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Abstract. In this paper, we survey some recent developments on computing the cohomology of the
moduli spaces of sheaves on surfaces and the Brill-Noether problem. We explain several applications to
classifying stable Chern characters on Hirzebruch surfaces, classifying globally generated vector bundles
on minimal rational surfaces, and constructing and classifying Ulrich bundles on surfaces. This paper grew
out of the talks of the authors at the ICM Satellite Conference on Moduli Spaces in Algebraic Geometry
and Applications.

1. Introduction

In this paper, we survey some recent developments on computing the cohomology of moduli spaces of
sheaves on surfaces and the Brill-Noether problem following [CH18b, CH18c, CNY18, CW18]. The paper
grew out of the authors’ talks at the ICM Satellite Conference on Moduli Spaces in Algebraic Geometry
and Applications. Except for a novel point of view and some new results on Ulrich bundles in §4, the
paper is a survey of results that have been published elsewhere.

Let X be a smooth, complex projective surface and let H be an ample divisor on X. Given a Chern
character v, Gieseker [Gie77] and Maruyama [Mar78] constructed a moduli space MX,H(v) that parame-
terizes S-equivalence classes of H-Gieseker semistable sheaves on X. These moduli spaces play a central
role in studying linear series and cycles on X, in Donaldson’s theory of 4-manifolds [Don90] and in math-
ematical physics [Wit95]. Consequently, it is of fundamental importance to understand the geometry of
MX,H(v).

In this paper, we focus on two problems concerning the geometry of MX,H(v). First, we will survey
several current developments in the Brill-Noether Problem.

Problem 1.1 (Brill-Noether). Let V be a general sheaf in an irreducible component of MX,H(v). Compute
the cohomology of V.

One can further ask to characterize the locus of sheaves V that do not have the generic cohomology and
describe the dimensions of the cohomology jump loci. More generally, one can pose the interpolation
problem. Given a coherent sheaf W and a sheaf V ∈ MX,H(v), compute the cohomology of W⊗V (see
[CH14, CH15]). We will restrict ourselves to the most basic form of the Brill-Noether problem and in
§3 describe the solution of the problem for Hirzebruch surfaces following [CH18c]. We will discuss the
solution of the Brill-Noether problem for more general rational surfaces under some restrictions on v
following [CH18b] and describe some partial results and examples in the case of K3 surfaces discussed in
[CNY18].

The Brill-Noether problem underlies many of the other open problems concerning the geometry of
MX,H(v). Despite the efforts of many mathematicians in the last four decades, we do not know when
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MX,H(v) is nonempty in general. Bogomolov’s inequality says that the discriminant ∆ of a semistable
sheaf is nonnegative and places strong restrictions on the Chern characters of semistable sheaves. On
the other hand, O’Grady’s Theorem [O’G96] guarantees the existence of slope stable sheaves provided
that ∆ � 0. However, a complete classification of Chern characters v of semistable sheaves is known
only for a handful of special surfaces such as P2 [DLP85], K3 surfaces and abelian surfaces (see [HL10]).
Using our solution of the Brill-Noether problem for Hirzebruch surfaces, we can give an algorithm for
classifying the stable Chern characters on a Hirzebruch surface for any polarization [CH18e]. We will
briefly outline the algorithm in §3.

The Brill-Noether problem and more generally the interpolation problem play a central role in con-
structing theta and Brill-Noether divisors. These in turn play a central role in describing ample and
effective cones of moduli spaces of sheaves (see [ABCH13, BM14, BC13, CH16, CH18a, CHW17]). We
will not discuss the birational geometry of moduli spaces in this paper, but refer the reader to the survey
[CH15].

The solution of the Brill-Noether problem on Hirzebruch surfaces allows one to obtain a Gaeta-type
resolution on Hirzebruch surfaces. This resolution in turn allows one to classify Chern characters of
moduli spaces whose general member is globally generated. In §3, we will briefly recall the classification.

Finally, the solution of the Brill-Noether problem has strong implications for the construction and
classification of Ulrich bundles. In §4, we will give a quick proof of the classification of Ulrich bundles
on Hirzebruch surfaces for every polarization. Using the Brill-Noether theorems for rational surfaces, we
will construct Ulrich bundles on rational surfaces in some new cases. Finally, for general surfaces, we will
show that the asymptotic Brill-Noether theorem easily implies the following existence theorem.

Theorem 1.2. Let X be a smooth, complex, projective surface and let H be an ample divisor. Then
there exists Ulrich bundles of rank two on (X,mH) if m is sufficiently large.

This theorem has many consequences for the cohomology tables on (X,mH) and imply that their Chow
forms are linear (see [ESW03, ES11]). The presentation and some of the results in this section are new.

In the final section §5, we will discuss the following fundamental open problem.

Problem 1.3. Compute the singular cohomology of MX,H(v).

As with many of the open problems concerning MX,H(v), the cohomology of MX,H(v) is known in
some cases. The cohomology has been computed by Göttsche [Got90] when the rank of v is one. The
Betti numbers of MX,H(v) have been computed when X is P2 or a ruled surface and the rank is two
[Got96, Got99, Yos94, Yos95, Yos96a, Yos96b]. The Betti numbers are also known when MX,H(v) is
smooth and X is a K3 surface or abelian surface [Huy03, Muk84, Yos99, Yos01]. In [CW18], the authors
conjecture that the Betti numbers of MX,H(v) stabilize as ∆ tends to infinity and that the stable Betti
numbers do not depend on the rank, c1 or the ample H. Consequently, while the Betti numbers of
MX,H(v) are hard to compute, conjecturally the stable Betti numbers have already been computed by
Göttsche. In §5, we will survey this conjecture and a motivic proof of it for rational surfaces X and
polarizations H satisfying KX ·H < 0 following [CW18].

Organization of the paper. In §2, we recall basic definitions concerning moduli spaces of sheaves. In
§3, we survey Brill-Noether type theorems on rational surfaces, concentrating primarily on Hirzebruch
surfaces following [CH18b, CH18c]. In §4, we present applications of Brill-Noether theorems to the
existence and classification of Ulrich bundles. This section contains several new results and new proofs of
results on Ulrich bundles. In §5, we survey a conjecture on the cohomology of MX,H(v) and its motivic
proof in the case of rational surfaces following [CW18].

Acknowledgments. We are grateful to Marcos Jardim and Simone Marchesi for organizing the ICM
Satellite Conference on Moduli Spaces in Algebraic Geometry and Applications. We would like to thank
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Arend Bayer, Aaron Bertram, Lawrence Ein, Lothar Göttsche, Emanuele Macr̀ı, Howard Nuer, Kota
Yoshioka and Matthew Woolf for invaluable conversations on the subject matter of this paper. We also
thank the anonymous referee for valuable corrections and suggestions.

2. Preliminaries

In this section, we summarize preliminary facts concerning rational surfaces, semistable and prioritary
sheaves and moduli spaces of sheaves that we will freely quote in the rest of the paper

Rational surfaces. We refer the reader to [Bea83, Cos06a, Cos06b, Har77] for more detailed discussions
on rational surfaces. For a nonnegative integer e, let Fe denote the Hirzebruch surface P(OP1 ⊕OP1(e))
and let π : Fe → P1 be the natural projection. The Picard group of Fe is

Pic(Fe) = ZE ⊕ ZF,

where E is the class of a section of self-intersection −e and F is the class of a fiber of π. The intersection
form is determined by

E2 = −e, E · F = 1, F 2 = 0.

The effective cone of Fe is spanned by E and F and the nef cone is spanned by E + eF and F . The
canonical class of Fe is

KFe = −2E − (e+ 2)F.

The cohomology of a line bundle L = OFe(aE + bF ) on Fe is easy to compute. We have

χ(L) = (a+ 1)(b+ 1)− e

2
a(a+ 1).

By Serre duality we may assume that L · F ≥ −1, in which case, H2(Fe, L) = 0. If L · F = −1, then
L has no cohomology. If L · F > −1 and L · E ≥ −1, then H1(Fe, L) = 0 and h0(Fe, L) = χ(L). If
L ·E < −1, then h0(Fe, L) = h0(Fe, L(−E)) and the cohomology is inductively determined (see [CH18c,
Theorem 2.1]) .

The minimal rational surfaces are P2 and Fe with e 6= 1. Every other rational surface can be obtained
from these surfaces by a sequence of blowups.

If X is a smooth, complex projective surface and p ∈ X is a point, let φ : X̂ → X denote the blowup
of X at p. The Picard group of X̂ is isomorphic to Pic(X) ⊕ ZEp, where Ep is the exceptional divisor

over p. The canonical class of X̂ is given by φ∗KX +Ep. In particular, if H is a polarization on X with
H ·KX < 0, then φ∗(H) is a big and nef divisor that has φ∗(H) ·KX̂ < 0. Since there are ample divisors

arbitrarily close to φ∗(H), there are polarizations Ĥ on X̂ such that Ĥ · KX̂ < 0. Hence, all rational
surfaces X contain polarizations H such that H ·KX < 0.

Semistable sheaves. Let X be a smooth, complex projective surface. Let H be an ample divisor on
X. In this paper, all the sheaves we consider will be coherent of pure-dimension. We refer the reader to
[CH15, HL10] and [LeP97] for more detailed information on Gieseker (semi)stability and moduli spaces
of stable sheaves.

Let v denote a positive rank Chern character on X and define the H-slope µH(v), the total slope ν(v)
and discriminant ∆(v) by the formulae

µH(v) =
c1(v) ·H
r(v)

, ν(v) =
c1(v)

r(v)
, ∆(v) =

1

2
ν(v)2 − ch2(v)

r(v)
,

respectively. The H-slope, total slope and discriminant of a sheaf V of positive rank is defined to be
the H-slope, total slope and discriminant of its Chern character. The Chern character (r, ch1, ch2) of a
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positive rank sheaf can be recovered from (r, ν,∆). The advantage is that the slope and the discriminant
are additive on tensor products

ν(V ⊗W) = ν(V) + ν(W)

∆(V ⊗W) = ∆(V) + ∆(W).

