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Abstract. For a general class of nonlinear, dispersive wave equations, exis-

tence of periodic, traveling-wave solutions is studied. These traveling wave-
forms are the analog of the classical cnoidal-wave solutions of the Korteweg-de

Vries equation. They are determined to be stable to perturbation of the same
period. Their large wavelength limit is shown to be solitary waves.

1. Introduction. A general class of nonlinear wave equations of the form

ut − Lux + f(u)x = 0, x ∈ R, t ≥ 0, (1)

has been put forward to describe long-crested, long-wavelength disturbances of small
amplitude propagating primarily in one direction in a dispersive media (see Ben-
jamin et al. [10]). Here, the dependent variable u, which often represents an
amplitude or a velocity, is a real-valued function of the two real variables x and
t, f is a real-valued function of one real variable, typically a polynomial with
f(0) = f ′(0) = 0, and L is the dispersion operator defined through its Fourier
symbol α, say. In practical situations where such models arise, the independent
variable x is usually associated with distance measured from some given point in
the spatial domain of propagation while t is proportional to elapsed time. The dis-
persion operator L applied to a function v = v(x) is related to its symbol α via the
Fourier transform, viz.

L̂v(ξ) = α(2πξ)v̂(ξ) where v̂(ξ) =

∫ ∞
−∞

v(x)e−2πiξx dx (2)

for all wavenumbers ξ. The symbol α is typically a real-valued, even, continuous
function vanishing at the origin and becoming unbounded as ξ → ±∞. Such equa-
tions arise as rudimentary models for wave propagation in many different physical
contexts (see e.g. [1], [14], [15] for example).
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Already in the 1870’s, Boussinesq had found what we now call the cnoidal-wave
solutions of the Korteweg-de Vries equation

ut + uux + uxxx = 0, (3)

which is (1) with both f and α positive and purely quadratic. These cnoidal-wave
solutions, so named by Korteweg and de Vries [24], can be written explicitly as

u(x, t) = a+ b cn2
(
d(x− ct); k

)
(4)

in terms of the Jacobi elliptic function cn(x; k) where the elliptic modulus k, the
parameters a, b, c, d and the period P of u are related by a system of nonlinear,
transcendental equations (see e.g. [23]). The cnoidal waves have been the object
of both theoretical and laboratory investigations (see [6]), [27], [28]. The theory,
much of which makes use of the exact formula (4), reveals that the Korteweg-
de Vries cnoidal waves are stable to periodic perturbations of the same period.
Moreover, properly scaled, the cnoidal-wave solutions converge to the well known
sech2 solitary-wave solutions of the Korteweg-de Vries equation as the period length
P →∞.

The present study is concerned with the analog of cnoidal-wave solutions of the
more general models (1). Under mild regularity assumptions, such solutions have
the form

u(x, t) = φ(x− ct) =

∞∑
n=−∞

φne
inπl (x−ct) (5)

where 2l is their spatial period and c their velocity of propagation. Of course,
φn = φ̄−n for all n ∈ Z since φ is real-valued, the overbar connoting complex
conjugation. The overall goal of the present work is to bring forward theory in
the general setting of (1) corresponding to what is known about the traveling-wave
solutions of the Korteweg-de Vries equation (3) itself. Part of the program involves
showing that such solutions exist.

In fact, they do not always exist. Substituting the form (5) into (1) reveals that
φ satisfies the equation

(c+ L)φ = f(φ) +A or Lφ = f(φ)− cφ+A (6)

where A is a constant of integration and

Lφ(z) =

∞∑
n=−∞

α(2πn)φne
inπl z.

Suppose that f is a polynomial of degree p > 1. The polynomial f(z) − cz + A
associated to f may or may not have real zeroes. In the case wherein f(z)− cz+A
has no real zero, there are no periodic traveling-wave solutions. Indeed, in this case,
there is a positive number γ, say, such that f(z)− cz+A is either greater than γ or
less than −γ for all z ∈ R. If φ was a periodic solution of (6) of the form displayed
in (5), then after an integration over the period interval (−l, l), it is discerned that

0 =

∫ l

−l

(
f(φ(x))− cφ(x) +A

)
dx > 2lγ

or

0 =

∫ l

−l

(
f(φ(x))− cφ(x) +A

)
dx < −2lγ

since α(0) = 0. Values of A for which f(z)−ca+A has no real zeroes are henceforth
excluded from the discussion.
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Suppose that z0 is a real zero of f(z)−cz+A. Then f(z)−cz+A can be written
in the form a1(z− z0) + · · ·+ap(z− z0)p with ap 6= 0. Make the change of variables
v = φ− z0 so that (6) becomes

Lv = a1v + f̃(v) or (−a1 + L)v = f̃(v)

where f̃(v) = a2v
2 + · · · + apv

p. Thus, without loss of generality, we may take it
that z0 = 0 = A and so φ satisfies

(c+ L)φ = f(φ) or Lφ = f(φ)− cφ. (7)

H. Chen [21] showed the existence of cnoidal-wave solutions of (7) in the form
(5) for a range of dispersion relations α and nonlinearities f . Her theory included
certain Korteweg-de Vries and Benjamin-Ono type equations where f(u) = up for
p ≥ 2 and α(ξ) = ξ2 or α(ξ) = |ξ|. In that paper, the symbol α is required to be
a real, even, nonnegative and continuous function on R and monotone increasing
on R+ and the polynomial f is presumed to have positive coefficients. The theory
would not apply, for instance, to the Benjamin equation where α(ξ) = βξ2−γ|ξ| for
positive real numbers β and γ. The present analysis makes allowance for a broader
range of dispersion relations α than considered heretofore. We also investigate the
large wavelength limit l→∞ of these periodic traveling-wave solutions, determining
in some cases that they converge to solitary-wave solutions of (1). In particular,
this result provides an independent proof of the existence of solitary-wave solutions
of (1).

As mentioned already, the cnoidal-wave solutions of the Korteweg–de Vries equa-
tion are known to be stable to perturbations of the same period (see Angulo et al.
[6] and the references contained in this work). The question of stability of the
traveling-wave analogues of the KdV cnoidal-wave solutions of the more general
equation (1) is also natrually of interest, the more so since many specializations of
(1) arise as models of physical phenomena.

Two related notions of stability will enter into the analysis developed here. In
the following two definitions, (X, ‖ · ‖X) is a Banach space of real-valued, periodic
functions with period 2l.

Definition 1.1. (Stability type–I) A non-constant, periodic traveling-wave solution
φ of (1) in the form (5) is said to be stable in (X, ‖ · ‖X) if for any ε > 0, there is a
δ > 0 such that the relation

inf
τ∈[−l,l]

‖u0(·)− φ(·+ τ)‖X < δ

implies that
inf

τ∈[−l,l]
‖u(·, t)− φ(·+ τ)‖X < ε

for all t > 0, where u = u(x, t) is the solution of (1) with initial value u0.

Definition 1.2. (Stability type–II) A set S of traveling-wave solutions of (1) is
said to be stable in X if for any ε > 0, there is a δ > 0 such that for any u0 ∈ X
with

inf
φ∈S

inf
τ∈[−l,l]

‖u0(·)− φ(·+ τ)‖X < δ,

the solution u = u(x, t) of (1) with initial data u0 remains close to S in the sense
that

inf
φ∈S

inf
τ∈[−l,l]

‖u(·, t)− φ(·+ τ)‖X < ε

for all t > 0.



4844 HONGQIU CHEN AND JERRY L. BONA

Remark 1. Type–I stabilty is the original concept put forward by Benjamin [8]
in his pioneering work on stabilty of solitary-wave solutions of the KdV and BBM
equations. Benjamin called this stability of the shape of the profile. In fact, type–I
stablity is just orbital stabilty of the traveling wave in question. Type–II stabilty
coincides with type-I stabilty if the set S consists of only spatial translations of a
given traveling wave.

Logically prior to the study of stability is theory for the well-posedness of the
initial-value problems under consideration. The techniques for determining well-
posedness are quite different from those that come to the fore in existence and
stability analysis of traveling waves. In the present paper, we will assume the
relevant initial-value problem is well posed in relatively smooth, periodic function
spaces. The intention here is not to agonize over how large these spaces can be.
However, it will certainly be presumed that the space where well-posedness obtains
has ‘finite energy’. By this, it is simply meant that the solution u

u(x, t) =

∞∑
n=−∞

un(t)ei
nπ
l x,

decomposed into its Fourier series, has the property that
∞∑

n=−∞

∣∣∣α(nπ
l

)∣∣∣|un(t)|2 <∞

for all t ≥ 0. We hasten to add that it is not necessarily true that a suitable well-
posedness theory is valid in the energy space by itself (see, for example, the work
of Molinet, Saut and Tzvetkov [26] on Benjamin-Ono-type equations). Equally, it
is not always the case that we know how to establish stability in the smaller spaces
where well-posedness is easily ascertained (but see [16] for stabilty results in Sobolev
classes of higher order than the energy space).

The following three hypotheses about the dispersion α and nonlinearity f are
assumed to hold throughout.

(H1) The nonlinearity f is a polynomial of degree p − 1, with p ≥ 3, having
non-negative coefficients for which f(0) = f ′(0) = 0. We write f in the form
f(z) = 3γ3z

2 + · · ·pγpzp−1 where γj ≥ 0 for j = 3, · · · , p− 1 and γp > 0.

Remark 2. In fact, the primitive

F (z) =

∫ z

0

f(x) dx = γ3z
3 + · · ·+ γpz

p (8)

of f will figure prominently in our analysis.

(H2) The symbol α associated with the operator L via (2) is a real, even, con-
tinuous function defined on R with α(0) = 0. It is presumed to satisfy a growth
condition, namely if p0 = min{j : γj > 0} is the lowest-order term appearing in F,

then there is an s̃ ≥ p0−2
4 , such that

lim
ξ→0
|ξ|−2s̃α(ξ) = lim

ξ→0

α(ξ)

|ξ|2s̃
= 0.

(H3) There is an s > p−2
4 such that

0 < lim inf
ξ→∞

α(ξ)

|ξ|2s
≤ lim sup

ξ→∞

α(ξ)

|ξ|2s
<∞.
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A fourth restriction of the dispersion relation α will only be needed in part of
Section 5.

(H4) The number s in (H3) is at least 1
2 . Furthermore, the symbol α(ξ) is smooth

on (0,∞) and there is a number θ > 0 such that for any ξ > 0

|α′(ξ)| ≤ θ (1 + |ξ|)2s−1. (9)

Here is the layout of the paper. Notation and preliminaries are provided in
Section 2. In Section 3, for a given λ > 0, the variational problem

Γ(λ) = inf
{
Ml(u) : u(x) =

∞∑
n=−∞

une
inπl x, un = u−n ∈ C, (10)

∞∑
n=−∞

α
(nπ
l

)
|un|2 <∞, El(u) = λ

}
is investigated. The functionals El and Ml are given by

El(u) =
1

2

∫ l

−l
u2(x) dx = l

∞∑
n=−∞

|un|2,

Ml(u) =

∫ l

−l

(1

2
uLu− F (u)

)
dx

= 2l

∞∑
n=−∞

1

2
α
(nπ
l

)
|un|2 − 2l

p∑
j=3

γj
∑

n1+···+nj=0

un1
· · ·unj .

