
RESTRICTION VARIETIES AND THE RIGIDITY PROBLEM

IZZET COSKUN

Abstract. This is a survey paper based on the author’s lectures given at IMPAN in December 2013. We
will discuss recent results on the restriction and rigidity problems following [C2], [C3], [C4] and [C5]. The
purpose of the lectures was to develop a more geometric approach to the study of isotropic flag varieties. As
an illustration of the techniques, we compute the map induced in cohomology of the inclusion of OG(k, n)
and SG(k, n) in G(k, n) via an explicit sequence of rational equivalences. We also discuss applications to
classifying representatives of Schubert classes.
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1. Introduction

Homogeneous varieties are ubiquitous in mathematics. Especially the Grassmannians and flag vari-
eties associated to the classical Lie groups play a central role in geometry, representation theory and
combinatorics. In this paper, we survey recent developments in two important problems, the restriction
and rigidity problems, in the geometry and cohomology of homogeneous varieties following [C2], [C3],
[C4] and [C5]. These notes grew out of lectures I gave at IMPAN in December 2013. The lectures were
organized around the following three themes:

(1) Develop a concrete geometric theory of isotopic flag varieties in the spirit of the classical theory
of Grassmannians, reducing the theory to a few simple principles of quadric geometry.

(2) Construct explicit rational equivalences between subvarieties of homogeneous varieties and unions
of Schubert varieties.

(3) Use explicit rational equivalences and intersection theory to study rigidity of Schubert classes.

Let V be an n-dimensional C vector space. Let G(k, n) denote the Grassmannian parameterizing k-
dimensional subspaces of V . Let Q be a nondegenerate symmetric or skew-symmetric form. A subspace
W is isotropic with respect to Q if wTQv = 0 for every v, w ∈ W . The isotropic Grassmannians
OG(k, n) (respectively, SG(k, n)) parameterize k-dimensional subspaces of V isotropic with respect to
the symmetric (respectively, skew-symmetric) form Q. The isotropic Grassmannians naturally include in
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the Grassmannian G(k, n). The restriction problem asks to compute the induced map in cohomology in
terms of the Schubert bases of the corresponding Grassmannians.

The restriction problem was solved for the symmetric case in [C3] and the skew-symmetric case in
[C4]. The idea is to give a sequence of explicit rational equivalences that specialize the intersection of a
Schubert variety in G(k, n) with OG(k, n) or SG(k, n) into a union of Schubert varieties in OG(k, n) or
SG(k, n). A similar strategy led to geometric Littlewood-Richardson rules for Grassmannians (see [V1],
[C1]) and two-step flag varieties (see [C1], [CV]). The goal was to understand the cohomology of OG(k, n)
and SG(k, n) in equally concrete terms. The varieties that occur during the specialization process are
called restriction varieties and have since found several other applications. We will introduce restriction
varieties and give the solution of the restriction problem in §4.

In §5, we will focus on the rigidity problem which asks to classify the Schubert classes in the cohomol-
ogy of a homogeneous variety that can be represented by subvarieties other than Schubert varieties. This
problem dates back at least to Borel and Haefliger [BH] in the 1960s and has recently been answered in
the cominuscule case ([R], [RT], see also [CR], [HM] and [MZ]). We will explain geometric approaches to
the rigidity problem and discuss the rigidity of Schubert classes in Grassmannians and isotropic Grass-
mannians. Restriction varieties play an important role here as well by providing explicit deformations of
Schubert varieties in some cases.

I have tried to preserve the informal nature of the lectures by focusing on examples and important
special cases, referring the reader to the literature for proofs and details. I have included many exercises
throughout the text. These vary considerably in difficulty. I have also included a variety of open problems.
I have used the heading ‘Problem’ to distinguish them from exercises.

Organization of the paper. In §2, we will review the background on Grassmannians, isotropic Grass-
mannians and their cohomology. In §3, we will discuss 4 basic principles that govern the geometry of
quadratic forms. In §4, we introduce restriction varieties and describe the solution of the restriction
problem. In §5, we introduce the rigidity problem and discuss recent progress towards its solution.

Acknowledgments. I would like to thank Piotr Pragacz, Jarek Buczyński, the participants of the
seminar and IMPAN for their hospitality and giving me the opportunity to deliver the lectures that gave
rise to these notes. I thank the referee for many useful suggestions.

2. Preliminaries on Schubert varieties

In this section, we review basic facts concerning Schubert varieties and the cohomology of homogeneous
varieties. We refer the reader to [Bri], [EH2] and [GH] for more detailed introductions to the subject.

The Grassmannian. Let V be an n-dimensional C vector space. The Grassmannian G(k, n) parame-
terizes k-dimensional subspaces of V . It is a smooth, projective variety of dimension k(n−k) and embeds

in P(nk)−1 under the Plücker embedding given by

G(k, n)→ P(∧kV ) W 7→ [∧kW ].

The ideal of the Grassmannian under the Plücker embedding is generated by an explicit set of quadratic
relations called Plücker relations.

The cohomology of G(k, n) has an additive Z-basis given by the classes of Schubert varieties. An
admissible partition for G(k, n) is a partition λ with k parts such that

n− k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

It is customary to omit the parts that are equal to 0 from the notation and we will follow this custom

whenever it is unambiguous. Let |λ| =
∑k

i=1 λi denote the weight of the partition.
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The Young diagram associated to the partition λ is an array of k left-justified rows of unit squares with
λi squares in the ith row. Young diagrams provide a convenient pictorial representation of partitions. A
partition is admissible for G(k, n) if and only if its Young diagram fits in a k × (n− k) rectangle.

Given an admissible partition λ and a flag

F• : F1 ⊂ F2 ⊂ · · · ⊂ Fn = V,

we define the Schubert variety Σλ(F•) as

{W ∈ G(k, n)| dim(W ∩ Fn−k+i−λi) ≥ i, 1 ≤ i ≤ k}.

The Schubert variety Σλ(F•) contains a Zariski dense open subset Σ0
λ(F•) isomorphic to affine space

Ak(n−k)−|λ| called a Schubert cell. In particular, the Schubert variety Σλ(F•) is irreducible of dimension
k(n− k)− |λ|. The Schubert cell Σ0

λ(F•) parameterizes

{W ∈ G(k, n)| dim(W ∩ Fn−k+i−λi) = i,dim(W ∩ Fn−k+i−λi−1) = i− 1, 1 ≤ i ≤ k}.

Exercise 2.1. Fix an ordered basis e1, . . . , en of V . Let Fi be the span of e1, . . . , ei and let ai = n−k+i−λi.
Show that any subspace W ∈ Σ0

λ(F•) admits a unique basis of the form v1, . . . , vk, where

vj = eaj +
∑
i<aj

i 6=al

cj,iei.

Conclude that the Schubert cell is isomorphic to Ak(n−k)−|λ|.

There is a natural partial order on admissible partitions defined by µ ≥ λ if and only if µi ≥ λi for
1 ≤ i ≤ k. There is an inclusion Σµ(F•) ⊂ Σλ(F•) if and only if µ ≥ λ under this partial ordering. The
Schubert cell is given by

Σ0
λ(F•) = Σλ(F•)−

⋃
µ>λ

Σµ(F•).

The cohomology class σλ of Σλ(F•) depends only on the partition λ and not on the flag F•. Further-
more, the Schubert cells with respect to a fixed flag give a cell decomposition of G(k, n). Consequently,
as λ varies over all admissible partitions, the cohomology classes σλ form an additive Z-basis for the
cohomology of G(k, n).

Example 2.2. The Schubert varieties in G(2, 4) (other than all of G(2, 4) and a point) are Σ1(F•),Σ1,1(F•),
Σ2(F•) and Σ2,1(F•). Interpreting G(2, 4) as the space of lines in P3, these Schubert varieties parameterize
the following geometric loci:

• Σ1(F•) parameterizes lines that intersect a fixed line PF2,
• Σ1,1(F•) parameterizes lines that are contained in a fixed plane PF3,
• Σ2(F•) parameterizes lines that contain a fixed point PF1,
• Σ2,1(F•) parameterizes lines that contain the fixed point PF1 and are contained in the fixed plane
PF3.

In the Plücker embedding, Schubert varieties are cut out on the Grassmannian by linear equations. The
image of G(2, 4) in the Plücker embedding is the quadric hypersurface

p12p34 − p13p24 + p14p23 = 0.

If F• is the flag generated by the standard basis, then Σ1(F•) is defined on the Grassmannian by p34 = 0.
Notice that this Schubert variety is isomorphic to a cone over a quadric surface with vertex [1 : 0 : 0 : 0 :
0 : 0] corresponding to the line PF2. Hence, Schubert varieties are in general singular.

Similarly, Σ1,1(F•) and Σ2(F•) are defined by the linear equations p14 = p24 = p34 = 0 and p23 = p24 =
p34 = 0, respectively. Their intersection is Σ2,1(F•).
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Exercise 2.3. Show that in the Plücker embedding the Schubert variety Σλ(F•) is cut out on G(k, n) by
the linear equations pj1,j2,...,jk = 0, where j1 < j2 < · · · < jk and there exists at least one index l such
that jl > n− k + l − λl.

Exercise 2.4. Show that linear subspaces on G(k, n) are Schubert varieties corresponding to partitions
with λk ≥ n − k − 1 or λk−1 = n − k. Geometrically, these are Schubert varieties that parameterize
subspaces that either contain a fixed (k − 1)-dimensional subspace or are contained in a fixed (k + 1)-
dimensional subspace.

A Schubert variety Σλ(F•) is smooth if and only if it is isomorphic to a sub-Grassmannian of G(k, n)
parameterizing k-planes that contain a fixed linear space Fs and are contained in a fixed linear space Fm
for s ≤ k ≤ m. Equivalently, the complement of the Young diagram of λ in the k × (n − k) rectangle
is itself a rectangle (see [BiL], [BiC], [C2], [LS] for more on singularities of Schubert varieties). More
generally, we can describe the singular locus of a Schubert variety and give an explicit resolution. Express

the partition λ by (µi11 , . . . , µ
ij
j ), where µ1 > µ2 > · · · > µj and the part µl occurs with multiplicity il. A

singular partition associated to λ is a partition whose Young diagram is obtained from the Young diagram

of λ by adding a single hook. These are the partitions of the form (µi11 , . . . , (µl + 1)il+1, µ
il+1−1
l+1 , . . . , µ

ij
j ).

Example 2.5. The singular partitions associated to λ = (4, 4, 3, 1) in G(4, 9) are the partitions (5, 5, 5, 1),
(4, 4, 4, 4).

Theorem 2.6. [LS] The singular locus of the Schubert variety Σλ(F•) is ∪µΣµ(F•), where µ varies over
all singular partitions associated to λ.

Theorem 2.6 is easy to deduce from an explicit resolution of singularities. Set bs =
∑s

l=1 il. Consider
the variety parameterizing the following partial flags

{W b1 ⊂W b2 ⊂ · · · ⊂W bj |Wbl ⊂ Fn−k+bl−λl , 1 ≤ l ≤ j}.

This variety may be constructed as an iterated bundle of Grassmannians, hence, it is smooth. The
projection to Wj defines a surjective birational map onto Σλ(F•). The exceptional locus of this map
has codimension at least 2. Therefore, the image of the exceptional locus, which is easy to identify with
∪µΣµ(F•), is precisely the singular locus of Σλ(F•) (see [C2] for further details).

Isotropic Grassmannians. Let Q be a nondegenerate symmetric or skew-symmetric form on V . A
symmetric form over C can be diagonalized and up to conjugacy is determined by its rank. In a suitable
basis, we can write Q as

x21 + · · ·+ x2n.

The rank of a skew-symmetric form is always even. Hence, if Q is a nondegenerate skew-symmetric form
on V , we must necessarily have n = 2m. Skew-symmetric forms can be written in the normal form

x1 ∧ x2 + · · ·+ x2m−1 ∧ x2m.

When Q is symmetric, the equation Q = 0 defines a smooth, quadric hypersurface in PV . We will
frequently refer to the geometry of this hypersurface. When Q is skew-symmetric, the form is harder to
visualize.

A subspace W ⊂ V is isotropic with respect to Q if vTQw = 0 for every v, w ∈W . The locus in G(k, n)
parameterizing subspaces W that are isotropic with respect to Q is called the isotropic Grassmannian and
denoted by OG(k, n) and SG(k, n) depending on whether Q is symmetric or skew-symmetric, respectively.

Proposition 2.7. The orthogonal Grassmannian OG(k, n) is a smooth variety of dimension

dim(OG(k, n)) =
k(2n− 3k − 1)

2
.
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If n 6= 2k, then OG(k, n) is irreducible. When n = 2k, OG(k, n) has two isomorphic connected compo-
nents. The Grassmannian SG(k, n) is a smooth irreducible variety of dimension

dim(SG(k, n)) =
k(2n− 3k + 1)

2
.

Exercise 2.8. Consider the incidence correspondence I = {(v,W )|v ∈ W}, where W is an isotropic
subspace and v is a vector in W . Show that I is isomorphic to an OG(k − 1, n − 2) bundle over the
quadric hypersurface Q = 0 in the symmetric case and to an SG(k − 1, n − 2) bundle over PV in the
skew-symmetric case. Deduce Proposition 2.7 by induction on k and n. See [C3] and [C4] for more
details.

When n = 2k, an individual component of OG(k, 2k) is called the spinor variety. Two k-dimensional
subspaces W1 and W2 belong to the same connected component if and only if dim(W1 ∩W2) = k modulo
2.

Example 2.9. A quadric surface in P3 has two one-parameter families of lines. Two lines belong to the
same connected component if and only if they are disjoint. Similarly, a quadric fourfold in P5 has two
three-parameter families of planes. Two distinct planes belong to the same connected component if and
only if they intersect in a point.

Exercise 2.10. Using the fact that G(2, 4) is a quadric fourfold in P5 under the Plücker embedding show
that OG(3, 6) parameterizes planes in G(2, 4). Conclude that each component of OG(3, 6) is isomorphic
to P3.

The cohomology of isotropic Grassmannians has an additive Z-basis given by the classes of Schubert
varieties. We now describe the Schubert varieties in each case.

