε is self–adjoint, it is deduced that∫
X

(∂sxξ)Rs dx = −
∫
X

Sε[∂sxξ](Sε[∂xξ])(Sε[∂s+1
x ξ]) dx,

or, what is the same,∫
X

(∂sxξ)Rs dx = −1

2

∫
X

{
∂x[(Sε∂sxξ)2]

}
(Sε[∂xξ]) dx.

An integration by parts yields∫
X

(∂sxξ)Rs dx =
1

2

∫
X

{
(Sε[∂sxξ])2

}
(Sε[∂2xξ]) dx,

and thus ∫
X

(∂sxξ)Rs dx ≤ c
∣∣Sε[∂2xξ]∣∣L∞ ∫

X

(Sε[∂sxξ])2 dx ≤ C ‖Sε[ξ]‖
3
Hs

provided s is large enough. Standard mollifier estimates bound this term by a
constant multiplied by ‖ξ‖3Hs which is, in turn, bounded by a constant multiple of

E3/2.

Remark 4. As before, the solution of this differential inequality provides a uniform
bound on the solution (independent of ε) over a time interval which is independent
of ε.

5. Proof of Theorem 2.1. We are now prepared to prove the main theorem. This
is done in stages, first by establishing that the approximate solutions (ηε, ξε) form

a Cauchy sequence in the space C([0, T ];Hs′(X)), for any s′ with 0 ≤ s′ < s. We
then establish that the limit solves the initial-value problem. Next, uniqueness and
continuous dependence of solutions on variations in the initial data is established.
Finally, it will be shown that the limit is in fact in C([0, T ];Hs(X)).
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5.1. Limit as the mollifying parameter vanishes. We will frequently use the
mollifier estimate

‖Sεf‖Hr ≤ c ‖f‖Hr ,
where c depends on r, but not on ε. In fact, if the truncation operator defined
above is used for a smoothing operator, then we may take c = 1 for all r.

From the Continuation Theorem [12], we know that the solutions (ηε, ξε) of the
regularized problem exist on a common time interval [0, T ], independent of ε, and
satisfy the estimate

‖ηε(·, t)‖2Hs + ‖ξε(·, t)‖2Hs ≤ K
for t ∈ [0, T ] and for some ε-independent constant K.

The next stage is to show that the solutions (ηε, ξε) are Cauchy in the function
class C([0, T ];L2 × L2) in the limit as ε → 0, and thereby identify a limit (η, ξ).
The functional

Ed(t) =
1

2

∫
X

(ηε − ηε′)2 + (ξε − ξε′)2 dx = Ed,η(t) + Ed,ξ(t).

is used in this endeavor. Since the initial data is the same for all values of the
regularization parameter ε, Ed(0) = 0.

Lemma 5.1. There are constants c, independent of t ∈ [0, T ], and values of ε and
ε′ in (0, 1], say, such that

dEd
dt
≤ cEd + cmax{ε, ε′}E1/2

d .

Proof. Differentiate Ed with respect to t, starting with Ed,ξ, to arrive at the formula

dEd,ξ
dt

=

∫
X

(ξε − ξε′)(∂tξε − ∂tξε′) dx = J1 + J2 + J3 + J4 + J5,

where each of these corresponds to one of the five terms on the right–hand side of
the evolution equation (34).

We set about estimating these terms. The Cauchy-Schwarz inequality suffices
for J1, viz.

J1 = −g
∫
X

(ξε − ξε′)(ηε − ηε′) dx ≤
g

2

(
‖ξε − ξε′‖20 + ‖ηε − ηε′‖20

)
≤ cEd.

Write J2 in the form

J2 = 2ν

∫
X

(ξε − ξε′)(S2ε∂2xξε − S2ε′∂2xξε′) dx = J2,A + J2,B

where

J2,A = 2ν

∫
X

(ξε − ξε′)(S2ε∂2xξε − S2ε′∂2xξε) dx

and

J2,B = 2ν

∫
X

(ξε − ξε′)(S2ε′∂2xξε − S2ε′∂2xξε′) dx.

