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Abstract. This essay is concerned with long-crested waves such as those aris-

ing in bore propagation. Such motions obtain on rivers when a surge of water
invades an otherwise constantly flowing stretch and in the run-up of waves in

the near-shore zone of large bodies of water. The dominating feature of the

motion is that, in a standard xyz−coordinate system in which z increases in
the direction opposite to which gravity acts and x increases in the principal

direction of propagation, the depth of the fluid approaches a constant value

h0 > 0 as x→ +∞ and another value h1 > h0 as x→ −∞. In an earlier work,
the authors developed theory for an idealized model for such waves based on a

Boussinesq system of equations. The local well-posedness theory developed in

that article applies to the sort of initial data arising in modeling bore propa-
gation. However, well-posedness on the longer, Boussinesq time scale was not
dealt with in the case of bore propagation, though such results were established

for motions where h1 = h0.
We argue that without a well-posedness theory at least on the Boussinesq

time scale, such models for bore-propagation may not be of any practical use.

The issue of well-posedness is complicated by the fact that the total energy of
the idealized initial data is infinite.

The theory makes its way via the derivation of suitable approximations
with which to compare the full solution. An interesting feature of the theory
is the determination of dynamical boundary behavior that is not prescribed,

but which the solution necessarily satisfies.
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1. Introduction. The present study is concerned with surface water waves. Of
particular interest will be long-crested waves whose propagation is primarily along
one direction, say the x–coordinate in a standard xyz–Cartesian coordinate system
in which the vertical coordinate z increases in the direction opposite to that in which
gravity acts. A three-dimensional theory is needed, as variations in the y–directions
are allowed. In the present development, both x and y are taken to run over the
entire real axis, thus avoiding impermeable, lateral boundaries and allowing us to
focus upon the free motion of the fluid under the influence of gravity. It is presumed,
however, that the variations in the y–directions subside as y goes to ±∞, so that
at least formally, a two-dimensional description is appropriate there. The problem
focussed upon here corresponds to the propagation of bores, or other surges such
as those arising in the near-shore zone of a large body of water.

The propagation of tidally generated bores on rivers and bores arising in the later
stages of run-up of waves on a beach has attracted attention for centuries. Early
theoretical study of this phenomena appears in Airy’s article [1]. Well considered
accounts of the development of models for bore propagation may be found in the
papers of Rajopadhye and her collaborators [12], [23], [24], [25]. Recent field work
in the area is reported in the research of Bonneton and his collaborators (see [14]
and the references contained therein).

The idealized, physical context of the present study is a layer of incompressible,
irrotational, perfect fluid resting upon a horizontal, featureless bottom represented
by the plane {

(x, y, z) : z = −h0

}
.

Consistent with the observed properties of bores, the height h of the water column
above the point (x, y,−h0) on the bottom at time t will have the form

h = h(x, y, t) = η(x, y, t) + h0, (1)

where h0 > 0, η(x, y, t) → 0 as x → +∞ and η(x, y, t) → η1 = h1 − h0 > 0 as
x→ −∞. The value h0 corresponds to the undisturbed depth of the fluid prior to
the invasion of the bore while η(x, y, t) is the deviation of the free surface from its
undisturbed position (x, y, 0) at time t. The aymptotic behavior of η is meant to
mimic an incoming tidal surge of height η1. Here, and throughout, we posit motion
whose free surface remains a graph over the bottom, so that h is a well-defined,
positive function. Thus, in the standard parlance, only undular bores are in view,
as in the classical theoretical work of Benjamin and Lighthill [5] and in some of
the beautiful experiments of Favre [18]. Of course, the presumptions (1) and the
asymptotic conditions as x→ ±∞ pertaining to h are easily enforced for an initial
disturbance, but it is part of the theory that such a property continues in time.

Undular bore propagation such as that seen on some rivers fits within the Boussi-
nesq regime and our theory revolves around a Boussinesq system of equations whose
validity subsists on the relatively small-amplitude, long-wavelength properties of the
flow.

The plan of the paper is the following. Section 2 is devoted to preliminaries,
including further commentary about the modeling and a precise mathematical for-
mulation of the problem. One-dimensional, long-time theory is presented in Section
3. This is new in the context of bore propagation and finds essential use in the
later sections. Section 4 is devoted to a general result of long-time well-posedness
for the full model system. This theory is developed by constructing an approximate
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solution on the Boussinesq time scale and then providing theory for the difference
between the exact and approximate solutions using energy estimates. The approx-
imate solution makes use of the one-dimensional solutions that were constructed in
Section 3.

2. Mathematical models. We commence with a brief indication of the mostly
standard notation in force. After this is settled, the mathematical model is intro-
duced and an initial-boundary-value problem appropriate to bore propagation set
forth.

2.1. Notation. Derivatives with respect to spatial or temporal variables are des-
ignated by subscripts x, y, z or t, e.g.ux, ut, · · · , and also, when convenient, by
∂xu, ∂yu or ∂tu. The differential operators ∆ and ∇ are always taken with re-
spect to the spatial variables x and y. Thus, ∆ = ∂2

x + ∂2
y . We occasionally use

the standard multi-index notation ∂γ , γ ∈ Zn+, for n-variable partial derivatives,
n = 2, 3, · · · .

Except for the abbreviations noted below, the norm of an element f in a Banach
space Z is denoted by ‖f‖Z . For 1 ≤ p ≤ ∞, Lp(Rn) is the space of real-valued,
pth–power Lebesgue integrable functions defined on Rn, n = 1, 2, with the usual
modification if p =∞. The Lp–norm of a function or of a vector-valued function f
is indicated by |f |p.

The L2–based Sobolev spaces appear frequently and the norm of f in Hk =
Hk(Rn) = W k

2 (Rn) is abbreviated to ‖f‖k. It will sometimes be convenient to hang
a subscript x or y on the Hk–Sobolev spaces, viz. Hk

x (R) or Hk
y (R) to indicate

in which variable the norm is being computed. The space H∞ = ∩k≥1H
k will

appear a couple of times, but its Fréchet space structure will not be needed. The
space Cb = Cb(Rn) is the collection of bounded, continuous functions on Rn with
the L∞(Rn)–norm. The subspace Ckb (Rn) of k–times continuously differentiable
functions whose derivatives up to order k are bounded is likewise given its standard,
Banach-space norm.

Spaces that single out the temporal variable will also appear. If T > 0 and if
Z is a Banach space, the Banach space C(0, T ;Z) is comprised of the continuous
mappings from [0, T ] to Z with its usual norm. If k ≥ 0 is an integer, Ck(0, T ;Z)

are those functions u such that the Z–valued distributional derivative ∂jt u lies in
C(0, T ;Z), for all 0 ≤ j ≤ k, with the norm

‖u‖Ck(0,T ;Z) =

k∑
j=0

||∂jt u||C(0,T ;Z) =

k∑
j=0

sup
0≤t≤T

||∂jt u(t)||Z .

2.2. Mathematical formulation. As mentioned above, a layer of perfect fluid of
depth h0 is presumed to be resting on the plane {(x, y, z) : z = −h0}. It is assumed
that the wave motion resulting from a disturbance of the equilibrium has a resulting
free surface that is a graph over the flat bottom. In this circumstance, the free
surface may be described by the function η = η(x, y, t) as indicated already in (1).
With the additional assumptions that the fluid is incompressible (a good assumption
for water in ordinary circumstances) and the flow irrotational (an assumption that
requires the scale to be relatively large and holds only over limited time scales), one
formulation of the water-wave problem is
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β∆φ+ φzz = 0 in {−1 ≤ z ≤ αη},

φz = 0 on {z = −1},
ηt + α∇φ · ∇η = 1

βφz on {z = αη},
φt + 1

2

(
α|∇φ|2 + α

β (φz)
2
)

+ η = 0 on {z = αη},

(2)

where, as mentioned, ∆ and ∇ are the Laplacian and the gradient operators with
respect to the variables x and y. The variables in these equations have been non-
dimensionalized using the scheme

x̃ = `x, ỹ = `y, z̃ = h0z, η̃ = Aη, t̃ =
`

c0
t , φ̃ =

`gA

c0
φ , (3)

where those surmounted with a tilde are the original, dimensional quantities, A =
maxx,y |η̃(x, y, 0)| is the maximum amplitude in the initial wave motion, ` is the
smallest wavelength for which the flow has significant energy, c0 =

√
gh0 is the

kinematic wave velocity, with g the gravity constant, while the unknown function
φ = φ(x, y, z, t) is the velocity potential, whose existence follows from incompress-
ibility and irrotationality. The velocity field U is therefore given by U = (∇φ, φz) =
(φx, φy, φz) where ∇ denotes the gradient operator in only the (x, y)–variables.

