
NORMAL BUNDLES OF RATIONAL CURVES IN PROJECTIVE SPACE
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Abstract. Let b• be a sequence of integers 1 < b1 ≤ b2 ≤ · · · ≤ bn−1. Let Me(b•) be the space
parameterizing nondegenerate, immersed, rational curves of degree e in Pn such that the normal
bundle has the splitting type

⊕n−1
i=1 O(e + bi). When n = 3, celebrated results of Eisenbud, Van

de Ven, Ghione and Sacchiero show that Me(b•) is irreducible of the expected dimension. We show
that when n ≥ 5, these loci are generally reducible with components of higher than the expected
dimension. We give examples where the number of components grows linearly with n. These
generalize an example of Alzati and Re.

1. Introduction

Rational curves play a central role in the birational and arithmetic geometry of projective vari-
eties. Consequently, understanding the geometry of the space of rational curves is of fundamental
importance. The local structure of this space is governed by the normal bundle. In this paper,
we study the dimensions and irreducible components of the loci in the space of rational curves in
Pn parameterizing curves whose normal bundles have a specified splitting type. We work over an
algebraically closed field of characteristic zero.

We first set some notation. Let f : P1 → Pn be a nondegenerate, unramified, birational map of
degree e. Then the normal bundle Nf defined by

0 −→ TP1
df−→ f∗TPn −→ Nf −→ 0

is a vector bundle of rank n−1 and degree e(n+1)−2. By Grothendieck’s theorem, Nf is isomorphic
to a direct sum of line bundles. Let More(P1,Pn) denote the morphism scheme parameterizing
degree e morphisms f : P1 → Pn. Let b• denote an increasing sequence of integers

1 < b1 ≤ b2 ≤ · · · ≤ bn−1

such that
∑n−1

i=1 bi = 2e− 2. Let Me(b•) denote the locally closed locus in More(P1,Pn) parameter-
izing nondegenerate, unramified morphisms of degree e such that

Nf
∼=

n−1⊕
i=1

OP1(e+ bi).

The scheme More(P1,Pn) is irreducible of dimension (n + 1)(e + 1) − 1. The codimension of the
locus of vector bundles E on P1 with a specified splitting type in the versal deformation space is
given by h1(P1,End(E)) [C08, Lemma 2.4]. In analogy, we say that the expected codimension of
Me(b•) is h1(P1,End(Nf )). Equivalently, the expected dimension is

(e+ 1)(n+ 1)− 1− h1(P1,End(Nf )).
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In this paper, we systematically construct examples where Me(b•) has many components, some of
larger than expected dimension.

The study of the geometry of Me(b•) has a long history. Celebrated results of Eisenbud, Van de
Ven [EV81], [EV82], Ghione and Sacchiero [GS80], [Sa80], [Sa82] characterize the possible splitting
types of the normal bundles of rational curves in P3 and show that the locus of rational space
curves whose normal bundles have a specified splitting type is irreducible of the expected dimension.
Similarly, results of Ramella [R90], [R93] show that the locus of nondegenerate rational curves with
a specified splitting type for f∗TPn is irreducible of codimension h1(P1,End(f∗TPn)) for all n ≥ 3.
The behavior of Me(b•) for n ≥ 5 is in stark contrast to these results.

Recently, Alzati and Re [AR17] showed that the locus of rational curves of degree 11 in P8 whose
normal bundles have the splitting type O(13)3 ⊕ O(14)2 ⊕ O(15)2 is reducible. This was the first
indication that the geometry of Me(b•) is much more complicated for large n. This paper grew out
of our attempt to generalize their example. We produce examples of reducible Me(b•) in P5 with
e < 11, we find Me(b•) with arbitrarily many components, and show that the difference between
the expected dimension and actual dimension of a component of Me(b•) can grow arbitrarily large.

We now summarize our results in greater detail. First, following Sacchiero [Sa80], we explain
that Me(b•) is nonempty provided that b1 ≥ 2 and e ≥ n (see Theorem 2.7). This already shows
that the loci Me(b•) in general do not have the expected dimension (see Proposition 2.8).

Before stating the rest of the results, we need some notation. Let d and k be positive integers
and let n be an integer such that n ≥ k + 1. Assume 2e ≥ (n − 1)d + n − k + 1. Observe, then,
that 2e− 2 ≥ dk. Let q and r be the quotient and remainder in

2e− 2− dk = q(n− 1− k) + r.

Let b•(d
k) denote the sequence

b1 = · · · = bk = d, bk+1 = · · · = bn−r−1 = q, bn−r = · · · = bn−1 = q + 1.

Miret [M86] has shown that the locus Me(b•(d)) is irreducible of the expected dimension. In
contrast, we show the following.

Theorem (Theorem 5.1). Let k ≥ 2 be an even integer. Let n ≥ 3k − 1 and assume that e is
sufficiently large. Then Me(b•(d

k)) has at least k
2 + 1 irreducible components.

When d = 2, we obtain sharper bounds. We classify the components of Me(b•(2
2)) in detail.

We find that it has two components, one of the expected dimension and the other of larger than
expected dimension provided e is sufficiently large (see Theorem 4.3). More generally, we study
Me(b•(2

k)) in greater detail.

Theorem (Theorem 4.12). Let 3k− 1 ≤ n, and e > 2kn− 2n− 2. Then Me(b•(2
k)) has at least k

components.

As a source of examples, we determine the splitting type of the normal bundle to immersed
monomial rational curves (see Theorem 3.2). There has been recent interest in computing these
normal bundles (see [ART]). Our methods allow us to compute these normal bundles easily.

Organization of the paper. In §2, we collect basic facts concerning normal bundles of rational
curves and summarize results of Sacchiero, Ramella and Miret on the stratification of the space of
rational curves according to the splitting types of the normal or restricted tangent bundles. In §3,
we discuss the normal bundles of rational curves defined by monomials. In §4, we study the spaces
Me(b•(2

k)) and show that the number of their components grows linearly with k provided e and
n are sufficiently large. We also show that if n ≥ 5 and e is sufficiently large, Me(b•(2

2)) has two
irreducible components and describe the components. In §5, we study loci Me(b•(d

k)) for d > 2.
Finally, in §6, we give some examples.
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2. Preliminaries

In this section, we recall basic facts concerning the geometry of the space of rational curves in
Pn. We also review Ramella’s results on the splitting of f∗TPn [R90], [R93], Sacchiero’s results
showing that all possible splittings for the normal bundle occur [Sa80] and Miret’s result [M86] on
the irreducibility of Me(b•(d)).

2.1. Basic facts. Let E be a vector bundle of rank r on P1. By Grothendieck’s theorem, every
vector bundle on P1 is a direct sum of line bundles. Hence, there are uniquely determined integers
a1 ≤ a2 ≤ · · · ≤ ar such that E ∼=

⊕r
i=1O(ai). These integers are called the splitting type of E. The

vector bundle is called balanced if aj − ai ≤ 1 for 1 ≤ i < j ≤ r. The dimension of automorphisms
of E is given by h0(E ⊗ E∗). Let V be a balanced vector bundle of the same degree and rank as
E. In particular, h0(V ⊗ V ∗) = χ(V ⊗ V ∗). Hence, by Lemma [C08, Lemma 2.4], the expected
codimension of a splitting type is equal to h0(E⊗E∗)−h0(V ⊗V ∗) and, by Riemann-Roch, is given
by

h1(End(E)) = h1(E∗ ⊗ E) =
∑

{i,j|ai−aj≤−2}

(aj − ai − 1).

A rational curve C of degree e in Pn is the image of a morphism f : P1 → Pn, where

f = (f0 : · · · : fn)

is defined by homogeneous polynomials fi(s, t) of degree e without common factors. We always
assume that f is birational onto its image and that the image is nondegenerate. We say that the
curve C is immersed or the morphism f is unramified if the natural map f∗ΩPn → ΩP1 is surjective.1

In this case, the kernel is identified with the conormal bundle N∗f = Hom(Nf ,OP1), where Nf is

the normal sheaf. We conclude that Nf is a vector bundle of rank n− 1 and degree e(n+ 1)− 2.
Let

∂f =

(
∂sf0 . . . ∂sfn
∂tf0 . . . ∂tfn

)
denote the transpose of the Jacobian matrix. For an unramified morphism, the Euler sequences for
ΩPn and ΩP1 induce a surjective map

OP1(−e)n+1 ∂f−→ OP1(−1)2

and identify the conormal bundle N∗f with the kernel of ∂f [GS80] [Sa80]. Thus, the normal bundle

Nf has splitting type
⊕n−1

i=1 O(e + bi) if and only if the kernel of the map ∂f has splitting type⊕n−1
i=1 O(−e− bi). In other words, the space of relations among the columns of ∂f is generated by

forms of degree bi for 1 ≤ i ≤ n − 1. We may view a relation of degree bi among the columns of
∂f as a parameterized rational curve of degree bi in Pn∗. We will frequently discuss the geometry
of the rational curves defined by these relations.

We will need to use the following basic observation.

