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Abstract. This survey discusses recent work on the Brill-Noether problem for rational surfaces and
the problem of computing the ample cones of moduli spaces of sheaves. We discuss the relationship
between the problem of computing the ample cone and the classification of Chern characters of
stable sheaves. We also show that moduli spaces of rank 2 sheaves on very general hypersurfaces of
degree d in P3 can have arbitrarily many irreducible components as d tends to infinity.

1. Introduction

In this paper, we discuss recent developments concerning the birational geometry of moduli spaces
of Gieseker semistable sheaves on surfaces following [CH16b, CH17a] and [CH17b]. We will focus
on the Brill-Noether problem and computing important birational invariants such as ample cones.
The paper grew out of the first author’s talk at the Abel Symposium in Svolvær, Norway in August
2017. While this paper is largely a survey, we will also present some new results and examples on
surfaces of general type.

Let X be a smooth, complex projective surface and let H be an ample divisor. Given a Chern
character v, Gieseker [Gie77] and Maruyama [Mar78] construct a moduli space MX,H(v) that pa-
rameterizes S-equivalence classes of H-Gieseker semistable sheaves on X with Chern character v.
The moduli spaces MX,H(v) carry fundamental information on algebro-geometric invariants such as
linear systems on X and they play a central role in Donaldson’s theory of differentiable structures
[Don90], in representation theory [Nak99] and mathematical physics [Wit95].

Rank one stable sheaves are of the form L⊗ IZ , where L is a line bundle on X and IZ is an ideal
sheaf of points on X. Consequently, when the rank of v is one, the moduli space MX,H(v) fibers

over Picch1(v)(X) with fibers isomorphic to a Hilbert scheme of points on X. The Hilbert scheme

X [n] of n points on X is a smooth, projective irreducible variety of dimension 2n [Fog68]. Hence,
the basic geometric invariants of MX,H(v) such as dimension and irreducibility are well-understood.
When the rank of v is higher, much less is known. The following questions are open in general.

(1) For which Chern characters v is the moduli space MX,H(v) non-empty?
(2) When is MX,H(v) irreducible and of the expected dimension?
(3) What are the singularities of MX,H(v)? Is MX,H(v) reduced?

The currently known answers to these questions often have two flavors. There are results that hold
on arbitrary surfaces under numerical restrictions on v. For example, the Bogomolov inequality,
which asserts that the discriminant ∆ of a stable sheaf has to be nonnegative, imposes strong
restrictions on the existence of stable sheaves. When ∆(v) � 0, then theorems of Donaldson
[Don90], Li [LiJ93, LiJ94] and O’Grady [O’G96] show that the moduli spaces MX,H(v) behave well.

Date: November 13, 2017.
2010 Mathematics Subject Classification. Primary: 14J60, 14J26. Secondary: 14D20, 14F05.
Key words and phrases. Moduli spaces of sheaves, globally generated vector bundles, the Brill-Noether problem,

ample cones.
During the preparation of this article the first author was partially supported by the NSF grant DMS-1500031 and

NSF FRG grant DMS 1664296 and the second author was partially supported by the NSA Young Investigator Grant
H98230-16-1-0306 and NSF FRG grant DMS 1664303.

1



2 I. COSKUN AND J. HUIZENGA

They are nonempty, irreducible, of the expected dimension and generically smooth (see [HuL10]).
Then there are results on specific surfaces. The question of when MX,H(v) is nonempty has been
answered for surfaces such as K3 surfaces, Abelian surfaces and P2 (see [DLP85, HuL10, LeP97,
Muk84, Yos01]). In these cases, the moduli spaces are irreducible and often have more structure.
For example, when X is a K3 surface, v is a primitive character and H is sufficiently general, then
MX,H(v) is a hyperkähler manifold. We will briefly recall a sampling of these results in §2.5.

When X is a surface of general type and ∆ is positive but small, the moduli space MX,H(v)
can exhibit pathological behavior. The moduli spaces can be reducible, non-reduced and can have
components of different dimensions (see [Mes97, MS11, MS13a, MS13b]). The pathological behavior
is already present in hypersurfaces in P3. In §3 we will show the following.

Theorem 1.1. Given a positive integer k, there exists an integer dk such that for all d ≥ dk, there
exists a moduli space MXd,H(vd) with at least k components, where Xd is a very general surface of
degree d in P3, H is the hyperplane class and vd is a Chern character of rank 2.

When the moduli space MX,H(v) is irreducible and normal, one can ask for finer topological and
birational invariants of MX,H(v).

(1) Compute the ample and effective cones of divisors of MX,H(v).
(2) Run the minimal model program for MX,H(v) and use wall-crossing to compute topological

invariants of MX,H(v).
(3) Compute the cohomology of tautological sheaves on MX,H(v).

In recent years, Bridgeland stability has allowed many researchers to compute ample and effective
cones of MX,H(v) and run the minimal model program on MX,H(v) [Abe17, ABCH13, BM14a,
BM14b, BC13, BHL+15, CH16a, CH17a, CHW17, LZ16, MYY14, MYY15, Nue16a, Rya16, YY14,
Yos12]. Again the results have two flavors. There are detailed answers for special surfaces such as
K3 surfaces and P2 for all Chern characters. These results crucially depend on the classification of
Chern characters of stable sheaves on these surfaces. There are also results on arbitrary surfaces for
Chern characters with ∆� 0. We will review some of these results in §5 and §6.

Assume that MX,H(v) is irreducible and normal. We will primarily focus on two main techniques
for constructing nef and effective divisors on MX,H(v). Brill-Noether divisors provide a large class
of natural divisors on MX,H(v). Let W be a sheaf with Chern character w such that χ(v,w) = 0.
Consider the locus

DW := {V ∈MX,H(v)|h1(X,W ⊗V) 6= 0}.
When DW is not the entire moduli space, it is an effective divisor. The Brill-Noether problem asks
to determine the invariants w for which there exists a sheaf W with Chern character w such that
DW is an effective divisor. In particular, when χ(v) = 0, we can ask whether the cohomology of
the general sheaf V ∈MX,H(v) vanishes. In §4, following [CH16b] we will recall the answer to this
question for certain rational surfaces such as P2, Hirzebruch surfaces and del Pezzo surfaces. We will
also discuss an application of these cohomology computations to classifying moduli spaces MX,H(v)
whose general member is globally generated.

The other tool for constructing important divisor classes is the Positivity Lemma of Bayer and
Macr̀ı [BM14a]. Bayer and Macr̀ı construct a nef divisor class on moduli spaces of Bridgeland stable
objects under certain assumptions. Viewing MX,H(v) as a moduli space of Bridgeland stable objects
for suitable stability conditions, they obtain nef divisors on MX,H(v). Assume X has Picard rank 1
and ∆� 0. Following [CH17a], we will explain how to compute the nef cone of MX,H(v) using this
machinery and show that the problem of computing the ample cones of MX,H(v) and the problem
of characterizing Chern characters of stable bundles on X are intimately related.

The organization of the paper. In §2, we will recall definitions and results on Gieseker stability
and review basic constructions such as elementary modifications and the Serre construction. In
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§3, we will discuss unexpected behavior of moduli spaces of sheaves on general type surfaces when
the discriminant is small. In particular, we will prove Theorem 1.1. In §4, we will review recent
developments on the Brill-Noether Problem for rational surfaces following [CH16b] and [CH17b]. In
§5, we will review basic facts on Bridgeland stability. Finally, in §6, we will discuss a method for
computing ample cones of moduli spaces of sheaves following [CH17a].

Acknowledgments: The first author would like to thank the organizers of the Abel Symposium,
J. Christophersen, J. C. Ottem, R. Piene, K. Ranestad, and S. Tirabassi, for a wonderful conference
and their hospitality. We have benefitted from many discussions with A. Bayer, A. Bertram, L. Ein,
J. Kopper, E. Macr̀ı, H. Nuer, B. Schmidt, M. Woolf and K. Yoshioka.

2. Preliminaries

In this section, we collect basic definitions and facts on Gieseker and twisted Gieseker semistability,
prioritary sheaves, and classification of stable sheaves on surfaces such as P2 and K3 surfaces.

2.1. Gieseker and µ-stability. We refer the reader to [CH15, HuL10, Hui17] and [LeP97] for more
detailed information on Gieseker (semi)stability and moduli spaces of stable sheaves. Let X be a
smooth, complex projective surface and let H be an ample divisor on X. Let v denote a Chern
character on X and define the H-slope µH(v), the total slope ν(v) and discriminant ∆(v) by the
formulae

µH(v) =
c1(v) ·H
r(v) ·H2

, ν(v) =
c1(v)

r(v)
, ∆(v) =

1

2
ν(v)2 − ch2(v)

r(v)
,

respectively. The H-slope, total slope and discriminant of a sheaf V of positive rank is defined to be
the H-slope, total slope and discriminant of its Chern character. The Chern character (r, ch1, ch2)
of a positive rank sheaf can be recovered from (r, ν,∆). The advantage is that the slope and the
discriminant are additive on tensor products

ν(V ⊗W) = ν(V) + ν(W)

∆(V ⊗W) = ∆(V) + ∆(W).

If L is a line bundle on X, then ∆(L) = 0. Consequently, tensoring a sheaf with a line bundle
preserves the discriminant. Set

P (ν) = χ(OX) +
1

2
ν · (ν −KX).

The Riemann-Roch formula in terms of these invariants reads

χ(V) = r(V)(P (ν(V))−∆(V)).

Definition 2.1. A torsion-free coherent sheaf V is µH-(semi)stable if for every nonzero subsheafW
of smaller rank, we have

µH(W) <
(−)

µH(V).

The Hilbert and reduced Hilbert polynomials PH,V and pH,V of a pure d-dimensional, coherent sheaf
V with respect to H are defined by

PH,V(m) = χ(V(mH)) = ad
md

d!
+ l.o.t, pH,V =

PH,V
ad

.

The sheaf V is H-Gieseker (semi)stable if for every proper subsheaf W,

pH,W(m) <
(−)

pH,V(m)

for m� 0.
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Expressing the Hilbert polynomial in terms of µH and ∆, one obtains the following implications

µH -stability =⇒ H-Gieseker stability =⇒ H-Gieseker semistability =⇒ µH -semistability.

The reverse implications are false in general. However, when c1 ·H and rH2 are relatively prime,
then µH -stability and µH -semistability coincide and all 4 concepts agree. When the ample class
H is fixed or understood from context, we will drop it from our notation. We will often refer to
Gieseker (semi)stability simply as (semi)stability.

Two sheaves V and W are S-equivalent with respect to a notion of stability if they have the same
Jordan-Hölder factors with respect to that notion of stability. Gieseker [Gie77] and Maruyama
[Mar78] prove that there exists a (possibly empty) projective scheme parameterizing S-equivalence
classes of H-Gieseker semistable sheaves (see [HuL10, Theorem 4.3.4]).

The Bogomolov inequality. The Bogomolov inequality asserts that a µH -semistable sheaf V
satisfies ∆(V) ≥ 0 and imposes a strong restriction on the existence of semistable sheaves. Since a
line bundle L has ∆(L) = 0, the Bogomolov inequality is sharp. However, the inequalities may be
improved for (nonintegral) slopes s depending on the surface X. Given a rank r and a total slope ν,
let ∆H

min,ν,r denote the minimal discriminant of a µH -semistable bundle with total slope ν and rank
at most r. By definition any µH -semistable sheaf with total slope ν and rank at most r satisfies the
inequality ∆ ≥ ∆H

min,ν,r. We will refer to such inequalities as sharp Bogomolov inequalities.

Remark 2.2. Determining the sharp Bogomolov inequalities on X is equivalent to classifying Chern
characters of µH -semistable sheaves on X. Once there exists a µH -semistable sheaf V of rank r,
total slope ν, and discriminant ∆H

min,ν,r, by performing elementary modifications (explained in detail

below) we obtain µH -semistable sheaves for all integral Chern characters of rank r, total slope ν and
∆ > ∆H

min,ν,r. Similarly, if there exists a µH -stable sheaf of rank r, total slope ν and discriminant
∆0, then there exists a µH -stable sheaf for every integral Chern character of rank r, total slope ν
and discriminant ∆ ≥ ∆0.

