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Abstract. Recently, Haase and Ilten initiated the study of classifying algebraically hyper-
bolic surfaces in toric threefolds. We complete this classification for P1 × P1 × P1, P2 × P1,
Fe × P1 and the blowup of P3 at a point, augmenting our earlier work on P3. In the pro-
cess, we codify several different techniques for proving algebraic hyperbolicity, allowing us
to prove similar results for hypersurface in any variety admitting a group action with dense
orbit.

1. Introduction

A complex projective variety X is algebraically hyperbolic if there exists an ample divisor
H and a real number ε > 0 such that the geometric genus g(C) of any integral curve C ⊂ X
satisfies the inequality

2g(C)− 2 ≥ ε degH(C).

Recently, Haase and Ilten [HI19] initiated the study of classifying algebraically hyperbolic
surfaces in toric threefolds. In this paper, we complete their classification for P1 × P1 × P1,
P2×P1, Fe×P1 and the blowup of P3 at a point. Building on the results of Clemens [Cl86],
Ein [Ei88, Ei91], Pacienza [Pa03], Voisin [Vo96, Vo98], Clemens-Ran [ClR04], Xu [Xu94,
Xu96] and the authors [CR19], we develop a general technique for proving the algebraic
hyperbolicity of the vanishing locus of a very general section of a sufficiently ample vector
bundle. We apply our techniques to several other examples.

A complex manifold X is Kobayashi hyperbolic if the Kobayashi pseudometric is nonde-
generate and Brody hyperbolic if every entire map f : C → X is constant. By Brody’s
theorem [Br78], Kobayashi and Brody hyperbolicity agree for compact complex manifolds.
See Demailly’s survey paper [De18] for background on hyperbolicity, and [RY, BK] for recent
advances on the Kobayashi Conjecture. Demailly introduced algebraic hyperbolicity as an
algebraic analogue for Kobayashi hyperbolicity. He proved that for smooth projective vari-
eties Kobayashi hyperbolicity implies algebraic hyperbolicity and conjectured the converse
[De95]. Deep conjectures of Green, Griffiths, Lang and Vojta predict that hyperbolicity
has strong implications on the geometry and arithmetic of a variety [Co05, De95]. Hence,
conjecturally, algebraic hyperbolicity is expected to control the geometry and arithmetic of
X. Despite its importance, showing that a variety is algebraically hyperbolic can be very
challenging. Nevertheless, we prove the following theorem answering many open cases of
Question 6.6 from [HI19].
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Theorem 1.1. Let X be a very general surface in a threefold A of class D.

(1) Let A = P1×P1×P1 and D =
∑3

i=1 aiHi, where Hi is the pullback of the hyperplane
class from the ith factor. Then X is algebraically hyperbolic if and only if up to
permutations

a1, a2, a3 ≥ 3; or a1 = 2, a2, a3 ≥ 4.

(2) Let A = P2×P1 and D = aH1 + bH2, where Hi is the pullback of the hyperplane class
from the ith factor. Then X is algebraically hyperbolic if and only if

a ≥ 4, b ≥ 3 or b = 2, a ≥ 5.

(3) Let A be the blowup of P3 at a point and D = aH−bE, where H is the pullback of the
hyperplane class and E is the class of the exceptional divisor. Then X is algebraically
hyperbolic if and only if

a ≥ b+ 2, b ≥ 4 or b = 0, a ≥ 5.

(4) Let A = Fe × P1 and D = a1E + a2F + a3H, where Fe = P(OP1 ⊕ OP1(e)), E and
F are the pullbacks of the exceptional divisor and fiber class from Fe and H is the
pullback of O(1) from P1. Let δi,j denote the Kronecker delta function. Then X is
algebraically hyperbolic if and only if

a2 − ea1 ≥ 2, a1 ≥ 3, a3 ≥ 3 or a3 = 2, a1 ≥ 4, a2 − ea1 ≥ 3

or a1 = 2, a3 ≥ 4, a2 − ea1 ≥ 2 + δe,1.

Our techniques apply to many other examples and yield almost complete classifications for
many other varieties such as A = P(1, 1, 1, n).

We improve and streamline a technique developed by Ein [Ei88, Ei91], Pacienza [Pa03],
Voisin [Vo96, Vo98] and [CR19]. Let E be a globally generated vector bundle and let X be
the zero locus of a very general section of E . Assume that X is smooth and irreducible. Let
h : C → X be a birational map from a smooth curve C into X. There is a close relation
between the normal bundle Nh/X to the map h and the genus of C. The main idea is to
quantify the positivity of Nh/X using the tangent bundle TX to the universal zero locus over
the family of sections of E . We find maps from direct sums of appropriate Lazarsfeld-Mukai
bundles ML onto TX . When ML maps generically surjectively to Nh/X , we obtain a genus
bound. We introduce the notion of section-dominating collection of line bundles to capture
the positivity (see Definition 2.3). Our results for threefolds can be summarized in the
following theorem (see Corollary 2.9).