Lemma 2.1. Let (f0(s, t), . . . , fn(s, t)) be an (n + 1)-tuple of homogeneous polynomials of degree
e in s, t. Let (a0, . . . , an) be an (n + 1)-tuple of homogeneous polynomials of degree b in s, t. If∑n

i=0 ai∂sfi =
∑n

i=0 ai∂tfi = 0, then
∑n

i=0 fi∂sai =
∑n

i=0 fi∂tai = 0.

1In the literature, authors describe the same condition commonly as C has ordinary singularities (see [EV81] and
[Sa82]). In this paper, we avoid this terminology.
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Proof. By Euler’s relation, the equalities

n∑
i=0

ai∂jfi = 0, j ∈ {s, t}

imply
n∑
i=0

aifi = 0.

Differentiating this relation, we see∑
i

fi∂jai +
∑
i

ai∂jfi =
∑
i

fi∂jai = 0.

�

Corollary 2.2. We can write

Nf =
n−1⊕
i=1

O(e+ bi),

where 2 ≤ b1 ≤ · · · ≤ bn−1 and
∑n−1

i=1 bi = 2e− 2.

Proof. To see that b1 ≥ 2, we can argue as follows. If b1 = 1, the map O(−e−1)→ O(−e)n+1 gives
a linear relation among the partial derivatives of fi. By Lemma 2.1, we obtain a scalar relation
among the fi. Hence, the map f is degenerate, contrary to assumption. �

2.2. The splitting type of the restricted tangent bundle. The Euler sequence

0→ f∗ΩPn → O(−e)n+1 → O → 0

identifies f∗ΩPn as the kernel of the homomorphism induced by f . Consider the family of homo-
morphisms Hom(O(−e)n+1,O). The Kodaira-Spencer map

κ : Hom(O(−e)n+1,O)→ Ext1(f∗ΩPn , f∗ΩPn)

factors through the natural morphisms

Hom(O(−e)n+1,O)
φ−→ Ext1(O(−e)n+1, f∗ΩPn)

ψ−→ Ext1(f∗ΩPn , f∗ΩPn),

where φ and ψ are maps in the long exact sequence obtained by applying Hom(O(−e)n+1,−) and
Hom(−, f∗ΩPn), respectively. Since Ext1(O(−e)n+1,O(−e)n+1) = 0 and Ext2(O, f∗ΩPn) = 0, we
conclude that both φ and ψ are surjective. Therefore, the Kodaira-Spencer map is surjective for
unramified f . In fact, Ramella more generally proves the following.

Theorem 2.3. [R90] The locally closed locus in More(P1,Pn) parameterizing unramified morphisms
where f∗TPn has a specified splitting type is irreducible of the expected dimension (e+ 1)(n+ 1)−
1− h1(End(f∗TPn)).

Alzati and Re [AR15] have further studied the geometry of the loci of rational curves where
f∗TPn has a specified splitting type.
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2.3. The possible splitting types of the normal bundle. In this subsection, we recall Sac-
chiero’s construction of an unramified f with a specified splitting type for its normal bundle (see
[Sa80]). We will use this construction throughout the paper. For our purposes, the relations among
the columns of ∂f will be especially important.

Let δ1 = 1, δi = bi−1 − δi−1 for 1 < i ≤ n − 1. Let c = 1 +
∑n−1

i=1 δi. Let p(s, t) and q(s, t) be
general polynomials of degree e− c (it is enough to assume that p and q do not have common roots

or multiple roots and are not divisible by s or t). Let ki = c−
∑i

j=1 δj for 0 ≤ i ≤ n− 1. Observe
that k0 = c, k1 = c− 1 and kn−1 = 1. Let f be given by the tuple

f = (sk0p, sk1tc−k1p, sk2tc−k2p, . . . , skn−2tc−kn−2p, skn−1tc−kn−1p, tcq).

Lemma 2.4 (Sacchiero’s Lemma [Sa80]). The map f is unramified and Nf
∼=
⊕n−1

i=1 O(e+ bi).

Proof. We briefly sketch aspects of Sacchiero’s argument that we will later invoke. A simple cal-
culation shows that f is unramified. Computing Nf is equivalent to computing the kernel of the
map

∂f : O(−e)n+1 → O(−1)2.

We first describe n − 2 relations satisfied by the columns of ∂f . Let Ri for 1 ≤ i ≤ n − 2 be the
row vector (a0, . . . , an), where aj = 0 for j 6= i− 1, i, i+ 1 and

ai−1 = (ki − ki+1)tki−1−ki+1 , ai = −(ki−1 − ki+1)ski−1−kitki−ki+1 , ai+1 = (ki−1 − ki)ski−1−ki+1 .

It is easy to see that the columns of ∂f satisfy Ri. Let R be the matrix whose rows are Ri for
1 ≤ i ≤ n− 2. Then R defines a map

R :
n−2⊕
i=1

O(−e− bi)→ O(−e)n+1.

Since the image of R is contained in the kernel of ∂f , the map R factors through the inclusion of
N∗f → O(−e)n+1. An easy computation shows that (n−2)×(n−2) minor of R obtained by omitting

the first two and the last columns is
∏n−2
i=1 (ki−1 − ki)ski−1−ki+1 . Similarly, the (n − 2) × (n − 2)

minor of R obtained by omitting the last three columns is
∏n−2
i=1 (ki − ki+1)tki−1−ki+1 . Since these

minors never simultaneously vanish on P1, we conclude that the rank of R is always equal to n− 2.
Hence, the image of R is a subbundle of N∗f . Hence, by degree considerations, we obtain an exact
sequence

0→
n−2⊕
i=1

O(−e− bi)→ N∗f → O(−e− bn−1)→ 0.

To conclude that N∗f is isomorphic to
⊕n−1

i=1 O(−e − bi), it suffices to observe that there are no

nontrivial extensions of this form provided bn−1 ≥ max1≤i≤n−2{bi} − 1. �

Remark 2.5. Note that in the proof we did not need to use that b1 ≤ b2 ≤ · · · ≤ bn−1. We only
needed that bn−1 ≥ max1≤i≤n−2{bi} − 1. This simplification will make certain constructions later
in the paper simpler.

The next corollary follows from the proof of Lemma 2.4 and Remark 2.5.

Corollary 2.6. Let 1 = δ1, δ2, . . . , δn−1 be a sequence of positive integers, e ≥ n an integer, and

bn−1 = 2e− 2− 2
n−1∑
i=1

δi + δ1 + δn−1.

Assume
bn−1 ≥ max

i
{δi + δi+1} − 1.
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Then there is a nondegenerate rational curve f of degree e in Pn with normal bundle
⊕

iO(e+ bi),
where bi = δi + δi+1 for 1 ≤ i ≤ n − 2. The columns of ∂f satisfy the relations Ri from the proof
of Lemma 2.4.

Sacchiero uses Lemma 2.4 to deduce the following theorem.

Theorem 2.7. [Sa80] For 1 ≤ i ≤ n− 1, let bi ≥ 2 satisfy
∑n−1

i=1 bi = 2e− 2. Then there exists an
unramified map f : P1 → Pn such that

Nf =
n−1⊕
i=1

O(e+ bi).

In particular, the general smooth rational curve in Pn has balanced normal bundle.

Other authors (see [Ra07]) have studied the generic splitting type of normal bundles of rational
curves and described the loci where the splitting is not generic.

Sacchiero’s Theorem implies that unlike the restricted tangent bundle, the stratification of the
space of rational curves by the splitting type of the normal bundle is not well-behaved.

Proposition 2.8. For n ≥ 6, there are nonempty loci Me(b•) where the expected codimension is
larger than the dimension of More(P1,Pn). In particular, when (n−2)(2e−2n−1) ≥ (e+1)(n+1),
M(b•(2

n−2)) is nonempty even though its expected dimension is negative.

Proof. We compute the expected codimension for curves with normal bundle

Nf = O(e+ 2)n−2 ⊕O(3e− 2n+ 2).

The expected codimension is

h1(End(O(e+ 2)n−2 ⊕O(3e− 2n+ 2))) = (n− 2)(3e− 2n+ 2− (e+ 2)− 1)

= (n− 2)(2e− 2n− 1).

For fixed n, this expression grows like 2(n − 2)e with e. On the other hand, the dimension of
More(P1,Pn) grows like (n+ 1)e with e. For n > 5, 2(n−2)e grows faster than (n+ 1)e. Hence, for
sufficiently large e the expected codimension of the locus Me(b•(2

n−2)) is larger than the dimension
of More(P1,Pn).

�

Remark 2.9. As the referee pointed out, since More(P1,Pn) admits an action of PGL(2) that
preserves normal bundles, any nonempty locus has dimension at least 3. Hence, one would have
expectedM(b•(2

n−2)) to be empty under the weaker inequality (n−2)(2e−2n−1) ≥ (e+1)(n+1)−3.

Finally, Miret showed that if we fix only the lowest degree factor of the normal bundle, then the
resulting locus Me(b•(d)) is irreducible. In this case, Eisenbud and Van de Ven’s and Ghione and
Sacchiero’s proofs of irreducibility for P3 generalize with little change.

Theorem 2.10. [M86] Let 2e − 2 ≥ d(n − 1) + n − 2. Then the locus Me(b•(d)) is irreducible of
the expected dimension.

