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Abstract

Let X be a smooth, irreducible, complex projective surface, H
a polarization on X. Let γ = (r, c,∆) be a Chern character. In
this paper, we study the cohomology of moduli spaces of Gieseker
semistable sheaves MX,H(γ). When the rank r = 1, the Betti
numbers were computed by Göttsche. We conjecture that if we
fix the rank r ≥ 1 and the first Chern class c, then the Betti num-
bers (and more generally the Hodge numbers) of MX,H(r, c,∆)
stabilize as the discriminant ∆ tends to infinity and that the sta-
ble Betti numbers are independent of r and c. In particular, the
conjectural stable Betti numbers are determined by Göttsche’s
calculation. We present evidence for the conjecture. We analyze
the validity of the conjecture under blowup and wall-crossing. We
prove that when X is a rational surface and KX ·H < 0, then the
classes [MX,H(γ)] stabilize in an appropriate completion of the
Grothendieck ring of varieties as ∆ tends to ∞. Consequently,
the virtual Poincaré and Hodge polynomials stabilize to the con-
jectural value. In particular, the conjecture holds when X is a
rational surface, H ·KX < 0 and there are no strictly semistable
objects in MX,H(γ).
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1. Introduction

Let X be a smooth, irreducible, complex projective surface and let H
be an ample divisor on X. We denote the Chern character γ of a sheaf
on X by γ = (r, c, d) or γ = (r, c,∆), where

r = rk(γ), c = ch1(γ), d = ch2(γ), ∆ =
1

2r2
(c2 − 2r ch2(γ)).

Let MX,H(γ) denote the moduli space parameterizing S-equivalence
classes of Gieseker semistable sheaves with Chern character γ. These
moduli spaces were constructed by Gieseker [Gie77] and Maruyama
[Mar78] and play a central role in many areas of mathematics ranging
from topology [Don90] to representation theory [Nak99] and mathe-
matical physics [Wit95]. Consequently, it is crucial to understand the
cohomology of MX,H(γ).

Let X [n] denote the Hilbert scheme of n points on X. When r = 1,
the moduli space MX,H(1, c,∆) is isomorphic to Picc(X) × X [∆]. The
abelian variety Picc(X) has complex dimension equal to the irregularity
q(X) = h1(X,OX). Hence, H∗(Picc(X),Z) ∼=

∧
H1(S1,Z)⊕2q, where

S1 is the circle. The Betti numbers of X [n] have been computed by
Göttsche [Got90]. The Künneth formula then determines the Betti
numbers of MX,H(1, c,∆). An easy analysis ([Got90, Corollary 2.11],
see also [Che96, LQW03] and §3) shows that these Betti numbers
stabilize as ∆ tends to ∞. Let bi,Stab(X) denote the ith Betti number
of MX,H(1, c,∆) for ∆� 0.

In contrast, the Betti numbers of MX,H(r, c,∆) are generally un-
known for r > 1. In this paper, we give evidence for the following
conjecture.

Conjecture 1.1. Fix a rank r > 0 and a first Chern character c.
Then the ith Betti number of MX,H(r, c,∆) stabilizes to bi,Stab(X) as ∆
tends to ∞. More precisely, given an integer k, there exists ∆0(k) such
that for ∆ ≥ ∆0(k) and i ≤ k

bi(MX,H(r, c,∆)) = bi,Stab(X).

Furthermore, if H is in a compact subset C of the ample cone of X, then
∆0(k) can be chosen independently of H ∈ C.

Our main philosophy in this paper is that computing the Betti num-
bers of MX,H(γ) is difficult and leads to complicated formulae, whereas
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computing the stable Betti numbers is much simpler and leads to beau-
tiful formulae.

Remark 1.2. In particular, if the irregularity q(X) = 0, then Con-
jecture 1.1 implies that the Betti numbers of MX,H(r, c,∆) stabilize to

the stable Betti numbers of the Hilbert scheme of points X [n].

Remark 1.3. Göttsche and Soergel similarly computed the Hodge
numbers of MX,H(1, c,∆) [GS93]. These also stabilize as ∆ tends to
∞. We expect the Hodge numbers of MX,H(r, c,∆) to also stabilize to
the stable Hodge numbers of MX,H(1, c,∆), at least when MX,H(r, c,∆)
is smooth.

Remark 1.4. A conjecture of Vakil and Wood [VW15, Conjecture
1.25] would imply that the class of MX,H(1, c,∆) stabilizes in an appro-
priate completion A− of the Grothendieck ring of varieties (see §3 for
details). The stabilization is known when X is a rational surface. More
generally, one can ask whether the classes of MX,H(r, c,∆) stabilize in
A− to the stable class of MX,H(1, c,∆) as ∆ tends to∞, assuming that
the classes of MX,H(1, c,∆) stabilize in A−. The proof of our main the-
orem in this paper will hold motivically and show the stabilization in
A−. The results on Betti and Hodge numbers are then consequences.

Remark 1.5. Some care is necessary in order to have a uniform
∆0(k) independent of H. For example, let Fe be a Hirzebruch surface
and let Hm be the polarization E + mF , where E is the curve with
self-intersection −e and F is the fiber class (see §2). If the rank r does
not divide c ·F , then the moduli space MX,Hm(r, c,∆) is empty for any
fixed ∆ if m� 0. Hence, it is necessary to impose some restrictions on
how H varies. It would be interesting to explore whether one can find
uniform bounds on compact subsets of the big and nef cone.

Remark 1.6. A more cautious conjecture would replace the Betti
numbers in Conjecture 1.1 with the virtual Betti numbers (see §3). We
speculate that as ∆ increases, the cohomology of MX,H(r, c,∆) becomes
pure and Poincaré duality holds in larger and larger ranges. All our
results on Betti numbers in this paper will be for smooth moduli spaces.
Hence, this is the most speculative aspect of Conjecture 1.1.

Conjecture 1.1 builds on the work of many authors and parts of the
statement have been suggested by others in print. We were especially
influenced by the work of Göttsche and Yoshioka. Yoshioka informs us
that he expected the cohomology to stabilize and this influenced his
work on the problem in the 1990s (see [Yos96a]). However, we were
unable to find this formulation of the conjecture in the literature. The
conjecture fits with the philosophy of Donaldson [Don90], Gieseker and
Jun Li [GL94, LiJ93, LiJ94, LiJ97] that the geometry of MX,H(γ) be-
comes better behaved as ∆ tends to∞. For example, O’Grady [O’G96]
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shows that the moduli space MX,H(γ) is irreducible and generically
smooth if ∆ is sufficiently large. He observes that in particular the ze-
roth Betti number of MX,H(γ) is 1 if ∆ is sufficiently large and poses
the question whether the cohomology stabilizes. Jun Li [LiJ97] shows
the stabilization of the first and second Betti numbers when the rank is
two. There is also related work on the stabilization of the cohomology
of the moduli spaces of locally-free stable sheaves and the Atiyah-Jones
conjecture in the gauge theory literature (see [LiJ97, Tau84, Tau89]).

Yoshioka computes the Betti numbers of moduli spaces of rank 2
sheaves on P2 and proves the stabilization of the Betti numbers [Yos94,
Corollary 6.3]. Yoshioka [Yos95, Yos96b] and Göttsche [Got96] com-
pute the Betti and Hodge numbers of MX,H(γ) when r = 2 and X is
a ruled surface. Yoshioka [Yos95, Yos96a] observes the stabilization
of the Betti numbers for rank 2 bundles on ruled surfaces. Göttsche
observes that the low degree Hodge numbers are independent of the
ample H and gives a nice formula for them [Got96]. Göttsche further
extends his results to rank 2 bundles on rational surfaces for polar-
izations that are KX -negative in [Got99] (see also [Yos95]). Most of
the arguments in this paper were originally developed by Göttsche and
Yoshioka when r = 2 and the paper owes a great intellectual debt to
the two of them. Manschot [Man11, Man14] building on the work of
Mozgovoy [Moz13] gives a formula for the Betti numbers of the mod-
uli spaces when X = P2. The stabilization of the Betti numbers can
be observed from the tables provided in these papers. Recent work of
Beaujard, Manschot and Pioline [BMP20] gives formulae for other del
Pezzo surfaces.

The conjecture is known for smooth moduli spaces of sheaves on K3
and abelian surfaces. By work of Mukai [Muk84], Huybrechts [Huy03]
and Yoshioka [Yos99], smooth moduli spaces of sheaves on a K3 surface
X are deformations of the Hilbert scheme of points on X of the same
dimension. In particular, they are diffeomorphic to X [n] of the same
dimension. Hence, their Betti numbers agree without taking any limits.

Yoshioka [Yos01] proves similar results on abelian surfaces. A smooth

moduli space of sheaves MX,H(γ) is deformation equivalent to X∗×X [n]

of the same dimension, where X∗ is the dual abelian surface. In this case
as well, the cohomology is isomorphic to the cohomology of X∗ ×X [n]

without the need to take limits.
Let K0(varC) denote the Grothendieck ring of varieties over the com-

plex numbers. Let L denote the class of the affine line A1. Let R =
K0(varC)[L−1]. The ring R has a Z-graded decreasing filtration F gen-
erated by

[X]La ∈ F i if dim(X) + a ≤ −i.
Let A− be the completion of R with respect to this filtration (see
§3 for further details). The moduli stacks MX,H(r, c,∆) of Gieseker
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semistable sheaves have well defined classes in A−. Furthermore, the
virtual Poincaré and Hodge polynomials extend to A− (see §3 for a more
detailed discussion). Our main theorem in this paper is the following.

Theorem 1.7. Let X be a smooth, complex projective rational sur-
face and let H be a polarization such that H · KX < 0. The classes
[MX,H(r, c,∆)] of the moduli stacks of Gieseker semistable sheaves sta-
bilize in A−, and their limit is the same as the limit of [MX,H(1, c,∆)]
in A− as ∆ tends to ∞. In particular, the virtual Betti and Hodge
numbers of MX,H(r, c,∆) stabilize, and the generating functions for

the stable numbers b̃i,Stab and h̃p,qStab are given by

∞∑
i=0

b̃i,Stabt
i =

∞∏
i=1

1

(1− t2i)χtop(X)
and

∞∑
p,q=0

h̃p,qStabx
pyq =

∞∏
i=1

1

(1− (xy)i)χtop(X)
.

Remark 1.8. The canonical class on minimal rational surfaces or del
Pezzo surfaces is anti-effective. Hence, on these surfaces the condition
H ·KX < 0 is satisfied for all polarizations. In general, on any rational
surface there are polarizations H with H ·KX < 0. However, for more
general rational surfaces this is a restriction on the polarization.

We will prove Theorem 1.7 by studying the effect of wall-crossing
[Joy08, Moz13] and blowing up [Moz13] on the virtual Poincaré poly-
nomials (and more generally, the classes in A−) of the moduli stack of
stable sheaves. Then using calculations of Mozgovoy [Moz13] and Man-
schot [Man14] on F1, we will be able to determine the stable limits.

As a consequence of Theorem 1.7, we recover a result of Yoshioka
described in a Remark in [Yos96a, §3.6].

Theorem 1.9. Let X be a smooth rational surface and let H be a
polarization such that H · KX < 0. Assume that the moduli spaces
MX,H(r, c,∆) do not contain any strictly semistable sheaves. Then
bi(MX,H(r, c,∆)) stabilizes to bi,Stab(X) as ∆ tends to ∞.

Under the assumptions of Theorem 1.9, the Hodge numbers of the
moduli spaces MX,H(r, c,∆) also stabilize to the stable Hodge numbers
of the Hilbert scheme of points. Hence, our results have the following
corollary, originally due to Yoshioka by different methods, proving a
special case of a conjecture of Jun Li [LiJ94].

Corollary 1.10. [Yos96c] Let X be a smooth, rational surface and
let H be a polarization such that H ·KX < 0. Let γ be a Chern character
such that MX,H(γ) does not contain any strictly semistable sheaves. If
∆ is sufficiently large, then the Picard rank ρ(MX,H(γ)) = ρ(X)+1 and
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the Donaldson morphism identifies PicQ(MX,H(γ)) with γ⊥ in K0(X),

where γ⊥ is the orthogonal complement under the Euler pairing.

Further problems and questions. Conjecture 1.1 raises several fur-
ther questions.

First, when stabilization holds, it would be desirable to have explicit
bounds for ∆0(k) in terms of X and the compact C ⊂ Amp(X).

Question 1.11. When stabilization holds, can we obtain effective
bounds for ∆ to guarantee that the Betti numbers of MX,H(r, c,∆) sta-
bilize?

Many of our arguments can be made effective; however, we have not
made a systematic effort to do so. Following our methods, S. Mandal
has given effective bounds when X = P2 [Mnd20].

We remark that when ∆ is small, the moduli spaces MX,H(r, c,∆)
can exhibit pathological behavior. For example, for any positive inte-
ger k, there exists moduli spaces of sheaves of rank 2 on very general
hypersurfaces of degree d � 0 in P3 that have at least k components
with different dimensions [CH18b, Theorem 5]. This suggests that
in general, ∆ may need to be large before stabilization occurs. See
[HL10, O’G96] for effective bounds that guarantee that the moduli
space is irreducible.

Conjecture 1.1 is a conjecture about equality of numbers. More gen-
erally, one can ask for a geometric reason for the stabilization. We do
not in general know algebraic maps between MX,H(r, c,∆) for different
∆. However, one can define correspondences using elementary modifi-
cations. It would be desirable to have an algebro-geometric reason for
the stabilization.

Question 1.12. Are there algebro-geometric reasons for the stabi-
lization of the cohomology?