(11)

where F is the primitive of f as in (8).

Remark 3. It will transire that El and Ml are independent of the temporal variable
t if u = u(x, t) = u(x+ 2l, t) solves (1).

The main result in Section 3 is the following, stated somewhat informally for the
moment.

Theorem 1.3. Let λ > 0 be given. Then for l > 0 sufficiently large, (10) has at
least one nontrivial minimizer. For each minimizer φ, there is a c > 0 such that
φ(x− ct) =

∑
n φne

inπl (x−ct) is an infinitely smooth, traveling-wave solution of (1).
The set of all such solutions, denoted by Sλ, is stable (type-II) in the Sobolev class
Hs
l (to be defined in Section 2).

Section 4 provides a brief review of the variational problem

Γ∞(λ) = inf
{
M∞(η) : η ∈ Hs(R), E∞(η) = λ

}
(12)

which has been studied in connection with the existence and stablity theory for
solitary-wave solutions of (1). The functionals E∞ and M∞ are analogous to El
and Ml, viz.

E∞(η) =
1

2

∫ ∞
−∞

η2(x) dx and M∞(η) =

∫ ∞
−∞

(1

2
ηLη − F (η)

)
dx. (13)

It is straightforward to verify that if u is a suitably smooth solution of (1), then
E∞(u) andM∞(u) are independent of t. Any minimizer φ of the variational problem
(12) is the shape function of a solitary-wave solution of (1). That is, u(x, t) =
φ(x − c t) is a solution of (1) for some speed c > 0. As mentioned, results of this
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nature begin with Benjamin [8]. His work has been continued in a large number of
subsequent publications; see for example [2], [3], [11], [12], [17], [18], [29] for some
of the earlier extensions of Benjamin’s theory.

The variational problem Γ∞ comes to the fore in Section 5. Using the further
regularity of the dispersion symbol α embodied in (H4) and assuming as before that
(H1), (H2) and (H3) hold, the following result is established. Again, the statement
here is informal.

Theorem 1.4. For fixed λ > 0, we have

lim
l→∞

Γl(λ) = Γ∞(λ). (14)

For fixed s, there is a one-parameter family of bounded linear operators Tl : Hs
l →

Hs(R) with the following property. Let {ln}∞n=1 be an increasing and unbounded
sequence of positive real numbers with l1 sufficiently large and for each ln, let φn be
one of the minimizers of (10) with l = ln. Then, {Tlnφn}∞n=1 forms a minimizing
sequence for the variational problem (12).

Remark 4. Ṫhe operators Tl are defined in (67)–(68).

It is also shown in Section 5 that in some circumstances, the minimizing sequence
{Tlnφn}∞n=1 whose existence is asserted in Theorem 1.4 converges to a solitary-wave
solution. The paper closes with an Appendix where certain technical points arising
in the main development are settled.

2. Notation and preliminaries. Throughout the paper, a bold-faced letter u
stands for a sequence {un}∞n=−∞. The summation

∑∞
n=−∞ is abbreviated

∑
n, or

simply just
∑

if the range of summation is clear from the context. Similar liberties
are taken with sup−∞<n<∞, which is written simply supn.

For 1 ≤ r <∞, the sequence space

`r =
{

u = {un} : un = u−n ∈ C,
∑
|un|r <∞

}
is a Banach space equipped with the norm

|u|r =
(∑

|un|r
) 1
r

.

For r =∞, the Banach space

`∞ =
{
u = {un} : un = u−n ∈ C, sup

n
|un| <∞

}
is equipped with its usual norm

|u|∞ = sup
n
|un|.

Of course, if 1 ≤ r1 < r2 ≤ ∞,
`r1 ⊂ `r2

and for any u = {un} ∈ `r1 ,
|u|r2 ≤ |u|r1 .

For σ ≥ 0, let

`σ2 =
{

u ∈ `2 :
∑

(1 + |n|)2σ|un|2 <∞
}
.

The norm on this Hilbert space is written ‖ · ‖σ and is defined by

‖u‖σ =
(∑ (

1 + |n|
)2σ|un|2) 1

2

.
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When σ = 0, `σ2 = `2, ‖u‖0 = |u|2, and this norm is written unadorned as ‖u‖. For
l > 0, it will be useful to have an equivalent norm on `σ2 , namely

‖u‖σ,l =
(∑(

1 +
∣∣∣nπ
l

∣∣∣)2σ∣∣un∣∣2) 1
2

. (15)

Clearly, ‖u‖σ,π = ‖u‖σ and ‖u‖0,l = ‖u‖.
For σ ≥ 0, the function space

Hσ
l =

{
u(x) =

∑
une

inπl x : u = {un} ∈ `σ2
}

with norm

‖u‖σ,l =
(

2l
∑(

1 +
∣∣∣nπ
l

∣∣∣ )2σ

|un|2
) 1

2

=
√

2l‖u‖σ,l (16)

is a Hilbert space of real-valued, periodic functions of period 2l. We can identify
Hσ
l with the sequence space `σ2 and will do so when it is convenient.
For 1 ≤ q ≤ ∞, Lq = Lq(R) is the standard Lebesgue space with its usual norm

denoted by |u|q. For any σ ≥ 0,

Hσ = Hσ(R) =
{
u ∈ L2 :

∫ ∞
−∞

(1 + |2πξ|)2σ|û(ξ)|2 dξ <∞
}

is the usual, L2–based Sobolev space with norm

‖u‖σ =
(∫ ∞
−∞

(1 + |2πξ|)2σ|û(ξ)|2 dξ
) 1

2

.

Here, û is the Fourier transform of the function u, viz.

û(ξ) =

∫ ∞
−∞

u(x)e−2πixξ dx.

If σ = 0, H0 = L2, so ‖u‖0 = |u|2, both of which are usually written unadorned as
‖u‖.

If u and v are two Lebesgue measurable functions defined on R, the notation u∗v
stands for the convolution of u and v, that is

(u ∗ v)(x) =

∫ ∞
−∞

u(x− y)v(y) dy.

In the case u = v, u ∗ u is denoted by ∗2u and inductively ∗ju = (∗j−1u) ∗ u for
j ≥ 3.

The same symbol ∗ is used to represent discrete convolution. If u = {un} and
v = {vn} are two sequences, then w = {wn} = u ∗ v is defined by

wn =

∞∑
k=−∞

un−kvk

for n ∈ Z. It is convenient to write u ∗ u as ∗2u and for j ≥ 3, ∗ju = (∗j−1u) ∗ u.
The nth element (∗ju)n of ∗ju is

(∗ju)n =
∑

k1+···+kj=n

uk1 · · ·ukj .

By Young’s inequality for convolutions, if u1 ∈ `r1 , · · · ,uN ∈ `rN where 1 ≤ r1 ≤
· · · ≤ rN ≤ ∞ and 1

r1
+ · · ·+ 1

rN
= N − 1, then

w = {wn} = u1 ∗ · · · ∗ uN ∈ `∞
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and

|w|∞ ≤ |u1|r1 · · · |uN|rN .
We will frequently identify a periodic function u(x) =

∑
une

inπl x with its Fourier
coefficients u = {un}.

Remark 5. If u ∈ ` j
j−1

, then
∫ l
−1
uj(x) dx = 2l(∗ju)0 = 2l

∑
k1+···+kj=0 uk1 · · ·ukj

and the integral is bounded by 2l|u|j j
j−1

.

The following proposition is standard and will find frequent use.

Proposition 1. Let r ∈ [1, 2]. Then for any σ > 1
r −

1
2 ,

`σ2 ⊂ `r. (17)

In more detail,
(a) if u ∈ `σ2 , then u ∈ `r and

|u|r ≤ β ‖u‖σ,l (18)

where β = β(l, r, σ) > 0 is given explicitly by
β = 1 if r = 2,

β2r/(2−r) =
∑(

1 +
∣∣∣nπ
l

∣∣∣)−2σr/(2−r)
if 1 ≤ r < 2.

(b) For any r1 ∈ ( 2−r
2σ , r], the bound on the right-hand side of (18) can be im-

proved as follows;

|u|r ≤ β ‖u‖1−
r1
r ‖u‖

r1
r

σ,l (19)

where β = β(l, r, r1, σ) > 0 is given by
β = 1 if r = 2

β2r/(2−r) =
∑(

1 +
∣∣∣nπ
l

∣∣∣)−2σr1/(2−r)
if 1 ≤ r < 2.

(c) The imbedding (17) is compact. Namely, if {u(k)}k is a bounded sequence in
`σ2 , then there is a subsequence {u(kj)}j and there is u = (un) ∈ `σ2 such that

lim
j→∞

u(kj)
n = un

for all n ∈ Z and

lim
j→∞

|u(kj) − u|r = 0.

The continuous versions of (a) and (b) of Proposition 1 will also be useful.

Proposition 2. If σ > 0 and 2 ≤ q ≤ ∞ are restricted by the relation σ > 1
2 −

1
q ,

then

Hσ ↪→ Lq (20)

and this embedding is a bounded linear operator. More precisely,
(a) if u ∈ Hσ, then u ∈ Lq and

|u|q ≤ |û| q
q−1
≤ β ‖u‖σ (21)
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where β = β(q, σ) > 0 is given by
β = 1 if r = 2,

β2q/(q−2) =

∫ ∞
−∞

(
1 + |2πξ|

)−2σq/(q−2)
dξ if 1 ≤ r < 2.

(b) Let r1 ∈ ( q−2
2σ(q−1) ,

q
q−1 ]. Then, the bound on the right-hand side of (21) can

be improved as follows;

|u|q ≤ β ‖u‖1−
r1(q−1)

q ‖u‖
r1(q−1)

q
σ , (22)

where β = β(q, r1, σ) > 0 is given by
β = 1 if r = 2,

β2q/(q−2) =

∫ ∞
−∞

(
1 + |2πξ|

)−2σr1(q−1)/(q−2)
dξ if 1 ≤ r < 2.

3. The periodic variational problem. Hypotheses (H1)-(H3) specified in Sec-
tion 1 are assumed to be valid. Throughout, the parameter λ > 0 is fixed, but
arbitrary.

Let u be a periodic function of period 2l with Fourier coefficients u = {un}. In
terms of the Fourier coefficients u, the functionals E(u) = El(u) and M(u) = Ml(u)
take the form

E(u) = E(u) = l
∑
|un|2 = l‖u‖2,

M(u) = M(u) = l
∑

α
(nπ
l

)
|un|2 − 2l

p∑
j=3

γj(∗ju)0

(23)

where, as noted in Section 2, (∗ju)0 =
∑
k1+···kj=0 uk1 · · ·ukj . Hypothesis (H3)

asserts that α(ξ) is of order |ξ|2s as |ξ| → +∞. Hence, the variational problem (10)
can be written as

Γ(λ) = inf
{
M(u) : u = {un} ∈ `s2, E(u) = λ

}
. (24)

Since γj ≥ 0 for 3 ≤ j ≤ p and (∗ju)0 =
∑
k1+···kj=0 uk1 · · ·ukj ≤

∑
k1+···kj=0 |uk1 |

· · · |ukj |, solutions of the minimization problem (10) can be assumed to have non-
negative Fourier coefficients {un}. Thus, (24) has the same solutions as does the
more restricted variational problem

Γ(λ) = inf
{
M(u) : u = {un} ∈ `s2, un = u−n ≥ 0, ‖u‖2 =

λ

l

}
. (25)

Proposition 3. The mapping M : `s2 7→ R is continuous.