3. Monomial curves

In §2, we saw that computing the normal bundle Nf corresponds to determining the kernel of
the map ∂f . In general, this is a hard linear algebra problem. However, for monomial maps there
is a simple way of reading off the normal bundle from the terms in the sequence. Since monomial
maps provide useful examples, we describe the procedure in detail here. Our approach appears to
be easier than that of Alzati, Re, and Tortora in [ART].

First, it is easy to decide when monomial maps are unramified.
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Lemma 3.1. Let kn = 0 < kn−1 < · · · < k1 < k0 = e be a sequence of increasing integers. Let
f = (se, sk1te−k1 , . . . , skn−1te−kn−1 , te) be a monomial map. Then f is unramified if and only if
k1 = e− 1 and kn−1 = 1, which implies that the image of f is smooth.

Proof. First, we show that a map with k1 = e− 1 and kn−1 = 1 is unramified. Consider the matrix
of partials coming from only considering f0, f1, fn−1 and fn. We have[

ese−1 (e− 1)se−2t te−1 0
0 se−1 (e− 1)ste−2 ete−1

]
.

We see that if s 6= 0, the first two columns are independent, and if t 6= 0, the last two columns
are independent, so the map is unramified. Moreover, the image of f is smooth, since the curve
(se, se−1t, ste−1, te) is smooth and is a projection of the image of f .

Now suppose k1 6= e − 1. We show f is ramified (the case kn−1 6= 1 follows by symmetry). If
k1 6= e− 1, then we see that t divides ∂tfi for every i = 0, . . . n. Thus, at the point t = 0, the curve
is ramified, since ∂tf is identically zero. This completes the proof. �

Theorem 3.2. Let kn = 0 < 1 = kn−1 < · · · < k1 = e − 1 < k0 = e be a sequence of increasing
integers. Let f = (sk0 , sk1te−k1 , . . . , te−kn) be an unramified map whose coordinates are given by
monomials. Then

Nf
∼=

n−1⊕
i=1

O(e+ bi)

where

bi = ki−1 − ki+1.

Proof. The proof of this theorem is similar to, and in fact easier than, the proof of Lemma 2.4.
Computing the normal bundle is equivalent to computing the kernel of the map

∂f : O(−e)n+1 → O(−1)2.

Hence, we would like to find generators for the relations among the columns of ∂f . First, we exhibit
n− 1 independent relations among the (∂sfj , ∂tfj). Each relation Ri = (a0, . . . , an) only has three
nonzero terms, ai−1, ai and ai+1 for 1 ≤ i ≤ n− 1. Then

ai−1 = (ki − ki+1)tki−1−ki+1 , ai = −(ki−1 − ki+1)ski−1−kitki−ki+1 , ai+1 = (ki−1 − ki)ski−1−ki+1 ,

and aj = 0 for j 6= i− 1, i, i+ 1 is a relation, since it is easily checked that

ai−1

[
ki−1s

ki−1−1te−ki−1

(e− ki−1)ski−1te−ki−1−1

]
+ai

[
kis

ki−1te−ki

(e− ki)skite−ki−1

]
+ai+1

[
ki+1s

ki+1−1te−ki+1

(e− ki+1)ski+1te−ki+1−1

]
= 0

Let R be the matrix whose rows are the relations Ri. Note that Ri consists of a row of homoge-
neous polynomials of degree bi = ki−1− ki+1 for 1 ≤ i ≤ n− 1. Consequently, the matrix R defines
a map

n−1⊕
i=1

O(−e− bi)
R−→ O(−e)n+1,

whose image is in the kernel of ∂f . Therefore, the map R factors through the inclusion

0 −→ N∗f −→ O(−e)n+1.

Next, we claim that R has rank n− 1 at every point of P1, hence induces an isomorphism

n−1⊕
i=1

O(−e− bi) ∼= N∗f .
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The theorem easily follows. The (n− 1)× (n− 1) minors of R obtained by omitting the first two
columns and the last two columns are easy to compute and are given by

n−1∏
i=1

(ki−1 − ki)ski−1−ki+1 and

n−1∏
i=1

(ki − ki+1)tki−1−ki+1 ,

respectively. Since these minors do not simultaneously vanish, we conclude that R has rank n− 1
at every point of P1. �

Using the same technique, we can also compute the restricted tangent bundle of a curve generated
by monomial ideals. The Euler sequence

0 −→ f∗ΩPn −→ O(−e)n+1 f−→ O −→ 0

exhibits f∗ΩPn as the kernel of the map defined by f . The columns of f satisfy the n relations
given by

tki−1−kifi−1 − ski−1−kifi = 0.

The argument in the proof of Theorem 3.2 allows us to conclude the following proposition.

Proposition 3.3. Let kn = 0 < kn−1 < · · · < k1 < k0 = e be a sequence of increasing integers. Let
f = (sk0 , sk1te−k1 , . . . , te−kn) be an unramified monomial map. Then

f∗TPn ∼=
n⊕
i=1

O(e+ ci),

where

ci = ki−1 − ki.

We conclude this section with a short discussion of ramified monomial maps. If f is ramified,
then Nf has both a torsion part and a free part. Taking duals and repeating the argument from the
smooth case, we see that N∗f is the kernel of the map O(−e)n+1 → O(−1)2 given by the partials of

f , only now the map has a cokernel corresponding to the torsion sheaf Ext1(Nf ,O). Our calculation
in Theorem 3.2 still works in this case for computing the splitting type of N∗f .

4. Dimensions of Components

In this section we prove many of the main results of the paper. We will introduce a natural
incidence correspondence A that parameterizes maps f together with associated syzygy relations
that determine Nf . There are natural projection maps π1 and π2 from A to the space of syzygies
and to Me(b•). We describe the fibers of π1 for certain syzygies and compute the dimensions of
these fibers. This allows us to exhibit different components of the incidence correspondence A. For
each component of A, we will then exhibit an example where the fiber dimension of π2 is equal to
an a priori lower bound. This will show that π2 is relatively flat of relative dimension equal to the
a priori lower bound and will compute the dimension of this component of Me(b•).

We start by working out the expected dimension of Me(b•(d
k)) and proving an a priori lower

bound on the dimension.

Lemma 4.1. Assume that 2e ≥ (d+1)(n−1)−k+2. Then the expected codimension of Me(b•(d
k))

in More(P1,Pn) is k(2e+ 1 + k)− (d+ 1)nk. This is an upper bound for the codimension of every
component of Me(b•(d

k)).
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Proof. The expected codimension is by definition h1(End(N)). Recall that q and r are defined by
the expression

2e− 2− dk = (n− k − 1)q + r.

Since

N ∼= O(e+ d)k ⊕O(e+ q + 1)r ⊕O(e+ q)n−1−k−r,

we see that

h1(End(N)) = h1
(
O(d− q − 1)kr ⊕O(d− q)k(n−1−k−r)

)
= kr(q − d) + k(n− 1− k − r)(q − d− 1).

Simplifying using the fact 2e − 2 − dk = q(n − 1 − k) + r yields the desired formula. The last
statement follows from the fact that the loci Me(b•(d

k)) are determinantal loci. �

4.1. Two Conics. We now classify the components of Me(b•(2
2)). The following definition will

be central to our discussion.

Definition 4.2. Let α and β be (n + 1) tuples of polynomials, where the αi all have the same
degree and the βi all have the same degree. We refer to α and β as unscaled parameterized curves.
Then α and β satisfy the parameterized tangency condition if for some choice of parameters s and
t on P1, ∂sα is a fixed polynomial multiple of ∂tβ.

The tuples α and β give rise to a map from P1 to Pn. If α and β have the same degree and
satisfy the parameterized tangency condition, then ∂sα is a scalar multiple of ∂tβ. If α, β give
rise to nondegenerate conics that satisfy the parameterized tangency condition, then their planes
intersect in at least a line. Furthermore, if they intersect in a line `, then both α and β are tangent
to `.

Let G denote the closure of the locus in Me(b•(2
2)) where ∂f has two independent degree two

relations whose corresponding curves in Pn∗ lie in disjoint planes. Let PT denote the closure of the
locus in Me(b•(2

2)) where ∂f has two independent degree two relations satisfying the parameterized
tangency condition.

Theorem 4.3. For n ≥ 5, e ≥ 2n − 3, Me(b•(2
2)) has precisely two components, G and PT .

The dimension of G is the expected dimension e(n − 3) + 7n − 6, and the dimension of PT is
e(n− 2) + 5n− 3.

The proof of the theorem involves a detailed case-by-case analysis of the types of conic relations
that can occur among the columns of ∂f . We start by showing that if f is nondegenerate and
unramified, then the relations cannot define degenerate conics.

Lemma 4.4. If ∂f satisfies a degree two relation that defines a two-to-one map to a line, then f
is degenerate.

Proof. Let a define the degree two relation. Then, up to changing coordinates, we can view a as
(s2, t2, 0, . . . , 0). By Lemma 2.1, we have the relation

n∑
i=0

fi∂sai = 0.

