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Abstract

This paper is concerned with initial-boundary-value problems (IBVPs) for a class of
nonlinear Schrödinger equations posed either on a half line R

+ or on a bounded interval
(0, L) with nonhomogeneous boundary conditions. For any s with 0 ≤ s < 5/2 and s 6= 3/2,
it is shown that the relevant IBVPs are locally well-posed if the initial data lie in the L2–
based Sobolev spaces Hs(R+) in the case of the half line and in Hs(0, L) on a bounded

interval, provided the boundary data are selected from H
(2s+1)/4
loc (R+) and H

(s+1)/2
loc (R+),

respectively. (For s > 1
2 , compatibility between the initial and boundary conditions is also

needed.) Global well-posedness is also discussed when s ≥ 1. From the point of view of the
well-posedness theory, the results obtained reveal a significant difference between the IBVP
posed on R

+ and the IBVP posed on (0, L). The former is reminiscent of the theory for
the pure initial-value problem (IVP) for these Schrödinger equations posed on the whole line
R while the theory on a bounded interval looks more like that of the pure IVP posed on a
periodic domain. In particular, the regularity demanded of the boundary data for the IBVP
on R

+ is consistent with the temporal trace results that obtain for solutions of the pure IVP
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on R, while the slightly higher regularity of boundary data for the IBVP on (0, L) resembles
what is found for temporal traces of spatially periodic solutions.

Keywords: Nonlinear Schrödinger equations, Initial boundary value problems

1 Introduction

Studied here are initial-boundary-value problems for nonlinear Schrödinger equations posed

either on a half line R
+, viz.






iut + uxx + λ|u|p−2u = 0, x ∈ R
+, t ∈ R,

u(x, 0) = φ(x), u(0, t) = h(t),
(1.1)

or on a finite interval (0, L),







iut + uxx + λ|u|p−2u = 0, x ∈ (0, L), t ∈ R ,

u(x, 0) = φ(x), u(0, t) = h1(t), u(L, t) = h2(t).
(1.2)

Here, the parameter λ is a non-zero real number and p ≥ 3.1 Note that, due to the symmetry

of the equation with respect to the change of variables x → −x, results established for (1.1)

carry over mutatis muntandis to the quarter-plane problem where R
+ is replaced by R

−. (The

situation regarding the quarter-plane problems posed on R
+ and R

− for the Korteweg-de Vries

equation are significantly different on the other hand.) In all cases where (1.1) and (1.2) arise in

practice, the second-order derivative models dispersive effects, which is to say the tendency of

waves to spread out due to the fact that different wavelengths propagate with different speeds,

while the |u|p−2u–term accounts for a variety of nonlinear effects.

Nonlinear Schrödinger equations are derived as models for a considerable range of applica-

tions. This includes propagation of light in fiber optics cables, certain types of shallow and

deep surface water waves, Langmuir waves in a hot plasma and in more general forms in Bose-

Einstein condensate theory. In the case of gravity waves on the surface of an inviscid liquid,

the parameter λ depends upon the undisturbed depth of the water, becoming negative in water

deep with respect to the wavelength of the wavetrain. A particularly interesting application of

nonlinear Schrödinger (NLS henceforth) equations has been their use in attempting to explain

the somewhat mysterious formation of rogue waves in the ocean and in optical propagation (see

[6], [7] , [31] and [62]).

In many of the physical applications mentioned above, the independent variable x is a co-

ordinate representing position in the medium of propagation, t is proportional to elapsed time

and u(x, t) is a velocity or an amplitude at the point x at time t. One configuration that arises

naturally in making predictions of waves in water is to take x ∈ R
+ = {x |x ≥ 0} and specify

u(0, t) for t > 0. This corresponds to a given wave-train generated at one end by a wave-maker

and propagating into a region of the medium of propagation (see [1] for an example of this situa-

tion). The domain is natural since solutions of this wavemaker problem for the NLS-equation are

an approximation of waves moving in the direction of increasing values of x. The semi-infinite

1Only the case p ≥ 3 is considered here, but a substantial part of the theory goes through under the weaker
hypothesis p > 2.



3

aspect of the domain is convenient in that no lateral boundary need be considered downstream

of the wavemaker.

However, real domains are bounded, and in some cases it may be necessary to impose bound-

ary conditions at both ends of the medium of propagation. Especially if one is interested in

implementing a numerical scheme to calculate solutions of the half-line problem or localized

solutions of the pure initial-value problem on the whole line, there arises the need to truncate

the spatial domain. In such situations, the problem posed on a finite domain comes to the

fore, and one must impose boundary conditions at both ends to specify solutions. Of course,

when approximating localized solutions of the problem on all of R, it is reasonable to take

u(0, t) = u(L, t) = 0 for 0 ≤ t ≤ T and L > 0 large enough that essentially no disturbance

reaches the boundary during the time interval [0, T ]. However, the wavemaker problem and its

finite domain counterpart demand non-homogeneous boundary conditions. Neumann conditions

may also be appropriate in some circumstances.

In this paper, the discussion will center around the fundamental questions of existence and

uniqueness of solutions corresponding to specified initial and boundary data. The issue of the

solutions’ dependence upon the auxiliary data is also examined, thereby completing Hadamard’s

basic idea of well posedness. The theory developed here will be for initial data in the L2–based

Sobolev spaces Hs(R+) and Hs(0, L). The spaces from which the boundary data will be drawn

are dictated by these choices of initial data, as will become apparent presently. Theory will be

developed wherein the time for existence depends upon the size of the auxiliary data. With

more restrictive hypotheses, global well-posedness results will also be provided. Here and below,

the notation is that which is current in the theory of partial differential equations.

Theory for the nonlinear Schrödinger equation in the form depicted in (1.1) and (1.2) has seen

a lot of development in the last four decades, beginning with the pioneering work of Zakharov

and his collaborators [74, 75]. For the most part, the mathematical theory for this equation has

been concerned with either the pure initial-value problem posed on the entire real line R or the

periodic initial-value problem posed on the one-dimensional torus T. A large body of literature

has been concerned with the fundamental questions of existence, uniqueness and continuous

dependence of solutions corresponding to initial data drawn from Sobolev classes (again, well

posedness a la Hadamard [41, 42]). Some highlights of the developments are [16, 18, 27, 29, 39,

40, 53, 54, 69, 72], for example. We caution that this is only a small sample of the extant work

on these problems. The monograph of Cazenave [26] provides a good entry into the literature.

The study of the initial-boundary-value problems (IBVP henceforth) (1.1) and ((1.2)) with

nonhomogeneous boundary conditions has not progressed to the same extent (see [30, 19, 20, 21,

22, 23, 45, 46, 52, 68, 69, 70, 71] and more recent work on the boundary-value problems of some

other dispersive equations [55], and the references therein). In this paper, the goal is to advance

the study of the IBVP’s (1.1) and (1.2) to the same level as that obtaining for the relevant

pure initial-value problems posed on all of R. The local well-posedness theory constructed in

the body of the paper is summarized in the following three theorems. In all of these results, we

assume that the lowest order compatibility conditions

h(0) = φ(0) for (1.1) or h1(0) = φ(0), h2(0) = φ(L) for (1.2) (1.3)

are valid when s > 1
2 . These derive simply from the requirement that the solution be continuous

at the corners of the relevant space-time domain, which are (0, 0) for the half-line problem and

(0, 0) and (L, 0) for the finite interval problem. This point will be elaborated at the end of the
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next section. If s > 0 is large, we need to assume that |u|p−2u is differentiable, a requirement

that imposes a relationship between s and p, viz.

if p is even, s is arbitrary; if p is odd, s ≤ p− 1; otherwise, ⌊s⌋ < p− 2 , (1.4)

where ⌊s⌋ is the largest integer less than s. Furthermore, for the convenience of our discussion

of the traces of functions in Hs(R), it is always assumed that

s 6= n+
1

2
for n = 0, 1, 2, · · · . (1.5)

This aspect is not always recalled in the body of the paper.

For a given s ∈ R and Ω being R
+ or a finite interval (0, L), the space Hs(Ω) is defined as

the restriction of the space Hs(R) to Ω, viz.

Hs(Ω) = {f |Ω
∣

∣ f ∈ Hs(R)}

endowed with the quotient norm

‖f‖Hs(Ω) = inf
{

‖f̃‖Hs(R) | f̃ ∈ Hs(R), f̃
∣

∣

Ω
= f

}

.

Other equivalent definitions of Hs(Ω) can be found in Chapter 1 of [59].

Theorem 1.1 (i) Suppose 1
2 < s < 5

2 with 3 ≤ p < ∞. Then, for φ ∈ Hs(R+) and h ∈
H

2s+1

4

loc (R+), the IBVP (1.1) is locally well-posed in Hs(R+).

(ii) If 0 ≤ s < 1
2 with 3 ≤ p < 6−4s

1−2s , the IBVP (1.1) is (conditionally) locally well-posed in

Hs(R+).

In both (i) and (ii), what is meant precisely is that for any given T > 0 and γ > 0, there

exists a T ∗ with 0 < T ∗ ≤ T depending only on s, γ and T such that if φ ∈ Hs(R+) and

h ∈ H
2s+1

4 (0, T ) satisfy

‖φ‖Hs(R+) + ‖h‖
H

2s+1
4 (0,T )

≤ γ,

then the IBVP (1.1) admits a solution u ∈ C([0, T ∗];Hs(R+)). In case (i), the solution

u ∈ C([0, T ∗];Hs(R+)) is unique, while in (ii), the solution satisfies the auxiliary condition

‖u‖Lq(0,T ∗;Lr(R+)) < +∞, (1.6)

where (q, r) is an admissible pair, and it is the only C([0, T ∗];Hs(R+))–solution with this

property. Here, a pair (q, r) is admissible when 1
q +

1
2r = 1

4 . In both cases (i) and (ii), the

corresponding solution map is Lipschitz continuous.

Theorem 1.2 (i) If 1
2 < s < 5

2 with 3 ≤ p < ∞, the IBVP (1.2) is locally well-posed in

Hs(0, L) for φ ∈ Hs(0, L) and h1, h2 ∈ H
s+1

2

loc (R+).

(ii) If 0 ≤ s < 1
2 with 3 ≤ p ≤ 4, then the IBVP (1.2) is (conditionally) locally well-posed in

Hs(0, L) for φ, h1, h2 in the same spaces.
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For both cases, this means that for any T > 0 and γ > 0, there exists a T ∗ with 0 < T ∗ ≤ T

depending only on s, γ and T such that if φ ∈ Hs(0, L) and h1, h2 ∈ H
s+1

2 (0, T ) satisfy

‖φ‖Hs(0,L) + ‖h1‖
H

s+1
2 (0,T )

+ ‖h2‖
H

s+1
2 (0,T )

≤ γ,

the IBVP (1.2) admits a solution u ∈ C([0, T ∗];Hs(0, L)). In case (i) this solution u ∈
C([0, T ∗];Hs(0, L)) is unique, while in case (ii), the solution also satisfies

‖u‖L4((0,T ∗)×(0,L)) < +∞ (1.7)

and is the unique C([0, T ∗];Hs(0, L))–solution with this property. In both cases, the cor-

responding solution map is Lipschitz continuous.

The issue of uniqueness could use some elaboration. In (i) of both Theorems 1.1 and 1.2,

the uniqueness means that if there are two solutions u, v ∈ C([0, T ∗];Hs), then u ≡ v. However,

for (ii) of both Theorems 1.1 and 1.2, the uniqueness means that if there are two solutions

u, v ∈ C([0, T ∗];Hs) satisfying either (1.6) or (1.7), then u ≡ v. Therefore, when 0 ≤ s < 1
2 ,

the local well-posedness results presented in both Theorem 1.1 and Theorem 1.2 are conditional

(see Kato [53] where this distinction was made in the context of general classes of equations)

since (1.6) or (1.7) is needed to ensure the uniqueness. It is naturally of interest to know

whether these conditions can be removed. If these auxiliary conditions can be removed, the

corresponding results are called unconditional well-posedness, or simply well-posedness. In fact,

a further argument allows the results for smaller values of s to be extended, so obtaining the

following additional wrinkle appertaining to Theorems 1.1 and 1.2.

Theorem 1.3 (unconditional well-posedness) Let 0 ≤ s < 1
2 be given. Then, both (1.6)

and (1.7) can be removed, so the corresponding well-posedness is unconditional.

As mentioned, the preceding results are all local, which is to say the time interval (0, T ∗) over
which the solution is guaranteed to exist depends on the size of initial and boundary data. If

T ∗ can be chosen independently of the size of the initial and boundary data, then the result is

termed global well-posedness. The following global well-posedness results for (1.1) and (1.2) are

proved here.

Theorem 1.4

(i) Assume that either p ≥ 3 if λ < 0 or 3 ≤ p ≤ 4 if λ > 0. The IBVP (1.1) is globally

well-posed in Hs(R+) for any 1 ≤ s < 5
2 with auxiliary date (φ, h) drawn from Hs(R+)×

H
s+1

2

loc (R+).

(ii) Assume that either p ≥ 3 if λ < 0 or 3 ≤ p ≤ 10
3 if λ > 0. The IBVP (1.2) is globally

well-posed in Hs(0, L) for any 1 ≤ s < 5
2 with φ ∈ Hs(0, L) and h1, h2 ∈ H

s+1

2

loc (R+).

The rest of the paper is organized as follows. A general overview of the problems together

with an outline of the strategy for analyzing them is provided in Section 2. The IBVP (1.1)

takes center stage in Section 3 which consists of three subsections. In Subsection 3.1, explicit

solution formulas are derived for associated linear problems. In Subsection 3.2, various Strichartz
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estimates are established using these solution formulas. The local well-posedness of the IBVP

(1.1) on R
+ is established in Subsection 3.3. In Section 4, local well-posedness for the IBVP

(1.2) on the finite interval (0, L) is studied. The global well-posedness of (1.1) and (1.2) will

be investigated in Section 5. The paper concludes with an Appendix where a technical lemma

needed in establishing Proposition 4.6 is proved and a telling counterexample, which concerns

the optimality of the assumption h1, h2 ∈ H(s+1)/2(0, T ) in Theorem 1.2, is presented.

2 Overview

We begin by reviewing the state of the art for the pure initial-value problems

iut + uxx + λ|u|p−2u = 0, u(x, 0) = φ(x), for x ∈ R, (2.8)

for the Schrödinger equations considered here. First discussed is the case of initial data φ that

is localized on an unbounded domain, which is to say it evanesces at infinity in at least a weak

sense.

Theorem A

(i) For s > 1
2 with 3 ≤ p <∞ or 0 ≤ s < 1

2 with 3 ≤ p < 6−4s
1−2s , the initial-value problem (2.8)

is locally well-posed in Hs(R). That is, for any r > 0, there exists a T > 0 depending on

r such that if ‖φ‖Hs(R) ≤ r, then (2.8) admits a unique solution u ∈ C([0, T ];Hs(R)) and

the corresponding solution map is Lipschitz continuous. 2

Moreover, for 0 ≤ s < 1
2 , the solution also satisfies

‖u‖Lq
loc(0,T ;Bs

r,2(R))
< +∞ , (2.9)

where Bs
r,2(R) is the Besov space and 1/q + 1/(2r) = 1/4. Uniqueness when 0 ≤ s < 1

2

requires that (2.9) holds.

(ii) If, in addition, 3 ≤ p < 6, then the above local well-posedness results are global, i.e., T is

independent of r and can be chosen arbitrarily large.

Next, the existing results obtained when φ is periodic are recalled.

Theorem B

(i) For s > 1
2 with 3 ≤ p < ∞ or 0 ≤ s < 1

2 with 3 ≤ p < 6−4s
1−2s , the IVP (2.8) is locally

well-posed in Hs(T), i.e., for any r > 0, there exists a T > 0 depending only on r such that

if φ ∈ Hs(T) with ‖φ‖Hs(T) ≤ r, then (2.8) admits a unique solution u ∈ C([0, T ];Hs(T))

and the corresponding solution map is Lipschitz continuous. Moreover, for 0 ≤ s < 1
2 , the

solution u satisfies

‖u‖
B
T

s, 1
2

< +∞ , (2.10)

where B
T
s, 1

2

is the restricted Bourgain space associated to the Schrödinger equation (see

[16]). As in Theorem A, uniqueness when 0 ≤ s < 1
2 is conditional and relies upon (2.10).

2For many years since the pioneering work in [54, 29], the solution map was only known to be continuous from
Hs(R) to C([0, T ];Hs−ǫ(R)). It was proved recently by Cazenave, et al. [27] to be continuous from Hs(R) to
C([0, T ];Hs(R)).
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(ii) If, in addition, 3 ≤ p < 6, then the above local well-posedness results are global, i.e., T is

independent of r and can be chosen arbitrarily large.

These results may be found in the previously cited references. We emphasize that at present,

the uniqueness part of the well-posedness results in the parts (i) of Theorem A and Theorem B

requires the extra conditions (2.9) and (2.10) when s < 1
2 . As mentioned, such well posedness

was termed conditional by Kato [53]. If the auxiliary conditions can be removed, which is to say

the solution is shown to be unique only assuming it lies in C([0, T ];Hs(R)), then the problem

(2.8) is said to be unconditionally well-posed. According to the general discussion presented in

[11], if 3 ≤ p < 6, the conditional well-posedness results stated in parts (i) of Theorems A and

B are, in fact, unconditional.3

The overall goal of the present essay is to bring the well-posedness theory for the IBVP’s

(1.1) and (1.2) into line with what is known for the pure initial-value problem (2.8).

The precise terminology used in the paper is now provided and motivation is developed for

the choice of appropriate function spaces for the initial and boundary conditions. The main

ideas and methodology for proving the results stated in the Introduction are also set forth.

The notion of well-posedness used for the problems (1.1) and (1.2) is detailed first.

Definition 2.1 Let s, s′ ∈ R and T > 0 be given.

(i) The IBVP (1.1) is said to be (locally) well-posed in Hs(R+)×Hs′(0, T ) if for φ ∈ Hs(R+)

and h ∈ Hs′(0, T ) satisfying certain natural compatibility conditions, there exists a T ′ ∈
(0, T ] depending only on ‖φ‖Hs(R+) + ‖h‖Hs′ (0,T ) such that (1.1) admits a unique solu-

tion u ∈ C([0, T ′];Hs(R+)). Moreover, the solution depends continuously on (φ, h) in the

corresponding spaces.

(ii) The IBVP (1.2) is said to be (locally) well-posed in Hs(0, L)×Hs′(0, T ) if for φ ∈ Hs(0, L)

and h1, h2 ∈ Hs′(0, T ) satisfying certain natural compatibility conditions, there exists a

T ′ ∈ (0, T ] depending only on ‖φ‖Hs((0,L)) + ‖h1‖Hs′ (0,T ) + ‖h2‖Hs′ (0,T ) such that (1.2)

admits a unique solution u ∈ C([0, T ′];Hs(0, L)). Moreover, the solution depends contin-

uously on (φ, h1, h2) in the corresponding spaces.

In either case, if T ′ can be chosen independently of r, the relevant IBVP is said to be

globally well posed.

Completing this definition of well-posedness requires making precise what it means for u to be

a solution of (1.1) or (1.2). The issue is important for small values of s, where the meaning of

the derivatives and nonlinear term has to be addressed. The usual approach in the literature is

to say that u solves the equation in the sense of Schwartz distributions. This, however, leads to

a further question about how the nonlinear term λ|u|p−2u makes sense as a distribution, as well

as how the solution u takes on the given initial and boundary values. In this paper, we will use

the following definitions (see [11] for a general discussion) for the solutions of (1.1) and (1.2),

respectively.

Definition 2.2 Let s ≤ 2, s′ ≤ s and T > 0 be given.

3The reader is referred to [73, 43] and the references therein for recent progress on the issue of unconditional
well-posedness of nonlinear Schrödinger equations.
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(a) For φ ∈ Hs(R+) and h ∈ Hs′(0, T ), we say that u ∈ C([0, T ];Hs(R+)) is a solution of

(1.1) if there exists a sequence

un ∈ C([0, T ];H2(R+)) ∩ C1([0, T ];L2(R+)), n = 1, 2, 3, · · ·

such that

1) un satisfies the equation in (1.1) in L2(R+) for 0 ≤ t ≤ T ,

2) un converges to u in C([0, T ];Hs(R+)) as n→ ∞,

3) φn(x) = un(x, 0) converges to φ(x) in Hs(R+) as n→ ∞,

4) hn(t) = un(0, t) is in Hs′(0, T ) and converges to h(t) in Hs′(0, T ) as n→ ∞.