The Boussinesq regime of the water-wave problem is characterized by the pa-
rameters

α =
A

h0
and β =

(
h0

`

)2

where A, ` and h0 are as above. Assume that both α and β are relatively small
compared to one, and that the Stokes number S = α/β is of order one, throughout
the time interval during which the motion is considered. That such a presumption
can be inferred from conditions on the initial data is a consequence of the work of, for
example, Alvarez-Samaniego and Lannes [3]. In the circumstances just delineated,
a formal expansion of the velocity potential in the vertical coordinate, followed by
ignoring all terms of quadratic order or higher in the quantities α and β, leads to
the set of abcd-systems (coupled systems of three nonlinear evolution equations, see
[7, 8]),  Vt +∇η + α

2∇|V |
2 + β

(
a∆∇η − b∆Vt

)
= 0,

ηt +∇ · V + α∇ · (ηV ) + β
(
c∆∇ · V − d∆ηt

)
= 0.

(4)

The coefficients a, b, c and d are

a =
1− θ2

2
µ, b =

1− θ2

2
(1− µ), c =

(θ2

2
− 1

6

)
λ, d =

(θ2

2
− 1

6

)
(1− λ),

where λ and µ are real parameters that, formally, may be be chosen without restric-
tion, and θ lies in the interval [0, 1]. The dependent variable z = η(x, y, t) is the
deviation of the free surface from its rest position (x, y, 0) at the time t, as already
discussed. (Thus the free surface is {(x, y, η(x, y, t)) : (x, y) ∈ R2} at time t.) The
variable V = Vθ(x, y, t) = (uθ, vθ) is the horizontal velocity field at the height θ
above the bottom. Notice that because z has been scaled by h0, the undisturbed
depth in these variables is 1.

Members of the subclass of locally well-posed systems provide approximations of
the solutions of the Euler system (2) (see [10] for rigourous theory in this direction).
Indeed, the systems in this subclass provide direct approximations of the deviation
of the free surface and of the horizontal velocity field V = Vθ at the height θ above
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the bottom (at the vertical coordinate z = θ− 1), where θ has a fixed value (again,
with 0 ≤ θ ≤ 1, since the scaled height is measured in depths). A short additional
calculation using the formula

V (x, y, z, t) =

(
1− (1− θ)2 − z2

2
β2∆

)
V (x, y, θ − 1, t)

=

(
1− (1− θ)2 − z2

2
β2∆

)
Vθ(x, y, t)

yields an approximation to the horizontal velocity field at heights other than θ
above the bottom. At the Boussinesq level of approximation, the vertical velocity
is quadratic in the small parameter β, and so ignored. There is a substantial theory
pertaining to the initial-value problem for these systems on the Boussinesq time
scale O( 1

ε ) when the initial data is assumed to decay to zero (see [2], [20], [21],
[26] for the long-crested situation where variations in the y–directions are ignored
and [16] when the waves are three-dimensional). Work on bore-type problems for
two-dimensional Boussinesq systems appeared in [9] and in the recent independent,
but related work of Burtea [15].

If we take θ =
√

2/3 and λ = µ = 0, the system (4) reduces to{
ηt +∇ · V + α∇ · (ηV )− β

6 ∆ηt = 0,

Vt +∇η + α
2∇|V |

2 − β
6 ∆Vt = 0,

(5)

where V = V√
2/3

. This is the so-called BBM-BBM Boussinesq system (see e.g. [4],

[17]). The zeroes on the right-hand side are in reality the terms in the expansion
that are neglected in coming to the Boussinesq approximation. These terms are
of second order, which is to say, of order α2, αβ and β2. It is worth recalling
that this level of approximation has been shown in laboratory experiments to yield
reasonably accurate predictions of real wave motion, even for relatively large values
of the Stokes number (c.f. [6], [11], [19], [27]).

An order-one rescaling of the variables (x, y, t) allows us to rewrite the system
(5) as {

ηt +∇ · V + ε∇ · (ηV )− ε∆ηt = 0,
Vt +∇η + ε

2∇|V |
2 − ε∆Vt = 0,

(6)

in terms of the single small parameter ε = α, say. Writing V =
(
u(x, y, t), v(x, y, t)

)
,

the system (6) satisfied by (η, u, v) in R2 × R+ is, in detail,

ηt + ux + vy + ε
[
(ηu)x + (ηv)y − ηxxt − ηyyt

]
= 0,

ut + ηx + ε
[
uux + vvx − uxxt − uyyt

]
= 0,

vt + ηy + ε
[
uuy + vvy − vxxt − vyyt

]
= 0,

(7)

posed with order-one initial conditions

η(x, y, 0) = η0(x, y), u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y),

defined for (x, y) ∈ R2.
The behavior as x, y → ±∞ that captures the type of wave motion in view

here is that the free surface is asymptotically constant in the x–directions and that
variations with respect to the y–variable vanish in the limit of large |y|, the so-called
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long-crested regime. In particular, because of the normalizations in place and the
choice of dependent variables, the problem of bore propagation is modeled by the
specifications

η(x, y, t) −→
{
η1 as x→ −∞,
0 as x→ +∞,

(u(x, y, t), v(x, y, t)) −→
{

(u1, 0) as x→ −∞,
(u2, 0) as x→ +∞,

∂y −→ 0, v(x, y, t) −→ 0 as y → ±∞,

η(x, y, t) −→ η±(x, t)
u(x, y, t) −→ u±(x, t)

}
as y → ±∞.

(8)

Here, η1 > 0 is the height of the incoming surge of liquid propagating upstream
that is invading the steadily flowing river, so that the actual depth is 1 + η1 as
x → −∞. In the present scaling, the value of η1 is the physical value divided
by h0; it is assumed to be of order one. The condition ∂y −→ 0 as y → ±∞ is
taken to mean that variations of (η, u, v) in the y–directions die out for large values
of |y|. Thus, the dependent variables (η(x, y, t), u(x, y, t), v(x, y, t)) settle down to
(η±(x, t), u±(x, t), 0) in the limit as y → ±∞. The functions u± = u±(x, t) are
therefore the horizontal velocities in the x–directions at y = ±∞. The values u1

and u2 are the inflow and outflow velocities far downstream and upstream and are
taken to be constant, independent of y and t, throughout. Such steady boundary
conditions will hold only for a limited period of time in real situations.

Remark that in the light of these specifications, the third equation in (7) is
formally satisfied identically in the limit y → ±∞, leaving the functions (η±, u±)
to satisfy the reduced Boussinesq system

(η±)t + (u±)x + ε
[
(η±u±)x − (η±)xxt

]
= 0,

(u±)t + (η±)x + ε
[
u±u±x − (u±)xxt

]
= 0,

(9)

whose initial values should presumably be(
η±0 (x), u±0 (x)

)
= lim
y→±∞

(
η(x, y, 0), u(x, y, 0)

)
.

Naturally, it will follow that
η∓0 (x) −→

{
η1 as x→ −∞,
0 as x→ +∞,

u∓0 (x) −→
{
u1 as x→ −∞,
u2 as x→ +∞.

We remark that in our earlier paper [9], we took u1 = u2 = 0, corresponding to
completely quiescent water. In the present study, this is relaxed. It is staightforward
to check that all the major results in [9] go over for this slightly more general
situation. Indeed, all that is required is to substract from u0 the function χ to be
introduced presently and work with this new dependent variable.

With this proviso, we take it as established that for any ε > 0 and even for
(η0, u0, v0) which are merely bounded and continuous, e.g. lying in Cb(R2)3, which
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satisfy

η0(x, y) −→
{
η1 as x→ −∞,
0 as x→ +∞,

(u0(x, y), v0(x, y)) −→
{

(u1, 0) as x→ −∞,
(u2, 0) as x→ +∞,

(η0(x, y), u0(x, y), v0(x, y)) −→ (η±0 (x), u±0 (x), 0) as y → ±∞,

(10)

there exists a unique bounded continuous triple (η, u, v) which is a distributional
solution of (7) on a time interval of order one. Moreover it transpires that as
y → ±∞, (η, u, v)→ (η±, u±, 0), where (η±, u±) is the unique solution of (9) with
initial data (η±0 , u

±
0 ). Regularity theory corresponding to further restrictions on the

initial data was also established as well as continuous dependence of solutions on
the initial data.

Missing from our previous analysis was theory that extended to the Boussinesq
time scale 1

ε . Such a result was obtained in case η1 = 0 under regularity assumptions
that imply the initial data is localized in the x–directions (see again [9]). This
longer-time theory does not apply when η1 > 0. As mentioned earlier, our principal
goal here is to extend the earlier, large-time theory so that it encompasses bore
propagation.

