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NORM-INFLATION RESULTS FOR THE BBM EQUATION

JERRY BONA AND MIMI DAI

Abstract. Considered here is the periodic initial-value probem for the regu-
larized long-wave (BBM) equation

ut + ux + uux − uxxt = 0.

Adding to previous work in the literature, it is shown here that for any s < 0,
there is smooth initial data that is small in the L2-based Sobolev spaces Hs,
but the solution emanating from it becomes arbitrarily large in arbitrarily small
time. This so called norm inflation result has as a consequence the previously
determined conclusion that this problem is ill-posed in these negative-norm
spaces.

1. Introduction

This note derives from the paper [7] where it was shown that the initial-value
problem

ut + ux + uux − uxxt = 0,

u(0, x) = u0(x),
(1.1)

for the regularized long-wave or BBM equation is globally well posed in the L2–
based Sobolev spaces Hr(R) provided r ≥ 0. In the same paper, it was shown that
the map that takes initial data to solutions cannot be locally C2 if r < 0. This
latter result suggests, but does not prove, that the problem (1.1) is not well posed
in Hr for negative values of r. Later, Panthee [15] showed that this solution map,
were it to exist on all of Hr(R), could not even be continuous, thus proving that the
problem is ill posed in the L2-based Sobolev spaces with negative index. Indeed, he
showed that there is a sequence of smooth initial data {φn}

∞

n=1 such that φn → 0
in Hr(R) but the associated solutions, {un}

∞

n=1 have the property that ‖u(·, t)‖Hr

is bounded away from zero for all small values of t > 0 and all n ≥ 1.
The BBM equation itself was initially put forward in [16] and [3] as an approx-

imate description of long-crested, surface water waves. It is an alternative to the
classical Korteweg-de Vries equation and has been shown to be equivalent in that,
for physically relevant initial data, the solutions of the two models differ by higher
order terms on a long time scale (see [6].) It predicts the propagation of surface
water waves pretty well in its range of validity [5]. Finally, it is known rigorously
to be a good approximation to solutions of the full, inviscid, water-wave problem
by combining results in [1], [4] and [13] (see also [14]).

It is our purpose here to show that in fact, for r < 0, the problem (1.1) is not
only not well posed, but features blow-up in the Hr–norm in arbitrarily short time.
This will be done in the context of the periodic initial-value problem wherein u0 is
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a periodic distribution lying in Hr
per for some r < 0. Similar results hold for Hr(R),

but are not explicated here.
More precisely, it will be shown that, for any given r < 0, there is a sequence

{un
0}

∞

n=1 of smooth initial data such that un
0 → 0 in Hr

per and a sequence {Tn}
∞

n=1

of positive times tending to 0 as n → ∞ such that the corresponding solutions
{un}

∞

n=1 emanating from this initial data, whose existence is guaranteed by the
periodic version [9] of the theory for the initial-value problem, are such that for
n = 1, 2, 3, · · · ,

‖u(·, Tn)‖Hs
per

≥ n.

This insures in particular that the solution map S that associates solutions to
initial data, which exists on L2, cannot be extended continuously to all of Hs

per,
thus reproducing Panthee’s conclusion. Results of this sort go by the appellation
norm inflation for obvious reasons. The idea originated in the work of Bourgain
and Pavlović [8] for the three-dimensional Navier-Stokes equation. The method
of construction there was applied to some other dissipative fluid equations by the
second author and her collaborators, see [12, 11, 10]. It suggests that the method
is generic as well as sophisticated.

Notation

The notation used throughout is standard. For r ∈ R, the collection Ḣr
per is the

homogeneous space of 2π-periodic distributions whose norm

‖f‖2r =

∞
∑

k=1

k2r(|fk|
2 + |gk|

2)

is finite. Elements in Ḣr
per all have mean zero over the period domain [0, 2π].

