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Abstract. The purpose of these lecture notes is to introduce the basics of the birational geometry
of moduli spaces to students who have taken an introductory course in algebraic geometry. We
concentrate on a few key ideas and examples. We define the cones of ample and effective divisors,
compute them for a few examples such as the blowup of P2 at one or two points. Then we discuss
the ample and effective cones of the Hilbert scheme of points on P2. Finally, in the last section,
we give a guide to the literature on other moduli spaces. These are the notes for two lectures that
I delivered at the CIMPA/TÜBITAK/GSU Summer School on Algebraic Geometry and Number
Theory in Istanbul in 2014.

1. Introduction

The purpose of these two lectures is to introduce the fast developing field of birational geom-
etry of moduli spaces to beginning students in algebraic geometry. Students who have taken an
introductory course in algebraic geometry are the intended audience of these notes. Rather than
developing the general theory, we will illustrate ideas via simple examples. We will concentrate on
the Hilbert scheme of points on the plane and point the reader to the literature for the birational
geometry of other moduli spaces such as the moduli space of curves or the Kontsevich moduli space
of stable maps.

Let X be a smooth, projective variety over the complex numbers. We can ask the following basic
questions about X.

(1) What are the embeddings of X into projective space?
(2) What are the rational maps from X into projective space?

Following the work of Kleiman, Kollár, Mori, Reid and others in the 1980s, it is customary to
translate these problems into problems of convex geometry. The reader should consult [D], [KM]
and [La] for detailed treatments of the subject.

Definition 1.1. A divisor on X is a finite linear combination
∑m

i=1 aiYi, where ai ∈ Z and Yi
are codimension one subvarieties of X. Let Div(X) denote the group of divisors on X. Two
divisors D1, D2 are numerically equivalent (D1 ≡ D2) if they have the same intersection number
D1 · C = D2 · C for every curve C ⊂ X. Notice that we can extend the notion of numerical
equivalence if we take Q or R as coefficients for divisors. The Néron-Severi space NS(X) of X is
the Q-vector space of Q-divisors modulo numerical equivalence Div(X)⊗Q/ ≡.

Given a divisor D on X, one associates the line bundle OX(D) on X [Ha, II.6.13]. One can define
the concepts for divisors or line bundles to get equivalent theories. We will use them interchangeably
depending on convenience.
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As discussed in the lectures of Chris Peters and Olivier Debarre, to each line bundle we can
associate a first Chern class in H1,1(X,C) ∩ H2(X,Z). If two line bundles have the same Chern
class, then the corresponding divisors are numerically equivalent. Consequently, NS(X) is finite
dimensional since it is a quotient of a finite dimensional vector space. Its dimension is called the
Picard number ρ(X) of X.

We will now introduce convex cones in NS(X)⊗R that capture the birational geometry of X. In
the next section, we will compute several simple examples. In the last two sections, we will discuss
these cones for various moduli spaces.

Definition 1.2. A divisor
∑n

i=1 aiYi is called effective if ai ≥ 0 for 1 ≤ i ≤ n. A line bundle is
called effective if H0(X,L) 6= 0. A line bundle L on X is called globally generated or base-point-
free if for every x ∈ X, there exists a section s ∈ H0(X,L) such that s(x) 6= 0. A divisor D is
called base-point-free if OX(D) is base-point-free. More generally, a linear system V , i.e., a vector
subspace V ⊂ H0(X,L), is called base-point-free if for every x ∈ X, there exists a section s ∈ V
such that s(x) 6= 0.

There is an equivalence between morphisms f : X → Pn and base-point-free linear systems on
X [Ha, II.7.1]. Projective space Pn is equipped with the line bundle OPn(1) whose global sections
are linear homogeneous polynomials. Given any point p ∈ Pn, we can find a linear homogeneous
polynomial not vanishing at p. Consequently, OPn(1) is a globally generated line bundle on Pn.
Given a morphism f : X → Pn, we obtain a line bundle L = f∗OPn(1) on X and a base-point-free
linear system V by pulling back the sections of OPn(1) via f . Conversely, given a line bundle L on
X and a base-point-free linear system V ⊂ H0(X,L), we obtain a morphism f : X → Pn. Choose
a basis of V , s0, . . . , sn. Consider the map

f : X → Pn, x 7→ [s0(x) : · · · : sn(x)].

Since V is base-point-free and s0, . . . , sn is a basis of V , for each x ∈ X, there exists si such that
si(x) 6= 0. Consequently, f is a well-defined morphism from X to Pn.

Let L be a globally generated line bundle on X and let V ⊂ H0(X,L) be a base-point-free linear
system. Then the morphisms obtained by the complete linear system, i.e., using the entire vector
space H0(X,L), and the subseries V are related by a projection. Choose a basis s0, . . . , sm for V
and complete this basis to a basis of H0(X,L). Then the map defined by V is the projection of
the map defined by H0(X,L) from the linear space defined by xm+1 = · · · = xn = 0. Hence, in
order to understand morphisms from X to projective space, we can restrict ourselves to morphisms
defined by complete linear systems.

Exercise 1.3. Show that OP2(2) is a globally generated line bundle on P2. Show that the linear
system V spanned by x2, y2, z2, xy, xz is base-point-free. Show that the morphism defined by
|OP2(2)| is the second Veronese embedding of P2 in P5 given by [x : y : z] 7→ [x2 : y2 : z2 : xy : xz :
yz]. Show that the morphism defined by V is the projection of the second Veronese embedding
from [0 : 0 : 0 : 0 : 0 : 1].

Definition 1.4. A line bundle L is called very ample if L = f∗OPn(1) for an embedding f : X → Pn.
A line bundle L is called ample if L⊗m is very ample for some m > 0. A divisor D is ample if
OX(D) is ample.

There are cohomological, numerical and analytic characterizations of ample line bundles. First,
Serre’s Theorem gives a cohomological characterization of ampleness. In fact, Hartshorne uses this
characterization as the definition of ampleness in [Ha, II.7].

Theorem 1.5 (Serre). A line bundle L is ample if and only if for every coherent sheaf F on X
there exists an integer m > 0 such that F ⊗ L⊗n is globally generated for n ≥ m. Furthermore,
there exists an integer m′ such that F ⊗ L⊗n has no higher cohomology for n ≥ m′.
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Theorem 1.5 is a fundamental result in algebraic geometry whose proof can be found in [Ha,
II.7.6] or [La, 1.2.6]. More importantly for our purposes, the Nakai-Moishezon criterion gives a
numerical characterization of ampleness.

Theorem 1.6 (Nakai-Moishezon Criterion). A line bundle L on X is ample if and only if for every
positive dimensional subvariety Z ⊆ X the intersection number LdimZ · [Z] > 0.

The reader can find a proof of the Nakai-Moishezon criterion in [La, 1.2.23]. By the Nakai-
Moishezon criterion, if D1 ≡ D2, then D1 is ample if and only if D2 is ample. Consequently, we
can extend the notion of ampleness to Q-divisors: a Q-divisor D is ample if a positive multiple
mD clearing all the denominators of the coefficients is ample. We can extend the definition to
R-divisors by requiring that an ample divisor is a positive R-linear combination of ample divisors.
Furthermore, since ampleness is a numerical condition, the notion makes sense for divisor classes
in NS(X) or NS(X)⊗ R.

Exercise 1.7. Using Serre’s characterization of ampleness, show that if L and M are ample line
bundles on X, then L⊗M is also an ample line bundle on X.