The existence of Gieseker semistable sheaves is more subtle. For example, on P2 with H = OP2(1),
OP2⊕OP2 is a Gieseker semistable sheaf with (r, µH ,∆) = (2, 0, 0). However, any Gieseker semistable
sheaf with r = 2, µH = 0 and ∆ > 0, in fact has ∆ ≥ 1. We will shortly see that there does not
exist a Gieseker semistable sheaf with ∆ = 1

2 . Let Ip denote the ideal sheaf of a point p ∈ P2. The

sheaf OP2 ⊕ Ip is a µH -semistable sheaf with ∆ = 1
2 .

Twisted Gieseker semistability. We will need a further variant of Gieseker semistability. Let
D be an arbitrary Q-divisor on X. Formally define chD = e−D ch, which explicitly gives

chD0 = ch0, chD1 = ch1−D ch0, chD2 = ch2−D · ch1 +
D2

2
ch0 .

For a sheaf V, define the (H,D)-slope µH,D and the (H,D)-discriminant ∆H,D by

µH,D =
H · chD1
H2 chD0

, ∆H,D =
1

2
µ2
H,D −

chD2
H2 chD0

.

A torsion-free coherent sheaf V is µH,D-(semi)stable if for every nonzero, proper subsheaf W ⊂ V of
smaller rank

µH,D(W) ≤ µH,D(V).

Since µH and µH,D only differ by the constant D·H
H2 , µH -(semi)stability and µH,D-(semi)stability

coincide.

We need to introduce one final change of coordinates that take into account the Riemann-Roch

formula. Define ch
D

= chD+ 1
2
KX and define the modified invariants

µH,D = µH,D+ 1
2
KX

, ∆H,D = ∆H,D+ 1
2
KX

.
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The reduced D-twisted Hilbert polynomial of a torsion free sheaf V is defined by the formal Euler
characteristic

pVH,D(m) =
χ(V(mH −D))

rk(V)
.

The sheaf V is (H,D)-twisted Gieseker (semi)stable if for every nonzero proper subsheaf W ⊂ V of
smaller rank, we have pWH,D(m) ≤ pVH,D(m) for m� 0. When D = 0, this notion coincides with usual

H-Gieseker (semi)stability. The notion of (H,D)-twisted Gieseker semistability can be reformulated
in terms of the invariants µH and ∆H,D. The sheaf V is (H,D)-twisted Gieseker (semi)stable if and
only if

(1) V is µH -semistable; and
(2) if W ⊂ V is a proper nonzero subsheaf of smaller rank, then

∆H,D(W) ≥ ∆H,D(V).

Matsuki and Wentworth [MW97] prove that there exists a projective moduli space MX,H,D(v)
parameterizing S-equivalence classes of (H,D)-twisted Gieseker semistable sheaves with Chern char-
acter v. These moduli spaces were initially constructed to study the birational geometry ofMX,H(v).
Under certain assumptions, one obtains different birational models of MX,H(v) by varying the di-
visor D.

2.2. Prioritary sheaves. It is often difficult to construct semistable bundles or check that a given
bundle is semistable. When KX is negative, there is a weaker notion which is easier to work with.

Definition 2.3. Let D be an effective divisor on X. A torsion-free coherent sheaf V is D-prioritary
on X if Ext2(V,V(−D)) = 0. Let PX,D(v) denote the stack of D-prioritary sheaves on X with Chern
character v.

If H · (KX + D) < 0, then the stack MX,H(v) of H-Gieseker semistable sheaves is a (possibly
empty) open substack of PX,D(v). If V is µH -semistable, then by Serre duality

Ext2(V,V(−D)) = Hom(V,V(KX +D))∗ = 0,

where the last equality follows because µH(V) < µH(V(KX + D)) by assumption. Hence, every
µH -semistable sheaf is D-prioritary.

This concept is especially useful whenX is P2 andD is the hyperplane class L orX is a birationally
ruled surface and D is the fiber class F . We will use the following fundamental theorem of Walter
numerous times.

Theorem 2.4 (Walter [Wal98]). Let X be a birationally ruled surface with fiber class F and let
v be a Chern character with positive rank. Then the stack PX,F (v) is irreducible whenever it is
nonempty. Moreover, if rk(v) ≥ 2, then the general element of PX,F (v) is a vector bundle. In
particular, if H is a polarization such that H · (KX + F ) < 0 and MX,H(v) is nonempty, then
MX,H(v) is irreducible.

Remark 2.5. Walter’s theorem generalizes an earlier theorem of Hirschowitz and Laszlo [HiL93]
which asserts that if v is a positive rank Chern character, then PP2,L(v) is irreducible whenever it
is nonempty.

Remark 2.6. When X is a Hirzebruch surface, KX + F is anti-effective. Hence, the condition
H · (KX + F ) < 0 holds for every polarization H. On an arbitrary birationally ruled surface,
F is nef and KX · F < 0 by adjunction. Since ampleness is an open condition and nef divisors
are in the closure of the ample cone, there exist polarizations H sufficiently close to F such that
H · (KX + F ) < 0. However, this inequality in general imposes conditions on the polarization H.

Checking a sheaf is prioritary is much easier than checking it is stable. Prioritary sheaves are
also easier to construct.
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Example 2.7. Let L be the hyperplane class on P2 and let a be an integer. Then vector bundles
of the form OP2(a)m ⊕OP2(a+ 1)r−m are L-prioritary even though they are not µL-semistable.

Every vector bundle of rank r on a rational curve is a direct sum of line bundles
⊕r

i=1OP1(ai).
The vector bundle is called balanced if |ai − aj | ≤ 1 for every 1 ≤ i ≤ j ≤ r.

Let D be a smooth curve on X. The condition of being D-prioritary is useful for understanding
the restriction of bundles from X to D and especially useful when D is a rational curve. Let Fs/S
be a family of D-prioritary sheaves on X which are locally free on D. Then the condition of being
D-prioritary implies that the natural map

Ext1
X(Fs,Fs)→ Ext1

D(Fs|D,Fs|D)

is surjective. Consequently, we obtain the following.

Proposition 2.8 ([CH17b], Proposition 2.6). Let D be a smooth curve on X and let Fs/S be a
complete family of D-prioritary sheaves on X which are locally free on D. Then the restricted family
Fs|D/S is also a complete family. In particular, if D is a rational curve, then Fs|D is balanced for
s ∈ U , where U is a nonempty dense open subset of S.

2.3. Elementary modifications. An elementary modification of a torsion-free sheaf V on X is
any sheaf given by an exact sequence

0→ V ′ → V → Op → 0,

where p ∈ X is a point. Using the defining exact sequence, the following are immediate:

rk(V ′) = rk(V), c1(V ′) = c1(V), ch2(V ′) = ch2(V)− 1.

In particular,

χ(V ′) = χ(V)− 1, ∆(V ′) = ∆(V) +
1

r
.

Assume φ : F → V ′ is an injective sheaf homomorphism. Composing φ with the inclusion of V ′ into
V, we can view F as a subsheaf of V. Consequently, an elementary modification of a µH -(semi)stable
sheaf is again µH -(semi)stable. As discussed in Remark 2.2, elementary modifications of Gieseker
(semi)stable sheaves do not need to be Gieseker (semi)stable.

For future reference, we observe the following easy lemma.

Lemma 2.9 ([CH17b], Lemma 2.7). Let V ′ be a general elementary modification of V at a general
point p ∈ X. Then:

(1) If V is D-prioritary, then V ′ is D-prioritary.
(2) H2(X,V) = H2(X,V ′).
(3) If h0(X,V) > 0, then h0(X,V ′) = h0(X,V)− 1 and h1(X,V ′) = h1(X,V). If h0(X,V) = 0,

then h1(X,V ′) = h1(X,V) + 1. In particular, if at most one of h0 or h1 is nonzero for V,
then at most one of h0 or h1 is nonzero for V ′.

2.4. The Serre construction. The Serre construction provides a method for constructing locally
free sheaves on any variety, but it takes a particularly simple form on surfaces. Let Z be collection
of n distinct points on X. We say that Z satisfies the Cayley-Bacharach property with respect to a
line bundle L if any section of L vanishing on any subscheme Z ′ ⊂ Z of length n− 1 vanishes on Z.

Theorem 2.10 ([HuL10], Theorem 5.1.1). There exists a locally free extension V of the form

0→ L1 → V → L2 ⊗ IZ → 0

if and only if Z satisfies the Cayley-Bacharach property with respect to the line bundle L−1
1 ⊗L2⊗KX .

Below we will use the Serre construction to construct vector bundles on hypersurfaces in P3.
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2.5. Non-emptiness and irreducibility of the moduli spaces of sheaves. In this subsection,
we collect some facts concerning non-emptiness and irreducibility of the moduli spaces MX,H(v).

The Hilbert scheme. When rk(v) = 1, the basic geometric invariants of the moduli spaces
MX,H(v) are well-understood. A sheaf of rank 1 is isomorphic to L⊗ IZ , where L is a line bundle

on X and IZ is an ideal sheaf of points on X. The Hilbert scheme X [n] parameterizes ideal sheaves
of length n. By Fogarty’s theorem, X [n] is smooth and irreducible.

Theorem 2.11 (Fogarty [Fog68]). Let X be a smooth, irreducible projective surface. Then the

Hilbert scheme X [n] of n points on X is a smooth, irreducible projective variety of dimension 2n.

Furthermore, Fogarty computes the Picard group of X [n]. When the irregularity h1,0(X) = q(X)
is not 0, self-correspondences of X can complicate the answer. For simplicity, we will assume
that q(X) = 0. Let X(n) denote the nth symmetric product of X. The Hilbert-Chow morphism

h : X [n] → X(n) associates to a scheme of length n its support counted with multiplicity. The
exceptional locus of h is an irreducible divisor B parameterizing the locus of nonreduced schemes
in X [n]. A line bundle L on X induces a symmetric line bundle L� · · ·� L on Xn, which descends
to X(n). Hence, it induces a line bundle L[n] on X [n] by pullback. We can thus embed Pic(X) in

Pic(X [n]).

Theorem 2.12 (Fogarty [Fog73]). Let X be a smooth, complex projective surface with q(X) = 0.

Then Pic(X [n]) ∼= Pic(X)⊕ ZB
2 .

Higher rank moduli spaces. When the rank of v is at least 2, much less is known about the
geometry of MX,H(v). The moduli spaces MX,H(v) are well behaved as ∆(v) gets large. The results
of Donaldson, Li, culminating in O’Grady’s provide good examples of this general principle.

Theorem 2.13 (O’Grady [O’G96]). There is an explicit constant A = A(r,H,X) depending on
the rank r, the ample H and the surface X, such that for ∆(v) ≥ A, the moduli space MX,H(v)
is normal, irreducible and of the expected dimension. Furthermore, if r ≥ 2, the general point of
MX,H(v) parameterizes a µH-stable vector bundle.

In the next section, we will see that MX,H(v) can be reducible with arbitrarily many components
of different dimensions when ∆ is small. On the other hand, for special surfaces MX,H(v) may have
very nice structure. The K-trivial surfaces often exhibit the simplest behavior.

Moduli spaces of K-trivial surfaces. The moduli spaces of K3 surfaces have been studied
thoroughly by many authors including Mukai, Markman, Huybrechts and Yoshioka. We refer the
reader to [HuL10] for a list of references. Define the Mukai pairing on Knum(X) by

〈v,w〉 = −χ(v,w).

Since KX is trivial, Serre duality implies that the Mukai pairing is symmetric. By deformation
theory, the moduli space MX,H(v) has expected dimension 〈v,v〉+ 2. A class v is primitive if it is
not the multiple of another class. The class v is called positive if 〈v,v〉 ≥ −2. If the polarization
H is generic and v is primitive, then there are no strictly semistable sheaves. The main existence
theorem on K3 surfaces is the following (see [HuL10, Chapter 6] for references).

Theorem 2.14 (Mukai, Yoshioka [Muk84], [Yos99]). Let (X,H) be a polarized smooth K3 surface.
Let v ∈ Knum(X) be the class of a sheaf and write v = mv0, where v0 is primitive and m is
a positive integer. If v0 is positive, then MX,H(v) is nonempty. Furthermore, if m = 1 and H
is generic, then MX,H(v) is a smooth, irreducible, holomorphic symplectic variety. Conversely, if
MX,H(v) is nonempty and the polarization is sufficiently generic, then v0 is positive.