Schubert varieties in OG(k, n). First, we consider OG(k, 2m + 1). Let 0 ≤ s ≤ k be an integer. Let
λ and µ denote strictly decreasing sequences of integers

m ≥ λ1 > λ2 > · · · > λs > 0, m− 1 ≥ µs+1 > · · · > µk ≥ 0

such that λi + µj 6= m for any i, j. Schubert varieties in OG(k, 2m+ 1) are indexed by sequences (λ;µ).
Fix an isotropic flag

F• : F1 ⊂ · · · ⊂ Fm ⊂ F⊥m−1 ⊂ · · · ⊂ F⊥1 ⊂ V,
where F⊥i = {w ∈ V | wTQv = 0 for all v ∈ Fi} denotes the orthogonal to Fi under the form Q. In
geometric terms, PF⊥i is the linear space everywhere tangent to the hypersurface Q = 0 along the linear
space PFi. The Schubert variety Σλ;µ(F•) is the Zariski closure of the locus

{Λ ∈ OG(k, 2m+ 1)|dim(Λ ∩ Fm+1−λi) = i for 1 ≤ i ≤ s, dim(Λ ∩ F⊥µj ) = j for s+ 1 ≤ j ≤ k}.

The class σλ;µ of Σλ;µ(F•) is independent of the isotropic flag and depends only on the partitions.

Given λ there is an associated sequence

m− 1 ≥ λ̃s+1 > · · · > λ̃m ≥ 0

of strictly decreasing integers defined by requiring that there does not exist an index 1 ≤ i ≤ s and
an index s + 1 ≤ j ≤ m such that λi + λ̃j = m. In other words, λ̃ is the sequence obtained from
m − 1,m − 2, . . . , 1, 0 by omitting the integers m − λs, . . . ,m − λ1. The sequence µ is a subsequence of
λ̃, hence we have that µl = λ̃il . Define the discrepancy of the pair (λ, µ) by

dis(λ, µ) = (m− k)s+

k∑
l=s+1

(m− k + l − il).
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Then the codimension of Σλ;µ(F•) in OG(k, 2m+ 1) is
s∑
i=1

λi + dis(λ, µ).

When k = m, µ is uniquely determined by λ and authors often omit µ in this case. We will not follow
this convention.

Example 2.11. The Schubert varieties in OG(2, 5) (other than the whole space and a point) are Σ1;0 and
Σ2;1. They parameterize lines on a quadric threefold that intersect a fixed line PF2 and lines that contain

a point PF1 (and are automatically contained in the tangent hyperplane PF⊥1 at that point), respectively.

Exercise 2.12. By induction on k, calculate the dimension of Σλ;µ ⊂ OG(k, n) and verify that its codi-
mension is

∑s
i=1 λi + dis(λ, µ).

Next, we consider OG(k, 2m). In this case, m-dimensional linear spaces form two connected com-
ponents. We can specify incidence conditions with respect to m-dimensional linear spaces in either
component. Our notation needs to reflect this difference. We denote the linear spaces in one connected
component by Fm and the linear spaces in the other connected component by F⊥m−1. Technically, the
intersection of a linear space tangent along Fm−1 intersects Q = 0 in the union of two half-dimensional
linear spaces belonging to different connected components. However, this abuse will simplify the notation
greatly. Let 0 ≤ s ≤ k be an integer and let λ and µ denote sequences of strictly decreasing integers

m− 1 ≥ λ1 > · · · > λs ≥ 0 m− 1 ≥ µs+1 > · · · > µk ≥ 0

such that λi + µj 6= m − 1 for any i, j. Schubert varieties in OG(k, 2m) are indexed by such sequences
(λ;µ). In order to isolate the Schubert varieties in the spinor variety, in addition we need to assume
that when k = m and m is even (respectively, odd), s is even (respectively, odd). The Schubert variety
Σλ;µ(F•) is defined as the Zariski closure of the locus

{Λ ∈ OG(k, 2m)|dim(Λ ∩ Fm−λi) = i for 1 ≤ i ≤ s, dim(Λ ∩ F⊥µj ) = j for s < j ≤ k}.
Example 2.13. In OG(2, 6), the Schubert varieties (other than the whole space or a point) are as follows:

(1) The Schubert varieties Σ;2,0,Σ0;0 parameterize lines on a quadric fourfold that intersect a fixed
plane. The class depends on the type of plane.

(2) The Schubert varieties Σ;2,1,Σ0;1 parameterize lines that are contained in the linear space PF⊥1
and intersect a plane.

(3) The Schubert variety Σ1;0 parameterizes lines that intersect a fixed line.
(4) The Schubert varieties Σ1;2, Σ1,0; parameterize lines that are contained in a fixed plane.
(5) The Schubert varieties Σ2,0;, Σ2;2 parameterize lines that are contained in a plane and contain a

fixed point PF1.

As in the previous case, given λ, there is a corresponding partition

m− 1 ≥ λ̃s+1 > · · · > λ̃m ≥ 0

satisfying the condition that there does not exist indices 1 ≤ i ≤ s and s + 1 ≤ j ≤ m such that
λi + λ̃j = m− 1. The sequence λ̃ is obtained from

m− 1,m− 2, . . . , 1, 0

by removing the integers m − 1 − λs, . . . ,m − 1 − λ1. The partition (λ, µ) is a subpartition of (λ, λ̃) of

total length m. Hence, µl = λ̃il . Define the discrepancy dis(λ, µ) = s(m− k) +
∑k

l=s+1(m− k + l − il).
The codimension of Σλ;µ in OG(k, 2m) is given by

s∑
i=1

λi + dis(λ, µ).
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Schubert varieties in SG(k, n). Since Q is a nondegenerate skew-symmetric form, we must have
n = 2m. Let 0 ≤ s ≤ k be an integer. Let λ and µ be strictly decreasing sequences

m ≥ λ1 > · · · > λs > 0 m > µs+1 > · · · > µk ≥ 0

such that λi + µj 6= m for any i, j. Let F• be an isotropic flag

F1 ⊂ · · · ⊂ Fm ⊂ F⊥m−1 ⊂ · · · ⊂ F⊥1 ⊂ V.

Then the Schubert variety Σλ,µ(F•) is the Zariski closure of the locus

{Λ ∈ SG(k, n)|dim(Λ ∩ Fm+1−λi) = i for 1 ≤ i ≤ s, dim(Λ ∩ F⊥µj ) = j for s < j ≤ k}.

The discrepancy is defined as in OG(k, 2m+ 1) and the codimension of the Schubert variety in SG(k, n)
is given by

s∑
i=1

λi + dis(λ, µ).

Cell decompositions. In all three cases, there is a partial ordering on the sequences (λ;µ). For SG(k, n)
and OG(k, 2m + 1), a sequence (λ′;µ′) ≥ (λ;µ) if and only if s′ ≥ s, λ′i ≥ λi for 1 ≤ i ≤ s and µ′j ≥ µj
for s′ < j ≤ k. For OG(k, 2m) in addition we need to require that if µs+1 = m− 1 and s′ = s+ 1, then
λ′s+1 > 0. A Schubert variety Σλ′;µ′(F•) ⊂ Σλ;µ(F•) if and only if (λ′;µ′) ≥ (λ;µ). The complement

Σλ;µ(F•)−
⋃

(λ′;µ′)>(λ;µ)

Σλ′;µ′(F•)

is called a Schubert cell and is isomorphic to affine space. The Schubert cells give a cell decomposition
of OG(k, n) and SG(k, n). Consequently, Schubert classes give an additive Z-basis of the cohomology of
OG(k, n) and SG(k, n).

Exercise 2.14. When n = 2m+ 1, after a change of variables, write Q as x1x2 + · · ·+x2m−1x2m +x22m+1.
Show that the complement of the locus x1 = x3 = · · · = x2i+1 = 0 in the locus x1 = x3 = · · · = x2i−1 = 0
is isomorphic to affine space. Generalize this to show that Schubert cells give a cell decomposition of
OG(k, 2m+ 1). Further generalize to OG(k, 2m) and SG(k, n).

Flag varieties. Let k1 < k2 < · · · < kt < n be a sequence of t increasing positive integers. For notational
convenience, set k0 = 0 and kt+1 = n. The flag variety F (k1, . . . , kt;n) parameterizes partial flags

W1 ⊂W2 ⊂ · · · ⊂Wt ⊂ V,

where Wi has dimension ki.

For any set of subindices i1, . . . , il of {1, . . . , t}, the flag variety admits a forgetful morphism

πi1,...,il : F (k1, . . . , kt;n)→ F (ki1 , . . . , kil ;n) (W1, . . . ,Wt) 7→ (Wi1 , . . . ,Wil).

In particular, the projection πt : F (k1, . . . , kt;n)→ G(kt, n) realizes the partial flag variety F (k1, . . . , kt;n)
as a F (k1, . . . , kt−1; kt) bundle over the Grassmannian G(kt, n). By induction,

dim(F (k1, . . . , kt;n)) =

t∑
i=1

ki(ki+1 − ki).

The cohomology of a partial flag variety is generated by the classes of Schubert varieties. We use a
notation for Schubert varieties in F (k1, . . . , kt;n) which is well-adapted for the forgetful morphism πt. A
coloring c associated to such a sequence is a sequence of kt integers c1, . . . , ckt such that exactly ki− ki−1
of the integers in the sequence are equal to i. Let λ be an admissible partition for G(kt, n) and c a
coloring for the sequence k1, . . . , kt. Schubert varieties in F (k1, . . . , kt;n) are parameterized by colored
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partitions (λ; c). Let F• be a complete flag, then the Schubert variety Σλ;c(F•) is the Zariski closure of
the locus

{W1 ⊂ · · · ⊂Wt ∈ F (k1, . . . , kt;n)|dim(Wj ∩ Fn−kt+i−λi) = #{cl|cl ≤ j, l ≤ i}}.

For 1 ≤ u < t, define the codimension of the color u cdim(u) by

cdim(u) =
∑

1≤i≤kt, ci≤u
#{j > i|cj = u+ 1}.

Define the codimension of the coloring cdim(c) by

cdim(c) =
t−1∑
u=1

cdim(u).

Exercise 2.15. By analyzing the projection πt show that the codimension of the Schubert variety Σλ;c in
the flag variety is given by |λ|+ cdim(c).

Exercise 2.16. Show that F (1, 3; 4) is isomorphic to OG(2, 6). Describe the correspondence between the
Schubert varieties under this isomorphism.

Similarly, the isotropic partial flag varietiesOF (k1, . . . , kt;n) and SF (k1, . . . , kt;n) parameterize isotropic
partial flags

W1 ⊂ · · · ⊂Wt ⊂ V,
where Wi is an isotropic subspace of dimension ki with respect to a symmetric, respectively, skew-
symmetric, non-degenerate quadratic form. The forgetful morphisms πt : OF (k1, . . . , kt;n)→ OG(kt, n)
and πt : SF (k1, . . . , kt;n) → SG(kt, n) realize these varieties as F (k1, . . . , kt−1, ; kt)-bundles over the
isotropic Grassmannians. Consequently, we have

dim(OF (k1, . . . , kt;n)) =
kt(2n− 3kt − 1)

2
+

t−1∑
i=1

ki(ki+1 − ki),

dim(SF (k1, . . . , kt;n)) =
kt(2n− 3kt + 1)

2
+

t−1∑
i=1

ki(ki+1 − ki).

Schubert varieties in these varieties can be parameterized by triples (λ;µ; c), where (λ;µ) is a pair of
partitions admissible for OG(kt, n) or SG(kt, n) and c is a coloring of the sequence k1, . . . , kt. The
Schubert variety Σλ;µ;c(F•) with respect to the isotropic flag F• is the Zariski closure of the locus of flags
satisfying the following incidence conditions

dim(Wh ∩ Fdn
2
e−λi) = #{cl|cl ≤ h, l ≤ i} dim(Wh ∩ F⊥µj ) = #{cl|cl ≤ h, l ≤ j}.

As before, the codimension of the Schubert variety in the flag variety is given by
∑s

i=1 λi + dis(λ, µ) +
cdim(c).

Dual Schubert classes. Every Schubert class in a rational homogeneous variety has a dual Schubert
class. Two Schubert classes of complementary dimension have intersection number equal to one if and
only if they are dual Schubert classes. Otherwise, their intersection is zero. For the reader’s convenience,
we will explicitly describe the dual Schubert class in every classical case.

The dual classes for G(k, n) have the following description. Given a partition λ, the dual partition λ∗

is defined by λ∗i = n − k − λk−i+1. The dual partition is the partition corresponding to the 180 degree
rotation of the complement of λ in the k × (n− k) rectangle. Then the dual of σλ is σλ∗ .

Example 2.17. The classes σ3,3,2,1 and σ4,3,2,2 are dual in G(4, 9).
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Similarly, in OG(k, 2m+ 1) or SG(k, 2m) the dual of the Schubert class σλ;µ is given by σλ∗,µ∗ , where
λ∗i = m− µk−i+1 and µ∗j = m− λk−j+1 .

Example 2.18. The classes σ2;0 and σ3,1 are duals of each other in OG(2, 7).

Exercise 2.19. Describe the dual Schubert classes for OG(k, 2m). (Hint: As long as m is even; or λs 6= 0
and µs+1 6= m− 1, you can define λ∗i = m− 1− µk−i+1 and µ∗j = m− 1− λk−j+1. When m is odd, you

need to modify the half dimensional linear spaces.)

Given a coloring c for k1, . . . , kt, the dual coloring c∗ has c∗i = ckt−i+1. In other words, the dual coloring
reverses the order of c. Given a Schubert class σλ;c in a partial flag variety or a Schubert class σλ;µ;c in
an isotropic flag variety, the dual class is given by σλ∗;c∗ and σλ∗;µ∗;c∗ , respectively.

Proposition 2.20. Let Y be a subvariety of a rational homogeneous variety. Then the cohomology class
of Y is a nonnegative linear combination of Schubert classes. In particular, for rational homogeneous
varieties, the cones of effective and nef cycles coincide and are generated by Schubert classes.

Proof. Since Schubert classes give an additive basis of the cohomology, we can express the class of Y as
a linear combination of Schubert classes [Y ] =

∑
aλσλ. For each Schubert class σλ, we can pair [Y ] by

the dual Schubert class σ∗λ. By Kleiman’s Transversality Theorem [K], a general translate of a Schubert
variety with class σ∗λ intersects Y transversely in finitely many points. Hence, σ∗λ · [Y ] = aλ ≥ 0. �

As in the proof of Proposition 2.20, we can compute the classes of subvarieties of rational homogeneous
varieties by pairing with dual Schubert classes.