Here, the {fk} are the Fourier sine coefficients and the {gk} are the Fourier cosine

coefficients of f . Notice that Ḣ0
per may be viewed simply as the L2-functions on the

period domain [0, 2π] with mean zero. If X is any Banach space, the set C([0, T ];X)
consists of the continuous functions from the real interval [0, T ] intoX with its usual
norm.

2. Norm inflation

The principal result of our study is the following theorem.

Theorem 2.1. Let r < 0 by given. Then there is a sequence {uj
0}

∞

j=1 of C∞,

periodic initial data such that

u
(j)
0 → 0 as j → ∞

in Ḣr
per and a sequence {Tj}

∞

j=1 of positive times tending to zero as j → ∞ such

that if uj(x, t) is the solution emanating from u
(j)
0 , then

‖u(·, Tj)‖Ḣr
per

≥ j

for all j = 1, 2, · · · .

Proof: Fix s > 0, let r = −s and consider a wavenumber k1 ∈ N which, in due
course, will be taken to be large. Let k2 = k1+1, define ū by ū = sin(k1x)+sin(k2x)
and consider the 2π-periodic, men zero initial data u0 = k

γ
1 ū for (1.1) where γ > 0

will be restricted presently. Of course, u0 is smooth, so the theory developed in
[9] implies that a unique, global, smooth solution emanates from this initial data.



NORM-INFLATION FOR BBM EQUATION 3

Notice also that the solution preserves the property of having zero mean, so it lies
in C([0, T ]; Ḣρ

per) for all ρ ∈ R.
Let ϕ(Dx) be the Fourier multiplier operator given in terms of its Fourier trans-

form by ϕ̂(Dx)u(ξ) =
ξ

1+ξ2
û(ξ). The equation (1.1) can be rewritten as

iut =ϕ(Dx)u+
1

2
ϕ(Dx)

(

u2
)

,

u(0, x) = u0(x).
(2.2)

Let S(t) = e−itϕ(Dx) be the unitary group defining the evolution of the linear BBM
equation. Then, Duhamel’s principle allows the solution of (1.1)-(2.2) to be written
in the form

(2.3) u(x, t) = S(t)u0(x) + u1(s, t) + y(x, t)

where

u1(x, t) =
1

2

∫ t

0

S(t− τ)ϕ(Dx)
(

S(τ)u0)
)2
dτ

is the first order approximation of the nonlinear term in the differential-integral
equation in (2.2). The function y(x, t) is the remainder, which may be expressed
implicitly in the sightly complicated, but useful form

(2.4) y(x, t) =

∫ t

0

S(t− τ)ϕ(Dx)
[

G0(τ) +G1(τ) +G2(τ)
]

dτ

with

G0(τ) =
1

2
u2
1(τ) + u1(τ)S(τ)u0,

G1(τ) = u1(τ)y(τ) + y(τ)S(τ)u0,

G2(τ) =
1

2
y2(τ),

where the spatial dependence has been supressed for ease of reading. The strategy
is to show that by choosing k1 sufficiently large, u1 becomes large in a short time
in the space Ḣr

per = Ḣ−s
per , while the error term y remains under control in the same

space.
In contrast to dissipative equations, the linear dispersion operator S(t) only

translates the wave, but does not change its magnitude; more precisely, for k =
1, 2, · · · ,

(2.5) S(t) sin(kx) = sin

(

kx−
k

1 + k2
t

)

, S(t) cos(kx) = cos

(

kx−
k

1 + k2
t

)

.

On the other hand, the operator ϕ(Dx) both decreases the amplitude of its argu-
ment and adds rotation viz.

(2.6) ϕ(Dx) sin kx = −i
k

1 + k2
cos kx, ϕ(Dx) cos kx = i

k

1 + k2
sin kx.

It follows from this that ϕ(Dx) vanishes on constant functions.
It is clear that if s > 0, then

‖S(t)u0‖−s = ‖u0‖−s ∼ k
γ−s
1 ,

while ‖S(t)u0‖0 = ‖u0‖0 ∼ k
γ
1 .

(2.7)
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As we want the initial data to be small in Ḣ−s
per , γ is restricted to the range (0, s).

