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Université Paris-Est

Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050)
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Abstract. The present essay is concerned with a model for the propagation of
three-dimensional, surface water waves. Of especial interest will be long-crested

waves such as those sometimes observed in canals and in near-shore zones of

large bodies of water. Such waves propagate primarily in one direction, taken to
be the x−direction in a Cartesian framework, and variations in the horizontal

direction orthogonal to the primary direction, the y−direction, say, are often

ignored. However, there are situations where weak variations in the secondary
horizontal direction need to be taken into account.

Our results are developed in the context of Boussinesq models, so they are

applicable to waves that have small amplitude and long wavelength when com-
pared with the undisturbed depth. Included in the theory are well-posedness
results on the long, Boussinesq time scale. As mentioned, particular interest
is paid to the lateral dynamics, which turn out to satisfy a reduced Boussi-

nesq system. Waves corresponding to disturbances which are localized in the

x−direction as well as bore-like disturbances that have infinite energy are taken
up in the discussion.

1. Introduction. The present study is concerned with surface water waves. Of
particular interest will be long-crested waves whose propagation is primarily along
one direction, say the x−coordinate in a standard xyz−Cartesian coordinate system
in which the vertical coordinate z increases in the direction opposite to that in which
gravity acts. A three-dimensional theory is needed, as variations in the y−direction
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are allowed. It is presumed, however, that the variations in the y−direction sub-
side as y goes to ±∞, so that at least formally, a two-dimensional description is
appropriate there.

Equations for the temporal evolution of such disturbances will be developed in a
spatial domain unbounded in both the x− and the y−directions, though a domain
with limited extent in the y−direction can also be countenanced.

More precisely, we consider a layer of incompressible, irrotational, perfect fluid
of undisturbed depth h0 resting upon a horizontal, featureless bottom represented
by the plane {

(x, y, z) : z = −h0

}
.

A typical kind of disturbance of the quiescent system, in which there is no motion
whatever, and which fits within the framework of our theory, is a line solitary wave
(a traveling wave of elevation that is uniform in the y−direction) whose depth
structure is simply

h(x, y, t) = ϕc(x− ct) + h0, (1)

where the speed of propagation c > 0, say, is a fixed constant. The dependent
variable h(x, y, t) is the height of the water column at the point (x, y) at time t. As
usual, we let η(x, y, t) = h(x, y, t)− h0 be the deviation of the free surface from its
rest position and presume that η is a single-valued function of (x, y, t) ∈ IR2× IR+.
Of course, unlike h, the deviation η need not be positive to make physical sense.

The theory is designed to allow for disturbances which are more complex than
those appearing in (1), disturbances whose initial structure might be

η0(x, y) = η(x, y, 0) = ϕc(x) + ψ(x, y), (2)

where ψ is not necessarily small, but we might demand that ψ(x, y) → 0 as (x, y)
becomes unbounded. Another possibility that lies within the scope of our theory is
a line solitary wave modulated in the y−direction, viz.

η0(x, y) = η(x, y, 0) = ϕc(y)(x) + ψ(x, y), (3)

where ψ is as above, and c(y) → c± as y → ±∞. Here, the constants c+ and c−
need not be equal.

An early effort at modeling such disturbances in case the initial condition η0(x, y)
varies very slowly in the y−direction was introduced by Kadomtsev and Petviashvili
[18] in their study of the stability of solitary waves to transverse perturbations.
Commentary on their model equation and its relation to the water-wave problem,
together with suggested improvements of the model to remove an artificial zero-mass
condition, can be found in the recent work of Lannes and Saut [20] and Molinet,
Saut and Tzvetkov [22].

The wave motion is presumed to fit within the Boussinesq regime, and conse-
quently a Boussinesq system will comprise the governing equations. The study of
such systems has been developed by many authors (see Bona, Chen and Saut [7, 8]
for a collection of references). Rigorous comparisons with the full Euler equations
for the flow of a perfect fluid are also available in Bona, Colin and Lannes [9], while
long time existence for the full Euler equations is available in Alvaret-Samaneigo and
Lannes [3]. What particularly distinguishes the present work from these previous
efforts is the non-trivial behavior of solutions as |(x, y)| → +∞.

Related theory and some telling numerical simulations have also been worked out
by Dougalis, Mitsotakis and Saut [15, 16]. Their theoretical development is set in
Sobolev spaces and does not allow for motions that do not evanesce in all directions.
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The plan of the paper is the following. Section 2 is devoted to preliminaries,
including a precise formulation of the problem. The original initial-boundary-value
problem is recast as an integral equation in Section 3 and local well-posedness is
established in a variety of function spaces. While Section 4 deals with aspects of the
asymptotic behavior of solutions as x or y becomes unboundedly large, Section 5 is
concerned with extending the local well-posedness theory to the longer, Boussinesq
time scale. This latter theory is developed in the more general context of d coupled
equations in n spatial variables. The water-wave problem considered here then falls
out as an example of the application of this theory. The body of the paper closes
with a summary and a perspective for future developments.

2. Preliminaries and formulation of the problem. We commence with a brief
indication of the notation in force hereafter, most of which is standard.

2.1. Notation. Derivatives with respect to spatial or temporal variables are desig-
nated by subscripts x, y, z or t, and also, when convenient, by ∂x, ∂y, ∂xi

, 1 ≤ i ≤ n,
or ∂t. The differential operators ∆, ∇ and Dk for k ≥ 0 are always taken with
respect to the spatial variables (x and y if n = 2, x1, · · · , xn for general values
of n). We also use the standard multi-index notation ∂γ , γ ∈ ZZn+, for n–variable
partial derivatives, where ZZ+ = IN ∪ {0} is the non-negative integers.

Except for the abbreviations noted below, the norm of an element f in a Banach
space X is denoted ‖f‖X . If Ω is a measurable set in IRn, n ≥ 1 a given integer,
Lp(Ω) is the Lebesgue space of pth–power integrable functions on Ω if 1 ≤ p < ∞,
with the usual modification if p =∞. When Ω is understood from the context, the
Lp(Ω)–norm of a function or of a vector-valued function f is written simply |f |p. (If
f = (f1, · · · , fn) is a vector-valued function of x, say, then |f |p = |f1|p + · · ·+ |fn|p
where |fj |p is the usual Lp–norm of the real-valued function fj , j = 1, · · · , n.) If
the context is in doubt, we write |f |Lp(Ω).

If k ≥ 0 is an integer, W k
p (Ω) is the subspace of functions f in Lp(Ω), whose

distributional partial derivatives ∂γf also lie in Lp(Ω) for all multi-indices γ with
|γ| ≤ k, with its usual norm

‖f‖Wk
p (Ω) =

∑
|γ|≤k

|∂γf |Lp(Ω) = ‖f‖Wk
p
,

the right-hand notation being preferred when Ω is understood from context. Spaces
of vector-valued functions with components in W k

p (Ω) will also be considered, and
the same notation will be used for the norm of such a vector-valued function, which is
simply the sum of the W k

p –norms of its components. The L2–based spaces appear

frequently and the norm of f in Hk(Ω) = W k
2 (Ω) is abbreviated to ‖f‖k if Ω is

clearly delineated from context. The space Cb(IRn) is the collection of bounded,
continuous functions on IRn with the L∞(IRn)−norm, while C0(IRn) is the subset
comprised of functions which are null at infinity, i.e. f ∈ C0(IRn) means that f
is everywhere continuous and lim|x|→+∞ f(x) = 0. The space C0(IRn) is a closed

linear subspace of the Banach space Cb(IRn). For an integer k ≥ 0, Ckb (IRn) is
the subspace of f in Cb(IRn) such that ∂γf ∈ Cb(IRn) for all multi-indices γ with
|γ| ≤ k. Similarly Ck0 (IRn) are those elements f of C0(IRn) such that ∂γf ∈ C0(IRn)
for all multi-indices γ with |γ| ≤ k. These spaces carry their usual norms, namely

‖f‖Ckb (IRn
) = ‖f‖Ck0 (IRn

) =
∑
|γ|≤k

|∂γf |∞ .
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Use will also be made of the Hölder spaces Cµb (IRn) and Ck+µ
b (IRn) for integers k > 0

and 0 < µ < 1. The latter is the space of f ∈ Ckb (IRn) such that if γ is a multi-index
with |γ| = k, then ∂γf ∈ Cµb (IRn) where Cµb (IRn) ⊂ Cb(IRn) are those functions for
which

[f ]µ = sup
x 6=y

|f(x)− f(y)|
|x− y|µ

< +∞.

Spaces that single out the temporal variable will also appear. If T > 0 and if Z is
a Banach space, the Banach space Lp(0, T ;Z) is the space of measurable mappings
u : [0, T ] −→ Z such that ‖u(t)‖Z is in Lp(0, T ), with the obvious norm. The closed
subspace of L∞(0, T ;Z) of continuous mappings is denoted C([0, T ];Z). If k ≥ 0 is
an integer, Ck([0, T ];Z) are those functions u such that the Z−valued distributional

derivative ∂jt u lies in C([0, T ];Z), for all j with 0 ≤ j ≤ k, with the norm

‖u‖Ck([0,T ];Z) =

k∑
j=0

||∂jt u||C([0,T ];Z) .

It will be convenient of use the abbreviations

XT =
(
C([0, T ]; Cb(IR2))

)3

, XT,0 =
(
C([0, T ]; C0(IR2))

)3

,

and for µ ∈ (0, 1),

X µT =
(
C([0, T ]; Cµb (IR2))

)3

, X µT,0 =
(
C([0, T ]; Cµ0 (IR2))

)3

;

also, for integers k, l ≥ 0,

X k,lT =
(
Ck([0, T ]; Clb(IR

2))
)3

,

and similarly for X k,lT,0, and X k,l+µT , for 0 ≤ µ < 1.