Exercise 1.8. Using Serre’s characterization of ampleness, show that if L is an ample line bundle
and M is any line bundle, then L⊗m ⊗M is ample for all m >> 0.

The two previous exercises show that the set of ample divisor classes in NS(X) forms an open,
convex cone. We will call this cone the ample cone of X and denote it by Amp(X). It is one of the
basic invariants of X and encodes the embeddings of X into projective space.

Definition 1.9. A line bundle is called nef if its degree on every curve C ⊂ X is nonnegative. A
divisor is called nef if D · C ≥ 0 for every curve C ⊂ X.

By definition, being nef is a numerical condition. Hence, we can extend the notion to Q or
R divisors and it makes sense to consider nef divisor classes in NS(X) ⊗ R. Any non-negative
linear combination of nef divisors is again nef. Furthermore, for each curve C, the condition
C · D ≥ 0 defines a closed half-space in the Néron-Severi space. As C varies over all curves in
X, the intersection of all these half-spaces is still closed. Hence, the set of nef divisor classes in
NS(X)⊗ R forms a closed, convex cone Nef(X) called the nef cone. Since the degree of an ample
line bundle on a curve is strictly positive, we have the containment Amp(X) ⊂ Nef(X). Since
Amp(X) is an open convex cone and Nef(X) is a closed convex cone, the containment is strict.
The celebrated theorem of Kleiman clarifies the relation between these two cones.

Theorem 1.10 (Kleiman’s Criterion). The nef cone is the closure of the ample cone. The ample
cone is the interior of the nef cone.

The reader can find a proof of Kleiman’s Theorem in [La, 1.4.9]. The pullback of an ample
line bundle under a birational morphism is nef but not ample. Hence, one can view nefness as a
birational version of ampleness. The following lemma is useful in describing nef cones of varieties.

Lemma 1.11. A base-point-free line bundle is nef.

Proof. Let L be base-point-free, then L defines a morphism f : X → Pn. Let C be an irreducible
curve onX. Pick a point p ∈ C. Pick a hyperplaneH ⊂ Pn not containing f(p). HenceD = f−1(H)
is a section of L that does not contain p. A codimension one subvariety (such as D) has negative
intersection with an irreducible curve C if and only if C ⊂ D. If C 6⊂ D, then C intersects D in
finitely many points and the intersection number is the number of intersection points counted with
multiplicity (which are all positive). Hence, D · C ≥ 0. We conclude that L is nef. �

The following two exercises will explore the concepts we have introduced so far for curves. They
are intended for students who have some familiarity with the theory of curves at the level of [Ha,
Chapter 4].
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Example 1.12. Let E be an elliptic curve. Let L = OE(p) for a point p ∈ E. Then show that
L⊗2 = OE(2p) is globally generated but not very ample (hint: it defines a 2 : 1 map to P1). Show
that L⊗m is very ample for m ≥ 3.

Exercise 1.13. Let C be a smooth, projective curve of genus g. Let OC(KC) be the canonical
bundle of C. Recall that OC(KC) is the line bundle of degree 2g−2 dual to the tangent bundle TC .
Global sections of OC(KC) are holomorphic one-forms. Given a divisor D on C, the Riemann-Roch
Theorem for curves calculates the Euler characteristic of OC(D) in terms of the degree of D and
the genus g of C:

h0(C,OC(D))− h0(C,OC(KC −D)) = deg(D)− g + 1.

Prove the following assertions.

(1) A line bundle L on C is base-point-free if and only if h0(C,L(−p)) = h0(C,L)− 1 for every
p ∈ C.

(2) A line bundle L on C is very ample if and only if h0(C,L(−p− q)) = h0(C,L)− 2 for every
p, q ∈ C (possibly equal).

(3) A line bundle L on C is ample if and only if its degree is positive.
(4) A line bundle of degree d ≥ 2g + 1 on C is very ample.
(5) Give an example of a line bundle of degree 2g on a curve of genus g > 2 which is very

ample. Give an example of a line bundle of degree 2g on a curve of genus g > 2 which is
not very ample. Notice that unlike ampleness, very ampleness is not a numerical condition.

(6) If g ≥ 3, show that the canonical bundle is very ample if and only if C is not hyperelliptic.

Next, we introduce another set of cones that play an important role in birational geometry. We
begin by introducing the effective cone.

Example 1.14. Being effective is not a numerical condition. Let E be an elliptic curve and let
L be a nontrivial, degree zero line bundle. Then OE and L are numerically equivalent since they
both have degree zero. However, the only effective degree zero line bundle on a curve is the trivial
bundle. Observe that we cannot fix this problem by taking multiples. If L is a non-torsion degree
zero line bundle, then no multiple of L has a section. On the other hand, if L is an m-torsion line
bundle and is not torsion of any lower order, then L⊗k has a section if and only if m divides k.

Since being effective is not numerical, we need to exercise some care. The effective cone Eff(X)
is the cone generated by the classes of all effective divisors. Since a non-negative linear combination
of two effective divisors is again effective, Eff(X) is a convex cone. In general, it is neither open
nor closed (see [La, 1.5.1] for an example of a two-dimensional effective cone that contains one of
its extremal rays but not the other). The closure Eff(X) of Eff(X) in NS(X) is called the pseudo-
effective cone. Thanks to a recent theorem of Boucksom, Demailly, Paun and Peternell [BDPP],
Eff(X) has an intrinsic characterization as the cone dual to the cone of movable curve classes. An
irreducible curve is movable if its deformations cover a Zariski dense subset of X. If C is a movable,
irreducible curve and D is an effective divisor, then C ·D ≥ 0 since some deformation of C is not
contained in D. The theorem of Boucksom, Demailly, Paun and Peternell verifies the converse.
The interior of Eff(X) also has an intrinsic characterization.

Definition 1.15. A line bundle L is called big if for some multiple m > 0, the dimension of the
image of the rational map defined by L⊗m is equal to the dimension of X.

A celebrated theorem of Kodaira shows that a divisor is big if and only if it is numerically
equivalent to the sum of an ample divisor and an effective divisor [La, 2.2.6, 2.2.7]. In particular,
being big is a numerical condition. The open convex cone generated by big divisor classes is called
the big cone and will be denoted by Big(X). An ample divisor is clearly big, hence Amp(X) ⊂
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Big(X) and a big divisor is clearly effective, so Big(X) ⊂ Eff(X). In fact, Big(X) is the interior of
Eff(X) and Eff(X) is the closure of Big(X).

In this section, we have introduced several cones in NS(X). We have the containments Amp(X) ⊂
Nef(X) and Amp(X) ⊂ Big(X) and Nef(X),Big(X) ⊂ Eff(X).

Remark 1.16. When one studies moduli spaces or birational geometry, one inevitably encounters
singular varieties. It is possible to extend the discussion in this section to mildly singular varieties.
On a singular variety the notions of Weil divisors and line bundles diverge. To obtain an equivalence
with line bundles, one has to restrict to Cartier divisors (see [Ha, II.6.14, II.6.15]). Let X be a
normal, projective variety over the complex numbers. A Weil divisor D on X is called Q-Cartier,
if there exists an integer m > 0 such that mD is Cartier. A variety is called Q-factorial if every
Weil divisor on X is Q-Cartier. Since much of the theory described in this section is asymptotic, it
extends to Q-factorial, normal varieties without much trouble (see [La] for a systematic treatment).
Many interesting moduli spaces such as the moduli space of curves or moduli spaces of Gieseker
semi-stable sheaves on surfaces are constructed as GIT quotients and are Q-factorial projective
varieties. Hence, the theory applies to them.

