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Abstract. The so-called wave-maker problem for the BBM-equation is stud-

ied on the half-line. Improving on earlier results, global well-posedness is es-

tablished for square-integrable initial data and boundary data that is only
assumed to be locally bounded.

1. Introduction. Boundary-value problems for nonlinear, dispersive wave equa-
tions of Boussinesq-Korteweg-de Vries type were introduced in [4] in the context of
some laboratory experiments being conducted at the time in the Fluid Mechanics
Research Institute at the University of Essex. Comparisons between experimen-
tally obtained data and theory based upon an initial-boundary-value problem for
the regularized long-wave, or BBM , equation

ut + ux + uux − uxxt = 0, (1.1)

appeared later in [10] (and see also the earlier, related work of Peregrine [26] and
Hammack [23]).

Such evolution equations have appeared as models in a variety of other phys-
ical systems (see, for example, [1], [5] and the references in these articles for an
indication of the range of applicability of equations like (1.1)). In most cases, the
independent variable x characterizes position in the medium of propagation whilst
t is proportional to elapsed time. The dependent variable u may be an amplitude,
a pressure, a velocity or other measurable quantity, depending upon the physical
system and the modeling stance taken.
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Since the early foray in [4], many works have appeared devoted to initial-bound-
ary-value problems for nonlinear, dispersive wave equations, including the Korteweg-
de Vries equation and some of its generalizations, generalized versions of the BBM
equation and the cubic nonlinear Schrödiner equation. We mention as a sample [8],
[9], [11], [12] [13], [15], [16], [17], [24] and [25], but point out that there are many
further references in the works just cited.

The present essay adds to this general discussion. In a recent paper [14], it was
shown that the pure initial-value problem for the BBM–equation with initial data
given in all of R features global well-posedness in the L2–based Sobolev classes
Hs(R) provided only that s ≥ 0 (see also the related work on generalized BBM-
equations in [6]). It was also shown in [14] that in a certain sense, this result is
best possible. This well-posedness result improved upon the original work in [2]
which showed global well-posedness in Hs for integer values of s ≥ 1 for the pure
initial-value problem for (1.1) with both localized and bore-like initial data. For
the initial-boundary-value problem

ut + ux + uux − uxxt = 0,

u(x, 0) = g(x),

u(0, t) = h(t)

(1.2)

with x, t ≥ 0, local well-posedness is known in quite general circumstances. For
example, the problem is known to be locally well posed if g is simply assumed to be
a bounded, continuous function on R+, h is assumed to be continuous and the com-
patibility condition g(0) = h(0) holds (see [4], [7], [9]). For global well-posedness,
the principal topic of the present essay, the initial datum has been assumed to decay
to zero as x→∞. More precisely, the theory to date is based on the conditions

g(x) ∈ H1(R+) ∩ C2
b (R+),

h(t) ∈ C1(R+),
(1.3)

together with the consistency condition h(0) = g(0). Under these assumptions, a
globally defined, classical solution to the problem (1.2) obtains (see [4]).

It is the aim here to bring the theory for (1.2) more closely into line with that
appearing in [14] for the pure initial-value problem. The next section introduces
an integral equation equivalent to (1.2) and provides a detailed statement of the
results in view. Analysis leading to the conclusions advertised in the main result
is presented in Sections 3 and 4. Section 3 is a short proof of local well-posedness,
while Section 4 provides a proof of global well-posedness. The latter proceeds via a
decompostion, analogous to that used in [14], of the initial data into a small, rough
part and a smooth portion along with an associated decomposition of the boundary
data into a small part and a locally bounded remainder. The function-class notation
is mostly standard, but it is reviewed for the reader’s convenience in Appendix A
while the detailed construction of the decomposition used in Section 4 is indicated
in Appendix B.

2. Integral equation formulation and statement of the main result. The
problem under consideration is the initial-boundary-value problem (1.2) posed in
the quarter-plane {(x, t) : x, t ≥ 0}. The principal issue dealt with here is global
well-posedness of this quarter-plane problem. As mentioned, this system is a model
for long water waves of small but finite amplitude, generated by a wave-maker at
the left-hand end and propagating to the right in a uniform, open channel. Variable
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coefficient versions of this problem have also been used to model long-crested, near-
shore zone waves incoming from deep water (see, for example, [3] and [18]). The
channel is taken to be infinitely long to avoid dealing with a boundary condition
at the right. Indeed, the model equation (1.1) is only valid for waves moving to
the right. In a real channel, as soon as the wave motion reaches the right-hand end
of the channel, comparison between theory and experiment needs to cease because
the reflected waves are not described by this one-way equation (see [10]). Theory
comparing solutions of (1.2) with those of an associated two-point boundary value
problem suitable for use in computer simulations can be found in [7].