(b) For φ ∈ Hs(0, L) and h1, h2 ∈ Hs′(0, T ), we say that u ∈ C([0, T ];Hs(0, L)) is a solution

of (1.2) if there exists a sequence

un ∈ C([0, T ];H2(0, L)) ∩ C1([0, T ];L2(0, L)), n = 1, 2, 3, · · ·

such that

1) un satisfies the equation of (1.2) in L2(0, L) for 0 ≤ t ≤ T ,

2) un converges to u in C([0, T ];Hs(0, L)) as n→ ∞,

3) φn(x) = un(x, 0) converges to φ(x) in Hs(0, L) as n→ ∞,

4) h1,n(t) = un(0, t), h2,n(t) = un(L, t) are in Hs′(0, T ) and converge to h1(t) and h2(t),

respectively, in Hs′(0, T ) as n→ ∞.

Of course, if s ≥ 2, then a solution in the above sense, sometimes called a mild solution, is

a solution in the ordinary L2–sense.

Attention is now turned to the relation between s′ and s in the definition of well posedness.

It is well known that the linear Schödinger equation

ivt + vxx = 0, v(x, 0) = φ(x),

posed on the whole line R has the Kato smoothing property, which is to say φ ∈ Hs(R) implies

v ∈ L2
loc(R;H

s+ 1

2

loc (R)). In addition, the Schrödinger equation itself entails that ∂t ∼ ∂xx, so

suggesting that

s′ =
1

2

(

s+
1

2

)

=
2s + 1

4
(2.11)

(see [45] for a more detailed discussion and [2, 3] for recent studies of this issue for Schrödinger

equations). We are thus led to complete the definition of well posedness for the IBVP (1.1) with

the stipulation (2.11).

For the IBVP (1.2), one might imagine that the correct value should also be s′ = 2s+1
4 .

However, as will be seen presently, this is not the case. Instead, the optimal relation between s

and s′ for the IBVP (1.2) is

s′ =
s+ 1

2
. (2.12)

Thus, a significant, albeit technical difference, emerges between the IBVP (1.1) (posed on an

unbounded domain) and the IBVP (1.2) (posed on a finite domain).
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To put our main theorems into context, we sketch previous work on such IBVP’s. Carrolle

and Bu in [30] studied (1.1) with p = 4 and showed that if φ ∈ H2(R+) and h ∈ C2(R+) with

φ(0) = h(0), then the problem admits a unique global solution

u ∈ C1(R+;L2(R+)) ∩C(R+;H2(R+)).

This result was extended to the case p ≥ 3 by Bu in [20] for the defocusing case (λ < 0). In

[68], Strauss and Bu considered the problem







ut −∆u+ λ|u|p−2u = 0, x ∈ Ω, t ∈ R ,

u(x, 0) = φ(x), x ∈ Ω, u(x, t) = q(x, t), x ∈ ∂Ω ,
(2.13)

for the NLS equations posed on a smooth (bounded or unbounded) domain Ω ⊂ R
n. Assuming

that λ < 0 and p ≥ 3, they showed that for any φ ∈ H1(Ω) and q ∈ C3(Rn × (−∞,∞)) with

compact support satisfying the natural compatibility condition, the IBVP (2.13) admits a global

solution

u ∈ L∞
loc((−∞,∞);H1(Ω) ∩ Lp(Ω)).

Bu, Tsutaya and Zhang [23] extended the above result to the case of λ > 0 assuming 3 ≤ p ≤
2 + n

2 and n ≥ 2. In all this work, the third leg of Hadamard’s conception, namely continuous

dependence of solutions on the initial and boundary data, was not discussed. For small s ≥ 0,

Holmer [45] obtained the following result for the half-line problem (1.1).

Theorem 2.3 (Holmer) Let 1
2 < s < 3

2 with 3 ≤ p < ∞ or 0 ≤ s < 1
2 with 3 ≤ p < 6−4s

1−2s be

given. For any r > 0, there exists T > 0 such that if φ ∈ Hs(R+) and h ∈ H
2s+1

4

loc (R+) satisfy

‖φ‖Hs(R+) + ‖h‖
H

2s+1
4 (0,T )

≤ r
(

h(0) = φ(0) for s >
1

2

)

,

then the IBVP (1.1) admits a solution u ∈ C([0, T ];Hs(R+)) which depends continuously upon

the auxiliary data in the relevant function classes. Moreover, for 1
2 < s < 3

2 , the solution u is

unique.

This result is very similar to that obtained here for the quarter-plane problem (1.1). Our

result, which is obtained by a different approach to be described presently, improves Theorem

2.3 in small ways (the issue of uniqueness for s in the range 0 ≤ s < 1
2 is clarified and the range

of values of s is extended). The boundary integral method used in this paper and in our earlier

work [12] on the KdV equation, has other points to recommend it, however. First, one can

read off from our representation of solutions a significant difference between the IBVPs for the

KdV equation and the nonlinear Schrödinger equation. For the KdV equation, the imposition

of a boundary condition at the left-hand end of R+ produces a strong dissipative smoothing

mechanism, whereas no such dissipative smoothing appears from solving the same boundary-

value problem for the nonlinear Schrödinger equation. This distinction is not so clearly seen

using the earlier methods. (More detail concerning this distinction will be presented elsewhere.)

Another point in favor of the boundary-integral method is that it generalizes immediately to

higher space dimensions. This, also, is a project for future investigation.
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The discussion is now turned in a slightly more technical direction. The first point we want

to make is that at least for relatively small values of s, the case where the boundary data is

homogeneous (i.e. h ≡ 0 or h1 = h2 ≡ 0) can be reduced to the situation described in Theorem

A or Theorem B, respectively. (This is no longer true for larger values of s, however.) Thus,

with essentially no effort, the following results obtain.

Theorem 2.4 Assume that h = 0 in (1.1).

(i) If 1
2 < s < 5

2 with 3 ≤ p < ∞ or 0 ≤ s < 1
2 with 3 ≤ p < 6−4s

1−2s , the IBVP (1.1) is locally

well-posed in Hs(R+).

(ii) If 3 ≤ p < 6, then the IBVP (1.1) is (unconditionally) globally well-posed in Hs(R+) for

any s with 0 ≤ s < 5
2 .

Theorem 2.5 Assume that h1 = 0 and h2 = 0 in (1.2).

(i) If 1
2 < s < 5

2 with p ≥ 3 or 0 ≤ s < 1
2 with 3 ≤ p < 6−4s

1−2s , the IBVP (1.2) is locally

well-posed in Hs(0, L).

(ii) If 3 ≤ p < 6, then the IBVP (1.2) is (unconditionally) globally well-posed in Hs(0, L) for

any s with 0 ≤ s < 5
2 .

For Theorem 2.4, the result follows by choosing as initial data the odd extension φ̃ of φ,

solving the equation on R with φ̃ as initial data and then restricting the resulting solution to the

half line. For Theorem 2.5, extend φ to [−L,L] by taking the odd extension and then extend to

all of R by 2L–periodicity. Solve the resulting periodic initial-value problem and then restrict

to [0, L].

For the nonhomogeneous boundary-value problems that are the focus of attention here,

such simple methods do not appear to give results. To deal with nonhomogeneous boundary

data, a standard approach is to homogenize the boundary data by a change of the dependent

variables. Define a new dependent variable by subtracting from the original dependent variable

a known function that takes on the given boundary values. This new variable will satisfy a

related equation, but with zero boundary conditions. While this works well in some cases,

e.g. BBM-type equations (see [4] and the references therein), in the present context it requires

that the boundary data must have stronger regularity than should be needed according to the

heuristic analysis leading to the relation (2.11) between the function classes of the initial and the

boundary data. For instance, this method, applied in a straightforward way for p = 4, say, ends

up requiring for the quarter-plane problem (1.1) that h ∈ H1([0, T ]) to obtain the well-posedness

of the IBVP (1.1) in L2(R+) rather than h ∈ H
1

4 ([0, T ]) as advertised in Theorem 1.1, part (ii).

The initial-boundary-value problem







ut + ukux + uxxx = 0, x ∈ R
+, t ∈ (0, T ) ,

u(x, 0) = φ(x), u(0, t) = h(t),
(2.14)

for the generalized Korteweg-de Vries (KdV) equation posed on a half line R
+, is instructive.

Colliander and Kenig [33] introduced a new method to analyze this problem by solving the pure
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IVP






wt + wkwx + wxxx = δ(x)f(t), x ∈ R, t ∈ (0, T ) ,

w(x, 0) = ψ(x),
(2.15)

of a forced, generalized KdV equation with an appropriate forcing function f(t). Here, δ(x) de-

notes the Dirac mass at x = 0 and ψ(x) is an extension of φ(x) from R
+ to R. It is demonstrated

that an appropriate forcing function f(t) can be chosen so that the corresponding solution w of

(2.15) satisfies

w(0, t) = h(t), for 0 < t < T.

Consequently, the restriction of w(x, t) to the half line R
+ is a solution of the IBVP (2.14).

The IVP (2.15) is solved using the contraction mapping principle in a carefully constructed,

Bourgain-type space Xs,T . The key step of this approach is to study the associated linear

problem,






vt + vxxx = δ(x)f(t), x ∈ R, t ∈ (0, T ) ,

v(x, 0) = ψ(x) ,
(2.16)

and show that there exists a real number s′ (depending only on s) such that for any given

ψ ∈ Hs(R),

(i) if f ≡ 0, the solution v of (2.16) satisfies

sup
x∈R

‖v(x, ·)‖Hs′ (0,T ) ≤ Cs,T‖ψ‖Hs(R) , (2.17)

(ii) if h ∈ Hs′(0, T ), one can find a forcing function f such that the IVP (2.16) admits a

solution v ∈ Xs,T and

‖v‖Xs,T
≤ Cs,T

(

‖ψ‖Hs(R) + ‖h‖Hs′ (0,T )

)

. (2.18)

It turns out that for the IBVP (2.14),

s′ =
s+ 1

3
. (2.19)

The estimate (2.17) is, in fact, the sharp Kato smoothing property possessed by the solutions

of the linearized KdV equation. The Riemann-Liouville fractional integral is the main tool used

to establish the estimate (2.18).

There is another approach to deal with the IBVP (2.14) put forward by the present authors

in [8]. A major constituent of this latter approach is the explicit solution formula

q(x, t) = [Ub(t)h](x) + [Ub(t)h](x) (2.20)

where

[Ub(t)h](x) =
1

2π

∫ ∞

1
eiµ

3t−iµte
−
(√

3µ2−4+iµ
2

)

x
(3µ2 − 1)

∫ ∞

0
e−i(µ3+µ)ξh(ξ) dξ dµ,
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of the linear, nonhomogeneous boundary-value problem,







qt + qx + qxxx = 0, x ∈ R
+, t ∈ (0, T ),

q(x, 0) = 0, q(0, t) = h(t).
(2.21)

This explicit formula, which is obtained by formally taking the Laplace transform in time,

solving the resulting third-order problem and taking the inverse Laplace transform, enables one

to establish directly various estimates needed for proving the well-posedness of the IBVP (2.14).

Moreover, it clearly demonstrates that the solution q(x, t) of (2.21) becomes infinitely smooth

when x > 0 and t > 0. It has been further shown in [12] that

the solution q(x, t) is the restriction to R
+×R

+ of a function w(x, t) defined on R×R which is

such that

(
∫ ∞

−∞

∫ ∞

−∞
(1 + |ξ|)2s(1 + |τ − ξ3|)2b|ŵ(ξ, τ)|2dξdτ

)1/2

≤ C‖h‖
H

3b+s−1/2
3 (R+)

where b is any value in [0, 12 − s
3) if −3

2 ≤ s < 3
2 , b is any value in [0, 56 − s

3 ] if −1
2 < s < 1 and

C is a constant depending only on s and b.

It then follows that the IBVP (2.21) possesses the following strong dissipative smoothing

property:

h ∈ H
(s+1)/3
loc (R+) =⇒ q ∈ L2(0, T ;Hs+ 3

2 (R+)).

In [45], Holmer applied the Colliander–Kenig approach to study the IBVP (1.1) and obtained

the results described in Theorem 2.3. However, as we will show in this paper, this approach

may fail for the IBVP (1.2). More precisely, we show that for the solution u of the IBVP







iut + uxx = 0, x ∈ (0, L), t ∈ (0, T ),

u(x, 0) = 0, u(0, t) = h1(t), u(L, t) = h2(t),
(2.22)

for the linear Schrödinger equation posed on (0, L), the estimate

‖u‖L2((0,L)×(0,T )) ≤ C
(

‖h1‖Hα(0,T ) + ‖h2‖Hα(0,T )

)

(2.23)

holds if α ≥ 1
2 , but fails if α < 1

2 . (Indeed, Example A2 in the Appendix shows the optimality

of the assumption h1, h2 ∈ H1/2(0, T ) for this estimate to hold). By contrast, for solutions of

the IBVP






ivt + vxx = 0, x ∈ R
+, t ∈ (0, T ),

v(x, 0) = 0, v(0, t) = h(t),
(2.24)

for the linear Schrödinger equation posed on R
+, it is indeed the case that

‖v‖L2(R+×(0,T )) ≤ C‖h‖
H

1
4 (0,T )

. (2.25)

And, solutions of the pure IVP

iwt + wxx = 0, w(x, 0) = ψ(x), x ∈ R, t ∈ (0, T ) (2.26)
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for the linear Schrödinger equation posed on R, comply with the inequality

sup
x∈R

‖w(x, ·)‖
H

1
4 (0,T )

≤ C‖ψ‖L2(R). (2.27)

Thus, while it is possible to solve the nonhomogeneous IBVP (1.1) by solving a forced IVP of

the form

iut + λ|u|p−2u+ uxx = δ(x)f(t), u(x, 0) = ψ(x), x ∈ R, t ∈ (0, T ),

with an appropriate forcing function f(t), it may not be feasible to apply the same approach to

the two-point IBVP (1.2).

In this paper, the approach developed earlier in [8] for studying nonhomogeneous boundary-

value problems of the KdV equation will be used to establish local well-posedness results for

(1.1) and (1.2). Analogous to the solution formula (2.20) in the KdV case, the nonhomogeneous,

linear IBVP (2.24) has the explicit solution

v(x, t) =
1

π

∫ ∞

0
e−iβ2teiβxβ

∫ ∞

0
eiβ

2τh(τ)dτdβ +
1

π

∫ ∞

0
eiβ

2te−βxβ

∫ ∞

0
e−iβ2τh(τ)dτdβ. (2.28)

Similarly, the solution formula for the nonhomogeneous, linear IBVP (2.22) is

u(x, t) =

∞
∑

n=1

2inπe−i(nπ)2t

∫ t

0
ei(nπ)

2τ
(

h1(τ)− (−1)nh2(τ)
)

dτ sinnπx. (2.29)

As in the case of the KdV equation, these formulas are derived by taking the Laplace transform

of u in the temporal variable, solving the resulting, second-order, ordinary differential equation

and taking the inverse Laplace transform of the result. The inequalities needed to advance

the local well-posedness theory obtain directly from these explicit solution formulas. Moreover,

from these formulas, one ascertains that, unlike the KdV equation, the imposition of boundary

conditions brings no smoothing effect. For example, consider the IBVP (2.24). The second term

B(x, t) =
1

π

∫ ∞

0
eiβ

2te−βxβ

∫ ∞

0
e−iβ2τh(τ)dτdβ

on the right-hand side of the solution formula (2.28) becomes infinitely smooth as soon as x > 0

and t > 0. On the other hand, the first term on the right-hand side of (2.28) can be written as

A(x, t) =
1

π

∫ ∞

−∞
e−iβ2teiβxψ̂(β)dβ,

where ψ is the function whose Fourier transform is

ψ̂(β) =







β
∫∞
0 eiβ

2τh(τ)dτ if β > 0,

0 if β < 0.

Thus, A(x, t) solves the pure initial-value problem for the linear Schrödinger equation, posed

on the whole line R, with the initial value ψ(x). It follows that ψ ∈ Hs(R) if and only if

h ∈ H
2s+1

4

0 (R+). Consequently, in contrast to the KdV equation, there is no boundary smoothing

for the Schrödinger equation.
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This section is concluded with remarks on higher-order regularity and global well-posedness.

The theory outlined above, and which is developed in detail in the remainder of the essay, has

upper limits on the regularity of the auxiliary data. As we will see momentarily, these restrictions

are necessary. They can be relaxed only by asking for additional properties of the auxiliary data.

When equations like the Schrödinger equation are derived to describe physical phenomena,

they often come as a simplification of a more complete model. Justifying the simpler model as

an approximation of a more elaborate model typically requires smoothness of the solutions of

both the full and the approximate models (see [5, 34, 66] for justification of the KdV equation

as an approximation of the full water-wave problem, for instance). Without smoothness, the

comparisons are not in fact valid. Thus, it is not only of academic interest to understand higher

regularity solutions.

An example will illustrate the problem that arises when smoother solutions are in question.

Take the classical case p = 4 so that the nonlinearity is cubic and smooth. Suppose that the

quarter-plane problem (1.1) is locally well posed in H3(R+), say. Then, there is a T > 0 and a

solution u ∈ C(0, T ;H3(R+)). Because uxx ∈ C(0, T ;H1(R+)) and u satisfies the equation, it

must be the case that u ∈ C1(0, T ;H1(R+)). It follows that each term in the evolution equation

is a continuous function of both space and time in R
+ × [0, T ]. Evaluating the equation at the

point (0, 0) and using the initial and boundary conditions then yields

ih′(0) + φ′′(0) + λ|φ(0)|2φ(0) = 0. (2.30)

Thus, the auxiliary data necessarily satisfies a higher-order compatibility condition in addi-

tion to the lower-order condition (1.3) that has been assumed throughout the discussion. It is

straightforward to calculate yet higher-order conditions on the auxiliary data that must obtain

for well-posedness to hold in smaller Sobolev spaces. This issue also arises for the KdV equation

posed on the half-line or on a bounded interval. In that case, higher-order regularity theory has

been developed in the presence of higher-order compatibility conditions (see [13, 15]).

When the nonlinearity is smooth, e.g. when p = 4, 6, 8, · · · , local well posedness in the

presence of higher regularity and the associated compatibility conditions can be established by

the methods put forward here. However, we eschew this task in the present script.

Finally, we come to the issue of global well-posedness. As is standard in the theory of

evolution equations, local well-posedness coupled with suitable a priori bounds on solutions is

the path to global well posedness. For the pure initial-value problem (2.8), the bounds provided

by the conserved quantities

I(t) :=

∫ ∞

−∞
|u(x, t)|2dx and II(t) :=

∫ ∞

−∞

(

|ux(x, t)|2 −
2λ

p
|u(x, t)|p

)

dx (2.31)

suffice for the global results mentioned earlier. However, corresponding to the quarter-plane

problem (1.1), one has (cf. [30])

I ′(t) :=
d

dt

∫ ∞

0
|u(x, t)|2dx = −2 Im

(

ux(0, t)h(t)
)

(2.32)

and

II ′(t) :=
d

dt

∫ ∞

0

(

|ux(x, t)|2 −
2λ

p
|u(x, t)|p

)

dx = −2Re
(

ux(0, t)h
′(t)
)

(2.33)
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while the two-point IBVP (1.2) has

I ′(t) :=
d

dt

∫ L

0
|u(x, t)|2dx = 2 Im

(

ux(L, t)h2(t)− ux(0, t)h1(t)
)

(2.34)

and

II ′(t) :=
d

dt

∫ L

0

(

|ux(x, t)|2 −
2λ

p
|u(x, t)|p

)

dx = 2Re
(

ux(L, t)h
′
2(t)− ux(0, t)h

′
1(t)
)

, (2.35)

for all t ∈ R for which the solutions exist. In case the boundary conditions are homogeneous,

viz. h ≡ 0 or h1 = h2 ≡ 0, both I(t) and II(t) are formally conserved just as in the case of

the pure initial-value problem (2.8). At least for small values of the Sobolev index s, global

well-posedness results for the homogeneous IBVP’s (1.1) and (1.2) then follow readily. For the

nonhomogeneous cases, both I(t) and II(t) are no longer conserved and the task of obtaining

global a priori estimates becomes interesting (see Section 5).

We turn now to the body of the paper where detailed analysis is given leading to the conclu-

sions recounted in the Introduction. The explicit solution formulas (2.28) and (2.29) will play a

central role in our development.

3 The Schrödinger equation posed on the half line R
+

Considered first is the IBVP (1.1)







iut + uxx + λu|u|p−2 = 0, x ∈ R
+, t ∈ R,

u(x, 0) = φ(x), u(0, t) = 0 .
(3.1)

with a homogeneous boundary condition. It transpires that this can be reduced to the pure IVP







iwt + wxx + λw|w|p−2 = 0, x ∈ R, t ∈ R,

w(x, 0) = ψ(x)
(3.2)

of the NLS equation posed on the whole line R. Indeed, observe that if w = w(x, t) is a solution

of (3.2) which is an odd function with respect to x, then its restriction

u(x, t) := w(x, t), x ∈ R
+,

to the half-line is a solution of (3.1) with φ(x) = ψ(x), x ∈ R
+. On the other hand, the IVP

(3.2) possesses the following invariance property.

