
Journal of Scientific Computing (2018) 77:1371–1401
https://doi.org/10.1007/s10915-018-0767-x

Finite Element Methods for a System of Dispersive Equations

Jerry L. Bona1 · Hongqiu Chen2 ·Ohannes Karakashian3 ·Michael M. Wise3

Received: 16 January 2018 / Revised: 21 May 2018 / Accepted: 12 June 2018 / Published online: 4 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
The present study is concerned with the numerical approximation of periodic solutions of
systems of Korteweg–de Vries type, coupled through their nonlinear terms. We construct,
analyze and numerically validate two types of schemes that differ in their treatment of the
third derivatives appearing in the system. One approach preserves a certain important invari-
ant of the system, up to round-off error, while the other, somewhat more standard method
introduces a measure of dissipation. For both methods, we prove convergence of a semi-
discrete approximation and highlight differences in the basic assumptions required for each.
Numerical experiments are also conducted with the aim of ascertaining the accuracy of the
two schemes when integrations are made over long time intervals.
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1 Introduction

Nonlinear, dispersive wave equations arise in a number of important application areas.
Because of this, and because their mathematical properties are interesting and subtle, their
theory and applications have seen enormous development since the 1960s when they first
came to the fore (see Miura [29] for a sketch of the early history of the subject). The theory
for a single nonlinear, dispersive wave equation is well developed by now, though there are
still interesting open issues. The theory for coupled systems of such equations is much less
developed, though they, too, arise as models of a range of physical phenomena. Considered
here is a paradigm class of such systems, namely coupled Korteweg–de Vries equations. The
systems we have in mind take the form{

ut + uxxx + P(u, v)x = 0,

vt + vxxx + Q(u, v)x = 0,
(1.1)

which comprise two independent linear Korteweg–de Vries equations coupled through non-
linear terms. Here, the dependent variables u = u(x, t) and v = v(x, t) are real-valued
functions and subscripts connote partial differentiation. The nonlinearities are taken to be
homogeneous quadratic polynomials in u and v, viz.

P(u, v) = Au2 + Buv + Cv2, Q(u, v) = Du2 + Euv + Fv2,

with given real coefficients A, B, . . . , F . Such systems and their close relatives arise as
models for waves in a number of situations. For example, the model for Madden-Julian
atmospheric oscillations recently developed by Majda and Biello [28] fits exactly into this
class of systems. The surface water wave models put forward in [9] and [10] have special-
izations with the same sort of coupled KdV structure as in (1.1) (see also [12] and [13]).
The Gear–Grimshaw system [22] arising in internal wave propagation likewise has features
similar to the simpler models in (1.1). A particular system of the type displayed above, but
with BBM-type dispersion, was studied by Hakkaev [23].

1.1 Local and GlobalWell-Posedness

The pure initial-value problem for these systems was studied in [3] and [11]. It transpires that
the system (1.1) is always locally well posed in the L2(R)–based Sobolev spaces Hs(R) ×
Hs(R) for any s > − 3

4 .This result follows the general lines of development available already
for the single Korteweg–de Vries equation

ut + uxxx + uux = 0 (1.2)

(see [11,20]). It was also shown that for solutions of (1.1) corresponding to s ≥ 0, the integral

Ω(u, v) =
∫
R

(
au2 + buv + cv2

)
dx (1.3)

is independent of time. The constants a, b, c comprise any nontrivial solution of the system{
2Ba + (E − 2A)b − 4Dc = 0,

4Ca + (2F − B)b − 2Ec = 0,
(1.4)

of two linear equations in three unknowns. In case s ≥ 1, the integral

Θ(u, v) =
∫
R

(
au2x + buxvx + cv2x − R(u, v)

)
dx, (1.5)
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with

R(u, v) = α

3
u3 + βu2v + γ uv2 + δ

3
v3, (1.6)

is also independent of time if (u, v) solves (1.1). Here, the real constants α, β, γ and δ

depend upon the original coefficients, A, B, . . . , F . When the quadratic form ϒ(x, y) =
ax2+bxy+cy2 is positive definite,which is to say, 4ac−b2 > 0, these invariants immediately
allow the local theory to be extended to global well-posedness if s ≥ 0. Pursuing a further,
energy-type argument as in [20] and an observation in [6], this can be improved and it is now
known that (1.1) is globally well posed for arbitrarily sized data in Hs(R) × Hs(R) for any
s > − 3

4 when 4ac − b2 ≥ 0.
Theory for the periodic initial-value problem for the Korteweg–de Vries equation (1.2)

is slightly different from the problem posed in Sobolev spaces on R. Thanks to the work
of Kappeler and Topalov [24], we know the periodic initial-value problem is globally well
posed in Hs(T) for s ≥ −1. Here, T = R/Z is the one-dimensional torus. However, the
proof in such large spaces was made using the inverse-scattering formulation of the problem.
As far as we can tell, the systems (1.1) do not generally possess an inverse-scattering theory,
so the Kappeler–Topalov result does not easily generalize to them. Theory using harmonic
analysis techniques has been developed by Bourgain in a series of papers and later improved
by Kenig, Ponce and Vega. The crowning achievement so far for the periodic initial-value
problem using harmonic analysis and energy estimates is found in the paper of Colliander,
Keel, Staffilani, Takaoka and Tao [20] where detailed references to the work of Bourgain and
Kenig, Ponce and Vega can be found. The current state of the art using these techniques is
that the problem is globally well posed in Hs(T) provided s > − 1

2 .
For the systems (1.1), the well posedness in Hs(T) has not yet been dealt with. A straight-

forward Bona-Smith argument [14] together with the a priori H1(T)-bound provided by
the invariants (1.3) and (1.5) when 4ac − b2 > 0 (so that the quadratic form ϒ is positive
definite) yields global well-posedness for s ≥ 1. It seems likely this can be improved, but
global well-posedness in Hs(T)×Hs(T) for values of s ≥ 1 suffices to provide the backdrop
for the error estimates which are one of the main contributions of the present essay.

1.2 SolitaryWaves

It was shown in [6] that when 4ac− b2 > 0, the systems (1.1) always possess solitary-wave
solutions of the special form

(us(x, t), vs(x, t)) = (μ1, μ2)φω(x − ωt) = 3ω(μ1, μ2) sech
2
(√

ω

2
(x − ωt)

)
. (1.7)

The parameters μ1 and μ2 are real constants that are independent of the speed ω of propa-
gation. It transpires that it is only the ratio μ = μ2/μ1 that is in question here (or in special
cases where μ1 = 0, the ratio ν = μ1/μ2). These ratios satisfy the cubic equation

Cμ3 + (B − F)μ2 + (A − E)μ − D = 0

subject to the side condition A + Bμ + Cμ2 �= 0. In case μ1 = 0, this becomes

Dν3 + (E − A)ν2 + (F − B)ν − C = 0

subject to Dν2 + Eν + F �= 0. For details, see [6] or [7].
As the speed ω is independent of μ or ν, these solutions comprise smooth curves in

function space of traveling waves. Such solutions were termed proportional solitary waves
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since both u and v have the same shape function. While such solutions always exist when
4ac−b2 > 0, they need not be unique even among proportional solutions. They will be used
to implement accuracy tests in the numerical experiments. Introductory remarks about the
numerical schemes are presented next.

1.3 Background for the Numerical Schemes

Design and analysis of numerical schemes to approximate solutions of the systems (1.1)
is the focus of the present essay. Naturally, our treatment of this approximation problem is
guided by the very considerable literature devoted to approximating solutions of the single
KdV equation (1.2). The work described here finds its inspiration in the body of work on
discontinuous Galerkin (DG) methods for KdV-type equations and their relatives.

Despite the existence of a surfeit of numerical schemes for the KdV equation, rigorous
error estimates for them were rare until the newmillenium. Early work that featured rigorous
theory may be found in the the papers [31] of Wahlbin, [32] of Winther and [4] of Baker et
al.

The main obstacle to deriving error bounds is the difficulty of constructing a viable pro-
jection for the dispersive (third derivative) term that would play a role similar to that of the
elliptic projection in the context of parabolic and hyperbolic problems. The work of Chi-
Wang Shu and collaborators, in particular the articles [19,33,34], opened a new path for
constructing such projections in the setting of the DG method and its local version, the LDG
method. These projections allowed error estimates for both the local and non-local versions
of the DG method for the full nonlinear problem.

Later, and building again on the work of Cheng and Shu [19], a DG scheme was put
forward in [8] that had the salutary property of preserving up to round-off error the first
two invariants of the KdV equation. Such schemes are called conservative, whereas the
earlier schemes mentioned above were dissipative. That is, the scheme itself introduces
dissipation into the approximation. As is often the case with Hamiltonian systems, schemes
that preserve invariants of the motion have improved long-time behaviour of the errors. This
theme was pursued further in [27] through the development of a DG scheme preserving the
third invariant, which can act as a Hamiltonian for the KdV equation.

More recently, a posteriori error estimates were obtained in [25] and [26] for both DG and
LDG versions of schemes for the Generalized KdV equation. The key step introduced in [25]
was a reconstruction operator that was used to obtain the first such estimates for nonlinear
time-dependent equations of KdV-type. This operator can be adapted to the treatment of
derivatives of arbitrarily high order and applies equally well to conservative and dissipative
numerical schemes.