Exercise 2.21. Compute the cohomology class of OG(k, n) and SG(k, n) in G(k, n).

Exercise 2.22. Compute the intersection products in the cohomology of G(2, 4) and G(2, 5).

Exercise 2.23. Compute the intersection products in the cohomology of OG(2, 5), OG(3, 6) and OG(2, 6).

3. The Golden Rules of quadric geometry

There are four general principles that govern the geometry of isotropic linear spaces with respect to a
quadratic form. In this section, we will recall these principles. In the next section, these principles will
dictate the geometry of restriction varieties and their specializations.

We begin by discussing symmetric forms. Let Q be a nondegenerate symmetric form. Let Qrd denote
a d-dimensional linear space such that the restriction of Q is a quadratic form of corank r, equivalently
rank d− r. Up to conjugacy, the form in Qrd is x21 + · · ·+ x2d−r. The singular locus of the corresponding
quadric hypersurface in PQrd is defined by x1 = · · · = xd−r = 0. This is the kernel or vertex K of the
quadratic form restricted to Qrd.

The corank bound. Let Qr2d2 ⊂ Q
r1
d1

be two linear spaces such that K1 ⊂ K2. Then

r2 − r1 ≤ d2 − d1.

In particular, the corank r of a linear section of a nondegenerate quadric hypersurface is bounded by its
codimension n− d.

Exercise 3.1. Verify that the tangent hyperplane section TpQ∩Q to a smooth quadric hypersurface Q is
singular only along p. More generally, let Q be a quadric hypersurface of corank r and vertex W . Let p
be a smooth point on Q. Then the tangent hyperplane section TpQ ∩ Q is singular along the span of p
and W . Using this verify the corank bound.
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The linear space bound. The largest dimensional isotropic subspace contained in Qrd has dimension

bd+r2 c. Furthermore, an isotropic subspace of dimension j intersects the kernel of the quadratic form in

Qrd in a subspace of dimension at least max(0, j − bd−r2 c).

Exercise 3.2. By taking x2j−1 =
√
−1 x2j for j = 1, . . . , bd−r2 c and xd−r = 0 if d−r is odd, show that there

are isotropic subspaces of dimension bd+r2 c in Qrd. Either by induction on dimension or by the Lefschetz
hyperplane theorem, show that a smooth quadric hypersurface does not contain any linear spaces of more
than half the dimension. Let Q0

d−r be the linear space of Qrd defined by xd−r+1 = · · · = xd = 0. Notice

that the quadratic form restricted to Q0
d−r is nondegenerate, therefore, the largest dimensional isotropic

subspace in Q0
d−r has dimension bd−r2 c. Deduce the linear space bound.

Irreducibility. The quadratic form restricted to Qd−2d is a product of two linear forms, which define two
isotropic subspaces of dimension d−1. If n = 2k, then the two linear spaces belong to distinct connected
components of OG(k, 2k). The quadratic form restricted to Qd−1d is the square of a linear form.

The variation of tangent spaces. Assume that the kernel of the quadratic form restricted to Qrd
intersects a linear space L in codimension j. Then the image of the Gauss map restricted to the points of
L along which the quadric hypersurface in PQrd is smooth has dimension at most j − 1. In other words,
the tangent spaces to the quadric hypersurface in PQrd along the points of L where it is smooth vary in
a (j − 1)-dimensional family.

Exercise 3.3. Consider the quadric hypersurface xy−z2 in P3. Show that the tangent space to the surface
along the line x − az = y − 1

az = 0 is constant. Generalize the calculation to arbitrary dimension and
rank to deduce the principle of variation of tangent spaces.

There are similar basic principles for skew-symmetric forms. We explain them next. Let Qrd denote
a d-dimensional subspace of V such that the restriction of the skew-form Q to Qrd has corank r. Let
Ker(Qrd) denote the kernel of the restriction of Q to Qrd.

Evenness of rank. The rank of a skew-symmetric form is even. Consequently, d− r is even.

In particular, after a change of variables, we can write the restriction of the form Q to Qrd as

x1 ∧ x2 + · · ·+ xd−r−1 ∧ xd−r.

in these coordinates, the kernel is given by x1 = · · · = xd−r = 0.

The corank bound. Let Qr2d2 ⊂ Qr1d1 and let r′1 = dim(Ker(Qr1d1) ∩ Qr2d2). Then r2 − r′1 ≤ d1 − d2. In
particular, d+ r ≤ n for any Qrd.

The linear space bound. The dimension of an isotropic subspace of Qrd is bounded above by bd+r2 c.
A j-dimensional isotropic linear subspace of Qrd satisfies dim(L ∩Ker(Qrd)) ≥ j − b

d−r
2 c.

The kernel bound. Let L be a j-dimensional isotropic subspace such that dim(L ∩Ker(Qrd)) = j − 1.

Then an isotropic linear subspace that intersects L−Ker(Qrd) is contained in L⊥.

Exercise 3.4. Prove the corank bound, the linear space bound and the kernel bound following a similar
strategy to the symmetric case.
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4. Restriction problem

Let G be a group, H a subgroup of G and V an irreducible representation of G. Then V is also a
representation of H. The restriction problem asks for the decomposition of V into irreducible represen-
tations of H. In this section, we study geometric analogues of the restriction problem. We can formulate
the main problem as follows.

Problem 4.1. Let f : X → Y be a morphism between two rational, projective homogeneous varieties.
Compute the map induced in cohomology f∗ : H∗(Y,Z) → H∗(X,Z). In particular, Schubert classes
provide additive Z-bases for both H∗(Y,Z) and H∗(X,Z). Given a Schubert class σλ ∈ H∗(Y,Z),

f∗(σλ) =
∑

aλµσµ ∈ H∗(X,Z),

where aλµ are nonnegative, integer coefficients. Find positive, geometric algorithms for computing the

coefficients aλµ.

Problem 4.1 encompasses many important special cases. For example, when Y = X × X and f is
the embedding of X as the diagonal, the problem specializes to finding the structure constants of the
cohomology of X. In this section, we will study the case when f is the inclusion i : OG(k, n)→ G(k, n)
or the inclusion i : SG(k, n)→ G(k, n). The structure constants of the map induced by these inclusions
are called restriction coefficients and the restriction problem asks for an algorithm to compute them. We
devote the rest of the section to answering this problem. We refer the reader to [FP], [Pr1] and [Pr2] for
alternative approaches. The reader who would like to explore the connection between the geometric and
representation theoretic problems may consult [BS] and [P].

The basic strategy is to give explicit rational equivalences between a subvariety of OG(k, n) or SG(k, n)
and a union of Schubert classes. This strategy has been very fruitful in obtaining geometric Littlewood-
Richardson rules for Grassmannians and two-step flag varieties (see [C1], [CV] and [V1]) and for com-
puting Gromov-Witten invariants and quantum cohomology (see [C1], [C7], [C8] and [V2]). We will not
discuss these rules here and refer the reader to the literature.

We start with two fundamental examples which capture the main aspects of the algorithm for com-
puting restriction coefficients.

Example 4.2. Consider a general hyperplane section H ∩ Q of a quadric in P3. This is a smooth conic
curve and is not a Schubert variety in OG(1, 4). Vary H in a one-parameter family Ht until H0 becomes
tangent to Q. Then H0 ∩ Q = L ∪ L′ is a union of two lines one from each ruling. These are Schubert
varieties in OG(1, 4). The class of the conic H ∩Q is equal to the sum of the classes of L and L′.

Example 4.3. Consider the locus of lines in a quadric Q in P6 such that the lines intersect a fixed line L
and are contained in a general hyperplane section H ∩ Q containing L. This is not a Schubert variety
in OG(2, 7). Take a one-parameter family of hyperplanes Ht such that H0 is tangent to Q along a point
p ∈ L. Consider the varieties of lines that are contained in Ht and intersect L. In the limit t = 0, the
lines may contain p. In that case, the lines are contained in H0 and contain p. This is a Schubert variety
with class σ3;1. Otherwise, the lines intersect L away from p. In that case the lines must be contained in

L⊥ by the principle of variation of tangent spaces. This locus is a Schubert variety with class σ2;2. We
conclude that the original variety has class σ3;1 + σ2;2.

Exercise 4.4. Verify the details of the previous example.

4.1. The symmetric case. We will compute the restriction coefficients by a sequence of specializations.
We begin with the intersection of a general Schubert variety Σλ(F•) with OG(k, n). Initially, every linear
space in the flag F• defining Σλ is transverse to the quadric Q. We will successively change the flag by
making the linear spaces less and less transverse to Q until the flag becomes isotropic. In the process, the
variety will break into a union of Schubert varieties for OG(k, n). Restriction varieties are the components
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of the limits that occur during the process. The order of specialization and the limits are dictated by the
principles discussed in the previous section. We will now introduce restriction varieties and discuss their
basic geometric properties.

Notation 4.5. Let Q be a symmetric nondegenerate quadratic form on an n-dimensional vector space V .
Let Lni denote an isotropic subspace of dimension ni. When 2m = n, let Lm and L′m denote isotropic
subspaces in different connected components. Let Qrd denote a d-dimensional subspace of V such that

the restriction of Q to Qrd has corank r. Let K denote the kernel of the restriction of Q to Q
rj
dj

. The

dimension of K is r.

Definition 4.6. An orthogonal sequence

(L•, Q•) = Ln1 ⊂ · · ·Lns ⊂ Q
rk−s
dk−s
⊂ · · · ⊂ Qr1d1

is a sequence of isotropic subspaces Lni of dimension ni (or possibly L′ns if 2ns = n) and linear spaces

Q
rj
dj

of dimension dj such that the restriction of Q to Q
rj
dj

has kernel Kj and corank rj satisfying the

following conditions.

(1) The singular loci of Q
rj
dj

are ordered by inclusion Kj ⊂ Kj+1 for 1 ≤ j < k − s.
(2) For every 1 ≤ i ≤ s and 1 ≤ j ≤ k − s, dim(Kj ∩ Lni) = min(ni, rj).
(3) If rj = rj+1 > 0 for some j, either r1 = rj and nr1 = r1; or rl − rl−1 = dl−1 − dl for every l ≥ j

and dj − dj+1 = 1.

Remark 4.7. The fact that Lni is an isotopic subspace contained in Q
rj
dj

implies certain inequalities among

ni, dj and rj . The corank bound implies that

rj + dj ≤ rj−1 + dj−1 ≤ n for 1 < j ≤ k − s.

The linear space bound implies that

2ns ≤ dk−s + rk−s.

We will always implicitly assume these inequalities. The first two conditions say that the kernels Kj are
in as special a position as possible. They are totally ordered by inclusion and they have the maximal
possible intersection with the isotropic subspaces in the sequence. The third condition is a consequence
of the order of specialization. We will not specialize a linear space Q

rj
dj

until the kernels Kl for l > j are

as large as possible given the corank bound.

Notation 4.8. Let xj denote the number of isotropic subspaces in the sequence that are contained in Kj ,
equivalently, xj is the number of ni for 1 ≤ i ≤ s such that ni ≤ rj .

Definition 4.9. We call the sequence (L•, Q•) admissible if it satisfies the following conditions.

(A1) For every 1 ≤ j ≤ k − s, we have

xj ≥ k − j + 1− dj − rj
2

.

(A2) There does not exist integers i, j such that rj + 1 = ni.
(A3) We have rk−s ≤ dk−s − 3.

Definition 4.10. The restriction variety V (L•, Q•) associated to an admissible orthogonal sequence (L•, Q•)
is the subvariety of OG(k, n) defined as the Zariski closure of the following locus

V (L•, Q•)
0 ={W ∈ OG(k, n) | dim(W ∩ Lni) = i,dim(W ∩Qrjdj ) = k − j + 1,

dim(W ∩Kj) = xj}
12



Remark 4.11. Condition (A1) is a consequence of the linear space bound. The isotropic subspace of

dimension k − j + 1 has to intersect the kernel Kj in a subspace of dimension at least k − j + 1− dj−rj
2 .

Condition (A3) guarantees that the restriction of Q to Q
rk−s
dk−s

is not a nonreduced isotropic space or the

union of two isotopic subspaces. Condition (A2) is a consequence of variations of tangent spaces. If
rj + 1 = ni, then any linear space intersecting Lni away from Kj is contained in L⊥ni .

Exercise 4.12. The restriction varieties do not need to be irreducible. Show that V (Q0
3 ⊂ Q0

4) in OG(2, 5)
has two connected components.

We introduced the notion of a marked sequence to describe the irreducible components of restriction
varieties.

Definition 4.13. Let (L•, Q•) be an admissible orthogonal sequence. An index j such that

xj = k − j + 1− dj − rj
2

is called a special index. A marking m• of (L•, Q•) for each special index j designates one of the irreducible

components of the (
dj+rj

2 )-dimensional isotropic subspaces of Q
rj
dj

as even and the other one as odd such

that:

• If dj1 + rj1 = dj2 + rj2 for two special indices j1 < j2, then the component containing a linear
space W is assigned the same parity for both indices.
• If 2ns = dj + rj for a special index j, the component which contains Lns is assigned the parity of
s.
• If n = 2k, then the component containing Lk is assigned the parity that characterizes the spinor

variety containing Lk.

A marked restriction variety V (L•, Q•,m•) is the subvariety of V (L•, Q•) parameterizing k-dimensional
isotropic subspaces W such that for each special index j, W intersects isotropic subspaces of dimension
dj+rj

2 designated even (respectively, odd) by m• in a subspace of even (respectively, odd) dimension.

Exercise 4.14. Show that for the restriction variety in Exercise 4.12 there are two possible markings and
these distinguish the two irreducible components. Show that for V (Q2

4 ⊂ Q1
5 ⊂ Q2

6 ⊂ Q0
10) there are also

two possible markings distinguishing the two components.