3. One-dimensional long-time theory. In the present section, a theory for long-
time existence of bore-like solutions is developed in the case of purely planar waves
where no variation along the crest is present. Thus the horizontal velocity in the y–
directions is identically zero and all derivatives with respect to y vanish identically.
Hence, all the terms in the third equation in (7) vanish identically and the first two
equations devolve to the pair{

ηt + ux + ε(uη)x − εηxxt = 0,
ut + ηx + εuux − εuxxt = 0,

(11)

of coupled, nonlinear dispersive wave equations in one space- and one time-variable
(x, t). Here, x ∈ R while t ≥ 0. The system is supplemented with initial data

η(x, 0) = η0(x) and u(x, 0) = u0(x), (12)

for x ∈ R, which has a bore-like structure as in (8). More precisely, it is presumed
that

η0 − ξ ∈ L2(R), η′0 ∈ Hk(R), u0 − χ ∈ L2(R), u′0 ∈ Hk(R), (13)

with k ≥ 2. Here ξ(x) is a smooth version of the step-function that takes the value
0 to the right of the jump and the value η1 to the left and χ(x) is a smooth function
that rapidly takes the values u1 as x→ −∞ and u2 as x→ +∞. For example, we
could define ϕ by

ϕ(x) =
1 + tanh(−x)

2
and take

ξ(x) = η1 ϕ(x), χ(x) = u1 ϕ(x) + u2 ϕ(−x),

(14)

for x ∈ R, which is convenient since ξ′ and χ′ lie in H∞(R). In particular, η0 − ξ
and u0 − χ both lie in Hk+1(R).
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Problems posed in this form go back at least to the early work of Peregrine [22]
and the subsequent, more mathematically precise study in [12] for unidirectional
models with dissipation. Study of a KP-type model which made allowance for weak
variations in the y–directions and which included dissipation was undertaken a little
later by S. Rajopadhye [24]. The present work allows for much stronger variations
in the y–directions, albeit still maintaining the long-crested hypothesis that the
motion becomes two-dimensional as y → ±∞. As mentioned, local well-posedness
for exactly this problem is in hand (see [9]).

Going forward, it will be useful to keep track of constants that depend upon the
initial data and upon the general aspects of the bore, namely the asymptotic height
η1 > 0 of the bore and the asymptotic velocities u1 and u2. To this end, we propose
the following conventions. The quantity

λ = max
{
η1, |u1|, |u2|

}
(15)

will be used to provide a restriction on the overall size of the large-|x| boundary
values pertaining to the given initial data. Notice that any Sobolev or Lebesgue
norm of the jth–derivative of ξ or χ, j = 1, 2, · · · , is bounded by λ times a constant
depending only on j. The same is true of the L∞–norms of these functions, j =
0, 1, · · · .

The functionals Λj provide more detailed control of the initial data, viz,

Λ0 = max
{
|u0−χ|2, |η0−ξ|2

}
, Λj = max

{
|∂ju0|2, |∂jη0|2

}
, j = 1, 2, · · · k+1.

It is convenient to have a pair of comparison functions to aid in the task of
obtaining estimates of (η, u) on the Boussinesq time interval [0, 1

ε ]. To this end,
consider the linear initial-value problem η̄t + ūx − εη̄xxt = 0, η̄(·, 0) = η0,

ūt + η̄x − εūxxt = 0, ū(·, 0) = u0,
(16)

obtained from (11) by discarding the nonlinear terms. Suppose that ε ≤ 1 from
now on. Some facts about η̄ and ū are needed in the effort to obtain helpful bounds
on (η, u). First, decouple the system (16) by letting Y = η̄ + ū so that

Yt + Yx − εYxxt = 0, Y (·, 0) = η0 + u0. (17)

Of course, both η̄ and ū, and hence Y, all depend upon ε, but this dependence is
suppressed for ease of reading. The linear group S(t) associated to the initial-value
problem for the purely dispersive equation (17) is, for any t ≥ 0, an isometry on
Hs(R) for any s ∈ R. In particular, since any spatial derivative Y(j) = ∂jxY satisfies
the same linear equation with initial data

Y(j)(x, 0) = ∂jx
(
η0 + u0

)
, (18)

it follows that for 1 ≤ j ≤ k + 1, the globally defined solutions of the linear BBM-
equation in (17) with initial data as in (18) preserve their L2–norms, which is to say,
|Y(j)(·, t)|2 = |Y(j)(·, 0)|2 for all t ≥ 0, j = 1, 2, · · · , k + 1. Of course, the L2–norm
of Y itself is not finite for bore-like initial data.

The next step is to show that |Y (·, t)|∞ is bounded by a quantity that is inde-
pendent of ε ≤ 1, say, and that this bound is finite on any bounded interval and
uniform on the Boussinesq time interval [0, 1

ε ]. To see this, let ρ(x) = ξ(x) + χ(x)
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where ξ and χ are as above in (14) and define

W (x, t) = Y (x, t)− ρ(x− t).

The initial-value problem satisfied by W is

Wt +Wx − εWxxt = −ερ′′′. (19)

Because of our presumptions (13) about the data, W (·, 0) ∈ Hk+1(R). Moreover,
examination of the formulas (14) for ξ and χ shows that the right-hand side of (19)
lies in H∞(R). Solving this by Duhamel’s formula and using the fact that the linear
group S(t) generated by (17) is an isometry on L2(R), it is determined immediately
that

|W (·, t)|2 ≤ |W (·, 0)|2 + εt|ρ′′′|2 = |W (·, 0)|2 + cλεt, (20)

where c is an absolute constant and λ is as in (15). Thus W is bounded indepen-
dently of ε > 0 on the time interval [0, 1

ε ]. Since Y(1) is bounded in L2, independently
of ε and t, it follows that W(1)(x, t) = Y(1)(x, t) − ρ′(x − t) is also bounded in L2

by Λ1 + cλ, independently of ε and t. Together with the elementary inequality
|f |2∞ ≤ |f |2|f ′|2, (20) and the last observation show that there is a constant c inde-
pendent of ε such that |W (·, t)|∞ ≤ c(Λ0 + Λ1 + λ), uniformly for t ∈ [0, 1

ε ]. This
in turn implies that |Y (·, t)|∞ ≤ |W (·, t)|∞ + |ρ|∞ ≤ c(Λ0 + Λ1 + λ), independently
of ε ≤ 1 and t ∈ [0, 1

ε ].
If instead, we take the difference H = η̄ − ū, then

Ht −Hx − εHxxt = 0 and H(·, 0) = η0 − u0.

Exactly the same line of argument serves to establish identical boundedness results
for H, though this time one defines W (x, t) = H(x, t) − ρ(x + t). The outcome of
these ruminations is summarized in the following proposition.

Proposition 1. With the preceding notation, k ≥ 2 and with the assumptions (13)
on the auxiliary data,

|Y(j)(·, t)|2 ≤ 2Λj and |H(j)(·, t)|2 ≤ 2Λj ,

for 1 ≤ j ≤ k + 1 and for all t ≥ 0. There is also a constant C∞ of the form
c(Λ0 + Λ1 + λ), where c is an absolute constant, such that

|Y (·, t)|∞ ≤ C∞ and |H(·, t)|∞ ≤ C∞,

independently of ε ∈ (0, 1] and t ∈ [0, 1
ε ].

Since η̄ = 1
2 (Y +H) and ū = 1

2 (Y −H), exactly the same bounds apply to these

functions as do to Y and H, again independently of ε ≤ 1 and t ∈ [0, 1
ε ].

Corollary 1. For k ≥ 2, the bounds

|η̄(j)(·, t)|2 ≤ 2Λj and |ū(j)(·, t)|2 ≤ 2Λj

hold for j = 1, · · · k + 1, independently of ε ∈ (0, 1] and t ≥ 0. For ε ∈ (0, 1] and
t ∈ [0, 1

ε ],

|η̄(·, t)|∞ ≤ C∞ and |ū(·, t)|∞ ≤ C∞. (21)

where C∞ is as in Proposition 1.

It will be convenient to define the parameter R to be

R = λ+ Λ0 + Λ1 + Λ2 + Λ3. (22)
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This quantity provides a coarse characterization of the size of the data for the
problem. Indeed, according to Corollary 1, R provides bounds on various norms of
η̄ and ū, at least on the Boussinesq time scale.

Form the difference between the solution (η, u) of (11), known to exist at least
for a short time, and (η̄, ū), viz.

N = η − η̄, and U = u− ū.

Notice that N(·, 0) = U(·, 0) ≡ 0. The system satisfied by (N,U) is
Nt + Ux + ε

[
(NU)x + (η̄U)x + (ūN)x

]
− εNxxt = −ε(η̄ ū)x,

Ut +Nx + ε
[
UUx + (ūU)x

]
− εUxxt = −εū ūx.

(23)

It is known from the local theory for (η, u) that the latter system (23) is locally
well posed for bore-like data as specified in (13). Thus there are solutions N and
U in C(0, T ;Hk+1(R)) at least for T > 0 small enough and these solutions depend
continuously upon variations of the data.

Remark 1. The continuous dependence result includes that the time interval [0, T ]
over which solutions can be inferred to exist only depends upon the size of the
initial data in the relevant space. In consequence, one may approximate data with
a given regularity by smoother data, make calculations with the resulting smoother
solutions and then pass to the limit of the resulting bounds as long as they do not
depend upon the extra smoothness. This standard ploy will be used without further
comment.

If appropriate a priori bounds are available, it is only required to iterate the local
well-posedness theory in [9], made via a contraction-mapping argument, to obtain
long-time existence of solutions. To establish such bounds, begin by multiplying the
first equation in (23) by N , the second one by U , sum what transpires and integrate
the result over R. After integrations by parts, to which the boundary terms do not
contribute, there emerges the integro-differential equation

1

2

d

dt

∫ +∞

−∞

[
N2 + U2 + ε

(
N2
x + U2

x

)]
dx

= ε

∫ +∞

−∞

[
UNNx + ūNNx + η̄UNx + ūUUx −N(ū η̄)x − Uū ūx

]
dx.