2. Birational Geometry

In this section, we will demonstrate techniques for computing Amp(X) and Eff(X) in several
simple examples. We will illustrate the close connection between these cones and the birational
geometry of X.

Example 2.1. In this example, we will compute the ample and effective cones for the blowup X of
P2 at a point p. Recall that X is the graph of the projection of P2 from p. By choosing appropriate
coordinates, we may assume that p = [0 : 0 : 1]. The projection is given by [x : y : z] 7→ [x : y] and
is defined away from p. The graph has equations

X = {([x : y : z], [u : v])|xv = yu} ⊂ P2 × P1.

The first projection π1 : X → P2 is a birational map. Over P2 − p, π1 has a well-defined inverse
given by [x : y : z] 7→ ([x : y : z], [x : y]). The inverse map is not defined at p. If x = y = 0, then
every [u, v] ∈ P1 satisfies the equation xv = yu. Hence, the inverse image of π−11 (p) is a rational
curve E called the exceptional curve. The second projection π2 defines a morphism π2 : X → P1

and exhibits X as a P1-bundle over P1, where the fiber over [u : v] is the line in P2 through p with
slope [u : v].

In order to understand Amp(X) and Eff(X), we first have to describe NS(X). If Y is a subvariety
of Z of codimension at least two, then Div(Z) ∼= Div(Z − Y ). Hence, Div(P2) ∼= Div(P2 − p). On
the other hand, P2 − p is isomorphic to X − E, so Div(P2) ∼= Div(X − E). Let H denote the
pullback of the class of a line by π1. Using the exact sequence [Ha, II.6]

ZE → Pic(X)→ Pic(X − E)→ 0,

we conclude that H and E generate the Picard group of X. In fact, Pic(X) ∼= ZH ⊕ ZE. We
can compute the intersection pairing on X. By taking two distinct lines that avoid p, it is clear
that H2 = 1. On the other hand, by taking a line avoiding p, it is also clear that H · E = 0. The
hardest calculation is E2. Take two separate lines that pass through p and consider their proper
transforms. Setting y = xv, we see that the equation of the line y−ax becomes x(v−a). The total
transform of the lines vanish once along the exceptional divisor (whose equation is x = 0) and the
proper transforms intersect the exceptional divisor at [1 : a]. The proper transforms of the lines
have class H − E and are disjoint. We see that (H − E)2 = 0, and, using H2 = 1, H · E = 0, we
conclude that E2 = −1. Therefore, the intersection pairing is given by

H2 = 1, H · E = 0, E2 = −1.
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In particular, H and E are numerically independent. Consequently, the Néron-Severi space is the
two-dimensional Q vector space spanned by H and E.

The ample cone in NS(X) is simple to describe. We already know that X admits two morphisms
π1 and π2 to P2 and P1, respectively. The divisor classes that define these morphisms are H and
H−E, respectively. Hence, these divisor classes are base-point-free. By Lemma 1.11, they are also
nef. On the other hand, neither of these classes are ample. The morphism defined by H contracts
the exceptional curve E and has H · E = 0. The intersection number (H − E)2 = 0 shows that
H−E is not ample. We conclude that H and H−E are the two extremal rays that bound Nef(X).

SinceX is a surface, the effective cone is dual to the ample cone under the intersection pairing. We
conclude that the boundary rays of the effective cone are spanned by E and H −E. Alternatively,
we can exhibit irreducible curves whose deformations cover a Zariski open set in X and have
intersection number zero with E and H − E. If C is an irreducible curve and D is an effective
divisor, then, as we remarked earlier, C ·D ≥ 0 unless C ⊂ D. If deformations of the curve cover a
Zariski open set, then we can find C such that C 6⊂ D. Hence, C ·D ≥ 0 for every effective divisor.
Having C ·D = 0, forces D to lie on the boundary of the cone. Note that both H (the class of a line
not passing through p) and H −E (the proper transform of a line passing through p) are classes of
irreducible curves whose deformations cover Zariski open sets in X. Therefore, E and H −E span
the extremal rays of Eff(X) since E ·H = 0 and (H − E)2 = 0.

In conclusion, we learn that Nef(X) is the closed cone spanned by H and H−E and Eff(X) is the
closed cone spanned by E and H −E. A large enough multiple of any divisor D = aH + b(H −E)
with a, b > 0 defines an embedding of X. The divisor H defines the blowdown map π1 : X → P2,
whereas the divisor H − E defines the second projection π2 : X → P1.

Example 2.2. To give a slightly more sophisticated example, let us consider the blowup X of P2

at two points p1, p2. As in the previous example, one may write the equations for X explicitly. By
choosing appropriate coordinates, we may assume that p1 = [0 : 0 : 1] and p2 = [0 : 1 : 0]. Then
the equations of X can be written as

{([x : y : z], [u : v], [s : t])|xv = yu, xt = zs} ⊂ P2 × P1 × P1.

The reader should check that the first projection π1 : X → P2 is a birational morphism whose
inverse is defined everywhere but the two points p1, p2. The inverse images of pi are rational curves
Ei for 1 ≤ i ≤ 2. The projections to the two other factors π2, π3 : X → P1 define two morphisms
to P1. As in the previous example, the Picard group is isomorphic to ZH ⊕ ZE1 ⊕ ZE2. We have
the intersection pairing

H2 = 1, H · Ei = E1 · E2 = 0, E2
i = −1.

(Exercise: The reader should verify these two statements.) Consequently, these classes are numer-
ically independent and the Néron-Severi space is the three dimensional Q-vector space spanned by
H,E1, E2.

There are three self-intersection −1 rational curves on X: the two exceptional curves E1, E2 and
the proper transform of the line joining p1 and p2 with class H − E1 − E2. The dual cone to the
cone generated by these three curves is the cone spanned by H,H − E1 and H − E2. The classes
H, H −E1 and H −E2 are base-point-free since they define the three projection morphisms π1, π2
and π3, respectively. We conclude that the cone they span is contained in Nef(X). However, since
this cone is dual to a cone generated by three effective curves, the nef cone cannot be any larger.
Therefore, Nef(X) is the closed cone spanned by H,H −E1 and H −E2. Dually, the effective cone
is the closed cone spanned by E1, E2 and H − E1 − E2.

If we take any divisor D in the interior of Nef(X), then D is ample and a sufficiently large
multiple defines an embedding of X. The divisor H, by its definition is the pullback of OP2(1)
from P2 and it defines the blow down map π1 : X → P2. Similarly, the divisors H − E1 and
H −E2 are the pullbacks of OP1(1) via the projections π2 and π3, respectively. Hence, they define
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the two projections to P1. If D is a positive linear combination of H and H − E1 (respectively,
H and H − E2), then the corresponding morphisms are the blowdown of E2 (respectively, E1)
(i.e., the blowup of P2 at p1 and p2, respectively) defined by the projection π1,2 (respectively, π1,3)
to the first two factors (respectively, to the first and third factor). Finally, if we take a positive
linear combination of H − E1 and H − E2, we obtain the projection onto P1 × P1. We thus see
the correspondence between the points of Nef(X) and the morphisms from X to other projective
varieties very explicitly.

Exercise 2.3. Compute the ample and effective cones of the blowup of P2 at three non-collinear
points p1, p2, p3. (Hint: Show that the effective cone is spanned by the three exceptional divisors
E1, E2, E3 lying over p1, p2, p3 and the proper transforms of the three lines joining pi, pj for 1 ≤ i <
j ≤ 3. The ample cone is dual to this cone under the intersection pairing.)