In fact, the topology of the moduli spaces MX,H(v) is well-understood thanks to results of Huy-
brechts and Yoshioka.



8 I. COSKUN AND J. HUIZENGA

Theorem 2.15 (Huybrechts, Yoshioka, [Huy99, Yos99]). A smooth moduli space of sheaves on a
K3 surface is deformation equivalent to a Hilbert scheme of points on a K3 surface.

There is a similarly detailed study of the moduli spaces of sheaves on abelian surfaces due to
Yoshioka.

Theorem 2.16 (Yoshioka, [Yos01]). Let (X,H) be a polarized abelian surface. Let v be a primitive,
positive Mukai vector with c1(v) ∈ NS(X) and v2 ≥ 2. If H is a polarization such that there are no

strictly semistable sheaves, then MX,H(v) is deformation equivalent to X̂ ×X [ v
2

2
].

In particular, the dimension and irreducibility of the moduli spaces are known for abelian surfaces
as well. The story for Enriques surfaces is more recent and has been worked out in detail by Nuer
and Yoshioka. The story is slightly more complicated since KX in that case is not trivial but torsion
of order 2. Recall that an Enriques surface is called unnodal if it does not contain any smooth
rational curves.

Theorem 2.17 (Nuer, [Nue16b], Theorem 1.1). Let v be a primitive Mukai vector of positive rank
with v2 ≥ −1. For a polarization H generic with respect to v on an unnodal Enriques surface X,
the moduli space MX,H(v, L) of semistable sheaves with determinant L is nonempty unless v2 = 0,

2|c1(L) and 2 - L+ rk(v)
2 KX . When nonempty, the moduli space MX,H(v, L) is irreducible.

There is a nice description of the non-primitive case as well (see [Nue16b, Theorem 1.4]).

Moduli spaces of K-negative surfaces. Already for P2 the classification of stable Chern char-
acters is more complicated. For example, the moduli space may be empty even though the expected
dimension is positive. In the case of P2 a complete answer is known thanks to the work of Drézet
and Le Potier (see [CH15, CHW17, DLP85, Hui17, LeP97] for more detailed expositions).

A stable bundle E on P2 is called exceptional if Ext1(E , E) = 0. Drézet has completely classified
these bundles [Dre87]. Define an exceptional slope to be the slope of an exceptional bundle. Then
there is a unique exceptional bundle for each exceptional slope. All exceptional bundles are obtained
via a sequence of mutations starting with line bundles. Furthermore, the set of exceptional slopes is
known via an explicit bijection to the dyadic integers (see [DLP85]) and there is an easy algorithm
for computing the continued fraction expansions of exceptional slopes (see [CHW17, §4], [Hui16]).

If V and W are semistable sheaves with µH(V) < µH(W) < µH(V) + 3, then χ(W,V) ≤ 0.
By stability, hom(W,V) = 0. By Serre duality and stability, ext2(W,V) = hom(V,W(−3))∗ = 0.
Given an exceptional bundle Eα of slope α, any stable sheaf V with slope α−3 < µ ≤ α must satisfy
χ(Eα,V) ≤ 0. Similarly, any stable sheaf V with slope µ such that α < µ < α + 3 must satisfy
χ(V, Eα) ≤ 0. The conditions χ(Eα, ·) = 0 and χ(·, Eα) = 0 define parabolas in the (µ,∆)-plane.
Around each exceptional slope, there is an interval Iα where Eα gives the best inequality. The union
of the parabolas giving the best inequalities is a fractal curve ∆ = δ(µ) called the Drézet-Le Potier
curve. The main classification theorem of Drézet and Le Potier is then the following.

Theorem 2.18 (Drézet-Le Potier [DLP85]). The moduli space MP2,OP2 (1)(v) is positive dimensional

if and only if ∆(v) ≥ δ(µ(v)). In that case, the moduli space is irreducible, normal, factorial and of
the expected dimension. Furthermore, if the rank is at least 2, the general point of the moduli space
parameterizes a µ-stable vector bundle.

Rudakov [Rud94] has worked out a similar classification for P1 × P1 for the polarization (1, 1).
Although there are many special results for small rank or special Chern characters, in general, even
for del Pezzo or Hirzebruch surfaces a detailed classification of stable Chern characters similar to
the Drézet -Le Potier classification is not known.
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Surfaces of general type. We are not aware of any complete classification of stable Chern char-
acters on a surface of general type. There have been extensive studies of small rank cases on special
surfaces such as rank two bundles on quintic hypersurfaces in P3 (see [MS11, MS13a, MS13b]). As
the next section indicates, the geometry of MX,H(v) may exhibit very complicated behavior espe-
cially when ∆(v) is small. It is likely very challenging to obtain a complete classification of stable
Chern characters and the components of the moduli spaces MX,H(v) for general type surfaces.

3. Pathological behavior for small ∆

In this section, following ideas of Mestrano and Simpson [MS13b], we show how to use Hilbert
schemes of space curves to detect components of moduli spaces MX(2, 1, n) of sheaves on very general
surfaces X ⊂ P3 of sufficiently large degree d with c1 equal to the hyperplane class and c2 = n. As
an application, we show that for any number k > 0, there is a number dk such that if d ≥ dk, then
there are moduli spaces MX(2, 1, n) with at least k irreducible components.

Throughout this section, we let X ⊂ P3 be a very general surface of degree d ≥ 5. Then
the Noether-Lefschetz theorem guarantees that PicX ∼= Z, generated by OX(1). We have KX =
OX(d− 4). By the restriction sequence

0→ OP3(k − d)→ OP3(k)→ OX(k)→ 0,

the line bundles OX(k) all have H1(OX(k)) = 0, and if k < d then H0(OX(k)) ∼= H0(OP3(k)). Thus
for k < d the sections of OX(k) can be interpreted as surfaces in P3.

3.1. The construction. Let He,g be the Hilbert scheme of curves of degree e ≥ 3 and genus g in
P3, and let R = Re,g ⊂ He,g be an open subset of an irreducible component of He,g parameterizing
nondegenerate smooth irreducible curves which are transverse to X. Let C ⊂ P3 be a general curve
parameterized by R. By Riemann-Roch, the Hilbert polynomial of OC is

χ(OC(m)) = em− g + 1.

We further assume that d ≥ 5 is large enough that the following two properties hold.

(1) We have vanishings

h1(OC(d− 4)) = 0, h1(IC⊂P3(d− 4)) = 0, and h1(IC⊂P3(d− 3)) = 0.

(2) The curve C can be cut out by homogeneous forms of degree d− 3.

By passing to an open subset of R, we can without loss of generality assume the above properties
hold for every curve C parameterized by R. These properties imply many additional vanishings.

Lemma 3.1. If k ≥ d− 4, then the sheaves OC(k) and IC⊂P3(k) have no higher cohomology.

Proof. Exact sequences of the form

0→ OC(d− 4)→ OC(k)→ OZ → 0

for Z zero-dimensional show that H1(OC(d− 4)) = 0 implies H1(OC(k)) = 0. The sequences

0→ IC⊂P3(k)→ OP3(k)→ OC(k)→ 0

then show that H2(IC⊂P3(k)) = H3(IC⊂P3(k)) = 0. Recall that a smooth irreducible curve C ⊂ P3

is called k-normal if H1(IC⊂P3(k)) = 0. Since C is (d− 3)-normal and OC(d− 4) is nonspecial, we
also have that C is k-normal for all k ≥ d− 3 by [ACGH85, Exercise III.D-5]. �

We put

n := n(d, e, g) = h0(OC(d− 3)) + 1 = e(d− 3)− g + 2.
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Then C ∩X consists of de > n points. Let Z ⊂ C ∩X be a collection of n points. We study rank 2
bundles E on X which fit as extensions

0→ OX → E → IZ⊂X(1)→ 0.

Proposition 3.2. We have ext1(IZ⊂X(1),OX) = 1. Let E be the sheaf given by a nontrivial
extension class. Then E is a µ-stable vector bundle in MX(2, 1, n).

Let UR(n) ⊂ MX(2, 1, n) be the locus parameterizing the sheaves E which can be constructed by
varying C in R and choosing the scheme Z ⊂ C ∩ X arbitrarily. Then UR(n) is irreducible and
dimUR(n) = dimR ≥ 4e.

Proof. First view the curve C and a collection Z ′ ⊂ C of n− 1 points as fixed; we claim that there
is a surface X ⊂ P3 of degree d which contains Z ′ but does not contain C. Consider the restriction
sequence

0→ IC⊂P3(d)→ IZ′⊂P3(d)→ IZ′⊂C(d)→ 0.

Then
χ(IZ′⊂C(d)) = ed− g + 1− (n− 1) = 3e > 0,

so h0(IZ′⊂C(d)) > 0. Also h1(IC⊂P3(d)) = 0 by our choice of d, so there is a surface X of degree d
which vanishes on Z ′ and does not contain C.

Let W ⊂ PH0(OP3(d)) be the subset of surfaces which do not contain C, and consider the
correspondence

Σ = {(X,Z ′) : Z ′ ⊂ C ∩X} ⊂W × Symn−1C.

Then Σ is irreducible by a standard monodromy argument, and dominates the second factor. There-
fore the locus of (X,Z ′) such that Z ′ imposes n−1 = h0(OC(d−3)) conditions on sections ofOC(d−3)
is a dense open subset. Hence if X is very general and Z ⊂ C ∩X is any collection of n points, then
h0(IZ⊂C(d−3)) = 0 and h1(IZ⊂C(d−3)) = 1. Since H0(OP3(d−3))→ H0(OC(d−3)) is surjective,
we see that Z imposes n− 1 conditions on surfaces of degree d− 3. Then by Serre duality we have

ext1(IZ⊂X(1),OX) = ext1(OX , IZ⊂X(d− 3)) = h1(IZ⊂X(d− 3)) = h1(IZ⊂P3(d− 3)) = 1.

The sheaf E is a vector bundle since the scheme Z satisfies the Cayley-Bacharach property for
the line bundle KX(1) = OX(d−3): every section of OX(d−3) which vanishes at some n−1 points
Z ′ ⊂ Z vanishes on C and so vanishes at all of Z. The Chern class computation is elementary. The
defining sequence for E shows that no line bundle OX(k), k ≥ 1, admits a nonzero map to E . Since
c1(E) is odd, the µ-stability of E follows.

Given a bundle E constructed by this method, observe that every section of OP3(d − 3) which
vanishes along Z also has to contain the nondegenerate irreducible curve C. This implies that
the collection of points Z is not coplanar, and therefore h0(E) = 1. This unique section allows
us to uniquely recover the sheaf IZ(1) as the cokernel of the inclusion OX → E . Since the ideal
of C is generated in degree d − 3 or less, we can recover C as the common zero locus of all the
forms in H0(IZ(d − 3)). Thus there is a finite mapping UR(n) → R given by sending E to C, and
dimUR(n) = dimR. The dimension estimate dimR ≥ 4e for components of the Hilbert scheme
parameterizing smooth curves is well-known. The irreducibility of UR(n) is immediate from the
irreducibility of Σ. �

Remark 3.3. The previous discussion can be modified to allow R to be either the Hilbert scheme
of lines or conics which intersect X transversely. We still have ext1(IZ⊂X(1),OX) = 1, and E is a µ-
stable vector bundle in MX(2, 1, n). Varying C and Z still sweeps out a locus UR(n) ⊂MX(2, 1, n).
However, since C is degenerate the dimension estimate for UR(n) changes as follows:

(1) If R parameterizes lines, we have n = d − 1. Since h0(IZ(1)) = 2 we get h0(E) = 3, and E
no longer determines the line C. Any sheaf E ∈ UR(n) arises from up to a 2-dimensional
family of schemes Z, so dimUR(n) ≥ 4− 2 = 2. Equality holds; see Remark 3.7.
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(2) If R parameterizes conics, we have n = 2d− 4. Here h0(IZ(1)) = 1 and h0(E) = 2, and E no
longer determines the conic C. By the same considerations as above, dimUR(n) ≥ 8−1 = 7,
and again equality holds by Remark 3.7.