Under the assumptions (1.3), Bona and Bryant [4] showed that there exists a
unique classical solution u of (1.2) which, for each T > 0, lies in C(0, T ;H1(R))
and is such that ∂it∂

j
xu is a bounded, continuous function for (x, t) ∈ R+ × [0, T ]

and i = 0, 1, j = 0, 1, 2. The theory developed in [4] began by noting that with the
assumptions (1.3), the solution of the problem (1.2) satisfies the integral equation

u(x, t) = g(x) +
(
h(t)− h(0)

)
e−x (2.1)

+

∫ t

0

∫ ∞
0

k(x, y)
(
u(y, s) +

1

2
u2(y, s)

)
dyds,

where

k(x, y) =
1

2

(
e−(x+y) + sign(x− y)e−|x−y|

)
. (2.2)

This integral equation is derived by noting that if the differential equation is written
in the form (

I − ∂2x
)
ut =

(
I − ∂2x

)
v = −∂x

(
u+

1

2
u2
)

= f, (2.3)

where t is viewed as fixed, v(0) is given and v(x) is required to remain bounded as
x→∞, then necessarily

v(x) = (I − ∂2x)−1f = v(0)e−x −
∫ ∞
0

1

2

(
e−(x+y) − e−|x−y|

)
f(y) dy. (2.4)

In this case, f(y) = −∂y(u + 1
2u

2)(y, t) and v(0) = ut(0, t), so an integration by
parts in the y–variable followed by an integration in time over [0, t] yields (2.1).

Local well posedness is then a straightforward application of the contraction
mapping principle applied to the mapping defined by the right-hand side of (2.1).
Global well posedness obtains by deriving a priori bounds on the H1–norm of the
solution and using these to show that iterating the local theory leads to solutions
defined on arbitrarily large temporal intervals.

In this article, we deal with well-posedness, globally in time, for the problem
(1.2) supplemented with initial and boundary data having the weaker regularity
conditions

g(x) ∈ L2(R+), h(t) ∈ L∞loc(R+) (2.5)

and g and h are such that the consistency condition

g(0) = h(0) (2.6)

makes sense and holds good. The condition (2.6) is formally derived from the
observation that u(0, 0) has both the values h(0) and g(0), depending upon how the
point (0, 0) is approached. Thus, both g and h are taken to be continuous at the
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origin and the condition (2.6) is presumed to hold. It will be convenient to have
the notation

L0
T =

{
(g, h) ∈ L2(R+)× L∞([0, T ]) : (2.7)

g, h are continuous at 0 and g(0) = h(0)
}

for the class of admissible data. This class is viewed as a linear subspace of L2(R+)×
L∞([0, T ]). Of course, it is not closed in the inherited norm

‖(g, h)‖L0
T

= |g|2 + |h|L∞([0,T ]).

Under the weak regularity assumptions (2.5), it is no longer expected that there
is a classical solution to the BBM–equation (1.1). Instead, we search for solutions
in the space LT = L∞(0, T ;L2(R+)). It will turn out that the solutions obtained
have a trace at x = 0 and at t = 0, which is of course not implied simply by
membership in LT .

A function u(x, t) ∈ LT solves the equation (1.1) on the half-line R+ in the
integral sense if u satisfies (2.1). Elementary considerations reveal that if (g, h)
satisfies (2.5) and (2.6), then solutions of the integral equation (2.1) solve the initial-
boundary-value problem (1.2) in the sense of distributions. Indeed, it is clear that
a solution of (2.1) satisfies the initial condition since h(t) → h(0) and the double
integral term vanishes as t ↓ 0. Because k(x, y) → 0 as x ↓ 0, for all y ≥ 0, the
dominated convergence theorem implies that the double integral again tends to zero
in the limit x ↓ 0. Since g(x) → h(0) as x ↓ 0, it thus follows that the boundary
condition is also satisfied. The fact that a solution of (2.1) is a distributional
solution of (1.1) follows from the observation that

ut = h′(t)e−x +

∫ ∞
0

k(x, y)
(
u(y, s) +

1

2
u2(y, s)

)
dyds

by the fundamental theorem of calculus together with the the formula

(I − ∂2x)

∫ ∞
0

k(x, y)f(y) dy = fx

(see (3.5)). Of course, h′ and fx are taken in the sense of distributions.
Conversely, distributional solutions of the initial-boundary-value problem (1.2)

that lie in LT are solutions of the integral equation (2.1). This latter point is seen
by following the steps outlined earlier for the derivation of the integral equation.
Thus the two problems are equivalent as far as LT –solutions are concerned and we
will not continue to distinguish between them.

The following theorem is the principal result of this article.