Exercise 2.4. Compute the ample and effective cones of the blowup of P2 at three collinear points
p1, p2, p3. Describe how the answer differs from the previous exercise.

We now turn to a higher dimensional example to illustrate some new features that arise when
one leaves the realm of surfaces.

Example 2.5. Recall from Olivier Debarre’s lectures that the Grassmannian G(1, 3) parameter-
izing lines in P3 is a 4-dimensional smooth variety. The Plücker map embeds G(1, 3) into P5 as a
quadric hypersurface with equation

x12x34 − x13x24 + x14x23 = 0.

Flag varieties provide a natural generalization of Grassmannians. The flag variety
F(k1, k2, . . . , kr;n) parameterizes linear partial flags

Pk1 ⊂ Pk2 ⊂ · · · ⊂ Pkr ⊂ Pn.

For example, F(0, 1; 3) parameterizes pointed lines in P3, F(0, 1, 2; 3) parameterizes triples p ⊂ l ⊂ Π
of consisting of a point p, a line l and a plane Π in P3.

Fix a line Λ ⊂ P3 spanned by the two points e1, e2. The Schubert variety Σ1(Λ) parameterizing
lines in P3 that intersect the fixed line Λ is defined by the vanishing of the Plücker coordinate
x34 = 0. Hence, Σ1 is the quadric cone in P5 defined by the equations x34 = x13x24 − x14x23 = 0
with singular point x13 = x14 = x23 = x24 = x34 = 0. Consider the following subvarieties of flag
varieties closely related to Σ1(Λ).

X1 := {(p, l)|p ∈ l ∩ Λ} ⊂ F(0, 1; 3)

X2 := {(l,Π)|l,Λ ⊂ Π} ⊂ F(1, 2; 3)

X3 := {(p, l,Π)|p ∈ l ∩ Λ, l,Λ ⊂ Π} ⊂ F(0, 1, 2; 3)

The variety X1 parameterizes pointed lines (p, l) such that the point p is in the intersection of l
with the fixed line Λ. In particular, l has to intersect Λ and, unless the line l = Λ, the point p
is uniquely determined by l. The variety X2 parameterizes pairs (l,Π) such that Π contains the
span of l and Λ. Hence, l has to intersect Λ and Π is uniquely determined by l unless l equals Λ.
Finally, X3 parameterizes triples (p, l,Π), where p is in the intersection of l and Λ and Π contains
the span of l and Λ. If l 6= Λ, then p and Π are uniquely determined. Observe that by projecting to
l, X1, X2 and X3 admit morphisms to Σ1(Λ). All three morphisms are birational. The exceptional
locus in the first two cases are P1 (the pairs (p,Λ) with p ⊂ Λ and the pairs (Λ,Π) with Λ ⊂ Π)
and in the last case P1 × P1.

Exercise 2.6. By noticing that both X1 and X2 are P2 bundles over P1 show that they are smooth.
Show that X3 is the blowup of Σ1(Λ) at the singular point and it is smooth. Hence, X1, X2 and X3

all provide resolutions of singularities of Σ1(Λ). Show that both X1 and X2 are small resolutions
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in the sense that the exceptional locus has codimension 2. The exceptional locus of the projection
π3 : X3 → Σ1(Λ) is a divisor.

Notice that X1 admits a rational map to X2 by sending (p, l) to (l,Π), where Π is the span of
l and Λ. This map is only a rational map and is not a morphism (the map is not defined when
l = Λ). These types of rational maps are called flops. We will not make an attempt to define
or explain their importance here. The reader who would like a systematic introduction to higher
dimensional birational geometry can start with the article [CCJ] and the books [D], [KM] and [Ko].

We can describe the nef and effective cones of X3 as in the previous examples. The following
exercise will help you work these out.

Exercise 2.7. Show that the three projections to p, l and Π define three morphisms from X3 to
P1, Σ1(Λ) and P1, respectively. Show that the pullbacks of OP1(1) and OG(1,3)(1) via these maps
generate Nef(X3). Describe the morphisms one obtains from non-negative linear combinations
of the corresponding divisor classes. Take special note that the projection to Σ1(Λ) results in a
singular variety. Hence, even when one wishes to study the birational geometry of smooth varieties,
one naturally encounters singular varieties. See [KM], [Ko2], [R] for an in depth discussion of the
singularities that occur in the minimal model program. For recent developments see [BCHM].

3. The Hilbert scheme of points on the plane

In this section, we will introduce the Hilbert scheme of points on P2 and discuss its cones of
ample and effective divisors. The reader who wishes to learn more about the geometry of Hilbert
schemes of points can start with [G], [Le] and [N]. For more information on the birational geometry
of the Hilbert scheme of points on surfaces, the reader can start with [ABCH], [BM], [BM2], [BC],
[CH] and [Hui].

Let X be a smooth, projective variety. Let n > 1 be an integer. The configuration space
Confign(X) of n points on X parameterizes n-unordered tuples of points on X. Unfortunately,
Confign(X) is not compact since distinct points on X can tend to each other. The symmetric

product X(n) gives a natural compactification of Confign(X). Recall that X(n) is the quotient of

the product Xn by the symmetric group action Sn permuting the factors. When dim(X) = 1, X(n)

is a smooth, projective variety and gives a nice compactification of Confign(X). When dim(X) ≥ 2,

X(n) is singular. In this section, we will discuss the Hilbert scheme of points on X introduced by
Grothendieck, which is a desingularization of X(n) when dim(X) = 2.

Exercise 3.1. Given n points [u1 : v1], . . . , [un : vn] on P1, show that the homogeneous polynomial∏n
i=1(vix − uiy) of degree n is well-defined up to a scalar multiple. Hence, n unordered tuples of

points on P1 can be uniquely parameterized by the coefficients of the corresponding polynomial up
to scaling. Deduce that P1(n) ∼= Pn.

Exercise 3.2. Let X be a smooth, projective curve of genus g. Then, X(n) admits a morphism
φn to Picn(X) by sending

∑
i=1n pi to OX (

∑n
i=1 pi). Show that when n > 2g − 2, φn realizes

X(n) as a projective bundle over Picn(X). The fiber over a point OX (
∑n

i=1 pi) is the linear system
|OX(

∑n
i=1 pi)|. Show that φn is surjective if n ≥ g, but in the range g ≤ n ≤ 2g − 2 the fiber

dimension of φn jumps over line bundles that have higher cohomology.

The idea of Grothendieck is to take Exercise 3.1 as a starting point. Rather than considering
the set of distinct points Z on X, we can consider polynomials that vanish on Z. We get an ideal
IZ with the property that h0(OZ(k)) = n for all k ≥ 0. Grothendieck proposes to take the set of
all ideal sheaves I ⊂ OX such that h0(OX/I(k)) = n as a compactification of Confign(X). In fact,
much more generally, he considers the set HilbP (X) of schemes Z whose ideal sheaves IZ ⊂ OX

have a fixed Hilbert polynomial P . He shows that this set has naturally the structure of a projective
scheme (see [HMo] for an explanation of the word naturally).
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Theorem 3.3 (Grothendieck). There is a projective scheme HilbP (X) parameterizing ideal sheaves
with Hilbert polynomial P in X such that HilbP (X) represents the Hilbert functor associating to
each scheme S the families in S ×X flat over S with Hilbert polynomial P .