(24)

If X = X(t) is defined by

X2 =

∫ +∞

−∞

(
N2 + U2 + ε(N2

x + U2
x) +N2

xx + U2
xx + ε(N2

xxx + U2
xxx)

)
dx, (25)

then (24) implies that

d

dt

∫ +∞

−∞

[
N2 + U2 + ε

(
N2
x + U2

x

)]
dx ≤ ε

[
X3 + 2RX2 + 3R2X

]
. (26)
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Essentially the same result obtains at the H1–level, but is not needed here. We
go straight to the derivation of H2–bounds by calculating

d

dt

∫ +∞

−∞

[(
1 + ε(N + η̄)

)
U2
xx +N2

xx + ε
(
U2
xxx +N2

xxx

)]
dx

= ε

∫ +∞

−∞
(N + η̄)tU

2
xx dx+ 2ε

∫ +∞

−∞
(N + η̄)UxxUxxt dx

+2

∫ +∞

−∞

[
Uxx

(
Uxxt − εUxxxxt

)
+Nxx

(
Nxxt − εNxxxxt

)]
dx

= I1 + I2 + I3.

(27)

The last three integral quantities are examined separately.
To obtain a satisfactory bound on I1, note that

Nt = −(1− ε∂2
x)−1∂x

[
U + ε(UN + ūN + η̄U) + εū η̄

]
,

whence

|Nt|∞ ≤ X + cε
[
X2 +RX +R2

]
, (28)

where here and below, c denotes various absolute constants, so not depending on
the data, on ε nor t (e.g. in (28), taking c = 3 suffices). A similar argument shows
that

|η̄t|∞ ≤ 2R.

It follows that

|(N + η̄)t|∞ ≤ 2R+X + cε
[
X2 +RX +R2

]
.

In consequence, it is seen that

I1 ≤ cε
[
(R+ εR2)X2 + (1 + εR)X3 + εX4

]
≤ cε

[
(R+R2)X2 + (1 +R)X3 + εX4

]
.

(29)

Attention is turned to I3. Integrating by parts leads to

1

2
I3 =

∫ +∞

−∞

[
Uxx (Uxxt − εUxxxxt) +Nxx (Nxxt − εNxxxxt)

]
dx

= −
∫ +∞

−∞

[
Uxx∂

3
x

(
N + ε

U2

2
+ εūU + ε

ū2

2

)
+Nxx∂

3
x

(
U + εUN + εūN + εη̄U + εū η̄

)]
dx

= −ε
∫ +∞

−∞

[
5

2

(
U2
xx +N2

xx

)
Ux + 2NxNxxUxx

]
dx

+ε

∫ +∞

−∞
(N + η̄)UxxNxxx dx+ ε

∫ +∞

−∞
Φ(U,N) dx,

(30)

where Φ(U,N) is a polynomial of degree 2 in U and N and in their spatial derivatives
up to order 2, with coefficients depending on ū, η̄ and their derivatives up to order
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3. Note that the O(1)-terms cancel leaving only terms of formal order O(ε). The
formula (30) implies the estimate

I3 ≤ cε
[
R2X +RX2 +X3

]
+ 2ε

∫ +∞

−∞
(N + η̄)UxxNxxx dx. (31)

The more involved term I2 is now considered. Use the equation satisfied by U
to determine that

1

2ε
I2 =

∫ +∞

−∞
(N + η̄)UxxUxxt dx

= −
∫ +∞

−∞
(N + η̄)Uxx∂

2
x

[
Nx + ε

(
UUx + (ūU)x − Uxxt + ū ūx

)]
dx

= −
∫ +∞

−∞
(N + η̄)UxxNxxxdx− ε

∫ +∞

−∞
(N + η̄)Uxx

(
UUx + (ūU)x

)
xx
dx

+ε

∫ +∞

−∞
(N + η̄)UxxUxxxxt dx− ε

∫ +∞

−∞
(N + η̄)Uxx(ū ūx)xx dx

= −
∫ +∞

−∞
(N + η̄)UxxNxxx dx+ J1 + J2 + J3.

(32)

The integrals J1, J2 and J3 are examined one at a time. Estimating J3 directly
yields

J3 = −ε
∫ +∞

−∞
(N + η̄)Uxx(ū ūx)xx dx ≤ cε

(
R3X +R2X2

)
.

For J1, calculate as follows:

J1 = −ε
∫ +∞

−∞
(N + η̄)Uxx

(
UUx + (ūU)x

)
xx
dx

= ε

∫ +∞

−∞

[1

2
((N + η̄)U)x − 3(N + η̄)Ux

]
U2
xx dx

−ε
∫ +∞

−∞

[
(N + η̄)UUxxūxxx + 3(N + η̄)UxUxxūxx

+3(N + η̄)U2
xxūx − 1

2 ((N + η̄)ū)xU
2
xx

]
dx

= ε

∫ +∞

−∞

[1

2
((N + η̄)U)x − 3(N + η̄)Ux

]
U2
xx dx

+ε

∫ +∞

−∞

[1

2
((N + η̄)ū)x − 3Nūx

]
U2
xx dx

−ε
∫ +∞

−∞

[
(N + η̄)UUxxūxxx −

3

2
U2
x

(
(N + η̄)ūxx

)
x

]
dx.

The inequality

J1 ≤ cε
[
R2X2 +RX3 +X4

]
now follows.
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To get control of J2, write

J2 = ε

∫ +∞

−∞
(N + η̄)UxxUxxxxt dx

= −ε
∫ +∞

−∞

(
(N + η̄)Uxxx + (N + η̄)xUxx

)
Uxxxt dx

= −ε
2

d

dt

∫ +∞

−∞
(N + η̄)U2

xxx dx+
ε

2

∫ +∞

−∞
(N + η̄)tU

2
xxx dx

−ε
∫ +∞

−∞
(N + η̄)xUxxUxxxt dx.

(33)

By using the estimate (28), the second term on the right-hand side of (33) may be
bounded above thusly:

ε

2

∫ +∞

−∞
(N + η̄)tU

2
xxx dx ≤ cε

[
X + ε

(
X2 +RX +R2

)] ∫ +∞

−∞
U2
xxx dx

≤ c
[
X3 + ε

(
X4 +RX3 +R2X2

)]
.

For the third term on the right-hand side of (33), use is again made of the equation
satisfied by U to see that

εUxxxt = −ε∂4
x(1− ε∂2

x)−1
(
N + ε

U2

2
+ εūU + ε

ū2

2

)
,

whence

ε|Uxxxt|2 ≤ X + ε
(
X2 +RX +R2

)
.

It is concluded that

ε

∫ +∞

−∞
(N + η̄)xUxxUxxxt dx ≤ c

(
X4 +RX3 + ε

[
R2X2 +R3X

])
.

Combining these inequalities and recalling that ε ≤ 1, the estimate

J2 ≤ −
ε

2

d

dt

∫ +∞

−∞
(N + η̄)U2

xxx dx+ Λ2

(
X2 +X4

)
follows.

If the estimates for the integrals J1, J2 and J3 are used in (32), the bound

I2 ≤ −ε2 d

dt

∫ +∞

−∞
(N + η̄)U2

xxx dx− 2ε

∫ ∞
−∞

(N + η̄)UxxNxxx dx

+cε
(
X4 + (1 +R)X3

)
+ cε2

(
X4 +RX3 +R2X2 +R3X

)
on I2 emerges. Combining this inequality with those in (29) and (31) on I1 and
I3, putting this into equation (27) and adding the result to the earlier differential
inequality (26) leads to

d

dt

∫ +∞

−∞

[
N2 + U2 + ε(N2

x + U2
x) +N2

xx +
(

1 + ε(N + η̄)
)
U2
xx

+ε
(
N2
xxx +

(
1 + ε(N + η̄)

)
U2
xxx

)]
dx ≤ εPε

(
X
)
,

(34)

where Pε is a polynomial of degree 4 in X with coefficients depending only on R
and absolute constants. Notice the important cancellation of the integrals on the
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right-hand sides of (31) and (32). Referring back to the detailed inequalities derived
earlier, it is seen that Pε is composed of monomial terms of the form cRpXq where
c is an absolute constant and the integers p and q are such that p + q ≥ 3, p ≤ 3
and q ≤ 4.

Theorem 3.1. Let ξ and χ be as in (14) and suppose that 0 < ε ≤ 1. Suppose also
that bore-like initial data (η0, u0) is specified so that

η0 − ξ ∈ L2(R), η′0 ∈ H2(R), u0 − χ ∈ L2(R), u′0 ∈ H2(R). (35)

There is an R0 > 0 such that if R as defined in (22) lies in (0, R0], then the solution
(η, u) to the system (11)-(12) emanating from (η0, u0) exists for at least the time
interval [0, 1

ε ] and satisfies

(η − ξ, u− χ) ∈ C
(

0,
1

ε
;L2(R)2

)
, (ηx, ux) ∈ C

(
0,

1

ε
;H1(R)2

)
.