We remark, however, that Conjecture 1.1 is closely related to the
Atiyah-Jones Conjecture (see §8). Taubes [Tau84] has constructed dif-
ferential geometric maps in this context. When (X,H) is a polarized
surface with KX = 0 or KX ·H < 0 and the rank and H · c are coprime,
Baranovsky [Bar00] constructs an action of an oscillator algebra on⊕

∆

H∗(MX,H(r, c,∆)).

This action potentially gives another geometric interpretation in this
restricted setting.

It is natural to wonder whether the stabilization of Betti numbers
holds in more general contexts. First, we expect the ith Betti number
of moduli spaces of pure one-dimensional sheaves MX,H(0, c, d) on X to
stabilize to bi,Stab(X) as c ·H tends to infinity by increasing c. Similarly,
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we would expect stabilization to hold for moduli spaces closely related
to MX,H(γ) such as the Matsuki-Wentworth moduli spaces of twisted-
Gieseker-semistable sheaves [MW97]. Since twisted-Gieseker semista-
bility is implied by slope-stability and implies slope-semistability, Corol-
lary 4.8 and Theorem 1.7 imply the following corollary.

Corollary 1.13. Let X be a smooth, complex projective rational sur-
face and let H be a polarization such that H · KX < 0. The classes
[MX,H,D(r, c,∆)] of the moduli stacks of (H,D)-twisted-Gieseker semi-
stable sheaves stabilize in A− to the stable limit of [MX,H(1, c,∆)] in
A− as ∆ tends to∞. In particular, the virtual Betti and Hodge numbers
of MX,H,D(r, c,∆) stabilize to those of MX,H(1, c,∆).

More generally, one can ask whether the Betti numbers of moduli
spaces of Bridgeland stable objects stabilizes as ∆ tends to ∞. For
an ample divisor H and an arbitrary Q-divisor D on X, consider the
(H,D)-slice of the Bridgeland stability manifold (see [CH18a] for de-
tails).

Question 1.14. Let σs,t(∆) be a sequence of stability conditions
in the (H,D)-slice bounded away from the collapsing wall. Do the
Betti numbers of the Bridgeland moduli spaces MX,σs,t(∆)(r, c,∆) of
semistable objects on X stabilize as ∆ tends to ∞? Do they stabilize to
the stable Betti numbers of MX,H(1, c,∆)?

If D = 0 and σs,t(∆) are a sequence of stability conditions lying above
the Gieseker wall, then Question 1.14 reduces to Conjecture 1.1. In gen-
eral, one has to show some care. Already on P2, by [CHW17, Theorem
5.7], if we fix a stability condition σs,t and let ∆ tend to ∞, then σs,t
is below the collapsing wall and the moduli space MP2,σs,t(r, c,∆) is
empty. The Question 1.14 is most interesting when the stability condi-
tions σs,t(∆) are between the Gieseker and the collapsing wall. There
is a positive answer to Question 1.14 when X is a K3 or abelian sur-
face, the Chern character γ is primitive and the stability conditions
avoid walls. For K3 surfaces, the Bridgeland moduli space is a holomor-
phic symplectic manifold of K3 type [BM14], hence diffeomorphic to a
Hilbert scheme of points on X. For abelian surfaces, under certain con-
ditions, these moduli spaces are deformation equivalent to X∗×X [n] of
the same dimension [MYY18]. Similarly, [ABCH13, BC13] provide
some evidence that there may be a positive answer to Question 1.14 for
rational surfaces.

Organization of the paper. In §2, we review basic facts concerning
rational surfaces and moduli spaces of sheaves on surfaces. In §3, we
discuss the relation between properties of generating functions and sta-
bilization of Betti numbers. We introduce the appropriate completion
of the Grothendieck ring of varieties where our calculations take place.
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In §4, using Joyce’s wall-crossing formula, we analyze the effect of wall-
crossing on Betti numbers. We then use the blowup formula of Yoshioka
and Mozgovoy to analyze the effect of blowing up. In §5, following cal-
culations of Manschot, we show stabilization for P2 and the Hirzebruch
surface F1. In §6, we prove our main theorem at the level of stacks. In
§7 we discuss the relation between the stabilization for the moduli stack
and the stabilization for the moduli space. In §8, we discuss the relation
between our conjecture and the Atiyah-Jones Conjecture. Finally, in §9,
we give applications to the Néron-Severi space of the moduli space.

Acknowledgments. We would like to thank Arend Bayer, Jim Bryan,
Lothar Göttsche, Jack Huizenga, Emanuele Macr̀ı, Kieran O’Grady and
Rahul Pandharipande for valuable conversations on the subject matter
of the paper. We are especially grateful to Kota Yoshioka for his gen-
erosity and many helpful remarks on an earlier draft of the paper. We
thank the referees for their very careful reading of the paper and for
their many corrections and improvements.

2. Preliminaries

In this section, we review the basic definitions and facts required in
the rest of the paper.

2.1. Semistable sheaves. We begin by reviewing notions of stability.
We refer the reader to [HL10] and [CH15] for more detailed discussions.

Let X be a smooth projective surface and H be an ample divisor on
X. All sheaves we consider in this paper will be coherent and torsion-
free. The Hilbert polynomial and the reduced Hilbert polynomial of a
sheaf F are defined by

PF ,H(m) = χ(F(mH)) = a2
m2

2
+ l.o.t., pF ,H =

PF ,H
a2

,

respectively. A sheaf F is called Gieseker H-semistable if for every
proper subsheaf E , pE,H(m) ≤ pF ,H(m) for m� 0.

Define the H-slope µH and the discriminant ∆ of a sheaf F by

µH(F) =
ch1(F) ·H
ch0(F)H2

, ∆(F) =
1

2 ch0(F)2
(ch1(F)2−2 ch0(F) ch2(F)).

A sheaf F is µH-semistable if for every proper subsheaf E of smaller
rank, we have µH(E) ≤ µH(F). The sheaf is called µH-stable if the
inequalities are strict.

A torsion free sheaf F admits a unique Harder-Narasimhan filtration
with respect to either Gieseker H-semistability or µH -semistability, i.e.
a filtration

0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F` = F
such that the quotients Ei = Fi/Fi−1 are semistable with decreasing
invariants. A semistable sheaf further admits a Jordan-Hölder filtration
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into stable objects. Two semistable sheaves are called S-equivalent if
they have the same Jordan-Hölder factors.

Let γ be the Chern character of a sheaf. Let MX,H(γ) be the moduli
space of S-equivalence classes of Gieseker H-semistable sheaves with
Chern character γ. These were constructed by Gieseker [Gie77] and
Maruyama [Mar78].

Let Mµ,s
X,H(γ) and Mµ,s,◦

X,H (γ) denote the open subsets of MX,H(γ)
parameterizing µH -stable sheaves and locally-free µH -stable sheaves,
respectively. Let MX,H(γ), Mµ,s

X,H(γ) and Mµ,s,◦
X,H (γ) denote the cor-

responding moduli stacks. Let Mµ
X,H(γ) denote the moduli stack of

µH -semistable sheaves with Chern character γ.
We will use the following well-known proposition several times.

Proposition 2.1. Let X be a smooth surface and let H be a polar-
ization such that KX ·H < 0. If MX,H(γ) is nonempty and contains no
strictly semistable sheaves, then MX,H(γ) is a smooth projective variety
of the expected dimension 1− χ(γ, γ).

Proof. Let V ∈ MX,H(γ) be a sheaf. By assumption, V is stable,
hence hom(V, V ) = 1. SinceKX ·H < 0, ext2(V, V ) = hom(V, V (KX)) =
0 by stability. We conclude that ext1(E,E) = −χ(γ, γ) + 1 and the
moduli space is smooth. q.e.d.

2.2. Zeta functions. Let X be a projective variety. Let X(n) denote
the nth symmetric product Xn/Sn, where the symmetric group Sn acts
on the product Xn by permuting the factors. Given a variety Y , let

PY (t) =

2 dim(Y )∑
i=0

bi(Y )ti

denote the Poincaré polynomial of Y , where bi(Y ) is the ith Betti num-
ber of Y .

Following Kapranov [Kap00], it is customary to define the motivic
zeta function of a variety X as follows

ZX(q) =

∞∑
n=0

[X(n)]qn,

where [X(n)] denotes the class of X(n) in the Grothendieck ring of vari-
eties. When X is a smooth projective surface, we will be interested in
the Betti realization of the zeta function. In order to distinguish this
function from the motivic zeta function, we will denote it by ζX(q, t).
The zeta function is given as follows [Mac62]

(1) ζX(q, t) =

∞∑
n=0

PX(n)(t)qn =
(1 + qt)b1(X)(1 + qt3)b3(X)

(1− q)(1− qt2)b2(X)(1− qt4)
.
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2.3. The cohomology of the moduli spaces of rank 1 sheaves.
Let X [n] denote the Hilbert scheme of n points on X. When r = 1,
a stable sheaf F ∈ MX,H(1, c,∆) is isomorphic to L ⊗ IZ , where L is
a line bundle with ch1(L) = c and IZ is an ideal sheaf of points on X

with |Z| = ∆. There is a natural isomorphism from Picc(X)×X [∆] to
MX,H(1, c,∆) given by tensor product. The inverse morphism is given
by considering the determinant map MX,H(1, c,∆)→ Picc(X) and the

map MX,H(1, c,∆)→ X [∆] given by F 7→ F ⊗ F∗ to X [∆].

Göttsche [Got90] computed the Betti numbers of X [n]. It is conve-
nient to form a generating function F (q, t) incorporating the Poincaré

polynomials of X [n]. Göttsche proves the following formula

F (q, t) =

∞∑
n=0

PX[n](t)qn =

∞∏
m=1

ζX(t2m−2qm, t).

By the Künneth formula, the Betti numbers of MX,H(1, c,∆) are
given by

G(q, t) =

∞∑
∆=0

4∆+b1(X)∑
i=0

bi(MX,H(1, c,∆))tiq∆

= (1 + t)b1(X)
∞∏
m=1

ζX(t2m−2qm, t).

2.4. Rational surfaces. In this subsection, we collect some facts on
surfaces that will play a role in our discussion. We refer the reader to
[Bea83, Cos06a, Cos06b, Har77] for more detailed discussions.

For an integer e ≥ 0, let Fe denote the Hirzebruch surface P(OP1 ⊕
OP1(e)). The Picard group of Fe is isomorphic to ZE ⊕ZF , where E is
a section with E2 = −e and F is the class of a fiber. They satisfy the
intersection numbers

E2 = −e, E · F = 1, F 2 = 0.

The nef cone of Fe is spanned by F and E + eF . The canonical class of
Fe is −2E− (e+ 2)F . Since −KFe is effective, we have that KFe ·H < 0
for every ample divisor H on Fe. The minimal rational surfaces are P2

and the Hirzebruch surfaces Fe with e 6= 1. The surface F1 is the blowup
of P2 at a point. Every smooth rational surface can be obtained from
one of these surfaces by a sequence of blowups.

Del Pezzo surfaces are surfaces with ample anti-canonical class. They
are P1×P1 or the blowup of P2 at no more than 8 general points. Since
−KX is ample, KX ·H < 0 for every ample divisor H.

Let π : X̂ → X be the blowup of a smooth surface X at a point p. Let
Ep denote the exceptional divisor over p. Then Pic(X̂) = Pic(X)⊕ Ep
and E2

p = −1 and Ep · D = 0 for any divisor D pulled back from X.
Furthermore, KX̂ = π∗KX +Ep. If H is a polarization on X such that
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KX ·H < 0, then π∗H is a big and nef class on X̂ with KX̂ · π
∗H < 0.

Since there are ample classes arbitrarily close to π∗H, one can also find
polarizations H ′ on X̂ with KX̂ · H

′ < 0. The condition KX · H < 0
is a convex condition on the ample cone. Hence any two polarizations
H1 and H2 satisfying this condition can be joined by a line segment
contained in the KX -negative part of the ample cone.

2.5. Moduli Spaces of Vector Bundles on Curves. In this inter-
lude, we discuss the well-known stabilization of the Betti numbers of
moduli spaces of vector bundles on curves as the rank tends to infinity.
The purpose of this subsection is to point out that there are contexts
in dimensions other than 2 where stabilization of Betti numbers occurs.
The stabilization easily follows from Zagier’s formula for the Betti num-
bers of the moduli space of vector bundles of rank r and degree d on a
genus g curve.

Theorem 2.2 (Zagier [Zag96]). If r and d are coprime, then the
Poincaré polynomial of the moduli space of vector bundles of rank r and
degree d on a genus g curve is given by

r∑
k=1

∑
r1+···+rk=r
r1,...,rk>0

(−1)k−1t2Mg(r1,...,rk;d/n)

(1− t2r1+2r2) · · · (1− t2rk−1+2rk)
Pr1 · · ·Prk ,

where

Pi =
(1 + t)2g(1 + t3)2g · · · (1 + t2i−1)2g

(1− t2)2(1− t4)2 · · · (1− t2i−2)2(1− t2i)
and

Mg(r1, . . . , rk;λ) =
k−1∑
j=1

(rj + rj+1)[(r1 + · · ·+ rj)λ] + (g − 1)
∑
i<j

rirj ,

with
[x] = 1 + bxc − x.

Corollary 2.3. Let C be a smooth, projective curve of genus at least
2. The Betti numbers of the moduli spaces of vector bundles on C with
coprime rank and degree stabilize as the rank increases, and the gener-
ating function for the stable Betti numbers is given by

∞∏
k=1

(1 + t2k−1)2g

(1− t2k)2

Proof. The main term in Zagier’s formula is the term with k = 1—as
r increases, the other terms only contribute to larger Betti numbers. It
suffices to show that if k > 1, given anyN , thenMg(r1, . . . , rk; d/n) > N
for r sufficiently large. Since

Mg ≥ (g − 1)
∑

1≤i<j≤k
rirj ,
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it suffices to bound the right hand side from below. We can rewrite

(g − 1)
∑

1≤i<j≤k
rirj =

g − 1

2
(r2 −

k∑
i=1

r2
i ) ≥ (g − 1)(r − 1).