This is an important theorem to learn (see [M], [S]) and would make a nice reading project
for any student who has studied [Ha, II and III]. For smooth curves, the Hilbert scheme and the
symmetric product coincide. By Exercise 3.2, we understand the geometry of the Hilbert scheme
of points on a smooth curve well, at least if the number of points is large compared to the genus.
However, in higher dimensions the Hilbert scheme and the symmetric product are different. In
this section, we are primarily interested in Hilbn(P2), which we will abbreviate as P2[n]. To give

the reader an idea of the points of P2[n], we give some examples. Since we can always find a line
that misses finitely many points, we will consider our examples in C2[n] and write non-homogenous
equations.

Example 3.4. Two distinct points (0, 0), (1, 0) in C2 have ideal generated by y, x(x− 1) (exercise:
prove this!). Then

dimC[x, y]/(y, x(x− 1)) = 2

spanned by 1 and x. Next, consider the ideals (y − ax, x2). We have

dimC[x, y]/(y − ax, x2) = 2

also spanned by 1 and x. Hence, these ideals also belong to the Hilbert scheme of two points.
By varying a ∈ C, we get a one-parameter family of such ideals. Unlike the symmetric product,
which would only record the fact that there is a double point at the origin, the Hilbert scheme has
a distinguished line (y − ax) associated to each double point. For this reason, these length two
schemes are typically denoted by a tangent vector with slope a.

Exercise 3.5. Show that P2[2] is the blowup of P2(2) along the diagonal. More generally, show that
if X is a smooth variety, then the Hilbert scheme of two points X [2] is the blowup of the symmetric
product X(2) along the diagonal.

Example 3.6. After a change of coordinates, we may assume that three non-collinear points are
given by (0, 0), (1, 0), (0, 1). Their ideal is generated by the polynomials I = (xy, x(x− 1), y(y− 1))
(exercise: prove this). We see that C[x, y]/I is spanned by 1, x, y, hence has dimension 3.

When the three points become collinear the equations change. Consider the points
(0, 0), (0, 1), (0, 2). Their ideal is generated by I = (x, y(y − 1)(y − 2)). This time C[x, y]/I is
spanned by 1, y, y2 and still has dimension 3.

When the three points collide, the possibilities become more interesting. First, we can have ideals
of the form I1 = (x3, y − ax − bx2) for some a, b ∈ C. Since C[x, y]/I1 is spanned by 1, x, x2, this

is a point of C2[3]. More interestingly, consider the square of the maximal ideal I2 = (x2, xy, y2).

Then C[x, y]/I2 is spanned by 1, x, y and hence belongs to C2[3]. The difference between I1 and I2
is that the scheme defined by I1 is contained in a smooth curve (defined by y− ax− bx2), whereas
the scheme defined by I2 is not contained in a smooth curve (prove this by showing that the Zariski
tangent space is not one dimensional).

Example 3.7. A scheme supported at one point is called a punctual scheme. To understand points
of P2[n], it suffices to understand punctual schemes since any zero-dimensional scheme naturally
decomposes into punctual schemes along its support. Let I = (xn, y−a1x−a2x2−· · ·−an−1xn−1).
Then C[x, y]/I is spanned by 1, x, x2, · · · , xn−1, hence I is a point of C2[n]. These zero-dimensional
schemes are called curvilinear schemes since they are contained in the smooth curve defined by
y − a1x− a2x2 − · · · − an−1xn−1. They form an (n− 1)-dimensional smooth locus in the punctual
Hilbert scheme of length n. A Theorem of Briançon (see [G] or [Le]) says that curvilinear schemes
are dense in the punctual Hilbert scheme of a surface. Hence, the punctual Hilbert scheme of a
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surface is irreducible of dimension n − 1. As a consequence, one can show that the locus of non-
reduced schemes on a surface is an irreducible divisor. The next example shows that Briançon’s
Theorem fails when dimX > 2.

Example 3.8 (Iarrabino’s Example). When the dimension of X is greater than 2, the Hilbert
scheme of points is highly singular. In fact, it is not even a compactification of Confign(X) as it
might have many other components, some of different dimensions. Here we give an example due
to Iarrabino that shows that C3[96] is reducible.

Config96(C3) is a 288-dimensional complex manifold and it is a Zariski open subset in C3[96]. Let
m denote the maximal ideal at the origin in C3 and let V be a 24-dimensional subspace of the space
of homogeneous polynomials of degree 7 in 3 variables. Let I =< V,m8 > be the ideal generated
by V and all homogeneous polynomials of degree 8. Recall that the dimension of the vector space
of homogeneous polynomials of degree d in three variables is

(
d+2
2

)
. Then

dimC
C[x, y, z]

I
=

6∑
i=0

(
i+ 2

2

)
+ 12 = 96,

where 12 is the dimension of the space of degree 7 polynomials remaining after we quotient by
V . Hence, ideals of this form belong to C3[96]. On the other hand, such ideals are determined by
the choice of the vector space V , which are parameterized by the Grassmannian G(24, 36). The
Grassmannian G(24, 36) has dimension 24 × (36 − 24) = 288. Finally, so far our ideals have been
supported at the origin, but we can move the support to any other point in C3. We thus obtain a
locus of C3[96] of dimension at least 291 > 288. This example shows that when dim(X) ≥ 3, there
are schemes supported at one point that are not limits of smooth, distinct points. Hence, the locus
of distinct points is not dense in the Hilbert scheme. It is an open problem to determine when a
scheme is in the closure of the locus of distinct points.

In contrast to higher dimensions, by a theorem of Fogarty, the Hilbert scheme of a surface is as
nice as possible.

Theorem 3.9 (Fogarty [F1]). Let S be a smooth projective surface. The Hilbert scheme of points

S[n] is a smooth, irreducible, projective variety of dimension 2n. The configuration space Confign(S)

is a dense Zariski open subset of S[n].

For the rest of this section, we will restrict to the case S = P2. The Hilbert schemes of points
on surfaces play an important role in many branches of mathematics, including in algebraic geom-
etry, topology, combinatorics, representation theory and mathematical physics. The reader who is
interested in pursuing some of these topics can start with Haiman’s work on the n! conjecture [Hai]
or Nakajima’s work on the cohomology of the Hilbert scheme of points [N].

There is a morphism h : P2[n] → P2(n) called the Hilbert-Chow morphism that associates to
a scheme Z the element of the symmetric product

∑
p∈Supp(Z) lp(Z)p (see [Le]). We can under-

stand the Néron-Severi space of P2[n] in terms of the Hilbert-Chow morphism. The Hilbert-Chow
morphism gives a crepant resolution of the symmetric product, i.e., h is a resolution such that
h∗KP2(n) = KP2[n] . The exceptional locus of h is the irreducible divisor parameterizing non-reduced

schemes. We will call this divisor B. The Picard group of P2(n) is generated by a single element.
We can pull it back via h. Geometrically, schemes whose support intersect a fixed line l in P2 give
a section of this line bundle on P2[n]. We denote its class by H. Using h, it is easy to conclude
that the Néron-Severi space of P2[n] is the two-dimensional Q-vector space spanned by H and B.
In fact, Fogarty computed the Picard group over Z.

Theorem 3.10 (Fogarty [F2]). The Picard group of P2[n] is isomorphic to ZH ⊕ ZB
2 .
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Unfortunately, the class B
2 is not effective, so it is harder to make sense of it geometrically. Since

we are working over Q, we can instead use the more geometric divisor B.