If L is a line bundle on X, then ∆(L) = 0. Consequently, tensoring a sheaf with a line bundle preserves
the discriminant. Set

P (ν) = χ(OX) +
1

2
ν · (ν −KX).

The Riemann-Roch formula in terms of these invariants reads

χ(V) = r(V)(P (ν(V))−∆(V)).

Definition 2.1. A torsion-free coherent sheaf V is called µH-(semi)stable if for every nonzero subsheaf W
of smaller rank, we have

µH(W) <
(−)

µH(V).

The Hilbert polynomial PH,V and the reduced Hilbert polynomials pH,V of a pure d-dimensional, coherent
sheaf V with respect to H are defined by

PH,V(m) = χ(V(mH)) = ad
md

d!
+ l.o.t, pH,V =

PH,V
ad

.

The sheaf V is H-Gieseker (semi)stable if for every proper subsheaf W,

pH,W(m) <
(−)

pH,V(m)

for m� 0.

Two semistable sheaves V and W are S-equivalent with respect to a notion of stability if they
have the same Jordan-Hölder factors with respect to that notion of stability. Gieseker [Gie77] and
Maruyama [Mar78] constructed moduli spaces MX,H(v) parameterizing S-equivalence classes of H-
Gieseker semistable sheaves on X with Chern character v.

LetMX,H(v) denote the stack of H-Gieseker semistable sheaves. This stack has several open substacks
that play important roles in calculations such as the stack of µH -stable sheavesMµs

X,H(v) and the stack of

µH -stable locally free sheavesMµs◦
X,H(v). The stack is an open substack of the stack of all µH -semistable

sheaves Mµss
X,H(v). We observe that these stacks are all defined as open substacks of the algebraic stack

of coherent sheaves on X (see [St18, Tag 93.5] for a detailed discussion) satisfying further properties.
Since a stable sheaf V has Hom(V,V) ∼= C, these stacks are not Deligne-Mumford stacks, but only Artin
stacks.

Prioritary sheaves. Let D be a divisor on X. A torsion-free coherent sheaf V is D-prioritary if
Ext2(V,V(−D)) = 0. Prioritary sheaves are easier to work with than semistable sheaves. We denote the
stack of D-prioritary sheaves on X with Chern character v by PX,D(v). If H is an ample divisor such
that H · (KX +D) < 0, then µH -semistable sheaves are D-prioritary because

Ext2(V,V(−D)) = Hom(V,V(KX +D))∗ = 0

by µH -semistability. Hence, MX,H(v) and Mµss
X,H(v) are (possibly empty) open substacks of PX,D(v).

If X is a birationally ruled surface and F is the fiber class, then a theorem of Walter [Wal98] asserts that
PX,F (v) is an irreducible stack whenever nonempty. Walter’s theorem generalizes an earlier theorem of
Hirschowitz and Laszlo [HL93] that asserts that the stack PP2,L(v), where L is the class of a line on P2, is
irreducible whenever nonempty. These results imply the corresponding irreducibility of the moduli spaces
of sheaves and are very useful for cohomology computations because they allow us to show vanishing of
the cohomology of a general sheaf by exhibiting a prioritary sheaf with vanishing cohomology.
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Elementary modifications. Given a torsion free sheaf V, a point p ∈ X and a surjection φ : V � Op,
the kernel V ′ defined by the sequence

0→ V ′ → V → Op → 0

is called an elementary modification of V. The reader can find the basic properties of elementary modifi-
cations in [CH18c, §2.3]. We have that

r(V ′) = r(V), ν(V ′) = ν(V), ∆(V ′) = ∆(V) +
1

r
.

If V is µH -(semi)stable, then V ′ is µH -(semi)stable since ifW were a destabilizing subsheaf of V ′, it would
also destabilize V under the natural inclusion. Since H i(X,Op) = 0 for i ≥ 1, the long exact sequence
of cohomology implies that H2(X,V ′) = H2(X,V). Furthermore, as long as p and φ are general and
h0(X,V) > 0, the map H0(X,V)→ H0(X,Op) is surjective. Hence, if h0(X,V) > 0, then the long exact
sequence of cohomology implies

h0(X,V ′) = h0(X,V)− 1, h1(X,V ′) = h1(X,V).

Similarly, if h0(X,V) = 0, then

h0(X,V ′) = 0, h1(X,V ′) = h1(X,V) + 1.

Given a D-prioritary sheaf V, a general elementary modification of V is also D-prioritary [CH18c, Lemma
2.7]. By the integrality of the Euler characteristic, the discriminants of different integral Chern classes
differ by an integer multiple of 1

r . Hence, once there is a µH -(semi)stable or D-prioritary sheaf with a
given r, µ and ∆0, elementary modifications construct a µH -(semi)stable or D-prioritary sheaves with
r, µ and any possible ∆ ≥ ∆0. Note, however, that elementary modifications do not need to preserve
Gieseker (semi)stability. For example, V = OP2 ⊕ OP2 on P2 is Gieseker semistable, but there are no
Gieseker semistable sheaves with the same Chern character as one elementary modification of V (see
[CH15] or [DLP85]).

3. The cohomology of the general sheaf

In this section, we discuss the problem of determining the cohomology of a general sheaf in the moduli
space following [CH18b, CH18c]. Given a general sheaf V ∈ MX,H(v), we would like to have criteria
under which the Euler characteristic χ(V) and c1(V) determine the cohomology groups of V. Since the
general member of MX,H(v) is not locally free when rk(v) = 1, the problem behaves differently depending
on whether rk(v) = 1 or rk(v) > 1.

Rank one sheaves. Let V be a rank one sheaf on a smooth, complex projective surface X. Then
V ∼= IZ ⊗ L, where IZ is the ideal sheaf of a zero-dimensional scheme and L is a line bundle on X. If Z
is a general set of points on X, then the standard exact sequence

0→ L⊗ IZ → L→ OZ → 0

implies that
h2(X,L) = h2(X,L⊗ IZ).

Furthermore, the map
H0(X,L)→ H0(X,OZ)

has maximal rank by the assumption that Z is a general set of points. We conclude that L⊗ IZ has no
global sections if and only if the length of Z satisfies |Z| ≥ h0(X,L) and V has no higher cohomology if
and only if L does not have any higher cohomology and |Z| ≤ h0(X,L). Consequently, computing the
cohomology of V reduces to computing the cohomology of the line bundle V∗∗. Of course, computing
the cohomology of a line bundle on a surface can be a challenging problem. For example, if X is a very
general blowup of P2 along k ≥ 10 points, then the effective cone of X is not known.
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Higher rank sheaves. The ideal situation occurs for P2. Let L denote the class of a line on P2 and let
V ∈ MP2,L(v) be a general sheaf. Since rk(v) ≥ 2, V is locally free. By replacing V with its Serre dual,

we may assume that µL(V) ≥ −3
2 . If k ≤ µL(v) < k + 1, then there exists a direct sum of line bundles

W = OP2(k)m ⊕OP2(k + 1)r−m

that has the same rank and c1 as V. Furthermore, ∆(W) ≤ 0 and since k ≥ −2, W has no higher coho-
mology. Consequently, by a sequence of elementary modifications, we obtain an L-prioritary sheaf that
has at most one nonzero cohomology group. Since the stack of L-prioritary sheaves on P2 is irreducible
and contains the semistable sheaves, we conclude the following theorem of Göttsche and Hirschowitz.

Theorem 3.1. [GH94] Let r ≥ 2. Then the general sheaf in MP2,L(v) has at most one nonzero coho-
mology group.

In particular, χ(v) and µL(v) determine the cohomology of the general sheaf in MP2,L(v). If χ(v) < 0,

then V has h1(P2,V) = −χ(v) and all other cohomology groups vanish. If χ(v) > 0 and µL(v) ≥ −3
2 ,

then h0(P2,V) = χ(v) and all other cohomology groups vanish. Finally, if χ(v) > 0 and µL(v) < −3
2 ,

then h2(P2,V) = χ(v) and all other cohomology groups vanish.

In general, the presence of negative self-intersection curves give an obstruction for the vanishing of
cohomology. For example, on a Hirzebruch surface, it may happen that while χ(V) ≤ 0, χ(V(−E)) > 0.
Assuming that H2(Fe,V(−E)) = 0, we conclude that H0(Fe,V(−E)) 6= 0. Since this is a subset of
H0(F2,V), this cohomology group cannot be zero. In [CH18c], we show that this is the only obstruction
for the vanishing of cohomology.

Theorem 3.2 ([CH18c], Theorem 3.1). Let v be an integral Chern character on Fe with positive rank
r and ∆ ≥ 0. Then the stack PFe,F (v) of F -prioritary sheaves is nonempty and irreducible. Let V ∈
PFe,F (v) be a general sheaf.

(1) If ν(v) · F ≥ −1, then h2(Fe,V) = 0. If ν(v) · F ≤ −1, then h0(Fe,V) = 0. In particular, if
ν(v) · F = −1, then both h0 and h2 vanish and h1(Fe,V) = −χ(v).

(2) If ν(v) · F > −1 and ν(v) · E ≥ −1, then V has at most one nonzero cohomology group. Thus if
χ(v) ≥ 0, then h0(Fe,V) = χ(v), and if χ(v) ≤ 0, then h1(Fe,V) = −χ(v).

(3) If ν(v) · F > −1 and ν(v) · E < −1, then H0(Fe,V) = H0(Fe,V(−E)), hence the Betti numbers
of V are inductively determined using the previous two parts.