2.2. The central problem. As mentioned at the outset, a homogeneous layer of
perfect fluid of depth h0 is presumed to be resting on the plane {(x, y, z) : z = −h0}.
It is assumed that the wave motion resulting from a disturbance of the equilibrium
has a resulting free surface that is a graph over the flat bottom. In this circumstance,
the free surface may be described by the function η = η(x, y, t) as indicated already
in Section 1. With the additional assumptions that the fluid is incompressible (a
good assumption for air or water in ordinary circumstances) and the flow irrotational
(a presumption that is often a good one on large scales), a classical mathematical
formulation of the water-wave problem is the system

β∆φ+ φzz = 0 in {−1 ≤ z ≤ αη},
φz = 0 at {z = −1},
ηt + α∇φ · ∇η =

1

β
φz on {z = αη},

φt +
1

2

(
α|∇φ|2 +

α

β
(φz)

2
)

+ η = 0 on {z = αη},

(4)

where ∆ and ∇ are the obvious differential operators with respect to the variables
x and y. The variables in these equations have been scaled using the scheme

x̃ = `x, ỹ = `y, z̃ = h0z, η̃ = Aη, t̃ =
`

c0
t ,

where those adorned with a tilde are the original, dimensional quantities, A =
maxx,y,t |η̃| is the maximum amplitude encountered in the wave motion, ` is the
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smallest wavelength for which the flow has significant energy and c0 =
√
gh0 is the

kinematic wave velocity, with g the gravity constant. The unknown function φ =
φ(x, y, z, t) is the velocity potential, whose existence follows from incompressibility

and irrotationality, and which is scaled via φ̃ = `gAφ/c0. The velocity field U
is therefore given by U = (∇φ, φz) = (φx, φy, φz) where as above, ∇ denotes the
gradient operator in the x–y variables.

The Boussinesq regime is characterized by the parameters

α =
A

h0
and β =

(h0

`

)2

where A and ` are as above. Assume now that both α and β are small compared
to one, and that the Stokes number S = α/β is of order one. Of course, this can be
imposed upon the initial data for the problem, but it must also be presumed that
it continues to hold as the wave evolves in time. That such a presumption can be
inferred from conditions on the intitial data is a consequence of the recent work [3].
In the circumstances just delineated, a formal expansion of the velocity potential in
the vertical coordinate, followed by ignoring all terms of quadratic order or higher
in the quantities α and β, leads to the set of abcd–systems (coupled systems of three
nonlinear evolution equations, see [7, 8]), Vt +∇η +

α

2
∇|V |2 + β

(
a∆∇η − b∆Vt

)
= 0,

ηt +∇ · V + α∇ · (ηV ) + β
(
c∆∇ · V − d∆ηt

)
= 0.

(5)

The coefficients a, b, c and d are

a =
1− θ2

2
µ, b =

1− θ2

2
(1− µ), c =

(θ2

2
− 1

6

)
λ, d =

(θ2

2
− 1

6

)
(1− λ),

where λ and µ are real parameters that, formally, may be chosen without restriction,
and θ lies in the interval [0, 1]. The dependent variable z = η(x, y, t) is the deviation
of the free surface from its rest position (x, y, 0) at the time t, as already discussed.
(Thus the free surface lies at the point (x, y, η(x, y, t)) at time t for all (x, y) ∈ IR2.)
The variable V = V θ = (uθ, vθ) is the horizontal velocity field at the height θ above
the bottom.

Solutions of the well-posed subclass of these systems are approximations of the
solutions of the Euler system. Indeed, they provide direct approximations of the
deviation of the free surface and of the horizontal velocity field V = V θ at the
height θ above the bottom (at the vertical coordinate z = θ − 1), where θ has a
fixed value (again, with 0 ≤ θ ≤ 1, since the scaled height is measured in depths).
A small additional calculation using the formula

V σ(x, y, t) =
(

1− (1− θ)2 − (1− σ)2

2
β2∆

)
V θ(x, y, t) (6)

yields an approxmiation to the horizontal velocity field at the height σ above the
bottom. At the Boussinesq level of approximation, the vertical velocity is quadratic
in the small parameters α and β, and so ignored.

From the perspective of the practical use of these types of systems, the most
convenient choice is to take θ =

√
2/3 and λ = µ = 0 so that (5) reduces to

ηt +∇ · V + α∇ · (ηV )− β

6
∆ηt = 0,

Vt +∇η +
α

2
∇|V |2 − β

6
∆Vt = 0,

(7)



604 JERRY L. BONA, THIERRY COLIN AND COLETTE GUILLOPÉ

where V = V
√

2/3 . This is the so-called BBM–BBM Boussinesq system (see e.g.
[2], [4], [16]). Some reasons why this is a good choice among the three-parameter
family (5) is the ease with which non-homogeneous boundary conditions can be
imposed and accurate numerical schemes devised (see e.g. the discussions in [4], [5],
[10] and [6]). The zeroes on the right-hand side are in reality the terms in the formal
expansion of the original variables that are neglected in coming to the Boussinesq
approximation. These terms are of second order, which is to say, of order α2, αβ
and β2. (If the Stokes number S = 1, then of course all these terms are identical.)
A simple rescaling of V , η, (x, y) and t allows one to dispense with the parameters
α and β and the values 1/6 appearing above. Performing these changes of variables
and writing V in terms of its components, V = (u(x, y, t), v(x, y, t)), the system (7)
satisfied by (η, u, v) is, in detail, ηt + ux + vy + (ηu)x + (ηv)y − ηxxt − ηyyt = 0,

ut + ηx + uux + vvx − uxxt − uyyt = 0,
vt + ηy + uuy + vvy − vxxt − vyyt = 0,

(8)

posed in IR2 × IR+, with initial conditions

η(x, y, 0) = η0(x, y), u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y),

say, defined for (x, y) ∈ IR2.
The behavior at infinity that captures the type of wave motion in view here is that

the free surface is asymptotically constant in the x−direction and that variations
with respect to the y−variable vanish in the limit of large |y|. For example, we
might ask that  η → 0, (u, v)→ (0, 0), as x→ ±∞,

v → 0, ∂y → 0, as y → ±∞,
η → η±, u→ u±, as y → ±∞,

(9)

where the functions η± = η±(x, t) and u± = u±(x, t) will turn out to be solutions
to the reduced systems,{

(η±)t + (u±)x + (η±u±)x − (η±)xxt = 0,
(u±)t + (η±)x + u±u±x − (u±)xxt = 0,

(10)

set in IR× IR+, with initial conditions

η±(x, 0) = η±0 (x) = lim
y→±∞

η0(x, y), u±(x, 0) = u±0 (x) = lim
y→±∞

u0(x, y), (11)

for x ∈ IR. Appropriate compatibility conditions on the auxiliary data are that{
η0(x, y), u0(x, y), v0(x, y)→ 0, as x→ ±∞,
η±0 (x), u±0 (x)→ 0, as x→ ±∞. (12)

This corresponds to a disturbance that is long-crested, but localized in the x−direct-
ion. We could equally well ask that{

η, η± → 0 as x→ +∞,
η, η± → 1 as x→ −∞,

with all the other asymptotic behaviors as in (9), a specification which corresponds
to bore propagation.

The reduced system (10) is an approximation of the two-dimensional Euler equa-
tions which has been studied at some length in Bona and Chen [6]. Local well-
posedness of this system has been established, and if the data are regular, regular-
ity theory of solutions has been developed as well. More details follow in the next
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section. The system (8)–(12) approximates the three-dimensional Euler equations
for the specific flow problem considered here; in particular η(x, y, t) yields the ap-
proximation h(x, y, t) = η(x, y, t) + 1 of the scaled water depth at the point (x, y)
at time t, whilst (u(x, y, t), v(x, y, t)) describes the scaled horizontal velocity at the

point (x, y,
√

2/3−1) in the fluid domain at time t. Approximations of the velocity
field to the same accuracy at other depths are easily obtained using the formula (6)
(see again [7, 8]).

3. Local well-posedness and regularity. We begin by pointing out an interest-
ing fact about the system (8). If for some T > 0, (η, u, v) is a solution in XT in the
sense of distributions that has initial value (η0, u0, v0) ∈ Cb(IR2)3, then it is unique
within XT . Moreover, as will appear in Section 4, the behavior as |(x, y)| → +∞
of the solution (η, u, v) emanating from (η0, u0, v0) is completely determined by the
behavior at infinity of (η0, u0, v0).

The first task is to indicate the validity of the uniqueness assertion and then,
armed with this information, proceed to the main development. For some T > 0
let W = (η, u, v) ∈ XT and write the system (8) in the form(

I −∆
)
Wt = F (W ), (13)

where F (W ) = (Fη(W ), Fu(W ), Fv(W )) is a vector-valued function whose com-
ponents are first-order partial derivatives, with respect to x and y, of quadratic
polynomials in η, u and v. Since both W and the right-hand side of (13) have
components that are tempered distributions, the Fourier transform in the spatial
variables makes sense and it is determined that

(1 + k2 +m2)Ŵt = F̂ = ikĜ+ imĤ,

where the circumflex connotes the Fourier transform taken componentwise, (k,m)
are the variables dual to (x, y) and F = ∂xG+ ∂yH. A calculation reveals that

Wt = Kx ? G(W ) +Ky ? H(W ), (14)

where the convolution is applied componentwise and K(x, y) = 1
2πK0(

√
x2 + y2)

with K0 being the zeroth-order Bessel function of the third type, also known as the
Macdonald function. It is well known that, with its usual normalization (see [1]),
K0(z) is an even function of z, monotone decreasing for z > 0 and such that

K0(z) is a C∞-function, except at z = 0,

K0(z) ∼
√

π

2|z|
e−|z| as z → ±∞,

K0(z) ∼ − ln |z| as z → 0,

K ′0 decreases exponentially to 0 at ±∞ and

K ′0(z) ∼ −1

z
as z → 0.