Lemma 3.1 If ψ is an odd and smooth function, then for any t ∈ R, the corresponding solution

w of (3.2) is odd with respect to x.

Proof: Consider first the associated linear problem







iwt + wxx = f, x ∈ R, t ∈ R,

w(x, 0) = ψ(x).
(3.3)
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Using the Fourier transform, its solution w(x, t) is

w(x, t) =

∫

R

eiξ
2teiξxψ̂(ξ)dξ +

∫ t

0

∫

R

eiξ
2(t−τ)eiξxf̂(ξ, τ)dxξdτ .

It then follows directly that the solution w(x, t) of (3.3) is odd with respect to x if ψ and f

are odd in x. For the IBVP (3.2), suppose ψ is odd and consider the map Γ : v 7→ w, where

v = v(x, t) is an odd function in x and w is the solution of







iwt + wxx = −λ|v|p−2v, x ∈ R, t ∈ R,

w(x, 0) = ψ(x).
(3.4)

It follows from the previous remark about (3.3) that Γ(v) is odd in x if v is odd in x. The

classical contraction mapping principle provides the solution w of the nonlinear IVP (3.2). This

solution is necessarily odd as a function of x if its initial value ψ is odd, as one determines by

iterating Γ starting at v = 0. ✷

Thus, the following well-posedness result for the IBVP (3.1) follows from the well-posedness

of the IVP (3.2).

Theorem 3.2 For any s satisfying either 1
2 < s < 5

2 for 3 ≤ p <∞, ⌊s⌋ < p− 2 if s 6= 1, 2, or

0 ≤ s < 1
2 for 3 ≤ p < 6−4s

1−2s , the IBVP (3.1) is locally well-posed in Hs(R+) (for 1
2 < s < 5

2 , it

is required that φ(0) = 0).

Now, (1.1) is considered with nonhomogeneous boundary data. The analysis of this problem

is carried out in several subsections.

3.1 Solution formulas for linear problems

Consideration is first given to the linear, nonhomogeneous, boundary-value problem







iut + uxx = 0, x ∈ R
+, t ∈ R

+,

u(x, 0) = 0, u(0, t) = h(t).
(3.5)

By taking the Laplace transform with respect to t of both sides of (3.5), the IBVP is converted

to a one-parameter family of second-order boundary-value problems, viz.







iλũ(x, λ) + ũxx(x, λ) = 0,

ũ(0, λ) = h̃(λ), ũ(+∞, λ) = 0,

(3.6)

where ũ = ũ(x, λ) is the Laplace transform of u = u(x, t) with respect to t and Reλ > 0 is the

dual variable. The solution of (3.6) is given by

ũ(x, λ) = er(λ)xh̃(λ)

where r(λ) is the solution of the quadratic equation

iλ+ r2 = 0
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for which Re r < 0. In consequence, the solution of (3.6) is given formally by

u(x, t) =
1

2πi

∫ +∞i+γ

−∞i+γ
eλter(λ)xh̃(λ)dλ

for x, t > 0, where γ > 0 is fixed. Letting γ → 0, one arrives at

u(x, t) =
1

2π

∫ ∞

−∞
eiβter(iβ)xh̃(iβ)dβ

(

− β + r2 = 0, Re r ≤ 0
)

=
1

2π

∫ 0

−∞
eiβtei

√
−βxh̃(iβ)dβ +

1

2π

∫ ∞

0
eiβte−

√
βxh̃(iβ)dβ

=
1

2π

∫ ∞

0
e−iβt+i

√
βxh̃(−iβ)dβ +

1

2π

∫ ∞

0
eiβt−

√
βxh̃(iβ)dβ

=
1

π

∫ ∞

0
e−iβ2t+iβxβh̃(−iβ2)dβ +

1

π

∫ ∞

0
eiβ

2t−βxβh̃(iβ2)dβ

= I(x, t) + II(x, t).

For I(x, t), define

ν1(β) =







1
πβh̃(−iβ2) for β ≥ 0,

0 for β < 0

(3.7)

and

φh = φh(x) (3.8)

to be the inverse Fourier transform of ν1, so that the Fourier transform φ̂h of φh is

φ̂h(β) = ν1(β), β ∈ R.

Then, I(x, t) can be rewritten as

I(x, t) =

∫ ∞

−∞
e−iβ2t+iβxφ̂h(β)dβ ,

which is exactly the solution formula of the Cauchy problem for the linear Schrödinger equation

on R. Similarly, for II(x, t), define

ν2(β) =







1
πβh̃(iβ

2) for β ≥ 0,

0 for β < 0

(3.9)

and

ψh = ψh(x) (3.10)

to be the inverse Fourier transform of ν2, i.e.,

ψ̂h(β) = ν2(β), β ∈ R.

Thus, II(x, t) can be written as

II(x, t) =

∫ ∞

−∞
eiβ

2t−βxψ̂h(β)dβ

for x > 0.
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Proposition 3.3 The solution of (3.5) may be written as

u(x, t) = [Wb(t)h](x) := [Wb,1(t)h](x) + [Wb,2(t)h](x)

where for x, t > 0,
[

Wb,1(t)h
]

(x) =

∫ ∞

−∞
e−iβ2t+iβxφ̂h(β)dβ,

[

Wb,2(t)h
]

(x) =

∫ ∞

−∞
eiβ

2t−βxψ̂h(β)dβ

and φh, ψh are defined by (3.7)-(3.8) and (3.9)-(3.10), respectively.

Remark 3.4

(i) It follows from their definitions that for any s ∈ R, φh and ψh belong to the space Hs(R)

if and only if h ∈ H
2s+1

4

0 (R+).

(ii) The function v(x, t) = [Wb,1(t)h](x) is, in fact, defined for x, t ∈ R and solves the IVP

ivt + vxx = 0, v(x, 0) = φh(x), x, t ∈ R

for the linear Schrödinger equation posed on R. As for [Wb,2(t)h](x), it is defined only for

x > 0. However, it may be extended for x < 0 by setting

[

Wb,2(t)h
]

(x) =

∫ ∞

−∞
eiβ

2t−β|x|ψ̂h(β)dβ. (3.11)

Note that this extension is not necessarily differentiable at x = 0. Therefore, this small

trick is not applicable when s > 3/2.

Next, consider the same linear equation






iut + uxx = 0, x ∈ R
+, t ∈ R

+,

u(x, 0) = φ(x), u(0, t) = 0
(3.12)

with zero boundary condition, but non-trivial initial data. By semigroup theory, its solution u

may be obtained in the form

u(t) =W0(t)φ

where the spatial variable is suppressed and W0(t) is the C0-group in L2(R+) generated by the

operator A defined by

Av = iv′′

with domain

D(A) = {v ∈ H2(R+) | v(0) = 0}.
By Duhamel’s principle, one may use the semi-group W0(t) to formally write the solution of the

forced linear problem






ivt + vxx = f, x ∈ R
+, t ∈ R

+,

v(x, 0) = 0, v(0, t) = 0
(3.13)
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in the form

v(x, t) = −i
∫ t

0
W0(t− τ)f(·, τ)dτ.

Let a function φ be defined on the half line R
+ and let φ∗ be an extension to the whole

line R. The mapping φ 7→ φ∗ can be organized so that it defines a bounded linear operator B

from Hs(R+) to Hs(R). Henceforth φ∗ = Bφ will refer to such an extension operator applied

to φ ∈ Hs(R+). Assume that v = v(x, t) =WR(t)φ
∗ is the solution of

ivt + vxx = 0, v(x, 0) = φ∗(x),

for x, t ∈ R. If g(t) = v(0, t), then vg = vg(x, t) = Wb(t)g is the corresponding solution of the

nonhomogeneous boundary-value problem (3.5) with boundary condition h(t) = g(t), for t ≥ 0.

Similarly, the function

w ≡ w(x, t) =

∫ t

0
WR(t− τ)f∗(τ)dτ

with f∗(x, t) = Bf(x, t) solves

iwt + wxx = f∗(x, t), w(x, 0) = 0 ,

for x, t ∈ R. If p(t) = w(0, t), then wp ≡ wp(x, t) = Wb(t)p = Wbdr(t)p is the corresponding

solution of the non-homogeneous boundary-value problem (3.5) with boundary condition h(t) =

p(t), for t ≥ 0. The following integral representation thus obtains for solutions of the fully

non-homogeneous linear initial-boundary-value problem






iut + uxx = f, x, t ∈ R
+,

u(x, 0) = φ(x), u(0, t) = h(t) .
(3.14)

Proposition 3.5 The solution u of (3.14) can be expressed as

u(t) =WR(t)φ
∗ +

∫ t

0
WR(t− τ)f∗(τ)dτ +Wbdr(t)

(

h(t)− g(t)− p(t)
)

(3.15)

where

φ∗(x, t) =
[

Bφ
]

(x, t), f∗(x, t) =
[

Bf
]

(x, t)

and

g(t) = WR(t)φ
∗|x=0 , p(t) =

∫ t

0
WR(t− τ)f∗(τ)dτ

∣

∣

∣

∣

x=0

.

3.2 Linear estimates

As before, for any q ≥ 2 and r ≥ 2, the pair (q, r) is called admissible if

1

q
+

1

2r
=

1

4
. (3.16)

For any q with 1 ≤ q ≤ ∞, q′ will denote the Lebesgue index conjugate to q, which is to say,
1
q +

1
q′ = 1.

The following estimates for solutions of the linear Schrödinger equation posed on the whole

line R are well known in the subject and will find use here.
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Proposition 3.6 Let s ∈ R and T > 0 be given. For any φ ∈ Hs(R), let u = WR(t)φ. Then,

there exists a constant C depending only on s such that

sup
t∈(0,T )

‖u(·, t)‖Hs(R) ≤ C‖φ‖Hs(R),

sup
x∈R

‖u(x, ·)‖
H

2s+1
4 (0,T )

≤ C‖φ‖Hs(R)

and

‖u‖Lq(0,T ;W s,r(R)) ≤ C‖φ‖Hs(R) ,

for any given admissible pair (q, r).

This proposition is same as Lemma 4.1 in [45].

Proposition 3.7 Let (q, r) be admissible and T > 0 be given. Suppose f ∈ Lq′(0, T ;W s,r′(R))

and define

u =

∫ t

0
WR(t− τ)f(τ)dτ.

(i) For any s ∈ R, there exists a constant C > 0 depending only on s such that

‖u‖C([0,T ];Hs(R)) + ‖u‖Lq(0,T ;W s,r(R)) ≤ C‖f‖Lq′(0,T ;W s,r′(R)). (3.17)

(ii) For any s ∈ (−3
2 ,

1
2), there exists a constant C > 0 depending only on s such that

sup
x∈R

‖u(x, ·)‖
H

2s+1
4 (0,T )

≤ C(1 + T )
1

2 ‖f‖Lq′ (0,T ;W s,r′(R)). (3.18)

(iii) For any s ∈ R, there exists a constant C > 0 such that

sup
x∈R

‖u(x, ·)‖
H

2s+1
4 (0,T )

≤ C‖f‖L1(0,T ;Hs(R)). (3.19)

Proof: The proof of (3.17) can be found in [26]. A proof of (3.18) is provided in [45]. For (3.19),

note that

sup
x∈R

‖u(x, ·)‖
H

2s+1
4 (0,T )

≤
∫ T

0
sup
x∈R

‖WR(t− τ)f(τ)‖
H

2s+1
4

t (0,T )
dτ

≤ C

∫ T

0
‖f(·, τ)‖Hs(R)dτ ,

thereby completing the analysis. ✷

Next, consider the boundary integral operator Wbdr(t).

Proposition 3.8 Let 0 ≤ s ≤ 1 and T > 0 be given and suppose (q, r) is an admissible pair.

There exists a constant C > 0 such that

‖Wbdr(·)h‖Lq(0,T ;W s,r(R)) ≤ C‖h‖
H

2s+1
4 (R+)

, (3.20)

sup
0<t<T

‖Wbdr(·)h‖Hs(R) ≤ C‖h‖
H

2s+1
4 (R+)

(3.21)

and

sup
x∈R

‖Wbdr(·)h‖
H

2s+1
4

t (0,T )
≤ C‖h‖

H
2s+1

4 (R+)
, (3.22)

for any h ∈ H
2s+1

4

0 (R+).
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Proof: It is sufficient to prove that

‖Wb,2(·)h‖Lq(0,T ;W s,r(R)) ≤ C‖h‖
H

2s+1
4 (R+)

(3.23)

since

‖Wb,1(·)h‖Lq(0,T ;W s,r(R)) ≤ C‖h‖
H

2s+1
4 (R+)

(3.24)

can be obtained from the result for the whole real line given in [26] and Remark 3.4. To show

(3.23), note that

[

Wb,2(t)h
]

(x) =
1

π

∫ ∞

0
eiβ

2t−β|x|βĥ(iβ2)dβ

=
1

π

∫ ∞

0
eiβ

2t−β|x|
∫ ∞

−∞
e−iyβψh(y)dydβ =

1

π

∫ ∞

−∞
ψh(y)

∫ ∞

0
eiβ

2t−β|x|−iyβdβdy

:=

∫ ∞

−∞
ψh(y)Kt(x, y)dy

where

Kt(x, y) =
1

π

∫ ∞

0
eiβ

2t−β|x|−iyβdβ.

Claim: There exists a constant C > 0 independent of t, x, y such that for any t 6= 0,

x, y ∈ R ,

|Kt(x, y)| ≤
C
√

|t|
. (3.25)

Proof of the Claim: Note that although the Van Der Corput lemma (Corollary 1.1 in [58])

can be used to shorten the proof of the claim, we present a self-contained argument in favor of

(3.25) here. Our approach is the following:

Kt(x, y) =
1

π

∫ ∞

0
eiβ

2t−β|x|−iyβdβ =
1

π
√
t

∫ ∞

0
eiβ

2−β|x|t−
1
2−iyβt−

1
2 dβ

=
1

π
√
t

∫ ∞

0
e
i
(

β− y

2
√

t

)2

−β|x|√
t dβe−i y

2

4t =
1

π
√
t

∫ ∞

− y

2
√

t

e
iβ2− |x|√

t

(

β+ y

2
√

t

)

dβe−i y
2

4t

=
1

π
√
t
e−

|x|y
2t

−i y
2

4t

∫ ∞

− y

2
√

t

e
iβ2− |x|√

t
β
dβ .

If y ≤ 0,

|Kt(x, y)| =
1

π
√
t
e−

|x|y
2t

∣

∣

∣

∣

∣

∫ ∞

− y

2
√

t

e
iβ2− |x|β√

t dβ

∣

∣

∣

∣

∣

=
1

2π
√
t
e−

|x|y
2t

∣

∣

∣

∣

∣

∣

∫ ∞

y2

4t

e
iβ− |x|√β√

t

√
β

dβ

∣

∣

∣

∣

∣

∣

.

But e−
|x|

√
β

t /
√
β is monotone decreasing as β → ∞. Standard results about oscillatory integrals,

then imply that

|Kt(x, y)| ≤
1

π
√
t
e

−|x|y
2t e−

|x||y|
2t

( |y|
2
√
t

)−1

≤ Ct−1/2
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if |y|
2
√
t
≥ 1. For 0 ≤ |y|

2
√
t
≤ 1,

|Kt(x, y)| ≤ 1

2π
√
t
e

−|x|y
2t

(

∣

∣

∣

∣

∫ ∞

1
e
iβ− |x|√

t

√
β 1√

β
dβ

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ 1

y2

4t

e
iβ− |x|√

t

√
β 1√

β
dβ

∣

∣

∣

∣

∣

)

≤ 1

2π
√
t
e−

|x|y
2t



e
−|x|√

t +

∫ 1

y2

4t

e
−|x|√

t
· |y|
2
√

t

√
β

dβ



 ≤ 1

2π
√
t

(

1 +

∫ 1

y2

4t

dβ√
β

)

≤ C√
t
.

Hence, if y ≤ 0,

|Kt(x, y)| ≤
C√
t
.

On the other hand, if y > 0,

|Kt(x, y)| ≤ 1

π
√
t
e−

|x|y
2t

(∣

∣

∣

∣

∣

∫ 0

− y

2
√

t

e
iβ2− |x|β√

t dβ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

0
e
iβ2− |x|β√

t dβ

∣

∣

∣

∣

)

=
1

π
√
t
e−

|x|y
2t (I1 + I2),

where

I2 =

∣

∣

∣

∣

∫ ∞

0
e
iβ2− |x|β√

t dβ

∣

∣

∣

∣

≤ C,

I1 =
1

2

∣

∣

∣

∣

∣

∣

∫ 0

y2

4t

e
iβ+ |x|

√
β√

t

√
β

dβ

∣

∣

∣

∣

∣

∣

≤ 1

2

∣

∣

∣

∣

∣

∣

∫ y2

4t

0

cos βe
|x|

√
β√

t

√
β

dβ

∣

∣

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∣

∣

∫ y2

4t

0

sin βe
|x|

√
β√

t

√
β

dβ

∣

∣

∣

∣

∣

∣

.

If y2

4t ≤ 2π, then |I1| ≤ Ce
|x|y
2
√

t . If y2

4t > 2π, let k0 =
⌊

y2

8πt

⌋

and obtain

|I1| ≤ 1

2

∣

∣

∣

∣

∣

∣

k=k0−1
∑

k=0

∫ 2(k+1)π

2kπ

cos βe
|x|

√
β√

t

√
β

dβ

∣

∣

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∣

∣

k=k0−1
∑

k=0

∫ 2(k+1)π

2kπ

sin βe
|x|

√
β√

t

√
β

dβ

∣

∣

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∣

∣

∫ y2

4t

2k0π

cosβe
|x|

√
β√

t

√
β

dβ

∣

∣

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∣

∣

∫ y2

4t

2k0π

sin βe
|x|

√
β√

t

√
β

dβ

∣

∣

∣

∣

∣

∣

= II1 + II2 + II3 + II4.

It is clear that |II3| + |II4| ≤ Ce
|x|y
2
√

t . The integral II2 is now analyzed; II1 can be treated

similarly. First, notice that

|II2| =
1

2

∣

∣

∣

∣

∣

k0−1
∑

k=0

∫ 2(k+1)π

2kπ

sinβ√
β
e

|x|√β√
t dβ

∣

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

k0−1
∑

k=0

∫ 2π

0

sinβ√
2kπ + β

e
|x|√

t

√
2kπ+β

dβ

∣

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

k0−1
∑

k=0

(
∫ π

0

sin β√
2kπ + β

e
|x|√

t

√
2kπ+β

dβ −
∫ π

0

sin β√
2kπ + π + β

e
|x|√

t

√
2kπ+π+β

dβ

)

∣

∣

∣

∣

∣

.
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Since

∂

∂u

(

1√
u
e

|x|√u√
t

)

=
x

2u
√
t
e

|x|√u√
t − 1

2
√
u3
e

|x|√u√
t =

e
|x|√u√

t ( |x|
√
u√
t

− 1)

2u
3

2

{

> 0, if |x|√u√
t
> 1,

< 0 , if |x|√u√
t
< 1 ,

if ak is defined by

ak =

∫ π

0

sin β√
kπ + β

e
|x|√

t

√
kπ+β

dβ,

then there is an N ≥ 0 such that ak is increasing in k if k > N and decreasing if k ≤ N . In

consequence, it transpires that

|II2| ≤ 1

2

∣

∣

∣

∣

∣

N
∑

k=0

ak(−1)k

∣

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∣

2k0−1
∑

k=N+1

(−1)kak

∣

∣

∣

∣

∣

≤ 1

2
(|a0|+ |aN |) + 1

2
(|aN |+ |a2k0−1|)

≤ C

(

∣

∣

∣

∣

∫ π

0

sinβ√
β
e

|x|√
t

√
β
dβ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ π

0

sin β√
Nπ + β

e
|x|√

t

√
Nπ+β

dβ

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ π

0

sinβ
√

(2k0 − 1)π + β
e

|x|√
t

√
(2k0−1)π+β

dβ

∣

∣

∣

∣

∣

)

≤ Ce
|x|√
t

√
2k0π ≤ Ce

|x|y
2t .

The integral II1 has a similar bound, whence

|Kt(x, y)| ≤
C

π
√
t
e−

|x|y
2t

(

e
|x|y
2t + 1

)

≤ C√
t

for any x, y ∈ R and t > 0. Similar remarks apply to K−t(x, y) so that for all t ∈ R\{0},
|Kt(x, y)| ≤ C√

|t|
. This completes the proof of the Claim. ✷

To prove inequality (3.23), let K(t)ψh =
∫ +∞
−∞ ψh(y)Kt(x, y)dy. The result of the Claim

yields

‖K(t)ψh‖L∞(R) ≤ C|t|− 1

2‖ψh‖L1(R).