Hence, f0 = 0 and f is degenerate. �

Lemma 4.5. If ∂f satisfies a degree two relation a = (a0, . . . , an) with all the ai’s having a common
root, then f is degenerate.

9



Proof. Change coordinates on P1 so that the common root is given by s = 0, and let ai = sa′i.
Then

n∑
i=0

a′i∂jfi = 0

for linear functions a′i. By Lemma 2.1, f must be degenerate. �

Corollary 4.6. If ∂f satisfies two degree two relations that define conics in the same plane in Pn∗,
then f is degenerate.

Proof. Any one dimensional family of degree two maps from P1 to P2 necessarily contains a degen-
erate conic. By the previous two lemmas, f is degenerate. �

Thus, to study M(b•(2
2)), we need only consider f with ∂f satisfying two relations that define

smooth conics not lying in the same plane. Hence, there are three possibilities: the planes spanned
by the conics could be disjoint, meet in a point, or meet in a line. First, we study the case when
the degree two relations on ∂f define conics with disjoint planes.

Proposition 4.7. If 3k ≤ n + 1 and 2e ≥ 3(n − 1), there is a component of Me(b•(2
k)) of the

expected dimension such that for the general element f , the degree two relation on ∂f define k
general conics in Pn∗.

Definition 4.8. Let Ck be the space of linearly independent ordered k-tuples (a1, . . . , ak), where
each ai is an unscaled parameterized conic. Let A be the incidence correspondence of tuples
(a1, . . . , ak, f) such that (a1, . . . , ak) ∈ Ck, f ∈ Me(b•(2

k)), and
∑n

j=0 aij∂lfj = 0 for 1 ≤ i ≤ k and

l ∈ {s, t}. Let A denote the closure of A in Ck ×More(P1,Pn).

Note that f is defined only up to scaling, while the ai are tuples of polynomials. This will play a
role in the dimension counts later. The incidence correspondence A projects via π1 to the space Ck
and via π2 to More(P1,Pn). We will estimate the dimensions of the fibers of these two projections.

Proof of Proposition 4.7. We show that there is one component Γ of the incidence correspondence
A that dominates Ck, and the general element of Γ maps to Me(b•(2

k)).
First, we compute the dimension of Ck. An unscaled parameterized conic in Pn∗ is determined

by specifying the plane it spans and a degree two map into that plane. The dimension of the
Grassmannian G(2, n) is 3(n−2) and the parameterized map is given by specifying the 9 coefficients
of the three polynomials of degree 2. We conclude that Ck has dimension 3(n− 2)k + 9k.

We claim the general fiber of π1 has dimension (e+ 1)(n+ 1)− 2k(e+ 2)− 1. Let C◦ denote the
Zariski open locus in Ck parameterizing k-tuples of conics that span linearly independent planes, and
let (a1, . . . , ak) ∈ C◦. Choose coordinates so that ai is the conic x3i−3 = s2, x3i−2 = −2st, x3i−1 = t2

in the linear space {x0 = · · · = x3i−4 = 0 = x3i = · · · = xn}. The conic ai imposes conditions only
on f3i−3, f3i−2 and f3i−1. Hence, the number of conditions imposed by the k conics is k times the
number of conditions imposed by one conic. By Lemma 2.1 the conditions

n∑
j=0

aij∂lfj = 0, l ∈ {s, t} translate to
n∑
j=0

fj∂laij = 0, l ∈ {s, t}.

Hence,

2sf3i−3 − 2tf3i−2 = 0 and − 2sf3i−2 + 2tf3i−1 = 0.

This shows that st|f3i−2, but that f3i−2

st can be any degree e−2 polynomial, and that f3i−2

st completely
determines f3i−3, f3i−2, and f3i−1. Therefore, each conic imposes 2(e+2) conditions, and the general
fiber of π1 has dimension (e+1)(n+1)−2k(e+2)−1. Notice that this dimension is positive under
our assumption that 3k ≤ n+ 1.
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Since the fibers of π1 over C◦ are irreducible of constant dimension, π−1
1 (C◦) is irreducible. Let

Γ be the closure of π−1
1 (C◦) in A. Then Γ is irreducible, dominates Ck and

dim(Γ) = (e+ 1)(n+ 1) + 3kn− 2ek − k − 1.

We now compute the dimension of the general fiber of the map π2|Γ. In the next paragraph, we
construct an example of a parameterized curve f ∈ π2(Γ)∩Me(b•(2

k)). It follows that π2 maps the
general element of Γ into Me(b•(2

k)). The general fiber of π2 over π2(Γ) ∩Me(b•(2
k)) corresponds

to a choice of k unscaled parameterized conics spanning the k-dimensional vector space of conic
relations on ∂f . Hence, this fiber has dimension k2. We conclude that Me(b•(2

k)) has a component
of dimension

(e+ 1)(n+ 1)− k(2e+ k + 1) + 3nk − 1.

This matches the expected dimension by Lemma 4.1.
To finish, it suffices to construct an example f where ∂f satisfies k general conic relations. Using

the division algorithm, write 2e− 2− 2k = q(n− k − 1) + r with 0 ≤ r < n− k − 1. We construct
a curve with

Nf = O(e+ 2)k ⊕O(e+ q)n−k−1−r ⊕O(e+ q + 1)r.

The construction depends on whether n − k is odd or even. In the odd case, we can construct a
monomial example.

• If n− k is odd, then n− k − 1 and r are even, thus n−k−1
2 and r

2 are integers. Now define
the sequence

(1) 1, 1, x1, 1, 1, x2, . . . , 1, 1, xk, 1, xk+1, 1, xk+2, . . . , xn−k−1
2

, 1,

where x1 = · · · = x r
2

= q and x r
2

+1 = · · · = xn−k−1
2

= q − 1. Set k0 = e and for 1 ≤ i ≤ n

define a sequence ki by the property that ki − ki−1 is equal to the ith entry of Sequence
(1). Note that kn−1 = 1 and kn = 0. Let f be the unramified monomial map

f = (sk0 , sk1te−k1 , sk2te−k2 , . . . , skn−1te−kn−1 , te−kn).

Write Nf
∼=
⊕n−1

i=1 O(e+ bi). By Theorem 3.2,

bi = ki−1 − ki+1 = (ki−1 − ki) + (ki − ki+1),

which is the sum of the ith and (i + 1)st entries in Sequence (1). Hence, k of the bi are
equal to 2, r of the bi are equal to q + 1 and the rest are equal to q. Therefore, the normal
bundle has the required form. Moreover, by the proof of Theorem 3.2, ∂f satisfies k degree
two relations that define conics in Pn∗ with independent planes.
• If n− k is even, then define the sequence

(2) 1, 1, x1, 1, 1, x2, . . . , 1, 1, xk, 1, xk+1, 1, xk+2, . . . , xn−k
2
−1, 1,

where x1 = · · · = xb r
2
c = q and xb r

2
c+1 = · · · = xn−k

2
−1 = q − 1. Notice the length of

Sequence (2) is n − 1. We now invoke Corollary 2.6 with δi given by Sequence (2). Then
bi = δi + δi+1 for 1 ≤ i ≤ n − 2. Note that for i ≤ n − 2, k of the bi are equal to 2, 2b r2c
are equal to q + 1, and the remaining 2bn−k−r−1

2 c are q. Since n − k is even, either r or
n − k − 1 − r is even. If r is even, then bn−1 is q. Otherwise, bn−1 is q + 1. Hence, the
hypotheses of Corollary 2.6 are satisfied and we obtain an unramified morphism with the
required normal bundle. Furthermore, ∂f satisfies the desired relations.

�
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Now we consider the case when the degree two relations on ∂f define conic curves in Pn∗ whose
planes intersect in a single point. Our eventual goal is Corollary 4.10, which shows that these maps
do not give a new component of Me(b•(2

2)). Let P be the locus in C2 parameterizing ordered pairs
of conics whose planes intersect in a single point.

Lemma 4.9. Let (c1, c2) ∈ P. Then the dimension of π−1
1 (c1, c2) is at most (e+ 1)(n+ 1)− 4e− 7

and the locus where equality occurs has codimension at least 2 in P. Furthermore, if (c1, c2) is
general, then π−1

1 (c1, c2) has dimension (e+ 1)(n+ 1)− 4e− 9.

Proof. By Lemmas 4.4 and 4.5, we may assume that c1 and c2 parameterize smooth and nonde-
generate conics. In suitable coordinates, we may write them as

(g1, g2, g3, 0, 0, 0, . . . , 0)
(0, 0, g4, g5, g6, 0, . . . , 0)

where the planes of the conics intersect at the point (0, 0, 1, 0, . . . , 0). Let Mij denote the matrix

Mi,j =

[
∂sgi ∂sgj
∂tgi ∂tgj

]
Then we claim detMi,j is not identically zero for 1 ≤ i < j ≤ 3. Write gi = ais

2 + bist+ cit
2, and

notice that
detMi,j = 2(aibj − ajbi)s2 + 2(bicj − bjci)t2 + 4(aicj − ajci)st.

If the determinant were 0, then the 2 by 2 minors of[
ai bi ci
aj bj cj

]
would vanish, which shows that gi and gj are linearly dependent. This forces the first conic to be
degenerate contrary to assumption.