(15)

From the properties (15) it is seen at once that both Kx and Ky lie in Lp(IR
2) for

1 ≤ p < 2. Hence, the distributional convolutions in (14) are in fact classical. As
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the right-hand side of (14) lies in XT , it follows that W lies in X 1,0
T . Integrating

(14) over [0, t] for t ≤ T allows us to adduce the formula

W (t) = W (0) +

∫ t

0

(
Kx ? G(W (s)) +Ky ? H(W (s))

)
ds = A(W )(t) (16)

that W must satisfy.
If the right-hand side of (16) is viewed as an operator which maps XT into itself,

then it is a straightforward consequence of the Minkowski integral inequality that
if V,W ∈ XT , then

‖A(V )−A(W )‖XT
≤ CT

(
1 + ‖V ‖XT

+ ‖W‖XT

)
‖V −W‖XT

, (17)

where the constant C may be taken to be the maximum of the L1(IR2)–norms of
Kx and Ky, both of which have the value∫

IR2

∣∣∣∂xK(x, y)
∣∣∣ dx dy =

1

2π

∫
IR2

∣∣∣∂xK0

(√
x2 + y2

)∣∣∣ dx dy =
2

π

∫ ∞
0

K0(r) dr = 1

(see [17], p. 736). Because of this estimate, if R and T ′ are chosen so that

R = 2|W (0)|∞ and T ′ ≤ min
{ 1

2(1 + 2R)
, T
}
, (18)

then A is a contraction mapping of the ball BR of radius R about the origin in the
space XT ′ = C([0, T ′]; Cb(IR2))3.

Similar considerations reveal that a solution W of (13) in XT is, near any point
t ∈ (0, T ), the fixed point of a contraction mapping in a closed ball about the
origin in a space of the form C([t0, t1]; Cb(IR2))3 for suitable values of t0 and t1 with
t0 < t < t1.

From these observations, several things follow at once. These are summarized in
the following Theorem.

Theorem 3.1. (i) For any given W (0) = (η0, u0, v0) ∈ Cb(IR2)3, there exists a solu-
tion W = (η, u, v) ∈ XT ′ of the integral equation (16) where T ′ = T ′(||W (0)||Cb(IR2)3)
is as in (18).

(ii) Any solution W ∈ XT of the integral equation (16) must lie in X 1,0
T . In fact,

for any µ with 0 ≤ µ < 1, and any integer k, Wt lies in X k,µT .
(iii) Any solution of the integral equation (16) in XT is a distributional solution

of the initial-value problem (8), and conversely, any distributional solution of (8)
in XT is a solution of (16) on its time interval of existence.

(iv) Solutions of (8) or (16) are unique in XT and they are given locally near any
time t0 as the fixed point of a contraction mapping of a ball centered at the origin
in C([t0, t0 + δ]; Cb(IR2))3 for small enough values of δ.

(v) A solution W ∈ XT depends continuously upon its initial value in Cb(IR2)3.

Proof. (i) Local existence for (16) follows from the contraction mapping principle
as already indicated.

(ii) The fact that W is C1 in time and Wt ∈ XT is clear from (16). In fact, since

(I−∆)−1 maps Cb(IR2) to C1+µ
b (IR2) for any µ ∈ [0, 1), the further regularity is also

clear. Since Wt lies in X µT , it follows that the right-hand side of (14) is differentiable
with respect to t with values in Cµb (IR)3, and, moreover,

Wtt =
(
Kx ? G

′(W ) +Ky ? H
′(W )

)
Wt . (19)
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It further follows that the right-hand side of (19) is differentiable with respect to
the temporal variable t. The obvious inductive step then establishes that W is t
–differentiable to all orders1.

(iii) The derivation of (16) from (8) in the context of solutions in XT was shown
above. The other way around is also clear from the properties of the kernel.

(iv) Because of (iii) and the fact that, whatever the value of W (t0), the analogue
of A starting at t0, namely

At0(W )(t) = W (t0) +

∫ t

t0

(
Kx ? G(W (s)) +Ky ? H(W (s))

)
ds ,

is a contraction on a ball about the origin in C([t0, t1]; Cb(IR2))3 for t1 > t0 close
enough to t0, it follows that solutions are, locally in time, the fixed points of a
contraction mapping. It is therefore immediate that they are locally unique in XT
and hence unique as long as they exist.

(v) Since the operator A or the operators At depend continuously on the initial
value, it follows that the solution map W (0) 7→W from Cb(IR2)3 to XT is Lipschitz
continuous for T small. Indeed, let W (0) and V (0) be two initial data and let
W and V be the associated solutions in XT . Take T small enough so that, say,
A = AW (0) (with an obvious notation) is a contraction on the ball BR around the
origin in XT , where R is large enough that both W and V , restricted to [0, T ], lie in
BR. Again because of (iii), V = AV (0)(V ), though AV (0) need not be contractive
on BR. Then, notice that

‖W − V ‖XT
= ‖AW (0)W −AV (0)V ‖XT

≤ ‖AW (0)W −AW (0)V ‖XT
+ ‖AW (0)V −AV (0)V ‖XT

≤ Θ‖W − V ‖XT
+ ‖W (0)− V (0)‖Cb ,

where Θ is the contraction constant for AW (0) on BR. As the constant Θ is less
than 1, the result follows.

This argument is local in t and can be applied near any point t0 in the intersection
of the existence intervals for the two solutions in question. If we fix attention on
a particular solution U in XT , then it is easy to infer from the foregoing that all
initial data near enough to U(0) generate solutions whose time-interval of existence
is at least [0, T ].

There are many corollaries and extensions of Theorem 3.1, some of which are
enunciated below.

The first point to notice is that the uniqueness statement takes place in a pretty
broad function class. This will be important presently when boundary behavior is
discussed.

Another interesting point is that the same arguments will work for a wide variety
of spatial function classes, which is to say, there is nothing exceptional about the
choice of Cb(IR2). Indeed, let Z = Z(IR2) be any Sobolev space of measurable
real-valued functions defined on IR2 that has the following properties:

1. Z is a Banach algebra, which means that whenever f, g ∈ Z, then fg ∈ Z,
and there is a universal constant c1 such that

‖fg‖Z ≤ c1‖f‖Z ‖g‖Z ;

1In fact, W is real analytic in t, see e.g. the argument in [4], Section 3.
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2. convolutions with Kx and Ky define bounded linear operators on Z, so there
is a constant c2 such that

‖Kx ? f‖Z ≤ c2‖f‖Z and ‖Ky ? f‖Z ≤ c2‖f‖Z ,

for all f ∈ Z.

It is well known that Sobolev spaces W k
p (IR2) satisfy Property 1 above if and only if

they are embedded in L∞(IR2) (in which case, if p <∞ or k ≥ 1, they are subspaces
of Cb(IR2) ). Since the kernels Kx and Ky are L1−functions, convolutions with them
clearly map these spaces boundedly into themselves. For such spaces Z, most of
Theorem 3.1 is still valid if XT is replaced by C([0, T ];Z)3 throughout. Thus, the
local existence result via a contraction-mapping argument applied to the operator
A follows from the same type of estimate as displayed in (17) except the constant C
will now also depend on c1 and c2. Part (iii) follows since solutions in C([0, T ];Z)3

lie in C([0, T ];L∞(IR2))3. Uniqueness in Part (iv) holds since it already holds in
C([0, T ];L∞(IR2))3 and the argument that this unique solution is given locally as
the fixed point of a contraction mapping is the same. This in turn implies local
Lipschitz continuity of the solution map.

The outcome of this discussion is the following result, stated somewhat informally
for brevity.

Theorem 3.2. Let Z be a Banach space which is continuously embedded in L∞(IR2)
and satisfies Properties 1 and 2 above. Then the results (i), (iii), (iv) and (v) of
Theorem 3.1 hold when XT is replaced throughout by C([0, T ];Z)3.

Remark 1. Condition 1 above can be replaced by the bilinear estimates

‖Kx ? (fg)‖Z ≤ c1‖f‖Z‖g‖Z and ‖Ky ? (fg)‖Z ≤ c1‖f‖Z‖g‖Z
and the same conclusions drawn. Notice that Conditions 1 and 2 certainly imply
these bilinear inequalities, but that the bilinear estimates are strictly weaker than
the conjunction of the two conditions. This observation was used to good effect in
the recent sharp well-posedness theory in [14] and it could be used to establish local
well posedness in weaker spaces in the present context. Working this out would
take us a bit out of our way, so this refinement is passed over here.

Corollary 1. The initial-value problem (8) is locally well posed in Ckb (IR2)3 and

Ck0 (IR2)3, for k = 0, 1, 2, · · · , in Ck+µ
b (IR2)3, Ck+µ

0 (IR2)3, for k = 0, 1, 2, · · · and

0 ≤ µ < 1, and in W k
p (IR2)3 provided that pk > 2. Moreover the results (i), (iii),

(iv) and (v) hold if XT is replaced by C([0, T ]; Ck0 (IR2))3, or by similar spaces of time
continuous vector-valued functions with values in one of the aforementioned spaces.

For data in Ckb (IR2)3 or Ck0 (IR2)3, the associated solution W has the property that

Wt ∈ Cl([0, T ], Ck+µ
b (IR2))3 (respectively Cl([0, T ], Ck+µ

0 (IR2))3) for any integer l ≥ 0

and any µ with 0 ≤ µ < 1. For data in W k
p (IR2)3 with kp > 2, or in Ck+µ

b (IR2)3

for 0 < µ < 1, the solution satisfies Wt ∈ Cl([0, T ],W k+1
p (IR2))3 or, respectively,

Wt ∈ Cl([0, T ]; Ck+1+µ
b (IR2))3, for any l ≥ 0.