Proof. This result of long-time existence for data drawn from a given bounded
subset

|η0 − ξ|2 + |u0 − χ|2 + ||η′0||k−1 + ||u′0||k−1 + ε
(
||η′0||k + ||u′0||k

)
≤ R (36)

of data satisfying (35) is a consequence of the differential inequalities (26) and (34).
In a little more detail, define first Y = Y (t) by

Y =

{
X2 + ε

∫ +∞

−∞
(N + η̄)

(
U2
xx + εU2

xxx

)
dx

} 1
2

,

where X = X(t) is as in (25). Integrating the differential inequality in (34) over
the time interval [0, t], there appears

Y 2(t) ≤ Y 2(0) + ε

∫ t

0

Pε(X(s)) ds,

where Pε is the quartic polynomial discussed earlier. As long as ε|(N+η̄)(·, t)|∞ < 1
2 ,

it follows that

1

2
X2(t) ≤ Y 2(t) ≤ Y 2(0) + ε

∫ t

0

Pε(X(s)) ds ≤ 3

2
X2(0) + ε

∫ t

0

Pε(X(s)) ds. (37)

Fix an ε0 ∈ (0, 1]. Let R0 > 0 be such that if ε ≤ ε0 and R ≤ 2R0, then

X(t) ≤ R implies that ε|(N + η̄)(·, t)|∞ ≤
1

2
.

That this is possible follows from (21) and the fact that X(t) bounds above the L∞–
norm of N(·, t). Note that control of |η̄|∞ is guaranteed at least on the Boussinesq
time interval [0, 1

ε ].

The next step is to show that ifR0 ≤ 1
2 is chosen appropriately, but independently

of ε, then for R ≤ R0, it must be the case that X(t) ≤ 2R as long as t ∈ [0, 1
ε ]. By

continuity, if X(0) ≤ R, then X(t) ≤ 2R at least for t in some positive time interval,
say [0, t0]. The goal is to show t0 ≥ 1

ε . For t ∈ [0, t0], we have Pε(X(t)) ≤ c0R
3

where c0 is again an absolute constant. As a consequence of inequality (37), a
calculation shows that

X2(t) ≤ 3X2(0) + 2c0εtR
3 ≤ 3R2

0 + 2c0εtR
3
0

for t ∈ [0, t0]. We require this quantity to be bounded above by (2R0)2 = 4R2
0,

uniformly for values of t ≤ t0, so the inequality

3R2
0 + 2c0εt0R

3
0 ≤ 4R2

0
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is imposed. The latter inequality holds if

R0 ≤
1

2c0εt0
.

Choosing R0 = min( 1
2c0
, 1

2 ) allows us to take t0 = 1/ε. The conclusions of the
theorem now follow.

Corollary 2. Fix k ≥ 2. There exists an R0 > 0 such that for all ε ∈ (0, 1] and
R ∈ (0, R0], if bore-like initial data (η0, u0) satisfying (36) is specified, then the
solution (η, u) = (ηε, uε) of (11)-(12) with initial value (η0, u0) exists at least on the
time interval [0, 1

ε ],

(η − ξ, u− χ) ∈ C
(

0,
1

ε
;L2(R)2

)
, (ηx, ux) ∈ C

(
0,

1

ε
;Hk−1(R)2

)
,

and (η, u) is such that

|η − ξ|2 + |u− χ|2 + ||ηx||k−1 + ||ux||k−1 + ε
(
||ηx||k + ||ux||k

)
≤ C1R,

where C1 = C1(R0) is independent of ε. Moreover, the operator that associates the
solution (η, u) to initial data (η0, u0) satisfying (36) is uniformly Lipschitz contin-
uous for 0 < ε ≤ 1, which is to say that for all t ∈ [0, 1

ε ],

||η − η̃||k + ||u− ũ||k ≤ C2

(
||η0 − η̃0||k + ||u0 − ũ0||k

)
, (38)

where C2 is independent of ε and (η̃, ũ) is the solution of the reduced system (9)
with initial value (η̃0, ũ0).

Proof. Long-time well-posedness for higher-order Sobolev classes follows from higher-
order energy estimates completely analogous to the H2–estimates appearing above.
Argue by induction on k, the case k = 2 being in hand. Supposing bounds are
available up to order k, consider the energy-type functional∫ +∞

−∞

[(
1 + ε(N + η̄)

)
U2

(k) +N2
(k) + ε

(
N2

(k+1) + (1 + ε(N + η̄))U2
(k+1)

)]
dx, (39)

and differentiate with respect to t. As before, U(k) = ∂kxU and so on. Essentially

the same calculations as appear at the H2–level provide a differential inequality of
the form appearing in (34). The argument then proceeds as already outlined. Note
that further restrictions on ε and R are not needed to maintain the positivity of the
quantity 1 + ε(N + η̄) during these calculations.

For the Lipschitz continuity, the bounds in Hk(R), uniform for t ∈ [0, 1
ε ], together

with energy estimates performed on (η − η̃, u− ũ) yield (38). Indeed, once bounds
have been obtained, we can replace (η̄, ū) by (η̃, ũ) and perform exactly the same
computations as those leading to the inequality displayed in (34). In this case,
N = η − η̃ and U = u − ũ. This differential inequality leads to the advertised
Lipschitz continuity where the Lipschitz constant depends upon the Hk+1–norms
of the initial data.

Remark 2. Notice that the long-time result explained above suffers from a loss of
a derivative. The data is assumed to be one derivative smoother than the long-time
solution that is obtained. We presume this is a defect in the method, and not the
real state of affairs. Practically, this makes no difference. As discussed in [10],
for solutions of equations like the ones considered here to be good approximations
of the full water-wave problem on the Boussinesq time scale, considerably more
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smoothness than the minimal H2−level needs to be provided. The loss of a deriva-
tive could be circumvented by an ε–dependent regularization of the initial data as
in [13], but this point is not pursued here.

4. Long-time theory in two dimensions. The aim of the present section is
a theorem of existence for the two-dimensional system (7)-(8) on the large time
interval [0, 1

ε ]. This will be shown for any ε ∈ (0, 1], but will require size restrictions
on the auxiliary data. These restrictions will be characterized by a parameter
R. The final result will have the following form, here stated informally. Precise
statements come later after details are provided, just as in the one-dimensional
case.

Theorem 4.1. There is a positive R0 such that for any R ∈ (0, R0] and bore-
like auxiliary data (η0, u0, v0) which is vorticity free and O(R) (in a sense to be
explained), the unique solution (η, u, v) of (7)-(8) emanating from it exists at least
on the time interval [0, 1

ε ].

4.1. Construction of approximate solutions. The present subsection has as
its goal the construction of approximate solutions (ηε, uε, vε) defined on R2 × [0, 1

ε ]
corresponding to given auxiliary data (η0, u0, v0). Once constructed, these solutions
will be compared to the exact solution, whose existence over at least a short time
interval is guaranteed.

First, the hypotheses on the auxiliary data are set out. Let k ≥ 4 be an integer.

A1. As y → ±∞,  η0(x, y) −→ η±0 (x),

u0(x, y) −→ u±0 (x),

in the sense that

||η0(x, y)− η+
0 (x)||Hk(R×[−1,∞)) ≤ C1, ||η0(x, y)− η−0 (x)||Hk(R×(−∞,1]) ≤ C1,

and similarly for u0−u±0 . This means that η0 and its various partial derivatives
take on the large value asymptotics in both the x– and y–variables fast enough
that the difference lies in the relevant L2–based Sobolev space.

A2. v0 ∈ Hk(R2) and ||v0||Hk(R2
)
≤ C2.

A3. The functions η±0 −ξ, u
±
0 −χ ∈ L2(R), and ∂xη

±
0 , ∂xu

±
0 ∈ Hk(R), where ξ and

χ are the functions introduced in (14) used to indicate the large–x asymptotics
of the one-dimensional boundary data. Moreover, there is a constant C3 such
that

||η±0 − ξ||L2(R), ||u
±
0 − χ||L2(R), ||∂xη

±
0 ||Hk−1(R), ||∂xu

±
0 ||Hk−1(R) ≤ C3.

A4. It is also assumed that there is a constant C0 such that

||u+
0 − u

−
0 ||Hk(R) + ||η+

0 − η
−
0 ||Hk(R) ≤ C0 ε. (40)

The constants C0, C1, C2 and C3 are all independent of ε.

Notice that condition A1 implies that ∂yη0 and ∂yu0 lie in Hk−1(R2) and they
are bounded there. It also implies that (η0, u0) → (η1, u1) as x → −∞, (η0, u0) →
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(0, u2) as x → +∞, where η1, u1 and u2 are the large–|x| asymptotic values for
η0 and u0 introduced in (8). It also follows that (η0, u0) −→ (η±0 , u

±
0 ) as y →

±∞. These limits are all pointwise and uniform in the other variable. That is,
|η0(x, y)− η1| → 0 as x→ −∞, uniformly in y, |η0(x, y)− η+

0 (x)| → 0 as y → +∞,
uniformly in x, and so on.