This follows directly from Proposition 2.1 since s > p−2
4 implies that the imbed-

dings `s2 ↪→ ` j
j−1

are continuous for j ∈ [3, p].

Notice that the constraint set in (25) includes a unique trivial point u = {un}
with u0 =

√
λ
l and un = 0 for n 6= 0. This corresponds to the non-zero constant

function u(x) ≡
√

λ
l . The following lemma rules out the possibility that this trivial

point is a minimizer of (25), at least for larger values of the half-period l.
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Lemma 3.1. If l > 0 is large enough that

l
p0−2

2 α
(π
l

)
< 4(
√

2− 1)γp0λ
p0−2

2 (26)

where p0 is as in (H2), the smallest index j such that γj > 0, then,

−∞ < Γ(λ) < −2lF
(√λ

l

)
.

Proof. Let u = {un} where u0 =
√

λ
2l , u1 = u−1 =

√
λ
4l and un = 0 for n 6= 0,±1.

A calculation shows that ‖u‖2 = λ
l . For any j ≥ 3,

(∗ju)0 =
∑

k1+k2+···+kj=0

uk1 · · ·ukj

=

bj/2c∑
k=0

(
j

j − 2k

)(
2k

k

)(
k

k

)
uj−2k

0 uk1u
k
−1

=

bj/2c∑
k=0

(
j

j − 2k

)(
2k

k

)
uj−2k

0 u2k
1

=

bj/2c∑
k=0

(
j

j − 2k

)(
2k

k

)(1

2

) 2k+j
2
(λ
l

) j
2

=σj

(λ
l

) j
2 ≥
√

2
(λ
l

) j
2

,

(27)

where, for x ∈ R the notation bxc represents the largest integer which is less than

or equal to x. The inequality σj =
∑bj/2c
k=0

(
j

j−2k

)(
2k
k

)(
1
2

) 2k+j
2 ≥

√
2 is established

in Lemma 6.1 in the Appendix. In consequence of this latter result and (27),
p∑
j=3

γj(∗ju)0 ≥
p∑
j=3

σjγj

(λ
l

) j
2 ≥
√

2F
(√λ

l

)
.

It thus transpires that

Γ(λ) ≤ l
∑

α
(nπ
l

)
u2
n − 2l

p∑
j=3

γj(∗ju)0 ≤ α
(π
l

)λ
2
− 2l
√

2F
(√λ

l

)
, (28)

whence

Γ(λ) + 2lF
(√λ

l

)
≤ α

(π
l

)λ
2
− 2l(

√
2− 1)F

(√λ

l

)
≤ α

(π
l

)λ
2
− 2l(

√
2− 1)γp0

(λ
l

) p0
2

.

(29)

By (26), the right-hand side of (29) is strictly less than zero, so

Γ(λ) < −2lF
(√λ

l

)
.

Attention is now turned to showing that Γ(λ) > −∞. Let u lie in the constraint

set of (25). Because s > p−2
4 ≥ j−2

4 for all j ∈ [3, p], Proposition 1 implies that

(∗ju)0 = |(∗ju)0| ≤
{∑

|un|
j
j−1

}j−1

= |u|j j
j−1

≤ βj‖u‖j−(j−1)rj‖u‖(j−1)rj
s,l (30)
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for any rj lying in the interval
(

j−2
2s(j−1) ,

2
j−1

)
⊂
(

j−2
2s(j−1) ,

j
j−1

]
, where

βj =
{∑(

1 +
∣∣∣nπ
l

∣∣∣)− 2srj(j−1)

j−2
} j−2

2

. (31)

Choose rj so that rj(j − 1) < 2 for all j with 3 ≤ j ≤ p. Hypotheses (H2) and (H3)
imply that there are two positive constants C1 and C2 such that

C1 + α(ξ) ≥ 2C2(1 + |ξ|)2s (32)

for every ξ ∈ R. In consequence, it must be the case that

M(u) ≥ 2lC2 ‖u‖2s,l − C1l ‖u‖2 − 2l

p∑
j=3

γjβj ‖u‖j−(j−1)rj‖u‖(j−1)rj
s,l

= 2lC2 ‖u‖2s,l − C1λ− 2l

p∑
j=3

γjβj

(λ
l

) j
2−

(j−1)rj
2 ‖u‖(j−1)rj

s,l .

(33)

Consider the polynomial

P (z) = 2lC2 z
2 − C1λ− 2l

p∑
j=3

γjβj

(λ
l

) j
2−

(j−1)rj
2

z(j−1)rj

for non-negative values of z. Since rj(j−1) < 2 for all j, limz→+∞ P (z) = +∞ and
it follows that minz≥0 P (z) exists and is finite. It is then readily deduced that

M(u) ≥ P (‖u‖s,l) ≥ min{P (z) : z ≥ 0} > −∞.

In consequence,

Γ(λ) = inf
{
M(u) : u ∈ `s2, ‖u‖2 =

λ

l

}
> −∞

and the proof is complete.

Lemma 3.2. Every minimizing sequence {u(k)}k of (25) is bounded in `s2 under
the norm ‖ · ‖s,l. Moreover, the bound is independent of the value of l > 1.

Proof. Thanks to (33), one has

M(u(k)) ≥ 2lC2‖u(k)‖2s,l − C1λ− 2l

p∑
j=3

γjβj

(λ
l

) j
2−

(j−1)rj
2 ‖u(k)‖(j−1)rj

s,l (34)

for every k, where C1, C2 and the r′js are positive, l-indepenent constants with

0 < rj <
2
j−1 and the corresponding values of the βj are given in (31). Since

Γ(λ) < 0, M(u(k)) < 0 for k sufficiently large. Denote by zk the quantity

zk =
√

2l‖u(k)‖s,l =
{

2l
∑(

1 +
∣∣∣nπ
l

∣∣∣)2s

|u(k)
n |2

} 1
2

.

Then inequality (34) combined with the fact that M(u(k)) < 0 for large enough
values of k leads to the conclusion

C2z
2
k < C1λ+

p∑
j=3

γj(2λ)
j
2−

(j−1)rj
2 (2l)−

j−2
2 βj z

(j−1)rj
k = C1λ+

p∑
j=3

Cj z
(j−1)rj
k
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where Cj = γj(2λ)
j
2−

(j−1)rj
2 (2l)−

j−2
2 βj for j = 3, · · · , p. Notice that βj defined in

(31) has the property that

lim
l→∞

(2l)−
j−2
2 βj = lim

l→∞

{ 1

2l

∑(
1 +

∣∣∣nπ
l

∣∣∣)− 2srj(j−1)

j−2
} j−2

2

=
{∫ ∞
−∞

(1 + |2πξ|)−
2srj(j−1)

j−2 dξ
} j−2

2

.

In particular, the C ′js, j = 3, · · · , p, are bounded, independently of large values of
l ≥ 1. Hence, the values of zk must be bounded, independently of large values of l.

The lemma is established.

Lemma 3.3. For every minimizing sequence {u(k)}k of (25), there is a convergent
subsequence {u(kq)}q of {u(k)}k. That is, there is Φ = {φn} ∈ `s2 such that

lim
q→∞

‖u(kq) −Φ‖s,l = 0 (35)

and Φ is a minimizer of (25).

Proof. By Lemma 3.2, the minimizing sequence {u(k)}k is bounded in `s2. Propo-
sition 1 implies that the imbeddings `s2 ↪→ `2 and `s2 ↪→ ` j

j−1
are compact, for all

j ∈ [3, p], since s > p−2
4 > j−1

j −
1
2 . Hence, there is a subsequence, denoted by

{u(kq)}q, and there is a Φ = {φn} ∈ `s2 such that {u(kq)}q converges to Φ weakly
in `s2 and strongly in `2 and ` j

j−1
. More precisely, for every n = 0,±1, · · · ,

lim
q→∞

u(kq)
n = lim

q→∞
u

(kq)
−n = φn = φ−n ≥ 0,

lim
q→∞

‖u(kq) −Φ‖ = 0, (36)

and

lim
q→∞

|u(kq) −Φ| j
j−1

= 0. (37)

The limiting behavior in (36) entails that

‖Φ‖2 = lim
q→∞

‖u(kq)‖2 =
λ

l
. (38)

Hence, Φ lies in the constraint set of (25). It remains to show that Φ is a minimizer
of (25). This is a consequence of the next two points.
Claim 1. For any j ∈ [3, p],

(∗jΦ)0 = lim
q→∞

(∗ju(kq))0. (39)

This follows from∣∣(∗jΦ)0 − (∗ju(kq))0

∣∣
=
∣∣∣((Φ− u(kq)) ∗

(
∗j−1 Φ + ∗j−2Φ ∗ u(kq) + · · ·+ ∗j−1u

(kq))
)

0

∣∣∣
≤|Φ− u(kq)| j

j−1

(
|Φ|j−1

j
j−1

+ · · · |u(kq)|j−1
` j
j−1

)
→0 as q →∞.

Claim 2. ∑
α
(nπ
l

)
|φn|2 ≤ lim inf

q→∞

∑
α
(nπ
l

)
|u(kq)
n |2. (40)
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This assertion follows from the weak convergence of the subsequence to Φ, or directly
as follows. From (H3), we know there is C > 0 such that C + α

(
nπ
l

)
> 0 for every

n. Fatou’s lemma thus implies that∑ (
C + α

(nπ
l

))
|φn|2 ≤ lim inf

q→∞

∑(
C + α

(nπ
l

))
|u(kq)
n |2.

This inequality combined with (36) establishes (40).
With these two points in hand, observe that

M(Φ) =l
∑

α
(nπ
l

)
|φn|2 − 2l

p∑
j=3

γj(∗jΦ)0

≤ lim inf
q→∞

(
l
∑

α
(nπ
l

)
|u(kq)
n |2

)
− 2l

p∑
j=3

γj lim
q→∞

(∗ju(kq))0

= lim inf
q→∞

(
l
∑

α
(nπ
l

)
|u(kq)
n |2 − 2l

p∑
j=3

γj(∗ju(kq))0

)
= lim inf

q→∞
M(u(kq))

= Γ(λ).

(41)

Thus, Φ is a minimizer of (10) and M(Φ) = Γ(λ). Consequently, it must be the
case that ∑

α
(nπ
l

)
|φn|2 = lim

q→∞

∑
α
(nπ
l

)
|u(kq)
n |2. (42)

Thus the subsequence {u(kq)}q converges weakly to Φ and the norms of this sequence
converge to the norm of Φ in `s2. As `s2 is a Hilbert space, this implies strong
convergence of the sequence to Φ.