Now that we have gathered this basic information about P2[n], we can ask for the ample and
effective cones of P2[n]. We already know that the Hilbert-Chow morphism h is a birational mor-
phism from P2[n] to P2(n). However, h is not an isomorphism. It contracts the locus of non-reduced
schemes. More concretely, fix n− 2 distinct points p1, . . . , pn−2 different from the origin. Consider
the curve induced in P2[n] via the one-parameter family of schemes of length n given by the union
of p1, . . . , pn−2 with schemes of length two supported at the origin. Under h this curve maps to a
point. We conclude that H is a base-point-free divisor, which is not ample. Hence, it defines an
extremal edge of the nef cone.

Finding the other extremal edge of the nef cone is harder. We begin by defining some rational
maps to Grassmannians. Consider the standard exact sequence of sheaves

0→ IZ → OP2 → OZ → 0.

Twisting this sequence by OP2(k), we get the exact sequence

0→ IZ(k)→ OP2(k)→ OZ(k)→ 0.

The associated long exact sequence of cohomology yields the inclusion

H0(P2, IZ(k)) ⊂ H0(P2,OP2(k)).

This is fancy notation for expressing the simple fact that homogeneous polynomials of degree k
in three variables that vanish on the scheme Z is a subvector space of the vector space of all
homogeneous polynomials of degree k in three variables. The latter vector space has dimension
N =

(
k+2
2

)
. To require a polynomial to vanish at a point is one linear condition on the polynomials.

If the conditions are independent, we would expect the vector spaceH0(P2, IZ(k)) to have dimension
N − n. For a general set of points, these conditions will be independent and N − n will be the
dimension of the vector space. However, for special sets of points, the conditions may fail to be
independent.

Example 3.11. Let p1, p2, p3, p4 be 4 distinct collinear points. Let Z be the zero-dimensional
scheme consisting of their union. We would expect a scheme of length 4 to impose 4 conditions
on polynomials of degree 2. However, any polynomial of degree 2 vanishing on Z, by Bezout’s
Theorem, must vanish on the line l they span. Hence, any degree two polynomial vanishing on Z is
the product of the equation of l with any other linear form. Hence, there is a 3 dimensional space
of polynomials of degree 2 vanishing on Z instead of the expected 2.

Exercise 3.12. Show that 4 points impose independent conditions on polynomials of degree 2 if
and only if they are not collinear.

Exercise 3.13. Show that general points impose independent conditions on homogeneous polyno-
mials of degree k (hint: choose the points inductively to reduce the dimension of the vector space by
1 at each stage. Suppose you have chosen m points such that the polynomials of degree k vanishing
on them has dimension N −m. Pick such a polynomial f and let your (m+ 1)st point be any point
not in the zero locus of f).

By sending a scheme Z to the vector space H0(P2, IZ(k)), we get a rational map

φk : P2[n] 99K G(N − k,N)

to the Grassmannian of (N − k)-dimensional subspaces of H0(OP2(k)). In general, φk is only a
rational map because some of the schemes may fail to impose independent conditions on polynomials
of degree k, in which case, there isn’t an (N − k)-dimensional subspace associated to them. For

example, φ2 : P2[4] 99K G(2, 6) is not defined along the locus of collinear schemes of length 4.
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When k ≥ n − 1, then φk is always a morphism. In other words, schemes of length n always
impose independent conditions on polynomials of degree at least n− 1. There are several ways of
proving this fact. One may either use the theory of k-very ample line bundles ([LQZ] or [ABCH])
or one can use facts concerning resolutions of ideals of zero-dimensional schemes [BC]. Every
zero-dimensional scheme in P2 has a minimal free resolution of the form

0→ ⊕m
j=1OP2(−bj)→ ⊕m+1

i=1 OP2(−ai)→ IZ → 0,

where n + 1 ≥ bj for 1 ≤ j ≤ m and n ≥ ai for 1 ≤ i ≤ m + 1 (see [E]). Twisting by OP2(k) and
taking cohomology, one can see that h1(P2, IZ(k)) = h2(P2, IZ(k)) = 0 for k ≥ n − 1. Since the
Euler characteristic is constant, we conclude that h0(P2, IZ(k)) always has the expected dimension
if k ≥ n− 1.

Consider the morphism φn−1 : P2[n] → G = G(
(
n+1
2

)
− n,

(
n+1
2

)
). The pullback φ∗n−1OG(1)

is a base-point-free divisor. Hence, it is nef. On the other hand, φn−1 is not an embedding.
Every scheme of length n imposes independent conditions on polynomials of degree n−1; however,
polynomials of degree n− 1 do not suffice to cut out every scheme of length n. Suppose Z consists
of n collinear points. Then any polynomial of degree n− 1 vanishing on Z vanishes along the line
containing Z. Hence, the vector space of polynomials of degree n− 1 vanishing on Z is the vector
space of polynomials of degree n− 1 that are divisible by the equation of the line. If we take any
other n points on the same line, this vector space does not change. Hence, φ∗n−1OG(1) has degree

zero on positive-dimensional subvarieties of P2[n] and is not ample.

Exercise 3.14. Check that polynomials of degree n that are divisible by the equation of a fixed
line form a vector space of dimension

(
n+1
2

)
− n.

In order to calculate the ample cone in our given basis, there remains to compute the class of
φ∗n−1OG(1). We can use test curves to compute this class. Fix n− 1 general points Γ and a general

line l disjoint from the points. Consider the curve A in P2[n] obtained by taking the union of Γ with
a point varying along l. Since none of these schemes are reduced, the resulting curve is disjoint
from B. Its degree with respect to H is one. Finally, fix

(
n+1
2

)
− n general points Ω and consider

the linear spaces W of polynomials of degree n − 1 that vanish at these points. Then subspaces
of codimension n that intersect W give a section of OG(1). There is a unique curve of degree
n− 1 containing Γ ∪Ω. The line l intersects this curve in n− 1 points. Consequently, we have the
following intersection numbers

A ·H = 1, A ·B = 0, A · φ∗n−1OG(1) = n− 1.

Next, take a general pencil in |OP1(n)| and consider the curve C induced in P2[n]. By the Riemann-
Hurwitz formula, this pencil is ramified 2n− 2 times. The points in the pencil meet a general line
once. Since the resulting map to G is constant it has degree zero on φ∗n−1OG(1). We conclude that
we have the following intersection numbers

C ·H = 1, C ·B = 2n− 2, C · φ∗n−1OG(1) = 0.

We conclude that the class of φ∗n−1OG(1) is (n−1)H− 1
2B. We have proved the following theorem.

Theorem 3.15 ([LQZ], see also [ABCH]). The nef cone of P2[n] is the closed cone spanned by H
and (n− 1)H − 1

2B.

Next, we describe the effective cone of P2[n]. The locus of nonreduced schemes B is the exceptional
divisor of the Hilbert-Chow morphism. Consequently, it defines an extremal edge of the effective
cone. The other extremal edge of the effective cone of P2[n] is harder to compute and depends more
subtly on the arithmetic properties of n. We will give some examples and refer the reader to the
literature for the general answer.
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Example 3.16 (n is a triangular number). In P2[3] the locus of collinear schemes DO(1) forms a

divisor. The class of DO(1) can easily be computed as H − 1
2B using test families.

Exercise 3.17. Let C be a smooth conic in P2 and let p1, p2, p3 be three points on C. Take a
pencil in the linear system |OC(p1 + p2 + p3)|. Show that the induced curve in P2[3] is disjoint from
the locus of collinear points. Conclude that DO(1) has class proportional to H − 1

2B.