The present work is an extension of the ideas and techniques alluded to above for a single,
nonlinear, dispersive wave equation to coupled systems of such equations. It constitutes a first
attempt at the construction of approximations of solutions to such systems including rigorous
analysis of these approximations. Both conservative and dissipative formulations for the sys-
tem (1.1) will be considered, with an eye to understanding the advantages and disadvantages
of each. The conservative formulation has the property that the invariant Ω(u(·, t), v(·, t))
defined in (1.3), with R replaced by [0, 1] and solutions (u, v) that are periodic of period
one in space, is constant in time, up to round-off error. On the other hand, for the dissipa-
tive method, Ω(u(·, t), v(·, t)) is a monotone decreasing function of time. Of course, up to
roundoff error, both schemes are such that the so-called ‘mass’ quantities

∫ 1
0 u(x, t)dx and∫ 1

0 v(x, t) dx are time independent.
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Both approaches appear to be worth studying and have differing characteristics on the
theoretical as well as the computational level. For one, while the conservative approach offers
the promise of improved error behaviour over long time intervals, the analysis becomesmuch
more arduous. Indeed, the definition of the projection operator is not local anymore and its
well-posedness can be established only after some conditions are imposed on the degree of
the polynomials used and the parity of the number of cells. While such restrictions might
strike the reader as odd, they have been seen already in a number of related works (e.g. [8,27]
and [26]).

The paper is organized as follows: Section 2 is devoted to notation and other preliminary
material including the function spaces that are relevant to the analysis that follows. The
finite element spaces are then introduced. These consist of continuous piecewise polynomial
functions defined on the period domain T. The requirement of continuity is a small departure
from the standard DG method. It is put into place to keep down the technical difficulties
arising in the treatment of the nonlinearities (see Proposition 3.3 in [8]). Weak forms are
also introduced for the nonlinear and dispersive terms. The forms considered herein for
the dispersive term come in two flavors, conservative and dissipative, denoted D and D̃,
respectively [see (2.9) and (2.12)]. They are inspired by the corresponding forms used in
[8] and [19], respectively. The analysis of the numerical schemes is effected by appropriate
projection operators. These are constructed and theirwell-posedness aswell as approximation
properties examined in detail. As already mentioned, conservation causes the projection
operator to be nonlocal, a fact that has as a consequence the above mentioned restrictions
on the degree q of the piecewise polynomials and the number of cells in the mesh. For
the conservative formulation, it is shown that the approximation power of the projection is
optimal, which is to say O(hq+1), only if the mesh is uniform. Otherwise, it is O(hq). On
the other hand, the dissipative projection is entirely local and its well-posedness and optimal
approximation properties are readily established without any conditions on the degree q or
the mesh.

InSect. 3, the conservative semi-discrete formulation is introduced.The integralΩ(uh, vh)
of the semi-discrete approximations (uh, vh) is conserved and the problem is seen to be
globally well posed whenever a solution (a, b, c) of (1.4) satisfies the positivity condition
4ac − b2 > 0. It is also shown that the pair (uh, vh) converges to (u, v) at the rate of
O(hq) if the mesh is uniform, but O(hq−1) otherwise. A similar analysis is carried out
using the dissipative form for the dispersive term to obtain semi-discrete approximations
(ũh, ṽh). The analysis of well-posedness and convergence follows lines akin to those of the
conservative method, so the details are only sketched. In particular, the convergence rate for
this approach is shown to beO(hq)without any restrictions onq or themesh. In Sect. 3.4, fully
discrete schemes based on Implicit Runge–Kutta (IRK) time-stepping methods belonging to
the Gauss-Legendre family (cf. [21]) are put forward. The choice of this particular class of
methods is motivated by their excellent accuracy and stability properties. A special feature
of the stability for these methods allows us to show that when used in tandem with the
conservative form D, they yield fully discrete approximations (un, vn) for which Ω(un, vn)
is constant, which is to say, Ω(un+1, vn+1) = Ω(un, vn) at each time level n, up to roundoff
error.

In the last section, results of numerical experiments are reported. These include actual
convergence rates, behaviour of Ω as a function of time and an appraisal of the relative
performance of the conservative and dissipative methods over long time intervals.
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2 The Numerical Approximation

Details of the numerical approximations are now set forth. This begins with a discussion
of the spatial discretization which leads directly to a semi-discrete approximation of the
continuous problem.

2.1 TheMeshes

Let Th denote a partition of the real interval [0, 1] of the form 0 = x0 < x1 < · · · < xM = 1.
We will also say that Th is amesh on [0, 1]. The points xm are called nodeswhile the intervals
Im = [xm, xm+1] will be referred to as cells. The subscript h will connote the maximum
length of the cells Im,m = 0, . . . M−1. The notation x−

m = x+
m = xm will be useful in taking

account, respectively, of left- and right-hand limits of discontinuous functions. The caveat
followed throughout is that x−

0 = x−
M and x+

M = x+
0 corresponding to the underlying spatial

periodicity of the solutions being approximated.

2.2 Function Spaces

For a real interval I = [a1, a2], the Sobolev spaces Ws,p = Ws,p(I ), equipped with their
usual norms will appear frequently. When p = 2, we also use Hs = Hs(I ) to denote
Ws,2(I ). An unadorned norm ‖ · ‖ will always indicate the L2–norm on [0,1]. Use will
also be made of the so-called broken Sobolev spaces Ws,p(Th) that are defined as the finite
Cartesian products �I∈ThW

s,p(I ). Note that when sp > 1, the elements of Ws,p(Th) are
uniformly continuous when restricted to a given cell but may be discontinuous across nodes.
For the purpose of indicating these potential discontinuities, the following notation is used:
For v ∈ Hk(Th) = Wk,2(Th) with k ≥ 1, let v+

m and v−
m denote the right-hand and left-hand

limits, respectively, of v at the node xm . The jump [v]m of v at xm is v+
m − v−

m , whereas
the average {v}m of v at xm is 1

2 (v
+
m + v−

m ). These are standard notations in the context of
DG–methods. In all cases, the definitions are meant to adhere to the convention that v−

0 = v−
M

and v+
M = v+

0 which is tantamount to identifying x0 and xM .
For integer m ≥ 0, Cm[0, 1] is the classical space of functions that are, together with

derivatives of order up to m, continuous on [0, 1]. The periodic versions of these spaces,
namely

Cm
per [0, 1] = {v ∈ Cm[0, 1], v( j)(0) = v( j)(1), j = 0, . . . ,m},

will also arise. For m ≥ 1, set Hm
per (Th) = C0

per [0, 1] ∩ Hm(Th).
The following, basic embedding inequality (see [2]) will find frequent use. For Th a

partition, v ∈ H1(Th) and any cell I ∈ Th , there is a constant c which is independent of the
cell I such that

‖v‖L∞(I ) ≤ c
(
h−1/2
I ‖v‖L2(I ) + h1/2I ‖vx‖L2(I )

)
, (2.1)

where hI is the length of I . Indeed, the dependence of (2.1) on the value of hI is easily
ascertained by a simple scaling argument. Note that (2.1) may also be viewed as a trace
inequality.
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2.3 The Finite Element Spaces

The spatial approximations will be sought in the space of continuous and periodic piecewise
polynomial functions V q

h subordinate to the mesh Th , viz.

V q
h = {v ∈ C0

per [0, 1] : v
∣∣
Im

∈ Pq(Im), m = 0, . . . , M−1}

where Pq is the space of polynomials of degree q . The spaces V q
h are subspaces of Hm

per (Th)
for any m ≥ 1 and have well-known, local approximation and inverse properties which are
spelled out here for convenience (cf. [16]). Let q ≥ 2 be fixed and let i, j be such that
0 ≤ j ≤ i ≤ q + 1. Then, for any cell I and any v in W j,p(I ), there exists a χ ∈ Pq(I )
such that

|v − χ |W j,p(I ) ≤ chi− j
I |v|Wi,p(I ), p = 2,∞, (2.2)

where |v|W j,p(I ) denotes the top-order seminorm on the Sobolev space W j,p(I ) and the
constant c is independent of hI . The equally well-known inverse inequalities

|χ |W j,p(I ) ≤ ch
1
p − 1

2− j

I |χ |I , 0 ≤ j ≤ q + 1, p = 2,∞, (2.3)

for all χ ∈ Pq(I ) (see again [16]) will also find frequent use.

2.4 TheWeak Formulations

Theweak formulation of the problembeginswith consideration of the nonlinear terms in (1.1),
which are all of the form (uv)x . Keeping in mind that we will be working with continuous
periodic functions, it is natural to define the form N via integration by parts, viz.

N (u, v;χ) = −
∑
I∈Th

(uv, χx )I , u, v, χ ∈ H1(Th), (2.4)

where (·, ·)I denotes the L2 inner product over the cell I . The form N is actually a trilinear
form and is well-defined since H1(Th) is a Banach Algebra. It is also obviously symmetric in
its first two arguments. By virtue of the Riesz Representation Theorem, this form defines the
associated nonlinear operatorN : H1(Th)× H1(Th) → V q

h whose L2([0, 1])-inner product
with any χ ∈ Vq

h is

(N (u, v), χ) = −
∑
I∈Th

(uv, χx )I . (2.5)

Other properties of N are encapsulated in the following lemma.