Remark 2. It is worth mention that if T0 is the maximal existence time for a
solution corresponding to some initial data (η0, u0, v0) ∈ Cµb (IR2)3, for µ > 0, and

if it happens that (η0, u0, v0) actually lies in Ck+µ
b (IR2)3 for some k ≥ 1, then the

solution emanating from this data lies in C([0, T1]; Ck+µ
b (IR2))3 for any T1 < T0. This

follows from a straightforward bootstrap argument based on the integral equation
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(16), using the fact that convolution with Kx and Ky maps Cj+µb (IR2) continuously

into Cj+1+µ
b (IR2) for any j ≥ 0. This property is related to what T. Kato termed

“propagation of regularity” (see Kato [19] and the more recent, related article [13]).

4. Spatial asymptotics of solutions. The initial values posited in Section 3 are
not necessarily required to have any discernible structure in the far field where
|x| + |y| is large. In modeling real waves, it is often the case that natural far-field
boundary behavior presents itself.

4.1. Dirichlet conditions. Suppose to be given initial data (η0, u0, v0) for the
system (8), each element of which lies in Cb(IR2) as in Section 3. From the just
developed theory, there is a solution (η, u, v) of (8) corresponding to this initial
data. Suppose, in addition, that the data is such that it becomes one-dimensional
in the transverse direction, which is to say

η±0 (x) = lim
y→±∞

η0(x, y), u±0 (x) = lim
y→±∞

u0(x, y), lim
y→±∞

v0(x, y) = 0, (20)

where η±0 , u
±
0 lie in Cb(IR). (We do not yet assume about η0, u0, v0, η

±
0 and u±0

anything other than continuity and boundedness as x→ ±∞.)
Intuitively, it is expected that the wave motion emanating from such data will be

two-dimensional as y → ±∞ since it begins that way. If this is presumed to be the
case in a strong sense, that includes y−derivatives tending to 0 as y → ±∞, then
a formal appraisal of the Boussinesq system (8) reveals that the third equation is
satisfied identically and the first two equations simplify to{

ηt + ux + (ηu)x − ηxxt = 0,
ut + ηx + uux − uxxt = 0,

(21)

as y → ±∞. The theory in [6] assures that if the reduced system (21) is posed with
initial data

η(x, 0) = η±0 (x) and u(x, 0) = u±0 (x),

then there are unique solutions (η+(x, t), u+(x, t)) and (η−(x, t), u−(x, t)) defined on
some non-trivial time interval [0, T ], which have regularity properties corresponding
to the regularity of the data, just as in the theorems for the two-dimensional case
developed in Section 3.

Define the auxiliary functions

N1(x, y, t) = 1
2

(
η+(x, t) + η−(x, t)

)
+ 1

2

(
η+(x, t)− η−(x, t)

)
tanh(y),

U1(x, y, t) = 1
2

(
u+(x, t) + u−(x, t)

)
+ 1

2

(
u+(x, t)− u−(x, t)

)
tanh(y).

(22)

Of course, there is nothing significant about the use of the hyperbolic tangent in
the above formulas. Any smooth function f = f(z) such that

f(z)− sgn(z) ∈ L2(IR), f ′ ∈ Hk−1(IR),

for k large enough would suffice for the theory to follow. Note that

lim
y→±∞

N1(x, y, t) = η±(x, t) and lim
y→±∞

U1(x, y, t) = u±(x, t). (23)
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Let N = η − N1, U = u − U1, and V = v. The system (8) is equivalent to the
system

Nt + Ux + Vy + (NU)x + (NU1)x
+(N1U)x + (NV )y + (N1V )y −Nxxt −Nyyt = G1(N1, U1),

Ut +Nx + UUx + (UU1)x + V Vx − Uxxt − Uyyt = G2(N1, U1),

Vt +Ny + UUy + (UU1)y + V Vy − Vxxt − Vyyt = G3(N1, U1),

(24)

for (N,U, V ), with the initial conditions,

N(·, 0) = η0(·)−N1(·, 0), U(·, 0) = u0(·)− U1(·, 0), V (·, 0) = v0(·). (25)

In more detail, the right-hand sides in the system (24) are
G1(N1, U1) = −N1

t − U1
x − (N1U1)x +N1

xxt +N1
yyt,

G2(N1, U1) = −U1
t − (N1)x − U1U1

x + Uxxt + U1
yyt,

G3(N1, U1) = −N1
y − U1(U1)y,

and direct calculation of these reveals they may be simplified to

G1(N1, U1) =
(
ρ(y)− ρ(y)2

)(
(η+ − η−)(u+ − u−)

)
x

+ (η+ − η−)tρ
′′(y),

G2(N1, U1) = 1
2

(
ρ(y)− ρ(y)2

)(
(u+ − u−)2

)
x

+ (u+ − u−)tρ
′′(y),

G3(N1, U1) = ρ′(y)
[
(η+ − η−) + (u+ − u−)

(
ρ(y)u+ + (1− ρ(y))u−

)]
,

using the equations (21) satisfied by (η+, u+) and (η−, u−), where

ρ(y) =
1 + tanh(y)

2
.

Define the vector-valued functions W = (N,U, V ) and G = (G1, G2, G3). In
terms of W , the system (24)–(25) has the compact form

(I −∆)Wt = F (W,N1, U1) +G(N1, U1). (26)

Here F = F (W,N1, U1) = (F 1, F 2, F 3) and

F 1(W,N1, U1) = ∂x

(
U +NU +NU1 +N1U

)
+ ∂y

(
V +NV +N1V

)
,

F 2(W,N1, U1) = ∂x

(
N + 1

2U
2 + UU1 + 1

2V
2
)
,

F 3(W,N1, U1) = ∂y

(
N + 1

2U
2 + UU1 + 1

2V
2
)
.

Notice that the initial data N(x, y, 0), U(x, y, 0) and V (x, y, 0) all have the property
that they converge to 0 as y → ±∞. This is also true of Gj(N1, U1), j = 1, 2, 3.
Indeed, not only do the Gj go to 0 as y → ±∞, but they do so uniformly for
(x, t) ∈ IR× [0, T ], where T > 0 is a joint existence time for the two pairs (η+, u+)
and (η−, u−).
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Just as in Section 3, equation (26) may be recast as an integral equation, viz.

W (t) = W (0) +

∫ 1

0

(
Kx ? H(W,N1, U1) +Ky ? J(W,N1, U1)

)
ds

+

∫ 1

0

K ? G(N1, U1) ds

= B(W )(t)

(27)

with

H =

 U +NU +NU1 +N1

N + 1
2U

2 + UU1 + 1
2V

2

0

 and J =

 V +NV +N1V
0

N + 1
2U

2 + UU1 + 1
2V

2

 .

It is straightforward, using the contraction-mapping principle, to ascertain that
this integral equation has a solution on some time interval [0, T ], T > 0, and that this
solution provides a solution of the initial-value problem (24). What is particularly
notable is that the solution necessarily has zero lateral boundary values, viz.

lim
y→±∞

 N(x, y, t)
U(x, y, t)
V (x, y, t)

 =

 0
0
0

 .

This follows because

M = {f ∈ Cb(IR2), f(x, y)→ 0 as y → ±∞}

is a closed subspace of Cb(IR2). Indeed, notice that B maps C([0, T ];M)3 into itself
since W (0) and G lie there, and U1 and N1 are bounded. The contraction-mapping
principle applied to a suitable ball BR around the zero-function in C([0, T ]; Cb(IR2))3

assures that for any starting value W1 in BR, the sequence of iterates Wj+1 = B(Wj)
converges to the unique fixed point W∞ = B(W∞). If W1 is chosen in C([0, T ];M)3,
then Wj is in C([0, T ];M)3 for all j and as M3 is closed in Cb(IR2)3, it is inferred
that W∞ lies in C([0, T ];M)3.

If we define (η, u, v) = W+(N1, U1, 0), then this triple solves (8). By uniqueness,
it must be the solution of (8) with initial data (η0, u0, v0), which demonstrates that
necessarily,

lim
y→±∞

η(x, y, t) = η±(x, t), lim
y→±∞

u(x, y, t) = u±(x, t),

lim
y→±∞

v(x, y, t) = 0,
(28)

for 0 ≤ t ≤ T . Moreover, if the boundary conditions in (20) imposed upon the
initial data are assumed uniformly in x, then the limits in (28) are uniform for
(x, t) ∈ IR× [0, T ]. These conclusions are summarized in the following theorem.

Theorem 4.1. Let (η0, u0, v0) be given in Cb(IR2)3 and suppose that the boundary
behavior (20) holds. Then the solution (η, u, v) of (8) emanating from (η0, u0, v0)
satisfies (28) where the lateral boundary values (η+, u+) and (η−, u−) solve the re-
duced system (21). Moreover, if the boundary values in (20) are taken on uniformly
for x ∈ IR, then the limits in (28) are uniform for (x, t) in IR× [0, T ].

Remark 3. As no distinction has been made between the independent variables
x and y, the same results hold if it is presumed, instead of (20), that (η0, u0, v0) ∈
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Cb(IR2)3 and

lim
x→±∞

η0(x, y) = η±1 (y), lim
x→±∞

u0(x, y) = 0,

lim
x→±∞

v0(x, y, t) = v±(y).
(29)

In this case, the solutions η±1 (y, t), v±(y, t) of the reduced system
ηt + vy + (ηv)y − ηyyt = 0,
vt + ηy + vvy − vyyt = 0,

η(y, 0) = η±1 (y), v(y, 0) = v±(y),

determine the boundary behavior of the solution (η, u, v) of (8) for x→ ±∞, with
the restrictions (29) on the initial data. More precisely, the limits

lim
x→±∞

η(x, y, t) = η±1 (y, t), lim
x→±∞

u(x, y, t) = 0,

lim
x→±∞

v(x, y, t) = v±(y, t),

hold for all t in the relevant temporal existence interval.