There is a smooth conic passing through any three non-collinear points. Hence, the curve de-
scribed in the previous exercise is a moving curve which is disjoint from DO(1). We conclude that
DO(1) spans the other extremal edge of the effective cone.

Similarly, in P2[6] the locus of schemes that lie on a conic DO(2) forms a divisor. As in the
previous case, we can easily compute the class of this divisor.

Exercise 3.18. Fix a smooth cubic curve C and 6 points p1, . . . , p6 on C such that
∑6

i=1 pi is not

linearly equivalent to OC(2). Consider the curve in P2[6] induced by a general pencil in |OC(
∑
pi)|.

Show that this curve is disjoint from DO(2). Conclude that the class of DO(2) is proportional to

2H − 1
2B.

Since the curve described in the previous exercise is a moving curve, we conclude that DO(2)
spans an extremal ray in Eff(P2[6]).

More generally, when n is a triangular number of the form n = k(k+1)
2 , the set of schemes that

lie on a curve of degree k − 1 forms an extremal effective divisor. The reader should compute its
class (hint: (k − 1)H − 1

2B) and exhibit a moving curve disjoint from it (see [ABCH]).

Example 3.19 (n is one less or one more than a triangular number). Similar constructions work
when n is one less or one more than a triangular number. For example, when n = 4, consider the
locus of schemes of length 4 that have a collinear subscheme of length 3. More generally, when

n = k(k+1)
2 + 1, an extremal ray of the effective cone is spanned by the divisor of schemes of length

n that have a subscheme of length n− 1 that is contained in a curve of degree k − 1.

When n = 2, fix an auxiliary point p. Consider the divisor of schemes in P2[2] that are collinear

with p. More generally, when n = k(k+1)
2 − 1, an extremal ray of the effective cone is spanned by

the divisor of schemes that together with an auxiliary point p lie on a curve of degree k − 1.

The first interesting case which cannot be reduced to the previous examples is n = 12. There is
no longer an easily visible geometric condition on 12 points. Let us return to the previous examples.
To say that three points are collinear can be rephrased as saying that the three points fail to impose
independent conditions on sections of OP2(1). Similarly, to say that six points lie on a conic can
be rephrased as saying that the points fail to impose independent conditions on sections of OP2(2).
The idea is that for n = 12, we can look for a higher rank vector bundle such that the locus of 12
points that fail to impose independent conditions on the sections of that bundle is a divisor. Indeed,
this idea works and generalizes to all n. Consider the bundle TP2(2). Using the Euler sequence

0→ OP2(2)→ OP2(3)⊕3 → TP2(2)→ 0,

we see that h0(P2, TP2(2)) = 24.

Given a rank r bundle E, asking for a section to vanish at a point is expected to impose r
linear conditions on the space of sections. If we ask the sections to vanish at n points, assuming
that the conditions are independent, we would expect to get a subvector space of codimension rn.
Hence, we would expect the only section of TP2(2) that vanishes on 12 general points to be the zero
section. This is indeed the case, but compared to the line bundle case more difficult to prove. We
can consider the locus of 12 points that fail to impose independent conditions on sections of TP2(2).

This is an effective divisor which spans an extremal ray of the effective cone of P2[12]. Its class is
readily computable to be 7H −B.
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Whereas general points always impose independent conditions on sections of line bundles, general
points may fail to impose independent conditions on sections of higher rank vector bundles. To
see a simple example, consider the vector bundle OP2(−1) ⊕ OP2(1) of rank 2 on P2. It has a
three dimensional space of sections. If we ask that the sections vanish at a point, we would get
a 2 dimensional space of sections rather than the expected 1 dimensional space of sections. The
explanation in this case is easy. All the sections of the rank 2 vector bundle come from the OP2(1)
summand. Each point imposes one condition on the sections of OP2(1). This example raises the
higher rank interpolation problem.

Definition 3.20. A vector bundle E has interpolation for a sheaf F if hi(P2, E ⊗F ) = 0 for every
i.

Problem 3.21 (Higher rank interpolation). Given a scheme Z, determine the invariants such that
there exists a vector bundle E with those invariants satisfying interpolation for the ideal sheaf IZ .

If E satisfies interpolation for Z, then we can define a divisor on P2[n] by considering

DE := {W ∈ P2[n]|h1(E ⊗ IW ) 6= 0}.
Then DE is an effective divisor that does not contain Z in its base locus. Using either
the Grothendieck-Riemann-Roch formula or test curves, one can see that the class of DE is

c1(E)H − r(E)
2 B [ABCH].

The interpolation problem in general is very hard. However, the higher rank interpolation
problem has been solved when Z is a general zero dimensional scheme [Hui], when Z is a complete
intersection [CH] and when Z is a monomial scheme [CH]. Explaining the solutions are beyond
the scope of these lecture notes, so we refer the interested reader to the original literature. We
simply state the result that is relevant for the effective cone of P2[n]. First, the Euler characteristic
defines a pairing on the set of Chern characters. More precisely, (ξ, η) = χ(ξ∗ ⊗ η), where ξ∗ is the
Chern character of the dual bundle and χ is the Euler characteristic. Two Chern characters are

orthogonal if (ξ, η) = 0. The slope of a vector bundle E is µ(E) = c1(E)
r , where c1(E) is the first

Chern class of E and r is the rank of E.

Theorem 3.22 (Huizenga [Hui]). Let Z be a general point in P2[n]. Then the minimal positive
slope µmin for which there exists a vector bundle E with slope µ satisfying interpolation for Z is the
minimal positive slope of a stable vector bundle orthogonal to IZ . In particular, the extremal edge
of the effective cone is spanned by the ray µminH − 1

2B.

Given n, it is easy to compute µmin in practice. This theorem has been generalized to describe
the effective cone of any moduli space of Gieseker semi-stable sheaves on P2. See [CHW] for details.

One can also consider the birational models that one obtains from various divisors in the effective
cone of P2[n]. For a complete description of the stable base locus decomposition for n ≤ 9 and
modular interpretations of the resulting models, see [ABCH]. For other rational surfaces such as
P1×P1, del Pezzo surfaces or Hirzebruch surfaces, see [BC]. There is extensive literature for surfaces
such as abelian surfaces, K3 surfaces or Enriques surfaces. We refer the reader to [BM] and [BM2]
for further information and detailed references.

4. Other moduli spaces

There are many other moduli spaces whose birational geometry is studied very actively. In this
last section, we will give an overview of the types of results known and some references to the
literature. The literature is so vast that it would be futile to try to compile a complete set of
references. Instead, we will guide the reader to a few papers that will help them enter the field.
The reader can refer to [HMo], [C], [Far] and [CFM] for references and further details. For more
information on algebraic curves, the reader should consult [Ha, IV] and [ACGH].
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4.1. The moduli space of curves. Fix two nonnegative integers g, n such that 2g−2+n > 0. Let
Mg,n be the moduli space of curves parameterizing isomorphism classes of (C, p1, . . . , pn), where
C is a smooth genus g curve and p1, . . . , pn are ordered, distinct marked point on C. This space
has a modular compactification constructed by Deligne, Mumford and Knudsen.

Definition 4.1. An n-pointed genus g marked curve (C, p1, . . . , pn) is stable if C is a reduced,
connected, at-worst-nodal curve of arithmetic genus g, p1, . . . , pn are distinct, ordered, smooth
points of C and the marked curve has finitely many automorphisms.