Theorem 2.1. Suppose admissible initial and boundary data (g, h) are provided that
satisfy (2.5), have (g, h) continuous at the origin and are such that the consistency
condition

g(0) = h(0)

holds. Then, there exists a unique solution u = u(x, t) ∈ L∞loc(R+;L2(R+)) that
solves the initial-boundary-value problem (1.2). Moreover, the correspondence be-
tween initial and boundary data (g, h) and the associated solution u of (1.2) is,
for any T > 0, a Lipschitz continuous mapping from L2(R+) × L∞([0, T ]) into
LT = L∞([0, T ];L2(R+)).



BBM EQUATION IN A QUARTER PLANE 1153

Proof. This theorem will be proved in three steps. First, it is shown that the
quarter-plane problem (1.2) is locally well posed in LT∗ for small T ∗ > 0. Second,
for arbitrarily given T > 0, we prove that the solution exists on the temporal
interval [0, T ] provided the initial and boundary data are small enough. Once
this latter result is in hand, general initial and boundary data are split into two
parts. The first part is small whilst the second part, which need not be small,
is smooth. Solve (1.2) with the small part of the data first. If the small part is
small enough, the resulting solution will exist on the time-interval [0, T ]. With this
function in hand, pose a perturbed initial-boundary-value problem with the smooth
part of the original data as auxiliary conditions. We prove that the solution of this
perturbed equation survives at least for 0 ≤ t ≤ T . The solution of the quarter-
plane problem with the original data is then recovered by summing the two partial
solutions. The well-posedness on the time interval [0, T ] then follows from the local
well-posedness result. Since the time T is arbitrarily given, it is concluded that
the initial-boundary-value problem (1.2) is globally well posed. The details of this
scheme will be worked out in the remainder of the paper.

3. Local well-posedness. As in [4], we search for a function u which is the solu-
tion of the integral equation (2.1) where g, h satisfy the regularity and compatibilty
conditions described in (2.5) and (2.6).

Introduce the new dependent variable

v(x, t) = u(x, t)− h(t)e−x. (3.1)

Then, the function u is a solution of (2.1) if and only if v is a solution of the integral
equation

v(x, t) = g(x)− h(0)e−x +

∫ t

0

∫ ∞
0

k(x, y)
(
v(y, s) +

1

2
v2(y, s)

+ h(s)e−yv(y, s) + h(s)e−y +
1

2
h2(s)e−2y

)
dyds,

where k is as in (2.2). The explicit expression (2.2) for k and exact integration of
exponentials reduces the last equation to

v(x, t) = g(x)− h(0)e−x +
1

2
xe−x

∫ t

0

h(s) ds+
1

3
e−x(1− e−x)

∫ t

0

h2(s)ds

+

∫ t

0

∫ ∞
0

k(x, y)
(
v(y, s) + h(s)e−yv(y, s) +

1

2
v2(y, s)

)
dyds.

(3.2)

Notice that the operator

K(f)(x) =

∫ ∞
0

k(x, y)f(y) dy (3.3)

is a bounded linear operator with

|Kf |∞ ≤ |f |∞, |Kf2|2 ≤ |f2|1 = |f |22 and |Kf |2 ≤ |f |2. (3.4)

In fact, K is also a smoothing operator, mapping L2(R+) to H1(R+). More precisely,
if f ∈ L2(R+), then Kf ∈ H1(R+) and

d

dx
Kf(x) = f(x)−

∫ ∞
0

m(x, y)f(y) dy = f(x)−Mf(x), (3.5)
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pointwise almost everywhere and in the sense of distributions, where

m(x, y) =
1

2

(
e−(x+y) + e−|x−y|

)
. (3.6)

It follows immediately from this formula and (3.4) that

‖Kf‖H1(R+) ≤ 3|f |2. (3.7)

For given initial and boundary data (g, h) and v ∈ C([0, T ];L2(R+)), define the
operator A = A(g,h) by

A(g,h)(v)(x, t) = g(x)− h(0)e−x

+
1

2
xe−x

∫ t

0

h(s) ds+
1

3
e−x(1− e−x)

∫ t

0

h2(s)ds

+

∫ t

0

∫ ∞
0

k(x, y)
(
v(y, s) + h(s)e−yv(y, s) +

1

2
v2(y, s)

)
dyds.

(3.8)

Since the boundary data h is assumed to lie in L∞loc(R+), it follows that
∫ t
0
h(s)ds,

and,
∫ t
0
h2(s)ds lie in C(R+). This, together with the fact that g ∈ L2(R+), implies

A maps C(R+;L2(R+)) to itself.
From (3.4), it is also inferred that, for arbitrary T > 0 and v in the space

CT = C([0, T ];L2(R+)),

sup
0≤t≤T

|A(g,h)(v)|2 ≤ |g|2 + |h|L∞([0,T ])

+ T

(
1

4
|h|L∞([0,T ]) +

1

6
|h|2L∞([0,T ])

)
+ T

((
1 + |h|L∞([0,T ])

)
sup

0≤t≤T
|v(·, t)|2 +

1

2
sup

0≤t≤T
|v(·, t)|22

)
,

(3.9)

or, what is the same,

‖A(v)‖CT ≤ |g|2 + |h|L∞([0,T ]) + T

(
1

4
|h|L∞([0,T ]) +

1

6
|h|2L∞([0,T ])

)
+ T

((
1 + |h|L∞([0,T ])

)
‖v‖CT +

1

2
‖v‖2CT

)
.