To handle J2,A, use the standard mollifier estimate

‖Sεf − Sε′f‖L2 ≤ cmax{ε, ε′} ‖f‖H1 (37)

to obtain
J2,A ≤ cE1/2

d max{ε, ε′}
∥∥∂2xξε∥∥H1 .

Since
∥∥∂2xξε∥∥H1 ≤ K1/2, it is concluded that

J2,A ≤ cE1/2
d max{ε, ε′}.
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Integrating J2,B by parts, and using the fact that Sε′ is self-adjoint reveals that

J2,B = −2ν

∫
X

(∂x[Sε′ [(ξε − ξε′)]])2 dx.

The term J3 is

J3 = −4ν

∫
X

(ξε − ξε′)
(
Sε[(Sε∂xηε)(SεH∂2xξε)]− Sε′ [(Sε′∂xηε′)(Sε′H∂2xξε′ ]

)
dx,

which is rewritten by adding and subtracting various terms to obtain

J3 = J3,A + J3,B + J3,C + J3,D + J3,E ,

where

J3,A = −4ν

∫
X

(ξε − ξε′)
(
Sε[(Sε∂xηε)(SεH∂2xξε)]− Sε′ [(Sε∂xηε)(SεH∂2xξε]

)
dx,

J3,B = −4ν

∫
X

(ξε − ξε′)
(
Sε′ [(Sε∂xηε)(SεH∂2xξε)]− Sε′ [(Sε′∂xηε)(SεH∂2xξε]

)
dx,

J3,C = −4ν

∫
X

(ξε − ξε′)
(
Sε′ [(Sε′∂xηε)(SεH∂2xξε)]− Sε′ [(Sε′∂xηε′)(SεH∂2xξε]

)
dx,

J3,D = −4ν

∫
X

(ξε − ξε′)
(
Sε′ [(Sε′∂xηε′)(SεH∂2xξε)]− Sε′ [(Sε′∂xηε′)(Sε′H∂2xξε]

)
dx,

J3,E = −4ν

∫
X

(ξε − ξε′)
(
Sε′ [(Sε′∂xηε′)(Sε′H∂2xξε)]− Sε′ [(Sε′∂xηε′)(Sε′H∂2xξε′ ]

)
dx.

Akin to the term J2,A, each of J3,A, J3,B , and J3,D includes an instance of the
operator Sε − Sε′ acting on a function which does not feature a difference such as
ηε − ξε′ or the like. It follows as for J2,A that

J3,A ≤ cE1/2
d max{ε, ε′}, J3,B ≤ cE1/2

d max{ε, ε′}, J3,D ≤ cE1/2
d max{ε, ε′}.

We use the self-adjointness of Sε′ to write J3,E as

J3,E = −4ν

∫
X

(Sε′∂xηε′)(Sε′(ξε − ξε′))H∂2x(Sε′(ξε − ξε′)) dx

and integrate by parts once to come to J3,E = J3,F + J3,G, with

J3,F = 4ν

∫
X

(Sε′∂2xηε′)(Sε′(ξε − ξε′))H∂x(Sε′(ξε − ξε′)) dx

and

J3,G = 4ν

∫
X

(Sε′∂xηε′)(Sε′∂x(ξε − ξε′))(HSε′∂x(ξε′ − ξε′)) dx.

As H is skew-adjoint,

J3,G = −4ν

∫
X

{H [(Sε′∂xηε′)(Sε′∂x(ξε − ξε′))]} {Sε′∂x(ξε − ξε′)} dx.

After pulling Sε′∂xηε′ outside the Hilbert transform (at the cost of a commutator),
this becomes

J3,G = −4ν

∫
X

{(Sε′∂xηε′)H [Sε′∂x(ξε − ξε′)]} {Sε′∂x(ξε − ξε′)} dx

− 4ν

∫
X

{[H,Sε′∂xηε′ ] [Sε′∂x(ξε − ξε′)]} {Sε′∂x(ξε − ξε′)} dx

= −J3,G − 4ν

∫
X

{[H,Sε′∂xηε′ ] [Sε′∂x(ξε − ξε′)]} {Sε′∂x(ξε − ξε′)} dx.
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In consequence,

J3,G = −2ν

∫
X

{[H,Sε′∂xηε′ ] [Sε′∂x(ξε − ξε′)]} {Sε′∂x(ξε − ξε′)} dx,

and, after an integration by parts, we find

J3,G = 2ν

∫
X

(Sε′(ξε − ξε′))∂x {[H,Sε′∂xηε′ ] [Sε′∂x(ξε − ξε′)]} dx.