Let us explain the terms of this definition. We are assuming that the only singularities of the
curve are nodes, that is locally analytically each singularity looks like xy = 0 on the plane. To
say that the marked curve has finitely many automorphisms means that there are finitely many
automorphisms f : C → C such that f(pi) = pi for 1 ≤ i ≤ n. This condition can be reduced to a
very explicit combinatorial condition which is easy to check in practice. A curve of arithmetic genus
g ≥ 2 has finitely many automorphisms ([ACGH]). A smooth curve E of genus one is a complex
torus and has a one-dimensional family of automorphisms. If we require that the automorphism
fix a point on E, then there will be finitely many automorphisms (in fact, except for the square
and hexagonal lattices, the automorphism group will be Z/2Z). The automorphism group of P1

is PSL2(C). Any automorphism that fixes 3 points is necessarily the identity. Consequently, a
nodal marked curve with 2g − 2 + n > 0 has finitely many automorphisms if and only if in the
normalization of the curve every genus zero component has at least 3 points mapping either to a
node or to a marked point.

Alternatively, one can rephrase the stability condition by requiring that ωC(
∑n

i=1 pi) is ample,
where ωC is the dualizing sheaf of C. This condition better generalizes to higher dimensions.

The Deligne-Mumford-Knudsen moduli space Mg,n parameterizes isomorphism classes of n-
pointed genus g stable curves (see [HMo] and [DM]). It is one of the most important and well-
studied objects in mathematics and plays a central role in algebraic geometry, topology, hyperbolic
geometry, complex analysis and mathematical physics. Despite being well-studied, many questions
about the birational geometry ofMg,n are still open. For example, thanks to the work of Eisenbud,

Harris and Mumford [HMu], [H] and [EH], the canonical class of Mg lies in Big(Mg) if g ≥ 24.
A natural question is to describe the image of the rational map obtained by the multiples of the
canonical divisor. This is known as the canonical model of Mg. Describing it is the subject of the

Hassett-Keel program. The main goal of the program is to construct the canonical model ofMg by
considering the birational transformations that take place as one considers the divisors KMg

+ aδ

and decreases a from 1 to 0, where δ is the total boundary divisor. More generally, many of the
questions we have discussed in the previous section for the Hilbert scheme of points on P2 are open
for Mg,n. The following kinds of results are known:

(1) The ample and effective cones ofMg,n are known for small values of g and n. For example,

Keel and McKernan [KM] have determined the ample cones ofM0,n for 3 ≤ n ≤ 7, Gibney

and Farkas have determined the ample cones of Mg for g ≤ 24 [FG]. The effective cone of

M0,n is known for n ≤ 6 thanks to the work of Keel, Vermeire [V], Hassett and Tschinkel

[HT]. The effective cone of M2 is easy. Rulla has determined the effective cones of M2,1,

M3 [R1].
(2) Many of the birational models of Mg,n are known for very small values of g and n. The

Hassett-Keel program has been carried out for g = 2, 3 and partially carried out for g =
4, 5 by many mathematicians including Hyeon and Lee [HyL], Hassett [Has2], Fedorchuk,
Casalaina-Martin, Jensen and Laza [CaJL]. A few steps of the Hassett-Keel program has
been carried out in arbitrary genus (see, for example, [HH1], [HH2] and [AFSV]).

(3) Certain slices of the ample cone are known. For example, the intersection of the ample cone
with the λ − δ plane is the cone generated by λ and 11λ − δ [CoH], [GKM]. The moduli
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space of curves has a stratification by topological type. Strata are indexed by dual graphs.
There is a conjecture due to Fulton predicting that the ample cone of Mg,n is dual to the
cone of curves spanned by the components of the one-dimensional strata in the topological
stratification (see [GKM] and [FG]).

(4) Many examples of effective divisors have been constructed. Eisenbud, Harris, Mumford
constructed effective divisors to prove that the canonical class of Mg is big [HMu], [H],

[EH]. Logan extended these results to Mg,n [Lo]. Farkas generalized these results using
syzygy theoretic constructions [Far]. Castravet and Tevelev [CT] have constructed divisors
onM0,n based on combinatorial objects known as hypertrees. Recently, people have found
new constructions giving divisors not spanned by Castravet-Tevelev divisors (see [O] for
example). Except when g and n are very small, the complete description of the effective
cone is not known. However, it is known that these cones can be very complicated. For
example, the effective cones of M1,n are not finitely generated as soon as n ≥ 3 [CC2].

(5) The cones may become simpler if we consider unordered points. The effective cones of
M0,n/Sn and M1,n/Sn are generated by boundary divisors [KM] [CC2]. If G ⊂ Sn, the

effective cones ofMg,n/G are not known. However, it is known that if G has at least three

orbits, the effective cone of M1,n/G is not finite, polyhedral [CC2].

4.2. The Kontsevich moduli space. Let X be a smooth projective variety. Fix the class of a
curve β ∈ H2(X,Z). Then the Kontsevich moduli space of genus zero stable curves Mg,n(X,β)
parameterizes isomorphism classes of (C, p1, . . . , pn, f), where (C, p1, . . . , pn) is an n-pointed genus
g stable curve, f : C → X is a morphism such that f∗[C] = β and the datum has a finite
automorphism group. An automorphism of the datum is a map h : C → C such that h(pi) = pi for
1 ≤ i ≤ n and f = f ◦ h. For detailed introductions to the geometry of Kontsevich moduli spaces,
we refer the reader to [FP] and [C].

When g > 0, these spaces typically have many components of different dimensions even when
the target X is a simple variety such as P2.

Exercise 4.2. Show that M1,0(P2, 3) has three components. Two of these components have
dimension 9 and one has dimension 10.

In general, we know very little about these spaces. However, when X is a homogeneous variety
such as Pn, a Grassmannian G(k, n) or a flag variety F (k1, . . . , kr;n), then the Kontsevich moduli
space of genus zero maps is an irreducible, normal, Q-factorial variety with at-worst finite quotient
singularities [FP]. These spaces play a crucial role in Gromov-Witten theory. Although many
questions about their birational geometry remain open, the following types of theorems are known.

(1) The effective cones ofM0,0(Pr, d) are known for r ≥ d [CHS2]. Similarly, the effective cones

of M0,0(G(k, n), d) are known for n ≥ k + d [CS].

(2) The ample cones of M0,m(Pr, d) are known for small values of m and d [CHS]. In general,

knowing the ample cone ofM0,m(F (k1, . . . , kr;n), β) is reduced to knowing the ample cone
of the Deligne-Mumford moduli space of genus 0 curves with marked points [CHS].

(3) The birational geometry ofM0,0(Pr, d) andM0,0(G(k, n), d) has been studied for very small
values of d such as 2, 3 [Ch], [CC1] and [CC3]. Some aspects of the birational geometry of
M0,0(Pr, d) have been studied in general [CC1].

4.3. Other moduli spaces. There are many variations on the moduli spaces described so far.
We will not attempt to discuss these variations. The space of stable quotients (see [Coo]), the
Quot scheme (see [J]), spaces of complete quadrics (see [Hue]), moduli spaces of abelian varieties
(see [CFM]) and moduli spaces of polarized K3 surfaces (see [GHS]) are some of the moduli spaces
algebraic geometers encounter frequently. Many mathematicians have been actively studying the
cones of effective and ample divisors on these moduli spaces and are working on describing the
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birational models of these moduli spaces. I hope these notes will motivate you to explore some of
these questions.
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