Then we see that for any element (f0, . . . , fn) in π−1
1 (c1, c2), that[

M1,2
∂sg3

∂tg3

] f0

f1

f2

 = 0.

Multiplying by M−1
1,2 and solving for f0 and f1, we get[

f0

f1

]
= −M−1

1,2

[
∂sg3

∂tg3

]
f2

Expanding out M−1
1,2 in terms of the partials of the gi, we finally see that

f0 = −detM2,3

detM1,2
f2 and f1 = −detM1,3

detM1,2
f2.

Unless there is cancellation, we see that detM1,2 must divide f2. If detM1,2 does not divide f2, we
see that the 2 by 2 minors of [

∂sg1 ∂sg2 ∂sg3

∂tg1 ∂tg2 ∂tg3

]
must all vanish at the same point, which means that the conic must be degenerate.

We can obtain similar expressions for f3 and f4 in terms of f2, and similarly can see that f2 must
be divisible by detM5,6. Thus, there are between e+1−2 = e−1 and e+1−4 = e−3 choices for f2

(depending on what factors, if any, detM1,2 and detM5,6 have in common). Given f2, we see that
f0, f1, f3 and f4 are completely determined, so the fiber dimension is between (e+1)(n+1)−4e−9
and (e + 1)(n + 1) − 4e − 7. Furthermore, the dimension is (e + 1)(n + 1) − 4e − 9 if detM1,2

and detM5,6 have no common factors. The dimension is (e + 1)(n + 1) − 4e − 8 if detM1,2 and
12



detM5,6 have one common factor. Finally, the dimension is (e+ 1)(n+ 1)− 4e− 7 if detM1,2 and
detM5,6 are constant multiples of each other. Since detM1,2 and detM5,6 are arbitrary degree 2
polynomials, the locus where they have 2 common factors has codimension 2 in P. This concludes
the proof. �

Corollary 4.10. Let n ≥ 5 and 2e ≥ 3(n− 1). Then π2(π−1
1 (P)) ∩Me(b•(2

2)) is contained in the
component π2(Γ).

Proof. By Lemma 4.9, every component of π−1
1 (P) ⊂ A has dimension at most

dim(P) + (e+ 1)(n+ 1)− 4e− 9.

Observe that the fiber dimension of π2 over a point in π2(π−1
1 (P)) is at least 4. Hence, the

image of any such component is at most dim(P) + (e + 1)(n + 1) − 4e − 13. On the other hand,
dim(P) = dim(C2) − n + 4. By Lemma 4.1, the minimum possible dimension of a component of
Me(b•(2

2)) is dim(C2) + (e+ 1)(n+ 1)− 4e− 13. Since n ≥ 5, we conclude that π2(π−1
1 (P)) cannot

contain any irreducible components of Me(b•(2
2)). Hence, π2(π−1

1 (P))∩Me(b•(2
2)) is contained in

π2(Γ). �

Let L denote the locus in C2 where the planes of the two conics intersect in a line.

Lemma 4.11. Let (q1, q2) ∈ L. Then either q1 and q2 satisfy the parameterized tangency condition
and the fiber π−1

1 (q1, q2) has dimension (e+ 1)(n+ 1)− 3e− 7 or π−1
1 (q1, q2) contains no points of

A.

Proof. By Lemmas 4.4 and 4.5, we assume that the conics are smooth. We choose coordinates on
Pn∗ so that the two planes have the form

(∗, ∗, ∗, 0, 0, . . . , 0)

(0, ∗, ∗, ∗, 0, . . . , 0)

First, we show that each conic must be tangent to the line of intersection `. To get a contradiction,
suppose the first conic intersects ` in two distinct points. Up to reparameterizing P1, we can express
the conic as

(st, s2, t2, 0, . . . , 0).

Let the other conic be

(0, g1, g2, g3, 0 . . . , 0),

where gi = ais
2 + bist+ cit

2. Then we see that points in π−1
1 (q1, q2) are maps (f0, f1, f2, f3, . . . , fn)

with 
t 2s 0 0
s 0 2t 0
0 2a1s+ b1t 2a2s+ b2t 2a3s+ b3t
0 b1s+ 2c1t b2s+ 2c2t b3s+ 2c3t



f0

f1

f2

f3

 =


0
0
0
0


If the fi are not all zero, we see that this implies that the determinant of the 4 by 4 matrix must
be 0, giving us the relation

(a3b2−a2b3)s4+2(a3c2−a2c3)s3t+(a3b1−a1b3+b3c2−b2c3)s2t2+2(a3c1−a1c3)st3+(b3c1−b1c3)t4 = 0
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or

a3b2 − a2b3 = 0(3)

a3c2 − a2c3 = 0(4)

a3b1 − a1b3 + b3c2 − b2c3 = 0(5)

a3c1 − a1c3 = 0(6)

b3c1 − b1c3 = 0(7)

We consider the implications of this on the matrix with rows given by the coefficients of the gi:

G =

 a1 b1 c1

a2 b2 c2

a3 b3 c3


Equations (3) and (4) are precisely the vanishing of two of the subminors of the bottom two rows

of the matrix G. We claim that a2 and a3 are not both 0. If a2 = a3 = 0, then by equation (6)
a1c3 = 0. Since the ai cannot all vanish (otherwise, the gi would all have a common factor), we
see that c3 = 0. By equation (7), this shows that b3c1 = 0. Since b3 6= 0 (otherwise we would have
g3 = 0 and one of our conics would be degenerate), this gives that c1 = 0. Thus, our two conics
have the form

(st, s2, t2, 0, 0, . . . , 0)

(0, a1s
2 + b1st, b2st+ a1t

2, b3st, 0, . . . , 0)

We see that a1 times the first row minus the second row consists of a conic whose terms all have
a common factor, which is impossible. Therefore, our original assumption that a2 = a3 = 0 was
wrong.

If a2 and a3 are not both 0, then equations (3) and (4) give b2 = λa2, c2 = νa2, b3 = λa3,
c3 = νa3. If a3 = 0, then we see that both b3 and c3 are 0, which means that g3 = 0, which
means that the second conic is a double cover of a line, which is impossible, so we see that a3 6= 0.
Combining our expressions for c3 with equation (6), we see that a3(c1 − νa1) = 0, which means
c1 = νa1. Thus, the determinant of G is 0 since the last column is a multiple of the first, which
means that there is a linear relation among the rows, which means that the conic is degenerate.
Thus, this case is impossible, which shows that both of the two conics must be tangent to the line
of intersection of the two planes.

So, suppose that the two conics are both tangent to the line of intersection of the two planes.
Up to a choice of coordinates on Pn, we can assume our two conics have the form

(s2, st, t2, 0, 0, . . . , 0)

and

(0, g1, g2, g3, 0, . . . , 0).

As before, write gi = ais
2 + bist + cit

2. Since the second conic is also tangent to the line of
intersection of the two planes, we see that g3 is a square, i.e., g3 = (us + vt)2. Then we see that
the fibers are tuples (f0, f1, . . . , fn) where

2s t 0 0
0 s 2t 0
0 2a1s+ b1t 2a2s+ b2t 2u(us+ vt)
0 b1s+ 2c1t b2s+ 2c2t 2v(us+ vt)



f0

f1

f2

f3

 =


0
0
0
0


Taking −v times the third row of the matrix plus u times the fourth row of the matrix gives

`1f1 + `2f2 = 0
14



where `1 = −v(2a1s+ b1t) + u(b1s+ 2c1t) and `2 = −v(2a2s+ b2t) + u(b2s+ 2c2t). Since we also
have

sf1 + 2tf2 = 0

we see that either f2 = 0 or the two conics satisfy the parameterized tangency relation.
To compute the fiber dimension of π1, observe that f0 determines f1, f2, f3 and must be divisible

by t3. Hence, in total there are 3e+ 6 conditions on the fiber of π1. This concludes the proof. �

Proof. (Theorem 4.3) We have already seen that the component G = π2(Γ) ∩ Me(b•(2
2)) is an

irreducible component. It follows easily from Lemma 4.11 and Corollary 4.10 that there is at most
one more component of Me(b•(2

2)) corresponding to the locus PT corresponding to conic relations
that satisfy the parameterized tangency condition. We later exhibit an element of PT to show
that it is nonempty. If dim(PT ) ≥ dim(G), then PT is a separate component from G. We now
compute dim(PT ). To choose the first conic, we need to specify the plane spanned by the conic and
three degree 2 polynomials mapping to that plane. The dimension of the Grassmannian G(2, n) is
3(n−2). Hence, there are 3(n−2)+9 dimensions of choice for the first unscaled parameterized conic
C1. Then, there is a 1-dimensional family of tangent lines to C1, given by the vanishing of some
coordinate v on C1. Given a tangent line `, the set of planes Λ that contain ` is a Schubert variety in
G(2, n) of dimension n−2. Finally, there is a 5-dimensional family of unscaled parameterized conics
a satisfying the parameterized tangency condition with respect to C1. To see this, note that there
is a 2-dimensional choice of coordinate v such that ∂vC2 = ∂uC1 (Note that if C2 is to satisfy the
parameterized tangency condition, we can always choose such v. We could alternatively compute
the dimension by allowing ∂vC2 to be merely a scalar multiple of ∂uC1; in that case we would only
have a 1-dimensional choice of v, since it would be only defined up to scaling, but we would then
be able to scale C1 by a 1-dimensional choice of parameter). Given ∂vC2, there is a 3-dimensional
family of possible C2. This gives a 3(n−2)+9+1+n−2+5 = 4n+7 dimensional family of ordered
pairs of conics satisfying the parameterized tangency condition. The dimension of the fibers of π1

over this locus is (e+ 1)(n+ 1)− 3e− 7, and the dimension of the fibers of π2 over this locus in A
is 4, showing that PT has dimension 4n+ 7 + (e+ 1)(n+ 1)− 3e− 7− 4 = e(n− 2) + 5n− 3. This
is at least the dimension of G when e ≥ 2n− 3 by Proposition 4.7.