Theorem 1.2. Let A be a threefold with a Zariski open subset A0 which is homogeneous
under an algebraic group action G. Let E be a very ample line bundle on A invariant under
G and let X be the zero locus of a very general section of E. Let L1, . . . , Lk be a collection
of section-dominating line bundles for E on A. Then for any genus g curve f : C → X
intersecting A0,

2g − 2−KX · C = degNf/X ≥ −max
i
{degLi|C}.

In particular, if there exists ε > 0 such that KX · C ≥ (1 + ε) degLi|C for all curves C and
indices i and (A\A0)∩X does not contain any curves of genus 0 or 1, then X is algebraically
hyperbolic.
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Theorem 1.2 is essentially the same as Theorem 3.6 from [HI19], and the proofs are fairly
similar. Haase and Ilten focus on the special case of toric varieties and use the language of
connected sections and focal loci, while our results apply to arbitrary threefolds with dense
orbit of a group action use the concept of section-dominating line bundles. However, the
spirit of both techniques is the same, and is a continuation of work of Ein, Voisin, and others.

The straightforward application of this technique does not always produce sharp bounds,
and indeed, Haase and Ilten include a list of open cases at the end of their paper where their
Theorem 3.6 and our Theorem 1.2 do not prove algebraic hyperbolicity (see Question 6.6
of [HI19]). In this paper, we resolve almost all of their open questions by using a careful
analysis of where various line bundles fail to be section-dominating. For instance, we study
the geometric consequences of the condition that the map from ML to Nh/X is generically
zero (see Lemma 2.12). We also study possible quotients of Lazarsfeld-Muaki bundles and
produce scrolls that contain the curve (see Lemma 2.13) to allow us to obtain the sharp
result in other cases.

The organization of the paper. In §2, we introduce our setup, prove general positivity
criteria for Nh/X and obtain genus bounds in terms of the positivity. In §3, we apply our
techniques to explicit examples and classify algebraic hyperbolicity of the very general surface
in P1 × P1 × P1, P2 × P1, Fe × P1 and the blowup of P3 at a point. We also discuss several
other examples.

Acknowledgements. We would like to thank Lawrence Ein, Christian Haase, Nathan Ilten
and Mihai Păun for valuable conversations.

2. Preliminaries

In this section, we improve and streamline certain positivity techniques developed by Ein
[Ei88, Ei91], Pacienza [Pa03], Voisin [Vo96, Vo98] and [CR19]. We then use these techniques
to obtain a criterion for showing the algebraic hyperbolicity of the zero locus of a very general
section of a vector bundle on a variety A admitting a group action with dense orbit.

2.1. Setup. Let A be a smooth, complex projective variety of dimension n and assume that
A contains a Zariski-open set A0 admitting a transitive group action by an algebraic group
G. For example, A could be a homogeneous variety or a smooth, projective toric variety.
Let E be a globally generated vector bundle invariant under G on A of rank r < n− 1. Let
V = H0(A, E). Assume that the zero locus X of a very general section of E is a smooth,
irreducible variety. We wish to understand when X is an algebraically hyperbolic variety.

Suppose that X contains a curve of degree e and genus g that meets A0. Then if X1 → V is
the universal hypersurface over V , we have the relative Hilbert schemeH → V with universal
curve Y1 → X1, where the general fiber of Y1 → H is a geometric genus g curve of degree
e. There is a natural G-action on H. By a standard argument, we can find a G-invariant
subvariety U ⊂ H such that the map U → V is étale. Restricting Y1 to U , we get a family
Y2 → U . By taking a resolution of the general fiber (and possibly further restricting U), we
get a smooth family Y → U whose fibers are smooth curves of genus g. We can pull back
X1 to a family X over U , with projection maps π1 : X → U and π2 : X → A. We have a
natural generically injective map Y → X which we denote by h.
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Because Y was constructed to be stable under the G-action, we have that π2 ◦h dominates
A0. Let the vertical tangent sheaf TX/A be defined by the natural sequence

0→ TX/A → TX → π∗2TA → 0.

Let the vertical tangent sheaf TY/A be the kernel of the natural map TY → h∗π∗2TA, which
is surjective if A = A0, but may fail to be surjective otherwise. Let M = ME denote the
Lazarsfeld-Mukai bundle defined by the short exact sequence

0→M → V ⊗OA → E → 0.