Lemma 1 (i) The nonlinear form N defined by (2.4) is consistent in the sense that

N (u, v;χ) = ((uv)x , χ), u, v, χ ∈ H1
per (Th). (2.6)

(ii) For u, v ∈ H1
per (Th),

N (u, v; v) = 1

2

∑
I∈Th

(v2, ux )I . (2.7)
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Proof (i) Integration by parts yields

N (u, v;χ) =
∑
I∈Th

((uv)x , χ)I −
M−1∑
m=0

[uvχ]m = ((uv)x , χ),

since the jump terms vanish because of the assumed continuity and periodicity conditions.
(ii) Since u, v are continuous and periodic, integration by parts yields

N (u, v; v) = −1

2

∑
I∈Th

((v2)x , u)I = 1

2

∑
I∈Th

(v2, ux )I .

��
A simple but important consequence of periodicity is that the integral

∫ 1
0 (u2)xu dx van-

ishes for u ∈ C1
per [0, 1]. As a direct consequence of the above lemma, we see that the form

N preserves this property on H1
per (Th) and in particular on V q

h .

Corollary 1 The form N is conservative in the sense that

N (u, u; u) = 0, u ∈ H1
per (Th). (2.8)

Proof Let u ∈ H1
per (Th). Formula (2.4) implies that N (u, u; u) = −∑I∈Th

(u2, ux )I
whereas (2.7) shows that N (u, u; u) = 1

2

∑
I∈Th

(u2, ux )I . The result follows. ��
Attention is now turned to constructing a bilinear form to represent the third derivative

terms. It is similar in spirit to the form D introduced in [8] with the difference being that the
prevailing spaces are globally continuous. For u, χ ∈ H2(Th), define D by

D(u, χ) =
∑
I∈Th

(ux , χxx )I +
M−1∑
m=0

{ux }m[χx ]m . (2.9)

The next lemma delineates properties of D that justify the particular form chosen in (2.9).

Lemma 2 (i) The bilinear form D defined by (2.9) is consistent in the sense that

D(u, χ) = (uxxx , χ), u ∈ H3(Th) ∩ C2
per [0, 1], χ ∈ H2

per (Th). (2.10)

(ii) The form D is skew-adjoint so that

D(v, v) = 0 ∀v ∈ H2(Th). (2.11)

Proof (i) Integrating by parts twice yields

D(u, χ) =
∑
I∈Th

(uxxx , χ)I −
M−1∑
m=0

[uxχx ]m +
M−1∑
m=0

[uxxχ]m +
M−1∑
m=0

{ux }m[χx ]m .

Since uxx and χ are continuous and periodic, it follows that the jumps [uxxχ]m vanish.
The identity [uxχx ]m = {ux }m[χx ]m + [ux ]m{χx }m holds for u, χ ∈ H2(Th). Since the
jumps [ux ]m also vanish, the result follows.

(ii) To establish (2.11), note that vxvxx = 1
2 (v

2
x )x . Thus

∑
I∈Th

(vx , vxx )I = −1

2

M−1∑
m=0

[v2x ]m .

The result now follows from the observation that [v2x ]m = 2{vx }m[vx ]m . ��
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It will also be convenient to define the operator counterpart D : H2(Th) → Vq
h of the

bilinear form D(·, ·) via the requirement

(Du, χ) = D(u, χ), ∀χ ∈ V q
h .

The dissipative version

D̃(u, χ) =
∑
I∈Th

(ux , χxx )I +
M−1∑
m=0

ux (x
+
m )[χx ]m (2.12)

of the bilinear formDmay also be used to represent the third derivative terms. The following
lemma summarizes the properties of D̃ that are the counterparts of those of D shown in
Lemmas 1 and 2. The proofs are similar and therefore omitted.

Lemma 3 (i) The bilinear form D̃ defined in (2.12) is consistent in the sense that

D̃(u, χ) = (uxxx , χ), u ∈ H3(Th) ∩ C2
per [0, 1], χ ∈ H2

per (Th). (2.13)

(ii) The form D̃ is dissipative, which is to say,

D̃(v, v) = 1

2

M−1∑
m=0

[vx ]2m, v ∈ H2(Th). (2.14)

2.5 The Dispersive Projections

A conservative projection operator P : C1
per [0, 1] → V q

h adapted to the bilinear form D is
now constructed following the ideas in [8]. In contrast to [8], the range of this projection is
comprised of (globally) continuous, periodic functions.

For u in C1
per [0, 1], the projection of u is the function w = Pu in V q

h that satisfies the
conditions

(w, χ)I = (u, χ)I , ∀χ ∈ Pq−3(I ), I ∈ Th,
w(x+

m ) = u(x+
m ), m = 0, . . . , M − 1,

w(x−
m ) = u(x−

m ), m = 0, . . . , M − 1,
{wx }m = {ux }m, m = 0, . . . , M − 1.

(2.15)

Note that for q = 2 the first condition is vacuous. Also, since u and the elements of V q
h are

continuous and periodic, the second and third conditions can be equivalently expressed as
w(xm) = u(xm), m = 0, . . . , M . However there is no guarantee that such a projection will
be well defined. Indeed, due to the nonlocal nature of the fourth condition in (2.15), existence
will be shown only when certain conditions on q and M are satisfied.

When it exists, the operator P plays a central role in establishing error estimates for the
conservative, semi-discrete method and is adapted, as the next lemma shows, to the bilinear
form D.

Lemma 4 For u in C1
per [0, 1], if its projection w = Pu defined in (2.15) exists, then it

satisfies

D(w, χ) = D(u, χ), χ ∈ Vq
h . (2.16)
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Proof First, note that [uχxx ]m = [u]mχxx (x−
m ) + u+

m[χxx ]m . Since u is continuous and
periodic, the jumps [u]m are all zero. Because w+

m = u+
m and both u and w are continuous,

it transpires that

[uχxx ]m = u+
m[χxx ]m = w+

m [χxx ]m = [w]mχxx (x
−
m ) + w+

m [χxx ]m = [wχxx ]m .

In consequnce, upon integrating by parts the term
∑

I∈Th
(ux , χxx )I in (2.9), it follows at

once from the above identity and the definition of w that

D(u, χ) = −
∑
I∈Th

(u, χxxx )I −
M−1∑
m=0

[uχxx ]m +
M−1∑
m=0

{ux }m[χx ]m

= −
∑
I∈Th

(w, χxxx )I −
M−1∑
m=0

[wχxx ]m +
M−1∑
m=0

{wx }m[χx ]m .

A further integration by parts then yields

D(u, χ) =
∑
I∈Th

(wx , χxx )I +
M−1∑
m=0

{wx }m[χx ]m = D(w, χ).

The proof is complete. ��
Combining this result with (2.10), one sees that for u ∈ C3

per [0, 1]
Dw = P0uxxx , (2.17)

where P0 is the L2-projection operator into Vq
h .

Next a related projection operator P̃ : C1
per [0, 1] → V q

h is defined which is adapted

to the bilinear form D̃(·, ·). It will be used in the analysis of the dissipative semi-discrete
formulation. Interestingly, it also plays a role in the analysis of the projection P .

For u ∈ C1
per [0, 1], its projection w̃ = P̃u is defined by the conditions

(w̃, χ)I = (u, χ)I , ∀χ ∈ Pq−3(I ), I ∈ Th,
w̃(x+

m ) = u(x+
m ), m = 0, . . . , M − 1,

w̃(x−
m ) = u(x−

m ), m = 0, . . . , M − 1,
w̃x (x+

m ) = ux (x+
m ) m = 0, . . . , M − 1,

(2.18)

In contrast to (2.15), the conditions in (2.18) are entirely local to each cell. Hence, the proofs
of existence and uniqueness of this projection are straightforward. Furthermore, classical
finite element approximation theory (see again [16,18]) can be brought to bear to show that
w̃ is an optimal approximation to suitably regular u.

Proposition 1 The projection operator P̃ is well-defined for q ≥ 2. Furthermore, for any
element u ∈ Wq+1,p(Th) ∩ C1

per [0, 1], the optimal approximation properties

‖u − w̃‖W j,p(I ) ≤ chq+1− j
I |u|Wq+1,p(I ), I ∈ Th, j = 0, 1, p = 2,∞, (2.19)

obtain, where hI is the length of cell I and c is independent of u and I .

Proof The definition of P̃ is local to each cell and involves linear equations. Hence to prove
existence and uniqueness it suffices to show that u = 0 implies w̃ = 0.
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For � ≥ 0, let P�(t), be the usual Legendre polynomials that are orthogonal on [−1, 1],
normalized so that P�(1) = 1. Given a cell Im = [xm, xm+1], m = 0, . . . , M − 1, consider
the affine map

x = x(ξ) = hm
2

ξ + xm + xm+1

2
, −1 ≤ ξ ≤ 1, (2.20)

that maps [−1, 1] onto Im . The family of rescaled Legendre polynomials Pm,�(x) is defined
by Pm,�(x) = P�(ξ)where x and ξ are related by (2.20). The polynomials Pm,� are orthogonal
with respect to the L2-inner product on Im .

Let w̃m denote the restriction of w̃ to Im . It can be be expressed in terms of the rescaled
Legendre polynomials thusly;

w̃m(x) =
q∑

�=0

αm,�Pm,�(x) =
q∑

�=0

αm,�P�(ξ).

The first equation in (2.18) and the orthogonality of the Legendre polynomials imply that

αm,� = 0, � = 0, . . . , q − 3. (2.21)

Since P�(±1) = (±1)�, the second and third equations in (2.18) translate to

0 = w̃m(x+
m ) =

q∑
�=q−2

αm,�P�(−1) = (−1)q−2 (αm,q−2 − αm,q−1 + αm,q
)

0 = w̃m(x−
m+1) =

q∑
�=q−2

αm,�P�(1) = αm,q−2 + αm,q−1 + αm,q .