Finally, we exhibit an example of a curve in PT using a construction similar to the one in the
proof of Proposition 4.7. Express 2e− 6 = (n− 3)q + r.

• If n is odd, then r is even. Consider the sequence

(8) 1, 1, 1, x1, 1, x2, 1, . . . , xn−3
2
, 1,

where x1 = · · · = x r
2

= q and x r
2

+1 = · · · = xn−3
2

= q − 1. Let k0 = e. For 1 ≤ i ≤ n, let

ki be defined by the property that ki−1 − ki is the ith entry in Sequence (8). Observe that
kn−1 = 1 and kn = 0. Let

f = (sk0 , sk1te−k1 , sk2te−k2 , . . . , skn−1te−kn−1 , te−kn).

Write Nf
∼=
⊕n−1

i=1 O(e+ bi). By Theorem 3.2, bi = ki−1 − ki+1 = (ki−1 − ki) + (ki − ki+1),
which is the sum of the ith and (i+ 1)st entries in the sequence. Hence, b1 = b2 = 2. More-
over, r of the b’s are equal to q+ 1 and the rest are equal to q. Hence, Nf has the required
form. Notice that the first 4 coordinates of f have the form (se, se−1t, se−2t2, se−3t3, . . . , ).
The first four columns R1, . . . , R4 of ∂f satisfy the two degree two relations

t2R1 − 2stR2 + s2R3 = 0, t2R2 − 2stR3 + s2R4 = 0.

These relations satisfy the parameterized tangency condition.
• If n is even, then let the sequence be

(9) 1, 1, 1, x1, 1, x2, 1, . . . , xn−2
2
−1, 1,
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where x1 = · · · = xb r
2
c = q and xb r

2
c+1 = · · · = xn−2

2
−1 = q − 1. We invoke Corollary 2.6

with δi given by Sequence (9). Then bi = δi + δi+1 for 1 ≤ i ≤ n− 2. Hence, b1 = b2 = 2. If
1 ≤ i ≤ n− 2, 2b r2c of the bi are equal to q + 1, the rest are q. If r is even, then bn−1 = q.
Otherwise, bn−1 = q+1. Corollary 2.6 applies and provides a curve with the desired normal
bundle. This curve has two degree two relations that satisfy the parameterized tangency
condition as in the previous case.

�

4.2. More conics. In this section, by considering chains of conic relations that satisfy the param-
eterized tangency condition, we will show that the number of components of Me(b•(2

k)) grows at
least linearly with k for sufficiently large e and n.

Let Bk
j denote the ordered k-tuple of unscaled parameterized conics (C1, . . . , Ck), where Ci

with i ≤ j is the unscaled parameterized conic (s2,−2st, t2) contained in the plane xh = 0 for
h 6= i− 1, i, i+ 1 and Ci with i > j is the unscaled parameterized conic (s2,−2st, t2) contained in
the plane xh = 0 for h 6= 3i− 2j − 1, 3i− 2j, 3i− 2j + 1. For example, B5

3 is the following tuple of
unscaled parameterized conics

(s2, −2st, t2, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . 0)
(0, s2, −2st, t2, 0, 0, 0, 0, 0, 0, 0, 0, . . . 0)
(0, 0, s2, −2st, t2, 0, 0, 0, 0, 0, 0, 0, . . . 0)
(0, 0, 0, 0, 0, s2, −2st, t2, 0, 0, 0, 0, . . . 0)
(0, 0, 0, 0, 0, 0, 0, 0, s2, −2st, t2, 0, . . . 0)

The conics Ci and Ci+1 in Bk
j satisfy the parameterized tangency condition for 1 ≤ i < j and the

rest of the conics are general.

Theorem 4.12. Let n ≥ 3k−1 and e > 2kn−2n−2. Then Me(b•(2
k)) has at least k components.

Proof. Let Ckj denote the locus of unscaled parameterized conics (C1, . . . , Ck) in Ck such that Ci
and Ci+1 satisfy the parameterized tangency condition for 1 ≤ i < j and Ci are general for i > j. In
particular, Bk

j ∈ Ckj . We first compute the dimension of the locus Ckj . As in the proof of Proposition

4.7, a general unscaled parameterized conic depends on 3(n − 2) + 9 parameters (3(n − 2) for the
choice of the plane of the conic and 9 for the three degree 2 polynomials into this plane). Given
a conic C1 there is an n + 4 parameter family of conics satisfying the parameterized tangency
condition with respect to C1 (There is a 1 parameter family of tangent lines to C1. Given a fixed
tangent line l there is an (n − 2)-dimensional family of planes containing l. Then there is a 5-
dimensional space of unscaled parameterized conics with the given data as in the proof of Theorem
4.3.) Consequently,

dim(Ckj ) = (k − j + 1)(3(n− 2) + 9) + (j − 1)(n+ 4)

= k(3n+ 3)− (j − 1)(2n− 1).

For a general point x = (C1, . . . , Ck) ∈ Ckj , the set of partial derivatives of the Ci span a linear
space of dimension 2k− j+1, since there are 2k partial derivatives, and j−1 relations that overlap
from the parameterized tangency conditions. Let p = (p0, . . . , pn) be a point of the span of these
partial derivatives. Then the relation

∑
pifi = 0 is a polynomial in s, t of degree e + 1, hence

imposes at most (e+ 2) conditions on the fibers of π1. We conclude that the dimension of π−1
1 (x)

is at least (e+ 1)(n+ 1)− 1− (2k − j + 1)(e+ 2).
On the other hand, consider the dimension of π−1

1 (Bk
j ). The fi satisfy the relations

fi =
(s
t

)i
f0 for 1 ≤ i ≤ j + 1
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and

f3i−2j =
s

t
f3i−2j−1, f3i−2j+1 =

(s
t

)2
f3i−2j−1 for j < i ≤ k.

Hence, f0 can be chosen freely subject to the condition that it is divisible by tj+1. This determines
fi for 1 ≤ i ≤ j + 1. Then for j < i ≤ k, the entry f3i−2j−1 can be chosen freely subject to the
condition that it is divisible by t2. This determines f3i−2j and f3i−2j+1. All remaining fi are free.
We conclude that

dim(π−1
1 (Bk

j )) = (e+ 1)(n+ 1)− 1− (2k − j + 1)(e+ 2).

Hence, the general fiber of π1 over Ckj is irreducible of dimension (e+1)(n+1)−1−(2k−j+1)(e+2).

We conclude that there is a component Vj of π−1
1 (Ckj ) with

dim(Vj) = (e+ 1)(n+ 1)− 1 + k(3n− 2e− 1) + (j − 1)(e− 2n+ 3).

We warn the reader that Vj is typically not a component of the incidence correspondence. However,
we will shortly show that each Vj has to be contained in a distinct irreducible component Pj of the

incidence correspondence π−1
1 (Ck).

Suppose there exists an irreducible component U containing Vj1 and Vj2 for j1 < j2. Then π1(U)

contains Bk
j1

. Hence, the general fiber dimension of π1 restricted to U is at most (e+1)(n+1)−1−
(2k−j1+1)(e+2). Hence, the dimension of U is at most dim(Ck)+(e+1)(n+1)−1−(2k−j1+1)(e+2).
However, the dimension of Vj2 is (e + 1)(n + 1) − 1 + k(3n − 2e − 1) + (j2 − 1)(e − 2n + 3). We
bound

dim(Vj2)− dim(U) ≥ (j2 − j1)e+ 3j2 − 2j1 − 2j2n+ 2n− 1 ≥ e+ 2n+ 2− 2kn.

By our assumption on e, this number is positive. This is a contradiction. We conclude that Vj
belong to different components for each 1 ≤ j ≤ k.

Now consider the projection π2(Vj). We will shortly see that the general member of Vj has the
desired normal bundle. Consequently, there are exactly k independent conic relations among the
rows of ∂f and the general fiber dimension of π2 restricted to Pj is k2. In fact, π2 is generically a
GL(k)-bundle corresponding to choices of bases for the conic relations among the columns of ∂f .
Consequently, π2(Pj) is a distinct irreducible component of Me(b•(2

k)) for each 1 ≤ j ≤ k.
Finally, using Sacchiero’s construction, we see that there are unramified maps in these loci that lie

in M(b•(2
k)). Using the division algorithm, write 2e−2−2k = q(n−k−1)+r with 0 ≤ r < n−k−1.