Notice in particular the special case where η+
1 (y) ≡ η, η−1 (y) ≡ η, lim

x→±∞
u0(x, y) ≡

0 and v±(y) ≡ 0 (with the notation introduced in Remark 2). In this case,

η+
1 (y, t) ≡ η, η−1 (y, t) ≡ η, v±(y, t) ≡ 0. (30)

If η = η = 0, this corresponds to the situation wherein the initial disturbance is
localized in the x−direction, for example, the initial configurations described in (2)
and (3). If, on the other hand, η = 0 and η > 0, the data mimics the situation that
one obtains in bore propagation where a surge intrudes, from x near −∞, into a
quiescent stretch of the fluid (see, e.g. [23], [12], [24] for earlier theory in the case
where there is no y–variation and [25] for the more general situation). Our theory
assures that if the motion begins in such a configuration, it necessarily maintains
this asymptotic behavior, which is to say,

lim
x→+∞

η(x, y, t) ≡ 0, lim
x→−∞

η(x, y, t) ≡ η

and

lim
x→±∞

u(x, y, t) = lim
x→±∞

v(x, y, t) ≡ 0.

Of particular interest is the situation where the initial data has bore-like structure
as in (30), but also possesses transverse structure as in (20). Such a configuration
could be relevant to the modeling of a tsunami approaching a shoreline (but, of
course, not to the last stages of run-up and inundation). For such initial data, the
compatibility conditions

lim
x→−∞

lim
y→±∞

η0(x, y) = η, lim
x→+∞

lim
y→±∞

η0(x, y) = η, (31)

and

lim
|(x,y)|→+∞

u0(x, y) = lim
|(x,y)|→+∞

v0(x, y) = 0, (32)

must be imposed.
With these compatibility conditions, it is straightforward to ascertain that the

auxiliary functions N1 and U1 introduced in (22) also have the property that

lim
x→+∞

N1(x, y, t) ≡ η, lim
x→−∞

N1(x, y, t) ≡ η,
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and similarly

lim
x→±∞

U1(x, y, t) ≡ 0.

In consequence, the variables (N,U, V ) are such that

lim
|(x,y)|→+∞

N(x, y, 0) = lim
|(x,y)|→+∞

U(x, y, 0) = lim
|(x,y)|→+∞

V (x, y, 0) ≡ 0.

Since C0(IR2) is closed in Cb(IR2), our previous argument assures that the solution
(N,U, V ) of (24) lies in C([0, T ]; C0(IR2))3 for some T > 0. This in turn has the
following consequence.

Theorem 4.2. Let (η0, u0, v0) be given in Cb(IR2)3 and suppose this triple respects
the boundary behavior in (20) and (30) and the compatibility conditions (31) and
(32) hold. Then, the solution (η, u, v) of (8) that starts at (η0, u0, v0) has the bound-
ary behavior (28) where (η+, u+) and (η−, u−) solve the reduced system (21).

4.2. Neumann conditions. The argument given in Subsection 4.1 may be adapted
to analyze the imposition of Neumann boundary conditions. Suppose the initial
data (η0, u0, v0) lies in C1

b (IR2)3 and is such that

lim
y→±∞

∂yη0(x, y) = lim
y→±∞

u0(x, y) = 0, and, say, lim
y→+±∞

v0(x, y) = 0, (33)

for all x ∈ IR. The operator A associated to this initial data as in (16) maps the
subspace

N =
{
W = (η, u, v) ∈ C([0, T ]; C1

b (IR2))3 : for all x ∈ IR, t ∈ [0, T ],

lim
y→±∞

∂yη(x, y, t) = lim
y→±∞

u(x, y, t) = lim
y→+±∞

v(x, y, t) = 0
} (34)

into itself. As N is closed in C1
b (IR2)3, it follows by a familiar argument that the

fixed point W = (η, u, v) of A lies in C([0, T ];N ), and this in turn means that the
solution of (16) with initial data (η0, u0, v0) maintains zero Neumann conditions for
η and u and zero Dirichlet condition on v as y → ±∞ throughout its interval of
existence. These observations are recorded in the following theorem.

Theorem 4.3. Let (η0, u0, v0) ∈ C1
b (IR2)3 be given and suppose that the boundary

conditions (33) hold. Let (η, u, v) be the solution of (16) guaranteed to exist on some
time interval [0, T ]. Then (η, u, v) lies in the subspace N defined in (34).

Remark 4. If the initial data satisfies both (20) and (33), it also follows that the
solution belongs to N and satisfies the dynamic boundary conditions (10). This
follows because the auxiliary functions N1 and U1 have the properties (23) and,
additionally,

lim
y→±∞

∂yN
1(x, y, t) = lim

y→±∞
U1(x, y, t) = 0.

Thus, for any T > 0, the operator B appearing in (27) maps the subspace

P =
{
f = (f1, f2, f3) ∈ C([0, T ]; C1

b (IR2) ∩ C0(IR2))3 : for all x ∈ IR, t ∈ [0, T ],

∂yfi(x, y, t)→ 0 as y → ±∞, i = 1, 2
}

into itself. As P is closed in C1
b (IR2)3, the solution (N,U, V ) of (24) also lies in P.

This in turn implies that (η, u, v) satisfies (28) and lies in N .
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5. Long-time existence. The well-posedness theory put forward above is local in
time. An analysis of the contraction-mapping argument in Section 4 and the very
closely related argument for local existence theory for the reduced system (21) to
be found in [6] reveals that the temporal interval [0, T ] of existence is of the form

T0 =
C

1 + |W (0)|∞
,

where C is a constant independent of the initial data, but which may depend on
the function class from which the data is drawn. Thus the existence time afforded
by taking recourse to the contraction-mapping principle is of order one, and does
not become large even if the data is small.

This is not a satisfactory result if one has in mind the modeling of real water
waves. When the initial disturbance respects the assumptions made in the deriva-
tion of the system (7), then one hopes for an existence theory at least on what we
call the Boussinesq time scale, which is explained now.

Referring back to the system (7) written in variables scaled so that the dependent
variables are all of order one, the error terms are of quadratic order, which is to
say, of order αβ and β2, as mentioned previously. Without fortuitous cancellation,
one then expects that the error between the solutions of the model system (7) and
the full Euler equations (4) will accumulate like t(α2 + β2) as the solutions evolve.
When t is of order 1/α, the error will then have grown to α + βS−1, where S is,
as before, the Stokes number; this is an error that is still small compared to the
order-one size of the dependent variables. While this description is purely formal,
it has been given a rigorous basis in [9]. We term the time scale

T1
∼=

1

α
∼=

1

β
(35)

the Boussinesq time scale and put forward the point of view that well-posedness
theory should extend at least to this time interval to give the model a chance of
having predictive power.

We have not been able to establish well-posedness on the time scale T1 for data
that is merely bounded and continuous. Further regularity is needed in our develop-
ment. However, this further regularity is entirely consistent with real, non-breaking
water waves of small amplitude and long wavelength.

In outline, the present section proceeds as follows. The result in view is first
derived for the reduced system (21). This is in fact the key calculation as it informs
all the subsequent considerations. We then show how the inequalities implying
long-time existence for (21) may be generalized to a system of d coupled equations
in one space dimension. This in turn points the way to systems of d equations in
more than one spatial dimension, which in turn specializes to give the desired result
for the original, water-wave system (7).

5.1. The one-dimensional case. Suppose the initial data (η0(x), u0(x)) not only
lies in C0(IR)2, but in fact is drawn from Hk(IR)2 where k ≥ 2. The local theory for
the reduced system (21) assures existence, uniqueness and continuous dependence
on the data of a solution pair (η, u) ∈ C([0, T ];Hk(IR))2 for some T > 0. If it was

known a priori that for any time interval [0, T̃ ] over which the solution exists, the
quantity

sup
0≤t≤T̃

||(η, u)||k (36)
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is bounded, and this holds independently of T̃ ≤ T1, where T1 is the Boussinesq
time scale as in (35), then a simple iteration of the contraction-mapping argument
would yield the desired result.

To obtain an a priori bound on the quantity in (36) when T̃ = T1, energy-type
arguments are used. In the calculations to follow, the analysis is made assuming
the solution (η, u) is smooth and its components η and u, along with their first few
partial derivatives, all vanish as x → ±∞. This means that when integration by
parts is performed, the boundary terms make no contribution.

One justifies the use of the extra smoothness by approximating (η, u) in the space
C(0, T ;Hk)2, for a suitable k ≥ 1, by a sequence {(ηj , uj)}∞j=1 in C(0, T ;Hk+5)2,
say. The pair (ηj , uj) satisfies the system (21) up to error terms Rj and Sj that
tend to zero in C(0, T ;Hk−1) as j → +∞. It is straightforward to check that the
energy-type calculations to follow are still valid up to error terms that tend to zero
as j → +∞. The solutions of the differential inequalities that result provide a priori
information that is independent of large values of y, and which is exactly what is
obtained via formal calculations. This standard argument is sketched briefly in the
present subsection, but is not dwelt upon subsequently (cf. [11]).

Rewrite the reduced system in the variables corresponding to the full system (7),
viz.  ηt + ux + ε(ηu)x − εηxxt = 0,

ut + ηx + εuux − εuxxt = 0,
η(x, 0) = η0(x), u(x, 0) = u0(x).

(37)

Here the Stokes number S = α
β has again been set to 1 for simplicity and ε denotes

the common value of α and β. In these variables, the Boussinesq time scale T1 is a
quantity of order 1

ε .
Multiply the first equation in (37) by η and the second by u and integrate both

results over IR. After summing the results and performing suitable integrations by
parts, it is found that

1

2

d

dt

∫ ∞
−∞

(
η2 + u2 + εu2

x + εη2
x

)
dx = −1

2
ε

∫ ∞
−∞

η2ux dx.