Let t be a general element of U . Let Yt be the fiber of Y over t and Xt be the fiber of X
over t. Let ht : Yt → Xt be the restriction of h to Yt. The following result generalizes [CR19,
Lemmas 2.2, 2.4 and 2.5].

Proposition 2.1. (1) Nht/Xt
∼= Nh/X |Yt.

(2) TX/A
∼= π∗2M .

(3) If A0 = A, then Nh/X is the cokernel of the map of vertical tangent spaces TY/A →
TX/A. If A0 6= A, then the cokernel of the map TY/A → TX/A is a sheaf K that injects
into Nh/X with torsion cokernel.

Proof. Part (1) follows from the proof of [CR19, Lemma 2.2]. Part (2) follows from the proof
of [CR19, Lemma 2.4]

For Part (3), if A is homogeneous under the action of G, then the map TY → h∗π∗2TA is
surjective. If A 6= A0, then the map TY → h∗π∗2TA is not necessarily surjective—it is only
generically surjective. Let S be the image of TY in h∗π∗2TA. Then we have the following
diagram:

0 0 0x x x
0 −−−−→ S −−−−→ h∗π∗2TA −−−−→ T −−−−→ 0x x x
0 −−−−→ TY −−−−→ h∗TX −−−−→ Nh/X −−−−→ 0x x x
0 −−−−→ TY/A −−−−→ h∗TX/A −−−−→ K −−−−→ 0x x x

0 0 0

Here, T is a torsion sheaf. Now restrict the above to a general curve parameterized by Y .
The second column remains exact since it is a sequence of vector bundles. The first column
remains exact because TY/A is torsion free and the map TY/A → TY is generically injective
when restricted to C. The rows remain exact by Lemma 2.1 of [CR19]. Thus, by the nine
lemma, the last column remains exact as well. Since T is torsion, its restriction to a general
curve remains torsion. �

2.2. Bounding the genus of curves. The following well-known lemma explains our inter-
est in the positivity of Nht/Xt .
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Lemma 2.2. The following hold:

deg(Nht/Xt) = 2g(Yt)− 2−KXt · ht(Yt),
deg(Nht/Xt) ≥ deg(K|Yt).

Proof. The first equality follows by taking degrees of the terms in the exact sequence defining
Nht/Xt

0→ TYt → h∗tTXt → Nht/Xt → 0.

Proposition 2.1 provides a surjection from h∗π∗2M onto K, which in turn injects into Nh/X .
Restricting to Yt we obtain a surjection onto a free subsheaf of Nht/Xt of the same rank. It
follows that the degree of Nht/Xt is at least the degree of K|Yt . �

It remains to bound the degree of K|Yt . We do this by working with bundles simpler than
M that still surject onto K.

Definition 2.3. Let E be a vector bundle on A. We say a non-trivial globally generated
line bundle L is a section-dominating line bundle for E if E ⊗ L∨ is globally generated and
the map

H0(L⊗ Ip)⊗H0(E ⊗ L∨)→ H0(E ⊗ Ip)
is surjective for every point p ∈ A. More generally, a collection of non-trivial globally
generated line bundles L1, . . . , Lu is a section-dominating collection of line bundles for E if
E ⊗ L∨i is globally generated for every 1 ≤ i ≤ u and the map

u⊕
i=1

(H0(Li ⊗ Ip)⊗H0(E ⊗ L∨i ))→ H0(E ⊗ Ip)

is surjective for every point p ∈ A.

Example 2.4. Suppose A = P2 × P1 with Hi the pullback of the hyperplane class from
the respective factors. Let E = aH1 + bH2 with a, b > 0. Then H1 and H2 are a section-
dominating collection for E . Choose coordinates so that p is ([0, 0, 1], [0, 1]). Then H0((aH1+
bH2)⊗ Ip) is the set of polynomials of bidegree (a, b) in variables x, y, z and s, t where each
monomial is divisible by either x, y or s. This is precisely the image of the natural map

H0(H1⊗Ip)⊗H0((a−1)H1+bH2)⊕H0(H2⊗Ip)⊗H0(aH1+(b−1)H2)→ H0((aH1+bH2)⊗Ip).

Example 2.5. In a similar way, on P1 × P1 × P1, H1, H2, and H3 is a section-dominating
collecting for any line bundle aH1 + bH2 + cH3 with a, b, c > 0.