Also, Proposition 2.2.3 in [26] provides the inequality

‖K(t)ψh‖L2(R) ≤ C‖ψh‖L2(R).

The Riesz-Thorin interpolation theorem then implies that

‖K(t)ψh‖Lp(R) ≤ C|t|−( 1
2
− 1

p
)‖ψh‖Lp′ (R) ,
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where p′ is the index conjugate to p as before. From this, there follows the inequality

∥

∥

∥

∥

∫ t

0
K(t− τ)f(τ)dτ

∥

∥

∥

∥

Lr(R)

≤ C

∫ T

0
|t− τ |−( 1

2
− 1

r
)‖f(τ)‖Lr′ (R)dτ

≤ C

∫ T

0
|t− τ |−

2

q ‖f(τ)‖Lr′ (R)dτ,

valid for any f(·, t) = f(t) ∈ Lq′((0, T ), Lr′(R)). The Riesz potential inequalities (see [67],

Theorem 1, p. 119) then imply that

∥

∥

∥

∥

∫ t

0
K(t− τ)f(τ)dτ

∥

∥

∥

∥

Lq((0,T ),Lr(R))

≤ C‖f‖Lq′((0,T ),Lr′ (R)). (3.26)

A similar estimate holds for
∫ T
0 K(t− τ)f(τ)dτ .

Now, compute the L2(R)–norm of the function

K1(y) =

∫ T

0

∫ +∞

−∞
Kt(x, y)f(x, t)dxdt ,

viz.

‖K1(y)‖2L2(R) =

∫ +∞

−∞

(
∫ T

0

∫ T

0

∫ +∞

−∞

∫ +∞

−∞
Ks(x, y)f(x, s)Kσ(w, y)f(w, σ) dx dw ds dσ

)

dy.

Note that

∫ +∞

−∞

∫ ∞

−∞
f(x, s)Ks(x, y)dx

∫ ∞

−∞
f(w, σ)Kσ(w, y) dw dy

=

∫ ∞

−∞
f(x, s)

∫ ∞

−∞
f(w, σ)

∫ +∞

−∞
Ks(x, y)Kσ(w, y) dy dw dx

=

∫ ∞

−∞

∫ ∞

−∞
f(x, s)f(w, σ)Ks,σ(x,w) dw dx.

The inequality (3.25) implies that

Ks,σ(x,w) =

∫ +∞

−∞
Ks(x, y)Kσ(w, y)dy

=
1

π2

∫ ∞

0

∫ +∞

−∞

∫ ∞

0
e−iβ̃2s−β̃|x|+iyβ̃eiβ

2σ−β|w|−iyβ dβ dy dβ̃

=
2

π

∫ ∞

0
e−iβ2(s−σ)−β(|x|+|w|)dβ ≤ C

√

|s− σ|

for s 6= σ, where the constant C is independent of x,w ∈ R. . Rewrite ‖K1(y)‖2L2(R) as

‖K1(y)‖2L2(R) =

∫ T

0

∫ T

0

∫ +∞

−∞

∫ +∞

−∞
f(x, s)f(w, σ)Ks,σ(x,w) dw dx dσ ds
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=

∫ T

0

∫ +∞

−∞
f(x, s)

∫ T

0

∫ +∞

−∞
f(w, σ)Ks,σ(x,w) dw dσ dx ds .

Then, using the procedure described for proving (3.26), it is inferred that

∥

∥

∥

∥

∫ T

0

∫ +∞

−∞
f(w, σ)Ks,σ(x,w)dwdσ

∥

∥

∥

∥

Lq((0,T ),Lr(R))

≤ C‖f‖Lq′ ((0,T ),Lr′ (R)) ,

which in turns gives

‖K1(y)‖2L2(R) ≤ C‖f‖Lq′((0,T ),Lr′ (R))

(

∥

∥

∥

∥

∫ T

0

∫ +∞

−∞
f(w, σ)Ks,σ(x,w)dwdσ

∥

∥

∥

∥

Lq((0,T ),Lr(R))

)

≤ C‖f‖2
Lq′((0,T ),Lr′ (R))

.

Finally, consider the integral

∫ +∞

−∞

(

K(t)ψh, φ(·, t)
)

L2
dt =

∫ +∞

−∞

(∫ +∞

−∞

∫ +∞

−∞
Kt(x, y)ψh(y)dyφ(x, t)dx

)

dt ,

where φ(x, t) ∈ Cc([0, T ],D(R)), ψh ∈ L2(R). Applying the just obtained estimates yields

∫ +∞

−∞
(K(t)ψh, φ(·, t))L2(R)dt =

∫ +∞

−∞
ψh(y)

∫ +∞

−∞

∫ +∞

−∞
Kt(x, y)φ(x, t)dxdtdy

≤ ‖ψh‖L2

∥

∥

∥

∥

∫ T

0

∫ +∞

−∞
Kt(x, y)φ(x, t)dxdt

∥

∥

∥

∥

L2
y(R)

≤ C‖ψh‖L2(R)‖φ‖Lq′ ((0,T ),Lr′(R)) .

By duality, ‖K(t)ψh‖Lq((0,T ),Lr(R)) ≤ C‖ψh‖L2(R) , which gives (3.20) with s = 0. Since

∂x[Wb,2(t)h](x) =
1

π

∫ ∞

0
eiβ

2t−β|x| sign(x)
β2

b− aβ
ĥ(iβ2)dβ,

the same argument suffices to show that (3.20) holds for s = 1. When 0 < s < 1, the relevant

estimate follows by interpolation. The inequality (3.21) is a special case of (3.20) and (3.22) is

straightforwardly obtained using a classical trace argument and the Fourier transform. ✷

The following estimates of the temporal regularity of Wbdr will also be helpful.

Proposition 3.9 Let (q, r) be a given admissible pair, T > 0 and s ≥ 0. For any h ∈
H

1

4
+s(R+), the correspondence t 7→ ∂sWbdr(t)

∂ts h belongs to the space

Lq(0, T ;Lr(R+)) ∩C([0, T ], L2(R+))

and there exists a constant C such that
∥

∥

∥

∥

∂sWbdr(·)
∂ts

h

∥

∥

∥

∥

Lq(0,T ;Lr(R+))

≤ C‖h‖
H

1
4
+s(R+)

. (3.27)
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In particular, for h ∈ H
1

4
+s(R+),

sup
0<t<T

∥

∥

∥

∥

∂sWbdr(·)
∂ts

h

∥

∥

∥

∥

L2(R+)

≤ C‖h‖
H

1
4
+s(R+)

(3.28)

and

sup
0<x<∞

∥

∥

∥

∥

∂sWbdr(·)
∂ts

h

∥

∥

∥

∥

H
1
4
t (0,T )

≤ C‖h‖
H

1
4
+s(R+)

. (3.29)

Proof: As above, we only have to study Wb,2h. It is straightforward to calculate that

∂Wb,2(t)h

∂t
=
i

π

∫ ∞

0
eiβ

2t−βxβ3ĥ(iβ2)dβ =
i

π

∫ ∞

0
eiβ

2t−βxψ̂1(β)dβ = i

∫ ∞

−∞
ψ1(y)Kt(x, y)dy.

It follows immediately that

∥

∥

∥

∥

∂Wb,2(t)

∂t
h

∥

∥

∥

∥

Lq(0,T ;;Lr(R+))

≤ C‖ψ1‖L2(R) ≤ C‖h‖
H

1
4
+1(R+)

.

A similar proof holds for all integers s ≥ 0. The general case then follows by interpolation. Since

there are no boundadry conditions involved in the argument, we do not run into trouble when

the interpolation index is equal to 1
2 . In particular, the Sobolev space H

1

2 (R+) is the mid-point

interpolation space between L2(R+) and H1(R+) in this case. ✷

Note that from the equation iut + uxx = 0, one t-derivative of u is equivalent to two x-

derivatives of u. The following proposition holds as a corollary of this observation.

Proposition 3.10 Let (q, r) be a given admissible pair, T > 0 and s ≥ 0. There exists a

constant C > 0 such that for any h ∈ H
1

4
+s(R+), u =Wbdr(t)h satisfies

‖u‖Lq
t (0,T ;W s,r

x (R+)) + sup
0<t<T

‖u(·, t)‖Hs(R+) + sup
0<x<∞

‖∂jxu(x, ·)‖
H

2s+1−2j
4 (0,T )

≤ C‖h‖
H

2s+1
4 (R+)

for j = 0, 1 and 2s + 1− 2j ≥ 0.

Finally, we consider the IBVP (3.14). The next proposition follows readily from Propositions

3.6-3.10.

Proposition 3.11 Let T > 0 and 0 ≤ s < 5
2 be given. Assume f ∈ L1(0, T ;Hs(R+)), φ ∈

Hs(R+), h ∈ H
2s+1

4 (0, T ) and φ(0) = h(0) if 1
2 < s < 5

2 . Then there exists a constant C > 0

depending only on s such that the solution u of the IBVP (3.14) respects the inequality

sup
0≤t≤T

‖u(·, t)‖Hs(R+) + sup
0<x<∞

‖u(x, ·)‖
H

2s+1
4 (0,T )

+ ‖u‖Lq(0,T ;W s,r(R+))

≤ C

(

‖φ‖Hs(R+) + ‖h‖
H

2s+1
4 (0,T )

+ ‖f‖L1(0,T ;Hs(R+))

)

,

where (q, r) is any admissible pair.
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3.3 Local well-posedness

In this subsection, the local well-posedness of the full nonlinear problem







iut + uxx + λu|u|p−2 = 0, x ∈ R
+, t ∈ (0, T ),

u(x, 0) = φ(x), u(0, t) = h(t) ,
(3.30)

is the topic of conversation. Let φ∗ = Bφ be an extension of φ from R
+ to R as before, with

‖φ∗||Hs(R) ≤ Cs‖φ‖Hs(R+).

Suppose 0 ≤ s < 5/2 and let the operator Wbdr be as introduced in Section 2. Rewrite (3.30)

as an integral equation on the domain (x, t) ∈ R× R
+, viz.

u(t) =W (t)φ∗ +Wbdr(t)
(

h(t)− gφ(t)
)

− iλ

∫ t

0
W (t− τ)|u|p−2u(τ)dτ −Wbdr(t)fu(t) (3.31)

where W (t) =WR(t) and gφ(t), fu(t) are the trace of W (t)φ∗ and −iλ
∫ t
0 W (t− τ)|u|p−2u(τ)dτ

at x = 0. That is to say,

gφ(t) = W (t)φ̃
∣

∣

∣

x=0
, fu(t) = −iλ

∫ t

0
W (t− τ)|u|p−2u(τ)dτ

∣

∣

∣

∣

x=0

.

Proposition 3.12 Assume

0 ≤ s <
1

2
and 3 ≤ p <

6− 4s

1− 2s
.

Let (γ, ρ) be the admissible pair defined by

ρ =
p

1 + s(p− 2)
, γ =

4p

(p − 2)(1− 2s)
.

For any given φ ∈ Hs(R+) and h ∈ H
2s+1

4 (0, T ), there exists a Tmax with 0 < Tmax ≤ T such

that the integral equation (3.31) admits a unique solution u ∈ C([0, Tmax);H
s(R)) satisfying

u ∈ Lγ
loc([0, Tmax);W

s,ρ(R)). (3.32)

Moreover, this solution possesses the following additional properties:

(i) The solution u ∈ Lq
loc([0, Tmax);W

s,r(R)) for every admissible pair (q, r).

(ii) The solution u depends continuously on φ and h in the sense that if φn → φ in Hs(R+) and

hn → h in H
2s+1

4 (R+), then, for any T with 0 < T < Tmax, the corresponding solutions

un tend to u in C([0, T ];Hs(R)) as n→ ∞.

(iii) If 3 ≤ p < 6−4s
1−2s and Tmax < +∞, then

lim
t→Tmax

‖u(·, t)‖Hs(R) = +∞.
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Proposition 3.13 Let 1
2 < s < 5

2 and [s] ≤ p− 2 be given. For any φ ∈ Hs(R+) and h ∈
H

2s+1

4 (R+) satisfying the compatibility condition

φ(0) = h(0),

there exists a Tmax > 0 such that the integral equation (3.31) admits a unique solution

u ∈ C([0, Tmax);H
s(R+)).

Moreover, the solution u possesses the following properties:

(i) The solution u belongs to the space L∞
x (R+;H

2s+1

4

t (R)).

(ii) The solution u depends on φ and h continuously in the sense that if φn → φ in Hs(R+) and

hn → h in H
2s+1

4 (R+), then, for any T with 0 < T < Tmax, the corresponding solutions

un tends to u in C([0, T ];Hs(R+)) ∩ L∞
x (R+;H

2s+1

4

t (R+)) as n→ ∞.

(iii) If Tmax < +∞, then

lim
t→Tmax

‖u(·, t)‖Hs(R+) = +∞.

The proofs of Propositions 3.12 and 3.13 follow just as does the local existence theory laid out

in Holmer [45]. The chain rule and product rule for fractional derivatives and the propositions

in the last subsection provide the necessary estimates for applying the contraction mapping

theorem to the right-hand side of (3.31). The details are omitted.

Remark 3.14 Proposition 3.13 also holds for s ∈ (52 ,
9
2) if the following compatibility conditions

are satisfied;

φ(0) = h(0) , ht(0) = iφxx(0) + iλ|φ(0)|p−2φ(0) .

The only difference from the proof of the local existence in Holmer [45] is to use the function

space

C((0, T );Hs
x(R

+)) ∩ C(R+
x ,H

2s+1

4 (0, T )) ∩ C1
t ((0, T );H

s−2
x (R+)) .

Note again that one t-derivative of u corresponds to two x-derivatives of u.

Remark 3.15 In case of s = 1 or s = 2, the assumption ⌊s⌋ ≤ p− 2 < +∞ is not needed. The

result of Proposition 3.13 holds for any p with p > 2 in these situations.

Remark 3.16 According to Proposition 3.12, for φ ∈ Hs(R+), h ∈ H
2s+1

4

loc (R+) with 0 ≤
s < 1

2 , there exists a Tmax depending only on s such that the corresponding solution u ∈
C([0, Tmax);H

s(R)) blows up at Tmax, i.e.,

lim
t→Tmax

‖u(·, t)‖Hs(R) = +∞

if Tmax <∞. However, if (φ, h) also belongs to the space H2(R+)×H
5

4

loc(R
+), then by Proposition

3.13, there exists a T ∗
max > 0 such that u ∈ C([0, T ∗

max);H
2(R)) and

lim
t→Tmax

‖u(·, t)‖H2(R) = +∞

if T ∗
max < ∞. It is obviously the case that T ∗

max ≤ Tmax. Is it true that T ∗
max = Tmax? This

is a well-known regularity issue (see [26]). For the pure Cauchy problem (3.2), the answer is

positive. The same proof can be applied to the IBVP considered here to show that T ∗
max = Tmax.
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A solution of the integral equation (3.31) on R as given in Propositions 3.12 and 3.13, when

restricted to R
+, is a distributional solution of the IBVP (3.30) with strong traces. However,

as the IBVP (3.30) can be converted to other integral equations similar to (3.31) on R, whose

solutions, when restricted to R
+, yield distributional solutions to the IBVP (3.30), the following

question arises naturally.

Are solutions of the various integral equations on R equal to each other when restricted to

R
+? In other words, Propositions 3.12 and 3.13 lead to the existence of distributional solutions

with strong traces for the IBVP (3.30). As for its uniqueness, in the case of s > 1
2 , since

the space Hs(R+) is continuously imbedded into the space L∞(R+), it is straightforward to

ascertain that the IBVP (3.30) admits at most one distributional solution with strong traces in

the space C([0, T ];Hs(R+)). The following well-posedness theory for the IBVP (3.30) results as

a corollary of Proposition 3.13.

Corollary 3.17 Let 1
2 < s < 5

2 and 3 ≤ p < +∞ be given. For any φ ∈ Hs(R+) and h ∈
H

2s+1

4 (R+) satisfying the compatibility condition

φ(0) = h(0),

there exists a Tmax > 0 such that (3.31) admits a unique solution u ∈ C([0, Tmax);H
s(R+)).

Additionally, the solution u ∈ L∞
x (R;H

2s+1

4

t (R+)) and if Tmax < +∞, then

lim
t→Tmax

‖u(·, t)‖Hs(R+) = +∞.

Moreover, the solution u depends continuously on φ and h in the sense that if φn → φ in Hs(R+)

and hn → h in H
2s+1

4 (R+), then, for any 0 < T < Tmax, the corresponding solutions un tend to

u in C([0, T ];Hs(R+)) as n→ ∞.

The uniqueness of the IBVP (3.30) in the space C([0, T ];Hs(R+)) remains open in case

0 ≤ s < 1
2 . To resolve this issue, we first show that the solution given in Proposition 3.12, when

restricted on R
+ is a mild solution of the IBVP (3.30).

Proposition 3.18 Let 0 ≤ s < 1
2 be given and assume that 3 ≤ p < 6−4s

1−2s . For any given

φ ∈ Hs(R+) and h ∈ H
2s+1

4

loc (R+), there exists a Tmax > 0 such that the IBVP (3.30) admits a

mild solution u ∈ C([0, Tmax);H
s(R)).

Proof: It suffices to show that for 0 ≤ s < 1/2 the solution u ∈ C([0, Tmax);H
s(R)) of (3.31)

given by Proposition 3.12, when restricted to R
+, is a mild solution of the IBVP (3.30). To this

end, let (φn, hn) ∈ H2(R+)×H
5

4

loc(R
+) with φn(0) = hn(0) and

lim
n→∞

‖(φn, hn)− (φ, h)‖
Hs(R+)×H

2s+1
4

loc (R+)
= 0.

Then by Proposition 3.12, there exists un ∈ C([0, Tmax);H
2(R+)) solving the integral equation

(3.31) with (φ, h) replaced by (φn, hn). Moreover, un tends to u in the space C([0, T ];Hs(R+))

as n → ∞ for any T < Tmax. According to Remarks 3.15 and 3.16, when restricted to R
+,

un lies in C([0, Tmax);H
2(R+)) and it solves the IBVP (3.30). In particular, un tends to u in

the space C([0, T ];Hs(R+)) as n → ∞ for any T < Tmax. Thus, the solution u of (3.31) when

restricted to R
+ is a mild solution of the IBVP (3.30). ✷

Next, we show that the IBVP (3.30) admits at most one mild solution.
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Proposition 3.19 Assume that s and p are such that

0 ≤ s <
1

2
and 3 ≤ p <

6− 4s

1− 2s
.

For any φ ∈ Hs(R+), h ∈ H
2s+1

4

loc (R+), the IBVP (3.30) admits at most one mild solution.

Proof: Suppose that for a given φ ∈ Hs(R+) and h ∈ H
2s+1

4

loc (R+), the IBVP (3.30) admits

two mild solutions u and v which lie in in the space C([0, T ′];Hs(R+)) for some T ′ > 0. By

definition, there exist two sequences {un} and {vn} in the space C([0, T ′];H2(R+)) such that

both un and vn solve the equation in (3.30) for n = 1, 2, · · · , and if

un(x, 0) = φn(x), vn(x, 0) = ψn(x), un(0, t) = hn(t), vn(0, t) = gn(t),

then as n→ ∞,

un → u, vn → v in C([0, T ′];Hs(R+)), φn → φ, ψn → φ in Hs(R+)

and

gn → h, hn → h in H
2s+1

4 (0, T ).

Let u∗n, v
∗
n and w be the solutions of the integral equation (3.31) corresponding to (φn, hn),

(ψn, gn) and (φ, h), respectively, given by Proposition 3.12 (restricted to R
+). It follows that

u∗n, v
∗
n and w lie in C([0, T ;Hs(R+))∩Lq(0, T ;W s,r(R+)) for some T > 0. Then, by Proposition

3.13 and Remarks 3.15 and 3.16, u∗n and v∗n are in C([0, T ];H2(R+)). Note that the time interval

over which u∗n and v∗n exist in the space H2(R+) is (0, T ) for any n, as guaranteed by Remark

3.16. By the uniqueness result in Corollary 3.17, it must be the case that

un ≡ u∗n, vn ≡ v∗n, n = 1, 2, · · · .

Since (φn, hn) and (ψn, gn) are both convergent to (φ, h) in Hs(R+) × H
2s+1

4 (0, T ), it follows

from Proposition 3.12 that both un and vn converge to w in C([0, T ];Hs(R+)). Consequently,

u ≡ v. The proof is complete. ✷

The last result of the section summarizes the previous ruminations.