Similarly, multiplying the first equation by ηxx and the second by uxx and integrat-
ing over IR leads to

1

2

d

dt

∫ ∞
−∞

(
η2
x + u2

x + εu2
xx + εη2

xx

)
dx = ε

∫ ∞
−∞

(
ηuxηxx + ηxuηxx + uuxuxx

)
dx.

It will be convenient to have at our disposal the function X : [0, T ] −→ IR+

defined to be

X(t) = ||u(·, t)||2 + ||η(·, t)||2.

In terms of X, the last two formulas imply the inequalities

d

dt

∫ ∞
−∞

(
u2 + η2 + εu2

x + εη2
x

)
dx ≤ CεX3(t), (38)

and

d

dt

∫ ∞
−∞

(
u2
x + η2

x + εu2
xx + εη2

xx

)
dx ≤ CεX3(t), (39)

where the two constants denoted C are independent of ε and of X(t).



616 JERRY L. BONA, THIERRY COLIN AND COLETTE GUILLOPÉ

The crucial step in the analysis presented here is an H2−estimate, which is a bit
more subtle than (38) and (39). Start with the following calculation;

d

dt

∫ ∞
−∞

(
(1 + γεη)u2

xx + η2
xx + εu2

xxx + εη2
xxx

)
dx

= εγ

∫ ∞
−∞

ηtu
2
xx dx+ 2εγ

∫ ∞
−∞

ηuxxuxxt dx

+2

∫ ∞
−∞

(
uxxuxxt + ηxxηxxt − εuxxuxxxxt − εηxxηxxxxt

)
dx

= I1 + I2 + I3,

(40)

where the constant γ will be prescribed presently and several integrations by parts
have been made.

Consider first the integral I1. From the first equation in (37), it is discerned that

ηt = −(1− ε∂2
x)−1∂x(u+ εηu),

whence

|ηt|∞ ≤ ||ηt||1 ≤ ||ux||1 + ε||(uη)x||1 ≤ ||u||2 + ε||u||2 ||η||2 ≤ X(t) + εX2(t). (41)

It follows immediately that

I1 ≤ Cεγ
(
X3(t) + εX4(t)

)
.

Turning to I3, notice from (37) again that

uxxt − εuxxxxt = ∂2
x(ut − εuxxt) = −∂3

x

(
η +

1

2
εu2
)

and, similarly,

ηxxt − εηxxxxt = −∂3
x(u+ εuη).

It thus transpires that

1

2
I3 = −

∫ ∞
−∞

uxx

(
η +

1

2
εu2
)
xxx

dx−
∫ ∞
−∞

ηxx

(
u+ εuη

)
xxx

dx

= −5

2
ε

∫ ∞
−∞

ux

(
u2
xx + η2

xx

)
dx− 3ε

∫ ∞
−∞

ηxuxxηxxdx

+ε

∫ ∞
−∞

ηuxxηxxxdx

≤ 8εX3(t) + ε

∫ ∞
−∞

ηuxxηxxxdx.

(42)

Naturally, the last integral on the right-hand side of (42) presents a problem.
Attention is now given to I2. Remark first that

1

2γε
I2 =

∫ ∞
−∞

ηuxxuxxtdx = −
∫ ∞
−∞

ηuxx∂
2
x

(
ηx + εuux − εuxxt

)
dx

= −
∫ ∞
−∞

ηuxxηxxxdx− ε
∫ ∞
−∞

ηuxx(uux)xxdx+ ε

∫ ∞
−∞

ηuxxuxxxxtdx

= −
∫ ∞
−∞

ηuxxηxxxdx+ J1 + J2.
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Using Leibniz’s rule, the integral J1 may be expressed as

J1 = −ε
∫ ∞
−∞

ηuxx

(
uuxxx + 3uxuxx

)
dx

= ε

∫ ∞
−∞

(1

2
(ηu)x − 3ηux

)
u2
xxdx

≤ 4εX4(t).

Regarding J2, notice that

J2 = −ε
∫ ∞
−∞

(
ηuxxxuxxxt + ηxuxxuxxxt

)
dx

= −ε
2

d

dt

∫ ∞
−∞

ηu2
xxxdx+

ε

2

∫ ∞
−∞

ηtu
2
xxxdx− ε

∫ ∞
−∞

ηxuxxuxxxtdx.
(43)

Because of (41), the second term on the right-hand side of (43) may be bounded
above thusly;

ε

2

∫ ∞
−∞

ηtu
2
xxxdx ≤ Cε

(
X(t) + εX2(t)

)∫ ∞
−∞

u2
xxxdx.

Again using (37), there follows the relation

εuxxxt = −ε∂2
x(1− ε∂2

x)−1∂2
x

(
η +

ε

2
u2
)
,

whence

|εuxxxt|2 ≤ C
(
X(t) + εX2(t)

)
.

It follows that

ε

∫ ∞
−∞

ηxuxxuxxxtdx ≤ ε|ηx|∞|uxx|2 |uxxxt|2 ≤ C X2(t)
(
X(t) + εX2(t)

)
.

Thus, we see that

J2 ≤ −
ε

2

d

dt

∫ ∞
−∞

ηu2
xxxdx+ Cε

(
X(t) + εX2(t)

)∫ ∞
−∞

u2
xxxdx

+CX2(t)
(
X(t) + εX2(t)

)
.

The estimates of the integrals I1, I2 and I3 may be combined to yield the helpful
inequality

I1 + I2 + I3 ≤ CεγX3(t) + Cε2γX4(t)

+2ε(1− γ)

∫ ∞
−∞

ηuxxηxxxdx− ε2γ
d

dt

∫ ∞
−∞

ηu2
xxxdx

+Cε2γ
(
X(t) + εX2(t)

)
|uxxx|22.

(44)

First, choose γ = 1 to rid ourselves of the troublesome term and then combine (44)
and (40) to deduce that

d

dt

∫ ∞
−∞

[
(1 + εη)u2

xx + η2
xx + ε

(
(1 + εη)u2

xxx + η2
xxx

)]
dx

≤ CεX3(t) + Cε2X4(t) + Cε2
(
X(t) + εX2(t)

)∫ ∞
−∞

u2
xxxdx.

(45)

We are now in a position to adduce the following interesting result. Define Y (t)
by

Y (η, u) = Y (t) = X(t) + ε
(
|ηxxx(·, t)|2 + |uxxx(·, t)|2

)
.
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Theorem 5.1. Let R > 0 be specified. Then there is an ε0 = ε0(R) > 0 and a
constant C = C(R) such that if initial data (η0, u0) ∈ H3(IR)×H3(IR) has

Y (η0, u0) ≤ R
and if ε ≤ ε0, then the solution (η, u) to system (37) emanating from (η0, u0) exists

for at least the time interval
[
0, Cε

]
.

Proof. This result of long-time existence for fixed data (data in a fixed ball in
H3(IR)) is an elementary consequence of the differential inequalities (38), (39) and
(45) together with a Gronwall-type argument.

It remains only to justify the calculations made assuming η and u are smooth
for initial data that lies only in H3. The argument is straightforward and can be
found, for example, in a similar context in [11].

In a little more detail, let (η, u) be a solution in C(0, T ;H3)2 for some T > 0.
Fix ε > 0. It follows immediately from Theorem 3.1, Part (i), that (ηt, ut) ∈
C(0, T ;H4)2. Approximate (η, u) by a sequence {(ηj , uj)}∞j=1 in C1(0, T ;H10)2, say,
so that

||ηj − η||C(0,T,H3) + ||∂tηj − ∂tη||C(0,T,H4) → 0

and
||uj − u||C(0,T,H3) + ||∂tuj − ∂tu||C(0,T,H4) → 0

as j →∞.
Of course the pairs (ηj , uj) are not solutions of the system (37), but as they are

eventually close to (η, u), it is straightforward to ascertain that{
∂tηj + ∂xuj + ε∂x(ηjuj)− ε∂2

x∂tηj = Rj ,
∂tuj + ∂xηj + εuj∂xuj − ε∂2

x∂tuj = Sj ,

where
||Rj ||C(0,T ;H2), ||Sj ||C(0,T ;H2) → 0

as j →∞.
Letting v = ηj and w = uj , it is clear that (38) and (39) hold in the revised form

d

dt

∫ ∞
−∞

(
v2 + w2 + εv2

x + εw2
x

)
dx ≤ CεX3(t) +

∫ ∞
−∞

(
|v| |Rj |+ |w| |Sj |

)
dx, (46)

and

d

dt

∫ ∞
−∞

(
v2
x + w2

x + εv2
xx + εw2

xx

)
dx

≤ CεX3(t) +

∫ ∞
−∞

(
|v| |∂2

xRj |+ |w| |∂2
xSj |

)
dx.

(47)

A tedious, but straightforward, calculation reveals that (45) holds up to error terms
involving Rj and Sj . Precisely, the differential inequality

d

dt

∫ +∞

−∞

(
(1+εv)w2

xx+v2
xx+ε((1+εv)w2

xxx+v2
xxx)

)
dx ≤ CεX3

j (t)+Cε2X4
j (t)+αj

emerges, where ε is fixed, but arbitrary in the range (0, 1]. The term αj may be
bounded above as follows:

|αj | ≤ CX2(t)
[
||Rj ||2 + ||Sj ||2

]
. (48)

Because v and w have extra regularity, all the computations leading to (46)–(48)
are easily justified.
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Since the term in square brackets in (48) tends to zero as j → +∞, uniformly
on [0, T ], for j sufficiently large, the conclusions of the theorem hold by appeal to a
Gronwall argument. The result follows.

5.2. Long-time existence for a general system in one dimension. An anal-
ysis of the essential aspects of the calculations in Section 5.1 points towards a more
general result. The elucidation of this result is the provenance of the present sub-
section.

Consider a system of d coupled partial differential equations in one space dimen-
sion of the form

∂tU + L∂xU + εM(U)∂xU − ε∂2
x∂tU = 0, (49)

where U(x, t) = (u1(x, t), u2(x, t), · · · , ud(x, t)) and x ∈ IR. The following hypothe-
ses are made concerning L and M .