3.2. Tangent space. Let SR(n) be an irreducible component of MX(2, 1, n) which contains UR(n).
In this section we study the tangent space to MX(2, 1, n) at points of UR(n) to find an upper bound
on the dimension of SR(n). This computation generalizes a computation from [MS13b] in the case
where d = 6 and R parameterizes twisted cubics.

Let E ∈ UR(n). Since E is locally free, we have Ext1(E , E) ∼= H1(E∗ ⊗ E). Since E has rank 2, we
have E∗ ∼= E(−1). Also, E∗ ⊗ E splits as a direct sum

E∗ ⊗ E ∼= (E ⊗ E)(−1) ∼= (Sym2 E ⊕
2∧
E)(−1) ∼= V ⊕OX

where V := (Sym2 E)(−1). Since h1(OX) = 0, we find that h1(V) is the dimension of the tangent
space to the moduli space at E .

The bundle V fits in a convenient exact sequence, namely

0→ E(−1)→ V → I2Z⊂X(1)→ 0.

Here, 2Z ⊂ X is the subscheme defined by the symbolic square of the ideal IZ⊂X of Z, so it consists
of a union of n planar double points and has length 3n. We write 2C for the “rope” in P3 defined
by the symbolic square of the ideal IC⊂P3 . Thus a surface contains 2C if and only if it is singular
at every point of C.

Lemma 3.4. We have H0(I2Z⊂X(d − 3)) ∼= H0(I2C⊂P3(d − 3)). That is, every degree d − 3 form
tangent to X at each point of Z is singular along the entire curve C.

Proof. Let F ∈ H0(I2Z⊂X(d−3)) ⊂ H0(OP3(d−3)) and let Y : F = 0. Then Y is a surface of degree
d − 3 containing Z, so Y contains C. Since C intersects X transversely and Y is tangent to X at
the points of Z, we find that Y is singular at each point of Z. Then the partial derivatives ∂F/∂Xi

each vanish at every point of Z. Since the partials have degree d − 4, they must then also contain
C, and therefore the partials of F vanish identically along C. Therefore F ∈ H0(I2C⊂P3(d − 3)).
The opposite containment is obvious. �

Slavov computes the Hilbert polynomial of O2C as follows.

Lemma 3.5 ([Sla16]). The Hilbert polynomial of O2C is

χ(O2C(m)) = 3em− 4e− 5g + 5.

It is convenient to define

α = h0(I2C⊂P3(d− 3))− χ(I2C⊂P3(d− 3)),

so that in particular α = 0 if d is sufficiently large. We now estimate the dimension of the tangent
space.

Proposition 3.6. The dimension h1(V) of the tangent space to MX(2, 1, n) at E ∈ UR(n) satisfies
the inequalities

4e+ 2g + α ≤ h1(V) ≤ 5e+ 2g − 3 + α.
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Proof. Since E is stable we have h0(V) = 0. The Euler characteristic χ(V) is computed using the
exact sequences as follows.

χ(V) = χ(E(−1)) + χ(I2Z⊂X(1))

= χ(OX(−1)) + χ(OX) + χ(OX(1))− 4n

=

(
d

3

)
+ 1 +

(
d− 1

3

)
+ 4 +

(
d− 2

3

)
− 4(e(d− 3)− g + 2)

We compute h2(V) by noting V is self-dual so h2(V) = h0(V(d−4)). Then we have an exact sequence

0→ H0(E(d− 5))→ H0(V(d− 4))→ H0(I2Z⊂X(d− 3))
δ→ H1(E(d− 5)).

Now we compute the cohomology of E(d− 5). We have

h0(E(d− 5)) = h0(OX(d− 5)) + h0(IZ⊂X(d− 4))

= h0(OP3(d− 5)) + h0(IC⊂P3(d− 4))

=

(
d− 2

3

)
+ h0(OP3(d− 4))− h0(OC(d− 4))

=

(
d− 2

3

)
+

(
d− 1

3

)
− (e(d− 4)− g + 1).

Note that E(d− 5) is Serre dual to E . So,

χ(E(d− 5)) = χ(E) = χ(OX) + χ(OX(1))− n

= 1 +

(
d− 1

3

)
+ 4 +

(
d− 2

3

)
− (e(d− 3)− g + 2).

Also h2(E(d− 5)) = h0(E) = 1, and therefore

h1(E(d− 5)) = h0(E(d− 5)) + h2(E(d− 5))− χ(E(d− 5)) = e− 3.

By Lemma 3.4 and 3.5 we have

h0(I2Z⊂X(d− 3)) = h0(I2C⊂P3(d− 3))

= α+ χ(I2C⊂P3(d− 3))

= α+ χ(OP3(d− 3))− χ(O2C(d− 3))

= α+

(
d

3

)
− (3e(d− 3)− 4e− 5g + 5).

Combining these results, we conclude

h1(V) = h2(V)− χ(V)

≤ h0(E(d− 5)) + h0(I2Z⊂X(d− 3))− χ(V)

= 5e+ 2g − 3 + α

with equality if δ is 0 and

h1(V) = h2(V)− χ(V)

≥ h0(E(d− 5)) + h0(I2Z⊂X(d− 3))− h1(E(d− 5))− χ(V)

= 4e+ 2g + α

with equality if δ is surjective. �

Remark 3.7. As in Remark 3.3, a similar result holds if R parameterizes lines or conics transverse
to X, but adjustments need to be made since the curve C is degenerate:
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(1) if R parameterizes lines then h0(E) = 3, so h1(E(d− 5)) = e− 1 and the bounds become the
equality h1(V) = 2 +α. Furthermore, α = 0 so long as d ≥ 3, so UR(n) is smooth and dense
in SR(n).

(2) If R parameterizes conics then h0(E) = 2, so h1(E(d − 5)) = e − 2 and the bounds become
the equality h1(V) = 7 + α. We have α = 0 for d ≥ 5, so UR(n) is smooth and dense in
SR(n).

Combining the results in this section yields the following dimension estimates.

Corollary 3.8. With the assumptions above, the irreducible component SR(n) of MX(2, 1, n) which
contains UR(n) has dimension satisfying

4e ≤ dimSR(n) ≤ 5e+ 2g − 3 + α.

It is typically challenging to compute the dimension of SR(n) exactly. For example, if g > 0
then the expected dimension 4e of UR(n) is strictly smaller than the lower bound 4e + 2g on the
dimension of the tangent space. It is not clear whether sheaves in UR(n) can be deformed outside
this locus, or if UR(n) is dense in SR(n) but SR(n) is everywhere nonreduced.

The one case where it is particularly easy to analyze things is when R parameterizes twisted
cubic curves.

Corollary 3.9. Suppose d ≥ 6 and R parameterizes twisted cubic curves which are transverse to
X. Then the closure of UR(n) in MX(2, 1, n) is an irreducible component of dimension 12 which is
smooth at all points of UR(n).

Proof. The inequality d ≥ 5 is sufficient to ensure that the assumptions on d in this section are
satisfied. On the other hand, d ≥ 6 is needed to give α = 0; we have α = 1 if d = 5. Then by
Corollary 3.8, both UR(n) and SR(n) have dimension 12 and the tangent space at any point of
UR(n) has dimension 12. �

3.3. Elementary modifications. In the previous subsection we used an open irreducible subset
R ⊂ He,g to construct a locus UR(n) in MX(2, 1, n) if d = degX is sufficiently large. Here we have
n = n(d, e, g) = e(d− 3)− g + 2. We now use elementary modifications to construct additional loci
in MX(2, 1, s) for every s ≥ n.

Definition 3.10. Let s ≥ n. The locus UR(s) ⊂ MX(2, 1, s) is the set of all sheaves which can be
obtained from sheaves in UR(n) by a sequence of s− n elementary modifications at distinct points
of X.

Given a sheaf E ∈ UR(n), a sheaf in UR(s) is constructed by choosing s−n points p1, . . . , ps−n of
X and a hyperplane in the fiber Epi for each i. Since UR(n) is irreducible, it follows that UR(s) is
irreducible of dimension dim(R) + 3(s− n). Let SR(s) ⊂ MX(2, 1, s) be an irreducible component
containing UR(s). Our main result in this section bounds the dimension of SR(s).

Proposition 3.11. We have

4e+ 3(s− n) ≤ dimSR(s) ≤ 5e+ 2g − 3 + α+ 4(s− n).

Proof. The lower bound follows from the previous paragraph. Repeated application of the next
lemma and Proposition 3.6 gives the upper bound. �

Lemma 3.12. Suppose E is a stable rank r torsion-free sheaf on a surface X, let p ∈ X be a point
where E is locally free, and let E ′ be an elementary modification of E at p:

(1) 0→ E ′ → E → Op → 0.

Then
ext1(E ′, E ′) ≤ ext1(E , E) + 2r.
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Proof. We first apply Ext(E ,−) to the Sequence (1), and obtain the long exact sequence

0→ Hom(E , E ′)→ Hom(E , E)→ Hom(E ,Op)→ Ext1(E , E ′)→ Ext1(E , E)→ Ext1(E ,Op).
We have Hom(E , E) = C · id by stability, and the map Hom(E , E) → Hom(E ,Op) carries id to the
nonzero map E → Op defining E ′. Therefore Hom(E , E)→ Hom(E ,Op) is injective and Hom(E , E ′) =
0. Also hom(E ,Op) = r and ext1(E ,Op) = 0 since E is locally free. Putting this all together,

ext1(E , E ′) = ext1(E , E) + r − 1.

Next we apply Ext(−, E ′) to Sequence (1) and get an exact sequence

Ext1(E , E ′)→ Ext1(E ′, E ′)→ Ext2(Op, E ′),
so

ext1(E ′, E ′) ≤ ext1(E , E ′) + ext2(Op, E ′) = ext1(E , E) + r − 1 + ext2(Op, E ′).
Finally ext2(Op, E ′) = r + 1: by Serre duality, ext2(Op, E ′) = hom(E ′,Op). Applying Ext(−,Op) to
Sequence (1) we have an exact sequence

0→ Hom(Op,Op)→ Hom(E ,Op)→ Hom(E ′,Op)→ Ext1(Op,Op)→ Ext1(E ,Op) = 0.

Here hom(Op,Op) = 1, ext1(Op,Op) = 2, and hom(E ,Op) = r, so ext2(Op, E ′) = r + 1, completing
the proof. �

3.4. Comparing components. We now use our dimension estimates on the components SR(s) to
show that if d � 0 then there are moduli spaces of sheaves MX(2, 1, s) with as many components
as we like.

Separating two loci. First suppose R = Re,g ⊂ He,g and R′ = Re′,g′ ⊂ He′,g′ are two open
irreducible subsets, where e < e′. Then we have

n := n(d, e, g) = e(d− 3)− g + 2

n′ := n(d, e′, g′) = e′(d− 3)− g′ + 2.

Therefore for d � 0, we have n < n′. Then for any s ≥ n′ we can consider the two components
SR(s) and SR′(s) of MX(2, 1, s).

Theorem 3.13. With the above notation, if d � 0 then the components SR(n′) and SR′(n′) are
distinct.

Proof. We need only see that dimSR(n′) > dimSR′(n′). By Proposition 3.11 and our formulas for
n and n′, we have

dimSR(n′) ≥ 4e+ 3(n′ − n) = 3(e′ − e)d+ C1

dimSR′(n′) ≤ 5e′ + 2g′ − 3 = C2

where Ci are constants which depend (at most) on e, g, e′, g′, but not on d. Since e′ > e, the required
inequality follows for d� 0. �

If the surface X is fixed and s increases past n′, then the components SR(s) and SR′(s
′) must

eventually coincide since the moduli space MX(2, 1, s) is irreducible for s� 0. It is useful to further
quantify how large s can be before these components potentially coincide.

Proposition 3.14. Suppose d� 0. Then there is a constant C depending on e, g, e′, g′ such that if

n′ ≤ s ≤ (4e′ − 3e)d+ C

then the components SR(s) and SR′(s) are distinct.

Note that 4e′ − 3e > e′ since e′ > e, while n′ grows like e′d + C as d increases. So, the range of
numbers s where the components can be separated increases with d.