Proposition 4.15. The marked restriction variety V (L•, Q•,m•) is an irreducible subvariety of OG(k, n)
of dimension

dim(V (L•, Q•,m•)) =

s∑
i=1

(ni − i) +

k−s∑
j=1

(dj + xj − 2s− 2j)

Sketch of proof. The dimension and the irreducibility can be checked by induction on k. When k = 1,
V (L•, Q•,m•) is isomorphic to either a projective space of dimension n1 − 1 or an irreducible quadric
surface of dimension d1 − 2. In this case, the proposition is true. Suppose that the proposition holds
for k < k0. Suppose V (L•, Q•,m•) is a marked restriction variety in OG(k0, n). If s = k0, then it is
isomorphic to a Schubert variety in G(k0, Lns). Consequently, it is irreducible of the claimed dimension.
Otherwise, we can define a new sequence (L′•, Q

′
•,m

′
•) by omitting Qr1d1 . The reader can easily check

that the resulting sequence is still an admissible orthogonal sequence. Sending W ∈ V 0(L•, Q•,m•) to
W ∩ Qr2d2 defines a morphism onto V 0(L′•, Q

′
•,m

′
•), where the generic fiber over W ′ consists of choosing

W ′ ⊂ W ⊂ Qr1d1 . The proposition follows from this description and the theorem on the dimension of
fibers. �

Remark 4.16. The dimension of a marked restriction variety does not depend on the marking.
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Example 4.17. Set u = dn2 e. If the sequence (L•, Q•) satisfies dj + rj = n for 1 ≤ j ≤ k − s, then
(L•, Q•) is an isotropic flag. In that case the restriction variety V (L•, Q•) is simply the Schubert variety
Σu−n1,...,u−ns;rk−s,...,r1 defined with respect to this isotropic flag.

Example 4.18. The intersection of a general partial flag Fa1 ⊂ · · · ⊂ Fak leads to the sequence Q0
a1 ⊂

· · · ⊂ Q0
ak

. If ai < 2i − 1 for some i, then the intersection is empty. If ai ≥ 2i for every 1 ≤ i ≤ k, then
the intersection is nonempty of the expected dimension.

Restriction varieties are in general singular. S. Adalı[Ad] has given an explicit resolution and described
their singular loci.

Quadric diagrams. It is convenient to record admissible sequences in terms of combinatorial objects called
quadric diagrams. Consider a sequence of n integers written from left to right. The place of the integer
is its order in the sequence counted from the left. We say that a bracket or a brace is in position i if i of
the integers are to the left of the bracket or brace.

Definition 4.19. An orthogonal sequence of brackets and braces of type (k, n) is a sequence of n natural
numbers, s ≤ k right brackets ] and k − s right braces } such that

• Every bracket or brace occupies a positive position and each position is occupied by at most one
bracket or brace. If n = 2m, a bracket at position m may be decorated by a prime ]′.
• Every number i in the sequence satisfies 0 ≤ i ≤ k − s. The positive integers are nondecreasing

from left to right and are to the left of every zero in the sequence.
• Every bracket is to the left of every brace.

Notation 4.20. By convention, the brackets are indexed from left to right and the braces are indexed from
right to left. Let ]i and }i denote the ith brace and bracket and let p(]i) and p(}i) denote their positions,
respectively. In a sequence of brackets and braces of type s for OG(k, n), we make the convention that
}k−s+1 denotes ]s and k − s + 1 should be read as 0. This convention will allow us to state certain
combinatorial rules more succinctly.

Let l(i) and l(≤ i) denote the number of positive integers in the sequence that are equal to i and less
than or equal to i, respectively. For i > j > 0, let ρ(i, j) denote the number of integers between }i and
}j . Let ρ(j, 0) denote the number of integers to the right of }j . For example, for

1]1]122]33]00000}00}00}0000

we have p(]1) = 1, p(]2) = 2, p(]3) = 5, p(]4) = 7, p(}3) = 12, p(}2) = 14, p(}1) = 16. We also have
l(1) = 3, l(2) = 2, l(3) = 2, ρ(3, 2) = 2, ρ(2, 1) = 2, ρ(1, 0) = 4.

When we are discussing more than one sequence, we will write pD, ρD and lD to indicate that we are
referring to the invariants of D.

Definition 4.21. An orthogonal quadric diagram for OG(k, n) is an orthogonal sequence of brackets and
braces of type (k, n) with s brackets such that the following conditions hold.

(D1) l(j) ≤ ρ(j, j − 1) for 1 ≤ j ≤ k − s.
(D2) 2p(]s) ≤ p(}k−s) + l(≤ k − s).
(D3) Suppose that integer 1 ≤ j < k−s occurs in the sequence. If j+1 does not occur in the sequence,

either j = 1 and every position after a 1 is occupied with a ]; or l(i) = ρ(i, i − 1) for every
j + 1 < i ≤ k − s and ρ(j + 1, j) = 1.

Definition 4.22. An orthogonal quadric diagram is admissible if it satisfies the following additional con-
ditions.

(A1) Let xj denote the number of brackets such that p(]i) ≤ l(≤ j). Then

xj ≥ k − j + 1− p(}j)− l(≤ j)
2

.
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(A2) The two integers to the left of a bracket are equal. If there is only one integer to the left of a
bracket and s < k, then the integer is 1.

(A3) There are at least three zeros to the left of }k−s.

Example 4.23. In the diagrams 12]000}00}00 and 0]0000}0 condition (A2) is violated. In the diagram
200}00}00 condition (A3) is violated.

The translation between admissible sequences (L•, Q•) and quadric diagrams is straightforward. Given
an admissible sequence (L•, Q•), the corresponding quadric diagram D(L•, Q•) is obtained as follows.
The sequence of integers starts with r1 integers equal to 1, followed by ri − ri−1 integers equal to i in
increasing order. The sequence ends with n− rk−s integers equal to 0. The are s brackets in positions ni
and k − s braces in positions dj .

Conversely, given an admissible quadric diagram D, the associated admissible sequence (L•, Q•)(D)

has an isotropic linear space Lp(]i) of dimension p(]i) for each bracket ]i in D and a linear space Q
l(≤j)
p(}j) of

dimension p(}j) of corank l(≤ j) for each brace }j in D.

Exercise 4.24. Show that admissible sequences correspond to admissible quadric diagrams (see [C3]).

Definition 4.25. An admissible quadric diagram is saturated if l(j) = ρ(j, j − 1) for every 1 ≤ j ≤ k − s.

Exercise 4.26. Show that Example 4.17 translates to the following lemma.

Lemma 4.27. A saturated admissible quadric diagram represents a Schubert variety.

Now we will describe a combinatorial process for computing the class of a restriction variety in terms
of Schubert classes. The algorithm will be recorded in terms of quadric diagrams. Every quadric diagram
will be the root of a tree of quadric diagrams where each leaf terminates in a saturated admissible quadric
diagram. The class of the restriction variety will be the sum of the Schubert classes summed over the
leaves of this tree.

We begin by defining two new quadric diagrams.

Definition 4.28. Fix an admissible quadric diagram D. Assume that D is not saturated, then there exists
an index j such that l(j) ≤ ρ(j, j − 1). Let

κ = max{j | l(j) < ρ(j, j − 1)}.
Define Da to be the sequence of brackets and braces obtained from D by changing the (l(≤ κ) + 1)st
integer in D to κ.

If pDa(]s) > lDa(≤ κ), let
η = min{i | pDa(]i) > lDa(≤ κ)}.

Define Db to be the sequence of brackets and braces obtained from Da by moving the bracket ]η to
position pDa(≤ κ). Otherwise, Db is not defined.

Example 4.29. Let D = 00]0000}00}00. Then κ = 2 and

Da = 20]0000}00}00 Db = 2]00000}00}00.

Let D = 22]33]000}00}00}00. Then κ = 1 and

Da = 12]33]000}00}00}00 Db = 1]233]000}00}00}00.

Let D = 000}00}00. Then κ = 2, Db is not defined and Da = 200}00}00.

Let D = 00]00}00. Then κ = 1, Da = 10]00}00 and Db = 1]000}00.

We see that Da and Db may fail to be admissible. Notice that Da may fail all three conditions in
Definition 4.22, whereas Db may fail only (A2). We first give an algorithm that will replace Da and Db

with a set of admissible quadric diagrams.
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Algorithm 4.30. Input: A quadric diagram D.

(1) If D does not satisfy condition (A1), discard D and do not return any diagrams. If D satisfies
condition (A1), proceed to Step 2.

(2) If D does not satisfy condition (A2), let i0 be the index of the minimal index bracket for which
(A2) fails and let ν be the integer immediately to the left of ]i0 . If ν > 0 (resp. ν = 0), replace
ν by ν − 1 (resp. k − s), move }ν−1 (resp. }k−s) one unit to the left provided that the position
p(}ν−1)−1 (resp. p(}k−s)−1) is unoccupied. Return the resulting diagram to Step 1. If position
p(}ν−1)− 1 (resp. p(}k−s)− 1) is occupied, discard the diagram and do not return any diagrams.
If condition (A2) is satisfied, proceed to Step 3.

(3) If D does not satisfy (A3), replace D with two diagrams obtained from D by replacing }k−s in
position pD(}k−s) with ]s+1 in position p = pD(}k−s)− 1. If n is even and 2p = n, then in one of
the diagrams let ]s+1 be decorated with a prime. Return the resulting diagrams to Step 1. If D
satisfies (A3), output the diagram.

Example 4.31. We apply Algorithm 4.30 to the diagrams in Example 4.29 which are not admissible.

20]0000}00}00→ 22]000}000}00 2]00000}00}00→ 1]00000}0}000.

12]33]000}00}00}00→ 11]33]000}00}0}000.

200}00}00
×2−→ 00]000}00.

In order to save space, when we replace a diagram with two identical diagrams we will write ×2 over the
arrow rather than drawing the diagram twice.

10]00}00→
The diagram is discarded since it does not satisfy (A1).

Exercise 4.32. Run Algorithm 4.30 on the following diagrams

0]000}00}0 22]3]3]0000}000}00}00.

Exercise 4.33. Show that Algorithm 4.30 terminates and outputs a (possibly empty) set of admissible
quadric diagrams. (Hint: At each stage either the diagram is discarded, the number of braces decreases
or a brace moves to the left. None of these steps can be repeated infinitely often; see [C3]).

The set of admissible quadric diagrams derived from Da (resp. Db) are the set of quadric diagrams
output by Algorithm 4.30 with input Da (resp. Db).

Definition 4.34. Let D be a sequence of brackets and braces such that p(]s) > l(κ). If l(≤ i) < p(]xκ+1)
for 1 ≤ i ≤ k − s, then set yxκ+1 = k − s+ 1. Otherwise, let

yxκ+1 = max{i | l(≤ i) ≥ p(]xκ+1)}.

Recall that ]xκ+1 is the first bracket in a position greater than l(≤ κ). If the integer to the immediate
left of ]xκ+1 is 0, then yxκ+1 = k − s+ 1. Otherwise, yxκ+1 is the integer to the immediate left of ]xκ+1.
We are now ready to state the main algorithm.

Algorithm 4.35. Input: An admissible quadric diagram D.

(1) If D is saturated, return D and stop. Otherwise, proceed to Step 2.
(2) If p(]s) ≤ l(κ) or p(]xκ+1)− l(≤ κ)−1 > yxκ+1−κ, then return the quadric diagrams derived from

Da to Step 1. Otherwise, return the quadric diagrams derived from both Da and Db to Step 1.

Successive runs of Algorithm 4.35 either decrease the number of braces or increase the number of
positive integers in the sequence. Since neither of these can go on for ever, the algorithm terminates in
a set of saturated, admissible quadric diagrams. It is easy to check that if D is an admissible quadric
diagram, then each run of the algorithm outputs at least one admissible quadric diagram.
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Definition 4.36. A degeneration path is a sequence of admissible symplectic diagrams

D1 → D2 → · · · → Dr

such that Di+1 is one of the outputs of running Algorithm 4.35 on Di for 1 ≤ i < r.

Theorem 4.37. [C3, Theorem 5.12] Let V (L•, Q•) be a restriction variety and let D be the corresponding
admissible quadric diagram. Then

[V (L•, Q•)] =
∑

cλ;µσλ;µ,

where cλ;µ is the number of degeneration paths starting with D and ending with the quadric diagram
associated to the Schubert class σλ;µ.

The proof of Theorem 4.37 is obtained by interpreting Algorithm 4.35 as a specialization. Consider
the one-parameter family of partial flags (L•, Q•)(t), where all the flag elements are fixed except for Qrκdκ
and Qrκdκ varies in a pencil that becomes tangent to Q in one larger dimension at t = 0. The algorithm

describes the flat limit of the restriction varieties defined with respect to the flags (L•, Q•)(t) at t = 0.

Exercise 4.38. Carry out this specialization for the Examples 4.2 and 4.3. Show that the descriptions in
these examples agree with Algorithm 4.35.

We now discuss several consequences of Theorem 4.37. The first corollary is a solution of the restriction
problem. The pullback of a Schubert class in G(k, n) can be expressed as the class of a sum of restriction
varieties. Suppose that the Schubert variety in G(k, n) is defined with respect to a general partial flag

Fa1=n−k+1−λ1 ⊂ Fa2=n−k+2−λ2 ⊂ · · · ⊂ Fak=n−λk .
The restriction of Q to the flag elements Fi is a non-degenerate quadratic form Q0

ai . If ai ≤ 2i − 1 for
some i, then i∗σλ = 0. Suppose that ai ≥ 2i for 1 ≤ i ≤ k. We associate the sequence

Q0
a1 ⊂ Q

0
a2 ⊂ · · · ⊂ Q

0
ak

to the class σλ. Running Algorithm 4.30 on the corresponding quadric diagram produces a collection
of admissible quadric diagrams. The class i∗σλ is the sum of the Schubert classes obtained by running
Algorithm 4.35 on this collection of admissible quadric diagrams. We conclude the following theorem.

Theorem 4.39. Algorithm 4.35 gives a positive, geometric rule for computing restriction coefficients.

Example 4.40. Our first example computes the class i∗(σ2,1) = [V (Q0
3 ⊂ Q0

5)] = 2σ2;1 + 2σ1,0; + 2σ1;2 in
OG(2, 6).

000}00}0 ×2−→ 00]000}0→ 1]0000}0
↙ ↘

00]0]000 00]0]′000

Example 4.41. The next example calculates i∗(σ3,2,1) = [V (Q0
4 ⊂ Q0

6 ⊂ Q0
8)] = 2σ4;3,1 + 2σ3;3,2 + 4σ2,1;1

in OG(3, 9).