The last inequality follows from the fact that if k ≥ 2, the quantity

(r2 −
∑k

i=1 r
2
i ) is minimized when, up to permuting indices, k = 2,

r1 = r − 1 and r2 = 1. Since (g − 1)(r − 1) grows arbitrarily large as r
increases, the corollary follows. q.e.d.

One can ask whether Conjecture 1.1 has any higher dimensional ana-
logues. By work of Macdonald [Mac62] (see also [Che96]), the Betti

numbers of symmetric products X(n) stabilize for any smooth projec-
tive variety X as n tends to infinity. Note, however, even when X is
a surface, the stable Betti numbers of X(n) and X [n] are different. It
would be interesting to find analogous stabilizations for moduli spaces
of sheaves on X for higher dimensional X.

3. Generating Functions and Stabilization

In this section, we express stabilization of Betti numbers in terms
of properties of generating functions. More generally, we will discuss
the stabilization of the class of a sequence of varieties in an appropriate
completion of the Grothendieck ring of varieties.

Let N be an integer. Let

Pd(t) =

sd∑
i=0

ai,dt
i

be a collection of polynomials of degree sd in t indexed by integers
d ≥ N . We introduce the shifted polynomials

P̃d(t) =

sd∑
i=0

ai,dt
i−sd =

0∑
j=−sd

bj,dt
j .

We say that the polynomials Pd(t) stabilize if for each j there exists
an integer d0(j) such that bj,d = bj,d+1 for d ≥ d0(j). In this case, let
βj = bj,d for d� 0 and let the stable limit of Pd(t) be the power series
in t−1 given by

P̃∞(t) =
0∑

j=−∞
βjt

j .

If the polynomials Pd(t) satisfy Poincaré duality for d� 0, i.e.

tsdPd(t
−1) = Pd(t),

then this notion is equivalent to the more naive notion of stabilization
that there exists d0(i) such that ai,d = ai,d+1 for d ≥ d0(i). In this case,
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let αi = ai,d for d� 0. Then the stable limit is

P̃∞(t) =

∞∑
i=0

αit
−i.

For convenience, we refer to

P∞(t) = P̃∞(t−1) =
∞∑
i=0

αit
i

as the generating function of the stable coefficients.
Form the generating function

F̃ (q, t) =

∞∑
d=N

P̃d(t)q
d =

∞∑
d=N

0∑
j=−sd

bj,dt
jqd.

Without assuming that the polynomials Pd(t) satisfy Poincaré duality,
the following proposition gives a criterion for Pd(t) to stabilize in terms

of the generating function F̃ (q, t).

Proposition 3.1. The polynomials Pd(t) stabilize if and only if for

every index i the coefficient of ti in (1−q)F̃ (q, t) is a Laurent polynomial
in q. Moreover, if the coefficients stabilize, the stable coefficients are
obtained by evaluating (1− q)F̃ (q, t) at q = 1.

Proof. If the polynomials Pd(t) stabilize, then the coefficient of ti in

P̃d(t) is βi for i ≥ d0(i). Without loss of generality, we may assume
that d0(i) > 0. For convenience, set bi,d = 0 for d < N . Hence, the

coefficient of ti in F̃ (q, t) has the form

d0(i)−1∑
d=N

bi,dq
d +

∞∑
d=d0(i)

βiq
d.

Let `i be the Laurent polynomial defined by

`i :=

−1∑
d=N

bi,dq
d +

d0(i)−1∑
d=0

(bi,d − βi)qd.

We can then rewrite the coefficient of ti as
∞∑
d=0

βiq
d + `i =

βi
1− q

+ `i.

Hence, the coefficient of ti in (1 − q)F̃ (q, t) is a Laurent polynomial
βi + (1− q)`i.

Conversely, suppose that the coefficient of ti in (1− q)F̃ (q, t) is given

by a Laurent polynomial
∑M

s=N γi,sq
s. Then the coefficient of ti in
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F̃ (q, t) is given by (
M∑
s=N

γi,sq
s

)
×
∞∑
j=0

qj .

The coefficient of qd stabilizes for d ≥ M − N to
∑M

s=N γi,s. Conse-
quently, the polynomials Pd(t) stabilize.

Now assume that the polynomials Pd(t) stabilize. Since the coefficient

of ti in (1−q)F̃ (q, t) is given by βi+(1−q)`i, if we evaluate (1−q)F̃ (q, t)
at q = 1, we get the series

∑
i βit

i. This series encodes the stable limit
of the polynomials Pd(t). q.e.d.

If the polynomials Pd(t) satisfy Poincaré duality for d� 0, then there
is a similar criterion for stabilization. Let

F (q, t) =

∞∑
d=N

Pd(t)q
d =

∞∑
d=N

sd∑
i=0

ai,dt
iqd.

Corollary 3.2. Assume that the polynomials Pd(t) satisfy Poincaré
duality for d � 0. Then they stabilize if and only if the coefficient of
ti in (1 − q)F (q, t) is a Laurent polynomial in q. The stable limit P̃∞
is then given by evaluating (1− q)F (q, t−1) at q = 1 and the generating
function for the stable coefficients is given by evaluating (1 − q)F (q, t)
at q = 1.

As a corollary we obtain the following well-known proposition (see
[Got90, Che96] or [LQW03]).

Proposition 3.3. [Got90, Corollary 2.11] Let MX,H(1, c,∆) be mod-
uli spaces of rank one sheaves with c1 = c on a smooth, irreducible pro-
jective surface X. Then the Betti numbers of MX,H(1, c,∆) stabilize as
∆ tends to ∞. Moreover, the generating function for the stable Betti
numbers bi,Stab(MX,H(1, c,∆)) is given by

(2)
∞∑
i=0

bi,Stab(MX,H(1, c,∆))ti = (1− t2)
∞∏
m=1

(1 + t2m−1)2b1

(1− t2m)b2+2
,

where bi denotes the ith Betti number of X.

Proof. By Göttsche’s formula [Got90], we have that

F (q, t) =

∞∑
∆=0

PX[∆](t)q∆

=
∞∏
m=1

(1 + t2m−1qm)b1(1 + t2m+1qm)b3

(1− t2m−2qm)b0(1− t2mqm)b2(1− t2m+2qm)b4
.

By Corollary 3.2, to verify that the Betti numbers of X [∆] stabilize,
it suffices to show that the coefficients of ti in (1− q)F (q, t) are Laurent
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polynomials in q. By Göttsche’s formula, we have

(1− q)F (q, t) =

∞∏
m=2

1

(1− t2m−2qm)b0

∞∏
m=1

(1 + t2m−1qm)b1(1 + t2m+1qm)b3

(1− t2mqm)b2(1− t2m+2qm)b4
.

To compute the coefficient of ti, we can consider the expression modulo
ti+1. Then all but finitely many of the terms in the numerator become
1. Every term that occurs in the denominator of (1 − q)F (q, t) is of
the form (1 − tlqm) for a positive l. We can express the terms in the
denominator by the power series

1

1− tlqm
=

∞∑
j=0

tljqmj .

Modulo ti+1, these sums are all finite and all but finitely many of them
are equal to 1. Consequently, the coefficient of ti is a polynomial in q.
Therefore, the Betti numbers of X [∆] stabilize. By Corollary 3.2, the
generating function for the stable cohomology of X [∆] is

∞∏
m=2

1

(1− t2m−2)b0

∞∏
m=1

(1 + t2m−1)b1(1 + t2m+1)b3

(1− t2m)b2(1− t2m+2)b4
.

If X is a regular surface, the moduli space MX,H(1, c,∆) of rank

1 sheaves is isomorphic to the Hilbert scheme of points X [∆]. Hence,
there is nothing further to show. More generally, combining Göttsche’s
calculation with the Künneth formula, we obtain that the generating
function for the Poincaré polynomials of MX,H(1, c,∆) is

G(q, t) = (1 + t)b1
∞∏
m=1

(1 + t2m−1qm)b1(1 + t2m+1qm)b3

(1− t2m−2qm)b0(1− t2mqm)b2(1− t2m+2qm)b4
.

It is again clear that the coefficient of ti in (1−q)G(q, t) is a polynomial
in q. Hence, the Betti numbers of MX,H(1, c,∆) stabilize as ∆ tends to
∞. The generating function for the stable Betti numbers is given by

(1 + t)b1
∞∏
m=2

1

(1− t2m−2)b0

∞∏
m=1

(1 + t2m−1)b1(1 + t2m+1)b3

(1− t2m)b2(1− t2m+2)b4
.

If X is a smooth, irreducible, projective surface, this expression simpli-
fies to

(1− t2)
∞∏
m=1

(1 + t2m−1)2b1

(1− t2m)b2+2
.

q.e.d.
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Proposition 3.4. Let X be a smooth, irreducible projective surface
X. Then the Hodge numbers of MX,H(1, c,∆) stabilize as ∆ tends to
∞. The generating function for the stable Hodge numbers

G(x, y) =
∑
a,b≥0

ha,bStabx
ayb

is equal to

(1 + x)
b1
2 (1 + y)

b1
2

2∏
a,b=0,

(a,b)6=(0,0)

(1 + (−1)a+b+1xayb)(−1)a+b+1ha,b(X) ·

∞∏
m=2

2∏
a,b=0

(1 + (−1)a+b+1xa+m−1yb+m−1)(−1)a+b+1ha,b(X).

Proof. Göttsche, Soergel [GS93] and Cheah [Che96] compute the

generating function for the Hodge numbers of X [∆].

F (x, y, q) =
∞∑

∆=1

ha,b(X [∆])xaybq∆

=

∞∏
m=1

2∏
a,b=0

(1 + (−1)a+b+1xa+m−1yb+m−1qm)(−1)a+b+1ha,b(X),

where hp,q(X) denotes the (p, q)-Hodge number of X. The denominator
depends only on q, precisely when a = b = 0 and m = 1. In (1 −
q)F (x, y, q), the coefficient of every term xαyβ is a polynomial in q.
Hence, the Hodge numbers stabilize and the generating function for the
stable Hodge numbers is given by

2∏
a,b=0,

(a,b)6=(0,0)

(1 + (−1)a+b+1xayb)(−1)a+b+1ha,b(X)×

∞∏
m=2

2∏
a,b=0

(1 + (−1)a+b+1xa+m−1yb+m−1)(−1)a+b+1ha,b(X).

Finally, by the Künneth formula, we have

G(x, y, q) =
∞∑

∆=1

ha,b(MX,H(1, c,∆))xaybq∆

= (1 + x)
b1
2 (1 + y)

b1
2 F (x, y, q).

Hence, these Hodge numbers stabilize to

(1 + x)
b1
2 (1 + y)

b1
2 ((1− q)F (x, y, q)|q=1).

q.e.d.
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More generally, we are interested in the stabilization of the motive of
MX,H(r, c,∆). We recall the definition and some basic properties of the
Grothendieck ring of varieties. The Grothendieck ring of varieties over
a field k, K0(vark), is the quotient of the free abelian group on varieties
[X] of finite type over k by the scissor relations,

[X] = [Y ] + [Z]

if Y and Z are disjoint locally closed subvarieties of X with X = Y ∪Z.
Define multiplication by

[X] · [Y ] = [X × Y ].

We denote the class of the affine line [A1] by L. The Grothendieck ring
of schemes over k is defined similarly, but the scissor relations imply
that the class of a scheme is the same as the class of the variety with
the induced reduced structure.

Consider R = K0(vark)[L−1]. The ring R has a Z-graded decreasing
filtration F generated by

[X]La ∈ F i if dim(X) + a ≤ −i.
Define the ring A− by

A− := lim←−
i

F0R/F iR⊗F0R R.

We note that in A−, the elements L and Lk − 1 for k a positive integer
are invertible, so we have a well-defined map from R̃ = R[(Lk − 1)−1]
to A−. Consequently, the classes of moduli stacks [MX,H(r, c,∆)] are
well-defined in A− [BD07, Joy07].

Elements of the ring A− have a natural notion of dimension gen-
eralizing the dimension of smooth projective varieties. We have the
inequality

dim(X + Y ) ≤ dim(X) + dim(Y ).

By Hironaka’s resolution of singularities [Hir64], if k has charac-
teristic 0, K0(vark) is generated by the classes of smooth projective
irreducible varieties. The Poincaré polynomial induces a map

P (t) : K0(vark)→ Z[t]

and the resulting map is known as the virtual Poincaré polynomial.
Similarly, the Hodge polynomial induces a map

H(x, y) : K0(vark)→ Z[x, y]

and the resulting map is known as the virtual Hodge polynomial. When
X is a smooth, complex projective variety, then the virtual Poincaré
and the virtual Hodge polynomials coincide with the ordinary Poincaré
and Hodge polynomials. More generally, if the cohomology of a variety
is pure, then the virtual Poincaré and Hodge polynomials coincide with
the ordinary Poincaré and Hodge polynomials. The virtual Poincaré
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polynomial can be extended to R (resp. A−), where it takes values in
Z[t±1] (resp. Z((t−1))) [Joy07]. Similarly, the virtual Hodge polyno-
mial can be extended to R (respectively, A−), were it takes values in
Z[x±1, y±1] (resp., Z((x−1, y−1))) [Joy07].

Given a sequence of smooth projective varieties Xi of dimension di,
we would like to have a notion of stabilization in A− that guarantees
that the low-degree Betti numbers of Xi stabilize. The correct notion of
stabilization is not the naive one of asking the sequence [Xi] to be con-
vergent in A−. Instead we consider the sequence L−di [Xi]. By Poincaré
duality,

P[Xi](t) = PL−di [Xi]
(t−1), H[Xi](x, y) = HL−di [Xi]

(x−1, y−1).