It follows readily that

J3,G ≤ cEd.
Write J3,C as

J3,C = −4ν

∫
X

(SεH∂2xξε)(Sε(ξε − ξε′))(Sε′∂x(ηε − ηε′)) dx.

Notice that by Sobolev embedding, we can write

|SεH∂2xξε|L∞ ≤ c‖SεH∂2xξε‖H1 ≤ c‖ξε‖H3 ≤ K1/2.

Now, use Young’s inequality to deduce that

J3,C ≤
4νK1/2σ1

2
‖ξε − ξε′‖2L2 +

4νK1/2

2σ1
‖Sε′∂x[ηε − ηε′ ]‖2L2

and

J3,F ≤
4νK1/2σ2

2
‖ξε − ξε′‖2L2 +

4νK1/2

2σ2
‖Sε′∂x[ξε − ξε′ ]‖2L2 .

If we choose σ1 = σ2 = 4(1 +K1/2), then

J3,C ≤ 8νK1/2(1 +K1/2)‖ξε − ξε′‖2L2 +
ν

2
‖Sε′∂x[ηε − ηε′ ]‖2L2 ,

J3,F ≤ 8νK1/2(1 +K1/2)‖ξε − ξε′‖2L2 +
ν

2
‖Sε′∂x[ξε − ξε′ ]‖2L2 .

Split the term

J4 =
1

2

∫
X

(ξε − ξε′)
{
Sε([H[Sε[∂xξε]]])2 − Sε′(H[Sε′ [∂xξε′ ]])2

}
dx,

as J4 = J4,A + J4,B , where

J4,A =
1

2

∫
X

(ξε − ξε′)
{
Sε(H[Sε[∂xξε]])2 − Sε′(H[Sε[∂xξε]])2

}
dx

and

J4,B =
1

2

∫
X

(ξε − ξε′)
{
Sε′(H[Sε[∂xξε]])2 − Sε′(H[Sε′ [∂xξε′ ]])2

}
dx.

As for the estimate of J2,A above,

J4,A ≤ cE1/2
d max{ε, ε′}.

For J4,B , use the self-adjointness of Sε′ to write

J4,B =
1

2

∫
X

Sε′ [(ξε − ξε′)]
{

(H[Sε[∂xξε]])2 − (H[Sε′ [∂xξε′ ]])2
}
dx

=
1

2

∫
X

Sε′ [(ξε − ξε′)] {H[Sε[∂xξε]] +H[Sε′ [∂xξε′ ]]} ·

· {H[Sε[∂xξε]]−H[Sε′ [∂xξε′ ]]} dx. (38)
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After adding and subtracting the term

Sε′ [(ξε − ξε′)] {H[Sε[∂xξε]] +H[Sε′ [∂xξε′ ]]}H[Sε′ [∂xξε]],

there results J4,B = J4,C + J4,D where

J4,C =
1

2

∫
X

Sε′ [(ξε − ξε′)] {H[Sε[∂xξε]] +H[Sε′ [∂xξε′ ]]} ·

· {H[Sε[∂xξε]]−H[Sε′ [∂xξε]]} dx, (39)

J4,D =
1

2

∫
X

Sε′ [(ξε − ξε′)] {H[Sε[∂xξε]] +H[Sε′ [∂xξε′ ]]} ·

· {H[Sε′ [∂xξε]]−H[Sε′ [∂xξε′ ]]} dx. (40)

Since J4,C possesses a difference Sε−Sε′ of mollifiers, (37) and the energy estimate
imply that

J4,C ≤ cE1/2
d max{ε, ε′}.