THE AMPLE CONE AND THE BRILL-NOETHER PROBLEM 15

Proof. Again we use Proposition 3.11 to estimate

dimSR(s) ≥ 4e+ 3(s− n) = −3ed+ 3s+ C3

dimSR′(s) ≤ 5e′ + 2g′ − 3 + 4(s− n′) = −4e′d+ 4s+ C4

where the Ci are constants depending on e, g, e′, g′. Then we will have

−3ed+ 3s+ C3 > −4e′d+ 4s+ C4

so long as s < (4e′ − 3e)d+ C5. �

Separating multiple loci. Now suppose we consider a list of k open irreducible sets Ri = Rei,gi ⊂
Hei,gi , and that the degrees satisfy e1 < · · · < ek. Let ni = n(d, ei, gi); then for d� 0 the largest ni
is nk. As d increases, the number nk grows like ekd + C. By Proposition 3.14, if 4ei+1 − 3ei > ek
whenever 1 ≤ i < k then the component SRi+1(nk) will have smaller dimension than SRi(nk) for
large enough d. Thus we have proved the following result.

Proposition 3.15. Suppose e1 < · · · < ek satisfy 4ei+1 − 3ei > ek for 1 ≤ i < k. Then if d � 0,
the components SRi(nk) are all distinct for 1 ≤ i ≤ k.

This easily implies the following more qualitative theorem.

Theorem 3.16. For any integer k, there is a number dk � 0 such that if d ≥ dk then a very general
surface X ⊂ P3 of degree d has some moduli space MX(2, 1, s) with at least k components.

Proof. By Proposition 3.15 it is enough to see that there are arbitrarily long sequences of positive
integers e1 < · · · < ek such that 4ei+1− 3ei > ek. Such sequences are easy to construct. For a crude
example, the sequence 4k − 2k−1 < 4k − 2k−2 < · · · < 4k − 20 does the trick since

4(4k − 2i)− 3(4k − 2i+1) = 4k + 2i+1 > 4k − 20

for i ≥ 0. �

Remark 3.17. When ∆(v) is small, we would expect the geometry of MX,H(v) to exhibit the same
pathologies as the Hilbert scheme of curves in P3. It would be interesting to make this precise.

4. Brill-Noether Theorems

In this section, we discuss recent progress in Brill-Noether theory of moduli spaces of sheaves on
surfaces. This section is based on [CH16b] and [CH17b]. We will first discuss the theory for P2. We
will then discuss the case of Hirzebruch surfaces and del Pezzo surfaces. Finally, we will make some
remarks for general surfaces and give a few examples for hypersurfaces in P3.

Rank 1 sheaves. If rk v = 1, then any torsion free sheaf with Chern character v is of the form
L⊗ IZ for a line bundle L and an ideal sheaf of points IZ . The long exact sequence associated to

0→ L⊗ IZ → L→ L⊗OZ → 0,

shows that H2(X,L) ∼= H2(X,L ⊗ IZ). Furthermore, if Z is a general set of n points, the map
H0(X,L)→ H0(X,L⊗OZ) has maximal rank. Consequently, if L has no higher cohomology, then
L⊗ IZ has no higher cohomology as long as Z is a general set of points on X with |Z| ≤ h0(X,L).
Furthermore, when |Z| ≥ h0(X,L), then L ⊗ IZ has no global sections. We conclude that for a
general set of points Z on X, L⊗ IZ has at most one nonzero cohomology group if and only if one
of the following holds

(1) The line bundle L has no higher cohomology, or
(2) We have h2(X,L) = 0 and |Z| ≥ h0(X,L), or
(3) We have h0(X,L) = |Z| and h1(X,L) = 0.

From now on, we will always assume that rk v ≥ 2.
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The projective plane. Let L denote the hyperplane class on P2. Göttsche and Hirschowitz [GHi94]
show that the general sheaf in MP2,L(v) has at most one nonzero cohomology group.

Theorem 4.1 (Göttsche-Hirschowitz [GHi94]). Let v be a stable Chern character with rk(v) ≥ 2.
Then the general sheaf V ∈MP2,L(v) has at most one nonzero cohomology group.

In particular, if χ(v) < 0, then the general stable sheaf V has h1(V) = −χ(v). If χ(v) ≥ 0
and µH(v) ≥ 0, then h0(V) = χ(v). If χ(v) ≥ 0 and µH(v) < 0, then h2(V) = χ(v). Hence, the
Göttsche-Hirschowitz Theorem computes the cohomology of a general stable sheaf on P2. We will
give two simple proofs of the theorem to illustrate the techniques.

Proof Sketch 1. First, by Serre duality, we may assume that µ(v) ≥ −3
2 . If the Serre dual sheaf has

only one nonzero cohomology group, so does the original sheaf. We can apply Serre duality because
the general sheaf of rank at least 2 in MP2,L(v) is a vector bundle. This fails when rk(v) = 1. For

example, χ(Ip(−3)) = 0, but h1(P2, Ip(−3)) = h2(P2, Ip(−3)) = 1 for any ideal sheaf of a point
p ∈ P2.

The general stable sheaf V on P2 admits a Gaeta resolution of the form

0→ OP2(a− 2)k → OP2(a− 1)l ⊕OP2(a)m → V → 0, or

0→ OP2(a− 2)k ⊕OP2(a− 1)l → OP2(a)m → V → 0,

where a is the largest integer such that χ(V(−a)) ≥ 0 but χ(V(−a− 1)) < 0,

m = χ(V(−a)), k = −χ(V(−a− 1) and l = | rk(V) + k −m|.
The sign of rk(V) + k −m determines which of the two resolutions V admits (see [Gae51] for ideal
sheaves of general points).

If a ≥ 0, then V clearly has no higher cohomology. Since µ(V) ≥ −3
2 , µ(V∗(−3)) ≤ −3

2 . By

Serre duality and stability, h2(P2,V) = h0(P2,V∗(−3)) = 0. When a < 0, then V clearly has no
global sections. Since h2(P2,V) = 0, we conclude that the only nonzero cohomology group can be
H1(P2,V). �

Proof Sketch 2. Alternatively, we can prove a slightly more general theorem. By Serre duality, we
may assume that µ(v) ≥ −3

2 . By the division algorithm, we can write µ(v) = a+ m
r , where a is an

integer and 0 ≤ m < r. Then
V = OP2(a)r−m ⊕OP2(a+ 1)m,

is an L-prioritary sheaf with slope µ(v). Since µ(v) ≥ −3
2 , a ≥ −2. Consequently, V has no higher

cohomology. A simple computation shows that ∆(V) ≤ 0. By Lemma 2.9, taking general elementary
modifications of V, we obtain L-prioritary sheaves with at most one nonzero cohomology group for
every integral Chern character v with rk(v) ≥ 2 and ∆(v) ≥ 0. Since the stack of prioritary sheaves
is irreducible and vanishing of cohomology is an open condition, we conclude that the general sheaf
in the corresponding stacks also have at most one nonzero cohomology group. In particular, if v
is a stable Chern character, the Gieseker semistable sheaves form an open subset of PL(v) and the
general semistable sheaf has at most one nonzero cohomology group. �

We obtain the following corollary of the proof.

Corollary 4.2. Let v be a Chern character such that rk(v) ≥ 2 and ∆(v) ≥ 0. Then the general
prioritary sheaf V ∈ PL(v) has at most one nonzero cohomology group.

Both of these strategies can be used to obtain Brill-Noether theorems on other surfaces. The
weak Brill-Noether theorem has many applications. One application is the classification of globally
generated vector bundles. Define a Chern character v to be a globally generated Chern character
if the general prioritary sheaf with character v is globally generated. One needs to exercise some
caution with this notion because being globally generated is not an open condition.
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Example 4.3. The vector bundle V defined as the cokernel of the natural map

0→ OP2(−d)→ OP2 ⊗H0(P2,OP2(d))→ V → 0

is semistable and globally generated [LeP97]. However, when d ≥ 3, the general member of the
moduli space is not globally generated. This is easiest to see when d ≥ 4. In that case, χ(v) < rk(v).
The general sheaf has only a χ(v)-dimensional space of sections, so has no chance of being globally
generated. When d = 3, χ(v) = rk(v) and the moduli space is positive dimensional. The general
sheaf has only 9 sections which fail to generate the sheaf along a curve.

However, if the higher cohomology of the sheaves vanishes, then the condition of being globally
generated is an open condition

Theorem 4.4 ([BGJ16], [CH17b]). Let v be an integral Chern character on P2 such that rk(v) ≥ 2,
∆(v) ≥ 0. Then the Chern character v is globally generated if and only if µ(v) ≥ 0 and one of the
following holds:

(1) We have µ(v) > 0 and χ(v(−1)) ≥ 0.
(2) We have µ(v) > 0, χ(v(−1)) < 0, and χ(v) ≥ rk(v) + 2.
(3) We have µ(v) > 0, χ(v(−1)) < 0, and χ(v) ≥ rk(v) + 1 and

v = (rk v + 1) ch(OP2)− ch(OP2(−2)).

(4) We have µ(v) = 0 and v = rk(v) ch(OP2).

Proof. If V is globally generated, then its determinant is also globally generated. We therefore have
µ(V) ≥ 0. If µ(V) = 0, then by Riemann-Roch χ(V) ≤ rk(V) with equality if and only if ∆(V) = 0.
Since a globally generated bundle V needs to have at least rk(V) independent sections and for the
general sheaf there is only one nonzero cohomology group, we conclude that µ(V) = ∆(V) = 0 and
v = rk(v) ch(OP2).

If χ(v(−1)) ≥ 0, then the general sheaf in PP2,L(v) has a Gaeta resolution with a ≥ 1. Then
the general sheaf is clearly a quotient of a globally generated bundle. If χ(v(−1)) < 0 and χ(v) ≥
rk(v) + 2, then the general sheaf in PP2,L(v) has a Gaeta resolution of the form

0→ OP2(−2)k ⊕OP2(−1)l → OmP2 → V → 0, or

0→ OP2(−2)k → OP2(−1)l ⊕OmP2 → V → 0.

In the first case, V is the quotient of a globally generated vector bundle, hence globally generated.
The most interesting case is the second case. By the assumption that χ(V) ≥ rk(V) + 2, we have
that m ≥ rk(V) + 2. Therefore, k ≥ l + 2. To show that V is globally generated, it suffices to show
that H1(P2,V⊗Ip) = 0 for every point p ∈ P2. By the long exact sequence of cohomology, it suffices
to show that the map

φ : H1(P2, Ip(−2))k → H1(P2, Ip(−1))l

is surjective. Consider the sequence

0→M → OP2(−2)k → OP2(−1)l → 0.

Since the map is general, it is surjective and M is a vector bundle. Clearly M does not have any
cohomology. Tensoring the standard exact sequence 0→ Ip → OP2 → Op → 0 with M , we see that
H2(P2, Ip ⊗M) = 0. Consequently, the map φ is surjective and V is globally generated. Finally, if

χ(V) = rk(V) + 1 and V is globally generated, then there is a surjective map Or+1
P2 → V. The kernel

of this map is a line bundle OP2(−d). If d = 1, then χ(V(−1)) = 0. If d ≥ 3, then χ(V) < r and it is
not possible for the general prioritary sheaf with Chern character v to be globally generated. The
only remaining possibility is for d = 2. In that case, χ(V) = r + 1 and this is the Gaeta resolution
of the general sheaf. This concludes the classification of globally generated Chern characters on
P2. �
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The following problem remains open.

Problem 4.5. Classify the Chern characters v on P2 such that the general prioritary sheaf of
character v is ample.

Note that if V is a vector bundle such that V(−1) is globally generated, then V is ample. Thus
the classification of globally generated Chern characters gives a sufficient condition for the general
bundle to be ample. In particular, if rk(v) ≥ 2, µ(v) ≥ 1, ∆(v) ≥ 0 and χ(v(−1)) ≥ rk(v) + 2, then
the general prioritary sheaf with Chern character v is ample. However, an ample vector bundle on
P2 does not have to have any sections. For example, Gieseker [Gie71] proves that a general vector
bundle with resolution

0→ OP2(−d)2 → OP2(−1)4 → V → 0

is ample for d� 0. It is easy to see that we need d ≥ 7. However, we do not know whether d = 7 is

sufficient. In general, an ample bundle must satisfy µ(v) ≥ 1 and µ2

2 > ∆
r+1 . It would be interesting

to determine conditions under which the converse also holds.