If the sequence L−di [Xi] converges in A−, then the low-degree Betti
numbers (and Hodge numbers) of the Xi stabilize.

Definition 3.5. We say a sequence of elements ai ∈ A− stabilizes to
a if the sequence L− dim(ai)ai converges to a.

It is convenient to think of the sequence ai = L−di [Xi] as a generating
function

F (q) =
∑
i

aiq
i,

which we can think of as an element of A−{{q}}, the ring of Puiseux
series in q with coefficients in A−. We will often index our varieties by
the discriminant ∆ or the second Chern character d. Since ∆ and d
can take fractional values, it is convenient to allow series in q with frac-
tional exponents with bounded denominator. The following proposition
generalizes Proposition 3.1 to the present context.

Proposition 3.6. Let ai be a sequence in A−. Then ai converges to
a in A− if and only if the series (1 − q)

∑
aiq

i is convergent at q = 1
and the sum at q = 1 is a.

Proof. The proof is almost identical to the proof of Proposition 3.1.
Set F (q) =

∑∞
i=1 aiq

i. We can write (1− q)F (q) as
∑∞

i=1(ai − ai−1)qi,
where a0 = 0. If we evaluate this sum at q = 1, the nth partial sum is
an. The proposition follows. q.e.d.

Let P(∆) denote the set of partitions of ∆. Let α be the partition

αi11 , · · · , α
ij
j , where the part αm is repeated im times. Let |α| be the

length (equivalently, the number of parts) of the partition. Let X(α)

denote the product X(i1)×· · ·×X(ij). Göttsche [Got01] calculates the
motive of the Hilbert scheme of points and finds that

[X [∆]] =
∑

α∈P(∆)

[X(α) × A∆−|α|].
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This furthermore implies the following equality of generating functions

(3)
∞∑

∆=1

[X [∆]]L−2∆q∆ =
∞∏
m=1

ZX(L−m−1qm),

where ZX is the motivic Zeta function of X (see §2.2).
Vakil and Wood [VW15, Conjecture 1.25] conjecture that the se-

quence [X(∆)]L−2∆ converges in A−. By Göttsche’s formula (3), this

conjecture also implies that the sequence [X [∆]]L−2∆ converges. The
conjecture is known when X is a rational surface, but is open in general
(see [VW15, Proposition 4.2] and [LL04, Theorem 3.9]).

In this paper, we will show that if X is a rational surface and H is an
ample line bundle with KX ·H < 0, then the sequence [MX,H(r, c,∆)]
stabilizes in A− and compute the limit explicitly (see Theorem 6.2). The

sequences [X(∆)] and [MX,H(r, c,∆)] stabilize in A− to limits that only
differ by a factor of (1 − L). We expect the same theorem to hold for
any ample line bundle H. For more general surfaces X, we do not know
whether the sequence [X [∆]] stabilizes in A−. It is still worth asking
whether the sequence [MX,H(r, c,∆)] stabilizes in A−. We expect that

when both [X [∆]] and [MX,H(r, c,∆)] stabilize in A−, they stabilize to
the same limit up to a factor of (1−L). However, we do conjecture that
the (virtual) Poincaré or Poincaré-Hodge polynomials of the sequence
[MX,H(r, c,∆)] stabilize.

4. The Wall-crossing and Blowup formulae

In this section, we study the stabilization of the cohomology of the
moduli spaces of sheaves under wall-crossing and blowing up.

4.1. Wall-crossing. We begin by studying the effect of the change of
polarization on the class of the Gieseker moduli stack MX,H(γ) using
Joyce’s wall-crossing formula. In this subsection, to simplify notation,
we will omit the surface X from the notation since it will be fixed
throughout the discussion.

Given γ, the ample cone of X admits a chamber decomposition where
for ample divisors H in a given chamber the moduli stacks MH(γ) are
isomorphic. When the ampleH crosses a wall, certain sheaves inMH(γ)
become destabilized and new sheaves may become semistable. Joyce
gives an inductive formula for computing the change in [MH(γ)] in R̃ in
terms of the possible Harder-Narasimhan filtrations of unstable sheaves.

Let γ1, . . . , γ` be Chern characters with
∑`

i=1 γi = γ. The Chern char-
acters γi are the potential characters of the Harder-Narasimhan factors
of certain sheaves with character γ. Let ri, µi and ∆i be the rank, the
slope and the discriminant of γi.

Definition 4.1. If for all i, we have either
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A) µH1(γi) > µH1(γi+1) and µH2(
∑i

j=1 γj) ≤ µH2(
∑`

j=i+1 γj), or

B) µH1(γi) ≤ µH1(γi+1) and µH2(
∑i

j=1 γj) > µH2(
∑`

j=i+1 γj),

then Sµ(γ1, · · · , γ`;H1, H2) is (−1)u, where u is the number of i for
which the inequalities of case B hold. Otherwise,

Sµ(γ1, · · · , γ`;H1, H2) = 0.

Similarly, we define S(γ1, · · · , γ`;H1, H2) with µHi replaced with the
reduced Hilbert polynomial with respect to Hi.

Joyce proves the following theorem. Joyce assumes that −KX is nef,
but his proof goes through assuming that KX has negative intersection
with H1 and H2.

Theorem 4.2. [Joy08, Theorem 6.21] If H1 and H2 are ample line
bundles with KX · Hi < 0 for i ∈ {1, 2}, then the following equation

holds in R̃,
(4)

[MH2(γ)] =
∑

∑
γi=γ

S(γ1, · · · , γ`; H1,H2)L−
∑

1≤i<j≤` χ(γj ,γi)
∏̀
i=1

[MH1(γi)].

Theorem 4.2 holds if we replace all the MX,Hi(γ) with Mµ
X,Hi

(γ), the

moduli stack of slope-Hi-semistable sheaves, and S(γ1, · · · , γ`; H1,H2)
with Sµ(γ1, · · · , γ`; H1,H2).

We want to apply Theorem 4.2 in a slightly more general setting,
where the line bundles are no longer ample but nef. Fortunately, Joyce’s
proof extends to give the following.

Corollary 4.3. Theorem 4.2 holds even if the Hi are only nef, so
long as all the terms on the right hand side of Equation (4) are in A−

and the sum is convergent. In particular, Theorem 4.2 holds if the sum
is finite and all the stacks involved are of finite type.

Definition 4.4. We say that a line bundle L is admissible if for all
Chern characters γ the terms on the right hand side of Equation (4) are
in A− and the sum is convergent when L = H1 and H2 is ample and
H1 is ample and L = H2.

Corollary 4.5. If L is a big and nef line bundle with KX · L < 0,
then L is admissible.

Proof. In [Joy08, Theorem 5.16], Joyce proves that if H1 and H2 are
ample, then the sum on the right hand side of Equation (4) is finite.
His proof only uses the ampleness to show that given two divisor classes
ξ1, ξ2 such that H · (ξ1 − ξ2) = 0, with H = aH1 + bH2 with a, b ≥ 0,
then (ξ1 − ξ2)2 ≤ 0. This is still true if H1 = L and H2 is ample or
vice versa. From this it follows that all the moduli stacks of µL-stable
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sheaves are of finite type. These two facts together are enough to show
that L is admissible. q.e.d.

We show that if ∆(γ) is sufficiently large, then the dimensions of the
contributions with ` > 1 have arbitrarily negative upper bounds. More
precisely, we have the following.

Proposition 4.6. Fix a positive integer r and a class c ∈ Pic(X).
Let H1 be an ample class and let H2 be a big and nef class. Assume that
Hi · KX < 0. Then for all integers v, there is a ∆0(v) > 0 such that
for all γ ∈ K0(X) with rk(γ) = r, c1(γ) = c, and ∆(γ) ≥ ∆0(v), all the
terms in the sum with ` > 1 have dimension less than v. Moreover, if
C is a compact convex subset of the KX-negative part of the big and nef
cone and H1, H2 ∈ C, then ∆0(v) can be chosen to depend only on C.

In particular, [MH1(γ)] stabilizes in A− as ∆ tends to ∞ if and only
if [MH2(γ)] does. In that case, they have the same stabilization.

Proof. By Corollary 4.5, H2 is admissible and the moduli stacks
Mµ,s

X,H2
(γ) are of finite-type. In this case, since Joyce proves that there

are finitely many walls, we can analyze the wall-crossing one wall at a
time. The dimension of [MH1(γi)] is −χ(γi, γi). Hence, the dimension

of the term L−
∑

1≤i<j≤` χ(γj ,γi)
∏`
i=1[MH1(γi)] is given by∑̀

i=1

−χ(γi, γi)−
∑

1≤i<j≤`
χ(γj , γi).

By the biadditivity of the Euler pairing, this is equal to

(5)
∑

1≤i<j≤`
χ(γi, γj)− χ(γ, γ).

Denote the rank, slope and discriminant of γi by ri, µi and ∆i, respec-
tively. The Riemann-Roch Theorem says that

(6) χ(γ, γ) = r2(χ(OX)− 2∆)

(7)

χ(γi, γj) = rirj

(
(µi − µj)2

2
− KX

2
· (µj − µi) + χ(OX)−∆i −∆j

)
Substituting Equations (6) and (7) into Equation (5), we obtain

r2(2∆− χ(OX))

+
∑

1≤i<j≤`
rirj

(
(µj − µi)2

2
− KX

2
· (µj − µi) + χ(OX)−∆i −∆j

)
.

The dimension of the ` = 1 summand is r2(2∆− χ(OX)), so the differ-
ence between the two dimensions is given by

dγ1,...,γ` =
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(8)

−
∑

1≤i<j≤`
rirj

(
(µj − µi)2

2
− KX

2
· (µj − µi) + χ(OX)−∆i −∆j

)
.

Since
∑`

i=1 γi = γ, we can express the slope µ and discriminant ∆ of γ
in terms of the slopes µi and discriminants ∆i of γi as follows

µ =
∑̀
i=1

ri
r
µi and ∆ =

1

2r2

(∑̀
i=1

riµi

)2

− 1

2r

∑̀
i=1

ri(µ
2
i − 2∆i).

In particular,∑̀
i=1

ri∆i = r∆− 1

2r

(∑̀
i=1

riµi

)2

+
1

2

∑̀
i=1

riµ
2
i .

Observe that

1

2r

∑
1≤i<j≤`

rirj(µj − µi)2 =
1

2r

∑̀
i=1

ri(r − ri)µ2
i −

1

r

∑
1≤i<j≤`

rirjµiµj =

− 1

2r

(∑̀
i=1

riµi

)2

+
1

2

∑̀
i=1

riµ
2
i =

(∑̀
i=1

ri∆i

)
− r∆.

Moreover,

−
∑

1≤i<j≤`
rirj(−∆i −∆j) =

∑̀
i=1

ri(r − ri)∆i.

Using these two observations and splitting the coefficient of the qua-
dratic term as 1

2 = 1
2r + 1

2

(
1− 1

r

)
, the expression in (8) for dγ1,...,γ`

becomes

dγ1,...,γ` =

r∆−
∑

1≤i<j≤`
rirj

(
1

2

(
1− 1

r

)
(µj − µi)2 − KX

2
· (µj − µi) + χ(OX)

)

+
∑̀
i=1

ri(r − ri − 1)∆i.

Therefore, we can write

dγ1,...,γ` = r∆ +G(µj − µi) +
∑̀
i=1

αi∆i,

where αi ≥ 0 and G is a quadratic polynomial with the coefficients of
the square terms (µj−µi)2 strictly negative. If a µ-semistable sheaf gets
destabilized on a wall corresponding to an ample (or big and nef) divisor



STABLE COHOMOLOGY OF MODULI SPACES OF SHEAVES 23

H, then it becomes strictly semistable on the wall and the Harder-
Narasimhan factors all have the same H-slope. Since there is a big
and nef H (either H1 or H2) such that H · (µj − µi) = 0, the Hodge
index theorem implies that (µj − µi)2 ≤ 0 with equality if and only if

µj − µi = 0. Since the intersection form is negative definite on H⊥,
as the µi vary, G is bounded below by some constant Cr1,...,r` . By the
Bogomolov inequality, if MH1(γi) is nonempty, then ∆i ≥ 0. Hence, if
we fix ` ≥ 2 and the ranks ri, then

dγ1,...,γ` ≥ r∆ + Cr1,...,r` .

Since there are only finitely many possible choices for ` and the ranks
ri, letting C be the minimum over all possible constants Cr1,...,r` we get

d := min dγ1,...,γ` ≥ r∆ + C.

If ∆ is sufficiently large, then d can be made arbitrarily large and the
difference between [MX,H1(γ)] and [MX,H2(γ)] has dimension at least
d less than the dimension of MX,H1(γ). q.e.d.

Taking the virtual Poincaré (resp. Hodge) polynomials, we obtain
the following corollary.

Corollary 4.7. Assume H1 and H2 are polarizations on X such
that KX · Hi < 0. If the virtual Poincaré (resp. Hodge) polynomials
of MX,H1(γ) stabilize as ∆ goes to ∞, then the virtual Poincaré (resp.
Hodge) polynomials ofMX,H2(γ) stabilize, and they have the same stable
limit.

The next corollary shows that the difference between Gieseker (semi)
stability and slope (semi)stability does not effect stabilization.

Corollary 4.8. Let H be a big and nef divisor and assume that KX ·
H < 0. Then the following are equivalent:

1) The classes [Mµ
X,H(r, c,∆)] stabilize in A−.

2) The classes [MX,H(r, c,∆)] stabilize in A−.
3) The classes [Mµ,s

X,H(r, c,∆)] stabilize in A−.

If any of them stabilize, then they all have the same stable limit. Fur-
thermore, the same holds for the virtual Poincaré (resp. Hodge) poly-
nomials.