(3.10)

Similarly, if v, w ∈ CT , then

‖A(w)−A(v)‖CT ≤ T
(

1 + |h|L∞([0,T ]) +
1

2
‖u+ v‖CT

)
‖u− v‖CT . (3.11)

Hence, if the positive numbers R and T are chosen so that

R = 2

(
|g|2 + |h|L∞([0,T ]) + T

(1

4
|h|L∞([0,T ]) +

1

6
|h|2L∞([0,T ])

))
,

and

(1 +R)T =
1

2
,

it follows immediately from the last two inequalities that A is a contraction mapping
of the closed ball BR(0) of radius R centered at the origin in CT . It is concluded
that there is a unique solution v of (3.2) which lies in CT .

Moreover, the solution map (g, h) 7→ v that carries initial data into the corre-
sponding solution of (3.2) is locally Lipschitz continuous. This fact derives from the

triangle inequality. Indeed, let v correspond to (g, h) and let ṽ correspond to (g̃, h̃).



BBM EQUATION IN A QUARTER PLANE 1155

Then, on some positive time interval [0, T ∗], v = A(g,h)(v) and ṽ = A(g̃,h̃)(ṽ). It

thus transpires that

‖v − ṽ‖CT∗ = ‖A(g,h)(v)−A(g̃,h̃)(ṽ)‖CT∗
≤ ‖A(g,h)(v)−A(g,h)(ṽ)‖CT∗ + ‖A(g,h)(ṽ)−A(g̃,h̃)(ṽ)‖CT∗

≤ θ‖v − ṽ‖CT∗ + |g − g̃|2 + |h− h̃|L∞([0,T∗])

+ T ∗
(

1

4
+

1

6
|h+ h̃|L∞([0,T∗])

)
|h− h̃|L∞([0,T∗])

where θ < 1 is the contraction constant for the operator A(g,h). In consequence,

‖v − ṽ‖CT∗ ≤
1

1− θ
C ‖(g, h)− (g̃, h̃)‖L2(R+)×L∞([0,T∗]),

where C depends upon the radius R of the ball where A(g,h) is contractive.
The following lemma has been established.

Lemma 3.1. Suppose compatible initial and boundary data (g, h) are given satisfy-
ing (2.5)-(2.6). Then, there is a T ∗ > 0 and a unique solution v = v(x, t) ∈ CT∗ =
C([0, T ∗];L2(R+)) to the integral equation (3.2). Moreover, the correspondence be-
tween initial and boundary data (g, h) and the associated solution v of (3.2) is a
Lipschitz continuous mapping of any bounded subset B of the class L0

T of consistent
initial data into CT∗ provided T ∗ = T ∗(B) is chosen sufficiently small.

Corollary 3.2. Suppose initial and boundary data (g, h) lies in L2(R+)×L∞loc(R+)
and that the consistency condition

lim
t↓0

g(t) = g(0) = h(0) = lim
x↓0

h(x)

holds. Then, there is a T ∗ > 0 and a unique solution u = u(x, t) = v(x, t) +
h(t)e−x ∈ LT∗ that solves the initial-boundary-value problem (1.2). Moreover, the
correspondence between initial and boundary data (g, h) and the associated solution
u of (1.2) is Lipschitz continuous on any bounded subset B of the class L0

T∗ (see
(2.7)) into LT∗ provided T ∗ = T ∗(B) is chosen sufficiently small.

4. Long time existence. As the problem is locally well-posed, establishing global
well-posedness only requires showing that the solution obtained from the local the-
ory can be extended to any time interval [0, T ], where T > 0 is arbitrary. This is
accomplished in two steps. The first contemplates only small auxiliary data.

4.1. Long time existence for small data. Consider again the dependent variable
v(x, t) = u(x, t)−h(t)e−x introduced in (3.1). It satisfies the initial-boundary-value
problem

vt + vx + vvx + h(t)(e−xv)x − vxxt = h2(t)e−2x + h(t)e−x

v(x, 0) = g(x)− h(0)e−x = g(x)− g(0)e−x, v(0, t) ≡ 0.
(4.1)

The integral equation corresponding to (4.1) is expressed in (3.2) and is known on
account of Lemma 3.1 to have a solution v ∈ CT∗ for T ∗ > 0 sufficiently small.
To establish that the solution v corresponding to sufficiently small auxiliary data
(g, h) has a time-interval of existence that contains [0, T ] for an arbitrarily specified
T > 0, it suffices to derive a priori bounds in CT on a putative solution v of (4.1)
and iterate the local result in Lemma 3.1. Once v is known to exist on the time
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interval [0, T ], then u(x, t) = v(x, t) + h(t)e−x is inferred to exist on the same time
interval and solves the original problem (1.2).