(4) If ν(v) · F < −1 and rk(v) ≥ 2, then Serre duality determines the Betti numbers of V.

Just like in the case of P2, Theorem 3.2 can be proved by exhibiting an elementary modification of
a direct sum of line bundles with the desired cohomology. One can obtain any rank and total slope
satisfying ν · F ≥ −1 and ν · E ≥ −1 by taking direct sums of line bundles of the form

V = L(−E − (e+ 1)F )a ⊕ L(−F )b ⊕ Lc or V = L(−E − (e+ 1)F )a ⊕ L(−E − eF )b ⊕ L,

for a nef line bundle L on Fe. Taking elementary modifications yields the theorem in view of Walter’s
irreducibility theorem.

The same technique can be applied to more general rational surfaces X. As the Picard rank of X
increases, our knowledge of the cohomology of line bundles on X becomes less complete. Correspondingly,
our knowledge of the cohomology of higher rank bundles becomes less sharp. Nevertheless, as long as we
impose some positivity conditions on ν(v), then we obtain a Brill-Noether type theorem. For example,
let X be the blowup of P2 at k distinct points. Let v be a Chern character of rank r and let the total

slope be ν(v) = δL−
∑k

i=1 αiEi. Then we have that

δ = d+
q

r
, αi = ai +

qi
r
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for some integers d, q, ai and qi with 0 ≤ q < r and 0 ≤ qi < r. Set

γ(v) =
q2

2r2
− q

2r
+

k∑
i=1

(
qi
2r
− q2

i

2r2

)
.

Theorem 3.3 ([CH18b], Theorem 4.5). Let X be the blowup of P2 at k distinct points. Let v be a positive
rank Chern character on X with total slope

ν(v) = δL− α1E1 · · · − αkEk
with δ ≥ 0 and αi ≥ 0. Suppose that the line bundle

bδcL− dα1eE1 · · · − dαkeEk
does not have higher cohomology. Assume that ∆(v) ≥ γ(v). Then PX,L−E1(v) is nonempty and the
general sheaf in PX,L−E1(v) has at most one nonzero cohomology group.

A similar theorem holds for blowups of Fe (see [CH18b]). For del Pezzo surfaces, toric surfaces or
surfaces where the blown-up points are in certain special positions, one can often be more explicit about
the ranges where Brill-Noether type theorems hold.

Non-rational surfaces. For more general surfaces, there are other obstructions to vanishing of coho-
mology. For example, higher cohomology of line bundles can contribute to the cohomology of higher rank
sheaves.

Example 3.4. [CNY18] Let X be a K3 surface of Picard rank 1 generated by H with H2 = 2n. Then
there is a stable bundle on X with resolution

0→ OX → OX(H)n+2 → V → 0.

One can think of V as the pullback of the tangent bundle TPn+1 under the map induced by OX(H). The
bundle V is the unique point of its moduli space and has

h0(X,V) = (n+ 2)2 − 1, h1(X,V) = 1.

By the long exact sequence of cohomology, H2(X,OX) ∼= C ∼= H1(X,V).

The set of Chern characters where the cohomology is not as expected can exhibit fairly complicated
behavior depending on arithmetic conditions.

Example 3.5. [CNY18] Let X be a K3 surface of Picard rank 1 obtained as a double cover of P2. Then the
pullback of exceptional bundles on P2 are stable bundles on the K3 surface. Let fk be the k-th Fibonacci
number where f1 = f2 = 1. For k ≥ 2, there is a bundle on X with resolution

0→ Of2k−2

X → Of2kX (H)→ Vk → 0.

The bundle Vk has rank f2k−1 and is the unique point in its moduli space. Furthermore, h0(X,Vk) =
2f2k +f2k−1 and h1(X,Vk) = f2k−2. When k = 2, this example specializes to the previous example when
n = 1.

A complete computation of the cohomology of the general sheaf on an arbitrary surface is unlikely
to be ever attained. Nevertheless, an asymptotic theorem holds on every smooth, complex projective
surface. A consequence of O’Grady’s irreducibility theorem [O’G96] and Serre vanishing is that if r ≥ 2
and ∆� 0, then the general sheaf in MX,H(r, c,∆) has only h1.

Proposition 3.6. [CH18d, Proposition 7]. Let v be a Chern character such that ∆(v) � 0 (depending
on X,H, r, and ν) and let V ∈ MX,H(v) be a general sheaf. Then the only nonvanishing cohomology
group of V is h1.
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Similarly, if ν(v) is sufficiently ample, then the general slope stable sheaf has only one nonvanishing
cohomology group. To make this more precise, pick a Z-basis C1, . . . , Ck for Pic(X). Given any Chern
character v, we can twist the character by a line bundle L so that

ν(v(L)) =
k∑
i=1

aiCi, with 0 ≤ ai < 1.

We call the resulting Chern character v0 the normalized Chern character with respect to the basis
C1, . . . , Ck and its slope ν(v0) the normalized slope.

Theorem 3.7. Let X be a smooth, projective surface and let R be a positive integer. Let v0 be a
normalized Chern character of positive rank r ≤ R on X. Given any ample divisor A on X, there
exists an integer m0 (depending only on X, H, A, R and the basis of Pic(X)) such that if m ≥ m0 and
v = v0(mA), then the general µH-stable sheaf V has at most one nonzero cohomology group.

Proof. Let S be the set of total slopes ν0 of normalized Chern characters v0 of rank at most R. Then
S is finite. Hence, if we can find an integer m0 that works for each such slope ν0, by taking the
maximum over S, we get an m0 that works for all normalized Chern characters of rank at most R.
Similarly, there are only finitely many ranks 0 < r ≤ R, hence, we can also fix the rank r ≤ R. By
O’Grady’s Theorem [O’G96], there exists ∆0 (depending on X, H and R) such that if ∆ ≥ ∆0, all the
moduli spaces MX,H(r, ν,∆) are irreducible and contain slope stable elements. In particular, the open
subset Mµs

X,H(r, ν,∆) is irreducible. Tensoring by a line bundle preserves µH -stability (though it does

not in general preserve Gieseker (semi)stability). Since tensoring by a line bundle does not change the
discriminant, the same discriminant bounds guarantee that the moduli spaces Mµs

X,H(r, ν + mA,∆) are
irreducible.

By Bogomolov’s inequality ∆ ≥ 0. Since the rank is bounded by R, there are only finitely many
(nonempty) moduli spaces Mµs

X,H(r, ν,∆) with r ≤ R, ∆ < ∆0 and normalized slope. Furthermore, each
of these moduli spaces have only finitely many irreducible components. Choose a general V in such a
component. By Serre vanishing, given any ample A, there exists an integer m0 such that for all m ≥ m0,
V(mA) has no higher cohomology. Since there are only finitely many moduli spaces of rank at most
R, ∆ ≤ ∆0 and normalized slope and these moduli spaces each have finitely many components, we
can find one m0 that works for all these moduli spaces simultaneously. If ∆ > ∆0, by taking general
elementary modifications of a slope-stable sheaf with no higher cohomology and discriminant ∆0, we
obtain a slope-stable sheaf of discriminant ∆ and at most one nonzero cohomology group. Since these
moduli spaces are irreducible, the vanishing of cohomology holds for the general sheaf in these moduli
spaces by semicontinuity. This concludes the proof of the theorem. �

For specific classes of surfaces, it is interesting to give effective bounds on ∆ and ν that guarantee the
vanishing of cohomology. For example, on K3 surfaces of Picard rank one [CNY18] proves the following
theorem.

Theorem 3.8. [CNY18] Let Xn be a K3 surface of Picard rank 1 generated by H with H2 = 2n. Let
v = (r, ν,∆) be a Chern character such that r ≥ 2 and ν = aH with a > 0. Let V be a general sheaf in
MXn,H(v).

(1) If a ≥ r + 1, then V has at most one nonzero cohomology group.
(2) If χ(v) ≤ r, then V has at most one nonzero cohomology group.
(3) Given a positive integer r0, there are only finitely many moduli spaces MXn,H(v) with the rank r

of v satisfying 2 ≤ r ≤ r0 where the general sheaf has more than one nonzero cohomology group.

In fact, one can enumerate the potential counterexamples to the Brill-Noether theorem explicitly and
often compute the cohomology of the general sheaf in these examples (see [CNY18]). The techniques for
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proving this theorem rely on Bridgeland stability conditions and would take us too far a field to survey
in this paper.

3.1. Applications. There are many applications of Brill-Noether theorems ranging from the classifica-
tion of stable Chern characters to the construction of theta-divisors. We will mention a few of these
applications here and refer the reader to the original papers for more applications. We will concentrate
on Hirzebruch surfaces to illustrate the methods. In the next section, we will highlight applications to
the construction and classification of Ulrich bundles.

First, Brill-Noether Theorems are extremely useful in finding resolutions of a general sheaf in the
moduli space. For example, one has a Gaeta-type resolution for the general sheaf in MFe,H(v).

Theorem 3.9 ([CH18c], Theorem 4.1). Let v be an integral Chern character on Fe of positive rank and
assume that

∆(v) ≥ 1

4
if e = 0, ∆(v) ≥ 1

8
if e = 1, ∆(v) ≥ 0 if e ≥ 2.

Then the general sheaf V ∈ PFe,F (v) admits a Gaeta-type resolution

(1) 0→ L(−E − (e+ 1)F )a → L(−E − eF )b ⊕ L(−F )c ⊕ Ld → V → 0,

for some line bundle L and nonnegative integers a, b, c, d.

The Gaeta-type resolution immediately shows that the moduli space is unirational. Furthermore,
having an explicit resolution of the general sheaf allows one to study properties of these sheaves. For
example, one can classify moduli spaces where the general sheaf is globally generated. We warn the
reader that being globally generated is not an open condition. However, if we assume the vanishing of
H1, then it becomes an open condition.