Notice that the middle factor in J4,D can be bounded as follows:

|H[Sε[∂xξε]] +H[Sε′ [∂xξε′ ]]|L∞ ≤ ‖H[Sε[∂xξε]] +H[Sε′ [∂xξε′ ]]‖H1

≤ ‖ξε‖H2 + ‖ξε′‖H2

≤ 2K1/2.

Consequently, it transpires that

J4,D ≤ K1/2

∫
X

|Sε′ [(ξε − ξε′)]| |H[Sε′ [∂xξε]]−H[Sε′ [∂xξε′ ]]| dx.

Young’s inequality, with parameter σ3 = (1 +K)1/2/ν gives

J4,D ≤
K1/2(1 +K1/2)

2ν

∫
X

|Sε′ [(ξε − ξε′)]|2 dx

+
K1/2ν

2(1 +K1/2)

∫
X

|H[Sε′ [∂xξε]]−H[Sε′ [∂xξε′ ]]|2 dx.

This clearly implies that

J4,D ≤ cEd +
ν

2

∫
X

(∂xSε′ [ξε − ξε′ ])2 dx.

The last term on the right–hand side will cancel with part of J2, just as in the
previous, unmollified energy estimate. We now consider

J5 = −1

2

∫
X

(ξε − ξε′)
(
Sε(Sε∂xξε)2 − Sε′(Sε′∂xξε′)2

)
dx

which is estimated in a manner almost identical to that of J4. Add and subtract as
usual, finding J5 = J5,A + J5,B + J5,C , with

J5,A = −1

2

∫
X

(ξε − ξε′)(Sε − Sε′)[(Sε∂xξε)2] dx ≤ cmax{ε, ε′}E1/2
d ,

J5,B = −1

2

∫
X

(Sε′ [ξε−ξε′ ])((Sε−Sε′)[∂xξε])((Sε+Sε′)[∂xξε]) dx ≤ cmax{ε, ε′}E1/2
d ,

J5,C = −1

2

∫
X

(Sε′ [ξε − ξε′ ])(Sε′∂x[ξε − ξε′ ])(Sε′∂x[ξε + ξε′ ]) dx.
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We recognize an exact derivative in J5,C and integrate by parts, thereby coming to

J5,C =
1

4

∫
X

(Sε′ [ξε − ξε′ ])2(Sε′∂2x[ξε + ξε′ ]) dx ≤ cEd.

Consider now dEd,η/dt and write it as

dEd,η
dt

=

∫
X

(ηε − ηε′)∂t(ηε − ηε′) dx = J6 + J7 + J8,

where each of these three terms correspond to a term on the right-hand side of the
evolution equation (35) for η. Add and subtract Sε′H∂xξε in

J6 =

∫
X

(ηε − ηε′)(SεH∂xξε − Sε′H∂xξε′) dx

to obtain J6 = J6,A + J6,B , where

J6,A =

∫
X

(ηε − ηε′)(SεH∂xξε − Sε′H∂xξε) dx,

J6,B =

∫
X

(ηε − ηε′)(Sε′H∂xξε − Sε′H∂xξε′) dx.

Since J6,A has a difference of Sε and Sε′ , we have as before that

J6,A ≤ cmax{ε, ε′}E1/2
d .

Rewrite J6,B as

J6,B =

∫
X

(ηε − ηε′)Sε′ [H∂x(ξε − ξε′)] dx

and apply Young’s Inequality with a parameter σ = σ4 = 2
ν to derive

J6,B ≤ cEd + ν‖Sε′∂x(ξε − ξε′)‖2L2 .

For

J7 = 2ν

∫
X

(ηε − ηε′)(S2ε∂2xηε − S2ε′∂2xηε′) dx.

Add and subtract S2ε′∂2xηε to express J7 as the sum J7 = J7,A + J7,B with

J7,A = 2ν

∫
X

(ηε − ηε′)(S2ε∂2xηε − S2ε′∂2xηε) dx

and

J7,B = 2ν

∫
X

(ηε − ηε′)(S2ε′∂2xηε − S2ε′∂2xηε′) dx.

Since J7,A contains the operator Sε − Sε′ , we have

J7,A ≤ cmax{ε, ε′}E1/2
d .