The class D = D(C0, C1, C2, C3, ε) = D(R0, ε) of initial data will be those satis-
fying conditions A1, A2, A3 and A4. Here R0 is an upper bound for the constants
C0, C1, C2, and C3 that define D. The local theory in [9] guarantees existence of a
solution (η, u, v) corresponding to initial data in D, which is bounded in the various
norms that characterize D, uniformly in some non-trivial time interval [0, t0]. Let
Q = Q(η, u, v, ε) be some norm of the solution (η, u, v). We say that Q is O(R) if
there is a constant C, depending only on the bound R0 that defines the class D,
such that Q ≤ C R for t ∈ [0, 1

ε ].
Let ϕ+ be a C∞, monotone non-decreasing function defined on all of R such that

ϕ+(y) =

{
1 for y ≥ 1,
0 for y ≤ −1,

and so that ϕ+(y) ∈ [0, 1] for all y. If

ϕ−(y) = 1− ϕ+(y),

then

ϕ−(y) =

{
0 for y ≥ 1,
1 for y ≤ −1,

ϕ− is C∞, monotone non-increasing and also has ϕ−(y) ∈ [0, 1]. Since ϕ+ +ϕ− ≡ 1,
it follows that (ϕ+)′(y) = −(ϕ−)′(y) for all y ∈ R.

The first step in the construction to follow is to solve the two one-dimensional
problems (11)-(12) for initial data (η+

0 , u
+
0 ) and (η−0 , u

−
0 ). On applying Corollary

2 of Theorem 3.1, we find a value R0 such that for data bounded by R ≤ R0 as
in (36), solutions to the system exist on R × [0, 1

ε ] . Moreover, the various norms

of these solutions are O(R). Note also that because of Hypothesis A3, η+
0 − η

−
0

and u+
0 − u

−
0 lie in Hk(R). In consequence, the Lipschitz result (38) in Corollary 2

implies that

||η+ − η−||Hk(R) and ||u+ − u−||Hk(R)

are O(R) quantities, uniformly for ε ≤ 1.
Consider the functions

η̃(x, y, t) = ϕ+(y) η+(x, t) + ϕ−(y) η−(x, t),

ũ(x, y, t) = ϕ+(y)u+(x, t) + ϕ−(y)u−(x, t),

defined on

Ωε =

{
(x, y, t) : (x, y) ∈ R2, t ∈

[
0,

1

ε

]}
.

These functions are C∞ in y, and k-times differentiable in x, at least in the local-L2

sense.
We claim that the functions η

0
(x, y) = η0(x, y) − η̃(x, y, 0) and u0(x, y) =

u0(x, y)− ũ(x, y, 0) lie in Hk(R2) and are O(R) there. This follows since

η0(x, y)− ϕ+(y) η+
0 (x)− ϕ−(y) η−0 (x)

= ϕ+(y)
(
η0(x, y)− η+

0 (x)
)

+ ϕ−(y)
(
η0(x, y)− η−0 (x)

)
,
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and similarly for u0(x, y). The support of ϕ+ is [−1,∞), and ϕ+ and its deriva-
tives are bounded there. Similarly, the support of ϕ− is (−∞, 1], and ϕ− and its
derivatives are equally well behaved. Combining this with Hypothesis A1 yields the
desired result.

Subject to a size restriction R1, say, the initial-value problem for the two-
dimensional system (7)-(8) posed with Hk(R2)3 initial data (η0, u0, v0) is known
to have a unique solution (η, u, v) on Ωε, which is O(R). This follows from the
early work [17], our previous paper [9] or the recent paper [15] of Burtea. This

finite-energy solution lies in Cb(0, 1
ε ;Hk(R2)). The time derivatives ∂jt (η, u, v) are

also O(R) in Cb(0, 1
ε ;Hk−j(R2)) as well, provided j ≤ k − 1.

The approximate solutions to be used presently are taken to be

η(x, y, t) = η(x, y, t) + ϕ+(y) η+(x, t) + ϕ−(y) η−(x, t),
= η(x, y, t) + η̃(x, y, t),

u(x, y, t) = u(x, y, t) + ϕ+(y)u+(x, t) + ϕ−(y)u−(x, t),
= u(x, y, t) + ũ(x, y, t),

v(x, y, t) = v(x, y, t).

(41)

What has been done is to take out the dynamic boundary conditions, solve the
resulting homogeneous problem using existing theory and then put the dynamic
boundary conditions back. Going forward in the next subsection, an analysis is
provided of the differences between the exact solution, known to exist at least over
a short time interval, and the approximate solution displayed in (41), which is
defined and O(R) on all of Ωε.

4.2. A priori bounds. Let (η, u, v) be the approximate solution just constructed.
Of course, (η, u, v) = (ηε, uε, vε) depends upon ε, but this dependence is suppressed
for ease of reading. Let (η, u, v) be the local in time solution of the initial-boundary-
value problem (7)-(8) under study. Such a solution exists and has regularity prop-
erties outlined below (see [9]). Define the residual functions (N,U, V ) by

N = η − η, U = u− u, V = v − v.

Inspection reveals that N(·, ·, 0) = U(·, ·, 0) = V (·, ·, 0) ≡ 0. Energy estimates are
established on the triple (N,U, V ) with the aim of deriving a priori bounds which
allow the local solution to be continued to all of Ωε.

Toward this goal, a calculation shows that the triple (N,U, V ) satisfies the forced,
variable coefficient system

Nt + Ux + Vy

+ε
[
(NU)x + (NV )y + (η̄U)x + (ūN)x + (v̄N)y + (η̄V )y

]
− ε∆Nt

= −(η̄t + ūx + v̄y)− ε
[
(η̄ ū)x + (η̄ v̄)y −∆η̄t

]
,

Ut +Nx + ε
[
UUx + (ūU)x + V Vx + (v̄V )x

]
− ε∆Ut

= −(ūt + η̄x)− ε(ū ūx + v̄ v̄x −∆ūt),

Vt +Ny + ε
[
UUy + (ūU)y + V Vy + (v̄V )y

]
− ε∆Vt

= −(v̄t + η̄y)− ε(ū ūy + v̄ v̄y −∆v̄t),

(42)
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with zero initial- and boundary-conditions. It will be helpful to examine the coeffi-
cients appearing in (42).

Lemma 4.2. The functions (η, u, v), ∇(η, u, v) and ∂t(η, u, v) are O(R) in L∞(Ωε)
for ε ∈ (0, 1].

Proof. Since η(x, y, t) = η(x, y, t) + η̃(x, y, t) and η is O(R) in C(0, 1
ε ;Hk(R2)) ∩

C1(0, 1
ε ;Hk−1(R2)) and k ≥ 4, η clearly satisfies the conclusions. Similarly for u and

v. The solutions (η±, u±) to the reduced problems (9) are also known to be O(R)
in L∞(R) along with their spatial derivatives up to order two. As |ϕ+|, |ϕ−| ≤ 1
and |(ϕ+)′|∞ = |(ϕ−)′|∞ = C, where C is a constant only dependent on the choice
of ϕ+, the result follows.

Attention is turned to the forcing functions on the right-side of (42), which also
depend upon the approximate solution and so are defined everywhere in Ωε, for
ε ∈ (0, 1]. Consider first the function

ηt + ux + vy + ε
(

(η u)x + (η v)y −∆ηt

)
on the right-hand side of the first equation in (42). Using the definitions of the
various quantities, this function has the detailed form

η
t

+ ux + vy + ε
(

(η u)x + (η v)y −∆η
t

)
+η̃t + ũx + ε

(
(η̃ ũ)x −∆η̃t

)
+ε
(

(η̃ u)x + (η ũ)x + (η̃ v)y

)
.

(43)

The first line in (43) is zero since (η, u, v) solves the system (7). The second line,
written out in detail, is

ϕ+ η+
t + ϕ− η−t + ϕ+ (η+)x + ϕ− (η−)x − ε

(
ϕ+ (u+)xxt + ϕ− (u−)xxt

)
+ε
[
(ϕ+)2(η+ u+)x + ϕ+ ϕ−(η− u+ + η+ u−)x + (ϕ−)2(η− u−)x

−
(

(ϕ+)′′η+
t + (ϕ−)′′η−t

)]
= ε
[
ϕ+ ϕ−(η− u+ + η+ u−)x − ϕ+ ϕ−(η+ u+)x − ϕ+ ϕ−(η− u−)x

−(ϕ+)′′(η+
t − η−t )

]
,

since (η+, u+) and (η−, u−) solve the reduced system (9). The functions ϕ+ ϕ−

and (ϕ±)′′ are smooth and have compact support in y. And the various functions
(η± u±)x, (η±)t and (u±)t are all O(R) in Hk−1

x (R), uniformly for ε ∈ (0, 1]. It
follows that the function in the square bracket in the last display is O(R), whence
the second line of (43) is εO(R) in Cb(0, 1

ε ;Hk−1(R2)). The third line of the afore-
mentionned quantity (43) is calculated to be ε

[
ϕ+
(

(η+u+ ηu+)x + (η+v)y

)
+ ϕ−

(
(η−u+ ηu−)x + (η−v)y

)
+
(

(ϕ+)′η+ + (ϕ−)′η−
)
v +

(
ϕ+η+ + ϕ−η−

)
vy

]
.