The proof of the lemma is complete.

The set of minimizers of (25) is denoted by S+
λ . Thus,

S+
λ =

{
Φ = {φn} ∈ `s2 : φn = φ−n ≥ 0, E(Φ) = l‖Φ‖ = λ, M(Φ) = Γ(λ)

}
. (43)

Remark 6. If Φ ∈ S+
λ , then the periodic function φ(x) =

∑
φne

inπl x is an even
function and it attains its maximum value at x = 0,±2l,±4l, · · · .

Theorem 3.4. For every Φ = {φn} ∈ S+
λ , there is a positive number c > 0 such

that

φ = φ(x− ct) =
∑

φne
inπl (x−ct)

is a periodic traveling-wave solution of (1). Moreover, there are infinitely many
Fourier coefficients φn which are strictly positive and Φ is infinitely smooth.

Proof. Since Φ = {φn} is a minimizer of (25), the Euler-Lagrange principle implies
there is a constant c ∈ R such that

φ(x) =
∑

φne
inπl x

satisfies

δM(φ) + cδE(φ) = 0. (44)
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Here, δ connotes the Euler derivative so that δM(φ) = Lφ− f(φ) and δE(φ) = φ.
Hence, (44) is as same as

Lφ− f(φ) + cφ = 0. (45)

Thus, if c > 0, φ(x− ct) is a periodic traveling-wave solution of (1) propagating in
the positive x-direction. Following Albert [2], one has

d

dθ
M(θφ)

∣∣∣
θ=1

=
{ d

dθ

∫ l

−l

(θ2

2
φLφ− F (θφ)

)
dx
}
θ=1

=

∫ l

−l

(
φLφ−

p∑
j=3

jγjφ
j
)
dx

= 2M(φ)−
∫ l

−l

p∑
j=3

(j − 2)γjφ
j dx.

(46)

Since M(φ) = Γ(λ) < 0 from Lemma 3.1 and Φ = {φn} ∈ S+
λ , one deduces that∫ l

−l

p∑
j=3

(j − 2)γjφ
j dx > 0.

Thus,
d

dθ
M(θφ)

∣∣∣
θ=1

< 0. (47)

On the other hand, the chain rule implies that

d

dθ
M(θφ)

∣∣∣
θ=1

=

∫ l

−l
δM(φ) · d

dθ
(θφ)

∣∣∣
θ=1

dx

= −c
∫ l

−l
δE(φ) · φdx = −c

∫ l

−l
φ2 dx = −2cλ.

(48)

It follows immediately from (47) and (48) that c > 0. Thus, the function φ defined
via the minimizer Φ at the beginning of the proof is indeed a traveling-wave solution
of (1). Furthermore, the Fourier coefficients φn of φ are non-negative and satisfy
the relations (

c+ α
(nπ
l

))
φn =

p−1∑
j=2

(j + 1)γj+1(∗jΦ)n (49)

for all n ∈ Z.
Attention is now turned to showing that the set {φn : φn > 0} is infinite. By

contradiction, suppose it is finite and let N = max{|n| : φn > 0}. Then N ≥ 1,
since the constant solution is known not to be a minimizer, and φn = φ−n = 0 for
|n| > N and φN = φ−N > 0. If N = 1, then, φ1 = φ−1 > 0, but φp−1 = 0. In
consequence, we have

0 =
(
c+ α

( (p− 1)π

l

))
φp−1 ≥ pγpφp−1

1 > 0.

Hence, the case N = 1 cannot happen. If N > 1, then Np−1 > N , so φNP−1 = 0
and φN = φ−N > 0 leads to

0 =
(
c+ α

(Np−1π

l

))
φNp−1 ≥ pγpφp−1

N > 0,

another contradiction. It follows that there must be an infinite number of positive
components in Φ = {φn}.
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It remains to discuss the regularity of the minimizer Φ. By hypothesis (H3),
there are two constants κ1, κ2 > 0 such that

c+ α(ξ) ≥ −κ1 + κ2(1 + |ξ|)2s.

This together with (49) yields

κ2

(
1 +

∣∣∣nπ
l

∣∣∣)2s

φn ≤ κ1φn +

p−1∑
j=2

(j + 1)γj+1(∗jΦ)n. (50)

In case s > 1
2 , `

s
2 is an algebra and so ∗jΦ ∈ `s2 for j ≥ 2. Multiplying the last

inequality by (1 + |nπl |)
2sφn, and summing over n, one obtains

κ2‖Φ‖22s,l ≤ κ1‖Φ‖2s,l +

p−1∑
j=2

(j + 1)γj+1‖ ∗j Φ‖s,l‖Φ‖s,l.

Thus, Φ ∈ `2s2 . Replacing s with 2s in the preceding argument allows the conclusion
that Φ ∈ `4s2 . Inductively, it is inferred that Φ ∈ `∞2 . In case s ≤ 1

2 , the assumption

(H3) on α indicates p = 3 and s > 1
4 , so (50) reduces to

κ2

(
1 +

∣∣∣nπ
l

∣∣∣)2s

φn ≤ κ1φn + 3γ3(Φ ∗Φ)n = κ1φn + 3γ3

∑
k

φn−kφk.

Let ε = 1
2 (s − 1

4 ) > 0, multiply the last inequality by (1 + |nπl |)
2εφn and sum over

n to obtain

κ2

∑(
1+
∣∣∣nπ
l

∣∣∣)2s+2ε

φ2
n ≤ κ1

(
1+
∣∣∣nπ
l

∣∣∣)2ε

φ2
n+3γ3

∑
n

(
1+
∣∣∣nπ
l

∣∣∣)2ε

φn
∑
k

φn−kφk.

Applying Shwarz’ inequality to the last term on the right-hand side yields

κ1‖Φ‖2s+ε,l ≤ κ1‖Φ‖2ε,l+3γ3‖Φ‖s,l
{∑

n

(
1+
∣∣∣nπ
l

∣∣∣)−2s+4ε(∑
k

φn−kφk

)2} 1
2

. (51)

Note that for each n ∈ Z,∑
k

φn−kφk ≤
(

1 +
∣∣∣nπ
l

∣∣∣)−s∑
k

(
1 + |n−k|π

l

)s(
1 + |k|π

l

)s
φn−kφk (52)

≤
(

1 +
∣∣∣nπl ∣∣∣)−s‖Φ‖2s,l.

It is deduced from (51) that

κ2‖Φ‖2s+ε,l ≤ κ1‖Φ‖2ε,l + 3γ3‖Φ‖3s,l
(∑(

1 +
∣∣∣nπ
l

∣∣∣)−4s+4ε) 1
2

= κ1‖Φ‖2ε,l + 3γ3‖Φ‖3s,l
(∑(

1 +
∣∣∣nπ
l

∣∣∣)−2s− 1
2
) 1

2

.

The series in the last parenthesis is convergent because s > 1
4 and therefore Φ ∈

`s+ε2 . If s+ ε > 1
2 , we are back in the situation arising in the discussion of regularity

for the case s > 1
2 and it then follows that Φ ∈ `∞2 . Otherwise, iterate the last argu-

ment with s replaced by with s+ ε = 3
2s−

1
8 . A finite number of such bootstrapping

steps will lead to Φ ∈ `12, and hence to the conclusion that Φ ∈ `∞2 . In consequence,
φ is infinitely smooth and the proof is complete.
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Lemma 3.5. Let {u(k)}k be a minimizing sequence for the variational problem
(25). Then

lim
k→∞

inf
Φ∈S+

λ

‖u(k) −Φ‖s,l = 0. (53)

Proof. Suppose (53) to be false. Then, there is a subsequence {u(kq)}q of {u(k)}k
and a number ε > 0 such that for every q ≥ 1,

inf
Φ∈S+

λ

‖u(kq) −Φ‖s,l > ε.

On the other hand, from Lemma 3.3, there is a subsequence {u(kqj )}j of {u(kq)}q
and there is Φ1 ∈ S+

λ such that u(kqj ) → Φ1 in `s2 as j → ∞. This yields the
absurdity

ε ≤ lim
j→∞

inf
Φ∈S+

λ

‖u(kqj ) −Φ‖s,l = inf
Φ∈S+

λ

‖Φ1 −Φ‖s,l = 0,

a contradiction that establishes the lemma.

Corollary 1. The set S+
λ defined in (43) is compact.

Theorem 3.6. (Stability) The traveling-wave set S+
λ of (1) defined in (43) is stable

in `s2. Precisely, for any ε > 0, there is a δ > 0 such that if an initial value

u(x, 0) = ũ(x) =
∑

ũne
inπl x

of (1) satisfies
inf

Φ∈S+
λ

inf
−l≤τ≤l

‖ũ−Φ(·+ τ)‖s,l ≤ δ,

then the solution u(x, t) =
∑
un(t) ei

nπ
l x of (1) has the property

inf
Φ∈S+

λ

inf
−l≤τ≤l

‖u(·, t)−Φ(·+ τ)‖s,l ≤ ε

for all t > 0, where Φ(· + τ) =
{
φne

inπl τ
}

comprise the Fourier coefficients of
φ(x+ τ).

Proof. Suppose the result is false. Then, there is a sequence {ũ(k)} in `s2, a sequence
{tk} in (0,∞) and a number ε > 0 such that

inf
Φ∈S+

λ

‖ũ(k) −Φ‖s,l ≤
1

k
(54)

and
inf

Φ∈S+
λ

inf
−l≤τ≤l

‖u(k)(·, tk)−Φ(·+ τ)‖s,l ≥ ε. (55)

Remember that Φ ∈ S+
λ implies Φ ∈ `s2, E(Φ) = l‖Φ‖22 = λ and the functional M

defined in (11) or (23) attains its minimum Γ(λ) at Φ. Hence, (54) dictates that

lim
k→∞

‖ũ(k)‖2 =
λ

l
,

or, equivalently,

µk =

√
λ√

l‖ũ(k)‖
→ 1 as k →∞ (56)

and

‖µkũ(k)‖2 ≡ λ

l
for every k.
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Formulas (54) and (56) together with continuity of the functional M in `s2 imply

lim
k→∞

M(µkũ
(k)) = Γ(λ).

Both functionals E(u(·, t)) and M(u(·, t)) are independent of t since u is a solution
of (1). Hence,

E
(
µku

(k)(·, tk)
)

= E
(
µkũ

(k)
)

= l‖µkũ(k)‖ = λ

and
lim
k→∞

M
(
µku

(k)(·, tk)
)

= lim
k→∞

M
(
µkũ

(k)
)

= Γ(λ).

This is to say, {µku(k)(·, tk)}k is a minimizing sequence for (24). By Lemma 3.6,

lim
k→∞

inf
Φ∈S+

λ

inf
−l≤τ≤l

‖µku(k)(·, tk)−Φ(·+ τ)‖s,l = 0.