Theorem 3.20 Assume either

3 ≤ p <
6− 4s

1− 2s
, 0 ≤ s <

1

2
, s = 1, 2

or

1

2
< s <

5

2
, ⌊s⌋ < p− 2 <∞.

For any φ ∈ Hs(R+) and H
2s+1

4

loc (R+) satisfying φ(0) = h(0) if s > 1
2 , there exists a Tmax > 0

such that the IBVP (3.30) admits a unique mild solution u ∈ C([0, Tmax);H
s(R+)). Moreover,

the solution u has the following properties:

(i) The solution u ∈ L∞
x (R+;H

2s+1

4

loc (R+)).

(ii) The solution u depends on φ and h continuously in the sense that if φn → φ in Hs(R+)

and hn → h in H
2s+1

4
−loc(R+), then, for any T with 0 < T < Tmax, the corresponding

solutions un tend to u in C([0, T ];Hs(R+)) as n→ ∞.
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4 The Schrödinger equation posed on a finite interval

In this section, consideration is given to the well-posedness in Hs(0, L) of the IBVP







iut + uxx + λ|u|p−2u = 0, x ∈ (0, L), t ∈ R,

u(x, 0) = φ(x), u(0, t) = h1(t), u(L, t) = h2(t),
(4.1)

for the NLS equation posed on a finite interval (0, L). Without loss of generality, take L = 1.

First, the homogeneous boundary-value problem







iut + uxx + λu|u|p−2 = 0, x ∈ (0, 1), t ∈ R,

u(x, 0) = ψ(x), u(0, t) = 0, u(1, t) = 0,
(4.2)

is discussed. The well-posedness of (4.2) in Hs(0, 1) can be reduced to a special case of the IVP







iut + uxx + λu|u|p−2 = 0, −1 < x < 1, t ∈ R,

u(x, 0) = ψ(x), u(−1, t) = u(1, t), ux(−1, t) = ux(1, t),
(4.3)

of the NLS equation posed on the interval (−1, 1) with periodic boundary conditions. Observe

that solutions of the IVP (4.3) are even (odd) in x if ψ is even (odd). On the other hand, if u is

an odd function with respect to x and solves the IVP (4.3), then its restriction to the interval

(0, 1) solves the IBVP (4.2) since the boundary conditions u(0, t) = u(1, t) = 0 are automatically

satisfied. Thus, the following well-posedness result follows immediately from the known results

for (4.3).

Theorem 4.1 Assume that 3 ≤ p < ∞ if λ < 0 and 3 ≤ p < 6 if λ > 0. Then, for any

s ∈ [0, 52) (s not equal to 1
2 or 3

2 , see (1.5)), the IBVP (4.2) is unconditionally locally well-posed

in Hs(0, 1) under the conditions that ⌊s⌋ < p − 2 if p is not an integer and ψ(0) = ψ(1) = 0 if
1
2 < s < 5

2 .

Now, consider (4.1) with nonhomogeneous boundary data. This is analyzed in several stages.

4.1 Linear problem

First, consider the IBVP







iut + uxx = 0, x ∈ (0, 1), t ∈ R,

u(x, 0) = φ(x), u(0, t) = u(1, t) = 0,
(4.4)

for the linear Schrödinger equation posed on the finite interval (0, 1). According to standard

semigroup theory, for any φ ∈ L2(0, 1), the IBVP admits a unique solution u ∈ C(R+;L2(0, 1))

given by

u(t) =W0(t)φ
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where W0(t) is the C0-group in L2(0, 1) generated by the operator Av = iv′′ with domain

D(A) = H2(0, 1) ∩H1
0 (0, 1). Moreover, the solution of the following nonhomogeneous problem







iut + uxx = f, x ∈ (0, 1), t ∈ R,

u(x, 0) = 0, u(0, t) = u(1, t) = 0
(4.5)

can be expressed, via Duhamel’s principle, as

u(t) = −i
∫ t

0
W0(t− τ)f(·, τ)dτ.

Proposition 4.2 Let 0 ≤ s ≤ 2 and T > 0 be given. Let

u(t) =W0(t)φ, v(t) =

∫ t

0
W0(t− τ)f(·, τ)dtτ

and

w(t) =

∫ t

0
W0(t− τ)g(·, τ)dτ,

with φ ∈ Hs(0, 1), f ∈ L1(0, T ;Hs(0, 1)) and g ∈W
s
2
,1(0, T ;L2(0, 1)) satisfying

φ(0) = φ(1) = 0, f(0, t) = f(1, t) ≡ 0

if s > 1
2 . Then, u, v, w ∈ C([0, T ];Hs(0, 1)) and

‖u‖C([0,T ];Hs(0,1)) ≤ CT,s‖φ‖Hs(0,1),

‖v‖C([0,T ];Hs(0,1)) ≤ CT,s‖f‖L1(0,T ;Hs(0,1))

and

‖w‖C([0,T ];Hs(0,1)) ≤ CT,s‖g‖W s
2
,1(0,T ;L2(0,1))

,

where the constant CT,s depends only on s and T .

Proof: The cases s = 0 and s = 2 follow from standard semigroup theory. When 0 < s < 2,

these inequalities are follow from standard interpolation theory. ✷

In terms of Fourier sine series, the solution u is given explicitly by

u(x, t) =
[

W0(t)φ
]

(x) =

+∞
∑

n=1

cne
−i(nπ)2t sin(nπx) where cn = 2

∫ 1

0
φ(x) sin(nπx)dx.

This can be written in the complex form

u(x, t) =

∞
∑

n=−∞
c̃ne

−i(nπ)2t+inπx

where

c̃n =







cn if n ≥ 1,
0 if n = 0,
−cn if n ≤ −1.
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In this form, it is clear that u may be viewed as the solution u(x, t) of the Cauchy problem







iut + uxx = 0, u(x, 0) = φ∗(x), x ∈ (−1, 1),

u(−1, t) = u(1, t), ux(−1, t) = ux(1, t) ,
(4.6)

where φ∗ is the odd extension of φ from (0, 1) to (−1, 1). On the other hand, if u is a solution

of (4.6) and is also an odd function, then its restriction to (0, 1) solves (4.5). Thus

[

WT(t)φ
∗](x) =

[

W0(t)φ
]

(x), x ∈ (0, 1).

Here, WT(t) is the C0-group in L2(T) generated by the operator AT in L2(T) with domain

D(AT) = H2(T). Consequently, the following proposition follows from the theory developed in

[16].

Proposition 4.3 Let 0 ≤ s < 1
2 and T > 0 be given and let ΩT = (0, 1) × (0, T ). For any

φ ∈ Hs(0, 1), u =W0(t)φ ∈ L4(ΩT ) ∩C([0, T ];Hs(0, 1)) has

‖u‖L4(ΩT )∩C([0,T ];Hs(0,1)) ≤ C‖φ‖Hs(0,1) ,

where C > 0 depends only on s and T .

Next is discussed the IBVP of the associated linear problem with nonhomogeneous Dirichlet

boundary data, namely,






iut + uxx = 0, x ∈ (0, 1), t ∈ R,

u(x, 0) = 0, u(0, t) = h1(t), u(1, t) = h2(t),
(4.7)

with the compatibility conditions h1(0) = h2(0) = 0 if necessary.

Proposition 4.4 The solution of (4.7) can be expressed as

u(x, t) =

+∞
∑

n=1

2inπe−i(nπ)2t

∫ t

0
ei(nπ)

2τ
(

h1(τ)− (−1)nh2(τ)
)

dτ sinnπx

=Whh1 + (Whh2)
∣

∣

∣

x→1−x
. (4.8)

Proof: Consider first the special case where h2 ≡ 0 and h1(0) = 0. Define v by

u(x, t) = v(x, t) + (1− x)h1(t).

Then v(x, t) solves







ivt + vxx = −i(1− x)h′1(t), x ∈ (0, 1), t ∈ R,

v(x, 0) = 0, v(0, t) = 0, v(1, t) = 0 ,

if u solves (4.7). As above, write v(x, t) as

v(x, t) =
∞
∑

k=1

αk(t) sin kπx.
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Then, for k = 1, 2, · · · ,
d

dt
αk(t) + i(kπ)2αk(t) = βkh

′
1(t), αk(0) = 0,

where

βk = −2

∫ 1

0
(1− x) sin kπxdx = − 2

kπ
.

It follows that

αk(t) = βk

∫ t

0
e−i(kπ)2(t−τ)h′1(τ)dτ = βkh1(t)− iβk(πk)

2

∫ t

0
e−i(kπ)2(t−τ)h1(τ)dτ .

Substituting the latter into the original Fourier series representation yields

v(x, t) = −(1− x)h1(t)−
∞
∑

k=1

iβk(πk)
2

∫ t

0
e−i(kπ)2(t−τ)h1(τ)dτ ,

which in turn implies that

u(x, t) =

∞
∑

k=1

2iπk

∫ t

0
e−i(kπ)2(t−τ)h1(τ)dτ sin kπx.

Next, consider the case of h1 ≡ 0 and h2(0) = 0. If we let x′ = 1 − x, this situation can be

reduced to the case just studied. Thus, if h1 ≡ 0 and h2(0) = 0,

u(x, t) =
∞
∑

k=1

(−1)k+12iπk

∫ t

0
e−i(kπ)2(t−τ)h2(τ)dτ sin kπx.

The full representation (4.8) now follows. ✷

Remark 4.5 One may view the solution u in (4.8) of (4.7) as being written in the form

u(x, t) =

∫ t

0
W0(t− τ)q(·, τ)dτ (4.9)

where

q(x, t) =
(

h1(t)− (−1)nh2(t)
)

∞
∑

n=1

2inπ sinnπx .

Of course, q belongs to the space Hs
(

0, T ;H−(3/2)−ǫ(0, 1)
)

for any ǫ > 0 if h1, h2 ∈ Hs(0, T ).

By semigroup theory, if h1, h2 ∈W 1,1(0, T ), then u ∈ C
(

[0, T ];H(1/2)−ǫ(0, 1)
)

.

Attention is now turned to the boundary integral

uh =Whh =

∞
∑

n=1

2inπe−i(nπ)2t

∫ t

0
ei(nπ)

2τh(τ)dτ sinnπx

=
∞
∑

n=−∞
nπe−i(nπ)2t

∫ t

0
ei(nπ)

2τh(τ)dτeinπx. (4.10)

In the following, we will use the Lions-Magenes space H
1/2
00 (0, T ) [59], which is the interpolation

space [H1
0 (0, T ), L

2(0, T )]θ with θ = 1/2.
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Proposition 4.6 For a given T > 0, let ΩT = (0, 1) × (0, T ). If h ∈ H
1

2

00(0, T ), then

uh =Wh(·)h ∈ L4(ΩT ) ∩ C
(

[0, T ];L2(0, 1)
)

and there is a constant CT depending only on T such that

‖uh‖L4(ΩT ) ≤ CT ‖h‖
H

1
2
00

(0,T )
(4.11)

and

sup
0≤t≤T

‖uh(·, t)‖L2(0,1) ≤ CT ‖h‖
H

1
2
00

(0,T )
. (4.12)

Proof: These results follow from analysis provided in Bourgain’s paper [16]. In more detail, let

h(τ) =
∫∞
−∞ e−π2iλτ ĥ(λ)dλ. Write uh as follows:

uh =
∞
∑

n=−∞
e−i(nπ)2teinπxnπ

∫ ∞

−∞
ĥ(λ)

∫ t

0
ei(nπ)

2τ−π2iλτdτdλ

=
∞
∑

n=−∞
e−i(nπ)2teinπxnπ

∫ ∞

−∞
ĥ(λ)

ei(nπ)
2t−π2iλt − 1

(n2 − λ)π2i
dλ

=
∞
∑

n=−∞
e−i(nπ)2teinπxnπ

(
∫ 0

−∞
+

∫ ∞

0

)

ĥ(λ)
ei(nπ)

2t−π2iλt − 1

(n2 − λ)π2i
dλ

= I−(x, t) + I+(x, t).

Note that I+(x, t) also takes the form

I+(x, t) =
∞
∑

n=1

2e−i(nπ)2tnπ sinnπx

∫ ∞

0
ĥ(λ)

ei(nπ)
2t−π2iλt − 1

(n2 − λ)π2
dλ .

The quantity I+(x, t) is studied first. Write

I+(x, t) =

∞
∑

n=−∞
e−i(nπ)2teinπxnπ

∫ ∞

0
ĥ(λ)ψ(n2 − λ)

∞
∑

k=1

(

(n2 − λ)tπ2i
)k

k!(n2 − λ)π2i
dλ

+
∞
∑

n=−∞
einπxnπ

∫ ∞

0
ĥ(λ)

(

1− ψ(n2 − λ)
) e−λπ2it

(n2 − λ)π2i
dλ

−
∞
∑

n=−∞
e−i(nπ)2teinπxnπ

∫ ∞

0
ĥ(λ)

(

1− ψ(n2 − λ)
) 1

(n2 − λ)π2i
dλ

= I+1 + I+2 + I+3 ,

where ψ is a suitable C∞ cut-off function (see [16]). For I+1 , consider the individual summand

I+1,k =

∞
∑

n=−∞
e−i(nπ)2teinπxnπ

∫ ∞

0
ĥ(λ)ψ(n2 − λ)((n2 − λ)kdλ ,
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for k = 1, 2, · · · . By Proposition 2.1 in [16],

∥

∥

∥I+1,k

∥

∥

∥

2

L4(ΩT )∩L∞(0,T ;L2(0,1))
≤ C

( ∞
∑

n=−∞
n2
∣

∣

∣

∣

∫ ∞

0
ĥ(λ)ψ(n2 − λ)

(

n2 − λ
)k
dλ

∣

∣

∣

∣

2
)

≤ CBk





∞
∑

n=−∞
n2

∣

∣

∣

∣

∣

∫

|λ−n2|≤B
ĥ(λ)dλ

∣

∣

∣

∣

∣

2




≤ CBk+1

( ∞
∑

n=−∞
n2

∣

∣

∣

∣

∣

∫

|λ−n2|≤B
|ĥ(λ)|2dλ

∣

∣

∣

∣

∣

)

≤ CBk+1

( ∞
∑

n=−∞

∣

∣

∣

∣

∣

∫

|λ−n2|≤B
|λ||ĥ(λ)|2dλ

∣

∣

∣

∣

∣

)

≤ CBk+1

∫ ∞

0
|λ||ĥ(λ)|2dλ ≤ CBk+1‖h‖2

H
1
2 (R)

.

Bounds on I+1 follow. Rewrite I+2 as

I+2 (x, t) =

∞
∑

n=0

2 sinnπx

∫ ∞

0
ĥ(λ)nπ

(

1− ψ(n2 − λ)
) e−λπ2it

(n2 − λ)π2
dλ

=

∞
∑

n=1

1

π

∫ ∞

0
ĥ(λ)e−λπ2it

(

1− ψ(n2 − λ)
)

(

1

n−
√
λ
+

1

n+
√
λ

)

sinnπx dλ

=

∞
∑

n=1

1

π

∫ ∞

0
2µĥ(µ2)e−µ2π2it

(

1− ψ(n2 − µ2)
)

(

1

n− µ
+

1

n+ µ

)

sinnπx dµ.

Applying Lemma A-1 in the Appendix leads to

sup
0≤t≤T

‖I+2 (·, t)‖L2(0,1) ≤ C

∞
∑

n=1

∣

∣

∣

∣

∫ ∞

0
µĥ(µ2)

(

1− ψ(n2 − µ2)
)

(

1

n− µ
+

1

n+ µ

)

dµ

∣

∣

∣

∣

2

≤ C
∥

∥

∥
(1 + |µ|)3/2 ĥ(µ2)

∥

∥

∥

L2(R)
≤ C‖h‖2

H
1
2 (R+)

.

To estimate the L4(ΩT )-norm, rewrite I+2 (x, t) as

I+2 (x, t) =

∞
∑

n=−∞
einπxnπ





∫ n2

2

0
+

∫ ∞

n2

2



 ĥ(λ)
(

1− ψ(n2 − λ)
) e−λπ2it

(n2 − λ)π2i
dλ

:= I+2,1 + I+2,2 .

Proposition 2.6 in [16] implies

‖I+2,2‖2L4(ΩT ) ≤C

( ∞
∑

n=−∞

∫ ∞

0

n2π2|ĥ(λ)|2
(

|λ− n2|+ 1
)2

(

|λ− n2|+ 1
)

3

4

χ
[n

2

2
,∞)

(λ)
(

1− ψ(n2 − λ)
)2
dλ

)
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≤C

∫ ∞

0
|λ||ĥ(λ)|2

∞
∑

n=−∞

1

(1 + |λ− n2|) 5

4

dλ ≤ C

∫ ∞

0
|λ||ĥ(λ)|2dλ ≤ C‖h‖2

H
1
2 (R)

.

Rewrite I+2,1 as

∣

∣

∣I+2,1

∣

∣

∣ =

∣

∣

∣

∣

∣

2

∫ ∞

0

( ∞
∑

n=1

χ
[0,n

2

2
]
(λ)(1 − ψ(n2 − λ))

nπ sinnπx

(n2 − λ)π2

)

e−λπ2itĥ(λ) dλ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

π

∫ ∞

0
e−λπ2itĥ(λ)





∞
∑

n=[
√
2λ]

sinnπxχ
[0,n

2

2
]
(λ)

(

1

n−
√
λ
+

1

n+
√
λ

)



 dλ

∣

∣

∣

∣

∣

∣

≤ 1

π

∫ ∞

0
|ĥ(λ)|

∣

∣

∣

∣

∣

∣

∞
∑

n=[
√
2λ]

(

1

n−
√
λ
+

1

n+
√
λ

)

sinnπx

∣

∣

∣

∣

∣

∣

dλ .

To estimate the last sum, let

Sk =
k
∑

n=1

sinnπx =
sin((k + 1)πx/2) sin(kπx/2)

sin(πx/2)
(S0 = 0) .

For any α ∈ [0, 1] and 0 < x ≤ 1, |Sk| ≤ Ckα/|x|1−α. Consequently,

k
∑

n=⌊
√
2λ⌋

1

n−
√
λ
(Sn − Sn−1) =

k
∑

n=⌊
√
2λ⌋

1

n−
√
λ
Sn −

k
∑

n=⌊
√
2λ⌋

1

n−
√
λ
Sn−1

=

k−1
∑

n=⌊
√
2λ⌋

(

1

n−
√
λ
− 1

n+ 1−
√
λ

)

Sn +
1

k −
√
λ
Sk −

1

⌊
√
2λ⌋ −

√
λ
S⌊

√
2λ⌋−1 .

Choose 3/4 < α < 1 and let k → ∞ to come to the inequality

∣

∣

∣

∣

∣

∣

∞
∑

n=⌊
√
2λ⌋

1

n−
√
λ
sinnπx

∣

∣

∣

∣

∣

∣

≤ C|x|α−1









∞
∑

n=⌊
√
2λ⌋

nα

(n −
√
λ)2



+
λα/2√
λ+ 1





≤ C|x|α−1

(

λα/2√
λ+ 1

+

∞
∑

n=1

1

(n+
√
λ)2−α

)

≤ C

|x|1−α(1 +
√
λ)1−α

.

Using a similar argument for the other term gives

∣

∣

∣I+2,1(x, t)
∣

∣

∣ ≤ C|x|α−1

∫ ∞

0

|ĥ(λ)|
(1 +

√
λ)1−α

dλ

≤ C|x|α−1

∫ ∞

0
(1 + |λ|)α̃|ĥ(λ)| dλ

(1 +
√
λ)1−α(1 + |λ|)α̃

(

1/2 ≥ α̃ > α/2
)
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≤ C|x|α−1

(∫ ∞

0
(1 + |λ|)2α̃|ĥ(λ)|2dλ

)
1

2
(∫ ∞

0

dλ

(1 +
√
λ)2−2α(1 + |λ|)2α̃

)
1

2

≤ C|x|α−1‖h‖Hα̃(R+).

Combining the foregoing result leads to the desired bound,

‖I+2 ‖2L4 ≤ C‖h‖2
H

1
2 (R+)

.

To study I+3 (x, t), use again Proposition 2.1 in [16] to write

‖I+3 ‖L4(ΩT )∩L∞(0,T ;L2(0,1)) ≤ C

( ∞
∑

n=1

n2
∣

∣

∣

∣

∫ ∞

0
ĥ(λ)

1− ψ(n2 − λ)

λ− n2
dλ

∣

∣

∣

∣

2
)

= C
∞
∑

n=1

∣

∣

∣

∣

∫ ∞

0
ĥ(λ)

(

1√
λ− n

− 1√
λ+ n

)

(

1− ψ(n2 − λ))dλ
∣

∣

2
)

≤ C

( ∞
∑

n=1

∣

∣

∣

∣

∫ ∞

0
µĥ(µ2)

1

µ − n
(1− ψ(n2 − µ2))dµ

∣

∣

∣

∣

2

+
∞
∑

n=1

∣

∣

∣

∣

∫ ∞

0
µĥ(µ2)

1

µ+ n
(1− ψ(n2 − µ2))dµ

∣

∣

∣

∣

2
)

≤ C‖µĥ(µ2)‖2L2 +

∫ ∞

0

(

∫ ∞

0

|µĥ(µ2)|
µ+ y

dµ

)2

dy

≤ C‖µĥ(µ2)‖2L2 ≤ C‖h‖2
H

1
4 (R+)

.