It follows from these two equations that

αm,q−1 = 0 and αm,q−2 + αm,q = 0. (2.22)

The fourth equation in (2.18) together with the well known identities P ′
�(±1) =

1
2 (±1)�−1�(� + 1), � = 0, . . . lead to

0 = w̃x (x
+
m ) =

q∑
�=q−2

αm,�P
′
m,�(x

+
m ) = 2

hm

q∑
�=q−2

αm,�P
′
�(−1) (2.23)

= 1

hm
(−1)q−3 ((q − 2)(q − 1)αm,q−2 − (q − 1)q αm,q−1 + q(q + 1)αm,q

)
.

Using the fact that αm,q−1 = 0 and the second equation in (2.22) together with the fact that
the values of (q−2)(q−1) and q(q+1) are never the same reveals that αm,q−2 = αm,q = 0.
Thus w̃ = 0 whenever u = 0, so the projection operator is indeed well-defined.

The arguments above show that P̃u = u whenever u belongs to V q
h . The approximation

properties (2.19) are established by an application of the Bramble-Hilbert Lemma. This
completes the proof. ��

Proposition 2 For even values of q, the projection operator P is not well defined in general.
On the other hand, it is well defined for odd values of q ≥ 3 provided the number M of cells
is also odd.
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Proof The machinery set up in the proof of Proposition 1 is applied to the difference w − w̃

rather than w. Existence, uniqueness and approximation properties of w will be deduced
from those that can be established for this difference.

Letting e denote the restriction of w − w̃ to Im , it follows from the first three equations
of (2.15) and (2.18) that (e, χ)Im = 0, χ ∈ Pq−3(I ) and e(x+

m ) = e(x−
m ) = 0. Expanding

in terms of the rescaled Legendre polynomials as before gives e = ∑q
�=0 αm,�Pm,�(x) =∑q

�=0 αm,�P�(ξ), and just as before, the analogs of (2.21) and (2.22) hold. Consequently,
there results

αm,� = 0, � = 0, . . . , q − 3, αm,q−1 = 0, αm,q−2 = −αm,q . (2.24)

On the other hand, from the fourth equations in (2.15) and (2.18), there obtains

{ex }m = 1

2

(
ux (xm) − w̃x (x

−
m )
) := ηm . (2.25)

This in turn translates into

ηm = 1

hm

q∑
�=0

αm,�P
′
�(−1) + 1

hm−1

q∑
�=0

αm−1,�P
′
�(1)

= (−1)q−3 ((q − 2)(q − 1)αm,q−2 − (q − 1)qαm,q−1 + q(q + 1)αm,q
)
/(2hm)

+ ((q − 2)(q − 1)αm−1,q−2 + (q − 1)qαm−1,q−1 + q(q + 1)αm−1,q
)
/(2hm−1),

using the fact that αm−1,� = αm,� = 0, � = 0, . . . , q − 3. This last result can be further
simplified since αm,q−1 = 0 and αm,q−2 = −αm,q . The upshot is that

ηm = (−1)q−3βm + βm−1, βm := (2q − 1)αm,q/hm, m = 0, . . . , M − 1 (2.26)

with the understanding that the indices are modulo M . This is a system of M linear equations
in the unknowns β0, . . . , βM−1 and the projection w is well defined if and only if the system
is uniquely solvable.

If q is even, the coefficient matrix of this linear system is circulant with first row
[−1, 0, . . . , 0, 1]. The nullspace of this matrix is the span of the vector (1, 1, . . . , 1); hence
the system (2.26) does not have a solution unless

∑M−1
m=0 ηm = 0, a property that cannot be

assumed to hold in general.
On the other hand, ifq is odd, thematrix is again circulant butwith first row [1, 0, . . . , 0, 1].

IfM is even, the nullspace of the coefficientmatrix is the span of the vector (1,−1, . . . , 1,−1)
and the matrix is again singular. However, it is invertible if M is odd and its inverse is also
circulant with first row 1

2 [1, 1,−1, 1, . . . , 1,−1]. To summarize, if q and M are odd, then

the coefficients {αm,q}M−1
m=0 are well defined and therefore so is e = w − w̃, which in turn

implies that w is well defined since w̃ is already uniquely defined. This completes the proof.
��

Proposition 3 Suppose the assumptions of Proposition 2 are satisfied so that the conservative
projection operator P is well defined. Then for u ∈ C1

per [0, 1] ∩ Wq+1,∞(Th), j = 0, 1 and
p = 2,∞, the following quasi-optimal approximation properties hold:

‖u − Pu‖W j,p(I ) ≤ ch
1+ 1

p − j

I

∑
J∈Th

hqJ‖u(q+1)‖L∞(J ). (2.27)
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Here, h J is the length of the interval J as before. If in addition the mesh Th is uniform and
u also belongs to Wq+2,∞(Th), the optimal approximation estimates

‖u − Pu‖W j,p(I ) ≤ ch
1
p +q+1− j‖u‖Wq+2,∞(0,1), (2.28)

are valid. Here, h is the uniform length of the intervals comprising the mesh.

Proof The approximation properties of w will follow from those of w̃ displayed in (2.19) by
finding suitable bounds for e = w − w̃. As seen in the proof of Proposition 2, for q and M
odd, the system exhibited in (2.26) is uniquely solvable and yields

βm = 1

2

⎛
⎜⎝ηm +

M−1
2∑

k=1

(ηm+2k−1 − ηm+2k)

⎞
⎟⎠ , m = 0, . . . , M − 1, (2.29)

where the indices in the sum are all read modulo M .
Recall that αm,� = 0, � = 0, . . . , q − 3, αm,q−1 = 0 and αm,q−2 = −αm,q . From the

orthogonality of the Pm,� and the well-known fact that ‖Pm,�‖2Im = hm/(2� + 1), it follows
that

‖e‖2Im =
q∑

�=0

α2
m,�‖Pm,�‖2Im = 4q − 2

(2q − 3)(2q + 1)
hmα2

m,q . (2.30)

It is clear from the inequalities in (2.19) that

|η�| = |ux (x�) − w̃x (x
−
� )| ≤ chq�−1‖u(q+1)‖L∞(I�−1), � = 0, . . . , M − 1.

(Keep in mind that the indices � are all taken modulo M .) Hence, it follows from (2.29),
ignoring for the time being the alternating signs, that

|αm,q | = hm
2q − 1

|βm | ≤ chm
∑
J∈Th

hqJ‖u(q+1)‖L∞(J ). (2.31)

Combining this with (2.30) gives

‖e‖I ≤ ch3/2I

∑
J∈Th

hqJ‖u(q+1)‖L∞(J ). (2.32)

Since u − w = u − w̃ − e, (2.19) and (2.32) lead to (2.27) with p = 2, j = 0. Moreover,
using (2.32) and the inequalities (2.1) and (2.3) applied to e together with (2.19) gives (2.27)
for the remaining cases p = ∞, j = 0, 1 and p = 2, j = 1.

The estimate (2.27) can be improved by exploiting the alternating signs in (2.29). Indeed,
the techniques appearing in the proof of Proposition 3.2 of [8], show that

η� = hq�−1

q−1∑
j=0

ρ j u
(q+1)(ζ�−1, j ), ζ�−1, j ∈ I�−1, (2.33)

where ρ j , j = 0, . . . , q − 1 depend only on q . If h� = h, then (2.33) and the Mean-Value
Theorem can be used to extract an extra power of h, viz.

|η� − η�+1| = hq
q−1∑
j=0

|ρ j |
∣∣∣u(q+1)(ζ�−1, j ) − u(q+1)(ζ�, j )

∣∣∣
≤ chq+1‖u(q+2)‖L∞(I�−1∪I�).

(2.34)
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The proof of (2.28) follows as before. ��

Remark 1 Commentary is in order concerning the conditions imposed in Propositions 2 and
3.

(i) It should be emphasized that the condition that both q and M are odd pertains only
to the existence and approximation properties of the conservative projection operator.
The conservative semi-discrete approximation (3.1) is well defined, independently of
this assumption.

(ii) Obviously, there is no problem with creating meshes Th with an odd number M of
cells. Moreover, this property is easily preserved in a process of repeated refinement or
coarsening at later times in the temporal integration. Numerical experiments indicate
that the convergence rates are the same, whether or not the mesh possesses an odd
number of cells and so we have tentatively concluded that this restriction is simply an
artifact of our proof, which relies upon the projection.

(iii) With h = max hI , using the fact that
∑

J∈Th
h J = 1, it follows from (2.27) that

‖u − w‖ ≤ chq‖u‖Wq+1,∞(0,1), (2.35)

which is quasi-optimal. Similarly, if the mesh is uniform, the estimate (2.28) leads to
the optimal bound

‖u − w‖ ≤ chq+1‖u‖Wq+2,∞(0,1). (2.36)

Note that the characterization of optimality refers to the exponent of h and not the
regularity required of u. Henceforth, we shall write ‖u − w‖ ≤ chμ with μ = q + 1 or
q (depending on whether the mesh is uniform or not), omitting the dependence of c on
u.