0000}00}00}0→ 3000}00}00}0 ×2→ 000]000}00}0→200]000}00}0 ×2→ 000]0]0000}0→ 100]0]0000}0
↓

22]0000}00}0→ 1]20000}00}0→ 1]22000}00}0
↓

11]0000}0}00→ 11]2000}0}00

Exercise 4.42. Compute all the restriction coefficients for the inclusions i : OG(2, 5) → G(2, 5), i :
OG(2, 6)→ G(2, 6) and i : OG(3, 7)→ G(3, 7).
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As an another application of Theorem 4.37, one can compute the classes of the moduli space of vector
bundles of rank two on hyperelliptic curves in OG(g − 1, 2g + 2). Let Q1 and Q2 be two general quadric
hypersurfaces in P2g+1 and consider the pencil they generate. Let I be the incidence correspondence
consisting of pairs (Q,L), where Q is a quadric of this pencil and L is a connected component of the
space of g-dimensional projective linear spaces on Q. Since the half-dimensional linear spaces on Q have
two components, I is a double cover of P1 ramified over the points in the pencil where the rank of the
quadric drops. Since the discriminant is a hypersurface of degree 2g + 2 and the pencil is general, we
conclude that I is ramified over 2g + 2 points. An easy local calculation shows that I is a hyperelliptic
curve of genus g. Furthermore, every hyperelliptic curve arises via this construction.

Let C be a smooth hyperelliptic curve of genus g. Let M2,o(Cg) denote the moduli space of vector
bundles of rank 2 with a fixed odd-degree determinant on C. Realize C as above. By a celebrated theorem
of Desale and Ramanan [DR], M2,o(Cg) is isomorphic to the space of (g−2)-dimensional projective linear
spaces contained in the pencil of quadrics. In particular, [M2,o(Cg)] = 2g−1i∗σg−1,g−2,...,2,1. Using this
description, Theorem 4.37 allows us to compute the class of M2,o(Cg) in OG(g− 1, 2g+ 2). The first four
cases are given in the following table.

(1) [M2,o(C2)] = 2σ;1
(2) [M2,o(C3)] = 4σ0;1 + 4σ;3,1
(3) [M2,o(C4)] = 16σ2;3,1 + 16σ1,0;1 + 16σ1;4,1
(4) [M2,o(C5)] = 64σ3,1;3,1 + 64σ2,1,0;1 + 64σ2,1;5,1 + 32σ3,0;4,1 + 32σ3;5,4,1 + 32σ5,0;3,1+ 32σ5;5,3,1 +

32σ4,0;3,2 + 32σ4;5,3,2.

When g = 2, M2,o(C2) is a complete intersection of two quadric fourfolds. A consequence of this com-
putation is that for g > 2, these moduli spaces are not complete intersections of ample divisors in
OG(g − 1, 2g + 2) (see [C3]).

Exercise 4.43. Compute [M2,o(C6)] and [M2,o(C7)].

An algorithm similar to Algorithm 4.35 computes the restriction coefficients for isotropic flag varieties.
We refer the reader to [C3] for details.

There are other natural maps that one can define between orthogonal flag varieties and ordinary flag
varieties. Perhaps the most interesting is the following

φ : OG(k, n)→ F (k, n− k;n) W 7→ (W,W⊥)

and more generally

φ : OF (k1, . . . , kt;n)→ F (k1, . . . , kt, n− k1, . . . , n− kt;n) (W1, . . . ,Wt) 7→ (W1, . . . ,Wt,W
⊥
1 , . . . ,W

⊥
t ).

Problem 4.44. Generalize Algorithm 4.35 to obtain a positive geometric algorithm for computing the
map induced on cohomology by φ in terms of the Schubert bases of these flag varieties.

4.2. The skew-symmetric case. The discussion for SG(k, n) is similar, but the definitions have to
be adapted for alternating forms. The fact that skew-symmetric forms have even rank constrains the
geometry. Consequently, this case is more delicate. We preserve the notation from the previous section.

Notation 4.45. Let Lni denote an isotropic subspace of dimension ni. Let Q
rj
dj

denote a dj-dimensional

subspace of V such that the restriction of the skew-symmetric form Q to Q
rj
dj

has corank rj . Let Kj

denote the kernel of the restriction of Q to Q
rj
dj

. The dimension of Kj is rj .

It is no longer possible to ensure that the kernels of the restriction of Q to linear spaces are nested.
This complicates the definition of a symplectic sequence. Throughout let (L•, Q•) be a partial flag

Ln1 ⊂ · · ·Lns ⊂ Q
rk−s
dk−s
⊂ · · · ⊂ Qr1d1

satisfying
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• dim(Kj ∩Kl) ≥ rj − 1 for 1 ≤ j < l ≤ k − s,
• dim(Lni ∩Kj) ≥ min(ni,dim(Kj ∩Kk−s)− 1) for every 1 ≤ i ≤ s and 1 ≤ j ≤ k − s.

Definition 4.46. We say that the partial flag (L•, Q•) is in order if

• Kj ∩Kl = Kj ∩Kj+1 for 1 ≤ j < l ≤ k − s,
• dim(Lni ∩Kj) = min(ni,dim(Kj ∩Kk−s)) for 1 ≤ i ≤ s and 1 ≤ j ≤ k − s.

The sequence is in perfect order if

• Kj ⊂ Kj+1 for 1 ≤ j < k − s,
• dim(Lni ∩Kj) = min(ni, rj) for 1 ≤ i ≤ s and 1 ≤ j ≤ k − s.

Definition 4.47. The partial flag (L•, Q•) is a symplectic sequence if it satisfies the following conditions

(1) Either the sequence is in order or there exists at most one index 1 ≤ η ≤ k − s such that

Kj ⊆ Kl for l ≥ j > η and Kj ∩Kl = Kj ∩Kj+1 for j < η, l > j.

Furthermore, if Kη ⊂ Kk−s, then

dim(Lni ∩Kj) = min(ni,dim(Kj ∩Kk−s)) for 1 ≤ i ≤ s and 1 ≤ j < η;

dim(Lni ∩Kj) = min(ni,dim(Kj ∩Kk−s)− 1) for 1 ≤ i ≤ s and η ≤ j ≤ k − s.

If Kη 6⊂ Kk−s, then dim(Lni ∩Kj) = min(ni,dim(Kj ∩Kk−s)) for 1 ≤ i ≤ s and 1 ≤ j < k − s.
(2) If α = dim(Kj ∩Kk−s) > 0, then either j = 1 and nα = α or there exists an index 1 ≤ j0 ≤ k− s

such that for j0 6= l > min(j, η), we have rl − rl−1 = dl−1 − dl,

dj0−1 − dj0 ≤ rj0 − rj0−1 + 2− dim(Kj0−1) + dim(Kj0−1 ∩Kj0)

and Kη 6⊂ Kj0 .

Remark 4.48. As in the orthogonal case, ni, rj and dj automatically satisfy certain inequalities. The
corank bound implies that rj − dim(Kj ∩Kj−1) ≤ dj−1 − dj for every 1 < j ≤ k − s . The linear space
bound implies that 2(ns + rj − dim(Kj ∩Lns)) ≤ rj + dj for every 1 ≤ j ≤ k − s. These inequalities will
be implicitly assumed. More importantly, dj− rj has to be even since the rank of a skew-symmetric form
is even. In the orthogonal case, we could require the kernels to be nested. Due to the parity restrictions
we cannot do this in symplectic case, which leads to the more convoluted condition (1) in the definition
of symplectic sequences. Condition (2) is a consequence of the order of specialization. These conditions
will automatically be satisfied in practice, so the reader can ignore them in a first reading.

Notation 4.49. Let xj denote the number of isotropic subspaces in the sequence that are contained in
Kj .

Definition 4.50. We call the sequence (L•, Q•) admissible if it satisfies the following conditions.

(SA1) For every 1 ≤ j ≤ k − s, we have

xj ≥ k − j + 1− dj − rj
2

.

(SA2) There does not exist integers i, j such that ni = dim(Kj ∩ Lni) + 1.

Definition 4.51. The symplectic restriction variety V (L•, Q•) associated to an admissible symplectic
sequence (L•, Q•) is the subvariety of SG(k, n) defined as the Zariski closure of the following locus

V (L•, Q•)
0 ={W ∈ SG(k, n) | dim(W ∩ Lni) = i,dim(W ∩Qrjdj ) = k − j + 1,

dim(W ∩Kj) = xj}
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Remark 4.52. As in the orthogonal case, condition (SA1) is a consequence of the linear space bound.
The isotropic subspace of dimension k− j+1 has to intersect the kernel Kj in a subspace of dimension at

least k − j + 1− dj−rj
2 . Condition (SA2) is a consequence of variations of tangent spaces. If rj + 1 = ni,

then any linear space intersecting Lni away from Kj is contained in L⊥ni .

Exercise 4.53. As in the orthogonal case, use induction on k to prove the following proposition.

Proposition 4.54. The symplectic restriction variety V (L•, Q•) is an irreducible subvariety of SG(k, n)
of dimension

dim(V (L•, Q•)) =
s∑
i=1

(ni − i) +
k−s∑
j=1

(dj + xj − 1− 2k + 2j)

Definition 4.55. A symplectic sequence (L•, Q•) is saturated if rj + dj = n for 1 ≤ j ≤ k − s.

Schubert varieties in SG(k, n) are examples of restriction varieties. As in the orthogonal case, we have
the following.

Lemma 4.56. Let (L•, Q•) be a saturated, admissible symplectic sequence in perfect order and let n = 2m.
Then V (L•, Q•) is a Schubert variety with class σm−n1+1,...,m−ns+1;rk−s,...,r1. Conversely, every Schubert
variety arises as such a symplectic restriction variety.

Let ai = n−k+ i−λi > 2i−1 for 1 ≤ i ≤ k. Then the intersection of a general Schubert variety Σλ in
G(k, n) with SG(k, n) is also a symplectic restriction variety associated to the sequence Qr1a1 ⊂ · · · ⊂ Q

rk
ak
,

where 0 ≤ ri ≤ 1 satisfies ai = ri mod 2 and Kj ∩ Kj−1 = 0 for 1 < j ≤ k − s. Hence, symplectic
restriction varieties interpolate between these two kinds of varieties.

Symplectic diagrams. We can record symplectic restriction varieties by symplectic diagrams. Their
definition and properties are similar to orthogonal diagrams.

Definition 4.57. Let 0 ≤ s ≤ k be an integer. A sequence of brackets and braces of type s for SG(k, n)
consists of a sequence of natural numbers of type s, s brackets and k − s braces such that

• Every bracket or brace occupies a positive position and each position is occupied by at most one
bracket or brace.
• Every bracket is to the left of every brace.
• Every positive integer greater than or equal to j is to the left of the jth brace.
• The total number of integers equal to zero or greater than j to the left of the jth brace is even.

Notation 4.58. We use the same conventions as in the case of OG(k, n). We count the brackets from left
to right and denote the ith bracket by ]i. We count the braces from right to left and denote the jth brace
by }j .

Definition 4.59. Two sequences of brackets and braces are equivalent if the lengths of their sequence of
numbers are equal, the brackets and braces occur at the same positions and the collection of digits that
occur between any two consecutive brackets and/or braces are the same. We can depict an equivalence
class of sequences by the representative where the digits are listed so that between any two consecutive
brackets and/or braces the positive integers precede the zeros and are listed in non-decreasing order. We
will always use this canonical representative and blur the distinction between the equivalence class and
this representative.

Example 4.60. The sequences 1221]01000}001}00 and 1122]10000}100}00 are equivalent. The latter is
the canonical representative.

Due to the evenness of rank, in the symplectic case it is not possible to keep the positive integers in
increasing order and all at the beginning of the sequence.
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Definition 4.61. A sequence of brackets and braces is in order if the sequence of numbers consists of
non-decreasing positive integers followed by zeros except possibly for one j immediately to the right of
}j+1 for 1 ≤ j < k − s. Otherwise, we say that the sequence is not in order. A sequence is in perfect
order if the sequence of integers consists of non-decreasing positive integers followed by zeros. As in
the orthogonal case, we call a sequence of brackets and braces saturated if l(j) = ρ(j, j − 1) for every
1 ≤ j ≤ k − s.
Example 4.62. The sequence 22]00]0000}100}0 is in order. The sequence 11]22]0000}00}00 is in perfect
order. The sequences 22]10000}00}0 and 122]3300}100}00}00 are not in order. In the first sequence the
1 in place 3 and in the second sequence the 1 in place 8 violate the order.

Definition 4.63. A symplectic diagram for SG(k, n) is a sequence of brackets and braces that satisfies the
following conditions.

(1) l(j) ≤ ρ(j, j − 1) for 1 ≤ j ≤ k − s.
(2) Let τj be the sum of p(]s) and the number of positive integers between ]s and }j . Then

2τj ≤ p(}j) + rj for 1 ≤ j ≤ k − s.
(3) Either the sequence is in order or there exists at most one integer 1 ≤ η ≤ k − s such that the

sequence of integers is non-decreasing followed by a sequence of zeros except for at most one
occurrence of η between ]s and }η+1 and at most one occurrence of i after }i+1.

(4) Let ξj denote the number of positive integers between }j and }j−1. If an integer i occurs to
the left of all the zeros, then either i = 1 and there is a bracket in the position following it,
or there exists at most one index j0 such that ρ(j, j − 1) = l(j) for j0 6= j > min(i, η) and
ρ(j0, j0 − 1) ≤ l(j0) + 2− ξj0 . Moreover, any integer η violating order occurs to the right of }j0 .

Definition 4.64. A symplectic diagram is called admissible if it satisfies the following two conditions.

(SA1) Let xj denote the number of brackets ]i such that every integer to the left of ]i is positive and
less than or equal to j. Then

xj ≥ k − j + 1− p(}j)− rj
2

.

(SA2) The two integers to the left of a bracket are equal. If there is only one integer to the left of a
bracket and s < k, then the integer is 1.

Exercise 4.65. Choose a symplectic basis of V and define a correspondence between symplectic diagrams
and symplectic sequences. Show that every admissible symplectic sequence can be represented by an ad-
missible symplectic diagram. Conversely, every admissible symplectic diagram is the diagram associated
to an admissible symplectic sequence (see [C4]).

As in the orthogonal case, we have the following easy lemma.

Lemma 4.66. Admissible, saturated symplectic diagrams in perfect order correspond to Schubert cycles.

We are now ready to describe the algorithm. The goal is to transform an admissible symplectic diagram
into a collection of admissible, saturated symplectic diagrams in perfect order. The fact that the rank
of a skew-symmetric form is even constrains the possible degenerations. Consequently, describing Da in
this case is trickier.