Hirzebruch surfaces. Following [CH16b] and [CH17b], we now explain how to obtain analogues
of Corollary 4.2 and Theorem 4.4 for Hirzebruch surfaces.

Let e be a nonnegative integer and let Fe denote the Hirzebruch surface P(OP1 ⊕ OP1(e)). We
refer the reader to [Cos06a] or [Har77] for a detailed description of Hirzebruch surfaces. The surface
Fe admits a natural projection π to P1. Let F denote the class of a fiber of π. The surface contains
a section E with self-intersection −e. When e ≥ 1, this section is unique. The Picard group
Pic(Fe) = ZE ⊕ ZF and the intersection product is given by

E2 = −e, E · F = 1, F 2 = 0.

Express the total slope of a Chern character v by

ν(v) =
k

r
E +

l

r
F.

Let V = OFe(−E− (e+1)F )a⊕OFe(−F )b⊕OcFe
. Then a simple calculation shows that ∆(V) ≤ 0

and V is both F -prioritary and E-prioritary. Furthermore, every slope in the quadrilateral in the
(kr ,

l
r )-plane with vertices

(−1,−e− 1), (0, 0), (0,−1), (−1,−e− 1)

can be expressed as the slope of a bundle V or V∗(−E − (e + 1)F ). Furthermore, these bundles
have no higher cohomology. Translates of this quadrilateral by classes of nef line bundles, covers the
region defined by the inequalities ν(v) ·F ≥ −1 and ν(v) ·E ≥ −1. Using elementary modifications
and Lemma 2.9, one concludes the following.

Theorem 4.6 ([CH17b], Theorem 3.1). Let v ∈ K(Fe) be a Chern character with positive rank
r and ∆ ≥ 0. Then the stack PFe,F (v) of F -prioritary sheaves is nonempty and irreducible. Let
V ∈ PFe,F (v) be a general sheaf.

(1) If ν(v) · F ≥ −1, then h2(Fe,V) = 0. If ν(v) · F ≤ −1, then h0(Fe,V) = 0. In particular, if
ν(v) · F = −1, then both h0 and h2 vanish and h1(Fe,V) = −χ(v).

(2) If ν(v) · F > −1 and ν(v) · E ≥ −1, then V has at most one nonzero cohomology group.
Thus if χ(v) ≥ 0, then h0(Fe,V) = χ(v), and if χ(v) ≤ 0, then h1(Fe,V) = −χ(v).

(3) If ν(v) · F > −1 and ν(v) · E < −1, then H0(Fe,V) = H0(Fe,V(−E)), hence the Betti
numbers of V are inductively determined using the previous two parts.

(4) If ν(v) · F < −1 and rk(v) ≥ 2, then Serre duality determines the Betti numbers of V.

We call a Chern character v nonspecial if there exists an F -prioritary sheaf V with Chern character
v such that V has at most one nonzero cohomology group. In particular, we obtain a classification
of nonspecial Chern characters on Fe.
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Corollary 4.7 ([CH17b], Corollary 3.9). Let v ∈ K(Fe) be a character with positive rank and
∆(v) ≥ 0, and suppose ν(v) ·F ≥ −1. Then v is nonspecial if and only if one of the following holds.

(1) We have ν(v) · F = −1.
(2) We have ν(v) · F > −1 and ν(v) · E ≥ −1.
(3) If ν(v) · F > −1 and ν(v) · E < −1, let m be the smallest positive integer such that either

ν(v(−mE)) · F ≤ −1 or ν(v(−mE)) · E ≥ −1.
(a) If ν(v(−mE)) · F ≤ −1, then v is nonspecial.
(b) If ν(v(−mE)) · F > −1, then v is nonspecial if and only if χ(v(−mE)) ≤ 0.

The following corollary when χ(v) ≥ 0 is easier to remember.

Corollary 4.8 ([CH17b], Corollary 3.10). Let v be a positive rank Chern character on Fe such that
∆(v) ≥ 0, χ(v) ≥ 0 and F · ν(v) ≥ −1. Then v is nonspecial if and only if F · ν(v) = −1 or
E · ν(v) ≥ −1.

As in the case of P2, we may use the Brill-Noether theorems to characterize the globally generated
Chern characters. Let V a general prioritary sheaf in PFe,F (v) with ∆(V) ≥ 0. If V is globally
generated, then its determinant has to be globally generated and nef. If in addition ν(V) · F = 0,
then the restriction of V to every fiber must be trivial. Hence, V must be a pullback from P1. Since
V is F -prioritary and globally generated, we conclude that V = OFe(aF )m ⊕OFe((a+ 1)F )r−m for
some a ≥ 0 and m ≥ 0. We may now assume that ν(V) · F > 0. Since V is general, the restriction
of V to every fiber will be globally generated. If χ(V(−F )) ≥ 0, then the exact sequence

0→ V(−F )→ V → V|F → 0

allows us to lift the section of V|F to sections of V on Fe since by the cohomology computations
H1(Fe,V(−F )) = 0. If χ(V(−F )) < 0, then as in the case of P2, we need to resort to a Gaeta-type
resolution.

Theorem 4.9 ([CH17b], Theorem 4.1). Let v be an integral Chern character on Fe of positive rank
and assume that

∆(v) ≥ 1

4
if e = 0, ∆(v) ≥ 1

8
if e = 1, ∆(v) ≥ 0 if e ≥ 2.

Then the general sheaf V ∈ PFe,F (v) admits a Gaeta-type resolution

(2) 0→ L(−E − (e+ 1)F )a → L(−E − eF )b ⊕ L(−F )c ⊕ Ld → V → 0,

for some line bundle L and nonnegative integers a, b, c, d.

The exponents in the exact sequence (2) can be formally calculated using the Euler pairing:

a = −χ(V(−L− E − F )), b = −χ(V(−L− E)), c = −χ(V(−L− F )), d = χ(V(−L)).

If we can find a line bundle L such that a, b, c, d are nonnegative, then we can define V by the
sequence (2). An easy check shows that the general sheaf given by such a resolution is F -prioritary
and such sheaves provide a complete family of F -prioritary sheaves. It then follows that the general
F -prioritary sheaf has such a resolution since the stack of F -prioritary sheaves is irreducible. Finally,
the inequalities on ∆ guarantee that one can find the desired line bundle L.

If χ(V(−F )) < 0 and V is globally generated, we consider

0→M→ Oχ(V)
Fe
→ V → 0,

where M is a vector bundle with character v. Then M has no cohomology, h1(Fe,M(−F )) =
0 and M∗ is globally generated. Conversely, if we can construct such a vector bundle M, we
obtain a globally generated F -prioritary vector bundle V with Chern character v. As in the case
of P2, one constructs M and check that M∗ is globally generated directly from the Gaeta-type
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resolution provided by Theorem 4.9. We obtain the following classification of globally generated
Chern characters on Fe.

Theorem 4.10 ([CH17b], Theorem 5.1). Let v be a Chern character on Fe, e ≥ 1 such that
rk(v) ≥ 2, ∆(v) ≥ 0 and ν(v) is nef. Then v is globally generated if and only if one of the following
holds:

(1) We have ν(v) · F = 0 and v = ch(π∗(OP1(a)m ⊕OP1(a+ 1)r−m)) for some a ≥ 0.
(2) We have ν(v) · F > 0 and χ(v(−F )) ≥ 0.
(3) We have ν(v) · F > 0, χ(v(−F )) < 0 and χ(v) ≥ r + 2.
(4) We have e = 1, ν(v) · F > 0, χ(v(−F )) < 0, χ(v) ≥ r + 1 and

v = (rk(v) + 1) ch(OF1)− ch(OF1(−2E − 2F )).

Since P1 × P1 admits two fibration structures, the theorem has to account for both fibrations.

Theorem 4.11 ([CH17b], Theorem 5.2). Let v be a Chern character on P1×P1 such that rk(v) ≥ 2,
∆(v) ≥ 0 and ν(v) is nef. Let F1 and F2 be the classes of the two rulings. The Chern character v
is globally generated if and only if one of the following holds

(1) We have ν(v) ·Fi = 0 for some i ∈ {1, 2} and v = ch(OP1×P1(aFi)
m⊕OP1×P1((a+1)Fi)

r−m)
for some a ≥ 0.

(2) We have ν(v) · Fi > 0 for i ∈ {1, 2} and χ(v(−Fi)) ≥ 0 for some i ∈ {1, 2}.
(3) We have ν(v) · Fi > 0 and χ(v(−Fi)) ≥ 0 for i ∈ {1, 2} and χ(v) ≥ rk(v) + 2.

As in the case of P2, it would be very interesting to classify the Chern characters of ample stable
(or F -prioritary) bundles on Fe.

Del Pezzo surfaces and more general rational surfaces. Let X be the blowup of P2 at r
points p1, . . . , pk. If k ≤ 8 and the points are in general position, then X is a del Pezzo surface. We
refer the reader to [Bea83, Cos06b, Har77] for more detailed information on del Pezzo surfaces. Let
L denote the pullback of the hyperplane class from P2 and let E1, . . . , Er denote the exceptional
divisors lying over p1, . . . , pk. Then Pic(X) ∼= ZL ⊕ ZE1 ⊕ · · · ⊕ ZEk and the intersection form is
given by

L2 = 1, L · Ei = 0, Ei · Ej = −δi,j ,
where δi,j denotes the Krönecker delta function. When X is a del Pezzo surface, the (−1)-curves
and −KX generate the effective cone of curves on X. Furthermore, the cohomology of line bundles
is completely known. When X is a more general blowup, even the cohomology of line bundles is not
known. Consequently, it is unrealistic to expect a full computation of the cohomology of all higher
rank sheaves.

Let v be a Chern character of rank r and let the total slope be ν(v) = δL−
∑k

i=1 αiEi. Then we
have that

δ = d+
q

r
, αi = ai +

qi
r

for some integers d, q, ai and qi with 0 ≤ q < r and 0 ≤ qi < r. Set

γ(v) =
q2

2r2
− q

2r
+

k∑
i=1

(
qi
2r
− q2

i

2r2

)
.

Theorem 4.12 ([CH16b], Theorem 4.5). Let X be the blowup of P2 at k distinct points. Let v be
a positive rank Chern character on X with total slope

ν(v) = δL− α1E1 · · · − αkEk
with δ ≥ 0 and αi ≥ 0. Suppose that the line bundle

bδcL− dα1eE1 · · · − dαkeEk
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does not have higher cohomology. Assume that ∆(v) ≥ γ(v). Then PX,L−E1(v) is nonempty and
the general sheaf in PX,L−E1(v) has at most one nonzero cohomology group.

To prove the theorem it suffices to consider the direct sum of line bundles V = L1 ⊕ · · · ⊕ Lk,
where each line bundle Lj has the form

njL−
k∑
i=1

mj,iEi

with nj ∈ {bδc, dδe} and mj,i ∈ {bαic, dαie}. By choosing Lj appropriately, we can arrange that
ν(V) = ν(v). Then each Lj is a line bundle with no higher cohomology. It is easy to check that V is
(L−E1)-prioritary and has ∆(V) = γ(v). The theorem follows by taking elementary modifications
of V.

It is possible to choose the direct sum of line bundles more carefully to obtain sharper bounds
when k is small. We refer the reader to [CH16b, §5] when X is a del Pezzo surface of large degree.

Other surfaces. Determining the cohomology of the general stable sheaf and classifying the Chern
characters v such that the general stable sheaf with Chern character v is globally generated or stable
are important problems on any surface. The theory is most developed for K3 surfaces thanks to the
work of Leyenson, Markman, Mukai, O’Grady, Yoshioka and many others. We refer the reader to
[O’G97, Ley12, Mrk01] for further details and references. We close this section with a few general
remarks on Brill-Noether statements on general surfaces. First, an asymptotic weak Brill-Noether
statement holds on any smooth projective surface.