The formulas in (2.5) imply

S(τ)ū = sin

(

k1x−
k1

1 + k21
τ

)

+ sin

(

k2x−
k2

1 + k22
τ

)

,

so that

[

S(τ)ū
]2

=
1

2

[

1− cos

(

2k1x−
2k1

1 + k21
τ

)]

+
1

2

[

1− cos

(

2k2x−
2k2

1 + k22
τ

)]

+ cos

(

(k1 − k2)x−

(

k1

1 + k21
−

k2

1 + k22

)

τ

)

− cos

(

(k1 + k2)x−

(

k1

1 + k21
+

k2

1 + k22

)

τ

)

.

It then follows from (2.6) that

1

2
ϕ(Dx)

[

S(τ)ū
]2

=−
i

4

2k1
1 + 4k21

sin

(

2k1x−
2k1

1 + k21
τ

)

−
i

4

2k2
1 + 4k22

sin

(

2k2x−
2k2

1 + k22
τ

)

+
i

2

k1 − k2

1 + (k1 − k2)2
sin

(

(k1 − k2)x−

(

k1

1 + k21
−

k2

1 + k22

)

τ

)

−
i

2

k1 + k2

1 + (k1 + k2)2
sin

(

(k1 + k2)x−

(

k1

1 + k21
+

k2

1 + k22

)

τ

)

≡ I1 + I2 + I3 + I4.

Consider now the function sin (kx− ωt) and calculate as follows:

∫ t

0

S(t− τ) sin(kx− ωτ)dτ =

∫ t

0

sin
(

kx−
k

1 + k2
(t− τ) − ωτ

)

dτ

=

(

k

1 + k2
− ω

)

−1 (

cos
(

kx−
k

1 + k2
t
)

− cos
(

kx− ωt
)

)

(2.8)

where use has been made of (2.5).
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The latter formula, applied four times, allows us to calculate u1 explicitly, to
wit,

u1 =k
2γ
1

∫ t

0

S(t− τ)
[

I1 + I2 + I3 + I4
]

dτ

=−
ik

2γ
1

12

1 + k21
k21

[

cos

(

2k1x−
2k1

1 + k21
t

)

− cos

(

2k1x−
2k1

1 + 4k21
t

)]

−
ik

2γ
1

12

1 + k22
k22

[

cos

(

2k2x−
2k2

1 + k22
t

)

− cos

(

2k2x−
2k2

1 + 4k22
t

)]

+
ik

2γ
1

2

k1 − k2

1 + (k1 − k2)2

[

k1

1 + k21
−

k2

1 + k22
−

k1 − k2

1 + (k1 − k2)2

]

−1

·

[

cos

(

(k1 − k2)x −

(

k1

1 + k21
−

k2

1 + k22

)

t

)

− cos

(

(k1 − k2)x−
k1 − k2

1 + (k1 − k2)2
t

)]

−
ik

2γ
1

2

k1 + k2

1 + (k1 + k2)2

[

k1

1 + k21
+

k2

1 + k22
−

k1 + k2

1 + (k1 + k2)2

]

−1

·

[

cos

(

(k1 + k2)x −

(

k1

1 + k21
+

k2

1 + k22

)

t

)

− cos

(

(k1 + k2)x−
k1 + k2

1 + (k1 + k2)2
t

)]

.

A study of the various constants appearing above reveals that, up to absolute
constants,

u1 ∼− ik
2γ
1

[

cos

(

2k1x−
2k1

1 + k21
t

)

− cos

(

2k1x−
2k1

1 + 4k21
t

)]

− ik
2γ
1

[

cos

(

2k2x−
2k2

1 + k22
t

)

− cos

(

2k2x−
2k2

1 + 4k22
t

)]

+ ik
2γ
1

[

cos

(

x−

(

k1

1 + k21
−

k2

1 + k22

)

t

)

− cos

(

x−
t

2

)]

− ik
2γ
1

[

cos

(

(k1 + k2)x−

(

k1

1 + k21
+

k2

1 + k22

)

t

)