Proof. Consider the locus in Mµ
X,H(r, c,∆) which are not µH -stable.

Such sheaves have a Jordan-Hölder filtration of length greater than 1.
Suppose F has a Jordan-Hölder filtration of type F0 ⊂ F1 ⊂ · · · ⊂ F`.
Let Ei = Fi/Fi−1 with class γi. The space of sheaves having such a
filtration has codimension

∑
1≤i<j≤`−χ(γi, γj). By the proof of Propo-

sition 4.6, this codimension tends to∞ as ∆ tends to∞. The argument
for the Gieseker-semistable locus is identical. q.e.d.
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4.2. Blowup. We now address blowing up. Let p : X̂ → X be the
blowup of X at a point x. Let E be the exceptional divisor in X̂. Let
H be an ample line bundle on X. LetMµ,s

X,H(r, C, d) denote the moduli

stack of torsion-free µH -stable sheaves on X of class (r, C, d). Similarly,
letMµ,s

X̂,p∗H
(r, C−mE, d) denote the moduli stack of torsion-free µp∗H -

stable sheaves on X̂ of class (r, C−mE, d). In this subsection, it is more
convenient to use ch2 instead of ∆ in order to conform to the literature.
Define the following generating functions

YX,H(q) =
∑

[Mµ,s
X,H(r, C, d)]q−d and

ŶX,H,m(q) =
∑

[Mµ,s

X̂,p∗H
(r, C −mE, d)]q−d.

Then by [Moz13, Proposition 7.3 and Corollary 7.7], the following
equality holds:

ŶX,H,m(q) = Fm(q)YX,H(q),

where

Fm(q) =
∏
k≥1

1

(1− Lrkqk)r
∑

∑r
i=1 ai=0, ai∈Z+m

r

L
∑
i<j (aj−ai

2
)q−

∑
i<j aiaj .

Lemma 4.9. The sequence [Mµ,s

X̂,p∗H
(r, C −mE, d)] stabilizes in A−

if and only if the sequence [Mµ,s
X,H(r, C, d)] does.

Proof. We begin by defining auxiliary generating functions

Y ′X,H(q) =
∑

[Mµ,s
X,H(r, C, d)]L2rd−C2+r2χ(OX)q−d, and

Ŷ ′X,H,m(q) =
∑

[Mµ,s

X̂,p∗H
(r, C −mE, d)]L2rd−C2+r2χ(OX)q−d.

By Proposition 3.6, we need to show that (1− q)Y ′X,H(q) is convergent

at q = 1 if and only if (1 − q)Ŷ ′X,H,m(q) is. Since the blowup formula
provides the relation

ŶX,H,m(q) = Fm(q)YX,H(q),

it follows that Ŷ ′X,H,m(q) = Fm(L−2rq)Y ′X,H(q). Hence, it suffices to

show that Fm(L−2rq) is convergent when we evaluate at q = 1. Since∏
k≥1

1
(1−L−rkqk)r

is convergent in A− when q = 1, it suffices to show

that ∑
∑r
i=1 ai=0, ai∈Z+m

r

L
∑
i<j (aj−ai

2
)L−2r

∑
i<j aiajq−

∑
i<j aiaj

converges in A− when q = 1. It is enough to show that there are only
finitely many (a1, . . . , ar) with

∑r
i=1 ai = 0 and ai ∈ Z + m

r where the
quadratic form Q(a1, . . . , ar) =

∑
i<j aiaj takes a given fixed value C.

Consider the subspace V of Rr where the coordinates sum to 0. We
can restrict Q to a quadratic form on V . Since

∑
ai = 0, we have



STABLE COHOMOLOGY OF MODULI SPACES OF SHEAVES 25

(
∑
ai)

2 = 0, so
∑
a2
i = −2

∑
i<j aiaj . It follows that Q is negative-

definite on V . This means that the level sets Q−1({C}) are compact.
Once we add the requirements that the ai ∈ Z + m

r , there are only
finitely many possible solutions as desired. q.e.d.

Proposition 4.10. Suppose that the [Mµ,s
X,H(r, C, d)] stabilize in A−.

We have the relation

lim
q→1

(
(1− q)Ŷ ′X,H,m(q)

)
=
∞∏
k=1

1

1− L−k
lim
q→1

(
(1− q)Y ′X,H(q)

)
between the generating series for Mµ,s

X,H(r, C, d) and Mµ,s

X̂,p∗H
(r, C −

mE, d).

Proof. As in the proof of Lemma 4.9, we have

Ŷ ′X,H,m(q) = Fm(L−2rq)Y ′X,H(q).

We want to multiply both sides by 1− q and take the limit as q goes to
1. This means that we need to find limq→1 Fm(L−2rq).

We have

Fm(L−2rq) =
∏
k≥1

1

(1− L−rkqk)r
×

∑
∑r
i=1 ai=0, ai∈Z+m

r

L
∑
i<j (aj−ai

2
)L2r

∑
i<j aiajq−

∑
i<j aiaj .

If we take the limit as q goes to 1, we get
(9)

Fm(L−2r) =
∏
k≥1

1

(1− L−rk)r
∑

∑r
i=1 ai=0, ai∈Z+m

r

L
∑
i<j (aj−ai

2
)L2r

∑
i<j aiaj .

First, we show that the sum∑
∑r
i=1 ai=0, ai∈Z+m

r

L
∑
i<j (aj−ai

2
)+2r

∑
i<j aiaj

is independent of m.
We can rewrite this sum as∑

∑r
i=1 ai=0, ai∈Z+m

r

L−
∑
i<j (ai−aj

2
)

We will now give a bijection between the following two sets of ordered
sequences

A = {(ai)ri=1 :

r∑
i=1

ai = 0, ai ∈ Z +
m

r
}

and

B = {(bi)ri=1 :
r∑
i=1

bi = 0, bi ∈ Z +
m− 1

r
}
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which exchanges

L−
∑
i<j (ai−aj

2
) with L−

∑
i<j (bi−bj

2
).

Set bi = ai−1 − 1
r for i ≥ 2 and b1 = ar + r−1

r . This is clearly a
bijection between A and B. We can write∑

i<j

(
bi − bj

2

)
=
∑

1<i<j

(
bi − bj

2

)
+
∑
1<j

(
b1 − bj

2

)

=
∑

1<i<j

(
ai−1 − aj−1

2

)
+
∑
1<j

(
ar + 1− aj−1

2

)

=
∑
i<j<r

(
ai − aj

2

)
+
∑
j<r

(
aj − ar

2

)
=
∑
i<j

(
ai − aj

2

)
.

This shows that the given bijection between A and B preserves the
summands, and so the two sums∑
∑r
i=1 ai=0, ai∈Z+m

r

L−
∑
i<j (ai−aj

2
) and

∑
∑r
i=1 bi=0, bi∈Z+m−1

r

L−
∑
i<j (bi−bj

2
)

are equal. Since these sums are independent of m, we can assume that
m = 0.

We will now use the Macdonald identities for the root system Ar−1

[Coo97, Mac72] to prove the following identity

(10)
∑

∑r
i=1 ai=0, ai∈Z

L−
∑
i<j (ai−aj

2
) =

∞∏
k=1

(1− L−rk)r

1− L−k
.

Since the expression in Equation (9) is independent of m, substituting
Equation (10) into Equation (9), we obtain that

Fm(L−2r) =
∞∏
k=1

1

1− L−k

as desired.
To conclude the proof we must prove the identity in Equation (10).

Let Sr denote the symmetric group on r letters. For a permutation
σ ∈ Sr, let ε(σ) denote the sign of the permutation. With this notation,
the Macdonald identities for the Ar−1 affine root system read [Mac72,
0.4] (see also [Coo97, Theorem 2.3])

∞∏
k=1

(1− tk)r−1
∏

1≤i 6=j≤r

(
1− xit

k

xj

)

=
∑

m1+···+mr=0,mi∈Z
χ(rm1, . . . , rmr)t

1
2

(
∑r
i=1 rm

2
i+mi(r+1−2i)),
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where

χ(m1, . . . ,mr) =

∑
σ∈Sr ε(σ)

∏r
i=1 x

mσ(i)+r+1−2σ(i)

i∑
σ∈Sr ε(σ)

∏r
i=1 x

r+1−2σ(i)
i

.

The Macdonald identities give an equation in C[x1
x2
, x2
x3
, . . . , xr−1

xr
][[t]].

Hence, we can set xi = ωi, where ω is a primitive rth root of unity, and
obtain

χ(rm1, . . . , rmr) = 1

for any choice of m1, . . . ,mr. Using the fact that m1 + · · ·+mr = 0, we
have

1

2

r∑
i=1

(
rm2

i −mi(r + 1− 2i)
)

=
∑

1≤i<j≤r

(
mi −mj

2

)
.

Since the right hand side of the Macdonald identity is invariant under
replacing all the mi with −mi, we see that the right hand side of the
Macdonald identity equals∑

m1+···+mr=0,mi∈Z
t
∑

1≤i<j≤r (mi−mj
2

).

On the other hand, the left hand side of the Macdonald identity becomes

∞∏
k=1

(1− tk)r−1
∏

1≤i 6=j≤r
(1− ωi−jtk) =

∞∏
k=1

(1− tk)r−1
r−1∏
i=1

(1− ωitk)r.

The polynomial
∏r−1
i=1 (1 − ωix) is a polynomial in x whose roots are

the inverses of the nontrivial rth roots of unity, each occurring with
multiplicity 1. Since the constant term is 1, the polynomial must be
1 + x+ · · ·+ xr−1 = 1−xr

1−x . Hence, we have

r−1∏
i=1

(1− ωitk)r =
(1− tkr)r

(1− tk)r
.

This lets us rewrite the left hand side of the Macdonald identities as
∞∏
k=1

(1− trk)r

(1− tk)
.

Now setting t = L−1, we obtain Equation (10)∑
m1+···+mr=0

L−
∑

1≤i<j≤r (mi−mj
2

) =

∞∏
k=1

(1− L−rk)r

(1− L−k)

as desired. q.e.d.
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Corollary 4.11. The virtual Poincaré (respectively, Hodge) polyno-
mial of Mµ,s

X,H(r, c,∆) stabilizes as ∆ tends to ∞ if and only if the vir-

tual Poincaré (respectively, Hodge) polynomial ofMµ,s

X̂,p∗H
(r, c−mE,∆)

does. Furthermore, if these polynomials stabilize, then the ratio of the
generating functions of the stable polynomials is given by

∞∏
k=1

1

1− t2k

(
resp.,

∞∏
k=1

1

1− xkyk

)
.

So far in the blowup section we have used the moduli stack of slope-
stable sheaves. However, using Corollary 4.8, the same result also holds
for moduli stacks of Gieseker semistable sheaves.

Corollary 4.12. Let X be a smooth surface and let H be a polar-
ization such that KX ·H < 0. Assume that the classes [MX,H(r, c,∆)]
stabilize in A−. Then [MX̂,p∗H(r, c − mE,∆)] stabilize in A−. The

virtual Poincaré (respectively, Hodge) polynomial of MX,H(r, c,∆) sta-
bilizes as ∆ tends to ∞ if and only if the virtual Poincaré (respectively,
Hodge) polynomial ofMX̂,p∗H(r, c−mE,∆) does. Furthermore, if these

polynomials stabilize, then the ratio of the generating functions of the
stable polynomials is given by

∞∏
k=1

1

1− t2k

(
resp.,

∞∏
k=1

1

1− xkyk

)
.

5. The stabilization of cohomology for F1 and P2

The previous section studied the behavior of stabilization under wall-
crossing and blowing up. In this section, we will show stabilization for
P2 and F1.

Definition 5.1. Let F be the fiber class on a ruled surface X. A
torsion-free sheaf V on X is F -slope-semistable if for all nonzero proper
subsheaves W ⊂ V , we have

c1(W ) · F
rk(W )

≤ c1(V ) · F
rk(V )

.

There is an algebraic stack MX,F (γ) of F -slope-semistable sheaves
with Chern character γ.

Mozgovoy calculates the classes of these moduli stacks in A− for any
ruled surface X over a curve C. Specifically, when r | c · F , [Moz13,
Theorem 1.1] states

∑
[MX,F (r, c1,∆)]qr∆ =

[Jac(C)]

L− 1

r−1∏
i=1

ZC(Li)
∏
k≥1

r−1∏
i=−r

ZC(Lrk+iqk),
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where ZC is the motivic zeta function of C. These stacks are empty
when r - c · F .

Proposition 5.2. Let X be a rational ruled surface. If r | c ·F , then
the classes [MX,F (r, c,∆)] stabilize in A− to

∞∏
i=1

1

(1− L−i)4
.

Proof. We want to show that the [MX,F (r, c,∆)] stabilize. Consider
the power series

G̃(q) =
∑
∆≥0

L−r
2(2∆−1)[MX,F (r, c,∆)]qr∆.

By Proposition 3.6, it is enough to show that the series (1 − q)G̃(q) is
convergent at q = 1.

We can write G̃(q) as∑
∆≥0

L−r
2(2∆−1)[MX,F (r, c,∆)]qr∆ = Lr

2
∑
∆≥0

[MX,F (r, c,∆)](L−2rq)r∆.

Substituting L−2rq for q, we get

G̃(q) = Lr
2 1

L− 1

r−1∏
i=1

ZP1(Li)
∏
k≥1

r−1∏
i=−r

ZP1(L−rk+iqk).

Using the fact that

ZP1(x) =
1

(1− x)(1− Lx)
,

this expression becomes

Lr
2 1

L− 1

r−1∏
i=1

1

(1− Li)(1− Li+1)

∏
k≥1

r−1∏
i=−r

1

(1− L−rk+iqk)(1− L−rk+i+1qk)
.