Proposition 4.13. Let X be a smooth projective surface and let H be an ample divisor. Let v be
a Chern character with ∆(v) � 0. Let V ∈ MX,H(v) be a general sheaf. Then the only nonzero
cohomology group of V can be H1(X,V).

Proof. Let vD denote the Serre dual Chern character of v. Observe that ∆(v) = ∆(vD). Assume
that ∆(v) ≥ δ, where δ is the O’Grady bound that guarantees that both MX,H(v) and MX,H(vD)
are irreducible and the general member is a stable bundle. If the general sheaf V ∈MX,H(v) has only
H1, we are done. If V has any global sections, replace V by h0(X,V) general elementary modifications

V1. Then V1 is a slope stable sheaf, has no H0, and has discriminant ∆(V1) = ∆(V) + h0(X,V)
rk(V) > δ.

Hence, the moduli space containing V1 is irreducible. We can find a locally free slope-stable sheaf V2

with no H0 since vanishing of H0 is an open condition. If V2 has only H1, we are done. Otherwise,
replace V2 by its Serre dual V3. Apply h0(X,V3) = h2(X,V2) general elementary modifications to
V3. The resulting sheaf V4 has vanishing H0 and H2 and is slope stable. A general deformation V5

of V4 is locally free and also has vanishing H0 and H2. The Serre dual of V5 gives the desired bundle.
For v with ∆(v) ≥ ∆(V5), the only nonzero cohomology group of a general sheaf in MX,H(v) can
be H1. �

Since the moduli spaces for small ∆ are not necessarily irreducible, even when there is a stable
sheaf with at most one nonzero cohomology group, there may still be entire components of the moduli
space where more than one cohomology group is nonzero. One can already find such examples on
Enriques surfaces. The following example is due to Nuer and Yoshioka.

Example 4.14 ([NY17], §10). Nuer and Yoshioka show that there is a component of the moduli
space of rank 2 sheaves on an Enriques surface X whose general element is given by an extension
of the form

0→ IZ → V → OX(KX)→ 0,

where Z is a zero-dimensional scheme of length 2. Observe that h1(X,V) = h2(X,V) = 1 .
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On surfaces of general type, even very ample line bundles can have nonzero higher cohomology.
Consequently, we would not expect the higher cohomology of higher rank sheaves to vanish either.

Example 4.15. Let X be a very general hypersurface of degree d ≥ 5 in P3. Let Z be d−1 collinear
points on X. Then a general extensions of the form

0→ OX → V → IZ(1)→ 0

is slope stable. By §3, such extensions form a component of the moduli space MX((2, 1, d − 1)) of
rank 2 sheaves with c1 equal to the hyperplane class and c2 = d − 1. The long exact sequence of
cohomology associated to the defining sequence of V and Serre duality show that

h0(X,V) = 3, h2(X,V) =

(
d− 1

3

)
+

(
d− 2

3

)
− d+ 3.

The line bundle OX(m) has no higher cohomology for m ≥ d−3. More generally, consider extensions
of the form

0→ OX(m)→ V(m)→ IZ(m+ 1)→ 0.

Since h2(X, IZ(m)) 6= 0 for m < d− 4, we conclude that V has nonvanishing h0 and h2 for 0 ≤ m <
d−4. On the other hand, the higher cohomology of V(m) vanishes for m ≥ d−4. This is immediate
for m ≥ d− 3 by the long exact sequence of cohomology. The only case to discuss is m = d− 4. We
have

0→ H1(X,V(d− 4))→ H1(X, IZ(d− 3))→ H2(X,OX(d− 4))→ H2(X,V (d− 4))→ 0.

Moreover, H1(X, IZ(d − 3)) ∼= H2(X,OX(d − 4)) ∼= C. The Serre dual W of V(d − 4) fits in the
exact sequence

0→ OX(−1)→W → IZ → 0,

hence h0(X,W) = h2(X,V(d− 4)) = 0. We conclude that the higher cohomology of V(m) vanishes
for m ≥ d− 4. Observe that V is µ-stable and has ∆(V) = 3

8d−
1
2 . Let v be a Chern character of

rank 2 on X with µ(v) = 2m+1
2 for m ≥ d − 4. If ∆(v) ≥ 3

8d −
1
2 , there exist stable sheaves with

Chern character v that have at most one nonzero cohomology group.

Remark 4.16. It would be interesting to explore the following questions further.

(1) Let X be a projective surface such that Pic(X) = ZH for an ample divisor H. Assume
that H1(X,mH) = H2(X,mH) = 0 for m ≥ m0. Assume that ν(v) = µH for µ > m0.
Does there exist a sheaf V ∈MX,H(v) with at most one nonzero cohomology group? What
additional assumptions are necessary for surfaces of higher Picard rank?

(2) Assume that the general sheaf in MX,H(v) has no higher cohomology and ν(v) is ample.
Let V ∈MX,H(v) be a general sheaf. If h0(X,V) ≥ r + 2, is V globally generated?

5. Background on Bridgeland stability

In this subsection, we recall key facts concerning Bridgeland stability conditions. We refer the
reader to [AB13, Bri07, Bri08, CH15] for more details. We will review the wall-chamber decompo-
sition of the Bridgeland stability manifold and the Positivity Lemma of Bayer and Macr̀ı.

Let Db(X) denote the bounded derived category of coherent sheaves on X. A Bridgeland stability
condition on Db(X) is a pair σ = (Z,A), where A is the heart of a bounded t-structure on Db(X)
and Z : K0(X) → C is a group homomorphism called the central charge satisfying the following
properties:
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(1) (Positivity) The homomorphism Z maps any nonzero object E ∈ A to the extended upper-
half plane {reiπθ|r > 0, θ ∈ (0, 1]}. The homomorphism Z allows us to define the Bridgeland
slope of objects E ∈ A.

µσ(E) := −<Z(E)

=Z(E)
.

An object E is called µσ-(semi)stable if for every nonzero proper subobjects we have

µσ(F ) <
(−)

µσ(E).

(2) (Harder-Narasimhan Property) Every non-zero object E ∈ A admits a finite filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

with Ei ∈ A such that the quotient Fi = Ei/Ei−1 are σ-semistable with

µσ(F1) > µσ(F2) > · · · > µσ(Fm).

(3) (Support Property) Fix a norm || · || on Knum⊗R. Then there exists a constant C > 0 such
that || ch(E)|| ≤ C|Z(E)| for all σ-semistable objects E ∈ A.

We will only need very special Bridgeland stability conditions for our purposes. These were
constructed by Bridgeland [Bri08], Arcara, Bertam [AB13], and Toda [Tod13]. Let s be a real
number and define two subcategories of Coh(X) depending on s as follows

Ts := {V ∈ Coh(X) | µH,D(W) > s for every quotient V �W}

Fs := {V ∈ Coh(X) | µH,D(W) ≤ s for every subsheaf W ⊂W}
The pair (Ts,Fs) is a torsion pair for Coh(X) and allows us to define a tilt of Coh(X) as follows

As := {E• ∈ Db(X) | H−1(E•) ∈ Fs,H0(E•) ∈ Ts,Hi(E•) = 0, i 6= −1, 0}.
Then the categoryAs is an abelian subcategory of Db(X) which is the heart of a bounded t-structure.
For a positive real number t define the central charge

Zs,t = −ch
D+tH
2 +

t2H2

2
ch
D+tH
0 + iHch

D+tH
1 .

Theorem 5.1 (Bridgeland, Arcara-Bertram, [Bri08], [AB13]). The pair σs,t = (As, Zs,t) is a Bridge-
land stability condition for s, t ∈ R, t > 0.

The σs,t-slope of an object V is given by the formula

νσs,t(V) = −<(Zs,t(V))

=(Zs,t(V))
=

(µH,D(V)− s)2 − t2 − 2∆H,D(V)

µH,D(V)− s
.

These stability conditions define a half-plane in the stability manifold Stab(X) called the (H,D)-
slice.

Fix a numerical invariant v ∈ Knum(X). Then there is a locally finite wall and chamber decom-
position of Stab(X) where for stability conditions σ in a chamber the σ-(semi)stable objects remain
constant. We are interested in describing this wall and chamber decomposition in the (H,D)-slice.

Problem 5.2. Given a surface X and a Chern character v, describe explicitly the wall and chamber
decomposition in the (H,D)-slice of Stab(X).

Given a numerical invariant w ∈ Knum(X) that does not have the same σs,t-slope everywhere
in the (H,D)-slice, we define the numerical wall W (v,w) as the locus of (s, t) in the (H,D)-slice
where v and w have the same σs,t-slope. A numerical wall is an actual wall if there exists a point
(s, t) ∈W (v,w) and an exact sequence

0→ F → E → G→ 0
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in As such that E,F,G are σs,t-semistable of the same slope.

Assume v and w have positive rank. Equating the σs,t-slope of v and w, one can compute the
equation of the wall W (v,w) and see the following basic facts:

(1) The numerical walls W (v,w) in the (H,D)-slice are disjoint. If µH,D(v) = µH,D(w), then
W (v,w) is the vertical line s = µH,D(v). If µH,D(v) 6= µH,D(w), then W (v,w) is a
semicircle with center (c, 0) on the s-axis and radius ρ given by

c =
1

2

(
µH,D(v) + µH,D(w)

)
−

∆H,D(v)−∆H,D(w)

µH,D(v)− µH,D(w)
,

ρ2 = (c− µH,D(v))2 − 2∆H,D(v).

It may happen that ρ2 < 0, in which case W (v,w) is empty. Also note that, in the formula
for ρ2 one may replace v with w and see that the expression does not change using the
formula for c.

(2) The semicircular walls to the left of the vertical half-line s = µH,D(v) are nested. Let W1,W2

be numerical walls with centers (c1, 0) and (c2, 0), respectively. Then W1 is nested in W2 if
and only if c1 > c2.

Using the fact that the numerical walls are disjoint, one may prove the following important fact.
If 0 → F → E → G → 0 is a destabilizing sequence at some point (s0, t0) ∈ W (v,w), then the
sequence is a destabilizing sequence for every point (s, t) ∈ W (v,w) [ABCH13, Mac14]. We will
refer to this fact as coherence along Bridgeland walls. Several walls are especially important. The
largest semicircular actual wall to the left of s = µH,D(v) where a Gieseker semistable sheaf is
destabilized is called the Gieseker wall. If it exists, the largest semicircular actual wall to the left
of s = µH,D(v) below which all Gieseker semistable sheaves are destabilized is called the collapsing
wall.

Example 5.3 (Hilbert schemes of points on P2). In [ABCH13], it is shown that OP2(−1) defines
the Gieseker wall for Hilbert schemes of points on P2.

Example 5.4 (The collapsing wall for moduli spaces of sheaves on P2). The collapsing wall for
all moduli spaces of sheaves on P2 have been computed in [CHW17, Theorem 5.7]. The collapsing
wall is always defined by an exceptional bundle, which can be explicitly computed in terms of the
Drézet-Le Potier classification of stable bundles on P2.

Example 5.5. It is also possible to compute the Bridgeland wall where a particular sheaf is desta-
bilized. For example, [CH14] computes the Bridgeland wall where the ideal sheaf of a monomial
zero-dimensional scheme is destabilized in terms of the combinatorics of the monomial scheme.

Li and Zhao have computed the Bridgeland walls for P2 [LZ16]. Bayer and Macr̀ı have computed
the Bridgeland walls for moduli spaces of K3 surfaces [BM14a, BM14b]. Minamide, Yanagida,
Yoshioka have analyzed the case of abelian surfaces [MYY14, MYY15]. Nuer has analyzed the case
of Enriques surfaces [Nue16a]. Finally, there are partial results for P1 × P1 and other del Pezzo
and Hirzebruch surfaces (see [Abe17, BC13, Rya16]). We will discuss the problem of computing the
Gieseker wall when ∆� 0 in the next section.