In consequence, it must be the case that

lim
k→∞

inf
Φ∈S+

λ

inf
−l≤τ≤l

‖u(k)(·, tk)−Φ(·+ τ)‖s,l

= lim
k→∞

inf
Φ∈S+

λ

inf
−l≤τ≤l

‖(1− µk)u(k)(·, tk) + µku
(k)(·, tk)−Φ(·+ τ)‖s,l = 0.

(57)

This contradicts (55). The result is established.

Corollary 2. The traveling-wave solution set S+
λ of (1) is stable in Hs

l . Precisely,
for any ε > 0, there is δ > 0 such that if the initial data ũ lies in Hs

l with

inf
φ∈S+

λ

‖ũ− φ‖s,l < δ,

then the solution u(·, t) of (1) satisfies

inf
φ∈S+

λ

inf
−l≤τ≤l

‖u(·, t)− φ(·+ τ)‖s,l < δ

for all t > 0.

Remark 7. If the set S+
λ contains a single traveling wave and its collection of

spatial translates, then whenever initial wave resembles it, that resemblance will
remain for all time.

Theorem 3.7. If α(ξ) is non-negative and monotone increasing on R+, then for
every Φ = {φn} ∈ S+

λ , φn = φ−n is strictly positive and φn is monotone decreasing
for n ≥ 0.

Proof. Arguing by contradiction, suppose there is a Φ = {φn} in S+
λ such that

{φn}n≥0 is not decreasing. Then, there are two integers n2 > n1 ≥ 0 such that
φn2

> φn1
. Define Ψ = {ψn} as follows;

ψn = ψ−n = φn if n 6= n1, n2

and
ψn1

= ψ−n1
= φn2

, ψn2
= ψ−n2

= φn1
.

Then Ψ ∈ `s2, it has the same `2-norm
√

λ
l , and by Riesz’s rearrangement inequality,

(∗jΨ)0 ≥ (∗jΦ)0.

Since α is increasing, ∑
α
(nπ
l

)
ψ2
n <

∑
α
(nπ
l

)
φ2
n.
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The last two inequalities allow the conclusion that Γ(λ) = M(Φ) > M(Ψ), which
contradicts the definition of Γ(λ). Therefore, {φn} must be decreasing as n ≥ 0
increases. The strict positivity of φn is a consequence of the fact that the Fourier
coefficients are decreasing together with Theorem 3.4. The proof is concluded.

Corollary 3. Consider the generalized KdV-equation

ut + ux + up−2ux + uxxx = 0.

If p ≤ 5, then for l sufficiently large, there is a non-empty set Sl of cnoidal-wave
solutions of period 2l. For each φ =

∑
n φne

inπl x ∈ Sl, its Fourier coefficients {φn}
are strictly positive, even in the sense that φn = φ−n > 0 and strictly monotone
decreasing as n ≥ 0 increases. Moreover, Sl is stable in H1

l in the type-II sense.

Corollary 4. The Benjamin-Ono equation

ut + ux + uux +Huxx = 0,

where H is the usual Hilbert transform defined via its symbol by Ĥv(ξ) = i sgn(ξ) v̂(ξ),
has a non-empty set Sl of cnoidal-wave solutions with period 2l for l sufficiently
large. For every φ =

∑
n φne

inπl x ∈ Sl, φn = φ−n > 0 and the {φn} are strictly

monotone decreasing as n ≥ 0 increases. The set Sl is stable in H
1
2

l .

Corollary 5. Consider the Benjamin equation

ut + ux + uux + αHuxx ± βuxxx = 0,

where α > 0, β > 0 are constants and H is again the Hilbert transform. For either
choice of the sign in front of β, there is, for l sufficiently large, a non-empty set Sl
of cnoidal-wave solutions with period 2l. The set Sl of such cnoidal waves is stable
in H1

l .

For the KdV-equation itself, p = 3 in Corollary 3, cnoidal-wave solutions are
explicit and can be written in terms of elliptic functions. Properly normalized, they
are unique. Benjamin [9] studied their stability (see also the recent work of Angulo
et al. [6] for further development in this direction). The Benjamin-Ono equation
also has well understood periodic and solitary traveling-wave solutions (see the
original paper of Benjamin [7]). These, too, are known to be unique when properly
scaled (see Amick and Toland [4]). The solitary-wave solutions were shown to be
stable by Bennett et al. [11] while the analog of the KdV cnoidal-wave solutions are
examined in Angulo Pava [5]. Explicit cnoidal-type traveling-wave soutions for more
general nonlinear dispersive equations like (1) are not known, so the analysis using
perturbation theory and spectral analysis that is featured in the work of Benjamin
[8], [9] and Angulo et al. [6] appears unlikely to be successful.

4. Review of the variational problem associated with solitary waves.
Solitary-wave solutions of (1) and their stability have been investigated using the
variational problem (12). Since the operator L is defined by its Fourier symbol, the
functionals M∞ and E∞ in (13) may be written in the alternative form

M∞(η) =

∫ ∞
−∞

1

2
α(2πξ)|η̂(ξ)|2 dξ −

p∑
j=3

γj(∗j η̂)(0)

and

E∞(η) =
1

2
‖η‖2 =

1

2

∫ ∞
−∞
|η̂(ξ)|2 dξ =

1

2
(η̂ ∗ η̂)(0).

(58)
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Since γj ≥ 0, the constraints may be further restricted as follows:

Γ∞(λ) = inf
{
M∞(η) : η ∈ Hs, η̂(−ξ) = η̂(ξ) ≥ 0, E∞(η) = λ

}
. (59)

Denote the set of minimizers by S+
λ,∞, that is

S+
λ,∞ =

{
η ∈ Hs : η̂(−ξ) = η̂(ξ) ≥ 0, E(η) = λ, M∞(η) = Γ∞(λ)

}
. (60)

Under various hypotheses on the nonlinearity f and the dispersion operator L, it is
known that each minimizer in S+

∞,λ is associated with a solitary-wave solution of (1)
and the set of all such solitary waves is stable. For detailed studies, see Weinstein
[29] and Albert [2].

Proposition 4. The functional M∞ is a continuous, real-valued mapping of Hs.

Proof. Hypotheses (H1)-(H3) guarantee that the imbeddings Hs → Lj are contin-

uous for 3 ≤ j ≤ p and s > p−2
4 . The result follows readily. Indeed, this mapping

is locally Lipschitz continuous, but we will not need this fact.

Proposition 5. S+
λ,∞ ⊂ H∞.

Proof. If S+
∞,λ = ∅, the result is vacuously true. If S+

∞,λ 6= ∅, then for any η ∈ S+
∞,λ,

there is a number c such that

δM∞(η) + cδE∞(η) = 0

by the Lagrange multiplier principle. As in the proof of Theorem 3.4, one first
shows that c > 0 and that η satisfies

(c+ L)η = f(η),

so that u(x, t) = η(x − ct) is a solitary-wave solution of (1). A bootstrapping
argument similar to that provided in Theorem 3.4 then establishes that η ∈ H∞.

Lemma 4.1. The value Γ∞(λ) defined in (59) satisfies

−∞ < Γ∞(λ) < 0.

Furthermore, for every minimizing sequence {ηk}k, there is a number R > 0 such
that

sup
k
‖ηk‖s < R.

Proof. First, we check that Γ∞(λ) > −∞. Since s > p−2
4 ≥ j−2

2j for all j ∈ [3, p],

Proposition 2 asures the imbeddings Hs ↪→ Lj are continuous and that for every

η ∈ Hs and rj ∈ ( j−2
2s , j],∣∣∣ ∫ ∞
−∞

ηj(x) dx
∣∣∣ ≤ |η|jj ≤ |η̂|j j

j−1

≤ β̃j‖η‖j−rj‖η‖rjs

where

β̃j =
(∫ ∞
−∞

(1 + |ξ|)−
2srj
j−2 dξ

) j−2
2

. (61)

Thus,

M∞(η) ≥ 1

2

∫ ∞
−∞

α(2πξ)|η̂(ξ)|2 dξ −
p∑
j=3

γj β̃j‖η‖j−rj‖η‖rjs .
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From (H3), there are two non-negative numbers C1 and C2 such that the symbol α
of the disperson operator L satisfies α(ξ) ≥ −C1 + 2C2(1 + |ξ|)2s for all ξ ∈ R. One
deduces from this that

M∞(η) ≥ −1

2
C1‖η‖2 + C2‖η‖2s −

p∑
j=3

γj β̃j‖η‖j−rj‖η‖rjs . (62)

It follows that

Γ∞(λ) = inf{M∞(η) : η ∈ Hs(R), ‖η‖2 = 2λ}

≥ inf
{
− C1λ+ C2z

2 −
p∑
j=3

γj β̃j(2λ)
j−rj

2 zrj : z ≥ 0
}
.

Because j−2
2s ≤

p−2
2s < 2 for 3 ≤ j ≤ p, all the rj can be chosen strictly less than 2.

Consequently,

Γ∞(λ) ≥ inf
{
− C1λ+ C2z

2 −
p∑
j=3

γj β̃j(2λ)
j−rj

2 zrj : z ≥ 0
}
> −∞.

It is also the case that Γ∞(λ) < 0. Given a function η, define ηθ(x) = θ
1
2 η(θx)

for θ > 0, so that η̂θ(ξ) = θ−
1
2 η̂(θ−1ξ), or, what is the same, η̂(ξ) = θ

1
2 η̂θ(θξ). Then

η and ηθ have the same L2-norm, so they are either both within or outside the
constraint set of the variational problem (59). It follows that

Γ∞(λ) = inf
{∫ ∞
−∞

1

2
α(2πθ−1ξ) |η̂θ(ξ)|2 dξ −

p∑
j=3

γjθ
− j−2

2 (∗j η̂θ)(0) :

η ∈ Hs, η̂(−ξ) = η̂(ξ) ≥ 0, ‖η‖2 = 2λ
}

= inf
{∫ ∞
−∞

1

2
α(2πθ−1ξ) |v̂(ξ)|2 dξ −

p∑
j=3

γjθ
− j−2

2 (∗j v̂)(0) :

v ∈ Hs, v̂(−ξ) = v̂(ξ) ≥ 0, ‖v‖2 = 2λ
}
.

(63)

Choose a member v ∈ Hs that lies within the constraint set of (63) such that v̂ is
continuous and has support contained in (−1, 1). Then, for every θ > 0,

Γ∞(λ) ≤
∫ 1

−1

1

2
α(2πθ−1ξ)v̂2(ξ) dξ −

p∑
j=3

γjθ
− j−2

2 (∗j v̂)(0)

= θ−
p0−2

2

{∫ 1

−1

1

2
θ
p0−2

2 α(2πθ−1ξ)v̂2(ξ) dξ −
p∑
j=3

γjθ
− j−p02 (∗j v̂)(0)

}
.