In summary, it appears that

‖I+‖2L4 ≤ C‖h‖2
H

1
2 (R+)

.

Now consider I−(x, t) and express it in the form

I−(x, t) =

∞
∑

n=−∞
e−i(nπ)2teinπxnπ

∫ ∞

0

ei(nπ)
2t+iλπ2t − 1

(λ+ n2)π2i
ĥ(−λ)dλ

=

∞
∑

n=−∞
einπxnπ

∫ ∞

0

eiλπ
2t − e−i(nπ)2t

(λ+ n2)π2i
ĥ(−λ)dλ

:= I−1 − I−2 .

For I−2 , Proposition 2.1 of [16] implies

‖I−2 ‖2L4(ΩT ) + ‖I−2 ‖2L∞(0,T ;L2(0,1)) ≤ C
∞
∑

n=−∞
n2π2

∣

∣

∣

∣

∣

∫ ∞

0

ĥ(−λ)
λ+ n2

dλ

∣

∣

∣

∣

∣

2

≤ C

∞
∑

n=1

∣

∣

∣

∣

∣

∫ ∞

0

ĥ(−λ)n
λ+ n2

dλ

∣

∣

∣

∣

∣

2

≤ C

∫ ∞

1

∣

∣

∣

∣

∣

∫ ∞

0

ĥ(−λ)y
λ+ y2

dλ

∣

∣

∣

∣

∣

2

dy
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≤ C

∫ ∞

1

(

∫ ∞

0
(1 + |λ| 12 )2|ĥ(−λ)|2 dλ

∫ ∞

0

y2

(y2 + λ)2(1 + |λ| 12 )2
dλ

)

dy ≤ C‖h‖2
H

1
2 (R+)

.

The formula ∞
∑

n=1

n sinnx

n2 + a2
=
π

2

sinh a(π − x)

sinh aπ
, for 0 < x < 2π,

which holds for all a, allows us to write

I−1 =
∞
∑

n=1

2nπ sinnπx

∫ ∞

0
ĥ(−λ)eiλπ2t 1

(n2 + λ)π2
dλ

=

∫ ∞

0

2ĥ(−λ)eiλπ2t

π

∞
∑

n=1

n sinπnx

n2 + λ
dλ =

∫ ∞

0
ĥ(−λ)eiλπ2t sinh

√
λ(π − x)

sinh
√
λπ

dλ .

Consequently, it is seen that

∣

∣I−1 (x, t)
∣

∣ ≤ C

∫ ∞

0
|ĥ(−λ)|e−

√
λπxdλ

≤
∣

∣

∣

∣

∫ ∞

0
|ĥ(−λ)|2(1 + |λ|)dλ

∣

∣

∣

∣

1

2

∣

∣

∣

∣

∣

∫ ∞

0

e−2
√
λπx

1 + |λ| dλ
∣

∣

∣

∣

∣

1

2

,

which implies

sup
0≤t≤T

∫ 1

0

∣

∣I−1 (x, t)
∣

∣

2
dx ≤ C

∫ 1

0

(

∫ ∞

0
|ĥ(−λ)|2(1 + λ) dλ

∫ ∞

0

e−2
√
λπx

1 + λ
dλ

)

dx

≤ C‖h‖2
H

1
2 (R+)

∫ ∞

0

∫ 1

0

e−2
√
λπx

(1 + λ)
dxdλ ≤ C‖h‖2

H
1
2 (R+)

and
∫ T

0

∫ 1

0
|I−1 (x, t)|4dxdt ≤ C

∫ 1

0

∣

∣

∣

∣

∫ ∞

0
|ĥ(−λ)|e−

√
λπxdλ

∣

∣

∣

∣

4

dx

≤ C

∫ 1

0

∣

∣

∣

∣

∫ ∞

0
|ĥ(−λ)|2(1 + |λ|)dλ

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∫ ∞

0

e−2
√
λπx

1 + |λ| dλ
∣

∣

∣

∣

∣

2

dx

= C‖h‖4
H

1
2 (R+)





∫ ∞

0

(

∫ 1

0

e−4
√
λπx

(1 + |λ|)2 dx
) 1

2

dλ





2

≤ C‖h‖4
H

1
2 (R+)

(∫ ∞

0

1

1 + |λ|
dλ

λ
1

4

)2

≤ C‖h‖4
H

1
2 (R+)

.

Hence, we arrive at ‖uh‖L4(ΩT )∩L∞(0,T ;L2(0,1)) ≤ C‖h‖
H

1
2 (R+)

and the proof is complete. ✷

If the regularity of h(t) is higher, Wh(t)h is smoother.
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Proposition 4.7 Let s ≥ 0 be given. For any h ∈ H
1+s
2

0 (0, T ) (here for s an even integer, h

should be in H
1+s
2

00 (0, T )), let u =Whh. Then, ∂
s
xu belongs to L4((0, 1)×[0, T ])∩C([0, T ];L2(0, 1))

and satisfies

‖∂sxu‖L4(ΩT ) ≤ C‖h‖
H

1+s
2 (0,T )

and

sup
0≤t≤T

‖ ∂sxu‖L2((0,1) ≤ C‖h‖
H

1+s
2 (0,T )

where C > 0 is a constant independent of h.

Proof: We only need to prove it for s = 2. The cases where s ∈ (0, 2) can then be obtained

by interpolation, where we note that Hs
0(0, T ) is an interpolation space for s 6= integer + 1/2

while for s = integer + 1/2, the corresponding interpolation space is the Lions-Magenes space

Hs
00(0, T ) [59]. The proof for s > 2 is same as for s = 2.

Notice that the t-derivative of Wh(·)h satisfies the system (4.7) with boundary condition

h′(t) and zero initial condition. Hence, by Proposition 4.6, there obtains

∥

∥

∥

∥

∂Wh(·)h
∂t

∥

∥

∥

∥

L4((0,1)×[0,T ])

≤ C‖h′(t)‖
H

1
2 (0,T )

≤ C‖h(t)‖
H

3
2 (0,T )

.

But, bounds on one t-derivative of Wh(t)h give bounds on two x-derivatives of Wh(t)h. Thus,

the case for s = 2 is established. ✷

Remark 4.8 Notice that

‖W0(t)φ‖L4((0,1)×(0,T )) ≤ C‖φ‖L2(0,1)

for any φ ∈ L2(0, 1) and, in addition, for the linear Schrödinger equation posed on the half-line,

‖Wb(·)h‖Lq(R+;Lr(R+)) ≤ C‖h‖
H

1
4 (R+)

for any h ∈ H
1

4 (R+), where (q, r) is an admissible pair satisfying 1
q +

1
2r = 1

4 . One thus wonders

whether the estimate (4.11) or (4.12) can be improved. Example A-2 in the Appendix shows that

if ‖Wb(·)h‖L2([0,1]×[0,T ]) ≤ C‖h‖Hs([0,T ]) for all h(t) ∈ Hs([0, T ]), then it must be the case that

s ≥ 1
2 . Thus, the estimates in (4.11) and (4.12) are optimal.

4.2 The nonlinear problem

In this subsection, the full nonlinear IBVP







iut + uxx + λu|u|p−2 = 0, x ∈ (0, 1), t ∈ R
+,

u(x, 0) = φ(x), u(0, t) = h1(t), u(1, t) = h2(t)
(4.13)

with φ ∈ Hs(0, 1) and h1, h2 ∈ H
s+1

2

loc (R+) is studied. A local well-posedness theorem is

formulated and proved.
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Theorem 4.9 Let 3 ≤ p < ∞, 1
2 < s < 5

2 and ⌊s⌋ < p − 2, T > 0 and r > 0 be given.

There exists a T ∗ > 0 such that if (φ, h1, h2) ∈ Xs,T := Hs(0, 1) × H
s+1

2 (0, T ) × H
s+1

2 (0, T )

satisfies h1(0) = φ(0), h2(0) = φ(1) and ‖(φ, h1, h2)‖Xs,T
≤ r, the IBVP (4.13) admits a unique

solution u ∈ C([0, T ∗];Hs(0, 1)). Moreover, the solution u depends on (φ, h1, h2) continuously in

the corresponding spaces.

Proof: We only consider the cases where 1
2 < s ≤ 2. In addition, without loss of generality,

we assume that φ(0) = h1(0) = 0 and φ(1) = h2(0) = 0. For if not, we can homogenize the

boundary conditions by writing u = v + h1(0)(1 − x) + h2(0)x = v + γ(x). Then v satisfies

homogeneous compatibility conditions and the equation

ivt + vxx + λ|v + γ|p−2(v + γ) = 0.

As γ is smooth and the direct estimates made of the nonlinear term, e.g. (4.14), are very simple,

theory for either u or v follows exactly the same lines.

For s > 1
2 , H

s(0, 1) is a Banach algebra. It follows that there is a constant C = Cs such that

∥

∥v|v|p−2
∥

∥

Hs(0,1)
≤ C

∥

∥v
∥

∥

p−1

Hs(0,1)
, (4.14)

when s = 1, 2. Indeed, for any s with ⌊s⌋ < p−2, the chain rule for fractional derivatives implies

the same result.

For any θ with 0 < θ ≤ T and v ∈ C([0, θ];Hs(0, 1)), Propositions 4.2 and 4.7 imply that

the linear IBVP






iut + uxx + λv|v|p−2 = 0, x ∈ (0, 1), t ∈ R,

u(x, 0) = φ(x), u(0, t) = h1(t), u(1, t) = h2(t) ,
(4.15)

admits a unique solution u ∈ C([0, θ];Hs(0, 1)). Moreover, there exists a constant C > 0

independent of θ such that

‖u‖C([0,θ];Hs(0,1)) ≤ C‖(φ, h1, h2)‖Xs,T
+ Cθ‖v‖p−1

C([0,θ];Hs(0,1)).

Thus, for any given (φ, h1, h2) ∈ Xs,T , the IBVP (4.15) defines a nonlinear map Γ from Ys,θ :=

{w ∈ C([0, θ];Hs(0, 1))} to Ys,θ. A well understood argument, similar to the contraction map-

ping argument in Section 7 of [45] using the chain rule, now reveals that if θ > 0 is chosen small

enough, there exists an M > 0 such that

‖Γ(v0)‖C([0,θ];Hs(0,1)) ≤M

and

‖Γ(v1)− Γ(v2)‖C([0,θ];Hs(0,1)) ≤
1

2
‖v1 − v2‖C([0,θ];Hs(0,1))

for any v0, v1, v2 ∈ C([0, θ];Hs(0, 1)) with

‖vj‖C([0,θ];Hs(0,1)) ≤M, j = 0, 1, 2.

Hence, the map Γ is a contraction whose unique fixed point is the desired solution u of (4.13).

The proof is complete. ✷
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Next, we aim to show the well-posedness of the IBVP (4.13) in Hs(0, 1) for 0 ≤ s < 1
2 . To

this end, consider the integral equation

u(·, t) =W0(t)φ+Whh1 + (Whh2)
∣

∣

∣

x→1−x
+ iλ

∫ t

0
W0(t− τ)

(

u(·, τ)|u(·, τ)|p−2
)

dτ , (4.16)

associated with the IBVP (4.13).

Proposition 4.10 Let 0 ≤ s < 1
2 and T > 0. Suppose r > 0 to be given and 3 ≤ p ≤ 4. There

exists a T ∗ = T ∗(r) > 0 such that for any

(φ, h1, h2) ∈ Xs,T

with ‖(φ, h1, h2)‖Xs,T
≤ r, (4.16) admits a unique solution

u ∈ Ys,T ∗ := L4((0, 1) × (0, T ∗)) ∩ C([0, T ∗];Hs(0, 1))

which depends continuously on (φ, h1, h2) in the corresponding spaces.

Proof: Solving (4.16) can be viewed as a problem of finding a fixed point of a nonlinear operator.

Consequently, the proposition follows using the argument that appears already in [16] along with

our Proposition 4.6 for the boundary integrals. ✷

The solution u of (4.16) given by Proposition 4.10 is a mild solution of the IBVP (4.13). By

the same arguments as put forward already in the proofs of Propositions 3.18 and 3.19, it is

deduced that the IBVP (4.13) admits at most one mild solution, thereby settling the validity of

the following theorem.

Theorem 4.11 Under the conditions in Proposition 4.10, the IBVP (4.13) is unconditionally

locally well-posed in Hs(0, 1) for 0 ≤ s < 1
2 .

5 Global Well-Posedness

In this section, consideration is given to the issue of global well-posedness for both the problems,







iut + uxx + λu|u|p−2 = 0, x ∈ R
+, t ∈ R,

u(x, 0) = φ(x), u(0, t) = h(t)
(5.1)

and






iut + uxx + λu|u|p−2 = 0, x ∈ (0, 1), t ∈ R,

u(x, 0) = φ(x), u(0, t) = h1(t), u(1, t) = h2(t)
(5.2)

in Hs(R+) and Hs(0, 1), respectively. Since the local well-posedness of both problems has been

established, global well-posedness will follow from suitable a-priori estimates.

First, recall that if u(x, t) is a smooth solution of the NLS equation

iut + uxx + λu|u|p−2 = 0,



43

then the following identities

∂

∂t
(|u|2) = −2 Im(ux(x, t)ū(x, t))x , (5.3)

∂

∂t

(

|ux|2 −
2λ

p
|u|p
)

= 2Re (ux(x, t)ūt(x, t))x , (5.4)

(

|ux(x, t)|2 +
2λ

p
|u(x, t)|p

)

x

= −i
(

∂

∂t
(uūx)− (u(x, t)ūt(x, t))x

)

(5.5)

were obtained in [30]. Multiply both sides of (5.5) by a smooth, time-independent function η(x)

and write

uūt = u(−iūxx − iλū|u|p−2) = −i((uūx)x − uxūx + λ|u|p)
to derive the formula

η(x)

(

|ux(x, t)|2 +
2λ

p
|u(x, t)|p

)

x

= −i
(

∂

∂t
(η(x)uūx)

)

+ i(ηuūt)x

− (ηxuūx)x + ηxx(uūx) + ηx|ux|2 − ληx|u|p . (5.6)

By choosing appropriate functions η(x), one can obtain various pointwise estimates of u(x, t).

In particular, for any given interval [a, b], choose η(x) ∈ C∞(R) such that η = 1 for x ≤ a and

η = 0 for x ≥ b with |η(x)| ≤ 1 for all x. Integrating (5.6) from a to b with respect to x and

integrating by parts yields

− |ux(a, t)|2 −
2λ

p
|u(a, t)|p −

∫ b

a
ηx(x)

(

|ux(x, t)|2 +
2λ

p
|u(x, t)|p

)

dx

= −i ∂
∂t

(∫ b

a
η(x)uūxdx

)

− i
(

η(a)u(a, t)ūt(a, t)
)

+

∫ b

a

(

ηxx(uūx) + ηx|ux|2 − ληx|u|p
)

dx .

If v = ut, then v satisfies the equation

ivt + vxx + (λp/2)|u|p−2v + (λ(p− 2)/2)|u|p−4u2v̄ = 0 , (5.7)

which is linear in terms of v. Similar identities as (5.3)-(5.6) hold for v;

∂

∂t
(|v|2) = −2 Im

(

vx(x, t)v̄(x, t)
)

x
− λ(p− 2)|u|p−4 Im

(

u2v̄2
)

, (5.8)

∂

∂t
|vx|2 = 2Re (vx(x, t)v̄t(x, t))x + Im

(

λp|u|p−2vv̄xx
)

+ Im
(

λ(p − 2)|u|p−4u2v̄v̄xx
)

, (5.9)

(

|vx(x, t)|2
)

x
= −i

(

∂

∂t
(vv̄x)− (v(x, t)v̄t(x, t))x

)

− λ(p/2)|u|p−2(|v|2)x − λ(p − 2)|u|p−4 Re
(

u2v̄v̄x
)

. (5.10)

These identities will play a role in our study of global well-posedness. The quarter-plane

IBVP (5.1) will be considered next while the IBVP (5.2) will be dealt with in Subsection 5.2.
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5.1 Global well-posedness on R
+

Proposition 5.1 Assume that p ≥ 2 if λ < 0 and 2 ≤ p ≤ 4 if λ > 0. Let T > 0 be given.

Then there exists a nondecreasing, continuous function α : R+ → R
+ with α(0) = 0 such that

any smooth solution u of (5.1) satisfies

sup
0≤t≤T

‖u(·, t)‖H1(R+) ≤ α
(

‖φ‖H1(R+) + ‖h‖H1(0,T )

)

. (5.11)

Here α also depends upon T and other constants and is bounded for any T > 0.

Remark 5.2 The calculations to follow can easily be justified for solutions that are in H2(R+)

in space with boundary traces that are continuous functions of time. Note that this result does

not depend upon how the solution is obtained, but simply asserts a priori information that it

must obey.

Proof: First, integrate (5.6) with η = 1 from 0 to t to obtain

∫ t

0
|ux(0, s)|2ds =i

(
∫ ∞

0
uūxdx

) ∣

∣

∣

∣

t

0

− 2λ

p

∫ t

0
|u(0, s)|pds+ i

∫ t

0
u(0, s)ūt(0, s)ds

=i

(∫ ∞

0
u(x, t)ūx(x, t)dx

)

− i

(∫ ∞

0
u(x, 0)ūx(x, 0)dx

)

+ C1(t)

=i

(
∫ ∞

0
u(x, t)ūx(x, t)dx

)

+ c1 +C1(t)

≤
(∫ ∞

0
|u(x, t)|2dx

)1/2(∫ ∞

0
|ux(x, t)|2dx

)1/2

+ c1 + C1(t) , (5.12)

where c1 is dependent on the initial data and C1(t) is dependent on the boundary data with

C1(0) = 0. It follows from (5.3) that

∫ ∞

0
|u(x, t)|2dx =

∫ ∞

0
|u(x, 0)|2dx+ 2 Im

∫ t

0
(ux(0, s)ū(0, s))ds

≤ c1 + 2

(∫ t

0
|ux(0, s)|2ds

∫ t

0
|u(0, s)|2ds

)1/2

= c1 + 2C1(t)

(
∫ t

0
|ux(0, s)|2ds

)1/2

≤ c1 + 2C1(t)

(

(
∫ ∞

0
|u(x, t)|2dx

)1/2(∫ ∞

0
|ux(x, t)|2dx

)1/2

+ c1 + C1(t)

)1/2

≤ c1 + 2C1(t)

(

(
∫ ∞

0
|u(x, t)|2dx

)1/4(∫ ∞

0
|ux(x, t)|2dx

)1/4

+ (c1 + C1(t))
1/2

)

≤ c1 + 2C1(t)(c1 +C1(t))
1/2 +

1

4

∫ ∞

0
|u(x, t)|2dx

+
3

4

(

2C1(t)

(
∫ ∞

0
|ux(x, t)|2dx

)1/4
)4/3

.
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A direct consequence is the inequality

∫ ∞

0
|u(x, t)|2dx ≤ 4

3

(

c1 + 2C1(t)
(

c1 + C1(t))
1/2
)

+ (2C1(t))
4/3

(∫ ∞

0
|ux(x, t)|2dx

)1/3

=D1 + (2C1(t))
4/3

(∫ ∞

0
|ux(x, t)|2dx

)1/3

(5.13)

where D1 is a constant depending on both the initial and boundary data.

If λ < 0, integrating both sides of (5.4) in x over R+ and t over [0, t] yields
∫ ∞

0
|ux(x, t)|2dx =

2λ

p

∫ ∞

0
|u(x, t)|pdx+

∫ ∞

0

(

|ux(x, 0)|2 −
2λ

p
|u(x, 0)|p

)

dx

− 2Re

∫ t

0
ux(0, s)ūs(0, s)ds .