The derivation of appropriate a priori bounds is the subject of the next lemma.

Lemma 4.1. For any given T > 0, there exists an ε = ε(T ) > 0 such that if
‖(g, h)‖L0

T
≤ ε, then the solution v of (3.2) exists on the time interval [0, T ] and is

an element of CT .

Proof. Let ε > 0 connote a bound on the norm of the initial and boundary data
(g, h) in L0

T , which is to say, |g|2 + |h|L∞([0,T ]) ≤ ε. In due course, ε will be taken
small, but for the moment it is unrestricted.

Upon differentiating the integral equation (3.2) with respect to t, there emerges
the formula

vt(x, t) =
1

2
xe−xh(t) +

1

3
e−x(1− e−x)h2(t)

+

∫ ∞
0

k(x, y)
(
v(y, t) +

1

2
v2(y, t) + h(t)e−yv(y, t)

)
dy.

(4.2)

One sees immediately that vt lies in LT∗ . Multiply the integral equation (4.2) by v
and integrate the result over the half-line R+ with respect to the spatial variable x
to obtain the relation

1

2

d

dt

∫ ∞
0

v2(x, t) dx

=
1

2
h(t)

∫ ∞
0

xe−xv(x, t) dx+
1

3
h2(t)

∫ ∞
0

e−x(1− e−x)v(x, t) dx

+

∫ ∞
0

∫ ∞
0

k(x, y) v(x, t)
(
v(y, t) +

1

2
v2(y, t)

)
dydx

+

∫ ∞
0

∫ ∞
0

k(x, y)
(
v(x, t)h(t)e−yv(y, t)

)
dydx.

(4.3)

This formal calculation is easily justified (see, for example, [25]).
The following collection of integral inequalities comes to our aid in the analysis

of (4.3) (see (3.4), (3.5)). First observe that

I0 =
1

2
h(t)

∫ ∞
0

xe−xv(x, t) dx+
1

3
h2(t)

∫ ∞
0

e−x(1− e−x)v(x, t) dx

is bounded in terms of ε, viz

|I0| ≤
(

1

4
ε+

1

6
ε2
)
|v(·, t)|2 (4.4)

and that

I1 =

∫ ∞
0

∫ ∞
0

e−(x+y)v(y, t)v(x, t)dydx

=
〈
e−x, v(x, t)

〉2 ≤ 1

2
|v(·, t)|22.

(4.5)

Define I2 to be the integral

I2 =

∫ ∞
0

∫ ∞
0

sign(x− y)e−|x−y|v(y, t)v(x, t)dydx
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and remark that∣∣∣∣∣
∫ ∞
0

∫ ∞
0

sign(x− y)e−|x−y|v(y, t)v(x, t)dydx

∣∣∣∣∣ ≤ |v(·, t)|22.

Hence, I2 is finite and since I2 = −I2 by Fubini’s Theorem, so I2 = 0. It follows
that ∣∣∣∣∣

∫ ∞
0

∫ ∞
0

k(x, y)v(y, t)v(x, t)dydx

∣∣∣∣∣ ≤ 1

2

(
|I1|+ |I2

∣∣) ≤ 1

4
|v(·, t)|22. (4.6)

Next, consider the two integrals

I3 =

∫ ∞
0

∫ ∞
0

e−(x+y)v2(y, t)v(x, t)dydx

and

I4 =

∫ ∞
0

∫ ∞
0

sign(x− y)e−|x−y|v2(y, t)v(x, t)dydx.

It is readily ascertained that

|I3| =
∣∣∣〈e−y, v2(y, t)

〉〈
e−x, v(x, t)

〉∣∣∣ ≤ 1√
2
|v(·, t)|32

and, by first estimating the integral with respect to x, that

|I4| ≤ |v(·, t)|2
∫ ∞
0

(
1− 1

2
e−2y

)
v2(y, t) dy ≤ |v(·, t)|32.