3 The Semi-Discrete Approximations: Existence, Uniqueness and Error
Estimates

3.1 The Conservative Semi-Discrete Formulation

The stage is set for defining the semi-discrete approximation to solutions of the system (1.1).
For a given partition Th , let uh, vh in V q

h × [0, T ] be the solutions of the coupled system
[
uht
vht

]
+
[
A B C
D E F

]⎡⎣N (uh, uh)
N (uh, vh)
N (vh, vh)

⎤
⎦+

[
Duh
Dvh

]
=
[
0
0

]
, (3.1)

of first-order in time operator equations with initial data u0h, v
0
h ∈ V q

h . The initial data will
of course be a suitable approximation of initial data u0, v0 for (1.1) (see Theorem 3.2).

Expanding uh and vh in terms of a basis for the finite-dimensional space V q
h , it is readily

seen that (3.1) is equivalent to an initial-value problem for a system of ordinary differential
equations of the form (Ut , Vt ) = F(U , V ) where F is quadratic and so locally Lipschitz
continuous. It is then immediate that this system has existence and uniqueness of a solution
corresponding to given initial data u0h, v

0
h , at least locally in time.

The following lemma is central to our development.
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Lemma 5 Let (a, b, c) be a non-trivial solution of the system (1.4). If u, v ∈ V q
h , the following

identity holds

I(u, v) :=
∫ 1

0
[2au + bv bu + 2cv]

[
A B C
D E F

]⎡⎣N (u, u)

N (u, v)

N (v, v)

⎤
⎦ = 0 (3.2)

Proof In detail, I(u, v) is written as

I(u, v) = 2aAN (u, u; u) + bAN (u, u, v) + 2aBN (u, v; u) + bBN (u, v; v)

+ 2aCN (v, v; u) + bCN (v, v; v) + bDN (u, u; u) + 2cDN (u, u; v)

+ bEN (u, v; u) + 2cEN (u, v; v) + bFN (v, v; u) + 2cFN (v, v; v).

The four terms of the form N (w,w;w) all vanish on account of (2.8). For the remaining
terms, the elementary relations

N (u, u; v) = −2N (u, v; u) and N (v, v; u) = −2N (u, v; v)

lead to the formula

I(u, v) = N (u, v; u)
[
2Ba + (E − 2A)b − 4Dc

]
+ N (u, v; v)

[
− 4Ca + (B − 2F)b + 2Ec

]
.

The fact that (a, b, c) is a solution to (1.4) thus implies that I(u, v) = 0 and concludes the
proof. ��

Theorem 3.1 Suppose (a, b, c) is a solution of the system (1.4). Let (uh, vh) be a solution
pair of (3.1). Then the quantity Ω(uh, vh) is time independent. Furthermore, if b2 < 4ac,
the solution is global in time and uniformly bounded.

Proof Multiply the first equation in (3.1) by 2auh + bvh , the second equation by buh + 2cvh
and integrate the sum of these over the the period domain [0, 1]. The result is

d

dt
Ω(uh, vh) + I(uh, vh) + 2aD(uh, uh) + b (D(uh, vh) + D(vh, uh))

+ 2cD(vh, vh) = 0. (3.3)

Lemma 5 reveals that I(uh, vh) = 0. The skew-symmetry of D implies that D(uh, uh),
D(vh, vh) and D(uh, vh) + D(vh, uh) vanish. Therefore,

d

dt
Ω(uh, vh) = 0, (3.4)

whence Ω(uh, vh) is time independent.
If b2 < 4ac then there is a positive constant σ such that σ

∫ 1
0 (u2h + v2h)dx ≤ Ω(uh, vh)

and hence both ‖uh‖ and ‖vh‖ remain bounded as long as the solution exists. In view of
the equivalence of norms on the finite-dimensional space V q

h , ‖uh‖∞ and ‖vh‖∞ and conse-
quently the components ofU and V are also uniformly bounded as long as the solution exists.
This conclusion allows the local existence theory made via Picard iteration to be continued
indefinitely, leading to a global solution which is necessarily uniformly bounded in time. ��
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3.2 Error Estimates for the Conservative Semi-Discrete Approximation

A preliminary observation is helpful. Let u and v be smooth and periodic solutions of the
system (1.1). In view of the consistency of the form N shown in (2.6) (equivalently that of
the operatorN ), it follows thatN (u, u) = P0((u2)x ), N (u, v) = P0((uv)x ) andN (v, v) =
P0((v2)x ) where P0 is the L2-projection onto V q

h as before. Since D is similarly consistent
[see (2.10)],Du = P0uxxx , Dv = P0vxxx . By applying P0 to the system (1.1), there obtains

[
P0ut
P0vt

]
+
[
A B C
D E F

]⎡⎣N (u, u)

N (u, v)

N (v, v)

⎤
⎦+

[
Du
Dv

]
=
[
0
0

]
. (3.5)

The strategy is to make a comparison of uh, vh with the projections w(u) := Pu, w(v) :=
Pv of u and v, respectively, as defined via (2.15). Consider the new quantities

ζ (u) = uh − w(u), ζ (v) = vh − w(v), η(u) = u − w(u), η(v) = v − w(v).

Replace Du by Dw(u) and Dv by Dw(v) in (3.5) using lemma 4 and then subtract the result
from (3.1). There emerges the error equation

[
ζ

(u)
t

ζ
(v)
t

]
+
[
A B C
D E F

]⎡⎣N (uh, uh) − N (w(u), w(u))

N (uh, vh) − N (w(u), w(v))

N (vh, vh) − N (w(v), w(v))

⎤
⎦+

[
Dζ (u)

Dζ (v)

]

=
[
P0η

(u)
t

P0η
(v)
t

]
+
[
A B C
D E F

]⎡⎣N (u, u) − N (w(u), w(u))

N (u, v) − N (w(u), w(v))

N (v, v) − N (w(v), w(v))

⎤
⎦ ,

where (w
(u)
t , w

(v)
t ) has been subtracted from both sides. This system is written as Qt +Q1 +

Q2 = Q3 + Q4 for convenience.
As in the proof of Lemma 5, multiply the latter system from the left by the vector Q̃(t) =

[2aζ (u) + bζ (v) bζ (u) + 2cζ (v)] and integrate over [0, 1] to derive

∫ 1

0
Q̃Qt dx = d

dt
Ω(ζ (u), ζ (v)). (3.6)

A previous calculation shows that

∫ 1

0
Q̃Q2 dx=2aD(ζ (u), ζ (u)) + b

(
D(ζ (u), ζ (v))+D(ζ (v), ζ (u))

)
+2cD(ζ (v), ζ (v)) = 0.

(3.7)

Applying the identities

N (uh, uh) − N (w(u), w(u)) = N (ζ (u), ζ (u)) + 2N (w(u), ζ (u))

N (uh, vh) − N (w(u), w(v)) = N (ζ (u), ζ (v)) + N (w(v), ζ (u)) + N (w(u), ζ (v))

N (vh, vh) − N (w(v), w(v)) = N (ζ (v), ζ (v)) + 2N (w(v), ζ (v)), (3.8)
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allows the conclusion∫ 1

0
Q̃Q1 dx = I(ζ (u), ζ (v))

+N (w(u), ζ (u); ζ (u))(4Aa + 2Db) + N (w(v), ζ (u); ζ (u))(2Ba + Eb)

+N (w(u), ζ (v); ζ (v))(Bb + 2Ec) + N (w(v), ζ (v); ζ (v))(2Cb + 4Fc)

+N (w(u), ζ (v); ζ (u))(2Ba + Eb) + N (w(u), ζ (u); ζ (v))(2Ab + 4Dc)

+N (w(v), ζ (v); ζ (u))(4Ca + 2Fb) + N (w(v), ζ (u); ζ (v))(Bb + 2Ec).

(3.9)

On account of Lemma 5, I(ζ (u), ζ (v)) = 0. Let Q1,1 denote the first four of the last eight
terms in (3.9). Formula (2.7) permits this to be rewritten as

Q1,1 = (2Aa + Db)
∑
I∈Th

(
(ζ (u))2, w(u)

x

)
I
+ (Ba + Eb/2)

∑
I∈Th

(
(ζ (u))2, w(v)

x

)
I

+ (Bb/2 + Ec)
∑
I∈Th

(
(ζ (v))2, w(u)

x

)
I
+ (Cb + 2Fc

) ∑
I∈Th

(
(ζ (v))2, w(v)

x

)
I
.

Now it results from (2.27) with p = ∞, j = 1 that if h = max hI , then

‖w(u)
x ‖L∞(I ) + ‖w(v)

x ‖L∞(I ) ≤ c
∑
J∈Th

hqJ

(
‖u(q+1)‖L∞(J ) + ‖v(q+1)‖L∞(J )

)

≤ chq−1
(
‖u(q+1)‖L∞(0,1) + ‖v(q+1)‖L∞(0,1)

) ∑
J∈Th

h J .

Since
∑

J∈Th
h J = 1, it follows that

‖w(u)
x ‖L∞(I ) + ‖w(v)

x ‖L∞(I ) ≤ c. (3.10)

This in turn leads to the bound∣∣Q1,1
∣∣ ≤ c

(
‖ζ (u)‖2 + ‖ζ (v)‖2

)
. (3.11)

In handling the next two terms, which are denoted by Q1,2, it is crucial that 2Ba + Eb =
2Ab + 4Dc, a fact that flows from the first equation in (1.4). Because of this relation,

Q1,2 = −(2Ba + Eb)
∑
I∈Th

((
w(u)ζ (v), ζ (u)

x

)
I
+
(
w(u)ζ (u), ζ (v)

x

)
I

)

= (2Ba + Eb)
∑
I∈Th

(
w(u)
x , ζ (u)ζ (v)

)
I
.