Definition 4.67. We make the convention that an integer equal to k − s+ 1 is 0 and }k−s+1 refers to ]s.
Let D be an admissible symplectic diagram.

(1) If D is not in order, let η be the integer in condition (3) violating the order.
(a) If every integer η < j ≤ k − s occurs to the left of η, let ν be the leftmost integer equal to

η + 1 in the sequence of D. Let Da be the canonical representative of the diagram obtained
by interchanging η and ν.
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(b) If an integer η < j ≤ k− s does not occur to the left of η, let ν be the leftmost integer equal
to j+1. Let Da be the canonical representative of the diagram obtained by swapping η with
the leftmost 0 to the right of }j+1 not equal to ν and changing ν to j.

(2) If D is in order but is not a saturated admissible diagram in perfect order, let κ be the largest
index j for which l(j) < ρ(j, j − 1).
(a) If l(κ) < ρ(κ, κ − 1), let ν be the leftmost digit equal to κ + 1. Let Da be the canonical

representative of the diagram obtained from D by changing ν and the leftmost 0 to the right
of }κ+1 not equal to ν to κ.

(b) If l(κ) = ρ(κ, κ− 1), let η be the integer equal to κ− 1 immediately to the right of }κ.
(i) If κ occurs to the left of η, let ν be the leftmost integer equal to κ in the sequence of D.

Let Da be the canonical representative of the diagram obtained from D by changing
ν to κ− 1 and η to 0.

(ii) If κ does not occur to the left of η, let ν be the leftmost integer equal to κ + 1. Let
Da be the canonical representative of the diagram obtained by swapping η with the
leftmost zero to the right of }κ+1 not equal to ν and changing ν to κ.

Let p be the position in D immediately to the right of ν. If there exists a bracket at a position p′ > p,
let q > p be the minimal position occupied by a bracket. Let Db be the diagram obtained from Da by
moving the bracket in position q to position p. Otherwise, Db is not defined.

Example 4.68. Let D = 2300}10}0}0, then η = 1 violates the order and ν = 2 and 3 occur to the left of
it. Hence, we are in case (1)(i) and Da = 1300}20}0}0 is obtained by swapping 1 and 2. Similarly, let
D = 200]200}00}, then the second 2 violates the order and Da = 220]000}00}, Db = 22]0000}00}.

Let D = 124400}00}1}0}00, the 1 in the ninth place violates the order and 3 does not occur to its left,
so we are in case (1)(ii) and Da = 123400}10}0}0}00.

Let D = 22]00}00}00, then D is in order and κ = 1. Since l(1) = 0 < ρ(1, 0)− 1, we are in case (2)(i)
and Da = 12]00}10}00 and Db = 1]200}10}00.

Let D = 3300}200}0}, then D is in order and κ = 3. Since l(3) = 2 = ρ(3, 2) − 1, we are in case
(2)(ii)(a) and Da = 2300}000}0}.

Finally, let D = 330000}00}1}0, then D is in order and κ = 2. Since l(2) = 0 = ρ(2, 1)− 1 and 2 does
not occur in the sequence, we are in case (2)(ii)(b) and Da = 230000}10}0}0.

It may be that neither Da nor Db is admissible. As in the orthogonal case, there are algorithms for
transforming them into admissible diagrams.

Algorithm 4.69. Input: A symplectic diagram D.

Step 1. If D satisfies condition (SA1), proceed to the next step. Otherwise, let j be the largest index for
which (SA1) fails. Let π1 < π2 be the places of the two rightmost integers equal to j. Let Dc

be the diagram obtained from D as follows. Delete }j and the j in place π2. Move the brackets,
braces and integers in positions π1 < p < π2 to position p+ 1 and add a j in place π1 + 1. Add a
bracket in position π1 + 1. Subtract one from the integers j < h ≤ k− s; and if j = k− s, change
the integers equal to k − s to 0. Return Dc to the beginning

Step 2. If D satisfies condition (SA2), output D. Otherwise, let ]i be the smallest index bracket for which
(SA2) fails. Let j be the integer immediately to the left of ]i. Let Dc be the symplectic diagram
obtained from D as follows. Replace this j with j − 1 (k − s if j = 0) and move }j−1 (}k−s if
j = 0) one position to the left unless that position is occupied. If the position is occupied, discard
the diagram and stop. Otherwise, return Dc to Step 2.

We say that D is a diagram derived from Da (respectively, Db) if D is an output of running Algorithm
4.69 on Da (respectively, Db).
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Example 4.70. Let D = 22]33]00}00}00}00. Then the diagram Da = 12]33]00}00}10}00 fails condition
(SA1) since x1 = 0 < 1 = 5 − (10 − 2)/2. Hence, according to Step 1 of Algorithm 4.69, we replace Da

with the admissible diagram 11]1]22]00}00}000.

Let D = 00}00}00. Then Da = 22}00}00 fails condition (SA1) since x2 = 0 < 1 − (2 − 2)/2. Hence,
Step 1 of Algorithm 4.69 replaces Da with 00]00}00 which is admissible.

Similarly, if D = 11]33]00}00}00}00, then the diagram Da = 11]23]00}20}00}00 fails condition (SA1)
since x2 = 1 < 2. Hence, according to Step 1 of Algorithm 4.69, we replace Da with 11]22]2]00}000}00,
which is admissible.

If D = 22]2]200}0000}00, then the diagram Da = 12]2]200}1000}00 is not admissible since it fails
condition (SA2) for ]1. Step 2 of Algorithm 4.69 replaces Da first with 11]2]200}100}000. Note that this
diagram fails condition (SA2) for ]2. Hence, Step 2 replaces it with 11]1]200}10}0000. This diagram is
admissible, hence it is the diagram derived from Da.

Exercise 4.71. Show that Algorithm 4.69 terminates and replaces Da or Db derived from an admissible
symplectic diagram D with a collection of admissible symplectic diagrams.

Finally, we can state the main algorithm for computing the classes of symplectic restriction varieties.
Let D be an admissible symplectic diagram and let ν be as in Definition 4.67. Let π(ν) denote the place
of ν in the sequence of integers. If p(]s) > π(ν), then ]α be the first bracket to the right of ν. If the
integer to the immediate left of ]α is positive, let yν be this integer. Otherwise, let yν = k − s+ 1.

Algorithm 4.72. Input: Let D be an admissible symplectic diagram.

(1) If D is saturated and in perfect order, return D and stop. Otherwise, proceed to Step 2.
(2) If p(]s) ≤ π(ν) or p(]α)−πν − 1 > yν − ν in D, return the admissible symplectic diagrams derived

from Da to Step 1. Otherwise, return the admissible symplectic diagrams derived from both Da

and Db to Step 1.

Definition 4.73. A degeneration path is a sequence of admissible symplectic diagrams

D1 → D2 → · · · → Dr

such that Di+1 is one of the outputs of running Algorithm 4.72 on Di for 1 ≤ i < r.

As in the orthogonal case, we have the following theorem.

Theorem 4.74. [C4, Theorem 3.33] Let D be an admissible symplectic diagram and let V (D) be the
corresponding symplectic restriction variety. Then

[V (D)] =
∑

cλ;µσλ;µ,

where cλ;µ is the number of degeneration paths starting with D and ending in the symplectic diagram
D(σλ;µ).

As a corollary, we obtain a positive geometric rule for computing the restriction coefficients for SG(k, n).

Theorem 4.75. [C4, Theorem 5.2] Theorem 4.74 provides a positive, geometric rule for computing the
restriction coefficients for the inclusion i : SG(k, n) ⊂ G(k, n).

There is a generalization of the algorithm to symplectic flag varieties [C6]. As in the orthogonal case,
the following variant is an interesting open problem.

Problem 4.76. Let φ : SF (k1, . . . , kt;n)→ F (k1, . . . , kt, n− k1, . . . , n− kt;n) be the map given by

(W1, . . . ,Wt) 7→ (W1, . . . ,Wt,W
⊥
1 , . . . ,W

⊥
t ).

Compute the map induced in cohomology in terms of the Schubert bases via a similar sequence of special-
izations.
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We conclude this section with several examples.

Example 4.77.

00}00}00→ 00]00}00→ 00]0]000

↓

1]100}00

We conclude that i∗σ3,2 = σ2,1; + σ3;2 in SG(2, 6).

Finally, we give a larger example in SG(3, 10) that illustrates the inductive structure of the algorithm.

Example 4.78.

300}20}10}000→ 200}00}10}000→ 200]00}10}000→ 1]0000}00}000

↓ ↓

100]00}00}000 1]2200}00}000

↙ ↘ ↓

100]0]000}000 11]200}0}0000 1]1200}10}000

↙ ↘ ↓ ↓

000]0]0]00000 11]00]100}000 11]11]00}0000 1]1100}00}000

↙ ↘ ↓

11]1]0000}000 11]11]00}0000 1]1100]00}000

This calculation shows that i∗σ5,4,3 = σ3,2,1; + σ4,3;3 + 2σ4,2;4 + σ5,1;3 in H∗(SG(3, 10),Z).

5. The rigidity problem

In 1961, Borel and Haefliger [BH] asked whether Schubert classes in rational homogeneous varieties
can be represented by projective subvarieties other than Schubert varieties. In this section, we discuss
recent progress in answering this problem.

A Schubert class σ is called rigid if Schubert varieties are the only projective subvarieties representing
σ. More generally, given a positive integer m, the class mσ can be represented by the unions of m
Schubert varieties. The class σ is called multi rigid if unions of m Schubert varieties are the only closed
algebraic sets representing the class mσ. As we have seen in §2, Schubert varieties are often singular.
If the class of a singular Schubert variety is rigid, then that class cannot be represented by a smooth
subvariety.

The rigidity of Schubert classes has been studied by many authors [Br], [C2], [C5], [CR],[Ho1], [Ho2],
[R], [RT], [W]. The multi rigid Schubert classes have been classified in cominuscule homogeneous varieties.
We recall that the cominuscule homogeneous varieties coincide with the Compact Complex Hermitian
Symmetric Spaces and are the following varieties:

(1) Grassmannians G(k, n),
(2) Smooth quadric hypersurfaces in Pn,
(3) The isotropic Grassmannians SG(m, 2m),
(4) The spinor varieties, i.e., the irreducible components of OG(m, 2m),
(5) Two exceptional varieties: The Cayley plane OP2 (E6/P6) and the Freudenthal variety G(O3,O6)

(E7/P7).
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Robles and The in [RT] building on the work of R. Bryant, J. Hong and M. Walters identified an
obstruction Oσ in Lie algebra cohomology and showed that if Oσ vanishes, then σ is multi rigid. They
classified the Schubert classes in cominuscule homogeneous varieties with Oσ = 0. Furthermore, for
classes with Oσ 6= 0, Robles [R] constructed explicit irreducible representatives for either 2σ or 4σ.
Robles and the author in [CR] proved the following sharpening.

Theorem 5.1. [CR, Theorem 1.1] Let σ be a Schubert class with Oσ 6= 0 in the cohomology of a
cominuscule homogeneous variety X and let m be a positive integer. Then there exists an irreducible
subvariety of X that represents mσ.

Hong and Mok [HM] (see also [MZ]) have an alternative approach to proving the rigidity of certain
smooth Schubert varieties in homogeneous varieties of Picard rank one. Their method uses the varieties
of minimal rational tangents.

The complete classification of rigid and multi rigid Schubert classes for more general rational homo-
geneous varieties is largely open. In this section, we discuss the problem in greater detail, give several
applications of restriction varieties and pose several open problems.

Rigidity in G(k, n). We begin by describing rigid and multi rigid Schubert classes in G(k, n). In §2, we
described the smooth Schubert varieties of G(k, n) as the linearly embedded sub-Grassmannians. Even
when a Schubert variety is singular, there may be representatives of σλ which are smooth.

Example 5.2. A Schubert variety with class σ1 in G(k, n) is singular if k and n − k are both greater
than 1. However, σ1 is the class of a hyperplane under the Plücker embedding of G(k, n). By Bertini’s
Theorem, we can always find smooth hyperplane sections that represent σ1. Hence, the class σ1 is not
rigid and can be represented by smooth subvarieties of G(k, n).

On the other hand, the theory of minimal degree varieties can be used to prove the rigidity of certain
classes.

Exercise 5.3. Show that the degree d of an irreducible, nondegenerate variety of dimension m in Pn
satisfies the inequality d ≥ n −m + 1. The varieties where the equality d = n −m + 1 holds are called
varieties of minimal degree.

The varieties of minimal degree have been classified by Bertini [Be]. Eisenbud and Harris have given
a modern account of the classification in [EH1].

Theorem 5.4. [EH1] A variety of minimal degree is one of the following:

(1) A quadric hypersurface.
(2) The Veronese surface in P5.
(3) A rational normal scroll, that is the projectivization PE of a vector bundle E on P1 embedded by

the complete linear series |OPE(1)|.
(4) A cone over one of the previous varieties.

Example 5.5. The Schubert class σ2 in G(2, 5) is rigid. Let X be a projective subvariety of G(2, 5)
representing σ2. Then in the Plücker embedding X has dimension 4 and degree 3. We claim that X must
span a P6 and be a variety of minimal degree. Otherwise, X would span a P5 and be a cubic hypersurface
in this P5. The Grassmannian G(2, 5) is cut out by quadratic Plücker relations. By Bezout’s Theorem,
G(2, 5) cannot contain X without containing its linear span. However, the largest dimensional linear
space in G(2, 5) has dimension 3. This is a contradiction. Hence, X must be a variety of minimal degree.
From the classification of these varieties, we conclude that X must be a cone with vertex p over a cubic
scroll. Hence, X must be the intersection of G(2, 5) with its tangent plane at p. Since this is a Schubert
variety with class σ2, we conclude that X is a Schubert variety.
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The following fundamental theorem of Thom, Grauert-Kerner, Schelssinger, Kleiman-Landolfi allows
one to prove the rigidity of many other Schubert classes in G(k, n).

Theorem 5.6. [KL, Theorem 2.2.8] Let K be a field and let X = PnK × PmK be embedded in projective
space by the Segre morphism. If n ≥ 1 and m ≥ 2, then the cone over X is rigid over K in the sense
that any small deformation is isomorphic to the cone over X.

Exercise 5.7. Let λ be the partition λ1 = · · · = λk−1 = n− k − 1 and λk = 0. Show that in the Plücker
embedding a Schubert variety Σλ is a cone over the Segre embedding of Pk−1×Pn−k−1. Deduce that the
Schubert class σλ is rigid unless n = 2k = 4.