Example 2.6. Let A = Fe × P1. Recall that E and F are the pullbacks of the exceptional
curve and the fiber class from Fe, respectively, and H is the pullback of O(1) from P1. We
now show that E + eF, F and H form a section-dominating collection of line bundles for
aE + bF + cH, with a, c > 0 and b > ae. By the Künneth decomposition, it suffices to show
that on Fe, E + eF and F form a section-dominating collection for aE + bF . If α ≥ 0 and
β ≥ αe− 1, then H1(Fe, αE+βF ) = 0 (see [Co06] [CH18, Thm 2.1]). Hence, the long exact
sequence associated to the sequence

0→ OFe(αE + βF )→ OFe(αE + (β + 1)F )→ OP1(α)→ 0

shows that the map

H0(Fe,OFe(αE + (β + 1)F ))→ H0(P1,O(α))
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is surjective.
Let p be a point on Fe and let F0 be the fiber through p. There exists a section sp of E+eF

vanishing only at p along F0 (see [Co06]). By the discussion in the previous paragraph, there
exists sections s1, . . . , sa of (a − 1)E + (b − e)F whose restrictions to F0 span OF0(a − 1).
Hence, the sections spsj for 1 ≤ j ≤ a span sections in H0(Fe, aE + bF ) that vanish at p
modulo those sections that vanish along F0. Hence, the collection is section-dominating.

Given a section φ ∈ H0(E ⊗ L∨), the natural multiplication map defines a map Li → E
and H0(Li)→ H0(E), hence induces a map from MLi

→ME .

Proposition 2.7. Let E be a globally generated vector bundle and ME the Lazarsfeld-Mukai
bundle associated to E. Let L1, . . . , Lu be a section-dominating collection of line bundles for
E. Then there is a surjection

⊕u
i=1M

⊕s
Li
→ME for some integer s.

Proof. Every section of E ⊗L∨ induces a map MLi
→ME . Let si = h0(E ⊗L∨i ). If we choose

a basis for H0(E ⊗ L∨i ), we obtain a map M⊕si
Li
→ ME . Set s = max1≤i≤u si. We obtain a

map
⊕u

i=1M
⊕s
Li
→ ME . The fiber of ME at a point p is the vector space of sections of E

vanishing at p. Similarly, the fiber of MLi
at a point p is the vector space of sections of Li

vanishing at p. Since by assumption,
u⊕

i=1

(H0(Li ⊗ Ip)⊗H0(E ⊗ L∨i ))→ H0(E ⊗ Ip)

is surjective for every point p ∈ A, we conclude that this map is surjective. �

2.3. The case of threefolds. Throughout this subsection we assume that A is a threefold
with a Zariski open subset A0 which is homogeneous under an algebraic group action G. Let
E be a very ample line bundle on A invariant under G and let X be the zero locus of a very
general section of E . Let X and Y be the corresponding universal families and let K be the
quotient of h∗TX/A by TY/A constructed in the setup above. Since A is a threefold, K|C must
be rank 1, which simplifies our proofs and allows us to apply Proposition 2.7 to get a genus
bound for curves on a very general section of E . We start with the following observation.

Proposition 2.8. Given a surjection from ML to a line bundle N on a curve C, we have
that degN ≥ − degL|C.

Proof. We have the short exact sequence

0→ML → O⊗H0(L)→ L→ 0.

Taking the second wedge power of the sequence, we get

0→ ∧2ML → ∧2(O ⊗H0(L))→ML(L)→ 0.

Thus, ML(L) is globally generated, and hence, so is N(L). Since the degree of N(L) must
be non-negative, we have degN ≥ − degL|C . �

Since A is a threefold, X will be a surface, so the normal sheaf of a curve in X will have
rank 1. We can use the above discussion to obtain the following result.

Corollary 2.9. Let L1, . . . , Lk be a collection of section-dominating line bundles for E on
A. Then for any genus g curve f : C → X intersecting A0,

2g − 2−KX · C = degNf/X ≥ −max
i
{degLi|C}.
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In particular, if there exists ε > 0 such that KX · C ≥ (1 + ε) degLi|C for all curves C and
indices i and (A\A0)∩X does not contain any curves of genus 0 or 1, then X is algebraically
hyperbolic.

Proof. To prove the statement, it will suffice to prove that degNf/X ≥ −maxi{degLi|C}. By
Lemma 2.2, it is enough to bound degK|C , where we write C instead of the more cumbersome
Yt.

By Proposition 2.1 part (2), K|C admits a surjection fromME |C . By Proposition 2.7, we get
a surjection from a direct sum of copies of MLi

onto ME , and hence a surjection of a direction
sum of copies of MLi

|C onto K|C . Since K|C has rank 1, we can find a single i such that
α : MLi

|C → K|C is generically surjective. By Proposition 2.8, degα(MLi
|C) ≥ − degLi|C .