And, because Sε is self-adjoint, an integration by parts provides the formula

J7,B = −2ν

∫
X

(Sε′∂x(ηε − ηε′))2 dx.

Finally, consider

J8 = −
∫
X

(ηε − ηε′) ∂x
(
Sε[H,Sεηε](HSε∂xξε)− Sε′ [H,Sε′ηε′ ](HSε′∂xξε′)

)
dx.
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The formula [H, a]f − [H, b]f = [H, a− b]f, the self–adjointness of Sε and judicious
adding and subtracting leads to J8 = J8,A + J8,B + J8,C + J8,D + J8,E with

J8,A = −
∫
X

Sε[ηε − ηε′ ]∂x
(

[H,Sεηε](HSε∂xξε)− [H,Sε′ηε](HSε∂xξε)
)
dx,

J8,B = −
∫
X

Sε[ηε − ηε′ ]∂x
(

[H,Sε′ηε](HSε∂xξε)− [H,Sε′ηε′ ](HSε∂xξε)
)
dx,

J8,C = −
∫
X

Sε[ηε − ηε′ ]∂x
(

[H,Sε′ηε′ ](HSε∂xξε)− [H,Sε′ηε′ ](HSε′∂xξε)
)
dx,

J8,D = −
∫
X

Sε[ηε − ηε′ ]∂x
(

[H,Sε′ηε′ ](HSε′∂xξε)− [H,Sε′ηε′ ](HSε′∂xξε′)
)
dx,

J8,E = −
∫
X

(ηε − ηε′)(Sε − Sε′)∂x {[H,Sε′ηε′ ](HSε′∂xξε′)} dx.

Each of J8,A, J8,C , and J8,E have a difference Sε − Sε′ , and so by estimates that
are by now familiar,

J8,A ≤ cmax{ε, ε′}E1/2
d , J8,C ≤ cmax{ε, ε′}E1/2

d , J8,E ≤ cmax{ε, ε′}E1/2
d .

Rewrite J8,B as

J8,B = −
∫
X

Sε[ηε − ηε′ ]∂x
(

[H,Sε′(ηε − ηε′)](HSε∂xξε)
)
dx.

This commutator is treated differently than in our previous machinations. The
commutator is of the form [H,ψ]g where we currently have sufficient regularity
on g = HSε∂xξε so that it is not necessary to use the smoothing effects of such
commutators. Indeed, the simple inequality ‖[H,ψ]g‖H1 ≤ c‖ψ‖H1‖g‖H1 implies
that

J8,B ≤ cE1/2
d K1/2‖Sε′ [ηε − ηε′ ]‖H1

≤ cEd + cE
1/2
d K1/2‖Sε′ [∂x(ηε − ηε′)]‖L2 .

Young’s Inequality gives the further bound

J8,B ≤ cEd +
cEdKσ5

2
+

1

2σ5
‖Sε′ [∂x(ηε − ηε′)]‖2L2 ,

and upon choosing σ5 = 2
ν , it is found that

J8,B ≤ cEd + ν‖Sε′ [∂x(ηε − ηε′)]‖2L2 .

A straightforward application of Lemma 3.1 yields

J8,D = −
∫
X

Sε[ηε − ηε′ ]∂x
(

[H,Sε′ηε′ ](HSε′∂x[ξε − ξε′ ])
)
dx ≤ cEd.

Adding the estimates just obtained for the various J ’s, we find only terms pro-

portional to Ed and max{ε, ε′}E1/2
d . All of the other terms (e.g., ‖Sε′∂x(ηε − ηε′)‖

or ‖Sε′∂x(ξε− ξε′‖) cancel because of the careful choice of the σi’s. In consequence,
we have

dEd
dt
≤ cEd + cmax{ε, ε′}E1/2

d ,

as advertised. The proof is complete.
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Remark 5. Writing Ed = (E
1/2
d )2, the inequality in the last Lemma is equivalent

to
dE

1/2
d

dt
≤ cE1/2

d + cmax{ε, ε′}.

Since Ed(0) = 0, a Gronwall-type argument yields

E
1/2
d (t) ≤ max{ε, ε′}(ect − 1).