By induction building on Example 5.5 and Exercise 5.7, [C2] characterizes rigid Schubert classes in
G(k, n). The Schubert subvarieties contained in a variety Y ⊂ G(k, n) carry a lot of geometric information
about Y (see [AC] for a related discussion). Let Y be a representative of a Schubert class. The singular
locus of Y and the intersection of Y with various Schubert varieties are often enough to force Y to be a
Schubert variety. For our purposes, it is convenient to record a partition λ by grouping the parts that

are equal. More concretely, write λ = (µi11 , . . . , µ
ij
j ) with µ1 > µ2 > · · · > µj and µs occurs is times in

the partition λ. In particular,
∑j

s=1 is = k.

Definition 5.8. A partition λ = (µi11 , . . . , µ
ij
j ) is a rigid partition for G(k, n) if there does not exist an

index 1 ≤ s < j with is = 1 and n− k > µs = µs+1 + 1.

Theorem 5.9. [C2, Theorem 1.3] A Schubert class σλ in G(k, n) is rigid if and only if λ is a rigid
partition for G(k, n).

A multi rigid class by definition is rigid. However, a rigid class does not have to be multi rigid.

Example 5.10. The class σ2 in G(2, 5) is rigid (see Example 5.5) but not multi rigid. To describe
deformations of mσ2, it is more convenient to work projectively. Fix an irreducible curve C of degree m
in P4. Consider the subvariety X of G(2, 5) parameterizing lines that intersect C. Consider the incidence
correspondence

I = {(p, l) | p ∈ l, p ∈ C} ⊂ C ×G(2, 5).

The variety I is irreducible by the theorem on the dimension of fibers and dominates X. Hence, X is
irreducible and has dimension 4. We claim that the class of X is mσ2. To determine the class, we can
intersect with complementary dimensional Schubert cycles. A general Schubert variety Σ3,1 intersects X
in m points. The variety Σ3,1 parameterizes lines in P4 that pass through a point q and lie in a hyperplane
P containing q. The hyperplane P intersects C in m points p1, . . . , pm. Hence, the lines parameterized
by X ∩ Σ3,1 are the m lines spanned by q and pi. On the other hand, a general Σ2,2 is disjoint from X.
The Schubert variety Σ2,2 parameterizes lines contained in a plane Π. Since a general plane Π is disjoint
from C, X ∩ Σ2,2 = ∅. We conclude that X is an irreducible variety with class mσ2.

Hong [Ho1], [Ho2] and Robles and The [RT] have classified the multi rigid Schubert classes in G(k, n).

Theorem 5.11. [Ho2] [RT] A Schubert class σλ is multi rigid if and only if λ = (µi11 , . . . , µ
ij
j ) satisfies

the following conditions

• is ≥ 2 for 1 < s < j,
• µs−1 ≤ µs − 2 for 1 < s ≤ j,
• i1 ≥ 2 if µ1 < n− k; and ij ≥ 2 if µj > 0.

If a Schubert class σλ is rigid and the corresponding Schubert variety is singular, then σλ cannot be
represented by a smooth subvariety of G(k, n). However, even when σλ is not rigid, it might not be
possible to represent σλ by a smooth subvariety of G(k, n).
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Example 5.12. Consider the class σ3,2 in G(3, 7). This class is not rigid. Fix a four-dimensional subspace
V ′ ⊂ V . Let Y be a smooth hyperplane section of the variety G(2, V ′) (in the Plücker embedding).
Consider the incidence variety

X = {(W2,W3)|W2 ∈ Y,W2 ⊂W3} ⊂ G(2, V ′)×G(3, 7).

The second projection is a variety in G(3, 7) with class σ3,2. To see this, we can pair the variety with
complementary dimensional Schubert cycles. Consider a general Schubert cycle Σa,b,c such that a+b+c =
7 and b ≥ 3. Then the linear spaces parameterized by this Schubert cycle have two-dimensional subspaces
contained in a linear space W of dimension at most 3. Since W ∩V ′ = 0, we conclude that Σa,b,c∩X = ∅.
Similarly, the linear spaces parameterized by a Σ3,2,2 are contained in a 5-dimensional linear space U .
For a general such Schubert variety the two-dimensional U ∩ V ′ will not be a point of Y . Hence,
Σ3,2,2∩X = ∅. Finally, for a general Σ4,2,1, the intersection Σ4,2,1∩X consists of one point. We conclude
that X represents σ3,2. It is clear that X is not a Schubert variety. On the other hand, σ3,2 cannot
be represented by a smooth subvariety of G(3, 7). Suppose it were represented by a smooth subvariety
Y . Then the intersection of Y with a general Schubert variety σ1,1,1 would be smooth by Kleiman’s
transversality theorem. However, this intersection has class σ4,3,1, which is a rigid and singular class. We
conclude that σ3,2 cannot be represented by a smooth subvariety.

Definition 5.13. A partition λ = (µi11 , . . . , µ
ij
j ) is a non-smoothable partition for G(k, n) if either there

exists an index 1 ≤ s < j such that is 6= 1 and n − k > µs or there exists an index 1 ≤ s < j such that
n− k > µs 6= µs+1 + 1.

Theorem 5.14. [C2, Theorem 1.6] If λ be a non-smoothable partition for G(k, n), then σλ cannot be
represented by a smooth subvariety of G(k, n).

A complete characterization of smoothable Schubert classes is not known except in G(2, n) and G(3, n)
(see [C2, Corollaries 4.5 and 4.6]).

Problem 5.15. Classify smoothable Schubert classes in G(k, n). For example, can σ3,2,1,0 be represented
by smooth subvarieties of G(4, 8)?

There are several other notions of smoothability. We will not say anything about them other than
giving a few examples and raising some questions.

Problem 5.16. When is (a multiple of) a Schubert class a positive linear combination of classes of
smooth subvarieties of G(k, n)?

Since Schubert classes span extremal rays of the effective cone, if mσλ =
∑
ai[Zi] with Zi smooth

subvarieties and ai > 0, then each Zi must have class proportional to σλ. Consequently, if σλ is multi
rigid and a Schubert variety with class σλ is not smooth, then the class σλ cannot be a positive linear
combination of classes of smooth subvarieties of G(k, n). More generally, one can ask the following more
interesting problem.

Problem 5.17. When is (a multiple of) a Schubert class a linear combination of classes of smooth
subvarieties of G(k, n)?

Example 5.18. The class σ2 in G(2, 5) can be expressed as σ2 = σ21 − σ1,1. A Schubert variety Σ1,1

is isomorphic to the Grassmannian G(2, 4) and is smooth. On the other hand, the class σ21 can be
represented by a codimension 2 linear section of the Grassmannian. By Bertini’s Theorem, such a linear
section can be chosen to be smooth. Hence, σ2 can be represented as a linear combination of classes of
smooth subvarieties of G(2, 5), even though it is rigid.

Remark 5.19. In contrast, Hartshorne, Rees and Thomas [HRT] have shown that σ2 in G(3, 6) cannot be
represented as a linear combination of the classes of closed smooth submanifolds of G(3, 6). In particular,
it is not a linear combination of classes of smooth subvarieties of G(k, n).
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It is also interesting to ask these problems for classes other than Schubert classes.

Problem 5.20. Given an effective cohomology class c in G(k, n), determine when c can be represented
by an irreducible subvariety. Determine when c can be represented by a smooth subvariety. Determine
when c is a positive linear combination of classes of smooth subvarieties. Determine when c is a linear
combination of classes of smooth subvarieties.

Using geometric constructions it is possible to give examples of classes that can be represented by
irreducible or smooth subvarieties of G(k, n). However, at present a complete classification is far from
known. One may ask the representative cycles to have other geometric properties.

Problem 5.21. When can a cohomology class c in G(k, n) be represented by a rational subvariety? When
can it be represented by a rationally connected subvariety? When can it be represented by a smooth,
rational or rationally connected subvariety?

Remark 5.22. Projective space has the remarkable property that every effective cohomology class can
be represented by a smooth irreducible subvariety. To represent m times the class of a linear space
of dimension k, simply take a smooth hypersurface of degree m in a linear space of dimension k + 1.
Similarly, every effective cohomology class of Pn can be represented by a rational subvariety by taking
the hypersurface to have an ordinary (m− 1)-fold point. These are false for other Grassmannians since
a large multiple of a multi rigid Schubert class cannot be represented by an irreducible subvariety. In
particular, it cannot be represented by a rational subvariety.

Rigidity in OG(k, n). In this subsection, we summarize some of the results on the rigidity and multi
rigidity of Schubert classes in OG(k, n) following [C5]. The next example describes the classification for
OG(1, n).

Example 5.23. The variety OG(1, n) is a smooth quadric hypersurface Q in Pn−1. The Schubert classes
are

(1) Isotropic linear spaces PLj for 0 ≤ j < n
2 ,

(2) If n is even, isotropic linear spaces PLn
2

and PL′n
2
,

(3) The quadric sections Q ∩ PQn−dd for n ≥ d > n
2 + 1.

The linear spaces are smooth and their classes are rigid. When d < n, the quadric sections Q ∩ PQn−dd

are singular with the singular locus isomorphic to Pn−d−1. The cohomology class of the Schubert variety
Q∩PQn−dd is the same as the cohomology class of any linear section Q∩PQrd with r ≤ n−d. The singular
locus of this variety is isomorphic to Pr−1. Hence, this variety is not isomorphic to a Schubert variety
if r < n − d. Therefore, these classes are not rigid. In particular, since Q ∩ PQ0

d is a smooth quadric,
every Schubert class in OG(1, n) can be represented by a smooth subvariety of OG(1, n). The classes of
the linear spaces PLj , for 1 < j ≤ n−1

2 , are rigid but not multi rigid. For example, twice the class of PLj
can be represented by a smooth quadric of the same dimension. If 2k = n, the classes of the Schubert
varieties PLk and PL′k are multi rigid [Ho1].

Example 5.23 shows that by deforming the quadrics to less singular quadrics, one can obtain deforma-
tions of Schubert varieties. Similarly, while the isotropic spaces are rigid, their multiples may be deformed
to quadrics. One can use these two facts systematically to prove the failure of rigidity or multi rigidity
for many Schubert classes. Therefore, restriction varieties play an important role in the study of rigidity.
The next example illustrates the point.

Example 5.24. The orthogonal Grassmannian OG(2, 5) is isomorphic to P3. The codimension two Schu-
bert varieties Σ1;1 in OG(2, 5) are lines; however, not all lines in OG(2, 5) are Schubert varieties.

A Schubert variety Σ1;1 is determined by specifying a point p on Q ⊂ P4. Projectively, the Schubert
variety parameterizes lines in Q that contain the point p. In particular, the space of Schubert varieties
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with class σ1;1 is a quadric threefold. Let Q′ ⊂ Q be a codimension one smooth quadric and let l ⊂ Q′

be a line. Then the space of lines that are contained in Q′ and intersect l is also a line in OG(2, 5).
Note that this is the restriction variety V (L2 ⊂ Q0

4). The lines parameterized by the Schubert variety
Σ1;1 sweep out the singular quadric surface TpQ ∩Q, whereas the lines parameterized by the restriction
variety sweep out the smooth quadric surface Q′.

Since OG(2, 5) is isomorphic to P3, the space of lines in OG(2, 5) is isomorphic to the Grassmannian
G(2, 4) parametrizing lines in P3. The Grassmannian G(2, 4) admits a map to (P4)∗ sending a point
q ∈ G(2, 4) to the hyperplane in P4 spanned by the linear spaces parameterized by the line corresponding
to q. This is a two-to-one map branched over the locus of Schubert varieties. This is one of the first
examples where restriction varieties provide an explicit deformation of Schubert varieties. This example
also shows that a Schubert class may be represented by a variety that is isomorphic, even projectively
equivalent (under GL(n) but not SO(n)), to a Schubert variety but is not a Schubert variety.

Exercise 5.25. Generalize the previous example to show that the Schubert classes σm,m−1,...,2;m−1 are
not rigid in OG(m, 2m + 1). Describe the space of lines in OG(m, 2m + 1). Discuss the case of higher
dimensional linear spaces.

We now use restriction varieties to give deformations of Schubert varieties more systematically.

Definition 5.26. A Schubert class σλ;µ in OG(k, n) is of Grassmannian type if s = k (equivalently, µ has
length 0) and λk > 0. A Schubert class σλ;µ is of quadric type if s = 0 and µ1 <

n
2 − 1.

Notation 5.27. For discussing rigidity, it is more convenient to record the partitions (λ;µ) for OG(k, n)
slightly differently. Given λ define a sequence a(λ) by setting ai = bn−12 c − λi − i. Record the sequence

a(λ) by grouping the equal terms (αi11 , . . . , α
it
t ) so that α1 < α2 < · · · < αt and αj occurs with multiplicity

ij in the sequence a(λ). Similarly, given µ define a sequence b(µ) by setting bj = n− µj − j. Record the

sequence b(µ) also by grouping the equal terms (βj11 , . . . , β
ju
u ) so that β1 < · · · < βu and βl occurs with

multiplicity jl in the sequence b(µ).

Example 5.28. Given the partitions (4, 2, 1; 3, 0) for OG(5, 13), we have a(λ) = (1, 2, 2) = (11, 22) and
b(µ) = (6, 8).

The next two theorems characterize the rigidity of Schubert classes of Grassmannian and quadric type.

Theorem 5.29. [C5, Theorem 1.4] Let σλ; be a Schubert class of Grassmannian type in the cohomology

of OG(k, n). Express the associated partition a(λ) by grouping the equal terms as (αi11 , . . . , α
it
t ). Then:

(1) The class σλ; is rigid if and only if there does not exist an index 1 ≤ u < t such that iu = 1 and
0 < αu = αu+1 − 1.

(2) The class σλ; is multi rigid if and only if iu ≥ 2 for every 2 ≤ u ≤ t, i1 ≥ 2 unless α1 = 0, and
αu ≤ αu+1 − 2 for every 1 ≤ u < t.

(3) The class σλ; is not smoothable if there exists an index 1 ≤ u < t such that 0 < αu < αu+1 − 1,
or an index 1 ≤ u < t such that αu > 0 and iu > 1.