We construct a curve with

Nf = O(e+ 2)k ⊕O(e+ q)n−k−1−r ⊕O(e+ q + 1)r.

The construction depends on whether n− k is odd or even.

• If n− k is odd, then define the sequence

(10) 1, 1, . . . , 1, 1, x1, 1, 1, x2, . . . , 1, 1, xk−j , 1, xk−j+1, 1, xk−j+2, . . . , xn−k−1
2

, 1,

where there are j + 1 1’s at the beginning, x1 = · · · = x r
2

= q and x r
2

+1 = · · · = xn−k−1
2

=

q − 1. Set k0 = e and for 1 ≤ i ≤ n, let ki−1 − ki equal to the ith entry of Sequence (10).
Let f be the monomial map

f = (sk0 , sk1te−k1 , sk2te−k2 , . . . , skn−1te−kn−1 , te−kn)

Write Nf
∼=
⊕n−1

i=1 O(e+ bi). By Theorem 3.2, the bi are given by ki−1− ki+1 = ki−1− ki +
ki − ki+1, which is the sum of the ith and (i + 1)st entries in the sequence. Hence the bi
have the required form. Furthermore, by the proof of Theorem 3.2, ∂f satisfies the desired
relations.
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• If n− k is even, then define the sequence

(11) 1, 1, . . . , 1, 1, x1, 1, 1, x2, . . . , 1, 1, xk−j , 1, xk−j+1, 1, xk−j+2, . . . , xn−k
2
−1, 1,

where there are j+1 1’s at the beginning, x1 = · · · = xb r
2
c = q and xb r

2
c+1 = · · · = xn−k

2
−1 =

q− 1. We invoke Corollary 2.6 with δi given by Sequence (11). As in the proof of Theorem
4.3, the hypotheses of Corollary 2.6 hold and there is a curve with the required form and
relations.

�

The above proof suggests a way to possibly get many more irreducible components of Me(b•(2
k).

Let µ be a partition of k with h parts k = k1 + k2 · · · + kh. Let Cµ be the locus of unscaled pa-
rameterized conics (C1, . . . , Ck), where consecutive Ci satisfy the parameterized tangency condition
according to whether their indices are in the same part of the partition µ. In other words Ci and

Ci+1 satisfy the parameterized tangency condition for any index i with
∑l

j=1 kj < i <
∑l+1

j=1 kj

for some 0 ≤ l < h. Let Pµ = π−1
1 (Ckλ). By an argument identical to that of Theorem 4.12, if µ

and ν have different numbers of parts, the loci Pµ and Pν belong to different components if e is
sufficiently large. However, if µ and ν have the same number of parts, it is possible that Pµ and Pν
could both be in the closure of another larger component. We pose the following natural question.

Question 4.13. Let µ and ν be two different partitions of k. Do Pµ and Pν belong to different
irreducible components of the incidence correspondence?

Remark 4.14. Since it is possible to construct elements in Pµ that map to Me(b•(2
k)) under

π2, a positive answer to the question would imply that the number of irreducible components of
Me(b•(2

k)) is at least the number of partitions of k provided that n ≥ 3k − 1 and e is sufficiently
large. This would provide superpolynomial growth for the number of components.

5. Higher degree relations

In this section, we generalize the discussion for Me(b•(2
k)) to Me(b•(d

k)) and for n ≥ 5 exhibit
multiple irreducible components of Me(b•(d

k)).

Theorem 5.1. For n ≥ 3k − 1 and k ≥ 2 even, Me(b•(d
k)) has at least k

2 + 1 components for
e ≥ k(d+ 1)(n+ 1).

Proof. Let Dk be the space of ordered k-tuples of independent unscaled parameterized degree d
rational curves. Let Ik,e be the incidence correspondence parameterizing pairs (D, f), where f is a

degree e rational curve and D ∈ Dk is a set of k independent degree d relations among the columns
of ∂f . Let π1 and π2 denote the two projections to Dk and More(P1,Pn), respectively. We find
k
2 + 1 components of Me(b•(d

k)).

First, for 0 ≤ j ≤ k
2 , we construct an element Bj = (Bj,1, . . . , Bj,k) ∈ Dk, where for 1 ≤ i ≤ j,

Bj,2i−1 and Bj,2i are given by

(. . . 0, (d− 1)td, −dstd−1, sd, 0, 0 . . . )
(. . . 0, 0, td, −dsd−1t, (d− 1)sd, 0 . . . )

,

where the nonzero coordinates are xu for 4i− 4 ≤ u ≤ 4i− 1. For i > j, we let Bj,2i−1 and Bj,2i be
given by

(. . . 0, td, −dsd−1t, (d− 1)sd, 0, 0, 0, 0 . . . )
(. . . 0, 0, 0, 0, (d− 1)td, −dstd−1, sd, 0 . . . )

,

where the nonzero coordinates are xu for 6i− 2j − 6 ≤ u ≤ 6i− 2j − 1.
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We work out the dimensions of the fibers of π1 over Bj . It is clear from the definitions that
for i1 6= i2, the conditions imposed on the fibers of π1 by the pair Bj,2i1−1, Bj,2i1 and the pair
Bj,2i2−1, Bj,2i2 are independent. For i ≤ j, the matrix of partial derivatives of Bj,2i−1 and Bj,2i is

A =


d(d− 1)td−1 −d(d− 1)std−2 0 0
0 −dtd−1 dsd−1 0
0 dtd−1 −dsd−1 0
0 0 −d(d− 1)sd−2t d(d− 1)sd−1

 .
From the relations

A


f4i−4

f4i−3

f4i−2

f4i−1

 = 0

we see that sd+1 divides f4i−4, but that subject to that condition, f4i−4 can be chosen freely
and this choice completely determines f4i−3, f4i−2, and f4i−1. This makes for 3(e + 1) + d + 1 =
3e + d + 4 conditions. For i > j, we see by a similar calculation that Bj,2i−1 and Bj,2i impose
2(e + d + e + 2) = 4e + 2d + 4 conditions. Thus, the total number of conditions imposed is
j(3e+ d+ 4) + (k − 2j)(2e+ d+ 2) = k(2e+ d+ 2)− j(e+ d).

For future use, we construct an example of a curve in the fiber π−1
1 (Bj) corresponding to an

unramified nondegenerate map that lies in Me(b•(d
k)). Let q and r be defined by 2e − 2 − kd =

q(n− 1− k) + r with 0 ≤ r < q. Consider the following sequence δ1, . . . , δn−1. For 1 ≤ i ≤ 4j the
sequence repeats the length four pattern 1, d− 1, 1, xl and looks like

1, d− 1, 1, x1, 1, d− 1, 1, x2, . . . 1, d− 1, 1, xj .

For 4j + 1 ≤ i ≤ 3k − 2j the sequence repeats the length six pattern

1, d− 1, xl − (d− 2), d− 1, 1, xl+1

and looks like

1, d− 1, xj+1 − (d− 2), d− 1, 1, xj+2, . . . , 1, d− 1, xk−j−1 − (d− 2), d− 1, 1, xk−j .

Finally, for 3k− 2j+ 1 ≤ i ≤ n− 1, the sequence repeats the length two pattern 1, xl and looks like

1, xk−j+1, 1, xk−j+2, . . .

Here, x1 = · · · = xb r
2
c = q and xb r

2
c+1 = · · · = xbn−k−1

2
c = q − 1. For example, if n = 19, e = 41,

d = 3, k = 6, and j = 2, we have q = 5 and r = 2 and we have the sequence

1, 2, 1, 5, 1, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 4, 1, 4.

By Corollary 2.6, there exists a curve with the required normal bundle and relations.
We now argue that for j1 < j2, π−1

1 (Bj1) and π−1
1 (Bj2) lie in different irreducible components

of π−1
1 (Dk). To get a contradiction, suppose that some component U of π−1

1 (Dk) contains both

π−1
1 (Bj1) and π−1

1 (Bj2). Then since π−1
1 (Bj1) lies in U , the general fiber of π1 restricted to U has

dimension at most (e+ 1)(n+ 1)− 1− k(2e+ d+ 2) + j1(e+ d), which shows that the dimension
of U is at most dimDk + (e+ 1)(n+ 1)− 1− k(2e+ d+ 2) + j1(e+ d). However, the dimension of
π−1

1 (Bj2) is at least (e+ 1)(n+ 1)− 1− k(2e+ d+ 2) + j2(e+ d). Bounding π−1
1 (Bj2)− dimU , we

get

π−1
1 (Bj2)− dimU ≥ (j2 − j1)(e+ d)− k(d+ 1)(n+ 1) ≥ e+ d− k(d+ 1)(n+ 1) > 0

by our assumption on e.
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The examples show that any irreducible component of the incidence correspondence containing a
Bj is generically a GL(k) bundle over its image in π2, so π2(π−1

1 (Bj)) all lie in different components

for each 0 ≤ j ≤ k
2 . The result follows.