Thus {(ηε, ξε)} is Cauchy in C([0, T ];L2 × L2), and hence converges as ε → 0 in
this space to a limit (η, ξ) as ε→ 0.

A straightforward application of the elementary Sobolev interpolation theorem
(Lemma 5.2 below) together with the uniform bound in Hs demonstrates that

{(ηε, ξε)} is, for any s′ < s, Cauchy in C([0, T ];Hs′ ×Hs′). Hence, (η, ξ) lies in this
latter space. The further conclusion (η, ξ) ∈ C([0, T ];Hs ×Hs) will be dealt with
in Section 5.4.

Lemma 5.2. Let 0 < m < s be given, with f ∈ Hs. Then

‖f‖Hm ≤ c‖f‖m/sHs ‖f‖
1−m/s
H0 .

Further properties of the limit (η, ξ) are the subject of the remainder of this
section.

5.2. The limit solution solves (18). The one-parameter family of mollified PDEs
has the form ∂tuε = Gε(uε) where uε = (ηε, ξε) and Gε is a non-local, second-
order, nonlinear operator given by the right-hand sides of equations (34) and (35).
Integrating in time, we find that

uε(·, t) = uε(·, 0) +

∫ t

0

Gε(uε(·, τ)) dτ.

Since uε → u in C([0, T ];Hs′) for s′ sufficiently large, we can pass to the limit
in all of these terms. In particular, it is straightforward to conclude that Gε(uε)→
G(u) in C([0, T ];Hs′−2), where G is the operator given by the right-hand sides of
(22) and (23). This in turn implies

u(·, t) = u(·, 0) +

∫ t

0

G(u(·, τ)) dτ.

Differentiating with respect to time shows that the original, unregularized system
(22)–(23) is satisfied by the limit.

5.3. Uniqueness and continuous dependence. We now address uniqueness and
continuous dependence on the data. Each of these is established by estimates which
are similar to ones already in hand. In fact, if we have two solutions (η, ξ) and (η̃, ξ̃),

perhaps with different data, an estimate for the growth of Ẽd = ‖(η − η̃, ξ − ξ̃)‖L2

would be helpful. This is essentially the same as the estimate for Ed, but in the
simpler case ε = ε′ = 0. It is thus concluded that

dẼd
dt
≤ cẼd,

which implies that Ẽd grows at most exponentially. If the initial condition is Ẽd(0) =

0 (which corresponds to having the same data), we see that Ẽd(t) remains zero.
Uniqueness of solutions is therefore established. Furthermore, if the two initial
conditions are not the same, the norm of the difference only grows exponentially;
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the difference at time t can be made small, uniformly for t ∈ [0, T ], by taking the

initial value Ẽd(0) small. This establishes continuous dependence on the initial data
in L2. Continuous dependence in higher Sobolev norms then follows by applying
Lemma 5.2.

5.4. The highest regularity. Here, it is shown that each of η and ξ actually lie in
C([0, T ];Hs(X)). The argument parallels a proof of regularity of strong solutions of
the Navier-Stokes equations (see Chapter 3 of [12]). This argument requires several
steps, the first of which is to show Hs regularity, pointwise in time. The second
step is to show weak continuity in time. Then, continuity of the Hs norm is shown.
Together, these steps establish that η and ξ are indeed in C([0, T ];Hs(X)).

We begin with the regularity, pointwise in time. For any fixed t ∈ [0, T ], ηε(·, t)
and ξε(·, t) are uniformly bounded in Hs. Since the unit ball of a Hilbert space is
weakly compact, ηε(·, t) and ξε(·, t) converge as ε→ 0, weakly in Hs. Clearly, these
weak limits must be η(·, t) and ξ(·, t). So, for each t, η(·, t) and ξ(·, t) lie in Hs and
possess the same uniform bound satisfied by the approximating sequences.

Next, it is shown that each of η and ξ are in CW ([0, T ];Hs), which is to say η and ξ
are continuous in time with values in Hs endowed with its weak topology. Attention
is given to η, but there is no difference between η and ξ in the present context. Recall
that for any s′ with 0 ≤ s′ < s, it is known that ηε → η ∈ C([0, T ];Hs′). Therefore,

for any φ ∈ H−s′ , the duality pairing 〈φ, ηε〉 → 〈φ, η〉 as ε→ 0, uniformly on [0, T ].