In view of (3.10), it is concluded that∣∣Q1,2
∣∣ ≤ c‖ζ (u)‖‖ζ (v)‖ ≤ c

2

(
‖ζ (u)‖2 + ‖ζ (v)‖2

)
. (3.12)

It is also the case that 4Ca + 2Fb = Bb + 2Ec, so that if Q1,3 denotes the final two terms
in (3.9), then

Q1,3 = −(4Ca + 2Fb)
∑
I∈Th

((
w(v)ζ (v), ζ (u)

x

)
I + (w(v)ζ (u), ζ (v)

x

)
I

)

= (4Ca + 2Fb)
∑
I∈Th

(
w(v)
x , ζ (u)ζ (v)

)
I .
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Consequently, the inequality∣∣Q1,3
∣∣ ≤ c‖ζ (u)‖‖ζ (v)‖ ≤ c

2

(‖ζ (u)‖2 + ‖ζ (v)‖2) (3.13)

may be extracted. Combining (3.11), (3.12) and (3.13) yields∫ 1

0
Q̃Q1 dx ≤ c

(‖ζ (u)‖2 + ‖ζ (v)‖2). (3.14)

Next consider the term
∫ 1
0 Q̃Q3 dx . Since the time derivative commutes with P , it tran-

spires that∣∣∣∣
∫ 1

0
Q̃Q3 dx

∣∣∣∣ ≤ chμ
(
‖ut‖Wμ+1,∞(0,1) + ‖vt‖Wμ+1,∞(0,1)

)(
‖ζ (u)‖ + ‖ζ (v)‖

)
(3.15)

(see Proposition 3 and part (iii) of Remark 1 following its proof). It remains to estimate the
term

∫ 1
0 Q̃Q4 dx . Integration by parts yields

∫ 1

0
Q̃Q4 dx=

∑
α,β,γ

∑
I∈Th

(
c1α,β,γ

(
η(α)η(β)

x , ζ (γ )
)
I +c2α,β,γ

(
ω(α)η(β)

x , ζ (γ )
)
I +c3α,β,γ

(
ω(α)
x η(β), ζ (γ )

)
I

)

where each of the indices α, β, γ can be u or v and ciα,β,γ are constants depending on
A, . . . , F as well as a, b, c. Unfortunately the cancellations that occurred in the estimation
of
∫ 1
0 Q̃Q1dx do not appear here and as will be seen, the terms in the second sum will cause

a loss of one power of h.
Using (3.27) and (3.28) with p = ∞, j = 0, 1, it follows that

‖η(β)‖L∞(I ) ≤ chμ and ‖η(β)
x ‖L∞(I ) ≤ chμ−1. (3.16)

Since ‖w(α)‖L∞(I ) and ‖w(α)
x ‖L∞(I ) are bounded, it is deduced that∫ 1

0
Q̃Q4 dx ≤ chu−1

(
‖ζ (u)‖ + ‖ζ (ν)‖

)
. (3.17)

The pieces above are now assembled to establish the convergence of the conservative
semi-discrete approximations.

Theorem 3.2 Suppose the solutions u, v of the system (1.1) are sufficiently smooth and peri-
odic. Assume also that the relation b2 < 4ac holds. Then for initial data u0h, v0h that are
O(hq) approximations of u(·, 0), v(·, 0), respectively, the error bound

‖u(t) − uh(t)‖ + ‖v(t) − vh(t)‖ ≤ cect hq−1 (3.18)

holds for the conservative semi-discrete approximations. If the mesh is uniform, then the
bound on the right side is replaced by cect hq .

Proof Gathering (3.6), (3.7) and (3.14)–(3.17) gives the inequality

d

dt
Ω(ζ (u)(t), ζ (v)(t)) ≤ ch2μ−2 + c

(‖ζ (u)‖2 + ‖ζ (v)‖2). (3.19)

As seen before, b2 < 4ac implies that

σ
(‖ζ (u)‖2 + ‖ζ (v)‖2) ≤ Ω(ζ (u), ζ (v)). (3.20)
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Hence an application of Gronwall’s inequality to (3.19) yields

Ω(ζ (u)(t), ζ (v)(t)) ≤ cect h2μ−2Ω(ζ (u)(0), ζ (v)(0)). (3.21)

Another application of (3.20) and the triangle inequality gives the bound (3.18). Finally,
recall that μ = q + 1 when the mesh is uniform. This gives the O(hq) error bound and
concludes the proof. ��

Remark 2 It is worth emphasizing the role played by the fact that the constants a, b and c
satisfy (1.4). This is precisely what allowed the quantities Q1,2 and Q1,3 to be written in
a form that ultimately resulted in the estimates (3.12) and (3.13) being expressed solely in
terms of the L2-norms of ζ (u) and ζ (v).

3.3 The Dissipative Formulation

The dissipative formulation is obtained by using the operator D̃ instead of D in (3.1). The
analysis of this method follows closely that of the conservative one and so we content our-
selves with highlighting the minor differences.

As far as the existence and uniqueness of the approximations ũh, ṽh are concerned, (3.3)
still holds and I(ũh, ṽh) vanishes also since the nonlinear forms are identical for both meth-
ods. Furthermore, using the identity [ũhx ṽhx ]m = ũhx (x+

m )[ṽhx ]m + ṽhx (x−
m )[ũhx ]m , it is

seen that D̃(ũh, ṽh) + D̃(ṽh, ũh) = ∑M−1
m=0 [ũhx ]m[ṽhx ]m . Combining this with (2.14) leads

to

d

dt
Ω(ũh, ṽh) +

M−1∑
m=0

(
a[ũhx ]2m + b[ũhx ]m[ṽhx ]m + c[ṽhx ]2m

) = 0.

The condition b2 < 4ac implies that the sum appearing above is nonnegative. In fact
it is bounded from below by σ

∑M−1
m=0

([ũhx ]2m + [ṽhx ]2m
)
. It is therefore the case that

d
dt Ω(ũh, ṽh) ≤ 0 which means that Ω(ũh, ṽh) is bounded for all time by its value at t = 0.
This indeed motivates calling this method dissipative. The global existence and uniqueness
of ũh, ṽh follow as before.

The error estimates for the dissipative method can be established using the same approach
followed for the conservative method. The major difference is that ũh and ṽh are now com-
pared to w̃(u) and w̃(v), respectively. The optimal, local estimates (2.19) are used, together
with the bounds on w̃(u), w̃

(u)
x , w̃(v), w̃

(v)
x in the L∞-norm. Note that the latter hold without

any quasi uniformity restrictions on the mesh. One power of h is still lost due to the nonlinear
terms.

Theorem 3.3 Suppose the solution (u, v) of the system (1.1) is sufficiently smooth and that
the relation b2 < 4ac holds. Then for initial data ũ0h, ṽ0h that are O(hq) approximations to
u(·, 0), v(·, 0), respectively, the error bound
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‖u(t) − ũh(t)‖ + ‖v(t) − ṽh(t)‖ ≤ cect hq . (3.22)

is valid for the dissipative, semi-discrete approximations.

3.4 The Fully Discrete Approximations

In this subsection, consideration is given to adding time-stepping to the semi-discrete scheme
studied above. It will turn out that a good choice of the time-stepping, namely the implicit
Runge–Kutta (IRK) methods belonging to the Gauss–Legendre family results in a fully
discrete scheme that continues to preserve the functional Ω , up to roundoff error of course.

Let 0 = t0 < t1 < · · · < t N = T be a partition of the temporal interval [0, T ] with
tn = nκ, n = 0, . . . , N where κ is the stepsize. The IRK methods are specified by an
s × s matrix A = (ai j ), an s-vector τ = {τ1, . . . , τs} of temporal interpolation nodes and an
s-vectorw = {w1, . . . , ws} of weights. These are often represented in tableau form, A|τ

w| . For
the initial-value problem of an ordinary differential equation y′ = f (t, y), the discrete time-
stepping is given by the mapping yn → yn+1 with yn+1 = yn +κ

∑s
i=1 wi f (tn +κτi , yn,i )

where the s intermediate values
{
yn,i
}s
i=1 are solutions of the system

yn,i = yn + κ

s∑
j=1

ai j f (t
n + κτ j , y

n, j ), i = 1, . . . , s.

Certain classes of IRK methods possess a particularly strong type of stability, namely that
of algebraic stability, viz.

wi ≥ 0, i = 1, . . . , s, (3.23)

the s × s matrix mi j := ai jwi + a jiw j − wiw j is positive semidefinite.

Two classes of IRK schemes with this property are the Radau-IIA and Gauss-Legendre
methods. For the latter, the matrix M in (3.23) vanishes identically. It is precisely this feature
that imparts them with the conservation properties that are sought here. The next table shows
the first three members of the Gauss-Legendre family, corresponding to s = 1, 2 and 3
(Table 1).

For problems with smooth solutions the order of accuracy is 2s. The first two methods
are used in the numerical experiments reported in Sect. 4. They are referred to as RK1 and
RK2, respectively.