Theorem 3.10. [CH18c, Theorem 5.1] Let v be a Chern character on Fe, e ≥ 1 such that rk(v) ≥ 2,
∆(v) ≥ 0 and ν(v) is nef. Then the general sheaf in PFe,F (v) is globally generated if and only if one of
the following holds:

(1) We have ν(v) · F = 0 and v = ch(π∗(OP1(a)m ⊕OP1(a+ 1)r−m)) for some a ≥ 0.
(2) We have ν(v) · F > 0 and χ(v(−F )) ≥ 0.
(3) We have ν(v) · F > 0, χ(v(−F )) < 0 and χ(v) ≥ r + 2.
(4) We have e = 1, ν(v) · F > 0, χ(v(−F )) < 0, χ(v) ≥ r + 1 and v = (rk(v) + 1) ch(OF1) −

ch(OF1(−2E − 2F )).

Similar theorems hold for P2 and P1×P1 (see [CH18c, Theorem 5.2, Corollary 5.3]). On P2, the general
bundle in MP2,L(v) is globally generated as soon as ν(v) is effective and χ(v) ≥ r + 2. There are a few

easily classifiable cases with χ(v) = r+ 1 or r where the general sheaf is globally generated. On P1×P1,
there are two fiber classes, so the statement has to be slightly altered accordingly.

These theorems give a sufficient condition for ampleness of vector bundles. If V is globally generated,
then V(H) is ample for any ample line bundle. However, this is far from necessary. There are ample
bundles that have no sections. The following problem remains very much open.

Problem 3.11. Given a surface X, classify the Chern characters of ample bundles on X.

We do not know a solution of Problem 3.11 even for P2. For example, Gieseker [Gie71] shows that a
general bundle V of the form

0→ OP2(−d)⊕2 → OP2(−1)⊕4 → V → 0

is ample provided d� 0. It is easy to see that d ≥ 7, but we do not know an exact bound that guarantees
ampleness.

The Brill-Noether theorems can be used to obtain sharp Bogomolov inequalities. For example, in
[CH18e], we classify the stable Chern characters on Fe for any polarization. The Brill-Noether Theorem
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and the Gaeta-type resolution are the fundamental tools. Let Hm = E + (m+ e)F . When m > 0, then
Hm is ample and every ample integral divisor is an integer multiple of Hm for some positive rational
number m. One first shows that an Hm-semistable sheaf is Hdme+1-prioritary. This breaks the problem
into understanding the Hk-prioritary sheaves for positive integers k, and then computing the Harder-
Narasimhan filtration of the general Hk-prioritary sheaf. The Gaeta-type resolution provides an answer
to the first question.

Let ν(v) = εE + ϕF . Then define

ψ := ϕ+
1

2
e(dεe − ε)− ∆

1− (dεe − ε)
,

and let

L0 := Ldεe,dψe = dεeE + dψeF.
Then the general sheaf in PFe,F (v) admits a Gaeta-type resolution with L = L0. Expressing the condition
that the sheaf be Hk prioritary, one sees that we need χ(v(−L0−Hk)) ≤ 0. Conversely, one can construct
Hk-prioritary sheaves satisfying this inequality to conclude the following theorem.

Theorem 3.12. [CH18e, Theorem 5.16] Let v be an integral Chern character of positive rank on Fe with
∆(v) ≥ 0 and let k be a positive integer. Then the stack PHk

(v) is nonempty if and only if

χ(v(−L0 −Hk)) ≤ 0.

Note that this theorem can be rephrased as an inequality that ∆ needs to satisfy in order to have Hk-
prioritary sheaves. It already significantly strengthens the Bogomolov inequality for Hirzebruch surfaces.

The second step in classifying the stable Chern characters on Fe is to determine the Hm-Harder-
Narasimhan filtration of the general Hdme+1-prioritary sheaf. There exist Hm-semistable sheaves when
the length of the filtration is one. Determining the general Harder-Narasimhan filtration reduces to a
finite computational problem that can be solved recursively on the rank. We now briefly explain the
process.

Suppose the general Hm-Harder-Narasimhan filtration has length ` and the graded pieces have Chern
characters vi = (ri, νi,∆i). Then we must have that∑̀

i=1

vi = v.

Furthermore, the moduli spaces MFe,Hm(vi) are nonempty since the graded pieces are semistable sheaves.
The fact that the sheaves are Hdme+1-prioritary and the Schatz-stratum corresponding to this Harder-
Narasimhan filtration has codimension 0 lead to additional inequalities that place strong restrictions on
vi.

First, the prioritary condition implies that the restriction of the general sheaf to a general rational
curve in the class Hdme or Hbmc has balanced splitting. This translates to the inequality that

|(νi − ν) ·Hm| < 1.

Next, a dimension computation shows that for the Schatz-stratum to have codimension 0, we must have
the orthogonality relations

χ(vi,vj) = 0 for i < j.

From these two facts we can see that the slopes νi have to come from a bounded region, and since the
ranks ri are bounded there are only finitely many possibilities for the νi. Furthermore, the orthogonality
relations imply the discriminant ∆i has to be the minimal possible discriminant of an Hm-semistable
sheaf with rank ri and total slope νi. Hence, there are finitely many possible vi that can be the Chern
characters of the graded pieces of the generic Hm-Harder-Narasimhan filtration.
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Conversely, if one can find Chern characters vi, 1 ≤ i ≤ `, that satisfy these constraints, then the
general Harder-Narasimhan filtration has factors with these Chern characters. More precisely, we have
the following theorem.

Theorem 3.13. [CH18e, Theorem 4.3] Let v be the Chern character such that PHdme(v) is nonempty.

Let v1, . . . ,v` ∈ K(Fe) be positive rank Chern characters satisfying the following properties:

(1)
∑`

i=1 vi = v,
(2) The reduced Hilbert polynomials qi of vi are strictly decreasing q1 > · · · > q`,
(3) µHm(v1)− µHm(v`) ≤ 1,
(4) χ(vi,vj) = 0 for i < j,
(5) MFe,Hm(vi) is nonempty,

Then the Harder-Narasimhan filtration of the general sheaf in PHdme(v) has length ` and the factors have
Chern characters vi.

Thus determining the Harder-Narasimhan filtration of a general Hdme-prioritary sheaf becomes a finite
computational problem. In particular, one obtains an algorithm for classifying Chern characters of Hm-
semistable sheaves. The problem can be further simplified. For instance, using the fact that K(Fe) ∼= Z4,
one can show ` ≤ 4.

Remark 3.14. Recall that an exceptional bundle V is a simple bundle with Exti(V,V) = 0 for i > 0.
In the case of P2, exceptional bundles control the semistability of sheaves [DLP85]. More precisely, ei-
ther the subbundle or the quotient in the general Harder-Narasimhan filtration is an exceptional bundle.
Hence, one can give explicit inequalities for the discriminants of semistable bundles without computing
the semistable bundles of lower rank, recursively. One just needs to consider exceptional bundles. Un-
fortunately, it may happen that neither the quotient nor the subbundle in a generic Harder-Narasimhan
filtration of length 2 on Fe is an exceptional bundle (see [CH18e] for explicit examples). In general, it is
not enough to consider the constraints given by exceptional bundles.

As a consequence of [CH18a], the classification of stable Chern characters has applications to birational
geometry. For example, one can compute the extremal rays of the ample cone of MFe,Hm(v) if ∆ � 0.
We will not discuss applications to birational geometry in this exposition, but refer the reader to [CH15].

4. Ulrich bundles on surfaces

Brill-Noether Theorems have immediate applications to the construction and classification of Ulrich
bundles. In this section, we spell this out more explicitly.

Definition 4.1. Let X ⊂ Pn be a smooth, projective variety of dimension d. An Ulrich bundle V on X is
a bundle that satisfies H i(X,E(−j)) = 0 for 1 ≤ j ≤ d and all i.

Ulrich bundles play a central role in the study of Chow forms of a variety [ESW03], the minimal
resolution conjecture (see [AGO17]) and Boij-Söderberg Theory (see [ES11]). For example, Eisenbud and
Schreyer show that the cone of cohomology tables of X is the same as that of Pd if and only if X admits
an Ulrich bundle [ES11]. Eisenbud and Schreyer raise the question whether every projective variety
admits an Ulrich bundle. Existence is known in some cases including smooth curves [ESW03], complete
intersections [BaHU91], Grassmannians [CMR15] and some two-step flag varieties [CCHMW17, CJ17],
del Pezzo surfaces [CKM13], certain rational surfaces [ESW03, Kim16], K3 surfaces [AGO17], abelian
surfaces [Bea16] and certain Enriques surfaces [BN18].

In this section, we would like to advocate a moduli theoretic approach for the construction and classi-
fication of Ulrich bundles. We say that a moduli space MX,H(v) satisfies the BN property if the general
sheaf in every component of MX,H(v) has at most one nonzero cohomology group. The relation between
Brill-Noether type theorems and Ulrich bundles is provided by the following proposition.
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Proposition 4.2. Let V be an Ulrich bundle for a polarized surface (X,H) of rank r, total slope ν +H
and discriminant ∆. Then

2ν ·H = H2 +H ·KX and 2∆ = ν2 − ν ·KX + 2χ(OX).

Conversely, if r, ν,∆ satisfy these equalities, MX,H(r, ν,∆) contains locally free sheaves and the moduli
spaces MX,H(r, ν,∆) and MX,H(r, ν −H,∆) satisfy the BN property, then the general locally free sheaf
in MX,H(r, ν +H,∆) is an Ulrich bundle.

Furthermore, if 2ν = H+KX , MX,H(r, ν,∆) contains locally free sheaves and satisfies the BN property,
then (X,H) admits Ulrich bundles of every rank divisible by r.