1. The d× d matrix L =
[
lij

]
of real numbers is symmetric,

2. M(U) =
[
mij(U)

]
is a d× d matrix whose components are smooth functions

of U = (u1, · · · , ud) and
3. there is a d× d symmetric matrix N(U) of smooth functions such that(

Id + εN(U)
)(
L+ εM(U)

)
is symmetric, which is to say, the hyperbolic part of (49) (the system without
the dispersive terms ∂2

x∂tU) is symmetrizable. (Here, Id connotes the d × d
identity matrix in IRd2).

Hypotheses 1 and 2 allow us to formulate a local existence theory for the initial-
value problem corresponding to initial data

U(x, 0) = U0(x). (50)

Indeed, the argument in favor of such a proposition proceeds just as in the case
d = 2, and does not require the symmetry of L in Hypothesis 1, nor the structure
apparent in Hypothesis 3. This result is stated without a detailed proof in the
following proposition.

Proposition 1. The initial-value problem (49)–(50) is locally well posed in Cb(IR)d,
and indeed in Zd, where Z = Z(IR) is any Sobolev space of functions {f : IR 7→ IR}
embedded in L∞(IR) and satisfying the properties 1 and 2 of Theorem 3.2.

Long-time existence in the Sobolev class Zd = H2(IR)d is established using
energy estimates as in Section 5.1. For the following calculations, the full force of
the hypotheses 1, 2 and 3 above are used.

We begin with an L2(IR)−estimate, viz.

d

dt

∫ ∞
−∞

(
|U |2 + ε|∂xU |2

)
dx = −2

∫ ∞
−∞

(
U · L∂xU + εU ·M(U)∂xU

)
dx.

The first term on the right-hand side vanishes on account of the symmetry of L.
The second term is bounded in a simple way, leading to

d

dt

∫ ∞
−∞

(
|U |2 + ε|∂xU |2

)
dx ≤ ε|M(U)|∞|∂xU |2|U |2

≤ Cε||U ||21F0(||U ||1), (51)

where F0 depends on the growth of the matrix elements mij of M .
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For an H1(IR)−estimate, a similar computation yields

d

dt

∫ ∞
−∞

(
|∂xU |2 + ε|∂2

xU |2
)
dx = 2

∫ ∞
−∞

(
∂xU · ∂t∂xU − ε∂xU · ∂3

xU∂tU
)
dx

= −2ε

∫ ∞
−∞

∂xU ·
[
L∂2

xU + ε∂x

(
M(U)∂xU

)]
dx.

The first term on the right-hand side of the preceding equation vanishes because
of the symmetry of the constant matrix L, and a bound for the second term gives
immediately the inequality

d

dt

∫ ∞
−∞

(
|∂xU |2 + ε|∂2

xU |2
)
dx ≤ Cε

(
F0(X)X2 + F1(X)X3

)
,

where F1(X) depends on the gradients ∇mij , 1 ≤ i, j ≤ d, of the matrix entries of
M and on X(t) = ||U(·, t)||2.

So far no useful bound is revealed. The crucial step is, as before, the estimate in
H2(IR). Use the symmetry of the matrix N(U) and calculate as follows;

d

dt

∫ ∞
−∞

[(
Id + εN(U)

)
∂2
xU · ∂2

xU + ε|∂3
xU |2

]
dx

= 2

∫ ∞
−∞

[(
Id + εN(U)

)
∂2
x∂tU · ∂2

xU + ε∂3
xU · ∂3

x∂tU
]
dx

+ε

∫ ∞
−∞

∂tN(U)∂2
xU · ∂2

xUdx.

(52)

Using equation (49), and after an integration by parts, the first integral on the
right-hand side of (52) is seen to equal

−2

∫ ∞
−∞

(
Id + εN(U)

){
∂2
x

[(
L+ εM(U)

)
∂xU

]}
· ∂2
xUdx

+2ε2

∫ ∞
−∞

N(U)∂4
x∂tU · ∂2

xU dx = I1 + I2.

Thus, it follows that

d

dt

∫ ∞
−∞

[(
Id + εN(U)

)
∂2
xU · ∂2

xU + ε|∂3
xU |2

]
dx = I1 + I2 + I3,

where I3 has the obvious definition. Attention is now given to determining effective
bounds on the three integrals I1, I2 and I3.

Notice that, from equation (49),

∂tU = −(1− ε∂2
x)−1

[
L∂xU + εM(U)∂xU

]
,

and, consequently,

|∂tU |∞ ≤ CX
(

1 + F0(X)
)

(53)

= F2(X),

where C is independent of ε, and F0 is defined in (51). It follows that

|I3| ≤ CεF3(X)F2(X)|∂2
xU |22

= CεX2F4(X), (54)

with F3(X) depending on the growth of the elements ∇nij , 1 ≤ i, j ≤ d, of the
matrix entries of N .
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To bound I1, write it out as follows;

I1 = −2

∫ ∞
−∞

(
Id + εN(U)

)(
L+ εM(U)

)
∂3
xU · ∂2

xUdx

−4ε

∫ ∞
−∞

(
Id + εN(U)

)
∂xM(U)∂2

xU · ∂2
xUdx

−2ε

∫ ∞
−∞

(
Id + εN(U)

)
∂2
xM(U)∂xU · ∂2

xUdx.

The lowest-order term

∫ ∞
−∞

L∂3
xU ·∂2

xUdx vanishes, since L is a constant, symmetric

matrix. In consequence, it transpires that

I1 = − 2ε

∫ ∞
−∞

(
Id + εN(U)

)[
∂2
xM(U)∂xU + 2∂xM(U)∂2

xU
]
· ∂2
xUdx

− 2ε

∫ ∞
−∞

[
M(U) +N(U)

(
L+ εM(U)

)]
∂3
xU · ∂2

xUdx,

whose absolute value is clearly bounded above by a quantity of the form

εX2F4(X),

since εM(U)+εN(U)
(
L+εM(U)

)
= (Id+εN(U))(L+εM(U)) and L is symmetric.

To estimate I2, similar calculations are effective, viz.

1

2ε2
I2 =

∫ ∞
−∞

N(U)∂4
x∂tU · ∂2

xUdx

= −
∫ ∞
−∞

N(U)∂t∂
3
xU · ∂3

xUdx−
∫ ∞
−∞

∂xN(U)∂3
x∂tU · ∂2

xUdx

= − d

dt

∫ ∞
−∞

N(U)∂3
xU · ∂3

xUdx+

∫ ∞
−∞

∂tN(U)∂3
xU · ∂3

xUdx

+

∫ ∞
−∞

N(U)∂3
xU · ∂3

x∂tUdx

= − d

dt

∫ ∞
−∞

N(U)∂3
xU · ∂3

xUdx+ J1 + J2.

The argument continues by obtaining bounds on J1 and J2. For J1, use again the
bound on |∂tN(U)|∞ appearing in (53) to obtain

|J1| ≤ CF3(X)|∂3
xU |2. (55)

For J2, use equation (49) to write

ε∂3
x∂tU = −ε∂2

x(Id − ε∂2
x)−1∂x

(
(L+ εM(U))∂xU

)
,

so that

ε|∂3
x∂tU |2 ≤ CF5(X).

It follows that

J2 ≤ CF6(X). (56)

Collecting estimates (52) to (56), there obtains the inequality

d

dt

∫ ∞
−∞

[(
Id + εN(U)

)
∂2
xU · ∂2

xU + ε|∂3
xU |2 + ε2N(U)∂3

xU · ∂3
xU
]
dx ≤ CεF7(X),
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where C is a constant independent of ε and F7 is an increasing function, at least
quadratic in X, which depends on the growth of the mij and nij , 1 ≤ i, j ≤ d, and
their gradients. Well-posedness on the Boussinesq time-scale now follows. A formal
statement of the result appears in the next subsection.

5.3. Long-time existence for a general system in n dimensions. Consider
a system of d coupled partial differential equations in n spatial dimensions of the
form  ∂tU +

n∑
i=1

(
Li + εMi(U)

)
∂xi

U − ε∆∂tU = 0,

U(x, 0) = U0(x),

(57)

where U(x, t) = (u1(x, t), u2(x, t), · · · , ud(x, t)), ∆ =
n∑
i=1

∂2
xi

and x ∈ IRn.

The following hypotheses are made concerning Li and Mi, for i = 1, · · · , n.

1. The d× d matrices Li of real numbers are symmetric,
2. the Mi(U) are d× d matrices of smooth functions of U = (u1, · · · , ud) and
3. there is a d× d symmetric matrix N(U) of smooth functions such that, for all
i = 1, 2, · · · , n, (

Id + εN(U)
)(
Li + εMi(U)

)
is symmetric, which is to say, the hyperbolic part of (57) (the system without
the dispersive terms ∆∂tU) is symmetrizable.

Theorem 5.2. Let there be given an integer s such that s > n
2 +1 where n ≥ 1 is an

integer. For any initial data U0 ∈ Hs(IRn)d, there exists a T0 > 0, independent of ε,
such that if the Hypotheses 1, 2 and 3 (in Subsection 5.2 for n = 1 and the present
subsection for n > 1) hold, then Problem (49) for n = 1 and Problem (57) for

n > 1 have a unique solution Uε in C
(

[0, T0

ε ];Hs(IRn)d
)

corresponding to U0. The

solution mapping U0 7→ U is uniformly Lipschitz on bounded subsets of Hs(IRn)d

and, moreover, there exists a constant C0 > 0 such that

||Uε||
L∞

(
[0,

T0
ε ];Hs(IRn

)d
) ≤ C0.