On the other hand for θ > 0 sufficiently large, hypothesis (H2) implies that the
right-hand side of the last inequality is strictly negative, whence

Γ∞(λ) < 0. (64)

The first part of the Lemma is verified.
Attention is now turned to the second part. Since {ηk}k is a minimizing sequence

for (59), limk→∞M∞(ηk) = Γ∞(λ) and so M∞(ηk) < 0 for k sufficiently large. For
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such large indices k, (62) implies that

0 > M∞(ηk) ≥ C2‖ηk‖2s − C1λ−
p∑
j=3

γj β̃j
(
2λ
) j−rj

2 ‖ηk‖rjs

where 2λ = ‖ηk‖2, rj could take any value in
(
j−2
2s , j

]
and β̃j depends on rj as

in (61). Since j−2
2s < 2 as pointed out earlier, choose rj close enough to j−2

2s so
that rj < 2. Then, were the sequence {ηk}k to be unbounded, there would be a
subsequence {ηkq}q whose Hs–norm tends to +∞ as q →∞. For large values of q,
we would then have

0 > M∞(ηkq ) ≥ C2‖ηkq‖2s − C1λ−
p∑
j=3

γj β̃j
(λ

2

) j−rj(j−1)

2 ‖ηkq‖rj(j−1)
s →∞

as q → ∞. This contradiction leaves only the conclusion that the sequence {ηk}k
is bounded and the lemma is proved.

5. The long-wavlength limit of periodic traveling waves. It is well known
that the classical cnoidal-wave solutions of Boussinesq and Korteweg and de Vries
converge to solitary-wave solutions as the period length grows unboundedly. Bona
[13] showed that the same is true not only of the cnoidal waves, but a wide class
of solutions of the Korteweg-de Vries equation. This latter result is important
in principle since most of the numerical simulations of solutions of these sorts of
equations are actually performed with periodic boundary conditions, even though
one is attempting to approximate solutions on the entire real axis.

The present section is concerned with the question of the long-wavelength limit
in the context of the more general cnoidal-type travelingr -wave solutions whose
existence has been established in Section 3. In Section 3, it was shown that for any
fixed λ > 0, then for each l > 0 sufficiently large, the variational problem (25) has
non-trivial minimizers. In the current section, we reconsider (25) and treat the half-
period l as a variable while λ > 0 is still held fixed. To emphasize the dependence
on the half-period, an l is hung on the notation for the variational problem, viz.

Γl(λ) = inf
{
Ml(u) = l

∑
α
(nπ
l

)
|un|2 − 2l

p∑
j=3

γj(∗ju)0 :

un = u−n ≥ 0, u = (un) ∈ `s2, El(u) = l‖u‖2 = λ
}
.

(65)

The set of minimizers of this variational problem also depends on l and this, too,
is recorded with an additional subscript, viz.

S+
λ,l =

{
Φl = {φl,n} ∈ `s2 : φl,n = φl,−n ≥ 0, l‖Φ‖2 = λ, Ml(φ) = Γl(λ)

}
. (66)

A mapping T = Tl is now introduced that allows us to compare periodic solutions
with solitary-wave solutions. First, write a periodic function u of period 2l in terms
of its Fourier coefficients thusly;

u(x) =
∑

une
inπl x =

∞∑
n=−∞

une
inπl x.

Define a new real-valued function Tu on all of R by

Tu (x) =

∫ ∞
−∞

ωu(ξ) e2πixξ dξ. (67)
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Thus, Tu is simply the inverse Fourier transform of the function ωu. The function
ωu is a step function defined in terms of u by

ωu(ξ) =



2lu0 if −
1
2

2l
≤ ξ ≤

1
2

2l
,

2lun if
n− 1

2

2l
< ξ ≤

n+ 1
2

2l
and n ≥ 1,

2lun if
n− 1

2

2l
≤ ξ <

n+ 1
2

2l
and n ≤ −1.

(68)

Remark 8. An elementary calculation reveals that Tu has the alternative repre-
sentation

Tu(x) = u(x)

∫ 1
2

− 1
2

ei
πx
l τ dτ = u(x)

sin
(
πx
2l

)
πx
2l

(69)

The operator T acts as a bridge from periodic function spaces like Hσ
l , say, to

the corresponding Sobolev space Hσ. The details of an analysis of T = Tl will be
presented in a sequence of lemmas and propositions.

Proposition 6. Let σ ≥ 0 and Hσ
l be the periodic function space introduced in

Section 2. Then T is a bounded linear operator from Hσ
l to Hσ. Moreover, for any

u ∈ Hσ
l ,

‖Tu‖ =
√

2l‖u‖ =
{∫ l

−l
u2(x) dx

} 1
2

. (70)

If we further assume 2l ≥ π, then

‖u‖Hσl −
22σσπ

2l
‖u‖

H
σ− 1

2
l

≤‖Tu‖σ ≤ ‖u‖Hσl +
22σσπ

2l
‖u‖

H
σ− 1

2
l

if σ >
1

2
,

‖u‖Hσl −
σπ

l
‖u‖ ≤‖Tu‖σ ≤ ‖u‖Hσl +

σπ

l
‖u‖ if 0 < σ ≤ 1

2
.

(71)

Remark 9. If l < π
2 and σ > 1

2 , the first inequality in (71) still holds, but the same

proof yields a coefficient of ‖u‖
H
σ− 1

2
l

having the value (1 + π
2l )

2σ−1σπ/l. As interest

is focussed on large values of l, it is presumed henceforth that l ≥ π
2 .

Proof. For u ∈ Hσ
l , the Fourier transform T̂ u of Tu is almost everywhere equal to

the step-function ωu given in (68). Hence,∫ ∞
−∞

(1 + |2πξ|)2σ|T̂ u(ξ)|2 dξ =

∞∑
n=−∞

∫ n+1
2

2l

n− 1
2

2l

(1 + |2πξ|)2σ|2lun|2 dξ

=

∞∑
n=−∞

|2lun|2
∫ n+1

2
2l

n− 1
2

2l

(1 + |2πξ|)2σ dξ.

(72)

The mean-value theorem for integrals of positive functions implies that for each n,
there is a λn ∈ [− 1

2 ,
1
2 ] such that∫ n+1

2
2l

n− 1
2

2l

(1 + |2πξ|)2σ dξ =
(

1 +
π

l
|n+λn|

)2σ 1

2l
≤
(

1 +
π

2l

)2σ(
1 +

∣∣∣nπ
l

∣∣)2σ 1

2l
. (73)
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It follows readily that∫ ∞
−∞

(1 + |2πξ|)2σ|T̂ u(ξ)|2 dξ ≤
(

1 +
π

2l

)2σ

2l‖u‖2σ,l =
(

1 +
π

2l

)2σ

‖u‖2Hσl <∞.

It thus transpires that Tu ∈ Hσ. When T is considered as a linear operator from

Hσ
l to Hσ, its operator norm is bounded thursly; ‖T‖ ≤

(
1 + π

2l

)σ
. By Parseval’s

relation,

‖Tu‖2 =

∫ ∞
−∞
|T̂ u(ξ)|2 dξ =

∑ ∫ n+1
2

2l

n− 1
2

2l

|2lun|2 dξ

= 2l
∑
|un|2 = 2l‖u‖2 =

∫ l

−l
u2(x) dx.

(74)

This is the case σ = 0 in the preceding estimate and thus (70) holds. To prove (71),
substitute the left-hand equality in (73) into (72) to deduce that

‖Tu‖2σ − ‖u‖2Hσl = 2l
∑
|un|2

(
1 +

π

l
|n+ λn|

)2σ

− 2l
∑
|un|2

(
1 +

π

l
|n|
)2σ

.

The Mean-Value Theorem assures that for each n, there is δn ∈ [0, 1] such that

‖Tu‖2σ − ‖u‖2Hσl =2l
∑
n≥1

2σ|un|2
(

1 +
π

l
n+

π

l
δnλn

)2σ−1π

l
λn

+ 2l
∑
n≤−1

2σ|un|2
(

1− π

l
n− π

l
δnλn

)2σ−1(
− π

l
λn

)
+ 2l 2σ|u0|2

(
1 +

π

l
δ0|λ0|

)2σ−1π

l
|λ0|.

If σ > 1
2 , then |πl δnλn| < 1 since 2l ≥ π. In consequence of this observation, we

have ∣∣∣‖Tu‖2σ − ‖u‖2Hσl ∣∣∣ ≤ σ22σ2l
∑
|un|2

(
1 +

π

l
|n|
)2σ−1 π

2l

=
πσ22σ

2l
2l‖u‖2σ,l =

πσ22σ

2l
‖u‖2

H
σ− 1

2
l

.

In case 0 < σ ≤ 1
2 , then it transpires that∣∣∣‖Tu‖2σ − ‖u‖2Hσl ∣∣∣ ≤ σπ

l
2l
∑
|un|2 =

σπ

l
2l‖u‖2 =

σπ

l
‖u‖2.

The last two inequalities are equivalent to those in (71).

Lemma 5.1. Viewed as a function of l, the value Γl(λ), associated to the variational
problem (65) is uniformly bounded below as l→∞. That is to say,

lim inf
l→∞

Γl(λ) > −∞. (75)

Furthermore, there is an R > 0 such that

sup
l>0

{
‖φ‖Hsl =

√
2l‖Φ‖s,l : Φ = {φn} ∈ S+

λ,l 6= ∅
}
≤ R, (76)

where S+
λ,l is the set of minimizers of the variational problem as in (66) and as

before, if Φ = {φn}, then φ(x) =
∑
φne

inπx/l.
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Proof. Theorem 3.4 guarantees that the set S+
λ,l 6= ∅ for l > 0 sufficiently large.

Moreover, every Φ ∈ S+
λ,l satisfies

‖Φ‖ =
λ

l
and Γl(λ) = Ml(Φ).

In the inequality (33), replace u by Φ and let z =
√

2l‖Φ‖s,l. Then, the inequalityr
(33) yields

Γl(λ) = Ml(Φ) ≥ −C1λ+ C2z
2 −

p∑
j=3

γj(2λ)
j−(j−1)rj

2 (2l)−
j−2
2 βjz

rj(j−1) (77)

where rj ∈ ( j−2
2s(j−1) ,

j
j−1 ] is chosen close to the left-hand end point so that rj(j−1) <

2 for all the relevant j and the corresponding βj are given in (31). Viewed as a
function of l, βj has the property that

lim
l→∞

1

2l
β

2
j−2

j =

∫ ∞
−∞

(1 + |2πξ|)−
2srj(j−1)

j−2 dξ <∞. (78)

This in turn means that (2l)−
j−2
2 βj is bounded by some constant β̃j , say. We have

thus shown that

Γl(λ) ≥ inf
{
− C1λ+ C2z

2 −
p∑
j=3

γj(2λ)
j−(j−1)rj

2 β̃jz
rj(j−1) : z ≥ 0

}
.

The fact that rj(j−1) < 2 for all j guarantees the right-hand side is a finite number,
clearly independent of l. The inequality (75) is thereby established.

To prove (76), simply substitute the fact Γl(λ) < 0 into (77) to obtain

−C1λ+ C2z
2 −

p∑
j=3

γj(2λ)
j−(j−1)rj

2 (2l)−
j−2
2 βjz

rj(j−1) < 0.