Proof. Assume that V is an Ulrich bundle on (X,H) of rank r and total slope ν+H. Then by Riemann-
Roch, we can compute the Euler characteristic of V(−H) and V(−2H) to obtain

1

2
ν2 − 1

2
ν ·KX + χ(OX)−∆ = 0

1

2
(ν −H)2 − 1

2
(ν −H) ·KX + χ(OX)−∆ = 0

The first equation gives the desired relation for ∆. Substituting the first equation into the second, we
get that

2ν ·H = H2 +H ·KX .

Assume MX,H(r, ν,∆) contains a locally free sheaf and let V be a general such sheaf. Then by twisting
V by OX(H) and OX(−H), we also obtain locally free sheaves in the moduli spaces MX,H(r, ν + H,∆)
and MX,H(r, ν −H,∆), respectively. By the numerical assumptions on ν and ∆, we have that

χ(V) = χ(V(−H)) = 0.

Hence, if the BN property holds for the general sheaf in every component ofMX,H(r, ν,∆) andMX,H(r, ν−
H,∆), then V and V(−H) have no cohomology. Consequently, V(H) is an Ulrich bundle on X.

Observe that 2ν = H + KX always satisfies the equality 2ν · H = H2 + H · KX . In this case, the
character (r, ν −H,∆) is Serre dual to (r, ν,∆). Consequently, the vanishing of the cohomology for the
general locally free sheaf in MX,H(r, ν,∆) implies the same vanishing for MX,H(r, ν − H,∆) by Serre
duality. Hence, if MX,H(r, ν,∆) contains locally free sheaves and satisfies the BN property, then for a
general locally free sheaf V ∈ MX,H(r, ν,∆), V(H) is an Ulrich bundle. This concludes the proof of the
proposition. �

Asymptotic results. Proposition 4.2 combined with O’Grady’s Theorem yields an asymptotic existence
theorem on any smooth, complex, projective surface.

Theorem 4.3. Let X be a complex, projective surface and let H0 be any ample line bundle on X. Then
there exists a positive integer m0 such that for all m ≥ m0, (X,mH0) admits an Ulrich bundle of every
positive even rank.

Furthermore, if KX (resp., KX + H0) is divisible by 2 in the Picard group and 2m ≥ m0 (resp.,
2m+ 1 ≥ m0), then (X, 2mH0) (resp., (X, (2m+ 1)H0)) admits an Ulrich bundle of every rank r ≥ 2.

Proof. Given r ≥ 2 and a total slope ν, by O’Grady’s theorem [O’G96], there exists a constant ∆0 such
that for ∆ ≥ ∆0 the moduli space MX,H0(r, ν,∆) is irreducible, contains locally-free, µH0-stable sheaves
and has the expected dimension. Let V ∈ MX,H0(r, ν,∆) be a general sheaf. By Serre’s theorem and
semicontinuity of cohomology, there exists an integer m1(r, ν) such that for m ≥ m1(r, ν),

hi(X,V(mH0)) = 0 for i = 1, 2.

By applying a sequence of h0(X,V(mH0)) general elementary modifications to V(mH0), we obtain a new
µH0-stable sheaf V ′ that satisfies hi(X,V ′) = 0 for all i. Elementary modifications preserve µH -stability
and only increase the discriminant. Hence, by O’Grady’s theorem, the moduli space containing V ′ is
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irreducible and the general sheaf in the moduli space is locally free. By semicontinuity of cohomology, a
general deformation W of V ′ is locally free and has no cohomology. Observe that

r(W) = r, ν(W) = ν +mH0.

By Serre duality, the Serre dual W∗(KX) of W also does not have any cohomology and has

r(W∗(KX)) = r, ν(W∗(K)) = −ν −mH0 +KX .

First, set ν = KX
2 , which we can do if r is even or if KX is divisible by 2 in the Picard group. We claim

that W(2mH0) is an Ulrich bundle of rank r on (X, 2mH0). Observe that W(−2mH0) is µH0-stable
bundle with the same rank, total slope and discriminant as the Serre dual of W. Hence, if W is general,
W(−2m0H) has no cohomology by semicontinuity. This shows that W(2mH0) is an Ulrich bundle of
rank r on (X, 2mH0).

Similarly, set ν = KX+H0
2 , which we can do if the rank is even or if KX + H0 is divisible by 2 in the

Picard group. We claim that W((2m+ 1)H0) is an Ulrich bundle of rank r on (X, (2m+ 1)H0). Observe
thatW(−(2m+1)H0) is µH0-stable bundle with the same rank, total slope and discriminant as the Serre
dual of W. The same argument as in the previous case applies.

If we let

m0 = max

(
2m1

(
2,
KX

2

)
, 2m1

(
2,
KX +H0

2

)
+ 1

)
,

(where m1 is the bound from the first paragraph required to apply Serre’s theorem) we have constructed
a rank 2 Ulrich bundle for (X,mH0) if m ≥ m0. If we have an Ulrich bundle V of rank 2, then V⊕j is an
Ulrich bundle of rank 2j.

Similarly, if KX (respectively, KX + H0) is divisible by 2, we can construct both rank 2 and rank 3
Ulrich bundles on (X, 2mH0) (respectively, (X, (2m+ 1)H0)) by this construction for

m ≥ max

(
m1

(
2,
KX

2

)
,m1

(
3,
KX

2

))
, resp., m ≥ max

(
m1

(
2,
KX +H0

2

)
,m1

(
3,
KX +H0

2

))
.

Once we have Ulrich bundles V and W of ranks 2 and 3, by taking appropriate direct sums, we obtain
Ulrich bundles of every rank at least 2. This concludes the proof of the theorem. �

Definition 4.4. A polarized variety (X,H) is called of Ulrich wild representation type if one can find
arbitrarily large dimensional families of indecomposable Ulrich bundles on X for H.

Corollary 4.5. Let X be a complex, projective surface and let H0 be any ample line bundle on X. Then
there exists a positive integer m0 such that for m ≥ m0 (X,mH0) is of wild-representation type.

Proof. The proof of Theorem 4.3 constructs a moduli space MX,H0(v) of µH0-stable, rank 2 Ulrich
bundles for (X,mH0). We can make ∆(v) arbitrarily large by making m large, but for our purposes
it suffices to choose m so that the dimension of MX,H0(v) is at least 1 and χ(v,v) < 0. We can now
construct indecomposable bundles by taking extensions of these rank 2 bundles. To aid the proof it will
be convenient to assume that the rank 2 stable factors are all distinct. Suppose that we have constructed
a family F of indecomposable µH0-semistable Ulrich bundles of rank 2j of dimension at least jd(∆)
whose Jordan-Hölder factors belong to the moduli space MX,H0(v) and are all distinct. Let V ∈ F and
W ∈MX,H0(v) and distinct from the Jordan-Hölder factors of V. Consider extensions of the form

0→W → U → V → 0.

Since χ(V,W) < 0, there exist nontrivial such extensions.

Let U be any such nontrivial extension. We claim U is indecomposable. If U = V1⊕V2, then V1 and
V2 are semistable with the same Jordan-Hölder factors as U . In particular, W appears as a factor in
exactly one of V1 or V2. Without loss of generality, assume W is a factor of V1. Then it follows that
V ∼= (V1 /W)⊕V2. Since V is indecomposable, W ∼= V1 contradicting the nontriviality of the extension.

13



The Jordan-Hölder factors of U all belong to MX,H0(v) and two such bundles cannot be isomorphic
unless they have the same factors. In particular, the dimension of the family of such nonisomorphic
bundles is at least (j + 1)d(∆). Furthermore, U is Ulrich for mH0. We conclude that (X,mH0) is of
Ulrich wild representation type. �

If we have more precise Brill-Noether theorems, we can obtain more precise classifications of Ulrich
bundles. We illustrate the principle in a few examples.

Hirzebruch surfaces. Since we have a complete classification of the cohomology of the general sheaf on
a Hirzebruch surface, we also get a complete classification of the invariants of Ulrich bundles. A similar
classification has been worked out by V. Antonelli [Ant18].

Theorem 4.6. Let H = aE + bF be an ample divisor on Fe. Let v = (r, ν,∆) = (r, αE + βF,∆) be an
integral Chern character with r ≥ 2. There exists a locally free F -prioritary sheaf V with Chern character
v satisfying

H i(Fe,V(−H)) = H i(Fe,V(−2H)) = 0 ∀i
if and only if

a− 1 +
ea(a− 1)

2b
≤ α ≤ 2a− 1− ea(a− 1)

2b
,

β =

(
e− b

a

)
(α+ 1) + 3b− 1− e

2
(3a+ 1)

and

∆(V) =

(
e

2
− b

a

)
(α2 + (2− 3a)α+ 2a2 − 3a+ 1).

Proof. Let V be an F -prioritary sheaf with ν(V) = αE + βF such that

H i(Fe,V(−H)) = H i(Fe,V(−2H)) = 0

for all i. As in Proposition 4.2 by Riemann-Roch, we have the relations

(α− a+ 1)(β − b+ 1)− e

2
(α− a)(α− a+ 1) = (α− 2a+ 1)(β − 2b+ 1)− e

2
(α− 2a)(α− 2a+ 1).

Solving for β in terms of α, we obtain

β =

(
e− b

a

)
α+ 3b− 1− b

a
− e

2
(3a− 1).

Similarly, we have

∆(V) =

(
e

2
− b

a

)
(α2 + (2− 3a)α+ 2a2 − 3a+ 1).