All the functions ϕ± and (ϕ±)′ are smooth and bounded in y. And the functions
(η±u)x, (ηu±)x and (η±vy) are all O(R) in Hk−1(R2), uniformly for ε ∈ (0, 1]. The
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remaining term has the form(
(ϕ+)′η+ + (ϕ−)′η−

)
v = (ϕ+)′(η+ − η−)v,

a function of x and t times a function of y times v. Thus∣∣∣∣∣∣((ϕ+)′η+ + (ϕ−)′η−
)
v
∣∣∣∣∣∣
Hk−1(R2

)

≤ C||(ϕ+)′||Hk−1
y (R) ||η

+ − η−||Hk−1
x (R)||v||Hk(R2

)

≤ C||η+
0 − η

−
0 ||Hk−1

x (R)

≤ C C0 ε,

(44)

where the Lispchitz estimate (38) and the hypothesis A3 have been used. The final
conclusion is that this term is also εO(R). It follows that the whole quantity (43)
is εO(R) in Cb(0, 1

ε ;Hk−1(R2)).
A nearly identical analysis applied to the forcing terms

η̄t + ūx + v̄y + ε
(

(η̄ ū)x + (η̄ v̄)y −∆η̄t

)
and

ūt + η̄x + ε
(
ū ūx + v̄ v̄x −∆ūt

)
yields the conclusion that these quantities are also εO(R) in Cb(0, 1

ε ;Hk−1(R2)).
The third forcing term is

−(v̄t + η̄y)− ε(ū ūy + v̄ v̄y −∆v̄t),

which is written out as

−(vt + η
y
)− ε(uuy + v vy −∆vt)

+η̃y + ε(u ũ)y.
(45)

The first line in (45) is zero since (η, u, v) solves the system (11). The second term in

the second line is εO(R) since u is O(R) in Cb(0, 1
ε ;Hk(R2)) and ũ has the relevant

number of bounded derivatives. The remaining term has the form

(ϕ+)′η+ + (ϕ−)′η− = (ϕ+)′(η+ − η−),

which was already dealt with in (44). The final result is that this term is also
εO(R).

The conclusions coming from the last several considerations are summarized here.

Lemma 4.3. The forcing functions on the right-hand side of (42), defined via the
approximate solution (η, u, v), are all εO(R) in Cb(0, 1

ε ;Hk−1(R2)).

With these lemmas in hand, attention is returned to the functions (N,U, V ) which
begin at the origin in function space at t = 0, exist in Cb(0, t0;Hk(R2)3 for at least
some positive time interval [0, t0], and solve (42) on that interval. Local existence
for (42) follows readily just as in [9], [10], [15] or [16] because of the regularity of
the coefficients and the forcing functions established in Lemmas 4.2 and 4.3. To
produce a solution on the time interval [0, 1

ε ] a priori bounds are now derived.
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A straightforward energy-type calculation reveals that

1

2

d

dt

∫ [
N2 + ε|∇N |2

]
+

∫
N(Ux + Vy)

+ε

∫
N
[
(NU)x + (NV )y + (η̄U)x + (ūN)x + (v̄N)y + (η̄V )y

]
= −

∫
N
[
η̄t + ūx + v̄y − ε

(
∆η̄t + (η̄ ū)x + (η̄ v̄)y

)]
,

1

2

d

dt

∫ [
U2 + ε|∇U |2

]
+

∫
UNx + ε

∫
U
[
UUx + (ūU)x + V Vx + (v̄V )x

]
= −

∫
U
[
ūt + η̄x − ε

(
∆ūt + ū ūx

)]
,

1

2

d

dt

∫ [
V 2 + ε|∇V |2

]
+

∫
V Ny + ε

∫
V
[
UUy + (ūU)y + V Vy + (v̄V )y

]
= −

∫
V
[
v̄t + η̄y − ε

(
∆v̄t + ū ūy

)]
,

(46)

where unadorned integrals are henceforth taken over {(x, y) ∈ R2}. Define X(t) by

X2(t) = ‖N(·, t)‖23 + ‖U(·, t)‖23 + ‖V (·, t)‖23
+ ε
(
|∆2N(·, t)|22 + |∆2U(·, t)|22 + |∆2V (·, t)|22

)
.

Note that when the three equations (46) are summed, the quadratic terms on the
left-hand side cancel. According to Lemma 4.3, the right-hand side is bounded by
c εX(t) where c depends only on R0. Estimating the various cubic terms on the
left-hand sides appearing in (46), it is determined that

d

dt

∫ [
N2 + U2 + V 2 + ε

(
|∇N |2 + |∇U |2 + |∇V |2

)]
≤ εP0

(
X
)

(47)

where P0 is a cubic polynomial in X and R of the form

P0 = c
(
X3 +RX2 + (R2 +R)X

)
with a coefficient c that is independent of ε ≤ 1, at least on the time interval [0, 1

ε ].
This makes use of the properties of the coefficients described in Lemma 4.2 and the
fact that the L∞–norms of the first partial derivatives of the dependent variables
are bounded by the H3–norms of the variable itself (e.g. |∇N |∞ ≤ c‖N‖3, etc.).

The differential inequality (47) by itself is not helpful toward obtaining bounds
of any kind on the variables (N,U, V ) since the right-hand side features derivatives
not under the control of the left-hand side. To close the inequality, an H3–bound
is now undertaken. The calculations to follow are straightforward, but somewhat
tedious:

1

2

d

dt

∫ [(
1 + εN + εη̄

)(
|∆∇U |2 + |∆∇V |2

)
+ |∆∇N |2

+ε
(
|∆2U |2 + |∆2V |2 + |∆2N |2

)]
=

∫ [
∆∇U ·∆∇(Ut − ε∆Ut) + ∆∇V ·∆∇(Vt − ε∆Vt)

+∆∇N ·∆∇(Nt − ε∆Nt)
]

(48)
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+ε

∫
(N + η̄)(∆∇U ·∆∇Ut + ∆∇V ·∆∇Vt)

+
ε

2

∫
(Nt + η̄t)

(
|∆∇U |2 + |∆∇V |2

)
= I1 + I2 + I3.

The I3–terms are easily estimated using the boundedness in L∞ of η̄t and Nt.
The boundedness of the norm of Nt in L∞ is obtained via the first equation in (42).
Writing it in the form

Nt = −(I − ε∆)−1

[
Ux + Vy + η̄t + ūx + v̄y + ε

(
(η̄ ū)x + (η̄ v̄)y −∆η̄t

)
+ε
(

(NU)x + (NV )y + (η̄U)x + (ūN)x + (v̄N)y + (η̄V )y

)]
and using the boundedness of (I − ε∆)−1 on the L2–based Sobolev spaces Hj(R2),
j ∈ Z, uniform in ε > 0, it transpires that

I3 ≤ cε
(
X +R+ ε

(
X2 +RX +R2

))
X2.

Estimating I1 and I2 is a little more subtle. Making use of the evolution equations
(42) satisfied by (N,U, V ), I1 may be expressed in the form

I1 = −
∫

∆∇U ·∆∇
[
Nx + (ūt + η̄x) + ε(ū ūx + v̄ v̄x −∆ūt)

+ε
(
UUx + (ūU)x + V Vx + (v̄V )x

)]
−
∫

∆∇V ·∆∇
[
Ny + (v̄t + η̄y) + ε(ū ūy + v̄ v̄y −∆v̄t)

+ε
(
UUy + (ūU)y + V Vy + (v̄V )y

)]
−
∫

∆∇N ·∆∇
[
Ux + Vy + (η̄t + ūx + v̄y) + ε

(
(η̄ ū)x + (η̄ v̄)y −∆η̄t

)
+ε
(

(NU)x + (NV )y + (η̄U)x + (ūN)x + (v̄N)y + (η̄V )y

)]
.

(49)

The lowest-order terms cancel since two integrations by parts reveal that∫
∆∇U ·∆∇Nx +

∫
∆∇V ·∆∇Ny +

∫
∆∇N ·∆∇

(
Ux + Vy

)
= 0.

The terms in (49) dependent upon the approximate solution (η̄, ū, v̄) are easily
estimated using the results of Lemma 4.3, viz.∫

∆∇U ·∆∇
(
ūt + η̄x + ε(ū ūx + v̄ v̄x −∆ūt)

)
+

∫
∆∇V ·∆∇

(
v̄t + η̄y + ε(ū ūy + v̄ v̄y −∆v̄t)

)
+

∫
∆∇N ·∆∇

[
η̄t + ūx + v̄y + ε

(
(η̄ ū)x + (η̄ v̄)y −∆η̄t

)]
≤ cεX.