− cos

(

(k1 + k2)x−
k1 + k2

1 + (k1 + k2)2
t

)

]

.

as k1 becomes large. Since
∣

∣ cos(kx− ω1t)− cos(kx− ω2t)
∣

∣ ≤ |ω1 − ω2|t,

straightforward calculations show that the first, second and fourth terms above are
uniformly small compared to the third term, for large values of k1. Indeed, they
are all of order k2γ−1

1 t, whereas the third term is of order k2γ1 t.
It follows from this that for all t ≥ 0,

‖u1(t, ·)‖−s ∼ k
2γ
1 t and likewise

‖u1(t, ·)‖0 ∼ k
2γ
1 t.

(2.9)

Thus, by taking k1 large, the Ḣ−s
per-norm of u1 can be made as big as we like.

As mentioned earlier, an estimate of the error term y is needed to complete the
argument. It will in fact be shown that y is even bounded in L2, let along Ḣ−s

per.
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To this end, use is made of one of a periodic version of one the bilinear estimates
in [7].

Lemma 2.2. Let u, v ∈ Hq
per with q ≥ 0. Then

(2.10) ‖ϕ(Dx)(uv)‖q . ‖u‖q‖v‖q

where the implied constant only depends upon q.

The proof of this result is the same as the proof of Lemma 1 in [7], with sums
replacing integrals.

Introduce the abbreviation XT for C([0, T ];L2) for ease of reading. The value
of T > 0 will be specified momentarily. It follows from (2.10) and the implicit
relationship (2.4) for the remainder y that

‖y‖XT
.T ‖u1‖

2
XT

+ T ‖S(t)u0‖XT
‖u1‖XT

+ T ‖u1‖XT
‖y‖XT

+ T ‖S(t)u0‖XT
‖y‖XT

+ T ‖y‖2XT

.T 3k
4γ
1 + T 2k

3γ
1 +

(

k
2γ
1 T 2 + k

γ
1T

)

‖y‖XT
+ T ‖y‖2XT

=A+ BY + TY2,

(2.11)

where Y = Y(T ) = ‖y‖XT
. As y ∈ C([0,M ];L2) for all M > 0, it follows that Y(T )

is a continuous function of T . Moreover, Y(0) = 0.

Choose T0 = k
−µγ
1 , where µ > 3

2 . With this choice, we see that for T ≤ T0,

A = O
(

k
γ(4−3µ)
1 + k

γ(3−2µ)
1

)

and B = O
(

k
2γ(1−µ)
1 + k

γ(1−µ)
1

)

,

as k1 → ∞ and all the exponents are negative.
Choose k1 large enough that B < 1

2 and T and A are both small. It follows in
this circumstance that the quadratic polynomial

p(z) = A+ (B − 1)z + Tz2

has two positive roots, the smaller of which is denoted z and the larger z̄. Of course,
p(z) < 0 for z ∈ (z, z̄).

The inquality (2.11) may be expressed as

p
(

Y(T )
)

≥ 0.

As Y(T ) is continuous and Y(0) = 0, it follows that Y(T ) ≤ z for all T ∈ [0, T0]. For
k1 large, T0 < 1. When combined with the fact that B < 1

2 , it is readily deduced
that

z ≤ 4A, whence Y(T ) ≤ 4A,

thus assuring that the remainder y(·, t) is indeed uniformly bounded in Ḣ−s
per for

t ≤ T0 and large choices of k1.

Taking a suitably chosen, increasing sequence {k
(j)
1 }∞j=1 of wavenumbers for

which

lim
j→∞

k
(j)
1 = +∞,

and with the indicated choices of γ and µ, (2.7) assures the initial data tends to

zero in Ḣ−s
per . The decomposition (2.3) together with (2.7), (2.9) and the bound just

obtained on y then implies that the solutions uj blow up at times Tj = (k
(j)
1 )−µγ .

The latter tend to zero as j → ∞ since µ and γ are both positive. This completes
the proof of the theorem.
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