The conditions rj(j−1) < 2 for all j together with (78) imply that there must be an

R > 0 which is independent of l such that z = ‖φ‖s,l =
√

2l‖Φ‖s,l ≤ R. (Otherwise
the left-hand side tends to infinity as z tends to infinity.) Thus, (76) is valid and
the lemma is proved.

Lemma 5.2. Assume (H4) in addition to hypotheses (H1)-(H3). Then, for any
ε > 0, there exists an lε > 0 such that if l ≥ lε, then each φl(x) =

∑
n φl,ne

inπl x

with Φl = {φl,n} ∈ S+
λ,l, has the property that∣∣∣Γl(λ)−M∞

(
Tφl

)∣∣∣ ≤ ε (79)

where the operator T is defined in (68) and (67) and M∞ is as in (58). Hence, for
l sufficiently large,

Γl(λ) ≥ Γ∞(λ)− ε. (80)



PERIODIC TRAVELING–WAVE SOLUTIONS 4865

Proof. Since φl has Fourier coefficients Φl = {φl,n} ∈ S+
λ,l, it follows that

Γl(λ)

=Ml(φl) = l

∞∑
n=−∞

α
(nπ
l

)
φ2
l,n − 2l

p∑
j=3

γj
∑

n1+···+nj=0

φl,n1
· · ·φl,nj

= l

∞∑
n=−∞

α
(nπ
l

)
φ2
l,n − 2l

p∑
j=3

γj

∞∑
n1,··· ,nj−1=−∞

φl,n1
· · ·φl,nj−1

φl,−(n1+···+nj−1)

= l

∞∑
n=−∞

∫ n+1
2

2l

n− 1
2

2l

(
α(2πξ) + α

(nπ
l

)
− α(2πξ)

)
2l φ2

l,n dξ −
p∑
j=3

γj

∫ ∞
−∞

(
Tφl

)j
(x) dx

+

p∑
j=3

γj

∫ ∞
−∞

(
Tφl

)j
(x) dx

− 2l

p∑
j=3

γj

∞∑
n1,··· ,nj−1=−∞

φl,n1 · · ·φl,nj−1φl,−(n1+···+nj−1).

The construction of Tφl and definition of the dispersive operator L provide∫ ∞
−∞

(Tφl)L(Tφl) dx =

∞∑
n=−∞

∫ n+1
2

2l

n− 1
2

2l

α(2πξ)|2lφl,n |2 dξ

and, for j ≥ 2, ∫ ∞
−∞

(
Tφl

)j
(x) dx =

(
T̂ φl ∗ · · · ∗ T̂ φl

)
(0)

= 2l

∞∑
n1,··· ,nj−1=−∞

φl,n1 · · ·φl,nj−1φl,−(n1+···+nj−1).

It thus appears that Γl(λ) can be expressed as

Γl(λ) = M∞
(
Tφl

)
+ ∆l (81)

where

∆l =
1

2

∞∑
n=−∞

∫ n+1
2

2l

n− 1
2

2l

[
α
(nπ
l

)
− α

(
2πξ

)]
|2lφn|2 dξ.

The symmetries α(−ξ) = α(ξ) and φl,−n = φl,n together with α(0) = 0 and the
foregoing calculations imply that

∆l =

∞∑
n=1

∫ n+1
2

2l

n− 1
2

2l

[
α
(nπ
l

)
− α

(
2πξ

)]
|2lφn|2 dξ −

∫ 1
4l

0

α(2πξ)|2lφl,0|2 dξ.

The mean-value theorem and a Taylor expansion may be invoked to ascertain that
there are λn ∈ [−1, 1] for n = 0, 1, · · · such that

|∆l| ≤
∞∑
n=1

∣∣∣α′(nπ
l

+
λnπ

2l

)∣∣∣ |φl,n |2 +
∣∣∣α(λ0π

4l

)∣∣∣ |φl,0|2 l.
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Hypothesis (H4) together with (H2) and (H3) imply that

|∆l| ≤ θ
∞∑
n=1

∣∣∣1 +
nπ

l
+
π

2l

∣∣∣2s−1

|φl,n |2 + θ0

∣∣∣ π
4l

∣∣∣2s̃ |φl,0|2 l
for l sufficiently large, where θ0 and θ are two positive numbers and s and s̃ are as
in (H3) and (H2), respectively. Since l > π

2 , this inequality may be further extended
to

|∆l| ≤ θ
∞∑
n=1

22s
∣∣∣1 +

nπ

l

∣∣∣2s−1

|φl,n |2 + θ0

∣∣∣ π
4l

∣∣∣2s̃ |φl,0|2 l.
Lemma 4.3 asserts that there is an R > 0 such that

‖φ‖Hsl =
(

2l
∑(

1 +
∣∣∣nπ
l

∣∣∣)2s

|φn|2
) 1

2

< R

uniformly for φ ∈ ∪l>0Sλ,l. Hence, there is a constant Θ independent of l such that

|∆l| ≤
ΘR2

(2l)2s0
(82)

where s0 = min{ 1
2 , s̃}. This in turn implies∣∣∣Γl(λ)−M∞(Tφl)

∣∣∣ ≤ ΘR2

(2l)2s0
.

From Proposition 6, we know Tφl ∈ Hs and ‖Tφl‖2 = λ
2 , so M∞(Tφl) ≥ Γ∞(λ).

If we define lε = 1
2

(
ΘR2

ε

) 1
2s0
, then when l > lε, each φl whose Fourier coefficients

Φl ∈ S+
λ,l, satisy both (79) and (80).

Lemma 5.3. Consider the variational problems (59) and (65). For any ε ∈ (0, 1),
there is a sufficiently large number lε such that for each l > lε, there exists a peri-
odic function ψl =

∑
n ψl,ne

inπl x, say, whose Fourier coefficients {ψl,n} lie in the
constraint set of (65) and which is such that

Γ∞(λ) ≥Ml(ψl)− ε ≥ Γl(λ)− ε. (83)

The following result will be used to prove this lemma.

Proposition 7. For any ε > 0, there exists an η∗ε which lies in the constraint set

of (59) whose Fourier transform η̂∗ε lies in C∞c and for which

Γ∞(λ) > M∞(η∗ε )− ε. (84)

Here, the space C∞c = C∞c (R) is the space of infinitely smooth functions with
compact support.

Proof. Since Γ∞(λ) is finite according to Lemma 4.3, for any ε > 0, there is η ∈ Hs

with η̂(ξ) = η̂(−ξ) ≥ 0 and E∞(η) = 1
2‖η‖

2 = λ such that

Γ∞(λ) > M∞(η)− 1

2
ε. (85)

Standard arguments (see Lemma 6.2 in the Appendix for a sketch) imply that there
is a function ηε ∈ Hs such that η̂ε ∈ C∞c is an even, non-negative function for which

‖ηε − η‖2s =

∫ ∞
−∞

(1 + |2πξ|)2s
∣∣η̂ε(ξ)− η̂(ξ)

∣∣2 dξ < 1

4
ε2. (86)
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If η∗ε =
√

2λ
‖ηε‖ηε, then η∗ε lies in the constraint set of (59) and its Fourier transform

η̂∗ε ∈ C∞c . The inequalities (86) and (62) conspire to show that, for ε sufficientlly
small,

|M∞(η∗ε )−M∞(η)| < 1

2
ε.

Then, the inequality (85) implies immediately that

Γ∞(λ) ≥M∞(η∗ε )− ε

for sufficiently small ε and the proposition is proved.

Attention is now given to a proof of Lemma 5.3.

Proof. Let ηε = η∗ε be as in Proposition 7 and suppose its support lies in (−Rε, Rε).
Construct a periodic function Plηε of period 2l by specifying its Fourier series, viz.

Plηε(x) =

∞∑
n=−∞

1

2l
η̂ε

( n
2l

)
ei
nπ
l x.

Since the support of η̂ε is compact, this series features only a finite number of
non-zero terms. Let N = d2lRε − 1

2e, so that

Plηε(x) =

N∑
n=−N

1

2l
η̂ε

( n
2l

)
ei
nπ
l x. (87)

Obviously, Pl(ηε) is periodic and infinitely smooth. Viewing (87) as a Riemann
sum, it is inferred that

lim
l→∞

‖Plηε‖2L2(−l,l) = 2l lim
l→∞

N∑
n=−N

∣∣∣ 1

2l
η̂ε

( n
2l

)∣∣∣2 =

∫ Rε

−Rε

∣∣η̂ε(ξ)∣∣2 dξ = 2λ (88)

and

lim
l→∞

‖Plηε‖2Hsl = 2l lim
l→∞

N∑
n=−N

(
1 +

∣∣∣nπ
l

∣∣∣)2s∣∣∣ 1

2l
η̂ε

( n
2l

)∣∣∣2 (89)

=

∫ Rε

−Rε
(1 + |2πξ|)2s

∣∣η̂ε(ξ)∣∣2 dξ = ‖ηε‖2s.

It is further deduced that

M∞(ηε)

=
1

2

∫ ∞
−∞

α(2πξ)|η̂ε(ξ)|2 dξ −
p∑
j=3

γj

∫ ∞
−∞

(ηε(x))j dx

=
1

2

∫ Rε

−Rε
α(2πξ)|η̂ε(ξ)|2 dξ

−
p∑
j=3

γj

∫ Rε

−Rε
· · ·
∫ Rε

−Rε
η̂ε(ξ1) · · · η̂ε(ξj−1) η̂ε(−(ξ1 + · · · ξj−1) dξ1 · · · dξj−1
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=
1

2
lim
l→∞

N∑
n=−N

α
(nπ
l

)∣∣∣η̂ε(nπ
l

)∣∣∣2 1

2l

−
p∑
j=3

γj

N∑
n1=−N

· · ·
N∑

nj−1=−N
η̂ε

(n1π

2l

)
· · · η̂ε(

nj−1π

2l
) η̂ε

(
− (n1 + · · ·+ nj−1)π

2l

)( 1

2l

)j−1

= lim
l→∞

Ml(Plηε).

(90)

In consequence, for given ε > 0, there is an lε,1 > 0 sufficiently large such that when
l ≥ lε,1,

M∞(ηε) > Ml(Plηε)− ε,
whence

Γ∞(λ) ≥M∞(ηε)− ε > Ml(Plηε)− 2 ε.

Define the periodic function ψl by

ψl =

√
2λ

‖Plηε‖
Plηε. (91)

Then, ψl ∈ Hs
l and ‖ψl‖ =

√
2λ so that Ml(ψl) ≥ Γl(λ) and

Γ∞(λ) ≥Ml(ψl) +Ml(Plηε)−Ml(ψl)− 2ε ≥ Γl(λ) +Ml(Plηε)−Ml(ψl)− 2ε. (92)

It remains to show the quantity Ml(Plηε)−Ml(ψl) tends to zero as l tends to infinity.

Toward this end, denote the quantity
√

2λ
‖Plηε‖ by µl and note that

Ml(Plηε)−Ml(ψl) = (1− µ2
l )

1

4l

N∑
n=−N

α
(nπ
l

)∣∣∣η̂ε(nπ
2l

)∣∣∣2 (93)

−
p∑
j=3

γj

∫ l

−l
(1− µjl )

(
Plηε(x)

)j
dx.