The right-hand side of this equation may be bounded thusly (note that the first term is negative

and the second term only depends on initial data):

rhs ≤ c1 +

∫ t

0
|ux(0, s)|2ds +

∫ t

0
|us(0, s)|2ds = D1 +

∫ t

0
|ux(0, s)|2ds

≤D1 +

(
∫ ∞

0
|u(x, t)|2dx

)1/2 (∫ ∞

0
|ux(x, t)|2dx

)1/2

+ c1 + C1(t)

≤D1 + c1 + C1(t) +

(

D1 +
(

2C1(t)
)4/3

(
∫ ∞

0
|ux(x, t)|2dx

)1/3
)1/2(

∫ ∞

0
|ux(x, t)|2dx

)1/2

≤D1 + c1 + C1(t) +

(

D
1/2
1 +

(

2C1(t)
)2/3

(
∫ ∞

0
|ux(x, t)|2dx

)1/6
)

(
∫ ∞

0
|ux(x, t)|2dx

)1/2

≤D1 + c1 + C1(t) +D
1/2
1 ‖ux(·, t)‖L2 +

(

2C1(t)
)2/3‖ux(·, t)‖4/3L2 ,

where c1 again depends only on the initial data and D1 depends on initial and boundary data.

Here, 2ab ≤ a2 + b2 is used for the first inequality, (5.12) is applied for the second inequality,

the third inequality is from (5.13), and the fourth inequality uses the inequality (a + b)1/2 ≤
a1/2+b1/2. Hence, over any finite time interval, ‖ux(·, t)‖L2(R+) is uniformly bounded. Appealing

to (5.13) again reveals that ‖u(·, t)‖L2(R+) is also bounded for any bounded time interval.

If λ > 0, equation (5.4) implies
∫ ∞

0
|ux(x, t)|2dx =

2λ

p

∫ ∞

0
|u(x, t)|pdx+

∫ ∞

0

(

|ux(x, 0)|2 −
2λ

p
|u(x, 0)|p

)

dx

− 2Re

∫ t

0
ux(0, s)ūs(0, s)ds

≤ 4λ

p

(

‖u(·, t)‖L2‖ux(·, t)‖L2

)(p−2)/2
∫ ∞

0
|u(x, t)|2dx+ c2 +

∫ t

0
|ux(0, s)|2ds+

∫ t

0
|us(0, s)|2ds

=
4λ

p

(

‖u(·, t)‖L2‖ux(·, t)‖L2

)(p−2)/2
∫ ∞

0
|u(x, t)|2dx+ D̃ +

∫ t

0
|ux(0, s)|2ds

≤ D̃ +
4λ

p
‖ux(·, t)‖(p−2)/2

L2

(

D1 +
(

2C1(t)
)4/3

(∫ ∞

0
|ux(x, t)|2dx

)1/3
)(p+2)/4
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+

(
∫ ∞

0
|u(x, t)|2dx

)1/2 (∫ ∞

0
|ux(x, t)|2dx

)1/2

+ c1 + C1(t)

≤ D̃ + c1 + C1(t) +
4λ

p
‖ux(·, t)‖(p−2)/2

L2

(

D1 +
(

2C1(t)
)4/3

(∫ ∞

0
|ux(x, t)|2dx

)1/3
)(p+2)/4

+

(

D1 +
(

2C1(t)
)4/3

(∫ ∞

0
|ux(x, t)|2dx

)1/3
)1/2

(∫ ∞

0
|ux(x, t)|2dx

)1/2

≤ D̃ + c1 + C1(t) +
2(p+6)/4λ

p
‖ux(·, t)‖(p−2)/2

L2

(

D
(p+2)/4
1

+ (2C1(t))
(p+2)/3

(
∫ ∞

0
|ux(x, t)|2dx

)(p+2)/12 )

+

(

D
1/2
1 +

(

2C1(t)
)2/3

(∫ ∞

0
|ux(x, t)|2dx

)1/6
)

(∫ ∞

0
|ux(x, t)|2dx

)1/2

= D̃ + c1 + C1(t) +
2(p+6)/4λ (2C1(t))

(p+2)/3

p
‖ux(·, t)‖2(p−1)/3

L2

+
2(p+6)/4λD

(p+2)/4
1

p
‖ux(·, t)‖(p−2)/2

L2 +D
1/2
1 ‖ux(·, t)‖L2 + (2C1(t))

2/3 ‖ux(·, t)‖4/3L2 ,

where the first inequality is derived from the fact that H1(R) is embedded in L∞(R). The second

and third steps in the last chain of inequalities follow from (5.12) and (5.13) whilst the last step

is a consequence of the elementary fact that if a, b ≥ 0, then (a + b)m ≤ 2m−1(am + bm) when

m ≥ 1. When p < 4, 2(p − 1)/3 < 2, so, for any finite time interval, ‖ux(·, t)‖L2 is uniformly

bounded. It follows again from (5.13) that ‖u(·, t)‖L2 is likewise bounded on bounded time

intervals.

Suppose p = 4 and let δ > 0 be given, to be specified presently. Then it follows that
(

1− 25/2λC2
0 (t)

)

‖ux(·, t)‖2L2 ≤ c2 + c1 + C1(t) + 21/2λD
3/2
0 ‖ux(·, t)‖L2

+D
1/2
0 ‖ux(·, t)‖L2 + (2C0(t))

2/3 ‖ux(·, t)‖4/3L2

= D1 +D2‖ux(·, t)‖L2 +D3‖ux(·, t)‖4/3L2

≤ D1 +
1

8
‖ux(·, t)‖2L2 + 2D2

2 +
1

3

(

D3

δ

)3

+
2

3
δ3/2‖ux(·, t)‖2L2 .

Determine δ by demanding 2
3δ

3/2 = 1
8 so that

(

3

4
− 25/2λC2

0 (t)

)

‖ux(·, t)‖2L2 ≤ D1 + 2D2
2 +

1

3

(

D3

δ

)3

,

where the right-hand side only depends on the initial and boundary data. Since C2
0 (t) =

∫ t
0 |u(0, s)|2ds, choose t1 small so that 25/2λC2

0 (t1) ≤ 1/4. With such a choice, if 0 < t ≤ t1,

then

‖ux(·, t)‖2L2 ≤ 2D1 + 4D2
2 +

2

3

(

D3

δ

)3

.

Use the solution at t = t1 as the initial data and apply the same argument to extend the solution

to t2 > t1. Since s ≥ 1 here, the boundary values lie at least in H1
loc(R

+). Hence, given any
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T > 0, there are positive values µ = µ(T ), say, such that
∫ t+µ
t |u(0, s)|2ds can be made uniformly

small for all t ∈ [0, T ]. Hence, the argument just presented can be iterated at least out to time

T . As T was arbitrary, the proof is complete. ✷

Theorem 5.3 Let 1 ≤ s < 5
2 be given and assume that

p ≥ 2 if λ < 0 or 2 ≤ p ≤ 4 if λ > 0.

Then, the IBVP (5.1) is globally well-posed in Hs(R+) for φ ∈ Hs(R+) with h ∈ H
s+3

4

loc (R+) if

1 ≤ s ≤ 2 and h ∈ H
2s+1

4

loc (R+) if 2 ≤ s < 5
2 .

Proof: In (5.1), assume that φ(x) ∈ H2(R+) and h(t) ∈ H
5

4 (0, T ) satisfy the compatibility

condition φ(0) = h(0). Proposition 5.1 implies the global existence of the solution u which lies

in C([0, T ],H1(R+)), for any T > 0. Let T > 0 be fixed, but arbitrary. To prove the existence

in C([0, T ],H2(R+)), take the derivative of (5.1) with respect to t to obtain (5.7) where v = ut.

The initial and boundary conditions for v are

v(x, 0) = i(φxx + λφ|φ|p−2) = φ1(x), v(0, t) = h′(t) = h1(t) .

Note that (5.7) is linear in terms of v. Let v = w + z be such that z satisfies

izt + zxx = 0, z(x, 0) = 0, z(0, t) = h1(t)

and w solves

iwt+wxx + (λp/2)|u|p−2(w + z) + (λ(p− 2)/2)|u|p−4u2(w + z) = 0 ,

w(x, 0) = φ1(x), w(0, t) = 0 .

From (3.21), for s = 0 and any T > 0,

sup
0<t<T

‖z‖L2(R) = sup
0<t<T

‖Wbdr(·)h1‖L2(R) ≤ C(T )‖h1‖
H

1
4 (R+)

.

A similar identity as appears in (5.8) applied to w gives

∂

∂t
(|w|2) = −2 Im

(

wx(x, t)w̄(x, t)
)

x
− λp|u|p−2 Im(zw̄)− λ(p− 2)|u|p−4 Im

(

u2(w + z)w̄
)

.

Integrating this over the half line yields

d

dt

∫ ∞

0
|w|2dx ≤|λ|p‖u‖p−2

H1(R+)
‖z‖L2(R+)‖w‖L2(R+)

+ |λ|(p − 2)‖u‖p−2
H1(R+)

(

‖w‖2L2(R+) + ‖z‖L2(R+)‖w‖L2(R+)

)

,

or, what is the same,

d

dt
‖w‖L2(R+) ≤(1/2)|λ|p‖u‖p−2

H1(R+)
‖z‖L2(R+)

+ (1/2)|λ|(p − 2)‖u‖p−2
H1(R+)

(

‖w‖L2(R+) + ‖z‖L2(R+)

)

.
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This in turn implies by way of Gronwall’s Lemma that ‖w(·, t)‖C([0,T ];L2(R+) is bounded. The

inequality (5.11) in 5.1 implies that ‖u‖C([0,T ];H1(R+)) is bounded by α0

(

‖φ‖H1(R+) + ‖h‖H1(0,T )

)

for some function α0. By combining the foregoing inequalities, there obtains

sup
0≤t≤T

‖v(·, t)‖L2(R+) ≤ α0

(

‖φ‖H1(R+) + ‖h‖H1(0,T )

)

(

‖φ1‖L2(R+) + ‖h1‖
H

1
4 (0,T )

)

,

where α0 : R
+ → R

+ with α0(0) = 0 is a nondecreasing, continuous function which may depend

upon T as well. Thus, (5.1) implies

sup
0≤t≤T

‖uxx(·, t)‖L2(R+) ≤ α0

(

‖φ‖H1(R+) + ‖h‖H1(0,T )

)

(

‖φ‖H2(R+) + ‖h‖
H

5
4 (0,T )

)

,

or

sup
0≤t≤T

‖u(·, t)‖H2(R+) ≤ α0

(

‖φ‖H1(R+) + ‖h‖H1(0,T )

)

(

‖φ‖H2(R+) + ‖h‖
H

5
4 (0,T )

)

.

By the local existence theory presented in Section 4 subject to the compatibility condition

φ(0) = h(0) (see Proposition 3.13 and Remark 3.14), nonlinear interpolation theory applied for

s in the range 1 < s < 2 yields the desired result for this range of s 4 (for details, see [13] in the

context of the Korteweg-de Vries equation). As T > 0 was arbitrary, this in turn implies that

the theorem holds for 1 ≤ s ≤ 2.

Now suppose that 2 ≤ s ≤ 4. First, assume φ(x) ∈ H4(R+) and h ∈ H
9

4 (0, T ). Take the

derivative of (5.7) with respect to t and let vt = v1 = utt. Then, the equation for v1 is linear in

v1 with nonhomogeneous terms that are globally defined. The initial and boundary conditions

for v1 are

v1(x, 0) = iφ′′1 + i(λp/2)|φ|p−2φ1 + i(λ(p − 2)/2)|φ|p−4φ2φ̄1 = φ2(x) ∈ L2(R+) ,

v1(0, t) = h′′(t) = h′1(t) = h2(t) ∈ H
1

4 (0, T ) .

A similar argument as that applied to v(x, t) = ut(x, t) shows that sup0<t<T ‖v1(·, t)‖L2(R+)

is bounded for any T > 0. Therefore, sup0<t<T ‖v(·, t)‖H2(R+) is bounded. Now, consider

u in (5.7) as a fixed function in C([0, T ];H1(R+)) and φ1(x), h1(t) as functions unrelated to

φ(x), h(x). Then, by the above argument, if φ1(x) ∈ L2(R+), h1(t) ∈ H
1

4 (R+), then v(x, t) ∈
C([0, T ];L2(R+)), while if φ1(x) ∈ H2(R+), h1(t) ∈ H

5

4 (R+), then v(x, t) ∈ C([0, T ];H2(R+)).

This uses only the simple compatibility condition φ1(0) = h1(0). The usual nonlinear interpo-

lation theory applied to v with s in the range 0 < s < 2 gives the desired result for v with

0 ≤ s ≤ 2. This immediately implies the advertised result for u with 2 ≤ s ≤ 4. If p is an even

integer or p is large, this argument can be continued for higher values of s (see a similar and

detailed argument for the KdV equation in a quarter plane [8]). ✷

4 Here, the following interpolation result has been used. Its proof is presented in Appendix 2. Let

X :=
{

(φ, h) ∈ H
1(R+)×H

3
4 (R+); φ(0 = h(0)

}

, Y :=
{

(φ, h) ∈ H
2(R+)×H

5
4 (R+); φ(0 = h(0)

}

.

Then, for any θ with 0 ≤ θ ≤ 1,

[X, Y ]θ =
{

(φ, h) ∈ H
1+θ(R+)×H

2θ+3

4 (0, T ); φ(0) = h(0)
}
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5.2 Global well-posedness on (0, 1)

Proposition 5.4 Assume that p ≥ 2 if λ < 0 and 2 ≤ p ≤ 10
3 if λ > 0. Let T > 0 be given.

Then there exists a nondecreasing continuous function β : R+ → R
+ with β(0) = 0 such that

any smooth solution u of (5.2) satisfies

sup
0≤t≤T

‖u(·, t)‖H1(0,1) ≤ β
(

‖φ‖H1(0,1) + ‖h1‖H1(0,T ) + ‖h2‖H1(0,T )

)

.

Proof: Let η(x) = x− (1/2) in (5.6) and integrate with respect to x from 0 to 1 to obtain

1

2

(

|ux(1, t)|2 +
2λ

p
|u(1, t)|p + |ux(0, t)|2 +

2λ

p
|u(0, t)|p

)

= −i
∫ 1

0

(

d

dt
((x− (1/2))uūx)

)

dx+ i(1/2)(u(1, t)ūt(1, t) + u(0, t)ūt(0, t))

− (u(1, t)ūx(1, t)− u(0, t)ūx(0, t)) +

∫ 1

0

(

2|ux(x, t)|2 − λ(1− (2/p))|u(x, t)|p
)

dx . (5.14)

In the following, we again use D as a constant dependent on the initial and boundary data, c

as a constant only dependent on the initial data and C(t) as a constant only dependent on the

boundary data, while C is just a fixed constant, independent of the initial and boundary data.

Integrate (5.14) with respect to t from 0 to t to derive

∫ t

0

(

|ux(1, s)|2 + |ux(0, s)|2
)

ds = D0 + 2

∫ t

0

∫ 1

0

(

2|ux(x, s)|2 − λ(1− (2/p))|u(x, s)|p
)

dxds

− 2i

∫ 1

0
((x− (1/2))u(x, t)ūx(x, t))dx − 2

∫ t

0

(

u(1, s)ūx(1, s) − u(0, s)ūx(0, s)
)

ds . (5.15)

Consider the cases λ > 0 and λ < 0 separately.

(a) λ < 0

For this case, (5.15) gives

∫ t

0

(

|ux(1, s)|2 + |ux(0, s)|2
)

ds ≤ D0 + C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds

+

∫ 1

0
|u(x, t)ūx(x, t))| dx+ 2

∫ t

0

∣

∣

∣u(1, s)ūx(1, s)− u(0, s)ūx(0, s)
∣

∣

∣ds

≤ D1 + C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds

+

(∫ 1

0
|u(x, t)|2dx

)1/2(∫ 1

0
|ux(x, t)|2dx

)1/2

+
1

2

∫ t

0

(

|ux(1, s)|2 + |ux(0, s)|2
)

ds ,

which implies

∫ t

0

(

|ux(1, s)|2 + |ux(0, s)|2
)

ds ≤ 2D1 + 2C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds

+ 2

(
∫ 1

0
|u(x, t)|2dx

)1/2(∫ 1

0
|ux(x, t)|2dx

)1/2

.
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We use techniques that are by now familiar to obtain from (5.3) that

∫ 1

0
|u(x, t)|2dx =

∫ 1

0
|u(x, 0)|2dx− 2 Im

∫ t

0
(ux(1, s)ū(1, s)− ux(0, s)ū(0, s))ds

≤
∫ 1

0
|u(x, 0)|2dx+ 2

(
∫ t

0

(

|u(1, s)|2 + |u(0, s)|2
)

ds

)1/2 (∫ t

0

(

|ux(1, s)|2 + |ux(0, s)|2
)

ds

)1/2

≤ c0 + 2C0(t)

(

2D1 + 2C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds

+ 2

(
∫ 1

0
|u(x, t)|2dx

)1/2(∫ 1

0
|ux(x, t)|2dx

)1/2)1/2

≤ c0 + 2
√
2C0(t)

(

D
1/2
1 +

(

C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds

)1/2

+

(
∫ 1

0
|u(x, t)|2dx

)1/4 (∫ 1

0
|ux(x, t)|2dx

)1/4)

≤ D2 + (1/4)

∫ 1

0
|u(x, t)|2dx+ (3/4)

(

2
√
2C0(t)

(∫ 1

0
|ux(x, t)|2dx

)1/4
)4/3

+ 2
√
2C0(t)

(

C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds

)1/2

,

or

∫ 1

0
|u(x, t)|2dx ≤ D3 + 4C

4/3
0 (t)

(∫ 1

0
|ux(x, t)|2dx

)1/3

+ 4C0(t)

(

C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds

)1/2

.

To obtain an estimate for ux for the case λ < 0, integrate (5.4) with respect to x and t to

reach
∫ 1

0

(

|ux(x, t)|2 +
2|λ|
p

|u(x, t)|p
)

dx ≤
∫ 1

0

(

|ux(x, 0)|2 +
2|λ|
p

|u(x, 0)|p
)

dx

+ 2

∫ t

0

∣

∣

∣
ux(1, s)ūs(1, s)− ux(0, s)ūs(0, s)

∣

∣

∣
ds

≤ D4 +

∫ t

0
|ux(1, s)|2ds+

∫ t

0
|ux(0, s)|2ds

≤ D4 + 2D1 + 2C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds

+ 2

(∫ 1

0
|u(x, t)|2dx

)1/2(∫ 1

0
|ux(x, t)|2dx

)1/2

≤ D4 + 2D1 + 2C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds

+ 2

(

D3 + 4C
4/3
0 (t)

(
∫ 1

0
|ux(x, t)|2dx

)1/3
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+ 4C0(t)

(

C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds

)1/2)1/2(∫ 1

0
|ux(x, t)|2dx

)1/2

≤ D5 + 2C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds

+ 2D
1/2
3

(∫ 1

0
|ux(x, t)|2dx

)1/2

+ 4C
2/3
0 (t)

(∫ 1

0
|ux(x, t)|2dx

)2/3

+ 2(C0(t))
1/2

(

C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds

)1/4(∫ 1

0
|ux(x, t)|2dx

)1/2

≤ D6 +
1

2

∫ 1

0
|ux(x, t)|2dx+ 3C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds ,

where use has been made of Young’s inequality. It follows that
∫ 1

0

(

|ux(x, t)|2 + |u(x, t)|p
)

dx ≤ D7 + C

∫ t

0

∫ 1

0

(

|ux(x, s)|2 + |u(x, s)|p
)

dxds .

for suitable constants. Gronwall’s lemma then provides a global bound on the solution u in

H1(0, 1).

(b) λ > 0

From (5.15) with p ≥ 2, it happens that
∫ t

0

(

|ux(1, s)|2 + |ux(0, s)|2
)

ds+

∫ t

0

∫ 1

0
λ
(

1− (2/p)
)

|u(x, s)|pdxds

= D0 + 4

∫ t

0

∫ 1

0
|ux(x, s)|2dxds− 2i

∫ 1

0

(

x− (1/2)
)

u(x, t)ūx(x, t)dx

− 2

∫ t

0

(

u(1, s)ūx(1, s)− u(0, s)ūx(0, s)
)

ds

≤ D1 + C

∫ t

0

∫ 1

0
|ux(x, s)|2dxds+

(
∫ 1

0
|u(x, t)|2dx

)1/2(∫ 1

0
|ux(x, t)|2dx

)1/2

+
1

2

∫ t

0

(

|ux(1, s)|2 + |ux(0, s)|2
)

ds ,

which implies
∫ t

0

(

|ux(1, s)|2 + |ux(0, s)|2
)

ds ≤ 2D1 + 2C

∫ t

0

∫ 1

0
|ux(x, s)|2dxds

+ 2

(
∫ 1

0
|u(x, t)|2dx

)1/2(∫ 1

0
|ux(x, t)|2dx

)1/2

.

By the same argument as in the case with λ < 0, it is seen that

∫ 1

0
|u(x, t)|2dx ≤ D3 + 4C

4/3
0 (t)

(∫ 1

0
|ux(x, t)|2dx

)1/3

+ 4C0(t)

(

C

∫ t

0

∫ 1

0
|ux(x, s)|2dxds

)1/2

.