Since H is ample, we have that a, b > 0 and b > ae. In particular, ea−2b
2a < 0. Since an Ulrich bundle

is slope semistable [CKM13, Proposition 2.6], by the Bogomolov inequality we must have ∆ ≥ 0. The
roots of the quadratic

α2 + (2− 3a)α+ 2a2 − 3a+ 1

are a− 1 and 2a− 1. Consequently
a− 1 ≤ α ≤ 2a− 1

to guarantee that ∆(V) ≥ 0. In particular, α − a ≥ −1 and α − 2a ≤ −1. If the rank of V is at least 2,
we can use Serre duality to compute the cohomology of V(−2H). The Serre dual Chern character has
total slope

(2a− α− 2)E + (2b− β − e− 2)F.

By Theorem 3.2, the general F -prioritary sheaf W with

∆(W) ≥ 0, ν(W) · F ≥ −1, χ(V) = 0
14



has vanishing cohomology if and only if ν(W) ·F = −1 or ν(W) ·E ≥ −1. If α−a 6= −1 and α−2a 6= −1,
we conclude that there exists an F -prioritary sheaf with vanishing cohomology if and only if

E · ((α− a)E + (β − b)F ) ≥ −1 and E · ((2a− α− 2)E + (2b− β − e− 2)F ) ≥ −1.

The first inequality yields

−e(α− a) + β − b ≥ −1.

Substituting for β in terms of α and simplifying we obtain

α ≤ 2a− 1− ea(a− 1)

2b
.

Similarly, the second inequality yields

−e(2a− α− 2) + 2b− β − e− 2 ≥ −1.

Substituting for β, we obtain

α ≥ a− 1 +
ea(a− 1)

2b
.

If α = a− 1, the second inequality becomes − e
2 − 1 ≥ −1 and can only be satisfied if e = 0. Similarly, if

α = 2a− 1, then the first inequality forces e to be 0. We conclude that in all cases we must have

a− 1 +
ea(a− 1)

2b
≤ α ≤ 2a− 1− ea(a− 1)

2b
.

This provides necessary and sufficient conditions for the existence of Ulrich bundles on (Fe, aE+bF ). �

Corollary 4.7. Let H = aE+ bF be an ample divisor on Fe. Then there exists an Ulrich bundle of rank
2 with invariants

v = (r, ν,∆) =

(
2,

(
3

2
a− 1

)
E +

(
3

2
b− e

2
− 1

)
F,
a

8
(2b− ae)

)
.

Proof. In Theorem 4.6, the discriminant ∆ is maximized when α = 3
2a− 1. In that case, the expressions

for β and ∆ become

β =
3

2
b− e

2
− 1, ∆ =

a

8
(2b− ae).

We further have v(−2H) and v(−H) have Serre dual Chern characters and by Theorem 3.2 for a general
F -prioritary bundle all the cohomology vanishes. �

Remark 4.8. It is also easy to classify the ample classes H = aE+bF that admit a rank one Ulrich sheaf.
If the rank of V is 1, then V(−2H) = IZ((α − 2a)E + (β − 2b)F ) for some zero-dimensional scheme Z.
Given a line bundle L and a zero-dimensional scheme Z, we have that

h2(Fe, L⊗ IZ) = h2(Fe, L), h1(Fe, L⊗ IZ) ≥ h1(Fe, L), h0(Fe, L⊗ IZ) ≤ h0(Fe, L).

Furthermore, if Z is nonempty, at least one of the last two inequalities is strict. Since (α−2a)E+(β−2b)F
is not effective, we conclude that h1(Fe,V(−2H)) 6= 0 unless Z is empty. We conclude that V is a line
bundle. If e ≥ 1, the only line bundles with vanishing cohomology are OFe(−F ),OFe(−E + tF ) and
OFe(−2E− (e+ 1)F ). Hence, we must have a = 1 or 2. If a = 2, we see that α = a, b = e and β = e− 1.
In this case, H is not ample. Hence, we must have a = 1. If H = E + bF for b > e, then the line bundles
OFe((2b−e−1)F ) and OFe(E+(b−1)F ) are Ulrich. If e = 0, the line bundles with vanishing cohomology
are OF0(−E + tF ) and OF0(tE − F ). In this case, given any ample line bundle OF0(aE + bF ), the two
line bundles OF0((2a− 1)E + (b− 1)F ) and OF0((a− 1)E + (2b− 1)F ) are Ulrich.

Remark 4.9. Using the Beilinson spectral sequence, one can in fact show that the Ulrich bundles in these
moduli spaces are given by the Gaeta resolution (see [Ant18]).
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Nonminimal rational surfaces. Eisenbud and Schreyer [ESW03] and Kim [Kim16] have obtained
partial results on the existence of Ulrich bundles on rational surfaces more generally. More precise results
are available for special rational surfaces such as del Pezzo surfaces (see [CKM13]). Here we obtain the
following general statement on arbitrary blowups of P2 at distinct points. The same techniques yield
results on infinitely near blowups. We leave it to the reader to formulate the corresponding statements.

Theorem 4.10. Let X be the blowup of P2 at k distinct points. Let H = aL−
∑k

i=1 biEi be a very ample

divisor such that a ≥ 3, bi ≥ 1 and a ≥
∑k

i=1 bi + (1− k). Then (X,H) admits an Ulrich bundle of every
positive even rank. In fact, the general sheaf in PX,L−E1(v(H)) where

rk v = 2r, ν(v) =
KX +H

2
, ∆(v) = 1 +

1

2
(ν2 − ν ·KX)

is an Ulrich bundle V with a resolution of the form

0→ OX(H − 2L)α → OX(H − L)β ⊕
k⊕
i=1

OX(H − Ei)γi → V → 0, or

0→ OX(H − 2L)α ⊕OX(H − L)β →
k⊕
i=1

OX(H − Ei)γi → V → 0, where

α = r(a−
k∑
i=1

bi + k − 1), γi = r(bi − 1)

and β and the type of resolution is determined by the rank of V.

Proof. By [CH18b, Theorem 3.12], let v be a Chern character with χ(v) = 0, rk(v) ≥ 2 and ν(v) =

δL −
∑k

i=1 εiEi such that δ, εi ≥ 0 and δ −
∑k

i=1 εi ≥ −1, then the stack PX,H−E1(v) of (H − E1)-
prioritary sheaves is nonempty, contains locally-free elements and the general element of the stack has
no cohomology. Furthermore, the general element of PX,H−E1(v) admits a Gaeta-type resolution of the
form as in the statement of the theorem. Let v be a Chern character on X of rank 2r and

ν =
KX +H

2
=

1

2

(
(a− 3)L−

k∑
i=1

(bi − 1)Ei

)
∆(v) = 1 +

1

2
(ν2 − ν ·KX).

By Riemann-Roch, we have χ(v) = 0. Observe that

(a− 3)−
k∑
i=1

(bi − 1) = a−
k∑
i=1

bi + (k − 3) ≥ −2

by assumption. Since a ≥ 3 and bi ≥ 1, the conditions of [CH18b, Theorem 3.12] are satisfied and we con-
clude that PX,H−E1(v) is a nonempty, irreducible stack whose general member is a locally free sheaf with
no cohomology. The same holds by Serre duality for the general member of the stack PX,H−E1(v(−H)).
Consequently, the general member of the stack PX,H−E1(v(H)) is an Ulrich bundle on X. The desired
resolution is a consequence of [CH18b, Theorem 3.12]. �

An analogous theorem holds for blowups of Hirzebruch surfaces.

Theorem 4.11. Let X be the blowup of Fe at k distinct points not contained on the negative self-

intersection section E. Let H = aE + bF −
∑k

i=1 ciEi be a very ample divisor such that

a ≥ 2, a ≥
k∑
i=1

ci − k, b ≥
k∑
i=1

ci + (a− 1)e− k, ci ≥ 1.
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Then (X,H) admits an Ulrich bundle of every even positive rank. Moreover, the general sheaf in
PX,F (v(H)) where

rk v = 2r, ν(v) =
KX +H

2
, ∆(v) = 1 +

1

2
(ν2 − ν ·KX)

is an Ulrich bundle V with a resolution of the form

0→ OX(H − E − (e+ 1)F )α → OX(H − E − eF )β ⊕OX(H − F )γ ⊕
k⊕
i=1

OX(H − Ei)δi → V → 0,

where

α = r(b− (e− 1)a−
k∑
i=1

ci + e+ k − 2), β = r(b− ea−
k∑
i=1

ci + e+ k),

γ = r(a−
k∑
i=1

ci + k), δi = r(ci − 1).

Proof. The theorem follows from [CH18b, Theorem 3.15] using the same proof as that of Theorem
4.10. �

K3 surfaces. Let X be a K3 surface of Picard rank 1 with ample generator H0 such that H2
0 = 2n. Let v

be a Chern character and let m(v) = (r(v), c1(v), ch2(v)+r(v)) be the associated Mukai vector. Assume
that m(v)2 ≥ −2. By Theorem 3.8, if χ(v) = 0, then the cohomology of the general sheaf in MX,H(v)
vanishes. We obtain the following classification of Ulrich bundles on K3 surfaces of Picard rank one,
recovering results of [AGO17]. There has been further work on the even rank case (see [CaG18, Fae18]).

Theorem 4.12. [AGO17, CNY18] Let X be a K3 surface as above and let H = kH0 be a very ample
divisor on X. If k is even, then there exists an Ulrich bundle for every rank r > 1. If k is odd, there
exists an Ulrich bundle for every even rank r ≥ 2. The general bundle in the moduli space with Mukai
vector (

r,
3rk

2
, 2rnk2 − r

)
is an Ulrich bundle. Hence, there is a

1

2
nr2k2 + 2r2

dimensional family of Ulrich bundles on (X, kH0).

4.1. Other cohomological conditions. There are other cohomology vanishing conditions that can be
analyzed using our Brill-Noether type theorems. As an example we give a quick solution of Eisenbud and
Schreyer’s conjecture on the existence of bundles with natural cohomology on P1 × P1 as an immediate
consequence of Theorem 3.2. Recall that a bundle V on P1 × P1 has natural cohomology if V ⊗L has at
most one nonzero cohomology group for any line bundle L on P1 × P1. The conjecture was first proved
by Solis [Sol18] by constructing the required bundles as monads.