Consequently, the inequality∣∣∣ ∫ ∞
0

∫ ∞
0

k(x, y)v2(y, t)v(x, t)dydx
∣∣∣ ≤ 1

2

(
|I3|+ |I4|

)
≤ |v(·, t)|32 (4.7)

emerges. Continuing in this vein, it is found that∣∣∣ ∫ ∞
0

∫ ∞
0

k(x, y)v(x, t)v(y, t)h(t)e−y dydx
∣∣∣ ≤ 3

4
ε|v(·, t)|22. (4.8)

If (4.4), (4.5), (4.7) and (4.8) are combined and used to estimate the size of the
right-hand side of (4.3), there obtains the differential inequality

d

dt
|v(·, t)|22 ≤

1

2
|v(·, t)|22 + |v(·, t)|32 +

3

2
ε|v(·, t)|22 +

(
1

4
ε+

1

6
ε2
)
|v(·, t)|2. (4.9)

If it is presumed that ε < 1, then the latter inequality implies that

d

dt
|v(·, t)|2 ≤ (1 + ε)|v(·, t)|2 + |v(·, t)|22 + ε. (4.10)

Let σ(t) satisfy the differential equation

σ′(t) = (1 + ε)σ(t) + σ(t)2 + ε =
(
σ(t) + 1

)(
σ(t) + ε

)
(4.11)

with σ(0) = ε. Then, so long as σ(t) remains finite, it will be positive and provide
a finite upper bound for |v(·, t)|2.

Elementary considerations reveal that

σ(t) =

(
2ε
ε+1

)
e(1−ε)t − ε

1−
(

2ε
ε+1

)
e(1−ε)t

. (4.12)
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The right-hand side of the last equation is certainly positive and finite as long as

t < log
( 1

2ε

)
.

It follows that if T > 0 is given, then the solution v of the integral equation (3.2)
exists at least on the time interval [0, T ] whenever ε = ε(T ) < 1

2e
−T .

Corollary 4.2. For any T > 0, there is an ε = ε(T ) > 0 such that if (g, h) ∈ L0
T

with ‖(g, h)‖L0
T
≤ ε, then the initial-boundary-value problem (1.2) has a unique

distributional solution u lying in LT .

4.2. An auxiliary BBM-equation with a variable coefficient. Consider the
variable-coefficient initial-boundary-value problem

wt + wx + wwx + (vw)x − wxxt = 0,

w(x, 0) = g(x),

w(0, t) = h(t),

(4.13)

posed for x, t ≥ 0, where v = v(x, t) need not be constant. This equation will
intervene in the analysis of the original initial-boundary-value problem (1.2) with
rough auxiliary data.

Lemma 4.3. Suppose that g ∈ H1(R+) and h ∈ L∞loc(R+) with h continuous at
0 and g(0) = h(0) = limt↓0 h(t). If v ∈ LT for some positive number T , then the
initial-boundary-value problem (4.13) has a unique distributional solution w ∈ ZT =
L∞([0, T ];H1(R+)).

Proof. In analogy with (2.1), the integral equation for the solution of (4.13) is

w(x, t) = g(x) +
(
h(t)− h(0)

)
e−x

+

∫ t

0

∫ ∞
0

k(x, y)
(
w(y, τ) +

1

2
w2(y, τ) + (vw)(y, τ)

)
dydτ,

(4.14)

where k is as in (2.2).
First, it is asserted that this integral equation has a solution in the space ZT∗ =

L∞([0, T ∗];H1(R+)), at least for suitably small, positive values of T ∗. Define the
operator B = B(g,h) by

B(g,h)(w) = g(x) +
(
h(t)− h(0)

)
e−x

+

∫ t

0

∫ ∞
0

k(x, y)
(
w(y, τ) +

1

2
w2(y, τ) + (vw)(y, τ)

)
dydτ.

(4.15)

For any T ∗ ∈ [0, T ], we have

sup
0≤t≤T∗

∣∣B(w)(·, t)
∣∣
2
≤ |g|2 + 2|h|L∞([0,T∗])

+ T ∗
(

sup
0≤t≤T∗

|w(·, t)|2 +
1

2
sup

0≤t≤T∗
|w(·, t)|22 + ‖v‖LT

sup
0≤t≤T∗

|w(·, t)|2
)
,

(4.16)
which is to say,

‖B(w)‖LT∗

≤|g|2 + 2|h|L∞([0,T∗]) + T ∗
(
‖w(·, t)‖LT∗ +

1

2
‖w(·, t)‖2LT∗

+ ‖v‖LT
‖w(·, t)‖LT∗

)
.
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Formula (3.5) implies that

d

dx
K
(
w+

1

2
w2+vw

)
(x, t) =

(
w+

1

2
w2+vw

)
(x, t)−M

(
w+

1

2
w2+vw

)
(x, t). (4.17)

Consequently, the inequality∣∣∣ d
dx
K
(
w +

1

2
w2+vw

)
(·, t)

∣∣∣
2
≤ 2
(
‖w(·, t)‖H1(R+)

+
1

2
‖w(·, t)‖2H1(R+) + ‖v‖LT

‖w(·, t)‖H1(R+)

) (4.18)

is seen to hold. It follows that

sup
0≤t≤T∗

∣∣∣ d
dx
B(w)(·, t)

∣∣∣
2
≤ ‖g‖H1(R+) + 2|h|L∞([0,T ])

+ 2T ∗
(

sup
0≤t≤T∗

‖w(·, t)‖H1(R+) +
1

2
sup

0≤t≤T∗
‖w(·, t)‖2H1(R+)

+ ‖v‖LT
sup

0≤t≤T∗
‖w(·, t)‖H1

)
.