The estimate for ‖ux‖H1(0,1) can be obtained from (5.4) as follows:

∫ 1

0
|ux(x, t)|2dx =

2λ

p

∫ 1

0
|u(x, t)|pdx+

∫ 1

0

(

|ux(x, 0)|2 −
2λ

p
|u(x, 0)|p

)

dx
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+ 2Re

∫ t

0
(ux(1, s)ūs(1, s)− ux(0, s)ūs(0, s)) ds

≤ 4λ

p

(

‖u(·, t)‖L2‖ux(·, t)‖L2

)(p−2)/2
∫ 1

0
|u(x, t)|2dx+D4 +

∫ t

0
|ux(1, s)|2ds+

∫ t

0
|ux(0, s)|2ds

≤D4 +
4λ

p
‖ux(·, t)‖(p−2)/2

L2

[

D3 + 4C
4/3
0 (t)

(∫ 1

0
|ux(x, t)|2dx

)1/3

+ 4C0(t)

(

C

∫ t

0

∫ 1

0
|ux(x, s)|2dxds

)1/2 ](p+2)/4

+ 2D1 + 2C

∫ t

0

∫ 1

0
|ux(x, s)|2dxds

+ 2

(
∫ 1

0
|u(x, t)|2dx

)1/2(∫ 1

0
|ux(x, t)|2dx

)1/2

≤D4 +
4λ

p
‖ux(·, t)‖(p−2)/2

L2

[

D3 + 4C
4/3
0 (t)

(∫ 1

0
|ux(x, t)|2dx

)1/3

+ 4C0(t)

(

C

∫ t

0

∫ 1

0
|ux(x, s)|2dxds

)1/2 ](p+2)/4

+ 2D1 + 2C

∫ t

0

∫ 1

0
|ux(x, s)|2dxds+ 2

[

D3 + 4C
4/3
0 (t)

(
∫ 1

0
|ux(x, t)|2dx

)1/3

+ 4C0(t)

(

C

∫ t

0

∫ 1

0
|ux(x, s)|2dxds

)1/2 ]1/2(∫ 1

0
|ux(x, t)|2dx

)1/2

≤D4 + C‖ux(·, t)‖(p−2)/2
L2

[

D
(p+2)/4
3 +

(

4C
4/3
0 (t)

(∫ 1

0
|ux(x, t)|2dx

)1/3
)(p+2)/4

+

(

4C0(t)

(

C

∫ t

0

∫ 1

0
|ux(x, s)|2dxds

)1/2
)(p+2)/4

]

+ 2D1 + 2C

∫ t

0

∫ 1

0
|ux(x, s)|2dxds+ 2

[

D
1/2
3 + 2C

2/3
0 (t)

(
∫ 1

0
|ux(x, t)|2dx

)1/6

+ 2C
1/2
0 (t)

(

C

∫ t

0

∫ 1

0
|ux(x, s)|2dxds

)1/4 ](∫ 1

0
|ux(x, t)|2dx

)1/2

≤D5 +D6‖ux(·, t)‖(p−2)/2
L2 + CC

(p+2)/3
0 (t)‖ux(·, t)‖2(p−1)/3

L2

+ C1(t)‖ux(·, t)‖(p−2)/2
L2

(
∫ t

0

∫ 1

0
|ux(x, s)|2dxds

)(p+2)/8

+ 2C

∫ t

0

∫ 1

0
|ux(x, s)|2dxds

+D7‖ux(·, t)‖L2 + C2(t)‖ux(·, t)‖4/3L2 + C3(t)‖ux(·, t)‖L2

(∫ t

0

∫ 1

0
|ux(x, s)|2dxds

)1/4

.

(5.16)

For 2 ≤ p ≤ 10
3 , Young’s inequality ab ≤ (1/m)am + (1/n)bn with m−1 + n−1 = 1 leads from

(5.16) to
∫ 1

0
|ux(x, t)|2dx ≤ D8 +D9

∫ t

0

∫ 1

0
|ux(x, s)|2dxds

which, by Gronwall’s lemma, gives a uniform bound for
∫ 1
0 |ux(x, t)|2dx on the interval 0 ≤ t ≤ T .

As the time T is arbitrary, the proof is complete. ✷
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Using the same argument as that for proving Theorem 5.3 leads to the following global

well-posedness result.

Theorem 5.5 Assume that

p ≥ 3 if λ < 0 or 3 ≤ p ≤ 10
3 if λ > 0

and let 1 ≤ s < 5/2 be given. Then the IBVP (5.2) is globally well-posed in Hs(0, 1) with

φ ∈ Hs(0, 1) and h1, h2 ∈ H
s+1

2

loc (R+) subject to the compatibility conditions on φ, h1 and h2.

6 Appendices

6.1 Appendix 1

The following Lemma is used to obtain an estimate in the proof of Proposition 4.6. Lemma

A-1: Let ψ be an even, non-negative, C∞ cut-off function with supp(ψ) ⊂ [−1, 1] and with

ψ(x) ≡ 1 for |x| ≤ 1
2 . Suppose also that ψ is strictly decreasing on [12 , 1]. There exists a constant

C > 0 such that for any g ∈ H
1

2

00(R
+),

∞
∑

n=1

∣

∣

∣

∣

∫ ∞

0
f(µ)

1

µ− n

(

1− ψ(n2 − µ2)
)

dµ

∣

∣

∣

∣

2

≤ C

∫ ∞

0
(µ+ 1)|f(µ)|2dµ ,

where f is the Fourier transform of the extension by zero of g to all of R.

Proof: Write

∞
∑

n=1

∣

∣

∣

∣

∫ ∞

0
f(µ)

1

µ− n

(

1− ψ(n2 − µ2)
)

dµ

∣

∣

∣

∣

2

=
∞
∑

n=1

∣

∣

∣

∣

(
∫ n−1

0
+

∫ n+1

n−1
+

∫ ∞

n+1

)

f(µ)
1

µ− n

(

1− ψ(n2 − µ2)
)

dµ

∣

∣

∣

∣

2

≤ I1 + I2 + I3 .

Since the estimates for I1 and I3 are similar, we only study I3. Let α, β > 0 so the Cauchy-

Schwartz inequality implies that

I3 =

∞
∑

n=1

∣

∣

∣

∣

∫ ∞

n+1
f(µ)

1

µ− n

(

1− ψ(n2 − µ2)
)

dµ

∣

∣

∣

∣

2

≤
∞
∑

n=1

∫ ∞

n+1

|f(µ)|2µ2α
|µ − n|2−2β

dµ

∫ ∞

n+1

1

|µ− n|2βµ2α dµ .

If 2α+ 2β > 1, then

∣

∣

∣

∣

∫ ∞

n+1

1

|µ− n|2βµ2αdµ
∣

∣

∣

∣

=

∣

∣

∣

∣

(
∫ 3n

n+1
+

∫ ∞

3n

)

1

|µ− n|2βµ2αdµ
∣

∣

∣

∣

≤ C

(∫ 3n

n+1

1

|µ − n|2βn2αdµ+

∫ ∞

3n

1

µ2α+2β
dµ

)

≤ Cn1−2α−2β ≤ C,
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where C is independent of n. It thus transpires that if 2− 2β > 1, then

I3 ≤ C
∞
∑

n=1

∫ ∞

n+1

|f(µ)|2µ2α
(|µ − n|+ 1)2−2β

dµ ≤ C

∫ ∞

0
|f(µ)|2µ2α

∞
∑

n=1

1

(|µ − n|+ 1)2−2β
dµ

≤ C

∫ ∞

0
|f(µ)|2µ2αdµ.

Choosing α = 1
4 and, say, β = 3

8 yields the advertised bound.

To study I2, note that in the integrals, the integrand vanishes unless µ ≥
√

n2 + 1/2 or

0 ≤ µ ≤
√

n2 − 1/2. Consequently, it must be the case that

I2 ≤
∞
∑

n=1

((

∫ n+1

√
n2+1/2

+

∫

√
n2−1/2

n−1

)

|f(µ)|
|µ− n|dµ

)2

≤
∞
∑

n=1

(
∫ n+1

√
n2+1/2

|f(µ)|2dµ
∫ n+1

√
n2+1/2

|µ− n|−2dµ

+

∫

√
n2−1/2

n−1
|f(µ)|2dµ

∫

√
n2−1/2

n−1
|µ− n|−2dµ

)

≤ C
∞
∑

n=1

(∫ n+1

n
n|f(µ)|2dµ+

∫ n

n−1
n|f(µ)|2dµ

)

≤ C

∞
∑

n=1

(∫ n+1

n
µ|f(µ)|2dµ +

∫ n

n−1
(µ + 1)|f(µ)|2dµ

)

≤ C

∫ ∞

0
(µ + 1)|f(µ)|2dµ .

The lemma is proved. ✷

The following example shows the optimality of the assumption h ∈ H1/2(0, T ) in (4.11) and

(4.12). This result then implies that the assumptions on (h1, h2) in Theorem 1.2 are optimal.

Example A-2: Notice that if (4.11) or (4.12) holds, then

‖uh‖L2(ΩT ) = ‖uh‖L2((0,1)×(0,T )) ≤ CT ‖h‖
H

1
2 (0,T )

,

where we recall for the reader’s convenience that

uh =
∞
∑

n=1

2inπe−i(nπ)2t

∫ t

0
ei(nπ)

2τh(τ)dτ sinnπx

=
∞
∑

n=−∞
nπe−i(nπ)2t+inπx

∫ t

0
ei(nπ)

2τh(τ)dτ

(see (4.10)). Assume that h(t) has the Fourier series expansion

h(t) =
∞
∑

k=−∞
e−π2iktak with ak =

∫ 2π
π2

0
eπ

2ikth(t)dt .
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It follows that

uh =
∞
∑

n=−∞
nπe−i(nπ)2t+inπx

∫ t

0

∑

k

ei(n
2−k)π2τakdτ

=





∞
∑

n=−∞
nπe−i(nπ)2t+inπx

∑

k 6=n2

ei(n
2−k)π2t − 1

n2 − k
ak



+

( ∞
∑

n=−∞
nπe−i(nπ)2t+inπxtan2

)

=





∞
∑

n=−∞
nπeinπx

∑

k 6=n2

e−kiπ2t − e−in2π2t

n2 − k
ak



+

( ∞
∑

n=−∞
nπe−i(nπ)2t+inπxtan2

)

=





∞
∑

n=−∞
nπeinπx

∑

k 6=n2

e−kiπ2t

n2 − k
ak



+





∞
∑

n=−∞
nπe−i(nπ)2t+inπx



tan2 −
∑

k 6=n2

ak
n2 − k







.

Choose h(t) so that

an2 =

∫ 2

π

0
eπ

2in2th(t)dt = 0 , n ∈ Z .

Then, the last formula condenses to

uh =

∞
∑

n=−∞
nπeinπx

∑

k 6=n2

e−kiπ2t

n2 − k
ak +

∞
∑

n=−∞
nπe−i(nπ)2t+inπx





∑

k 6=n2

ak
k − n2



.

As k 6= n2, the exponentials einπx−ikπ2t and ei(nπx−(nπ)2)t are orthogonal, whence

‖uh‖2L2((0,1)×(0, 2π ))
=

∞
∑

n=−∞

∑

k 6=n2

n2π2
a2k

(n2 − k)2
+

∞
∑

n=−∞
(nπ)2





∑

k 6=n2

ak
k − n2





2

≥
∞
∑

n=−∞
n2π2a2n2+1,

the latter inequality obtained by only considering the terms where k = n2 + 1.

If there were a constant C such that for all h ∈ Hα
(

0, 2π
)

, ‖uh‖2L2((0,1)×(0, 2π ))
≤ C‖h‖2

Hα(0, 2π )
,

then it would follow that α ≥ 1
2 . Suppose instead that there is a constant C such that

‖uh‖2L2((0,1)×(0, 2π ))
≤ C‖h‖2

Hα(0, 2π )
for some α with 0 < α < 1

2 .

Define the function h by its Fourier series, viz.

h(t) =
∑

n 6=0

1

|n|β e
−π2i(n2+1)t .
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For h to lie in Hα
(

0, 2π
)

, we need

∑

n 6=0

∣

∣

∣

∣

(n2 + 1)α

|n|β
∣

∣

∣

∣

2

< +∞ ,

or 2β − 4α > 1 which implies that β > 2α+ 1
2 . But, for this h,

‖uh‖2L2((0,1)×(0, 2π ))
≥

∞
∑

n=−∞
n2π2

1

|n|2β =

∞
∑

n=−∞, n 6=0

π2

|n|2β−2
.

Since α < 1
2 , β can be chosen so that 2α+ 1

2 < β < 3
2 . For such a value of β, it is clear that

∞
∑

n=−∞, n 6=0

1

|n|2β−2
= +∞.

The partial sums

hk(t) =

|n|=k
∑

n 6=0

1

|n|β e
−π2i(n2+1)t

lie in C∞ and therefore, according to our hypothesis,

‖uhk
‖2
L2((0,1)×(0, 2π ))

≤ C‖hk‖2Hα .

But, as k → ∞, the right side of the last inequality is bounded while the left side tends to ∞,

which is a contradiction. Hence, we must have α ≥ 1
2 .

6.2 Appendix 2

Let

X =
{

(φ, h) ∈ H1(R+)×H
3

4 (R+); φ(0) = h(0)
}

,

Y =
{

(φ, h) ∈ H2(R+)×H
5

4 (R+); φ(0) = h(0)
}

,

and

X∗ = H1(R+)×H
3

4 (R+), Y ∗ = H2(R+)×H
5

4 (R+).

While it is well-known (cf. [59]) that for any θ with 0 ≤ θ ≤ 1,

[X∗, Y ∗]θ = H1+θ(R+)×H
2θ+3

4 (R+),

however, as pointed out by an anonymous referee, it seems that no rigorous proof can be found

in literature for the interpolation result

[X,Y ]θ =
{

(φ, h) ∈ H1+θ(R+)×H
2θ+3

4 (R+); φ(0) = h(0)
}

(6.1)

used in our analysis. It is mentioned (in a much more general setting) as “most likely” true

in the book of Lions-Magenes [60] (Chapter 4, Section 14, remark after Theorem 14.1). The

following short proof of (6.1) was suggested by the referee.
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First, it is claimed that there exists a bounded linear “lifting” operator L from the space

Zs :=
{

(φ, h) ∈ H1+s(R+)×H
2s+3

4 (R+); φ(0) = h(0)
}

to Hs+2, s+2

2 (R+ × R
+) := L2

t (R
+;Hs+2

x (R+) ∩ H
s+2

2

t (R+;L2
x(R

+)) for 0 ≤ s ≤ 1 such that

w = L(φ, h) ∈ Hs+2, s+2

2 (R+ × R
+) for any (φ, h) ∈ Zs and

w(x, 0) = φ(x), w(0, t) = h(t).

Then

T ◦ L = I

where I denotes the identity operator and T is the trace operator defined by

T : Hs+2, s+2

2 (R+ × R
+) → Zs, Tw = (w(x, 0), w(0, t)).

One has ([60] Proposition 2.1, Chapter 4)

[

H2,1(R+ × R
+),H3, 3

2 (R+ × R
+)
]

θ
= H2+θ,1+ θ

2 (R+ × R
+)

for 0 ≤ θ ≤ 1. Consequently, [X,Y ]θ can be identified with T

(

H2+θ,1+ θ
2 (R+ × R

+)
)

which is

exactly Zθ.

It remains to prove the existence of the lifting operator

L : Zs → Hs+2,1+ s
2 (R+ × R

+)

for 0 ≤ s ≤ 1. To this end, consider the following IBVP

{

ut = uxx, x ∈ R
+, t ∈ R

+,

u(x, 0) = φ(x), u(0, t) = h(t), x ∈ R
+, t ∈ R

+ ,
(6.2)

for the heat equation, where φ ∈ Hs+1(R+), h(t) ∈ H
2s+3

4 (R+) with 0 ≤ s ≤ 1 and φ(0) = h(0).

The existence of the solution u(x, t) ∈ Hs+2,1+ s
2 (R+ × R

+) for (6.2) is established in Theorems

6.1 and 6.2 in Chapter 4 of [60]. Therefore, given s with 0 ≤ s ≤ 1 and (φ, h) ∈ Zs, we may

define the lifting operator L by

L(φ, h) := u,

where u is the solution of the IBVP (6.2).

7 Acknowledgment

JLB and SMS were partially supported by the US National Science Foundation. BYZ was par-

tially supported by a grant from the Simons Foundation (201615) and NSF of China (11231007,
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(1987) 113–129.

[54] T. Kato, On nonlinear Scrhödinger equations. II. Hs-solutions and unconditional well-

posedness, J. d’Analyse Math. 67 (1995) 281–306.

[55] R. Killip, M. Visan and X. Zhang, Quintic NLS in the exterior of a strictly convex obstacle,

Amer. J. Math., to appear.

[56] I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabi-

lization of Schrodinger equations with Dirichlet control, Diff. Integral Equations 5 (1992)

521–535.

[57] I. Lasiecka, R. Triggiani and X. Zhang, Carleman estimates at the H1(Ω)– and L2(Ω)−level

for nonconservative Schrödinger equations with unobserved Neumann B.C., Arch. Inequal.

Appl. 2 (2-3) (2004) 215–338.

[58] F. Linares and G. Ponce, Introduction to nonlinear dispersive equations, Universitext,

Springer, New York, 2009.

[59] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,

Vol. 1, Springer-Verlag, Berlin-Heidelberg-New York, 1972.

[60] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,

Vol. 2, Springer-Verlag, Berlin-Heidelberg-New York, 1972.

[61] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equa-

tions, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York-Berlin-Heidelberg-

Tokyo, 1983.

[62] D. H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions, J. Aus-

tralian Math. Soc. B 25 (1983) 16–43.

[63] L. Rosier and B.-Y. Zhang, Exact controllability and stabilization of the nonlinear

Schrödinger equation on a bounded interval, SIAM J. Control Optim. 48 (2009) 972–992.



62

[64] L. Rosier and B.-Y. Zhang, Exact boundary controllability of the nonlinear Schrödinger

equation, J. Diff. Equations 246 (2009) 4129–4153.

[65] L. Rosier and B.-Y. Zhang, Control and stabilization of the nonlinear Schrödinger equation

on rectangles, Math. Models Methods Appl. Sci. 20 (2010) 2293–2347.

[66] G. Schneider and C. E. Wayne, The long-wave limit for the water wave problem. I. The

case of zero surface tension, Comm. Pure Appl. Math. 53 (2000) 1475–1535.

[67] E. M. Stein, Singular Integrals and Differentiability of Functions, Princeton University

Press, Princeton, NJ, 1970.

[68] W. Strauss and C. Bu, Inhomogeneous boundary value problem for a nonlinear Schrödinger

equation, J. Diff. Equations 173 (2001) 79–91.

[69] M. Tsutsumi, On smooth solutions to the initial-boundary value problem for the nonlinear

Schrödinger equations in two space dimensions, Nonlinear Anal. TMA 13 (1989) 1051–1056.

[70] M. Tsutsumi, On global solutions to the initial-boundary value problem for the nonlinear

Schrödinger equations in exterior demains, Comm. Partial Diff. Equations 16 (1991) 885–

907.

[71] Y. Tsutsumi, Global solutions of the nonlinear Schrödinger equations in exterior domains,

Comm. Partial Diff. Equations 8 (1983) 1337–1374.

[72] Y. Tsutsumi, L2-solutions for nonlinear Schrödinger equations and nonlinear groups, Funk.

Ekva. 30 (1987) 115–125.

[73] Y. Y. S. Win and Y. Tsutsumi, Unconditional uniqueness of solution for the Cauchy problem

of the nonlinear Schrödinger equation, Hokkaido Math. J. 37 (2008) 839–859.

[74] V.E. Zakharov and S.V. Manakov, On the complete integrability of a nonlinear Schrödinger

equation, J. Theore. and Math. Phys. 19 (1974) 551–559.

[75] V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-

dimensional self-modulation of waves in nonlinear media, J. Experi. and Theore. Phys. 34

(1972) 62–69.


	1 Introduction
	2 Overview
	3 The Schrödinger equation posed on the half line R+
	3.1 Solution formulas for linear problems
	3.2 Linear estimates
	3.3 Local well-posedness

	4 The Schrödinger equation posed on a finite interval
	4.1 Linear problem
	4.2 The nonlinear problem

	5 Global Well-Posedness
	5.1 Global well-posedness on R+
	5.2 Global well-posedness on (0,1)

	6 Appendices
	6.1 Appendix 1
	6.2 Appendix 2

	7 Acknowledgment
	References