Corollary 4.13. Let F1 and F2 denote the two fiber classes on P1 × P1. Let v be an integral Chern
character such that rk(v) ≥ 2 and ∆ ≥ 0. Then PP1×P1,F1

(v) is nonempty, and the general V ∈
PP1×P1,F1

(v) is locally free and has at most one nonzero cohomology group. In particular, the very
general member of PP1×P1,F1

(v) is a bundle with natural cohomology.

Proof. Since ∆(v) ≥ 0, PP1×P1,F1
(v) is nonempty by Theorem 3.2. Moreover, the general F1-prioritary

sheaf is also F2-prioritary. Hence, by Theorem 3.2, if ν · Fi ≥ −1 for i = 1 or 2, then the general Fi-
prioritary sheaf does not have any h2. Similarly, if ν ·Fi ≤ −1 for i = 1 or 2, then the general Fi-prioritary
sheaf does not have any h0. Hence, if F1 · ν ≥ −1 and F2 · ν ≤ −1, then the general F1-prioritary sheaf
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can only have h1. Similarly, if F1 · ν ≤ −1 and F2 · ν ≥ −1, then the general F1-prioritary sheaf can only
have h1.

On the other hand, by Theorem 3.2, if ν ·Fi ≥ −1 for i = 1 and 2, then the general F1-prioritary sheaf
can only have one nonzero cohomology group (h0 or h1 depending on the Euler characteristic). Similarly,
if ν · Fi ≤ −1 for i = 1 and 2, then the general prioritary sheaf has at most one nonzero cohomology
group (h1 or h2 depending on the Euler characteristic). Since these four regions tile all possible slopes,
we conclude that the general F1-prioritary sheaf of rank at least 2 and ∆ ≥ 0 has at most one nonzero
cohomology group. We conclude that for the very general sheaf V in PP1×P1,F1

(v) all twists V(nF1+mF2)
have at most one nonzero cohomology group. Hence, V has natural cohomology. �

5. The cohomology of the moduli space of sheaves

In this section, we will survey some recent work on the cohomology of the moduli spaces of sheaves on
surfaces following [CW18]. The main philosophy of the paper [CW18] is that the Betti numbers of the
moduli spaces MX,H(v) are hard to compute; however, for many interesting surfaces these Betti numbers
stabilize as the discriminant ∆ tends to infinity. In all known examples, the stable Betti numbers are
independent of the rank and first Chern class, hence are easy to compute from Göttsche’s calculations
in rank one [Got90]. An analogous stabilization should hold for Hodge numbers. In fact, [CW18] shows
that, at least for rational surfaces, the stabilization holds more fundamentally at the motivic level.

We begin by briefly recalling the Grothendieck ring of varieties and virtual Poincaré and Hodge poly-
nomials. These notions will be necessary to formulate the main theorem of [CW18].

The Grothendieck ring of varieties. The Grothendieck ring of varieties over the complex numbers
C, K0(varC), is the quotient of the free abelian group on isomorphism classes varieties [X] of finite type
over C by the scissor relations,

[X] = [Y ] + [Z]

if Y and Z are disjoint locally closed subvarieties of X with X = Y ∪ Z. Define multiplication by

[X] · [Y ] = [X × Y ].

Let L be the class of the affine line [A1]. By Hironaka’s resolution of singularities [Hir64], K0(varC) is
generated by the classes of smooth projective irreducible varieties.

The Poincaré polynomial induces a map

P (t) : K0(varC)→ Z[t]

called the virtual Poincaré polynomial [Joy07]. Similarly, the Hodge polynomial induces a map

H(x, y) : K0(varC)→ Z[x, y]

called the virtual Hodge polynomial [Joy07].

Let R = K0(varC)[L−1]. The ring R has a Z-graded decreasing filtration F generated by

[X]La ∈ F i if dim(X) + a ≤ −i.
Define the ring A− as the completion of R with respect to this filtration. Note that elements of A− have
a natural notion of dimension generalizing the dimension of smooth, projective varieties. For a ∈ A−, we
will denote this dimension by dim(a). The virtual Poincaré polynomial can be extended to R (resp. A−),
where it takes values in Z[t±1] (resp. Z((t−1))). Similarly, the virtual Hodge polynomials can be extended
to R (respectively, A−), were it takes values in Z[x±1, y±1] (resp., Z((x−1, y−1))).

Given a sequence of smooth projective varieties Xi of dimension di, we would like to have a notion
of stabilization in A− that guarantees that the low-degree Betti numbers of Xi stabilize. Consider the
sequence L−di [Xi]. By Poincaré duality,

P[Xi](t) = PL−di [Xi]
(t−1), H[Xi](x, y) = HL−di [Xi]

(x−1, y−1).
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If the sequence L−di [Xi] converges in A−, then the low-degree Betti numbers (and Hodge numbers) of
the Xi stabilize. This motivates the following definition.

Definition 5.1. A sequence of elements ai ∈ A− stabilizes to a if the sequence L− dim(ai)ai converges to a.

It is convenient to record the sequence ai = L−di [Xi] in a generating function

F (q) =
∑
i

aiq
i,

which can be thought of as an element of A−{{q}}, the ring of Puiseux series in q with coefficients in
A−. We use Puiseux series (instead of power series) because it is often convenient to index the moduli
spaces by the discriminant ∆ or the second Chern character d. Since ∆ and d can take fractional values,
it is convenient to allow series in q with fractional exponents with bounded denominator. The following
easy proposition relates stabilization of the sequence to the convergence of the generating function.

Proposition 5.2. [CW18, Proposition 3.6] Let ai be a sequence in A−. Then ai converges to a in A− if
and only if the series (1− q)

∑
aiq

i is convergent at q = 1 and the sum at q = 1 is a.

Zeta functions. Kapranov [Kap00] defined the motivic zeta function of a variety X by

ZX(q) =

∞∑
n=0

[X(n)]qn,

where [X(n)] denotes the class of the nth symmetric product Xn/Sn of X in the Grothendieck ring of
varieties. When X is a smooth projective surface, we will be interested in the Betti realization of the
zeta function. In order to distinguish this function from the motivic zeta function, we will denote it by
ζX(q, t). By [Mac62], we have

ζX(q, t) =

∞∑
n=0

PX(n)(t)qn =
(1 + qt)b1(X)(1 + qt3)b3(X)

(1− q)(1− qt2)b2(X)(1− qt4)
,

where bi(X) is the ith Betti number of X.

With these preliminaries in place, we can discuss the cohomology of MX,H(v). When rk(v) = 1,
Göttsche computed the cohomology. We briefly recall his results.

The Betti numbers of rank 1 sheaves. Let X [n] denote the Hilbert scheme of n points on X. When
r = 1, a stable sheaf F ∈MX,H(1, c,∆) is isomorphic to L⊗ IZ , where L is a line bundle with ch1(L) = c

and IZ is an ideal sheaf of points on X with |Z| = ∆. There is a natural isomorphism from Picc(X)×X [∆]

to MX,H(1, c,∆) given by tensor product. The inverse morphism sends a rank one sheaf F to the pair
(F∗∗,F ⊗F∗).

Göttsche [Got90] computed the Betti numbers of X [n]. Let

Pn(t) =

2n∑
i=0

bi(X
[n])ti

be the Poincaré polynomial of X [n]. It is convenient to form a generating function F (q, t) incorporating
these polynomials. Göttsche proves the following formula

F (q, t) =

∞∑
n=0

Pn(t)qn =

∞∏
m=1

ζX(t2m−2qm, t).
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By the Künneth formula, it follows that the Betti numbers of MX,H(1, c,∆) are given by

G(q, t) =

∞∑
∆=0

2∆+b1(X)∑
i=0

bi(MX,H(1, c,∆))tiq∆ = (1 + t)b1(X)
∞∏
m=1

ζX(t2m−2qm, t).

An important consequence of these formulae is that the Betti numbers of MX,H(1, c,∆) stabilize as ∆
tends to infinity [Got90, Corollary 2.11]. By Proposition 5.2, the generating function for the stable Betti
numbers bi,Stab(X) can be computed as follows∑

bi,Stab(X)t
i = (1 + t)b1(X)((1− q)

∞∏
m=1

ζX(t2m−2qm, t))|q=1.

The Hodge numbers of rank 1 sheaves. More generally, Göttsche, Soergel [GS93] and Cheah [Che96]

compute the generating function for the Hodge numbers of the Hilbert scheme of points X [n].

F (x, y, q) =
∞∑
n=1

ha,b(X [n])qn =
∞∏
m=1

2∏
a,b=0

(1 + (−1)a+b+1xa+m−1yb+m−1qm)(−1)a+b+1ha,b(X),

where hp,q(X) denotes the (p, q)-Hodge number of X. The denominator depends only on q, precisely
when a = b = 0 and m = 1. In (1− q)F (x, y, q), the coefficient of every term xαyβ is a polynomial in q.
Hence, the Hodge numbers stabilize and the stable Hodge numbers are given by

2∏
a,b=0,

(a,b)6=(0,0)

(1 + (−1)a+b+1xayb)(−1)a+b+1ha,b(X)
∞∏
m=2

2∏
a,b=0

(1 + (−1)a+b+1xa+m−1yb+m−1)(−1)a+b+1ha,b(X).

Finally, by the Künneth formula, we have

G(x, y, q) =
∞∑

∆=1

ha,b(MX,H(1, c,∆))q∆ = (1 + x)
b1
2 (1 + y)

b1
2 F (x, y, q).

Hence, these Hodge numbers stabilize to

(1 + x)
b1
2 (1 + y)

b1
2 ((1− q)F (x, y, q)|q=1).