�

6. Examples

In this section, we discuss some basic examples of strata of rational curves with fixed normal
bundle. We construct an example of a stratum of rational curves in P4 with higher than expected
dimension. We find examples of reducible strata of curves in P5. We show that a natural general-
ization of the example of Alzati and Re [AR17] has at least three reducible components. Finally,
we provide an example of reducible strata Me(b•) with b1 6= b2.

6.1. Conics in P4. Many of the results in section 4 were only for n ≥ 5. In this section we
completely describe Me(b•(2

2)) for degree e curves in P4.

Proposition 6.1. For e ≥ 5 and n = 4, Me(b•(2
2)) is irreducible of dimension 2e + 18. This is

larger than the expected dimension for e ≥ 6.

Proof. First we show that if f is a degree e rational curve in P4 such that the relations among
the columns of ∂f correspond to two conics in the dual space whose planes meet in a point,
then f is degenerate. To see this, note that for two such conics, their partial derivatives span
a 4-dimensional vector space of degree 1 maps to P4∗. By Lemma 2.1 the partial derivatives
give a 4-dimensional space of linear forms ai such that

∑
j aijfj = 0. This shows that if f were

nondegenerate (which would imply f∗TPn contains no O(e) factors), the restricted tangent bundle
f∗TPn would be O(e + 1)4, which is impossible by degree considerations. Thus, any such f must
be degenerate.

There is another component, however, corresponding to pairs of conics satisfying the parameter-
ized tangency condition by Lemma 4.11. We compute the dimension of this locus. The dimension
of the space of unscaled parameterized conics in P4 is 3(n−2)+9 = 15. Given the first conic, there
is a 1-dimensional choice of tangent lines, then an 2-dimensional family of planes containing this
tangent line, followed by a 5-dimensional family of conics satisfying the parameterized tangency
condition, for a total of 8 dimensions. Thus, this corresponds to a 23-dimensional locus in C2. The
fiber of π1 over this locus is (e+1)(n+1)−3(e+2) = 2e−1-dimensional. The fibers of π2 over this
locus are 4-dimensional, so the dimension of this family is 2e− 1 + 23− 4 = 2e+ 18. The expected
dimension of Me(b•(2

2)) is 5(e + 1) − (4e − 18) = e + 23, so we see that for e ≥ 6, this has larger
than expected dimension. �

6.2. An example in P5. We can find the smallest example where Me(b•(2
2)) has two components.

In particular, note that both e and n are smaller than the e = 11, n = 8 example discovered by
Alzati and Re.

Corollary 6.2. The space Me(b•(2
2)) has two components for e ≥ 2n− 3, n ≥ 5. In particular for

n = 5, e = 7, Me(b•(2
2)) is reducible.

Proof. This follows directly from Theorem 4.3. �

Remark 6.3. The normal bundle of curves in Me(b•(2
2)) for e = 7, n = 5 is O(9)2 ⊕ O(11)2, so

the expected codimension is 4.

Thus, we see that as soon as n > 4, we immediately start getting reducible strata.
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6.3. Alzati and Re’s example. Alzati and Re [AR17] exhibit two distinct irreducible components
of the locus in Mor11(P1,P8) where the normal bundle is O(13)3⊕O(14)2⊕O(15)2. Theorem 4.12
also implies the existence of these components. In their example, in one component the conic
relations are general. In the other component, two of the conic relations satisfy the parameterized
tangency condition. In fact, by increasing the degree (e > 30 certainly suffices), one can obtain
examples with more than two components.

6.4. An example without duplicate lowest factors. Finally, we work out examples of reducible
Me(b•) where the two lowest bi are distinct.

Theorem 6.4. Let d2 ≥ d1 ≥ 2 be integers, e ≥ (n + 1)(d1 + d2 + 2) − d1 and n ≥ 5. Let q and
r be defined by 2e − 2 − d1 − d2 = q(n − 3) + r, and let b1 = d1, b2 = d2, b3 = · · · = bn−r−1 = q,
bn−r = · · · = bn−1 = q + 1. Then Me(b•) is reducible.

Proof. We exhibit two components of the incidence correspondence A consisting of the set of tuples
(a1, a2, f) where a1 and a2 are unscaled parameterized curves of degree d1 and d2, f ∈ Me(b•) and∑n

i=0 aji∂`fi = 0 for j ∈ {1, 2} and ` ∈ {s, t}.
We start by finding a component of dimension close to the expected dimension. Consider the

following sequence

1, d1 − 1, x1, d1 − 1, d2 − d1 + 1, x2, d2 − d1 + 1, x3, d2 − d1 + 1, x4, . . .

where

x1 = q − d1 + 1, x2 = · · · = xb r
2
c+1 = q − d2 + d1

and the rest of the xi are q − d2 + d1 − 1. By Corollary 2.6, there is an unramified map f with
normal bundle Nf = O(e + d1) ⊕ O(e + d2) ⊕ O(e + q + 1)r ⊕ O(e + q)n−3−r. Furthermore, this
map f satisfies syzygies of degrees d1 and d2 with respect to

a1 = ((d1 − 1)td1 , −d1st
d1−1, sd1 , 0, 0, 0, . . . )

and

a2 = (0, 0, 0, (d2 − d1 + 1)td2 , −d2s
d1−1td2−d1+1, (d1 − 1)sd2 , 0, . . . ).

Hence, f ∈ π−1
1 (a1, a2). We claim the dimension of π−1

1 (a1, a2) is (e+ 1)(n+ 1)− 4e− d1 − d2 − 5.

The relations
∑2

i=0 fi∂sa1i = 0 =
∑2

i=0 fi∂ta1i imply that sd1−1t|f1 and f1 determines f0 and

f2. Similarly, the relations
∑5

i=3 fi∂sa2i = 0 =
∑5

i=3 fi∂ta2i imply that sd2−d1+1td1−1|f4 and f4

determines f3 and f5. This yields the desired fiber dimension. Since the dimension of the space of
ordered pairs of unscaled parameterized curves of degrees d1 and d2 is at most (n+1)(d1+d2+2), we
conclude that there is a component ofA of dimension at most (n+1)(d1+d2+e+3)−4e−(d1+d2)−5.

Now we show there is another component of dimension at least as large. To show this, we need
only find one pair of relations (a1, a2) of degrees d1 and d2 such that the space of f satisfying∑n

i=0 aji∂`fi = 0 for j ∈ {1, 2} and ` ∈ {s, t} contains nondegenerate unramified maps and has
codimension at most 3e+ d2 + 4. Then the dimension of this component is at least

(n+ 1)(e+ 1)− 5− 3e− d2.

A simple check shows that the inequality e ≥ (d1 +d2 +2)(n+1)−d1 guarantees that this dimension
is at least the dimension of the previous component. To find such an example, consider the relations

((d1 − 1)td1 , −d1st
d1−1, sd1 , 0, 0, . . . , 0)

and

(0, (d2 − d1 + 1)td2 , −d2s
d1−1td2−d1+1, (d1 − 1)sd2 , 0, . . . , 0).
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We see that the conditions imposed on the fiber over these relations are
0 −d1t

d1−1 d1s
d1−1 0

d1(d1 − 1)td1−1 −d1(d1 − 1)std1−2 0 0
0 0 −d2(d1 − 1)sd1−2td2−d1+1 d2(d1 − 1)sd2−1

0 d2(d2 − d1 + 1)td2−1 −d2(d2 − d1 + 1)sd1−1td2−d1 0



f0

f1

f2

f3

 = 0.

The first and last rows are multiples of each other. In particular, the last row imposes no new
conditions on the fi. Note that knowing f1 determines f0 and f2; and knowing f2 determines f3.
The relations imply that sd2t divides f1, otherwise f1 is free. All other fi are free. Hence, the fiber
has dimension

(e+ 1)(n+ 1)− 3e− d2 − 5.

It remains to find a single example of a nondegenerate unramified map and these relations. Let
q and r be defined by 2e− 2− d1 − d2 = q(n− 3) + r. Consider the following sequence

1, d1 − 1, d2 − d1 + 1, x1, d2 − d1 + 1, x2, d2 − d1 + 1, x3, d2 − d1 + 1, . . .

where x1 = · · · = xb r
2
c = q − d2 + d1 and xb r

2
c+1 = · · · = q − d2 + d1 − 1. Then by Corollary 2.6,

there exists a curve of the required form having the required relations. �
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tangent restreint fixés, Mém. Soc. Math. France (N.S.), 54 (1993), ii+74.
[Ra07] Z. Ran, Normal bundles of rational curves in projective spaces, Asian J. Math., 11 no. 4 (2007), 567–608.
[Sa80] G. Sacchiero, Fibrati normali di curvi razionali dello spazio proiettivo, Ann. Univ. Ferrara Sez. VII, 26

(1980), 33–40.
[Sa82] G. Sacchiero, On the varieties parameterizing rational space curves with fixed normal bundle, Manuscripta

Math., 37 (1982), 217–228.

Department of Mathematics, Statistics and CS, University of Illinois at Chicago, Chicago, IL 60607
E-mail address: coskun@math.uic.edu

E-mail address: ebriedl@uic.edu

22