The fully discrete method that arises from using an IRK method to approximate solutions
of the semi-discrete formulation (3.1) of our systems is as follows:

Table 1 Gauss–Legendre Implicit Runge–Kutta methods: s = 1, 2, 3
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un+1 = un − κ

s∑
i=1

wi f
i
u , un,i = un − κ

s∑
j=1

ai j f
j
u , i = 1, . . . , s, (3.24)

vn+1 = vn − κ

s∑
i=1

wi f
i
v , vn,i = vn − κ

s∑
j=1

ai j f
j

v , i = 1, . . . , s (3.25)

where the quantities f j
u , f j

v given by

[
f iu
f iv

]
=
[
A B C
D E F

]⎡⎣N (un,i , un,i )

N (un,i , vn,i )

N (vn,i , vn,i )

⎤
⎦+

[
Dun,i

Dvn,i

]
(3.26)

are introduced to simplify the notation.

Theorem 3.4 The fully discrete scheme using the conservative spatial formulation together
with the Gauss–Legendre IRK methods has the property that

Ω(un+1, vn+1) = Ω(un, vn), n ≥ 0. (3.27)

That is, the continuous invariant Ω , when evaluated on discrete approximations is time-step
independent.

Proof From (3.24), it is seen that

(un+1)2 = (un)2 − 2κ
s∑

j=1

w j u
n f j

u + κ2
s∑

i, j=1

wiw j f
i
u f j

u

= (un)2 − 2κ
s∑

j=1

w j

(
un, j + κ

s∑
i=1

a ji f
i
u

)
f j
u + κ2

s∑
i, j=1

wiw j f
i
u f j

u

= (un)2 − 2κ
s∑

j=1

w j u
n, j f j

u − κ2
s∑

i, j=1

mi j f
i
u f j

u

= (un)2 − 2κ
s∑

j=1

w j u
n, j f j

u ,

(3.28)

where the last identity reflects the vanishing of the array elementsmi j for the Gauss-Legendre
IRK methods. By entirely similar calculations, there appears

(vn+1)2 = (vn)2 − 2κ
s∑

j=1

w jv
n, j f j

v

un+1vn+1 = unvn − κ

s∑
j=1

w j u
n, j f j

v − κ

s∑
j=1

w jv
n, j f j

u . (3.29)

Multiply (3.28) by a, the first equation of (3.29) by c and the second equation in (3.29) by
b, sum the results and integrate over [0, 1]. These calculations, which are almost identical to
those seen in the proofs of Lemma 5 and Theorem 3.1 show that
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Ω(un+1, vn+1) = Ω(un, vn) − κ

s∑
j=1

w j

(
2a( f j

u , un, j ) + b( f j
u , vn, j )

+ b( f j
v , un, j ) + 2c( f j

v , vn, j )
)

= Ω(un, vn)−κ

s∑
j=1

w j

(
I(un, j , vn, j ) + 2aD(un, j , un, j ) + b

(
D(un, j , vn, j )

+D(vn, j , un, j )
)+ 2cD(vn, j , vn, j )

)
. (3.30)

In particular, it emerged from those previous proofs that

I(un, j , vn, j ) = D(un, j , un, j ) = D(un, j , vn, j ) + D(vn, j , un, j ) = D(vn, j , vn, j ) = 0. (3.31)

These identities, when used in (3.30), establish the temporal conservation property (3.27) of
the fully discrete schemes. ��

Remark 3 In the dissipative spatial formulation that uses the form D̃ instead ofD, we still have
I(un, j , vn, j ) = 0. However, the remaining terms in (3.31) do not vanish. Instead, it can be
shown that the quantity 2aD̃(un, j , un, j )+b

(
D̃(un, j , vn, j )+D̃(vn, j , un, j )

)+2cD̃(vn, j , vn, j )

appearing in (3.30) is equal to
∑M−1

m=0

(
a[un, j

x ]2m + b[un, j
x ]m[vn, j

x ]m + c[vn, j
x ]2m

)
. Since

we are operating under the assumption that 4ac − b2 > 0, the latter sum is greater than

σ
∑M−1

m=0

(
[un, j

x ]2m + [vn, j
x ]2m

)
, for some positive σ , and is therefore nonnegative. In view of

this, the nonnegativity of κ and the weights w j , the inequality Ω(un+1, vn+1) ≤ Ω(un, vn)
obtains for the dissipative formulation.

Remark 4 For other algebraically stable IRK methods, the fully discrete approximations
will no longer enjoy the conservation property (3.27) that obtains for those generated by the
Gauss–Legendremethods. On the other hand, it is clear from the proof above that the stability
result Ω(un+1, vn+1) ≤ Ω(un, vn) will replace (3.27).

4 Numerical Experiments

4.1 The Test Cases

To adapt the experiments to the interval [0, 1], the third derivative terms in (1.1) aremultiplied
by a small parameter ε to be specified shortly. The parameters A, . . . , F are taken to be

A = 1

8
, B = 1

8
, C = 1

32
, D = 1

8
, E = 1, F = − 9

32
. (4.1)

These choices result in a = 118
17 , b = − 28

17 and c = 1, which in turn yields the positive
discriminant 4ac − b2 = 7240

289 .
To check the accuracy and convergence rates, two types of solutions of (1.1) were used.

These are both proportional traveling waves of the form (u, v) = (u, 2u). The first is adapted
from the well-known cnoidal-wave solution of the KdV equation,

u(x, t) = λ cn2
(
4K (m)(x − ωt − x0) : m) (4.2)
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where cn(z) = cn(z : m) is the Jacobi elliptic function with modulus m ∈ (0, 1) (see [1])
and the parameters have the values m = 0.9, λ = 192mεK (m)2, ω = 64ε(2m − 1)K (m)2,
ε = 1

576 whilst x0 = 1
2 centers the initial value in the middle of the interval. Here, the

function K = K (m) is the complete elliptic integral of the first kind and the parameters are
so organized that u and v have spatial period 1.

The second class of solutions is an approximation of the proportional solitary-wave solu-
tions that were discussed in Sect. 1.1. The parameters A, B, . . . , F are the same as for the
cnoidal-wave type solutions, and it is still the case that (u, v) = (u, 2u), but now

u(x, t) = � sech2
(
K (x − ωt − x0)

)
, (4.3)

with � = 1, ω = �/3, ε = 1
5760 , K = 1

2

√
�
3ε and x0 = 1

2 to again center the initial wave
profile. With v = 2u, this is an exact solution of the system which is manifestly not periodic
in space. Owing to its symmetry about its crest and its exponential decay away from the crest,
the initial data can be rendered periodic by simply restricting the above solution at t = 0 to
the computational domain [0, 1] and imposing periodic boundary conditions across x = 0
and x = 1. The resulting periodicized initial data yields a periodic solution of the system. It
is known from previous theory that the resulting solution is approximated to within order ε

by the restriction of (u, 2u) to the period domain [0, 1] over a time interval of order 1
ε
(c.f.

[5] and [17]). The small value of ε used in the experiments with proportional solitary waves
thus yields a solution, the accuracy of whose numerical approximation can be determined by
comparison with the exact solution (u, 2u) with u as in (4.3). Much of the numerical work
on the KdV equation has made use of this small trick to check for accuracy and convergence,
especially when issues surrounding solitary waves are under consideration.

4.2 Spatial Convergence Rates

A set of experiments was designed to measure the spatial convergence rates of our schemes.
In particular, we wanted to assess the extent of agreement of what is observed empirically
with the theoretical predictions made earlier. Of course, there is always interest in the asymp-
totic constants whose existence is suggested by the error estimates. (There is a considerable
practical difference between a scheme that throws up an error of 102h2, say, and one whose
error looks like 10−2h2.) But, especial interest is also focused on discovering whether the
parity of q has a significant impact on the convergence rates for the conservative formulation
(see the discussion in Sect. 3).

Tables 2, 3, 4 and 5 correspond to q = 2, 3, 4 and 5. They show, respectively, the results
obtained with uniform meshes of M cells for both conservative and dissipative methods and
for the cnoidal and solitary-wave solutions just described. The time step κ was taken as 10−5

in Tables 2, 3 and 4, whilst in Table 5, the results pertaining to several different time steps
are displayed. The L2-norms of the errors are shown only for u. Since v is proportional to u,
it is not surprising that the errors for v appear to be proportional to those for u.

Before engaging in a discussion of the results displayed in Tables 2, 3, 4 and 5, it is worth
remarking that the determination of convergence rates is somewhat delicate, especially for
the larger values of q . This is due to the very small errors achieved even for relatively small
numbers M of spatial intervals. The errors are sufficiently small that the effects of roundoff,
which are very difficult to estimate precisely, cannot be ignored and may affect the rates.