Proof. The result for n = 1 was established in the last subsection.
The proof for higher spatial dimension follows the same lines as for the one-

dimensional case as is now demonstrated. Exactly as in (51), there obtains the
L2(IRn)−estimate,

d

dt

∫
IRn

(
|U |2 + ε|∇U |2

)
dx ≤ Cε||U ||21F (|U |∞),

where F depends on the growth of the matrix elements mij of M . Because s > n
2 ,

the Hs−norm can be used to bound the L∞−norm and so

d

dt

∫
IRn

(
|U |2 + ε|∇U |2

)
dx ≤ εF0(||U ||s),

where F0(r) has the form Cr2F (r).
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Fix j with 1 ≤ j ≤ n and let ∂ temporarily denote ∂xj . Use equation (57) and
the symmetry of the matrix N(U) to calculate as follows; for any k with 2 ≤ k ≤ s,

d

dt

∫
IRn

(
(Id + εN(U))∂kU · ∂kU + ε∂k∇U : ∂k∇U

)
dx

= 2

∫
IRn

(
(Id + εN(U))∂k∂tU · ∂kU + ε∂k∂t∇U : ∂k∇U

)
dx

+ε

∫
IRn

N ′(U)(∂tU)∂kU · ∂kU dx

= 2

∫
IRn

(
(Id + εN(U))∂k∂tU · ∂kU − ε∂k∆∂tU · ∂kU

)
dx

+

∫
IRn

N ′(U)(∂tU)∂kU · ∂kU dx

= 2

∫
IRn

(Id + εN(U))
{
−∂k

n∑
i=1

(Li + εMi(U))∂xiU
}
·∂kU dx

+2ε2

∫
IRn

N(U)∂k∆∂tU · ∂kU dx+

∫
IRn

N ′(U)(∂tU)∂kU · ∂kU dx

= I1 + I2 + I3.

To bound I3, write equation (57) in the form

∂tU = −(Id − ε∆)−1
n∑
i=1

(
Li + εMi(U)

)
∂xi

U, (58)

from which it follows immediately that

||∂tU ||s−1 ≤ C||U ||s, |∂tU |∞ ≤ C||U ||s.

In consequence, there obtains

I3 ≤ εF1(||U ||s)

for some function F1 depending only on the growth of the nij and mij , and of the
gradients of the mij .

To estimate I1, write

I1 = −2

∫
IRn

∂k
( n∑
i=1

Li∂xiU
)
· ∂kU dx− 2

∫
IRn

ε
(
∂k
( n∑
i=1

Mi(U)∂xiU
)
· ∂kU

+N(U)
(
∂k

n∑
i=1

(Li + εMi(U))∂xiU
)
· ∂kU

)
dx.

Because of the symmetry of the constant matrices Li, 1 ≤ i ≤ n, the first integral
on the right-hand side vanishes. In the second integral, the most troublesome terms
are those where k + 1 derivatives are taken of the vector U , viz.

−2

∫
IRn

ε
(
Mi(U)∂k∂xiU · ∂kU +N(U)(Li + εMi(U))∂k∂xiU · ∂kU

)
dx

= −2

∫
IRn

ε
(
Mi(U) +N(U)(Li + εMi(U))

)
∂k∂xiU · ∂kU dx,
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for i = 1, · · · , n. Because of the symmetry of the operators in this integral, it follows
immediately that

|I1| ≤ εF2(||U ||s).

For I2, we proceed thusly;

I2 = 2ε2

∫
IRn

N(U)∂t∂
k∆U · ∂kU dx

= −2ε2

n∑
`=1

∫
IRn

N ′(U)(∂x`
U)∂t∂

k∂x`
U · ∂kU dx

−2ε2

n∑
`=1

∫
IRn

N(U)∂t∂
k∂x`

U · ∂k∂x`
U dx

= −2ε2

n∑
`=1

∫
IRn

N ′(U)(∂x`
U)∂t∂

k∂x`
U · ∂kU dx

+2ε2

n∑
`=1

∫
IRn

N(U)∂k∂x`
U · ∂t∂k∂x`

U dx

−ε2 d

dt

n∑
`=1

∫
IRn

N(U)∂k∂x`
U · ∂k∂x`

U dx

+ε2

n∑
`=1

∫
IRn

N ′(U)(∂tU)∂k∂x`
U · ∂k∂x`

U dx

= J1 − ε2 d

dt

n∑
`=1

∫
IRn

N(U)∂k∂x`
U · ∂k∂x`

U dx+ J2.

Equation (58) implies that

∂k∂x`
∂tU = −∂k(Id − ε∆)−1∂x`

n∑
i=1

(
Li + εMi(U)

)
∂xiU,

for ` = 1, · · · , n. Thus, there obtains the inequality

|ε∂t∂k∂x`
U |2 ≤ CF (||U ||s),

for ` = 1, · · · , n, which shows that

J1 ≤ εC
(
|N ′(U)|∞ |∂tU |∞ + |N(U)|∞

)
F (||U ||s).

For J2, it immediately follows that

J2 ≤ ε2|N ′(U)|∞ |∂tU |∞
∫
IRn

n∑
`=1

∂k∂x`
U · ∂k∂x`

U dx.

If we define Y = ||U ||s + ε||U ||s+1, then

|I2| ≤ εCF (Y ).
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In consequence, it is seen that

d

dt

( s∑
k=[ n2 +1]+1

∫
IRn

(Id + εN(U))∂kU · ∂kU dx+ ε

∫
IRn
|∂k∇U |2 dx

+ε2

∫
IRn

n∑
i=1

N(U)∂k∂xi
U · ∂k∂xi

U dx
)
≤ CεF (Y ),

where F is a function of Y depending on the growth of the mij and nij and their gra-
dients. The conclusions stated in Theorem 5.3 now follow by solving the preceding
differential inequality.

5.4. Application to water waves. The preceding theory is now specialized to
the water-wave models of interest here. The one-dimensional, reduced system (37)
has the form (49) with U = (η, u) and

L =

[
0 1
1 0

]
, M(U) =

[
u η
0 u

]
.

The matrix

N(U) =

[
0 0
0 η

]
is appropriate for symmetrizing the hyperbolic part of (37), because(

I2 + εN(U)
)(
L+ εM(U)

)
=

[
εu 1 + εη

1 + εη εu(1 + εη)

]
is symmetric. Thus all the hypotheses set forth in Subsection 5.2 are satisfied and
long-time well-posedness is established (see [2] for an alternative proof of this fact).

The full two-dimensional system has the detailed form
ηt + ux + vy + ε

(
(ηu)x + (ηv)y

)
− ε
(
ηxxt + ηyyt

)
= 0,

ut + ηx + ε
(
uux + vvx

)
− ε
(
uxxt + uyyt

)
= 0,

vt + ηy + ε
(
uuy + vvy

)
− ε
(
vxxt + vyyt

)
= 0.

(59)

In terms of the notation in Subsection 5.3, d = 3 and n = 2 (three equations
in two spatial dimensions). We first use the fact that the flow is irrotational, so
that uy − vx = 0 at all times. Thus the term vvx may be replaced by vuy in the
second equation in (59) and, similarly, uuy by uvx in the third equation. With these
substitutions, the system (59) has the form (57) with U = (η, u, v) and

L1 =

 0 1 0
1 0 0
0 0 0

 , L2 =

 0 0 1
0 0 0
1 0 0

 ,
and

M1(U) =

 u η 0
0 u 0
0 0 u

 , M2(U) =

 v 0 η
0 v 0
0 0 v

 .
The matrix

N(U) =

 0 0 0
0 η 0
0 0 η


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is appropriate for symmetrizing the hyperbolic part of (59) since, as a matter of
fact, the matrices

(I3 + εN(U))(L1 + εM1(U)) =

 εu 1 + εη 0
1 + εη εu(1 + εη) 0

0 0 εu(1 + εη)


and

(I3 + εN(U))(L2 + εM2(U)) =

 εv 0 1 + εη
0 εv(1 + εη) 0

1 + εη 0 εv(1 + εη)


are symmetric. Thus the hypotheses of Theorem 5.2 are verified for the full, two-
dimensional system, and long-time well-posedness is concluded.

6. Conclusion. Considered here was a Boussinesq system of equations that serves
as a model for surface water-wave propagation. The theory developed, while not
encompassing overturning waves, is fully three-dimensional. Allowance is made for
non-localized disturbances, so that line solitary waves and their perturbations are
within the scope of our development.

In addition to appropriate local well-posedness results, we have also established
long-time existence for disturbances that are spatially localized in one of the hor-
izontal directions, taken here to be the x−direction. Such disturbances might be
called long-crested. It is our view that to be interesting from the perspective of
the potential applications, theory for this kind of model needs to persist at least
on what is here termed the Boussinesq time scale. This is the time scale on which
nonlinear and dispersive effects can make an order one relative contribution to the
wave motion. On time scales which are only of order one, simply using the linear
wave equation suffices for approximating solutions of the full water-wave problem.

In a companion paper, we will develop similar long-time existence theory for
certain types of disturbances that are not localized in either spatial direction. This
will include in particular solutions corresponding to modeling the propagation of
bores (see Section 4). The longer-time theory in this case is a bit more subtle
because even the slices of the wave profile corresponding to fixed values of y have
infinite energy.

Another interesting investigation would be to consider the type of initial distur-
bances featured here, but posed for others of the abcd–systems (5). Results valid
on Boussinesq time scales have recently been developed in case the initial data
evanesces to the rest state in all directions (Sobolev-class initial data, see [21] and
[26]). When non-homogeneous boundary conditions are present, like those in (20)
and their subsequent dynamical consequences (9), theory is likely to be more subtle
than that developed here since, as soon as terms having three x– or y–derivatives
appear in the equations, extra boundary conditions at infinity will need to be pre-
scribed. It is not immediately clear what additional auxiliary specifications would
be appropriate in modeling water waves, especially as regards the lateral conditions
appearing in (20) at y = ±∞.
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