This is a product of terms of the form 1
1−Laqb . The only term with a = 0

occurs when k = 1 and i = r− 1, in which case we get 1
1−q . For a given

power of a, there are only finitely many such terms, so if we set q = 1,
the series (1− q)G̃(q) is convergent. The limit of this infinite series is

lim
q→1

(1− q)G̃(q) =

Lr
2 1

L− 1

r−1∏
i=1

1

(1− Li)(1− Li+1)

∏
k≥1,−r≤i<r

(k,i) 6=(1,r−1)

1

(1− L−rk+i)(1− L−rk+i+1)
.

The reader can check that this expression simplifies to
∞∏
i=1

1

(1− L−i)4
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concluding the proof of the proposition.
q.e.d.

Corollary 5.3. If X is a ruled surface and F is the fiber class, then
F is admissible in the sense of Definition 4.4.

Proof. By Mozgovoy’s calculation [Moz13] of [Mµ
X,F (γ)], this class

is in A−. It suffices to show that the sum on the right hand side of
Equation (4) is convergent in A−. This will follow if we can show that
for any D, there are only finitely many terms with dimension greater
than D. We can assume that H2 is close to F , in which case we know
that the factor S(γ1, · · · , γ`; H1,H2) 6= 0 only if µF (γi) = µF (γ) for all
i, and µH2(γi) > µH2(γi+1) for all i. In particular, (µi − µj)2 = 0 since
these differ by multiples of F . The dimension of a given term is

d(γ1, . . . , γ`) := r2(2∆− χ(OX))

+
∑

1≤i<j≤`
rirj

(
(µj − µi)2

2
− KX

2
· (µj − µi) + χ(OX)−∆i −∆j

)
.

Hence, we get

d(γ1, . . . , γ`) ≤ r2(2∆) +
∑

1≤i<j≤`
rirj

(
−KX

2
· (µj − µi) + χ(OX)

)
.

We can write µj − µi = aijF with aij < 0. It follows that −KX
2 · (µj −

µi) = aij .
It suffices to show that for any integer N > 0, there are only finitely

many terms with

−KX

2
· (µ1 − µ`) < N.

There are only finitely many positive integers ri that add up to r. Since
∆i ≥ 0 and their denominators are bounded, there are only finitely
many ∆i with r∆ =

∑
ri∆i. Finally, there are only finitely many µi

since we can write µi = aE+biF with bi a rational number with bounded
denominator in a bounded interval centered at µ · KX2 . This concludes
the proof. q.e.d.

Theorem 5.4. Assume r | c ·F . Then the classes [MF1,E+F (r, c,∆)]
stabilize in A− to

∞∏
k=1

1

(1− L−i)4
.

Proof. The statement is true for F -semistable sheaves by Proposition
5.2. We will apply Corollary 4.3 with H1 = F and H2 = E + F ,
to compute [Mµ

F1,E+F (γ)]. We want to show that in Equation (4) in
Theorem 4.2 the dimension of any summand on the right hand side
with ` > 1 is much less than the dimension of the left hand side. The
dimension of the left hand side is −χ(γ, γ). The dimension of each
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summand on the right hand side is −
∑
χ(γi, γi) −

∑
i<j χ(γj , γi). By

the biadditivity of Euler characteristic, the difference between the left
hand side and the right hand side is −

∑
i<j χ(γi, γj).

Express

χ(γ, γ) = r2(χ(OF1)− 2∆), χ(γi, γi) = r2
i (χ(OF1)− 2∆i).

By the additivity of the Euler characteristic, we have

−2
∑

1≤i<j≤`
χ(γi, γj) =

(11) − χ(γ, γ) +
∑̀
i=1

χ(γi, γi) +
∑

1≤i<j≤`
(χ(γj , γi)− χ(γi, γj)).

We would like to estimate the quantity −2
∑

1≤i<j≤` χ(γi, γj). It is
cleanest to take the terms separately.

By Riemann-Roch, we have

(12)
∑

1≤i<j≤`
(χ(γj , γi)− χ(γi, γj)) =

∑
1≤i<j≤`

rirjKF1 · (µj − µi).

Let c1(γ) = raE + bF and let c1(γi) = riaiE + biF . We are assuming
that a is an integer. We may also assume that all the ai are integers,
otherwise the moduli stackMF1,F (γi) is empty. Substituting, we obtain

rirj(µj − µi) = −rirjaiE − rjbiF + rirjajE + ribjF

= rirj(aj − ai)E + (ribj − rjbi)F.
Since KF1 = −2E − 3F , we obtain
(13)∑

1≤i<j≤`
rirjKF1 · (µj − µi) =

∑
1≤i<j≤`

(rirj(ai − aj)− 2(ribj − rjbi)) .

Using the relations

b =
∑̀
i=1

bi and r =
∑̀
i=1

ri,

we can express ∑
1≤i<j≤`

(rjbi − ribj)

= −
∑̀
i=2

∑̀
j=i+1

(ribj − rjbi)−
∑̀
j=2

(
r1bj − rjb+

∑̀
m=2

rjbm

)

= −
∑̀
i=1

∑̀
j=i+1

ribj −
∑̀
i=2

i∑
j=2

rjbi − (r1 − r)b.
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Following Manschot [Man14], it is convenient to make the following
change of variables

b` = s`, bi = si − si+1 for 2 ≤ i < `.

For convenience, set s`+1 = 0. We obtain∑̀
i=1

∑̀
j=i+1

ribj +
∑̀
i=2

i∑
j=2

rjbi

=
∑̀
i=1

∑̀
j=i+1

ri(sj − sj+1) +
∑̀
i=2

i∑
j=2

rj(si − si+1) =
∑̀
i=2

(ri + ri−1)si.

Substituting these expressions back into Equation (13), we obtain
that ∑

1≤i<j≤`
rirjKF1 · (µj − µi) =

(14)
∑

1≤i<j≤`
rirj(ai − aj)− 2

∑̀
i=2

(ri−1 + ri)si + 2(r − r1)b.

Suppose that the Harder-Narasimhan filtration is given by 0 ⊂ F1 ⊂
· · · ⊂ F`. We next use Yoshioka’s relation for discriminants [Yos96b,
Equation 2.1]

(15) r∆ =
∑̀
i=1

ri∆i −
∑̀
i=2

r(Fi)r(Fi−1)

2ri
(µ(Fi)− µ(Fi−1))2

Using the facts that r(Fi) =
∑i

j=1 rj and c1(Fi) =
∑i

j=1 c1(γj), we can
rewrite the expression∑̀

i=2

r(Fi)r(Fi−1)

2ri
(µ(Fi)− µ(Fi−1))2

in Equation (15) as follows

∑̀
i=2

1

2rir(Fi)r(Fi−1)

 i−1∑
j=1

rj

 i∑
j=1

(rjajE + bjF )



−
i∑

j=1

rj

 i−1∑
j=1

(rjajE + bjF )

2

=
∑̀
i=2

1

2rir(Fi)r(Fi−1)

 i−1∑
j=1

(rirj(ai − aj)E + (rjbi − ribj)F )

2
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(16) =
∑̀
i=2

1

2rir(Fi)r(Fi−1)

−
 i−1∑
j=1

rirj(ai − aj)

2

+2

 i−1∑
j=1

rirj(ai − aj)

 i−1∑
j=1

(rjbi − ribj)


We now rewrite the term∑̀

i=2

1

r(Fi)r(Fi−1)

 i−1∑
j=1

rj(ai − aj)

 i−1∑
j=1

(rjbi − ribj)


using the fact that b =

∑`
i=1 bi, b` = s` and bi = si − si+1. It is not too

hard to check that we obtain∑̀
i=2

1

r(Fi)r(Fi−1)

i−1∑
j=1

rj(ai − aj)

 i−1∑
j=1

rjbi +
∑̀
j=i

ribj − rib


=
∑̀
i=2

(ai − ai−1)si − b
∑̀
i=2

i−1∑
j=1

rirj(ai − aj)
r(Fi)r(Fi−1)

.

Substituting this expression back into the expression in Equation
(16), Equation (15) becomes

(17) r∆ =
∑̀
i=1

ri∆i +
∑̀
i=2

1

2rir(Fi)r(Fi−1)

 i∑
j=1

rirj(ai − aj)

2

−
∑̀
i=2

(ai − ai−1)si + b
∑̀
i=2

i−1∑
j=1

rirj(ai − aj)
r(Fi)r(Fi−1)

We can use Riemann-Roch (see Equations (6, 7)) and substitute
Equation (12) into Equation (11) to obtain

−2
∑

1≤i<j≤`
χ(γj , γi)

= −r2(1− 2∆) +
∑̀
i=1

r2
i (1− 2∆i) +

∑
1≤i<j≤`

KF1 · (ric1(γj)− rjc1(γi)).

We next introduce a new variable ε to split the term −r2(1 − 2∆), to
rewrite this expression as

= −r2 +
∑̀
i=1

r2
i + 2rε∆ + 2r(r − ε)∆−

∑̀
i=1

2r2
i ∆i

+
∑

1≤i<j≤`
KF1 · (ric1(γj)− rjc1(γi)).



34 I. COSKUN & M. WOOLF

Using Equations (14) and (17), this becomes

(18) − r2 +
∑̀
i=1

r2
i + 2rε∆ + 2

∑
i

ri(r − ε− ri)∆i+

(r − ε)

∑̀
i=2

ri
r(Fi)r(Fi−1)

 i−1∑
j=1

rj(ai − aj)

2

−2
∑̀
i=2

(ai − ai−1)si + 2b
∑̀
i=2

i−1∑
j=1

rirj(ai − aj)
r(Fi)r(Fi−1)


+

∑
1≤i<j≤`

rirj(ai − aj)− 2
∑̀
i=2

(ri−1 + ri)si + 2(r − r1)b

First, suppose all the ai are fixed integers. We need to analyze the
terms when Sµ(γ1, · · · , γ`; H1,H2) 6= 0.

For Case A in Definition 4.1, we have

ai − ai−1 < 0 and

∑i−1
j=1 bj∑i−1
j=1 rj

≤
∑`

j=i bj∑`
j=i rj

.

Using the facts that b =
∑`

j=1 bj and using the fact that si =
∑`

j=i bj ,
the second inequality becomes

si ≥
b

r

 ∑
i≤j≤`

rj

 .

Similarly, the inequalities in Case B are

ai − ai−1 ≥ 0 and si <
b

r

 ∑
i≤j≤`

rj

 .

The coefficient of si in the expression (18) is given by

−2(r − ε)(ai − ai−1)− 2(ri−1 + ri).

If ε is sufficiently small, in Case B, this coefficient is negative and si is
bounded above. Hence, the terms involving si in the expression (18) are
bounded below. Similarly, in Case A, this coefficient is positive, unless
` = 2 and a2−a1 = −1. Since si are bounded below, the terms involving
si in the expression (18) are bounded below. Note that if ` = 2 and
a2 − a1 = −1, then

c1(γ) = r1a1E + b1F + r2(a1 − 1)E + b2F = (ra1 − r2)E + b2F,
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so r - c1(γ) · F , which contradicts our assumptions. Hence, in all cases
the terms involving si are bounded below. This is the only place we use
the assumption r | c1(γ) · F .

Now, we want to show that for any C, there are only finitely many

values of ai with
∑`

i=1 riai = ra such that

(19)
∑̀
i=2

ri
r(Fi)r(Fi−1)

 i−1∑
j=1

rj(ai − aj)

2

≤ C.

We will first prove that for each i, |ai − ai−1| ≤
√
CEi, where Ei is a

constant depending only on the ri. The proof is by induction on i. Since
all the summands in the expression (19) are nonnegative, by taking the
i = 2 term, we see that

r1|a2 − a1| ≤

√
Cr(F2)r(F1)

r2
,

which is the base case i = 2 of the induction. By the triangle inequality,
we have∣∣∣∣∣∣
i−1∑
j=1

rjai −
i−1∑
j=1

rjaj

∣∣∣∣∣∣+

∣∣∣∣∣∣
i−2∑
j=1

rjaj −
i−2∑
j=1

rjai−1

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
i−1∑
j=1

rjai −
i−1∑
j=1

rjai−1

∣∣∣∣∣∣
=

 i−1∑
j=1

rj

 · |ai − ai−1|.

Taking only the ith term in (19), we have the inequality∣∣∣∣∣∣
i−1∑
j=1

rjai −
i−1∑
j=1

rjaj

∣∣∣∣∣∣ ≤
√
Cr(Fi)r(Fi−1)

ri
,

and by the induction hypothesis, we have∣∣∣∣∣∣
i−2∑
j=1

rjaj −
i−2∑
j=1

rjai−1

∣∣∣∣∣∣ ≤ √CE′i
for some constant E′i depending only on the ranks r1, . . . , r`. This con-
cludes the induction step.

By the triangle inequality, it follows that all the aj with j > 1 lie in an
interval centered around a1 of radius depending on C, say D(C). If a1 <
a −D(C), then

∑
riai <

∑
ria = ra, and similarly, if a1 > a + D(C),

then
∑
riai >

∑
ria = ra. Since

∑`
i=1 riai = ra, we conclude that

a1 must be an integer within D(C) of a. Hence, there are only finitely
many choices for a1, and consequently only finitely many choices for all
the ai, as desired.
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From this, we see that

(20) (r − ε)

∑̀
i=2

ri
r(Fi)r(Fi−1)

 i−1∑
j=1

rj(ai − aj)

2

−2
∑̀
i=2

(ai − ai−1)si + 2b

l∑
i=2

i−1∑
j=1

rirj(ai − aj)
r(Fi)r(Fi−1)


+

∑
1≤i<j≤`

rirj(ai − aj)− 2
∑̀
i=2

(ri−1 + ri)si + 2(r − r1)b

is bounded below for any fixed choice of ai and si with

Sµ(γ1, · · · , γ`; H1,H2) 6= 0.