Since s′ < s, it is certainly true that −s < −s′, and therefore H−s
′

is dense in H−s.
Recall the already established uniform bound ‖ηε‖Hs ≤ K. For ψ ∈ H−s and δ > 0

given, choose ψδ ∈ H−s
′

so that ‖ψδ−ψ‖H−s < δ
3(1+K) . Let ε be small enough that

|〈ψδ, ηε − η〉| < δ
3 . With these restrictions, it follows that

|〈ψ, ηε − η〉| ≤ |〈ψ − ψδ, ηε − η〉|+ |〈ψδ, ηε − η〉| < δ.

Notice that these choices can be made independently of t. This is enough to conclude
that η (and similarly ξ) lie in CW ([0, T ];Hs).

Next, we show strong right-continuity in time of the solutions at t = 0. Since
weak convergence and convergence of the norm imply strong convergence, it is only
necessary to show that ‖η(·, t)‖Hs → ‖η(·, 0)‖Hs and ‖ξ(·, t)‖Hs → ‖ξ(·, 0)‖Hs as
t→ 0+. By Fatou’s Lemma, it must be the case that

‖η(·, 0)‖2Hs ≤ lim inf
t→0+

‖η(·, t)‖2Hs , (41)

‖ξ(·, 0)‖2Hs ≤ lim inf
t→0+

‖ξ(·, t)‖2Hs . (42)

Adding (41) and (42) shows that

E(0) ≤ lim inf
t→0+

E(t).

But, the energy inequality reveals that

lim sup
t→0+

E(t) ≤ E(0),

and so the energy is right-continuous at t = 0. The inequalities (41) and (42) imply
that ‖η‖Hs and ‖ξ‖Hs are right lower semi-continuous at t = 0. As their sum is
right-continuous, it follows that they are each right-continuous at t = 0.

Finally, we prove strong continuity of solutions on (0, T ]. The strategy is to use
the smoothing that derives from the viscosity. As the energy estimates demonstrate
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(see Remark 3), the quantity

ν

∫ T

0

∫
X

(Sε∂s+1
x ηε)

2 + (Sε∂s+1
x ξε)

2 dxdt

is bounded, independently of ε ∈ (0, 1], say. It follows immediately that Sεηε and
Sεξε have weak limits in L2([0, T ];Hs+1). As before, elementary considerations show
these limits must be η and ξ. This means that at almost every time, η and ξ are
members of Hs+1.

Given δ > 0, there must be times T0 with 0 < T0 < δ, such that η(·, T0), ξ(·, T0) ∈
Hs+1. Using T0 as an initial time, and repeating the entire existence theory (now

with Hs+1 data) leads to existence of a solution on the interval [T0, T̃ ], which lies

in C([T0, T̃ ];H s̃) for any s̃ with 0 ≤ s̃ < s + 1. By uniqueness, this solution and
the previously found solution are the same. Taking s̃ = s shows that (η, ξ) lies in

C([T0, T̃ ];Hs ×Hs).

The size of T̃ depends on the interval on which we can make estimates of the
Hs+1 norm of the solution. Performing an Hs+1 estimate for the system, and as in
Remark 3, we derive

d

dt

(
‖η‖2Hs+1 + ‖ξ‖2Hs+1

)
≤ F (‖η‖Hs , ‖ξ‖Hs)

(
‖η‖2Hs+1 + ‖ξ‖2Hs+1

)
,

for some continuous function F. These Hs+1 norms are therefore uniformly bounded
as long as the Hs norms are under control. As these are already known to be
bounded on [0, T ], we may take T̃ = T. It is concluded that η and ξ are each in
C([T0, T ];Hs). Since δ was an arbitrary positive number, we see that in fact η and
ξ both lie in C((0, T ];Hs).

Combining this result with the right-continuity at t = 0 implies that η and ξ are
in C([0, T ];Hs). This finishes the proof of Theorem 2.1.
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