For q = 2 Table 2 shows clearly convergence rates of 2 and 3 for the conservative and
dissipative methods, respectively, for both the cnoidal and solitary wave solutions. For q = 4,
the rates shown in Table 4, while less definitive, seem to indicate a similar reduction of order
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Table 2 q = 2, T = 1, κ =
10−5, RK1

Conservative Dissipative

M L2 error Rate L2 error Rate

(a) Cnoidal solution

10 3.27 × 10−1 – 4.02 × 10−1 –

20 9.90 × 10−2 1.73 1.12 × 10−2 1.84

40 2.58 × 10−2 1.94 1.71 × 10−2 2.71

80 6.52 × 10−3 1.99 2.20 × 10−3 2.96

160 1.64 × 10−3 1.99 2.74 × 10−4 3.00

320 4.09 × 10−4 2.00 3.41 × 10−5 3.01

(b) Solitary-wave solution

10 1.41 × 10−1 – 2.32 × 10−1 –

20 5.96 × 10−2 1.24 1.07 × 10−1 1.12

40 1.90 × 10−2 1.65 3.86 × 10−2 1.47

80 5.19 × 10−3 1.88 6.24 × 10−3 2.63

160 1.32 × 10−3 1.97 8.14 × 10−4 2.94

320 3.32 × 10−4 2.00 1.02 × 10−4 3.00

Table 3 q = 3, T = 1, κ =
10−5, RK2

Conservative Dissipative

M L2 error Rate L2 error Rate

(a) Cnoidal solution

40 2.81 × 10−5 – 1.05 × 10−4 –

80 1.23 × 10−6 4.51 3.70 × 10−6 4.83

160 7.28 × 10−8 4.08 1.56 × 10−7 4.57

320 4.50 × 10−9 4.02 8.75 × 10−9 4.15

(b) Solitary-wave solution

40 2.55 × 10−3 – 1.27 × 10−3 –

80 1.01 × 10−5 7.98 4.48 × 10−5 4.82

160 4.65 × 10−7 4.43 1.52 × 10−6 4.88

320 2.42 × 10−8 4.27 5.82 × 10−8 4.71

for the conservative method. For the odd values q = 3 and q = 5, the rates appear to be q+1
for both methods. One noticeable exception is in Table 5(b) where we see the rates of 3.62
and 8.41 for the conservative method. However, using the errors at M = 25 and M = 100,
we obtain the robust rate of 6.02.

As far as the conservative method is concerned, the data strongly indicates order reduction
by one for even q . On the other hand the parity of the number of cells appeared to be immate-
rial. Concerning the order reduction of one due to the nonlinear terms seen in Theorems 3.2
and 3.3 affecting both methods, it can be reasonably concluded that this is an artifact of the
proof. If indeed it does not owe to a fundamental phenomenon, an interesting open problem
is highlighted.
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Table 4 q = 4, T = 1,
κ = 10−5, RK2

Conservative Dissipative

M L2 error Rate L2 error Rate

(a) Cnoidal solution

10 5.21 × 10−3 – 4.92 × 10−3 –

20 5.43 × 10−5 6.58 6.66 × 10−5 6.21

40 3.46 × 10−6 3.97 1.29 × 10−6 5.69

80 1.59 × 10−7 4.44 3.83 × 10−8 5.07

120 2.99 × 10−8 4.12 5.04 × 10−9 5.00

(b) Solitary-wave solution

10 3.76 × 10−2 – 4.82 × 10−2 –

20 2.51 × 10−3 3.90 2.23 × 10−3 4.43

40 1.78 × 10−5 7.13 2.90 × 10−5 6.26

80 1.09 × 10−6 4.03 4.81 × 10−7 5.91

120 1.72 × 10−7 4.55 5.78 × 10−8 5.06

Table 5 q = 5, T = 1,
κ = 1/160, 1/1280, 1/10240,
RK1

Conservative Dissipative

M L2 error Rate L2 error Rate

(a) Cnoidal solution

25 2.32 × 10−3 – 2.32 × 10−3 –

50 3.64 × 10−5 5.99 3.64 × 10−5 5.99

100 5.68 × 10−7 6.00 5.71 × 10−7 6.00

(b) Solitary-wave Solution

25 8.63 × 10−4 – 8.56 × 10−4 –

50 7.01 × 10−5 3.62 1.32 × 10−5 6.02

100 2.05 × 10−7 8.41 2.06 × 10−7 6.01

4.3 Long Time Simulations

Overall, the errors for the two methods are comparable, at least on time scales of order 1.
The conservative method has a slight edge for the odd values q = 3, 5 of the order of the
piecewise polynomials that comprise the spatial basis, the opposite being true for the even-
orders q = 2, 4. Next is undertaken a comparative study of the long-time behaviour of the
twomethods. The working expectation here is that the conservation of the invariantΩ should
have beneficial consequences when it comes to long-time calculations.

Figures 1, 2, 3 and 4 that are exhibited provide a descriptive view of the approximations
of solitary-wave solutions up to time T = 1000 for the two methods. They correspond to
q = 2, M = 80, q = 2, M = 160, q = 3, M = 80, q = 3, M = 160, respectively.

The graphs of the quantity Ω exhibited in the parts (e) of these figures show agreement
with the theory. That is to say, Ω is sensibly invariant when the integration is performed
using the conservative method, whereas it is monotonically decreasing when the dissipative
method is employed. This decrease appears to be a linear function of time as can be seen
clearly in the more accurate simulations corresponding to q = 3.
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Fig. 1 q = 2, M = 80, a t = 250, b t = 500, c t = 750, d t = 1000, e computed values of Ω , f phase error

Before embarking on an interpretation of the remaining graphs, some commentary is
helpful. In the context of the numerical approximation of solitary-wave solutions of nonlinear
dispersive equations of KdV type, a plethora of experiments have shown that a lag develops
between the locations of the crest of the solution and its approximations. This lag, or phase
error, grows in time to a point where it becomes the majority contributor to the overall error.
It can be mitigated by increased accuracy and the use of conservative numerical methods, but
it cannot be completely eliminated. In fact, the solitary-wave solution being approximated is
known to be orbitally stable (see [6]). This means that if the system is initiated with initial
data (u0, v0) that is close to a solitary-wave solution (r(x −ωt), s(x −ωt)) at t = 0, then the
solution (u, v) emanating from (u0, v0) will always be close to that solitary wave in shape.

123



Journal of Scientific Computing (2018) 77:1371–1401 1397

Fig. 2 q = 2, M = 160, a t = 250, b t = 500, c t = 750, d t = 1000, e computed values of Ω , f phase error

More precisely, because 4ac − b2 > 0 in conjunction with another condition spelled out in
[6], the quantity

inf
θ∈R

∫
R

(
u(x, t) − r(x − θ)

)2 +
(
v(x, t) − s(x − θ)

)2
dx (4.4)

is uniformly small for all time. The minimization (4.4) defines a function θ = θ(t) and the
phase error is then taken to be

e(t) = |θ(t) − ωt |. (4.5)

What is important to realize is thatwhile a perturbation stays close in shape, the corresponding
solution (u, v) appears to resolve into a solitary wave which in general has a slightly different
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Fig. 3 q = 3, M = 80, a t = 250, b t = 500, c t = 750, d t = 1000, e computed values of Ω , f phase error

speed of propagation. In consequence, the phase error necessarily grows linearly with time.
The growth cannot be too fast since it is known that

|θ ′(t) − ω|
always remains small (see e.g. [15,30]).

One can think of the numerical scheme as a perturbation of the continuous initial-value
problem. Viewed in this light, and taking into account the above discussion of the continuous
problem, one expects a phase error to be associated with the numerical approximation of the
solution. The main purpose of the longer-time experiments is to offer a numerical study of
the phase error, by which we mean the gap between the location of the crest of the solitary
wave solution at time t and its numerical approximation at the same time. Thus in (4.4),
(u, v) will be the numerical approximation of the solution and (r , s) will be the relevant
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Fig. 4 q = 3, M = 160, a t = 250, b t = 500, c t = 750, d t = 1000, e computed values of Ω , f phase error

proportional solitary wave. For q = 2, M = 80 both conservative and dissipative methods
show significant phase errors with the former proving superior to the latter. Another striking
aspect is the marked loss of amplitude the approximation suffers when using the dissipative
method, whereas the conservative approximations appear to be remarkably accurate in shape.
Furthermore, the dissipative approximation seems to have spread to the point where the
solution no longer gets back to zero away from its crest. In Fig. 2, doubling the number
of cells has resulted in a quantitative improvement for both methods with the conservative
method continuing to hold an edge. The phase errors persist for both methods, however.

Figures 3 and 4 correspond to q = 3, M = 80 and q = 3, M = 160 respectively. Since
q is odd, the conservative method has the same convergence rate as the dissipative method
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for these runs. The phase error appears to be eliminated when using the conservative scheme,
whereas it still persists albeit to a less severe degree for the dissipative method. For M = 80,
a small decrease in amplitude for the latter method is still present. Finally, we note that there
is indication of superlinear growth of the phase error in all the runs involving the dissipative
method.

5 Summary and FutureWork

We have constructed conservative and dissipative finite element methods for a system of
Korteweg–de Vries type equations coupled through their nonlinearities. The associated semi-
discrete approximations have been investigated in detail and shown to be globally well posed
when certain relationships hold between the coefficients of the nonlinear terms. These are
the same conditions that had been used previously in proving the well-posedness of the
continuous system (1.1).

The semi-discrete approximations were shown to converge to the associated solutions of
the full system of PDE’s and spatial convergence rates provided. For the dissipative scheme,
this follows standard lines. However, interesting additional conditions on the parity of the
degree of the piecewise polynomial basis for the finite element space and on the number
of cells were needed for the analysis of the conservative method. While a little puzzling,
such conditions have appeared in other works associated with the analysis of conservative
methods.

A number of tests have been conducted to provide a limited but illuminating assessment
of the actual impact of these conditions and also to provide a comparative view of the
performance of the conservative and dissipative methods. Based on this evidence, it is safe
to conclude that the conservative method with q = 3 offers an efficient and effective tool for
simulations over very long time intervals.

In a companion project further investigation of the systems of the form (1.1) is in progress.
This includes questions of blow-up for the systems not satisfying the condition 4ac−b2 ≥ 0
that figured so prominently in the present work and instability and interaction results for the
proportional solitary waves.
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