By the Bogomolov inequality, we have that ∆i ≥ 0. Hence, using the
expression (18) for −2

∑
i<j χ(γi, γj), if we pick ε < min r − ri, we get

−
∑
i<j

χ(γi, γj) ≥ rε∆ + C ′

for some constant C ′. Hence, the dimension of the correction terms
are arbitrarily small as ∆ tends to ∞. We conclude that [Mµ

F1,E+F (γ)]

stabilize in A− and have the same stable limit as [Mµ
F1,F

(γ)]. The
theorem follows by Proposition 5.2 and Corollary 4.8. q.e.d.

Corollary 5.5. The classes [MP2(r, c,∆)] stabilize in A− to

∞∏
i=1

1

(1− L−i)3
.

Proof. The surface F1 is the blowup p : F1 → P2 at a point x ∈
P2. Moreover, we have that p∗L = E + F , where L is the class of
OP2(1). Suppose that c = uL and using the division algorithm express
u = qr + m with 0 ≤ m < r. The corollary follows by Theorem 5.4
and Proposition 4.10 applied to the moduli spaces MP2,L(r, c,∆) and
MF1,p∗L(r, c−mE,∆). q.e.d.

We can now remove the restriction r|c1 · F in Theorem 5.4 by using
the blowup formula and Corollary 5.5.

Corollary 5.6. Let H be a big and nef divisor on F1. Then the
classes [MF1,H(r, c,∆)] stabilize in A− to

∞∏
i=1

1

(1− L−i)4
.
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Proof. Every divisor class c on F1 is a linear combination of the form
aE + bF . Since tensoring all the sheaves in a moduli space by the
line bundle OF1(F ) gives an isomorphism between moduli spaces and
changes the first Chern class by adding rF , we may assume b ≥ a.
Hence, c = bp∗L − (b − a)E. Applying Corollary 5.5 and Proposition
4.10 with m = b − a, we see that the classes of [MF1,E+F (r, c,∆)]
stabilize in A− to

∞∏
i=1

1

(1− L−i)4
.

By Corollary 4.5, E + F is admissible. Consequently, by Proposition
4.6, the same holds for [MF1,H(r, c,∆)] for any ample class H on F1.
q.e.d.

6. Rational surfaces more generally

In this section, we extend the previous discussion from P2 and F1 to
more general rational surfaces.

Theorem 6.1. Let Fe be a Hirzebruch surface. Let H be an ample
on Fe. Then the classes [MFe,H(r, c,∆)] stabilize in A− to

∞∏
i=1

1

(1− L−i)4
.

Proof. By Corollary 5.6, the theorem is true for the Hirzebruch sur-
face F1. Recall from §2 that E is the self-intersection −e section of
Fe. If we blowup a point x on the exceptional curve E ⊂ Fe and blow-
down the proper transform of the fiber through x, we obtain the surface
Fe+1. Conversely, if we blowup a general point x in Fe and blowdown
the proper transform of the fiber through x, we obtain the surface Fe−1

[Bea83, §III]. Suppose we know the theorem for Fe, we will show that
the theorem also holds for Fe+1 and Fe−1. Since we know the theorem
for F1, it follows that we know the theorem for all Hirzebruch surfaces
Fe. The argument is symmetric for Fe+1 and Fe−1. Let He and He+1

be ample divisors on Fe and Fe+1, respectively. Let X be the common
blowup of Fe and Fe+1 with maps pe : X → Fe and pe+1 : X → Fe+1.
Then p∗eHe and p∗e+1He+1 are both KX -negative, big and nef divisors
on X. In particular, by Corollary 4.5, they are admissible. Further-
more, ap∗eHe+bp∗e+1He+1 is ample for any a, b > 0. By Proposition 4.10
and our inductive hypothesis on Fe, we know that [MX,p∗eHe(r, c,∆)]
stabilize in A− to

∞∏
i=1

1

(1− L−i)5
.
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By Proposition 4.6, we conclude that [MX,p∗e+1He+1(r, c,∆)] also stabi-

lize in A− to
∞∏
i=1

1

(1− L−i)5
.

By Proposition 4.10, we conclude that [MFe+1,He+1(r, c,∆)] stabilize in
A− to

∞∏
i=1

1

(1− L−i)4
.

This concludes the inductive step and the proof of the theorem. q.e.d.

Theorem 6.2. Let X be a rational surface and let H be a polarization
such that H ·KX < 0. Then the classes [MX,H(r, c,∆)] stabilize in A−

to
∞∏
i=1

1

(1− L−i)χtop(X)
.

Proof. The minimal rational surfaces are P2 and the Hirzebruch sur-
faces Fe with e 6= 1. Every smooth rational surface can be obtained by a
sequence of blowups from one of these minimal surfaces. By Theorem 6.1
and Corollary 5.5, the theorem is known for minimal rational surfaces.
Assume that the theorem is true for any rational surface Xn obtained by
a sequence of n blowups of a minimal rational surface at smooth points.
By induction, we prove the theorem for a blowup p : Xn+1 → Xn at a
smooth point x. We have that

χtop(Xn+1) = χtop(Xn) + 1.

Let H be an ample divisor on Xn such that H ·KXn < 0. Then p∗H ·
KXn+1 < 0 and p∗H is admissible by Corollary 4.5. Hence, by Proposi-
tion 4.10, the theorem holds for the classes [MXn+1,p∗H(r, c−mE,∆)],
where E is the exceptional divisor over x. Notice that we can get any
Chern class on Xn+1 as a Chern class of the form (r, c −mE,∆) for a

suitable m. If Ĥ is any ample divisor on Xn+1 such that Ĥ ·KXn+1 < 0,
then we can use Proposition 4.6 to see that the theorem holds for the
classes [MXn+1,Ĥ

(r, c − mE,∆)]. This concludes the inductive step.

q.e.d.

Taking the virtual Poincaré (resp. Hodge) polynomials, we obtain
the following corollary.

Corollary 6.3. Let X be a rational surface and let H be a polar-
ization such that KX · H < 0. Then the virtual Poincaré and Hodge
numbers of MX,H(r, c,∆) stabilize as ∆ tends to ∞ and the generating
functions for the stable numbers are given by

∞∏
i=1

1

(1− t2i)χtop(X)
,

∞∏
i=1

1

(1− (xy)i)χtop(X)
.
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Observe that Theorem 6.2 and Corollary 6.3 yield Theorem 1.7 from
the Introduction.

7. From the Moduli Stack to the Moduli Space

The results in §4, 5, 6 concern the virtual Poincaré polynomial of
the moduli stack of sheaves. In practice, we are often interested in the
moduli space of S-equivalence classes of sheaves. In this section, we will
show that the virtual Poincaré polynomials of the two spaces have a
close relation.

In this section, we will work in a quotient of the Grothendieck ring.

Definition 7.1. Define A to be the quotient of A− by the relations
[P ] = [X][G] whenever G = PGLn for some n and P → X is an étale
G-torsor.

Note that the classes of PGLn are invertible in A. The key fact about
this is the following, which is essentially [BD07, Theorem A.9].

Theorem 7.2. The virtual Poincaré and Hodge polynomials descend
to well-defined maps on A.

This theorem lets us easily deduce the following fact.

Proposition 7.3. The virtual Poincaré and Hodge polynomials of
Ms

X,H(γ) (the locus of Gieseker-stable sheaves in the moduli stack) and

M s
X,H(γ) are related as follows:

Pt(M
s
X,H(γ)) = (t2 − 1)Pt(Ms

X,H(γ)),

Pxy(M
s
X,H(γ)) = (xy − 1)Pxy(Ms

X,H(γ))

Proof. Let Q be the locus of Gieseker-stable sheaves in a component
of Quot(X) which dominates Ms

X,H(γ). There is a natural map Q →
Ms

X,H(γ) which is a GLn-torsor, and Q → M s
X,H(γ) which is a PGLn-

torsor. We then have the following equality in A:

[M s
X,H(γ)] = [Q]/[GLn] = [Q]/[PGLn] ∗ [GLn]/[PGLn]

= [Ms
X,H(γ)] ∗ [GLn]/[PGLn].

We know that [GLn]/[PGLn] = L− 1, which finishes the proof. q.e.d.

This proposition deals with the stable locus, but since the semistable
locus is relatively small, we get a similar result asymptotically. To prove
this rigorously, we first need the following lemma.

Lemma 7.4. Let F be a Gieseker-semistable sheaf of rank r. Then
dim Aut(F) ≤ r2.
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Proof. Since Aut(F) ⊂ End(F), it suffices to show this for End(F).
We know that F has a Jordan-Hölder filtration where the subquo-

tients are stable. There is an isotrivial degeneration of F into the direct
sum of the subquotients of this filtration. Since the dimension of the
space of endomorphisms is upper semicontinuous, we can assume that
F =

⊕
Ei with the Ei stable.

We then have

End(F) =
⊕
i,j

Hom(Ei, Ej).

Since any map between stable sheaves of the same reduced Gieseker
polynomial is either scalar multiplication or 0, each Hom(Ei, Ej) has
dimension at most 1. Since there are at most r2 terms in the direct
sum, the lemma follows. q.e.d.

Proposition 7.5. Let H be a polarization such that KX ·H < 0. Sup-
pose that the virtual Poincaré (resp. Hodge) polynomials of MX,H(γ)
stabilize to F (t) (resp. F (x, y)) as ∆ → ∞. Then the virtual Poincaré
(resp. Hodge) polynomials of MX,H(γ) stabilize to (t2−1)F (t) (resp. (xy−
1)F (x, y)).

Proof. We know that the codimension of the strictly semistable locus
inMX,H(γ) grows with ∆ by the proof of Corollary 4.8. This means that
the stable Betti (resp. Hodge) polynomials of MX,H(γ) and Ms

X,H(γ)
are the same.

The previous proposition then implies the result for M s
X,H(γ). To

finish the proof, we have to show that the codimension of the strictly
semistable locus in MX,H(γ) grows with ∆.

First, denote by c the codimension of the strictly semistable locus
in MX,H(γ). Next, consider the map MX,H(γ) → MX,H(γ). The
fiber over a point [E] in the right hand side consists of the space of
all semistable sheaves S-equivalent to E modulo automorphism. In
particular, the dimension of the fiber is at least −r2 by the previous
lemma.

The codimension of the strictly semistable locus in MX,H(γ) is at
least c+ 1− r2. Since c grows with ∆ and r is fixed, it follows that this
codimension also grows with ∆. q.e.d.

Corollary 7.6. Let X be a rational surface and H a polarization
such that KX · H < 0. Then the virtual Poincaré and virtual Hodge
polynomials of MX,H(r, c,∆) stabilize as ∆ tends to ∞. The generating
functions for the stable Betti and Hodge numbers are given by

(1− t2)
∞∏
i=1

1

(1− t2i)χtop(X)
, (1− xy)

∞∏
i=1

1

(1− (xy)i)χtop(X)
,

respectively.
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For a smooth, projective variety, the virtual Poincaré (resp. Hodge)
polynomials agree with the ordinary Poincaré (resp. Hodge) polynomi-
als. Using Proposition 2.1, we obtain the following corollary.

Corollary 7.7. Let X be a rational surface and H a polarization such
that KX ·H < 0. Assume that there are no strictly semistable sheaves
of rank r and first Chern class c. Then the Poincaré and Hodge poly-
nomials of MX,H(r, c,∆) stabilize as ∆ tends to ∞ and the generating
functions for the stable Betti and Hodge numbers are given by

(1− t2)
∞∏
i=1

1

(1− t2i)χtop(X)
, (1− xy)

∞∏
i=1

1

(1− (xy)i)χtop(X)
,

respectively.

Observe that Corollary 7.7 implies Theorem 1.9 from the Introduc-
tion.

8. Relation to the generalized Atiyah-Jones conjecture

In this section, we discuss the relation of Conjecture 1.1 and the
Atiyah-Jones conjecture.

In [AJ78] Atiyah and Jones made a number of conjectures concern-
ing the homology and homotopy type of the moduli space of instantons
on the 4-dimensional sphere S4. The conjecture also makes sense for
other four-manifolds such as polarized surfaces (X,H). In this context,
for fixed rank r and first Chern class c, Taubes constructed a differen-
tial geometric map between the moduli spaces of locally free µH -stable
sheaves Mµ,s,◦

X,H (r, c,∆) and Mµ,s,◦
X,H (r, c,∆+ 1

r ) [Tau84]. The generalized
Atiyah-Jones conjecture predicts that these maps are rational homol-
ogy and homotopy equivalences in degrees that tend to infinity as the
discriminant ∆ tends to infinity. Taubes [Tau84] shows that if the
generalized Atiyah-Jones Conjecture holds, then the Betti numbers of
Mµ,s,◦
X,H (r, c,∆) stabilize and the stable Betti numbers can be recovered

from the Betti numbers of the space Map(X,BPU(r)) of maps from X
to the classifying space of the projective unitary group PU(r). We will
call this consequence the weak generalized Atiyah-Jones conjecture. Let
Mapf (X,BPU(r)) denote the maps in Map(X,BPU(r)) such that the
pullback of the universal PU(r) bundle to X defines the underlying pro-
jective unitary bundle of the bundles parameterized by Mµ,s,◦

X,H (r, c,∆).

The locus Mapf (X,BPU(r)) is a path component of Map(X,BPU(r)).

Conjecture 8.1 (Weak Generalized Atiyah-Jones Conjecture). The
Betti numbers of Mµ,s,◦

X,H (r, c,∆) stabilize to the Betti numbers of the

space Pic(X)×Mapf (X,BPU(r)) as ∆ tends to ∞.