Thanks to (86), we have liml→∞ µl = 1. As it is known that both α and η̂ε are
continuous, so,

lim
l→∞

1

2l

N∑
n=−N

α
(nπ

2l

)∣∣∣η̂ε(nπ
2l

)∣∣∣2 =

∫ Rε

−Rε
α(2πξ)|η̂ε(ξ)|2 dξ

and

lim
l→∞

∫ l

−l

(
Plηε(x)

)j
dx = lim

l→∞

( 1

2l

)j−1 ∑
n1+···+nj−1=0

η̂ε

(n1π

2l

)
· · · η̂ε

(njπ
2l

)
= (∗j η̂ε)(0)

for all j ∈ [3, p]. It is then immediate that

lim
l→∞

(
Ml(Plηε)−Ml(ψl)

)
= 0. (94)

The advertised result now follows.

A consequence of the last lemma is the next result.
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Theorem 5.4. Assume Hypotheses (H1)-(H4) hold. For any ε > 0, there is an
lε > such that for all l > lε,

Γ∞(λ)− ε ≤ Γl(λ) ≤ Γ∞(λ) + ε,

or, what is same,
lim
l→∞

Γl(λ) = Γ∞(λ).

Theorem 5.5. Continue to assume Hypotheses (H1)-(H4) hold. Let {lk}k be a
positive increasing sequence, unbounded, and for each k, let φlk ∈ S

+
lk,λ

. Then, the

sequence {Tφlk}k is a minimizing sequence for the variational problem (59)

Proof. This is a direct consequence of the inequalities

Γ∞(λ)− ε ≤M∞(Tφlk)− ε ≤ Γlk(λ) = Mlk(φlk) ≤ Γ∞(λ) + ε

which hold for k large enough that lk > lε.

Remark 10. Since the sequence {Tφlk}k in Theorem 5.5 is a minimizing sequence
for the variational problem (59), any limit point of the sequence is a solitary-wave
solution of (1) for an appropriate propagation speed c > 0.

Theorem 5.6. Hypotheses (H1) through (H4) are still in force. Let {lk}k be a
positive, increasing and unbounded sequence of periods. Suppose there is a corre-
sponding sequence of functions {φlk}k = {φk}k ∈ S+

λ,lk
whose Fourier coefficients

{φk,n}n satisfy
∞∑

n=−∞
2lk|φk,n+1 − φk,n| < B (95)

where B is a constant independent of lk. Then there is a function η ∈ Hs and a
subsequence of {φk}k, still denoted by {φk}k, which converges to η as follows:

lim
k→∞

φk(x) = η(x) for x ∈ R if s >
1

2
,

lim
k→∞

∫ lk

−lk
|φk(x)− η(x)|r dx = 0 for any r > 1 if s =

1

2
,

and

lim
k→∞

∫ lk

−lk
|φl(x)− η(x)|r dx = 0 for 2 ≤ r < 2

1− 2s
if 0 < s <

1

2
.

(96)

For s > 1
2 , the convergence is uniform on any compact domain. Furthermore, η is

a solitary-wave solution of (1).

Proof. Based on the condition (95), the following three points present themselves;

|xφk(x)| ≤ B unformly for x ∈ (−lk, lk), (97)

|xTφk(x)| ≤ B uniformly forx ∈ R, (98)

where the mapping T is as introduced in (67) and

|Tφk(x)− φk(x)| ≤ B

lk
for x ∈ (−lk, lk). (99)

Suppose for the moment these are valid statements. Since {Tφk}k is a minimizing
sequence for (59), by Lemma 4.1, it is bounded in Hs and there is a subsequence,
still denoted by {Tφk(x)}k, weakly convergent to some function η, say, in Hs. This
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together with (98) indicates that {Tφk(x)} converges strongly to η in Lr for all r
as described in (96), and depending on s of course. Hence, E∞(η) = 1

2‖η‖
2 = λ

and consequently, M∞(η) ≤ Γ∞(λ). Thus, η is a minimizer for (59). It follows that
the Hs–norm of {Tφk}, converges to the Hs–norm of η. Coupled with the weak
convergence, this implies strong convergence, which is to say,

lim
l→∞

‖Tφk − η‖s = 0.

Next, it is shown that (96) holds as stated. If s > 1
2 , then we have

|φk(x)− η(x)| ≤ |φk(x)− Tφk(x)|+ |Tφk(x)− η(x)|

≤ B

lk
+ C‖Tφk − η‖s for x ∈ (−lk, lk)

(100)

where C is the embedding constant from Hs to L∞. In consequence,

lim
k→∞

φk(x) = η(x)

for x ∈ R. The uniform convergence on compact domain is straightforward. If
s = 1

2 , then for r > 1(∫ l

−l
|φk(x)− η(x)|r dx

) 1
r ≤

(∫ l

−l
|φk(x)− Tφk(x)|r dx

) 1
r

+
(∫ l

−l
|Tφk(x)− η(x)|r dx

) 1
r

≤ 2B(2lk)−1+ 1
r +

(∫ ∞
−∞
|Tφk(x)− η(x)|r dx

) 1
r

≤ 2B(2lk)−1+ 1
r + C‖Tφk − η‖s,

where C is the embedding constant from Hs to Lr. When k →∞ so that lk →∞,
the second result featured in (96) emerges. If 0 < s < 1

2 , a similar argument yields
the third statement in (96).

Because η is a minimizer for (59), there is a positive constant c > 0 such that
η(x, t) = η(x − ct) is a solitary-wave solution of (1). (The detailed argument can
be found in Albert 1999.)

It remains to show (97)–(99). Write φk in terms of its Fourier series,

φk(x) =
∑
n

φk,ne
inπlk

x
=
∑
n

φk,n+1e
i
(n+1)π
lk

x
= e

i πlk
x
∑
n

φk,n+1e
inπlk

x
. (101)

It follows that (
e
−i πlk x − 1

)
φk(x) =

∑
n

(φk,n+1 − φk,n)e
inπlk

x
(102)

and therefore,

xφk(x) =
xe
i πlk

x

2lk(1− ei
π
lk
x
)

∑
n

2lk(φk,n+1 − φk,n)e
inπlk

x
. (103)

It is elementary that for x ∈ [−lk, lk],∣∣∣ xe
i πlk

x

2lk(1− ei
π
lk
x
)

∣∣∣ =
∣∣∣ x

4lk sin
(
π

2lk
x
) ∣∣∣ ≤ 1

4
.
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Combining this with the hypothesis (95) yields (97). Recall that Tφk has the

alternative expression Tφk(x) =
∫ 1

2

− 1
2

e
iπxlk

τ
dτφk(x).Hence, |xTφlk(x)| ≤ |xφk(x)| ≤

B and (5.34) is proved. The latter representation for T also implies that

|Tφk(x)− φk(x)| =
∣∣∣(1−

∫ 1
2

− 1
2

e
iπxlk

τ
dτ
)
φk(x)

∣∣∣ ≤ π

4lk
|xφk(x)| ≤ B

lk
,

thereby establishing (99).

6. Appendix.

Lemma 6.1. If j ≥ 3 is an integer, then

σj =

bj/2c∑
k=0

(
j

j − 2k

)(
2k

k

)(1

2

)j/2+k

≥
√

2

where bj/2c is the largest integer which is less than or equal to j/2.

Proof. We argue by induction on j. First, σ3 =
(

1
2

) 3
2

+ 6
(

1
2

) 3
2 +1

=
√

2 and

σ4 =
(1

2

) 4
2

+ 12
(1

2

) 4
2 +1

+ 6
(1

2

) 4
2 +2

>
√

2.

Even and odd values of j are considered separately. Suppose σ2j+1, σ2j+2 ≥
√

2 for
some j ≥ 1. Compute as follows:

σ2j+3 =

j+1∑
k=0

(
2j + 3

2j + 3− 2k

)(
2k

k

)(1

2

) 2j+3
2 +k

=
(1

2

) 2j+3
2

+

j+1∑
k=1

(
2j + 3

2j + 3− 2k

)(
2k

k

)(1

2

) 2j+3
2 +k

=
(1

2

) 2j+3
2

+

j∑
k=0

(
2j + 1

2j + 1− 2k

)(
2k

k

)
(2j + 3)(2j + 2)

(k + 1)2

(1

2

) 2j+3
2 +k

> σ2j+1 ≥
√

2.

Similarly, it is seen that

σ2j+4 =
(1

2

) 2j+4
2

+

j+2∑
k=1

(
2j + 4

2j + 4− 2k

)(
2k

k

)(1

2

) 2j+4
2 +k

=
(1

2

) 2j+4
2

+

j+1∑
k=0

(
2j + 2

2j + 2− 2k

)(
2k

k

)
(2j + 4)(2j + 3)

(k + 1)2

(1

2

) 2j+4
2 +k

> σ2j+2 ≥
√

2.

The induction is complete and the proof concluded.

Lemma 6.2. Suppose η ∈ Hs(R) has its Fourier transform η̂ even and non-
negative. Then given ε > 0, there is a function ϕ ∈ Hs(R) such that ‖η−ϕ‖Hs ≤ ε
and ϕ̂ ∈ C∞c (R) with ϕ(ξ) = ϕ(−ξ) ≥ 0 for all ξ ∈ R.
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Proof. Let ρ : R→ R be the usual mollifer defined to be

ρ(x) = C exp
( 1

x2 − 1

)
for |x| < 1

and ρ(x) ≡ 0 for |x| ≥ 1. The function ρ lies in C∞c (R) and the constant C is chosen
so that ∫ ∞

−∞
ρ(x) dx = 1.

For ε > 0, let

ρε(x) =
1

ε
ρ
(x
ε

)
and let χε(x) = χ[− 1

ε ,
1
ε ](x)

be the characteristic function of the interval [− 1
ε ,

1
ε ]. Define ϕ = ϕδ via its Fourier

transform, viz.

ϕ̂δ(ξ) = ρδ ∗ (χδ · η̂).

Clearly ϕ ∈ Hs(R) and ϕ̂ ∈ C∞c (R) is even and non-negative. The standard theory
(see, for example, Appendix C of Evan’s text [22]) is straightforwardly adapted to
show that ϕ̂δ → η̂ in the weighted space L2((1 + |2πξ|)2s dξ) as δ → 0. The result
in view follows.
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Pitman: London (1989), 183–205.

[15] J. L. Bona and H. Kalisch, Models for internal waves in deep water , Discrete Cont. Dynamical
Sys., 6 (2000), 1–20.

[16] J. L. Bona, Y. Liu and N. Nguyen, Stability of solitary waves in higher-order Sobolev spaces,
Commun. Math. Sci., 2 (2004), 35–52.

[17] J. L. Bona, P. E. Souganidis and W. A. Strauss, Stability and instability of solitary waves of

KdV-type, Proc. Royal Soc. London, Ser. A, 411 (1987), 395–412.
[18] J. L. Bona and A. Soyeur, On the stability of solitary-wave solutions of model equations for

long waves, J. Nonlinear Sci., 4 (1994), 449–470.
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