(4.19)

Combining (4.16) and (4.19) yields

sup
0≤t≤T∗

∥∥B(w)
∥∥
H1 ≤ 2‖g‖H1 + 4|h|L∞([0,T ]) + 3T ∗

[
sup

0≤t≤T∗
‖w(·, t)‖H1

+

(
1

2
sup

0≤t≤T∗
‖w(·, t)‖H1 + ‖v‖LT

)
sup

0≤t≤T∗
‖w(·, t)‖H1

]
.

(4.20)

From these inequalities, one concludes that if w1, w2 ∈ BR(0), the ball of radius R
centered at the zero function in ZT∗ , then

‖B(g,h)(w1)− B(g,h)(w2)‖ZT∗ ≤ 3T ∗
(
1 +R+ ‖v‖LT

)
‖w1 − w2‖ZT∗ . (4.21)

Also, if w lies in BR(0), then

‖B(g,h)(w)‖ZT∗ ≤ 2‖g‖H1 + 4|h|L∞([0,T ]) + 3T ∗
(
1 +R+ ‖v‖LT

)
‖w‖ZT∗ . (4.22)

If the radius R is chosen to be 4
(
‖g‖H1 + 2‖h‖L∞([0,T ])

)
and then T ∗ < T is fixed

so that 0 < 3T ∗(1 + R + ‖v‖LT
) ≤ 1

2 , it follows immediately from the last two
inequalities that B is a contraction mapping of the closed ball BR(0) ⊂ ZT∗ into
itself. It is concluded that there is a unique solution w ∈ ZT∗ to the integral
equation (4.15).

To obtain the existence theory for (4.14) over the full time interval [0, T ], it is only
necessary to derive an a priori estimate for ‖w(·, t)‖H1(R+). To achieve this, consider

the dependent variable z(x, t) = w(x, t)− h(t)e−x which satisfies the equation

zt + zx + zzx + (vz)x− zxxt = h(t)e−x−
(
h(t)e−xz

)
x

+ h2e−2x−
(
vhe−x

)
x
, (4.23)

with initial and boundary data

z(x, 0) = g(x)− h(0)e−x and z(0, t) ≡ 0. (4.24)

Define an energy-type functional

E(t) =

∫ ∞
0

(
z2(x, t) + z2x(x, t)

)
dx = ‖z(·, t)‖2H1(R+). (4.25)
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The energy identity

1

2

d

dt
E(t) =

∫ ∞
0

vzzxdx+

∫ ∞
0

he−xzdx+
1

2

∫ ∞
0

he−xz2dx

+

∫ ∞
0

h2e−2xzdx+

∫ ∞
0

vhe−xzxdx

(4.26)

is readily derived by multiplying (4.23) by z, integrating the result over the half-
line R+ and integrating by parts suitably. Straightforward estimates allow the
conclusion

1

2

d

dt
‖z‖2H1 ≤

(
‖v‖LT

+ 2|h|L∞([0,T ])

)
‖z‖2H1

+
(
|h|2L∞([0,T ]) + |h|L∞([0,T ]) + |h|L∞([0,T ])‖v‖LT

)
‖z‖H1 ,

(4.27)

from which the differential equality

d

dt
‖z(·, t)‖H1 ≤ C1‖z‖H1 + C2, (4.28)

follows directly. Here, the constants C1 and C2 are

C1 = ‖v‖LT
+ 2|h|L∞([0,T ]) ,

C2 = |h|2L∞([0,T ]) + |h|L∞([0,T ]) + |h|L∞([0,T ])‖v‖LT
.

(4.29)

A Gronwall-type argument thus implies that

‖z(·, t)‖H1 ≤ eC1t‖z(·, 0)‖H1 +
C2

C1

(
eC1t − 1

)
for 0 ≤ t ≤ T. This a priori bound on ‖z(·, t)‖H1(R+), and hence on ‖w(·, t)‖H1(R+),
completes the proof of the lemma.

4.3. Long-time existence for data of arbitrary size. In the present subsection,
the argument in favor of Theorem 2.1 is completed. As mentioned earlier, long-time
existence is established by breaking the solution into two parts, one small and one
smooth. More precisely, let T > 0 be given and let (g, h) ∈ L0

T be arbitrarily-sized
initial and boundary data.