The motive of the Hilbert scheme. Moreover, Göttsche computes the motive of the Hilbert scheme

of points on a surface. Let P(∆) denote the set of partitions of ∆. Let α be the partition αi11 , · · · , α
ij
j ,

where the part αm is repeated im times. Let |α| be the length (equivalently, the number of parts) of the

partition. Let X(α) denote the product X(i1) × · · · ×X(ij). Göttsche [Got01] shows that

[X [∆]] =
∑

α∈P(∆)

[X(α) × A∆−|α|].

Furthermore, one has the following equality of generating functions

∞∑
∆=1

[X [∆]]L−2∆q∆ =

∞∏
m=1

ZX(L−m−1qm).

Vakil and Wood [VW15, Conjecture 1.25] conjecture that the sequence [X(∆)]L−2∆ converges in A−.

By Göttsche’s formula, this conjecture also implies that the sequence [X [∆]]L−2∆ converges in A−. The
conjecture is known when X is a rational surface, but is open in general and seems to be a fairly subtle
question.

20



The Betti numbers of higher rank moduli spaces. In contrast, the Betti numbers of MX,H(v) are
generally unknown when the rank of v is at least 2. In [CW18], the authors take the point of view that
while the individual Betti numbers for higher rank moduli spaces are often hard to compute, the Betti
numbers should stabilize as the discriminant tends to infinity. Furthermore, in all examples when the
stabilization is known, the stable Betti numbers are independent of the rank, c1 and the ample class H.
In particular, the stable numbers are computed by Göttsche’s calculation. More precisely, the authors
make the following conjecture.

Conjecture 5.3. [CW18, Conjecture 1.1] Fix a rank r > 0 and a first Chern character c. Let bi,Stab(X)
denote the ith stable Betti number of MX,H(1, c,∆). Then the ith Betti number of MX,H(r, c,∆) stabilizes
to bi,Stab(X) as ∆ tends to ∞. More precisely, given an integer k, there exists ∆0(k) such that for
∆ ≥ ∆0(k) and i ≤ k

bi(MX,H(r, c,∆)) = bi,Stab(X).

Furthermore, if H is in a compact subset C of the ample cone of X, then ∆0(k) can be chosen indepen-
dently of H ∈ C.

Conjecture 5.3 fits with the philosophy of Donaldson [Don90], Gieseker and Jun Li [GL94, LiJ93, LiJ94]
that the geometry of MX,H(γ) becomes better behaved as ∆ tends to ∞. A consequence of O’Grady’s
theorem [O’G96] shows that the zeroth Betti number is 1 if ∆ is sufficiently large. Jun Li shows that the
first and second Betti numbers stabilize to the expected value when r = 2 [LiJ97]. Yoshioka computes
the Betti numbers of moduli spaces of rank 2 sheaves on P2 and proves the stabilization of the Betti
numbers [Yos94, Corollary 6.3]. Yoshioka [Yos95, Yos96b] and Göttsche [Got96] compute the Betti and
Hodge numbers of MX,H(γ) when r = 2 and X is a ruled surface. Yoshioka [Yos95, Yos96a] observes
the stabilization of the Betti numbers for rank 2 bundles on ruled surfaces. Göttsche observes that the
small Hodge numbers are independent of the ample H and gives a nice formula for them. Göttsche
further extends his results to rank 2 bundles on rational surfaces for polarizations that are KX -negative
in [Got99] (see also [Yos95]). Manschot [Man11, Man14] building on the work of Mozgovoy [Moz13]
gives a formula for the Betti numbers of the moduli spaces when X = P2. The stabilization of the Betti
numbers can be observed from the tables provided in these papers.

The conjecture is known for smooth moduli spaces of sheaves on K3 and abelian surfaces. By work
of Mukai [Muk84], Huybrechts [Huy03] and Yoshioka [Yos99], smooth moduli spaces of sheaves on a K3
surface X are deformations of the Hilbert scheme of points on X of the same dimension. In particular,
they are diffeomorphic to X [n] of the same dimension. Hence, their Betti numbers agree without taking
any limits.

Yoshioka [Yos01] obtains similar results on abelian surfaces. A smooth moduli space of sheaves

MX,H(γ) is deformation equivalent to X∗ × X [n] of the same dimension, where X∗ is the dual abelian

surface. In this case as well the cohomology is isomorphic to the cohomology of X∗ ×X [n] without the
need to take limits.

There is also closely related gauge theory literature on the Atiyah-Jones Conjecture (see [AJ78, CW18,
Tau84, Tau89] for details).

Similarly, one may conjecture an analogue of Conjecture 5.3 for Hodge numbers of MX,H(r, c,∆),
at least when MX,H(r, c,∆) is smooth. These conjectures are at the level of invariants. It would be
interesting to find geometric reasons underlying the stabilization of Betti numbers. Unfortunately, we
do not know any algebraic maps between these moduli spaces, though it is possible to define certain
correspondences.

Assuming the Vakil-Wood Conjecture is true and that the classes of the Hilbert schemes [X [n]] stabilize
in the ring A−, one can further speculate that the classes [MX,H(r, c,∆)] also stabilize to the same stable
limit in A−. The main theorem of [CW18] proves this for rational surfaces provided KX ·H < 0. The
stabilization of the virtual Poincaré and Hodge polynomials are immediate consequences. In particular,
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when the virtual polynomials agree with the Poincaré and Hodge polynomials, we obtain the stabilization
of Betti and Hodge numbers.

Theorem 5.4. Let X be a smooth, complex projective rational surface and let H be a polarization such
that H ·KX < 0. As ∆ tends to∞, the classes [MX,H(r, c,∆)] of the moduli stacks of Gieseker semistable
sheaves stabilize in A− to

∞∏
i=1

1

(1− L−i)χtop(X)
.

In particular, the virtual Betti and Hodge numbers ofMX,H(r, c,∆) stabilize, and the generating functions
for the stable virtual numbers bi,Stab and hp,qStab are given by

∞∑
i=0

bi,Stabt
i =

∞∏
i=1

1

(1− t2i)χtop(X)
and

∞∑
p,q=0

hp,qStabx
pyq =

∞∏
i=1

1

(1− (xy)i)χtop(X)
.

When the moduli spaces MX,H(r, c,∆) are smooth, projective varieties, one obtains the following
consequence, first described by Yoshioka in a remark in [Yos96a, §3.6].

Theorem 5.5. [CW18, Theorem 1.8] Let X be a smooth, complex, projective rational surface and let H
be a polarization such that KX ·H < 0. Assume that the moduli spaces MX,H(r, c,∆) do not contain any
strictly semistable sheaves. Then the Betti and Hodge numbers of MX,H(r, c,∆) stabilize to the stable

Betti and Hodge numbers of the Hilbert scheme of points X [∆] as ∆ tends to infinity.

Conjecture 5.3 expresses the hope that even when the moduli spaces MX,H(v) are singular, Poincaré
duality holds in larger and larger ranges and the cohomology is pure in higher and higher degrees as ∆
tends to infinity.

Question 5.6. Is the cohomology of MX,H(r, c,∆) pure in increasing degrees as ∆ tends to infinity?
Does Poincaré duality hold in increasing degrees as ∆ tends to infinity?

If the cohomology is pure in increasing degrees, then the virtual Poincaré polynomial would coincide
with the actual Poincaré polynomial in increasing degrees and Theorem 5.5 would imply an analogue of
Theorem 5.5 without smoothness assumptions on MX,H(r, c,∆).

It is natural to expect Conjecture 5.3 to apply in more general contexts. The same stabilization should
hold for spaces closely related to MX,H(v) such as moduli spaces of pure one-dimensional sheaves and the
Matsuki-Wentworth moduli spaces of twisted Gieseker semistable sheaves. More interestingly, it would
be interesting to find an analogue of the conjecture for moduli spaces of Bridgeland semistable objects
on a surface (see [CW18, §1]).

We refer the reader to [CW18] for a proof of Theorem 5.4. The proof is a detailed study of the effect
of wall-crossing and blowup on [MX,H(v)] in A− using Joyce’s machinery. The steps can be summarized
as follows.

(1) First, using Joyce’s wall-crossing formula [Joy08, Theorem 6.21], one shows that if H1 is an ample
class and H2 is a big and nef class on X such that KX · Hi < 0 for i = 1, 2, then [MX,H1(v)]
stabilizes in A− if and only if [MX,H2(v)] stabilizes. Furthermore, in case they stabilize, they
stabilize to the same element of A− (see [CW18, Proposition 4.7]).

(2) Second, using Mozgovoy’s blowup formula [Moz13, Proposition 7.3], one shows that the classes of
the moduli spaces on X stabilize in A− if and only if the classes of corresponding moduli spaces
on the blowup of X stabilize. Furthermore, in case both stabilize, the limits differ by a factor of

∞∏
k=1

1

1− L−k

as expected (see [CW18, Lemma 4.10, Proposition 4.11]).
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(3) Third, one uses Mozgovoy’s [Moz13, Theorem 1.1] formula for F -semistable sheaves on the Hirze-
bruch surface F1 to calculate the stable classes in one explicit case. Then using wall-crossing one
obtains the stable classes for moduli spaces on F1 for every polarization (see [CW18, §5]).

(4) Finally, using blowup and wall-crossing repeatedly one proves the theorem for all rational surfaces
starting with the minimal rational surfaces P2 and Fe, e 6= 1 (see [CW18, §5, 6]).

Currently, all our evidence for Conjecture 5.3 comes from rational surfaces and K-trivial surfaces, Jun
Li’s Theorem [LiJ97] and by analogy to the Atiyah-Jones conjecture. It would be especially interesting
to verify the conjecture for examples of surfaces of general type, even in rank 2.
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