Exercise 5.30. Let i : OG(k, n)→ G(k, n) denote the natural inclusion. Identify the image of a Schubert
variety of Grassmannian type in OG(k, n) as a Schubert variety in G(k, n) under i. Show that the class
of Grassmannian type σλ; in OG(k, n) is rigid (respectively, multi rigid) if and only if the corresponding
class in G(k, n) is rigid (respectively, multi rigid). Deduce parts (1) and (2) of the Theorem 5.29 from
Theorems 5.9 and 5.11. Show that if the class is smoothable in OG(k, n), then the corresponding class
is smoothable in G(k, n) and deduce part (3).

Theorem 5.31. [C5, Theorem 1.5] Let σ;µ be a Schubert class of quadric type in the cohomology of

OG(k, n). Express the partition b(µ) by grouping the equal terms as (βi11 , . . . , β
it
t ). Then:

(1) The class σ;µ is not rigid unless t = 1 and β1 = n− k.
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(2) The class σ;µ is not smoothable if there exists an index 1 ≤ u < t such that bn+1
2 c < βu < βu+1−1

or an index 1 ≤ u < t such that bn+1
2 c < βu and iu > 1.

Sketch of proof. Let σ;µ be a Schubert class of quadric type in OG(k, n). We then have µ1 <
n
2 − 1.

Consequently, the dimension of F⊥µ1 is greater than n
2 +1. Since the corank of a quadric is bounded by its

codimension, for a quadric Qr1n−µ1 , we have that r1 ≤ µ1 ≤ n−µ1−3. In particular, Qr1n−µ1 is irreducible.
Let V be the restriction variety defined by the sequence (Q•)

Q0
n−µ1 ⊂ Q

0
n−µ2 ⊂ · · · ⊂ Q

0
n−µk .

The i-th linear space in this sequence has the same dimension as the i-th linear space in the sequence
defining the Schubert variety Σ;µ but the restriction of the quadratic form is nondegenerate instead.

Exercise 5.32. Show that the sequence (Q•) is admissible and V is a restriction variety. Using Algorithm
4.35 compute the class of V to see that it is σ;µ.

The exception t = 1 and β1 = n− k in the statement of the theorem corresponds to the fundamental
class of OG(k, n). In all other cases, we now show that the restriction variety constructed in the previous
paragraph gives a non-trivial deformation of the Schubert variety. The linear spaces parameterized by V
sweep out the quadric Q0

n−µk . Hence, if µk 6= 0, the restriction variety cannot be projectively equivalent
to a Schubert variety since for a Schubert variety the linear spaces sweep out a quadric of corank µk. If
µk = 0, since t 6= 1, there exists µu such that µu > k − u. Let v be max{u|bu > k − u}. The smallest
dimensional quadric that contains a v-dimensional subspace of every linear space parameterized by a
Schubert variety Σb• has corank bv. In the restriction variety this quadric has the same dimension and
has full rank. Therefore, we conclude that the restriction variety cannot be projectively equivalent to a
Schubert variety. This concludes the proof that unless t = 1 and µk = 0, a Schubert cycle of quadric
type is not rigid. In fact, we have proved that such a class can always be represented by the intersection
of a general Schubert variety in G(k, n) with the orthogonal Grassmannian OG(k, n).

Exercise 5.33. Consider the Schubert variety Σ in OG(k, n) parameterizing isotropic subspaces contained
in a maximal isotropic subspace. Notice that this Schubert variety is smooth and isomorphic to a Grass-
mannian G(k, bn2 c). Deduce part (2) of the theorem from Theorem 5.29 by intersecting a representative
of σ;µ by a general translate of Σ. (Hint: if σ;µ can be represented by a smooth subvariety, then, by
Kleiman’s Transversality Theorem, this intersection would be smooth.)

�

Exercise 5.34. Using the fact that Schubert classes of quadric type in OG(k, n) can be represented by the
intersection of a Schubert variety in G(k, n) with OG(k, n) deduce the following corollary of the proof.

Corollary 5.35. Let σ;µ be a Schubert class of quadric type in OG(k, n). If t = 1, then σ;µ is smoothable.

More generally, show that if the corresponding Schubert class in G(k, n) is smoothable, then so is the
Schubert class of quadric type in OG(k, n).

We now turn our attention to more general cohomology classes.

Example 5.36. The quadric diagram associated to the Schubert class σ4;3,1 in OG(3, 9) is 1]22000}00}0.
By Algorithm 4.35, the restriction variety associated to the sequence 1]00000}00}0 has the same class but
is not isomorphic to a Schubert variety. Similarly, the quadric diagram associated to the Schubert class
σ5;5,4,3,0 in OG(5, 13) is 22]234000}0}0}000}. The restriction variety associated to the quadric diagram
22]340000}0}0}000} has the same cohomology class but is not isomorphic to a Schubert variety.

The quadric diagram associated to the Schubert class σ2;1 in OG(2, 5) is 1]000}0. The restriction variety
associated to the sequence 00]00}0 also has the same class. More generally, the quadric diagram associated
to the Schubert class σ5,3,1;3,1 in OG(5, 11) is 1]22]00]000}00}0. The restriction variety associated to
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the sequence 1]200]0]000}00}0 has the same class. The latter varieties are not isomorphic to Schubert
varieties.

By analyzing Algorithm 4.35, we can find restriction varieties that have the same class as (or a multiple
of) a Schubert variety but are not isomorphic to a Schubert variety. The next two theorems use this
strategy to show that the class is not rigid or multi rigid.

Theorem 5.37. [C5, Theorem 1.7] Let σλ;µ be a Schubert class in OG(k, n). Express the sequences

a(λ), b(µ) by grouping the equal terms (αi11 , . . . , α
it
t ;βj11 , . . . , β

ju
u ). Assume that one of the following con-

ditions holds for (λ;µ):

(1) β1 < n− k and µs+j1 6= bn−12 c − λi for any 1 ≤ i ≤ s.
(2) There exists an index 1 ≤ u < t such that iu = 1, 0 < αu = αu+1 − 1 and bn−12 c − λi1+···+iu 6= µj

for any s < j ≤ k.
(3) #{i|bn−12 c − λi ≤ n − µs+1} = s + µs+1 − n−3

2 and there exists an index 1 ≤ h ≤ s such that

bn−12 c − λh = n− µs+1.

Then σλ;µ is not rigid.

Sketch of proof. The idea is to use restriction varieties to obtain deformations of Schubert varieties.
Let σλ;µ be a Schubert class in the cohomology of OG(k, n). For simplicity, set νi = bn−12 c − λi.
First, assume that β1 < n − k and µs+j1 6= νi for any 1 ≤ i ≤ s. By assumption, we have that
µs+j1 = µs+j1−1− 1 = · · · = µs+1− j1 + 1. We must have that either νi < bs+j1 or νi > bs+1 + 1 for every
1 ≤ i ≤ s. Define an admissible sequence (L•, Q•) by

Lν1 ⊂ · · · ⊂ Lνs ⊂ Q
µs+1−1
n−µs+1

⊂ Qµs+2−1
n−µs+2

⊂ · · · ⊂ Qµs+j1−1n−µs+j1
⊂ · · · ⊂ Qµkn−µk .

This sequence differs from the sequence defining the Schubert variety with class σλ;µ only in that the ranks

of the quadrics Q
µs+i1−1
n−µs+i1

, . . . , Q
µs+j1−1
n−µs+j1

are one more than the corresponding quadrics in the sequence

associated to the Schubert variety.

Exercise 5.38. Show that this sequence is admissible and using Algorithm 4.35 compute that the coho-
mology class of the restriction variety V (L•, Q•) is σλ;µ. Show that V (L•, Q•) is not isomorphic to the
Schubert variety Σλ;µ and conclude that the class σλ;µ is not rigid.

Next, assume that there exists an index 1 ≤ u < t such that iu = 1, αu = αu+1 − 1 and νi1+···+iu 6= bj
for any s < j ≤ k. For simplicity, set h =

∑u
l=1 il. There exists a subvariety Y of G(h + 1, Fνh+1

)
parameterizing (h + 1)-dimensional subspaces Λ ⊂ Fνh+1

that satisfy dim(Λ ∩ Fνi) ≥ i for i < h but is
not a Schubert variety. Let Z be the Zariski closure of the following quasi-projective variety

{W ∈ OG(k, n) | W ∩ Fνh+1
∈ Y, dim(W ∩ Fνi) = i, for i 6= h,dim(W ∩ F⊥µj ) = j}.

Then the class of Z is σλ;µ since specializing Y to a Schubert variety specializes Z to a Schubert variety.
Furthermore, Z is not a Schubert variety. Therefore, the class σλ;µ is not rigid.

Finally, assume that Condition (3) of the theorem holds. Consider the restriction variety V associated
to the sequence

Lν1 ⊂ · · · ⊂ Lνh−1
⊂ Lνh+1 ⊂ Lνh+1

⊂ · · · ⊂ Qµs+1−1
n−µs+1

⊂ · · · ⊂ Qνkn−νk .

Notice that this sequence differs from the sequence defining the Schubert variety in that the dimension
of the h-th isotropic linear space is one larger and the corank of the smallest dimensional quadric is one
smaller.

Exercise 5.39. Show that this sequence is admissible. Using Algorithm 4.35 compute that V has class
σλ;µ. Deduce that σλ;µ is not rigid.
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One can use similar arguments to conclude the following.

Theorem 5.40. [C5, Theorem 1.8] Let σλ;µ be a Schubert class in OG(k, n). Express the sequences

a(λ), b(µ) by grouping the equal terms (αi11 , . . . , α
it
t ;βj11 , . . . , β

ju
u ). Assume that either one of the conditions

in Theorem 5.37 or one of the following conditions holds for (λ;µ):

(1) There exists an index 1 ≤ u ≤ t such that bn−12 c−λi1+···+iu 6= µj for any s+1 ≤ j ≤ k and either
iu = 1 with 0 < αu <

n
2 or αu = αu+1 − 1.

(2) λs−1 > λs + 1 > 1 and either as + s > µs+1 or as + s = µj for some s + 1 ≤ j ≤ k and
µj = µj−1 + 2 = µs+1 + j − s− 1.

Then σλ;µ is not multi rigid.

Example 5.41. Consider the Schubert variety σ4,2;2,0 in OG(4; 11) with quadric diagram 22]00]00000}00}.
Then the variety corresponding to the sequence 22]000}0000}00} has class 2σ4,2;2,0. The corresponding
Schubert variety is not multi rigid.

It is also possible to prove the rigidity of certain Schubert classes. We refer the reader to [C5, Theorem
1.10]. As a consequence one can characterize rigid Schubert classes in OG(2, n) if n > 8. Finally, Robles
and The have classified the multi rigid Schubert classes in the spinor variety. Recall that in this case the
sequence µ is uniquely determined from λ, so it suffices to specify the conditions on λ.

Theorem 5.42. [RT, Theorem 8.1] Let σλ;µ be a Schubert class in the cohomology of the spinor variety

Sp(m, 2m). Express the associated sequence a(λ) by grouping the equal terms (αi11 , . . . , α
it
t ). Then σλ;µ

is multi rigid if and only if

(1) il ≥ 2 and αl−1 ≤ µl − 2 for all 1 < l ≤ t,
(2) i1 ≥ 2 if α1 > 0 and λs > 1 if λs > 0.

The following problem remains open in its full generality.

Problem 5.43. Characterize rigid and multi rigid Schubert classes in all orthogonal Grassmannians
OG(k, n).

Rigidity in SG(k, n). As in the case of orthogonal Grassmannians, restriction varieties give deformations
of Schubert varieties in SG(k, n) under suitable numerical assumptions. Recall that in this case n = 2m
is even. The following example is typical.

Example 5.44. The Grassmannian SG(1, n) is isomorphic to Pn−1. Hence, all the Schubert varieties
PLnj are linear spaces. However, not all linear spaces are Schubert varieties. Points and codimension
one linear spaces are always Schubert varieties. The restriction of Q to a codimension one linear space
has a one-dimensional kernel W , hence it is of the form W⊥. We conclude that points and codimension
one linear spaces are rigid. Linear spaces PM with 1 < dim(M) < n − 1 do not have to be isotropic,
hence the corresponding Schubert classes are not rigid since they can be deformed to non-isotropic linear
spaces.

The following theorem generalizes this example and can be proved by exhibiting explicit restriction
varieties that have the same class as the Schubert variety but are not Schubert varieties.

Theorem 5.45. [C4, Theorem 6.2] Let σλ•;µ• be a Schubert class in the cohomology of SG(k, n).

(1) If s = 0 and µj > k − j + 1 for some j, then σλ•;µ• is not rigid.
(2) If s ≥ 1 and λs > max(µs+1, λs−1 + 1), then σλ•;µ• is not rigid.

Corollary 5.46. [C4, Corollary 6.3]
32



(1) If the Schubert class σµ1−k+1,µ2−k+2,...,µk in the cohomology of G(k, n) can be represented by a
smooth subvariety of G(k, n), then the Schubert class σ;µ1,...,µk can also be represented by a smooth
subvariety of SG(k, n).

(2) If there exists an index i < k such that m − i − 1 > µi > µi+1 + 2 or if there exists an index
1 < i < k such that m− i > µi−1 = µi + 1 > µi+1 + 2, then σ;µ1,...,µk cannot be represented by a
smooth subvariety of SG(k, n).

(3) If the Schubert class σλ1,...,λk in the cohomology of G(k,m) can be represented by a smooth subvari-
ety of G(k,m), then the Schubert class σλ1,...,λk; in the cohomology of SG(k, n) can be represented
by a smooth subvariety of SG(k, n).

(4) If there exists an index i < k such that i < λi < λi+1 + 2 or an index 1 < i < k − 1 such that
i− 1 < λi−1 = λi − 1 < λi+1 − 2, then σλ1,...,λk; cannot be represented by a smooth subvariety of
SG(k, n).

Robles and The [RT] have characterized the multi rigid Schubert classes in Lagrangian Grassmannians.

Express a(λ) as (αi11 , . . . , α
it
t ). They show that a Schubert class σλ;µ in SG(m, 2m) is multi rigid if and

only if

(1) il ≥ 2 and αl−1 ≤ αl − 2 for all 1 < l ≤ t,
(2) i1 ≥ 2 if α1 > 0 and λs ≥ 3 if λs > 1.

The following problem remains largely open.

Problem 5.47. Characterize the rigid, multi rigid and smoothable Schubert classes in flag varieties and
isotropic flag varieties.
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