The positivity lemma. The link between the ample cone of the moduli space MX,H,D(v) and
the Gieseker wall in the (H,D)-slice is provided by Bayer and Macr̀ı’s Positivity Lemma. Let
σ = (Z,A) be a Bridgeland stability condition on X and let E/S be a flat family of σ-semistable
objects parameterized by an algebraic space S. Let p, q denote the two projections of S ×X to S
and X, respectively. The Fourier-Mukai transform ΦE : Db(S)→ Db(X) with kernel E is defined by

ΦE(A) : q∗(p
∗(A)⊗ E).
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Define a numerical divisor class Dσ,E ∈ N1(S) on S by specifying the intersection number of Dσ,E
on every curve C ⊂ S as follows:

Dσ,E · C = =
(
−Z(ΦE(OC))

Z(v)

)
.

Theorem 5.6 (Positivity Lemma, [BM14a]). The class Dσ,E is a nef divisor class on S. A complete
integral curve C ⊂ S satisfies Dσ,E ·C = 0 if and only if the objects parameterized by general points
of C are S-equivalent with respect to the stability condition σ.

The divisor Dσ,E can be explicitly expressed in terms of the Donaldson morphism. Given a family
of sheaves E/S on X parameterized by S, the Donaldson homomorphism

λE : K(X)→ Pic(S)

associates to a character in K(X) a line bundle on S. Let π1 : X × S → X and π2 : X × S → S
denote the two natural projections. Then λE is defined by the composition of the maps

λE : K(X)
π∗1−→ K0(X × S)

·[E]−→ K0(X × S)
π2!−→ K(S)

det−→ Pic(S),

where π2! =
∑

i(−1)iRiπ2∗. Since the Euler pairing (−,−) is nondegenerate on Knum ⊗ R, for any

linear functional φ on Knum ⊗ R vanishing on v, there exists a vector wφ ∈ v⊥ such that

φ(u) = (wφ,u).

Therefore, there is a unique vector wZ ∈ v⊥ ⊂ K(X) such that

=
(
−Z(w)

Z(v)

)
= (wZ ,w) for all w ∈ K(X).

Bayer and Macr̀ı prove that their divisor Dσ,E is expressible in terms of the Donaldson homomor-
phism by

Dσ,E = λE(wZ).

It is useful to have explicit formulae for the character wZ in the (H,D)-slice of the stability manifold.

Proposition 5.7 ([BHL+15], Proposition 3.8). Let X be a smooth, complex projective surface, H
an ample divisor and D a Q-divisor. If σ ∈ Stab(X) is a Bridgeland stability condition in the
(H,D)-slice on the potential wall for v with center (c, 0), then the character wZ is a multiple of

(ch0, ch1, ch2) = (−1,−KX + cH +D,m),

where m is determined by the property that wZ ∈ v⊥.

6. The ample cone

In this section, using Bridgeland stability we show that the problem of computing the ample
cone of moduli spaces of sheaves MX,H(v) is intimately tied to the classification of stable Chern
characters on X. We compute the ample cones for several families of moduli spaces as an illustration
of the techniques. This section follows [CH17a] closely.

Fix an (H,D)-slice of the stability manifold of X. Let e be the largest positive integer dividing
H in Pic(X). Define the reduced slope

µ̃H(v) =
H2

e
µH(v) =

ch1(v) ·H
e ch0(v)

.

Definition 6.1. An extremal Chern character w for v is any Chern character satisfying the following
properties:

(E1) The rank r(w) satisfies 0 < r(w) ≤ r(v), and if r(w) = r(v), then c1(v)− c1(w) is effective.
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(E2) The reduced slope µ̃H(w) satisfies µ̃H(w) < µ̃H(v), and µ̃H(w) is as close to µ̃H(v) as
possible subject to (E1).

(E3) The moduli space MH,D(w) is nonempty.

(E4) The discriminant ∆H,D(w) is as small as possible, subject to (E1)-(E3).
(E5) The rank r(w) is as large as possible, subject to (E1)-(E4).

Since the denominators of the reduced slopes are bounded by rk(v), it makes sense in (E2) to
require µ̃H(w) to be as close as possible to µ̃H(v). Then the conditions (E1) and (E2) uniquely
determine µ̃H(w). By the Bogomolov inequality, the discriminant is at least zero. Furthermore, by
O’Grady’s Theorem, if the discriminant is sufficiently large, the moduli space is nonempty. Hence,
condition (E4) uniquely determines ∆H,D(w). Finally, property (E5) uniquely determines r(w).

Most importantly, the discriminant ∆H,D(v) plays no role in the determination of w. Thus the
triple

(r(w), µ̃H(w),∆H,D(w))

is uniquely determined by r(v) and c1(v); on the other hand, there may be several possible choices
for c1(w). The requirement that ∆H,D(w) is as small as possible may restrict which first Chern
classes c1(w) are permissible.

Recall §5 that the center (c, 0) of a Bridgeland wall W (v,u) is given by

c =
1

2

(
µH,D(v) + µH,D(u)

)
−

∆H,D(v)−∆H,D(u)

µH,D(v)− µH,D(u)
.

The extremal Chern character w is defined to minimize this quantity assuming that rk(u) ≤ rk(v)
and ∆H,D(v) � 0. The main result of [CH17a] shows that the Gieseker wall in the (H,D)-slice is

determined by the extremal character w assuming that ∆H,D(v)� 0.

Theorem 6.2 ([CH17a], Theorem 3.2). If ∆H,D(v) � 0, then the Gieseker wall for MH,D(v) in
the (H,D)-slice is W (v,w). There are curves in MH,D(v) parameterizing sheaves which become
S-equivalent along this wall.

If the complete classification of stable Chern characters u with 0 < rk(u) ≤ rk(v) is known, then
it is routine to compute the extremal Chern character. Bayer and Macr̀ı first used this strategy
to compute ample cones when X is a K3 surface [BM14a, BM14b]. Similarly, when X = P2, the
Gieseker walls can be computed using the Drézet-Le Potier classification and one recovers the main
theorem of [CH16a]. Similar computations have been carried out for Enriques and abelian surfaces
(see [Nue16a], [MYY14], [MYY15]).

Conversely, suppose Pic(X) = ZH with H effective. In that case, knowing the Gieseker walls for
all Chern characters provides sharp Bogomolov inequalities. Fix a rank r and a slope µ such that
rµ ∈ Z. Let δ(r, µ) be the minimal discriminant of a stable bundle V on X such that µH(V) = µ and
rk(V) ≤ r. Then the inequality ∆ ≥ δ(r, µ) is a sharp Bogomolov inequality for the discriminant of
any stable bundle with slope µ and rank at most r on X. Recall that the Farey sequence of order n
consists of all the reduced fractions with denominator at most n. Express µ = p

q in reduced terms

and let p
q <

p′

q′ be two consecutive terms in the Farey sequence of order r. Then the median of these
p+p′

q+q′ is reduced and

p

q
<
p+ p′

q + q′
<
p′

q′

are consecutive terms in the Farey sequence of order q + q′. It is easy to check that the extremal

character w for the character v with rank q + q′, slope p+p′

q+q′ , and ∆ � 0 has rank r and slope p
q .

Consequently, ∆(w) = δ(r, µ). We conclude the following corollary.



THE AMPLE CONE AND THE BRILL-NOETHER PROBLEM 27

Corollary 6.3 ([CH17a], Corollary 3.5). Suppose Pic(X) = ZH with H effective. Computing the
Gieseker wall for all v with sufficiently large discriminant is equivalent to computing the function
δ(r, µ) for all r > 0 and µ ∈ Q with rµ ∈ Z.

The proof of Theorem 6.2 has two steps. First, we need to bound the Gieseker wall from above.
Suppose the destabilizing sequence

0→W ′ → V → F ′ → 0

arises from an injection in a category As but is not an injection of sheaves. Then there is an estimate
on the size of the corresponding Bridgeland wall proved in [ABCH13] for P2 and generalized in
[BHL+15]. Let w′ = ch(W ′). If ρw′ is the radius of the wall W (v,w′), then

ρ2
w′ ≤

(min{rk(w′)− 1, rk(v)})2

2 rk(w′)
∆H,D(v).

Using this bound, it is easy to check that W (w,v) is larger than any wall defined by a non-injective
sheaf morphism if ∆H,D(v)� 0. Since w was chosen to make the wall W (v,w) as small as possible
whenever the destabilizing subobject is a subsheaf, it follows that the Gieseker wall is contained in
the potential Bridgeland wall W (v,w).

Second, we need to produce a curve C of semistable sheaves that are not S-equivalent in the sense
of Gieseker that become S-equivalent for the Bridgeland stability conditions on W (v,w). This shows
that the potential wall W (v,w) is an actual wall, hence is the Gieseker wall. In fact, we produce
a curve C of non-isomorphic (H,D)-Gieseker stable sheaves that become S-equivalent on W (v,w)
by induction on the rank v. Let u be the quotient Chern character. If ∆H,D(v)� 0, then ∆H,D(u)
is sufficiently large. Hence, by O’Grady’s theorem, there are µH,D-stable sheaves in MX,H,D(u).

Furthermore, the extension group Ext1(U ,W) is nonzero if U ∈ MX,H,D(u) and W ∈ MX,H,D(w).
The curve C is obtained by varying the extension class between two general objects in these moduli
spaces. We need to check that the general extension is (H,D)-Gieseker stable and these extensions
are not all isomorphic. The latter is straightforward. To check stability of an extension V we induct
on the rank of v. A calculation shows that the Gieseker wall for u is nested inside W (v,w). Using
this, one checks that V is Bridgeland stable for stability conditions just above W (v,w). Combined
with an easy verification that V is µH,D-semistable, we conclude that V is an (H,D)-Gieseker stable
sheaf. We refer the reader to [CH17a, Theorem 6.4] for the details.

The Bayer-Macr̀ı Positivity Lemma allows us to use Theorem 6.2 to obtain nef divisors on the
boundary of the nef cone of the moduli spaces of sheaves.

Corollary 6.4. If the moduli space of (H,D)-twisted Gieseker stable sheaves MX,H,D(v) does not

contain any strictly semistable sheaves and ∆H,D(v) � 0, then the Bayer-Macr̀ı divisor associated
to the Bridgeland wall W (v,w) defines a divisor lying on the boundary of the nef cone of MX,H,D(v).

Moreover, Theorem 6.2 and Corollary 6.4 can be applied with only partial knowledge of strong
Bogomolov inequalities: one needs to know the classification of stable Chern characters only up
to rank r and only for nearby slopes. Consequently, one can compute the ample cones of Hilbert
schemes of points or low rank moduli spaces.

Example 6.5 ([BHL+15], Proposition 4.5). Let X be a very general hypersurface of degree d ≥ 4

in P3. If n ≥ d− 1, then the nef cone of the Hilbert scheme of n points Nef(X [n]) is spanned by(
d− 3

2
+
n

d

)
H [n] − B

2
and H [n],

where H [n] is the class of the divisor of points whose support intersects a fixed hyperplane section
and B is the class of the divisor of nonreduced schemes.
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Example 6.6 ([BHL+15], Proposition 4.8). Let X be a very general degree d cyclic cover of P2

branched along a curve of degree e ≥ 3d
d−1 . If n ≥ d, then Nef(X [n]) is spanned by(

ed− 2d− e
2d

+
n

d

)
H [n] − B

2
and H [n].

Example 6.7 ([CH17a], Example 7.1). Let X be a very general hypersurface in P3 of degree d ≥ 4
and let H denote the hyperplane class. Then the nef cone of the moduli space MX,H(v) with
rk(v) = 2, ch1(v) = H and ∆(v)� 0 is given by the images of

(0, H, n),

(
−1,

(
−d− 4

2
+

ch2

d

)
H,m

)
∈ v⊥,

where n and m are determined by the requirement that the vectors lie in v⊥. The first ray defines
the Donaldson-Uhlenbeck-Yau morphism and the second ray is the ray computed by Theorem 6.2.

Example 6.8 ([CH17a], Example 7.2). Let X be a very general double cover of P2 branched along
a curve of degree d and let H denote the pullback of OP2(1). Then the nef cone of the moduli space
MX,H(v) with rk(v) = 2, ch1(v) = H and ∆(v)� 0 is given by the images of

(0, H, n),

(
−1,

(
−d− 3

2
+

ch2

2

)
H,m

)
∈ v⊥,

where n and m are determined by the requirement that the vectors lie in v⊥. The first ray defines
the Donaldson-Uhlenbeck-Yau morphism and the second ray is the ray computed by Theorem 6.2.
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