In this section, we show that the stabilization of the Betti numbers
in Conjecture 1.1 is equivalent to the weak generalized Atiyah-Jones



42 I. COSKUN & M. WOOLF

conjecture assuming the cohomology of Mµ,s,◦
X,H (r, c,∆) equals to its co-

homology with compact support in increasing degrees as ∆ tends to
infinity. The original Atiyah-Jones Conjecture was proved by Boyer,
Hurtubise, Mann and Milgram [BHMM93]. The Atiyah-Jones conjec-
ture for r = 2 was proved for ruled surfaces by Hurtubise and Milgram
[HM95] and for rational surfaces and certain polarizations by Gasparim
[Gas08].

Theorem 8.2. Assume that for every i, there exists a constant ∆(i)
such that for all ∆ ≥ ∆(i) and every j ≤ i the j-th cohomology of
Mµ,s,◦
X,H (r, c,∆) with compact supports is pure and equal to the j-th co-

homology of Mµ,s,◦
X,H (r, c,∆). Then the weak generalized Atiyah-Jones

conjecture is equivalent to the stabilization of Betti numbers in Conjec-
ture 1.1.

Proof. Given any torsion-free sheaf E on a surface X, its double-dual
E∗∗ is locally free, and the quotient is zero-dimensional. We can stratify
the moduli space Mµ,s

X,H(r, c,∆) based on the length of this quotient.

Let PX(t) denote the virtual Poincaré polynomial of X. Building on
the work of Yoshioka on computing the virtual Poincaré polynomial of
the space of length k-quotients of a locally free rank r sheaf [Yos94],
Göttsche obtains the following formula [Got99, Proposition 3.1]∑

∆≥0

PMµ,s
X,H(r,c,∆)(t)q

r∆

=

( ∞∏
a=1

r∏
b=1

ζX(t2ra−2bqa, t)

)∑
∆≥0

PMµ,s,◦
X,H (r,c,∆)(t)q

r∆.

Now we compute the shifted series, to obtain

(21)
∑
∆≥0

PMµ,s
X,H(r,c,∆)(t)t

−2r2(2∆−χ(OX))−2qr∆

=

( ∞∏
a=1

r∏
b=1

ζX(t−2ra−2bqa, t)

)∑
∆≥0

PMµ,s,◦
X,H (r,c,∆)(t)t

−2r2(2∆−χ(OX))−2qr∆.

To prove the theorem, we will multiply both sides of Equation (21) by
(1− q) and compute the limit as q tends to 1.

To compute

lim
q→1

(1− q)
∑
∆≥0

PMµ,s
X,H(r,c,∆)(t)t

−2r2(2∆−χ(OX))−2qr∆,

we use Conjecture 1.1, Corollary 4.8 and Göttsche’s formula (2), to
obtain

(1− t−2)
∞∏
m=1

(1 + t−2m+1)2b1

(1− t−2m)b2+2
,
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which, using the definition of ζX (see Equation (1)), can be rewritten
as

(1 + t−1)b1
(1 + t−3)b1(1 + t−1)b3

(1− t−4)(1− t−2)b2

∞∏
a=3

ζX(t−2a, t).

To compute the right hand side

(22) lim
q→1

(1− q)

( ∞∏
a=1

r∏
b=1

ζX(t−2ra−2bqa, t)

)
×

∑
∆≥0

PMµ,s,◦
X,H (r,c,∆)(t)t

−2r2(2∆−χ(OX))−2qr∆,

we use the weak generalized Atiyah-Jones Conjecture. By [AB83, §2],
the Poincaré polynomial of Mapf (X,BPU(r)) is given by

(23)
(1 + t3)b1(1 + t)b3

(1− t4)(1− t2)b2

r∏
a=3

(1 + t2a−1)b1(1 + t2a−3)b3

(1− t2a)(1− t2a−2)b2(1− t2a−4)
.

If the weak generalized Atiyah-Jones conjecture is true and the virtual
Poincaré polynomial equals the actual Poincaré polynomial for the space
Mµ,s,◦
X,H (r, c,∆) in increasing degrees as ∆ tends to infinity, then using

the expression (23) PMµ,s,◦
X,H (r,c,∆)(t)t

−2r2(2∆−1)−2 converge to

(1 + t−1)b1
(1 + t−3)b1(1 + t−1)b3

(1− t−4)(1− t−2)b2

r∏
a=3

ζX(t−2a, t).

Consequently, the expression (22) is equal to( ∞∏
a=1

r∏
b=1

ζX(t−2ra−2b, t)

)
(1+t−1)b1

(1 + t−3)b1(1 + t−1)b3

(1− t−4)(1− t−2)b2

r∏
a=3

ζX(t−2a, t),

which can be rewritten as

(1 + t−1)b1
(1 + t−3)b1(1 + t−1)b3

(1− t−4)(1− t−2)b2

∞∏
a=3

ζX(t−2a, t).

We conclude that the right hand side equals the left hand side. Hence,
the stabilization of Betti numbers in Conjecture 1.1 is equivalent to the
weak generalized Atiyah-Jones conjecture assuming that the cohomol-
ogy of Mµ,s,◦

X,H (r, c,∆) with compact supports is pure. q.e.d.

9. Picard Group of the Moduli Space

In this section, we show that if X is a regular surface with geometric
genus 0, then stabilization of the Betti numbers allows us to understand
the Néron-Severi space of MX,H(r, c,∆) when ∆ is sufficiently large.

Let X be a smooth, irreducible projective surface whose irregularity
q(X) = h1(X,OX) and geometric genus pg(X) = h2(X,OX) are zero.
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Let γ be a Chern character such that the moduli space MX,H(γ) does

not contain any strictly semistable sheaves. Let γ⊥ ⊂ K0(X) denote
the orthogonal complement of γ with respect to the Euler pairing. Let
F be the universal sheaf on X×MX,H(γ). Given a vector bundle E on
X, we get a line bundle on MX,H(γ) by taking

det(Rπ2∗(F ⊗L Lπ∗1E)).

If χ(E ⊗L γ) = 0, then this line bundle descends to a line bundle on
MX,H(γ), and we get a well-defined map

λ : γ⊥ → Pic(MX,H(γ)),

which we call the Donaldson morphism (see [HL10, §8]). If ∆ is suffi-
ciently large, one can see that the map induced from NSQ(X) ⊕ Q →
NSQ(MX,H(γ)) is injective. We give a quick argument for the reader’s
convenience (see also [HL10, Example 8.1.7]).

Proposition 9.1. Let X and γ satisfy the assumptions in this sec-
tion. Let K0

coh(X) be the image of the cycle class map in H∗(X,C).
The map

λ : K0
coh(X) ⊃ γ⊥ → NS(MX,H(γ))

is injective if ∆(γ) is sufficiently large.

Proof. We proceed by giving curves in MX,H(γ) and calculating the
intersection numbers of these curves with a basis for the image of the
Donaldson morphism.

Let Ci with 1 ≤ i ≤ n = ρ(X) be effective curves which form a basis
of N1(X). Let E be a slope-stable vector bundle on X with r(E) =
r(γ), c1(E) = c1(γ), and ch2(E) = ch2(γ) + r. By O’Grady’s Theorem
[O’G96], [HL10, §9], if ∆ is sufficiently large, such an E exists.

If we consider the family of sheaves E⊗Ip, this gives us an embedding
of X into MX,H(γ). In particular, each of the Ci embed in MX,H(γ).
We will now produce one more curve in MX,H(γ).

Let E′ be a slope-stable vector bundle on X with r(E′) = r(γ),
c1(E′) = c1(γ), and ch2(E′) = ch2(γ)+2r. As before, if ∆ is sufficiently
large, such an E′ is guaranteed to exist. Now fix a point p ∈ X. The
space of all length-two subschemes Z of X supported at p form a P1.
The sheaves E′ ⊗ IZ form a curve in MX,H(γ) which we will denote by
D.

We will now give a basis of γ⊥. Write γ = (r, c, d). For each i, the
class (

0, Ci,

(
−c
r

+
KX

2

)
· Ci
)
∈ γ⊥.

The same is true for(
1, 0,
−d
r

+
KX · c

2r
− χ(OX)

)
.
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These classes form a basis for γ⊥ ⊂ K0
coh(X). Let

Li = λ

(
0, Ci,

(
−c
r

+
KX

2

)
· Ci
)

and

L0 = λ

(
1, 0,
−d
r

+
KX · c

2r
− χ(OX)

)
.

The curves Ci and D have intersection number 0 with line bun-
dles pulled back from Pic0(X), so it makes sense to ask for the in-
tersection number with classes in the image of the Donaldson mor-
phism. It is straightforward to calculate these intersection numbers
using Grothendieck-Riemann-Roch, and we get the intersection matrix:

· L1 · · · Ln L0

C1 r(C1 · C1) · · · r(C1 · Cn) C1 · c
...

...
. . .

...
...

Cn r(Cn · C1) · · · r(Cn · Cn) Cn · c
D 0 · · · 0 -4r

It is enough to show that this matrix has full rank. The submatrix
formed by omitting the last row and the last column has full rank,
since up to a nonzero multiple, it’s the intersection matrix for NS(X).
It is clear that the last row is independent from the other rows, so the
intersection matrix has full rank as desired.

q.e.d.

Note that in the previous proposition, the only reason we needed ∆
to be large was to ensure that the vector bundles E and E′ existed.

Theorem 9.2. Let X be a smooth, projective irreducible surface with
q(X) = pg(X) = 0. Assume that the Betti numbers of the moduli spaces
stabilize to those of the Hilbert scheme of points. If γ ∈ K0(X) is a class
such that MX,H(γ) does not contain any strictly semistable sheaves and
∆(γ) is sufficiently large, then the map

λ : K0
coh(X)⊗Q ⊃ γ⊥ → NS(MX,H(γ))⊗Q

is an isomorphism.

Proof. By the previous proposition, we know that if ∆ is sufficiently
large, this map is injective. Since the spaces in question are rational
vector spaces, it suffices to show that they have the same dimension.

Since X is a surface, the dimension of K0
coh(X)⊗Q is 2+ρ(X). Since

X has geometric genus 0, we have ρ(X) = b2(X). This means that the
dimension of γ⊥ is b2(X) + 1.

We have

dim NS(MX,H(γ))⊗Q ≤ b2(MX,H(γ)).

Looking at the formula for the stable Betti numbers of the moduli
spaces, we see that if ∆(γ) is sufficiently large, then b2(MX,H(γ)) =
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b2(X) + 1. This means that λ is an injective map from a vector space of
dimension b2(X) + 1 to a vector space of dimension at most b2(X) + 1,
and hence it must be an isomorphism. q.e.d.

For example, Theorem 9.2 applies to rational surfaces. The Picard
groups of moduli spaces of sheaves on rational surfaces, and more gen-
erally on ruled surfaces, for ∆ � 0 were computed by Yoshioka in
[Yos96c].
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[GS93] L. Göttsche and W. Soergel, Perverse sheaves and the cohomology of Hilbert
schemes of smooth algebraic surface, Math. Ann., 296 no. 2 (1993), 235–
246, MR1219901, Zbl 0789.14002.

[Har77] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Grad-
uate Texts in Mathematics, No. 52, MR0463157, Zbl 0367.14001.

[Hir64] H. Hironaka, Resolution of singularities of an algebraic variety over a field of
characteristic zero I, Ann. of Math., 79 no. 1 (1964), 109–203, MR0199184,
Zbl 0122.38603.

[HM95] J. Hurtubise and R.J. Milgram, The Atiyah-Jones conjecture for ruled
surfaces, J. Reine Angew. Math., 466 (1995), 111–143, MR1353316, Zbl
0827.58009.

[Huy03] D. Huybrechts, The Kähler cone of a compact hyperkähler manifold, Math.
Ann., 326 no. 3 (2003), 499–513, MR1992275, Zbl 1023.14015.



48 I. COSKUN & M. WOOLF

[HL10] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves,
Cambridge Mathematical Library, Cambridge University Press, Cambridge,
2010, MR2665168, Zbl 1206.14027.

[Ito01] T. Ito, Birational smooth minimal models have equal Hodge numbers in all
dimensions, in Calabi-Yau varieties and mirror symmetry (Toronto, ON,
2001), 183–194, Fields Inst. Commun., 38, Amer. Math. Soc., Providence,
RI, MR2019152, Zbl 1051.14012.

[Joy07] D. Joyce, Motivic invariants of Artin stacks and ‘stack functions’, Q. J.
Math, 58 no. 3 (2007), 345–392, MR2354923, Zbl 1131.14005.

[Joy08] D. Joyce, Configurations in abelian categories IV, Adv. Math., 217 no. 1
(2008), 125–204, MR2357325, Zbl 1134.14008.

[Kap00] M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series
for Kac-Moody groups, preprint arXiv:math/0001005.

[LL04] M. Larsen and V. Lunts, Rationality criteria for motivic zeta functions,
Compos. Math. 140 no. 6 (2004), 1537–1560, MR2098401, Zbl 1076.14024.

[LiJ93] J. Li, Algebraic geometric interpretation of Donaldson’s polynomial invari-
ants, J. Differential Geom., 37 (1993), no. 2, 417–466, MR1205451, Zbl
0809.14006.

[LiJ94] J. Li, Picard groups of the moduli spaces of vector bundles over algebraic
surfaces, in Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), 129–
146, Lecture Notes in Pure and Appl. Math., 179, Dekker, New York,
MR1397985, Zbl 0930.14005.

[LiJ97] J. Li, The first two Betti numbers of the moduli spaces of vector bundles
on surfaces, Comm. Anal. Geom., 5 no. 4 (1997), 625–684, MR1611065, Zbl
0945.14023.

[LQW03] W.-P. Lin, Z. Qin and W. Wang, Stability of cohomology rings of Hilbert
schemes of points on surfaces, J. reine. angew. Math., 554 (2003), 217–234,
MR1952174, Zbl 1092.14007.
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