Proposition 4.4. Suppose g ∈ L2(R+) and that it is continuous at x = 0. Then
for any ε > 0, there exists a decomposition

g = gv + gw (4.30)

with the properties:

gw ∈ H1(R+), |gv|2 ≤ ε and |gv(0)| < ε.

Of course, if such a decomposition exists, it is automatic that gv is continuous
at 0 so that gv(0) makes sense. A proof that such a decomposition always obtains
is sketched in Appendix B. To complete the decomposition of the auxiliary data,
define

hv(t) ≡ gv(0) and hw(t) = h(t)− hv(t) (4.31)

for t ≥ 0.
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With this decomposition in mind, reconsider problem (1.2) with g = gv, h = hv.
This auxiliary data certainly satisfies (2.5) and (2.6). For given T > 0, choose
ε = ε(T ) sufficiently small that the initial-boundary-value problem

vt + vx + vvx − vxxt = 0,

v(x, 0) = gv(x),

v(0, t) = hv(t)

(4.32)

posed for x, t ≥ 0 has a unique solution v ∈ LT . That this occurs for small enough
ε is guaranteed by Corollary 4.2.

Next, consider the variable-coefficient initial-boundary-value problem

wt + wx + wwx + (vw)x − wxxt = 0,

w(x, 0) = gw(x),

w(0, t) = hw(t),

(4.33)

where v ∈ LT is the solution of (4.32). From their definitions, it is clear that
(gw, hw) ∈ L0

T . Lemma 4.3 implies immediately that (4.33) has a solution w that
lies in ZT = L∞([0, T ];H1(R+)).

If we define u = v + w, then u ∈ LT and u solves the original initial-boundary-
value problem (1.2). As T > 0 was arbitrary, this completes the proof of Theorem
2.1 asserting global well posedness for the initial-boundary-value problem (1.2) for
arbitrary auxiliary data (g, h) ∈ L0

T .

5. Appendix A: Function classes. The following notation for function classes
is used throughout the discussion. All functions are real–valued and if a spatial
domain is not specified for a function class, it is presumed to be the positive real
axis R+. For any Banach space X, its norm will be denoted ‖·‖X with the exceptions
noted below.

1. For 1 ≤ p < ∞ and I a real interval, the Lebesgue space Lp = Lp(I) of pth–
power integrable functions has its standard norm written | · |Lp(I). The usual

modification will be in force when p = ∞. In case the interval I = R+, we
write simply | · |p for the Lp(R+)–norm. The local version L∞loc = L∞loc(R+),
also appears, as does the closed subspace C(R+) ⊂ L∞loc(R+). However, their
standard Fréchet-space topologies do not intervene in the analysis.

2. The Sobolev space of L2(R+)–functions whose distributional derivatives up to
order m ≥ 0 also lie in L2(R+) is denoted Hm(R+) = Hm. These spaces carry
their standard Hilbert-space structures. The inner product of f, g ∈ L2(R+)
is denoted by < f, g >.

3. If X is a Banach space, the space L∞([0, T ];X) of measurable and essentially
bounded functions from [0, T ] to X finds use. The norm on this space is

‖u‖L∞(0,T ;X) = ess sup
0≤t≤T

‖u(t)‖X .

The notation C([0, T ];X) is used for the closed subspace of L∞([0, T ];X) con-
sisting of continuous functions from the interval [0, T ] to X. Three spaces of
this sort are singled out in our development, namely, LT = L∞([0, T ];L2(R+)),
ZT = L∞([0, T ];H1(R+)) and the closed subspace CT = C([0, T ];L2(R+)) of
LT .
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4. The special subset L0
T of the product space L2(R+)×L∞([0, T ]) of pairs such

that (g, h) is continuous at (0, 0) and satisfies the consistency condition

g(0) = h(0)

(see (2.6)) is the class from which the auxiliary data is drawn.

6. Appendix B: Proof of Proposition 4.4. Let J ∈ C∞(R) have the following
properties:

J(−x) = J(x) ≥ 0, J(x) = 0 for |x| > 1 and

∫ ∞
−∞

J(x) dx = 1.

For any λ > 0, define

Jλ(x) =
1

λ
J
(x
λ

)
.

If g ∈ L2(R+), g continuous at 0 and λ > 0, define

gλ(x) = Jλ ∗ g̃(x) =

∫ ∞
−∞

Jλ(x− y)g̃(y) dy,

where g̃ is the even extension of g. For any fixed λ > 0, gλ ∈ H1(R) is an even
function. Moreover,

lim
λ↓0

gλ(0) = g(0) and lim
λ↓0
‖gλ − g‖L2(R+) =

1

2
lim
λ↓0
‖gλ − g̃‖L2(R) = 0.

If gλ is restricted to R+, then by choosing λ sufficiently small, we obtain a
function gw as advertised in Proposition 4.4.
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