With a few exceptions, the other terms comprising I1 are all bounded by εX3. In
more detail, let σ, τ and γ connote any of the residual variables N , U and V . The
integrals appearing in I1 with at most three derivatives on each residual variable
have the form ∫

∂3σ ∂3τ ∂γ or

∫
∂3σ ∂2τ ∂2γ.
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These may be bounded above thusly:∣∣∣∫ ∂3σ ∂3τ ∂γ
∣∣∣ ≤ |∂γ|∞ ||σ||3 ||τ ||3
≤ c||γ||2||σ||3||τ ||3 ≤ cX3

(50)

and ∣∣∣∫ ∂3σ ∂2τ ∂2γ
∣∣∣ ≤ |∂3σ|2 |∂2τ |4 |∂2γ|4

≤ c||σ||3 ||∂2τ ||1 ||∂2γ||1 ≤ cX3.

(51)

Here ∂3 and ∂2 stand for any combination of 3 or 2 partial derivatives in the x– and
y–variables. The fact that H2(R2) ⊂ L∞(R2) and H1(R2) ⊂ L4(R2) has been used
in (50) and (51), respectively. Thus, terms in I1 of this form are all bounded by
cεX3. This observation allows us to gain helpful control of two more of the integrals
appearing in I1, specifically

ε

∫
∆∇U ·∆∇

(
UUx + (ūU)x

)
+ ε

∫
∆∇V ·∆∇

(
V Vy + (v̄V )y

)
= ε

∫ (
(U + ū)∆∇U ·∆∇Ux + (V + v̄)∆∇V ·∆∇Vy

)
+ ε{terms with at most 3-derivatives on each residual variable}

= −ε
2

∫ (
(Ux + ūx)|∆∇U |2 + (Vy + v̄y)|∆∇V |2

+ ε{terms with at most 3-derivatives on each residual variable}.
Thus, these integrals have been reduced completely to ε times terms with at most
three derivative on each residual variable. They are therefore bounded by εX3 or
by εX2 when they involve ūx or v̄y.

The hypothesis that the initial velocity field is irrotational is now invoked.

Lemma 4.4. The “vorticity” Uy−Vx of the residual variables is O(R) in the space
Cb(0, 1

ε ;Hk−1(R)).

Proof. Since the vorticity of the initial velocity field (u0, v0) is assumed to be zero,
the vorticity of the time-dependent velocity field also vanishes. This is because

∂t∇×
(
u
v

)
= ∇×

(
ut
vt

)
= ∇× (I − ε∆)−1

(
∇η +

ε

2
∇
∣∣∣∣( u

v

)∣∣∣∣2
)

= (I − ε∆)−1∇×∇
(
η +

ε

2
(u2 + v2)

)
= 0.

It remains to understand the vorticity

uy + (ϕ+)′u+ + (ϕ−)′u− − vx = uy − vx + (ϕ+)′(u+ − u−)

of the approximate flow. The right-hand is composed of terms known to be O(R)
in Hk−1(R2), so the result follows.

Remark 3. The assumption of irrotationality is in fact redundant. This was used
already in the derivation of the model (6) (see [7], [8]). However, it is worth noting
that an examination of the derivation of a priori bounds shows that one only needs
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that for the exact velocity field, the vorticity is uy − vx is O(R) and this will follow

if u0y − v0x is εO(R) in Hk−1(R2). This point is not pursued here.

Using this information about the vorticity allows us to gain a useful bound on
two more of the integral terms appearing in I1, namely

ε

∫
∆∇U ·∆∇

(
V Vx + (v̄V )x

)
+ ε

∫
∆∇V ·∆∇

(
UUy + (ūU)y

)
= ε

∫
∆∇U ·∆∇

(
(V + v̄)Vx + v̄xV

)
+ ε

∫
∆∇V ·∆∇

(
(U + ū)Uy + ūyU

)
= ε

{∫ [
(V + v̄)∆∇U ·∆∇Uy + (U + ū)∆∇V ·∆∇Vx

]
+

∫ [
(V + v̄)∆∇U ·∆∇(Vx − Uy) + (U + ū)∆∇V ·∆∇(Uy − Vx)

]
+ terms with at most 3-derivatives on each residual variable

}
≤ −ε

2

∫ [
(V + v̄)y|∆∇U |2 + (U + ū)x|∆∇V |2

]
+ cRX(t)2

+ ε
{

terms with at most 3-derivatives on each residual variable
}
,

where the vorticity Lemma 4.4 has been used to obtain the RX(t)2 term in the last
step.

Attention is now given to the integrals involving the dependent variable N in I1.
A calculation reveals that

ε

∫
∆∇N ·∆∇

[
(NU)x + (NV )y + (η̄U)x + (ūN)x + (v̄N)y + (η̄V )y

]
= ε

∫
∆∇N ·∆∇

[
(N + η̄)(Ux + Vy) + (N + η̄)xU + (N + η̄)yV

+(ūN)x + (v̄N)y

]
= ε

∫
(N + η̄)∆∇N ·∆∇

(
Ux + Vy)

+ε{terms with at most 3-derivatives on each residual variable}.

(52)

The first term on the right-hand side of (52) is troublesome, but it will cancel with
a similar term in I2. To see this, calculate I2 by using (42) to determine Ut and Vt,
to wit,

I2 = ε

∫
(N + η̄)(∆∇U ·∆∇Ut + ∆∇V ·∆∇Vt)

= −ε
∫

(N + η̄)∆∇U ·∆∇
[
Nx + ūt + η̄x

+ε
(
UUx + (ūU)x + V Vx + (v̄V )x + ū ūx −∆ūt −∆Ut

)]
−ε
∫

(N + η̄)∆∇V ·∆∇
[
Ny + v̄t + η̄y

+ε
(
UUy + (ūU)y + V Vy + (v̄V )y − ū ūy −∆v̄t −∆Vt

)]
= −ε

2

2

d

dt

∫
(N + η̄)

(
|∆∇2U |2 + |∆∇2V |2

)
+ ε

∫
(N + η̄)∆∇(Ux + Vy) ·∆∇N
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+
ε2

2

∫
(Nt + η̄t)

(
|∆∇2U |2 + |∆∇2V |2

)
+ε{terms with at most 3-derivatives on each residual variable}
+ terms of order ε2.

Notice that the offending term

ε

∫
(N + η̄)∆∇(Ux + Vy) ·∆∇N

cancels between I1 and I2. Indeed, this was the whole point of introducing the
integral

ε

∫
(N + η̄)

(
|∆∇U |2 + |∆∇V |2

)
into the “energy” on the left-hand side of (48).

The terms of order ε2 do not present a problem. They come in two sorts; for
example

ε2

∫
N∆∇U ·∆∇(V Vx).

The most inconvenient term in the integral above is

ε2

∫
N∆∇U ·

[
V∆∇(Vx)

]
,

which may be bounded by

ε3/2|N |∞ ||U ||3 |V |∞ ε1/2||V ||4 ≤ ε3/2X4.

Collecting all the estimates obtained for I1, I2, I3, and using (48) yields the
inequality

1

2

d

dt

∫ [(
1 + εN + εη̄

)
(|∆∇U |2 + |∆∇V |2

)
+ |∆∇N |2

+ε
(

1 + εN + εη̄
)(
|∆2U |2 + |∆2V |2

)
+ ε|∆2N |2

]
≤ c εX(t)

(
1 +X +X2 +X3

)(
1 + ε

∫ (
|∆∇2U |2 + |∆∇2V |2

))
.

The same argument used earlier in the proof of Therorem 3.1 now applies, allowing
us to complete the derivation of a priori bounds on the residual variables on the
time interval [0, 1

ε ] in the case k = 4.
For larger values of k, one simply uses the 2-dimensional version of (39) and

inducts on k, starting with k = 4, which is in hand.

Theorem 4.5. Fix k ≥ 4 and let (η0, u0, v0) be given bore-like initial data as
described in (10) such that the hypotheses A1, A2, A3, A4 hold and the initial
vorticity ∂yu0 − ∂xv0 = 0. There is an R0 > 0 such that if 0 < R ≤ R0, then for
0 < ε ≤ 1, the unique bounded continuous solution (η, u, v) of the initial-boundary-
value problem (7)-(8) for bore propagation is defined at least on the time interval
[0, 1

ε ] with

∂x(η, u, v) ∈ C
(

0,
1

ε
;Hk−1(R2)

)
and ∂y(η, u, v) ∈ C

(
0,

1

ε
;Hk−1(R2)

)
.

The differences η − η̄, u − ū, v − v̄ ∈ C(0, 1
ε ;L2(R2)). The solutions depend contin-

uously in the function spaces just delineated on variations of the auxiliary data in
the subset D(R0, ε) defined below the hypotheses A1, · · · , A4.
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Remark 4. Continuity of the solution with respect to variations in the initial data is
already available in the local existence theory in [9] made via a contraction-mapping
argument.

Remark 5. It is worth pointing out that while relatively large negative values of
η are not forbidden in the mathematical theory, they make no sense physically.
In the original physical variables (see (3)), maintaining the free surface above the
impermeable bottom requires η̃ > −h0, which, upon dividing by the maximum
amplitude A, becomes

η =
η̃

A
> −h0

A
= − 1

α
= −1

ε
.

According to the theory, η remains of order 1, so the issue of the bottom running
dry does not arise, at least on the Boussinesq time scale.
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