Putting it all together, we get

degNf/X ≥ α(MLi
|C) ≥ − degLi|C .

�

Remark 2.10. As in Haase and Ilten’s Lemma 3.7 [HI19], Corollary 2.9 can be extended to
Gorenstein threefolds that admit a crepant resolution.

In the examples we consider, we will run across situations where we do not have an
appropriate collection of section-dominating line bundles. There are other useful techniques
for these cases.

Lemma 2.11. Let L be a line bundle on A such that H0(L∨ ⊗ E) 6= 0. Assume that the
natural map

⊕
iML → ME is not surjective and that the induced map

⊕
iML → K has

torsion image. Then at a general point (p, t) of Y, (TY/A)(p,t) contains the image of the map

H0(L⊗ Ip)⊗H0(L∨ ⊗ E)→ H0(E ⊗ Ip).

Proof. By Proposition 2.1 (2), TX/A
∼= π∗2ME . If at a general point p of the curve Yt,

(ML)p → (ME)p maps to 0 in Kp, then the image of (π∗2ML)p must lie in (TY/A)p. The result
follows. �

Lemma 2.12. Let p ∈ A0 and let Z = π−12 (p), where π2 : X → A. Let T be a subvariety of A
containing p. Assume that H0(IT⊗E) is contained in (TY/A)(p,f) for general (p, f) ∈ h−1(Z).
Then W = h(Y)∩Z is a union of fibers of the map β : Z → H0(E|T ) given by sending (p, f)
to f |T .

Proof. There is a natural map β : Z → H0(E|T ) defined by sending a section f of E to the
restriction of f to T . The tangent space to a fiber of this map (at any point) is H0(IT ⊗E).
By generic smoothness, Z is reduced because X is. Since the map Y → X is birational onto
its image, h−1(Z) → Z is also birational onto its image. Since W = h(Y) ∩ Z is reduced
and the fibers of β sweep out Z, it follows from generic smoothness that either W is a union
of fibers of β or that W intersects a general fiber of β transversely. However, (TY/A)(p,f) by
assumption contains the tangent space to the fiber H0(IT ⊗E). Hence, W does not intersect
the general fiber of β transversely, so the result follows. �

Finally, considering scrolls that contain Yt we can improve the genus bounds. Suppose we
have a nontrivial map from ML → Nht/X . Then the degree of Nht/X is at least the degree of
the image of this map, so need to bound the possible degrees of 1-dimensional quotients of
ML. This is closely related to the scrolls that ht(Yt) lies on.
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Lemma 2.13. Let L be a base-point-free line bundle on the threefold A and let φ : A→ Pn

be the morphism induced by the complete linear system |L|. Then a rank one quotient Q of
ML|Yt induces a surface scroll P(Q′) over Yt and a map P(Q′)→ Pn whose φ∗(OPn(1))-degree
is equal to degQ+ degL|Yt.

Proof. Consider the Euler sequence for Pn

0→ ΩPn(1)→ On+1
Pn → OPn(1)→ 0.

Pulling the sequence back to Yt and observing that ΩPn(1) is ML|Yt , we obtain

0→ML|Yt → On+1
Yt
→ L|Yt → 0.

The quotient Q of ML|Yt gives rise to a subsheaf S of ML|Yt ⊂ On+1
Yt

. Taking the quotient of

On+1
Yt

by S gives us a sheaf Q′ of degree equal to degQ + degL|Yt . The result follows from
the universal property of projective space. �

3. Examples

In this section, we apply the technique described in §2 to specific examples.

3.1. A very general surface in P1×P1×P1. The variety P1×P1×P1 admits three natural
projections πi, 1 ≤ i ≤ 3, to P1. Let Hi = π∗iOP1(1). Then

Pic(P1 × P1 × P1) = ZH1 ⊕ ZH2 ⊕ ZH3 and KP1×P1×P1 = −2H1 − 2H2 − 2H3.

Let a1, a2, a3 be nonnegative integers and let X be a very general surface of class
∑3

i=1 aiHi.
By the generalized Noether-Lefschetz Theorem [RS09], if ai ≥ 2 for all i, then the natural
restriction map Pic(P1×P1×P1)→ Pic(X) is an isomorphism. Hence, the class of any curve
on X can be written as OX(c1, c2, c3). The degree of a curve C on the class OX(c1, c2, c3)
with respect to the ample class H = H1 +H2 +H3 is

a1c2 + a1c3 + a2c1 + a2c3 + a3c1 + a3c2.

Lemma 3.1. Let a1 ≤ a2 ≤ a3 be positive integers such that either a1 = 1 or a1 = 2 and
a2 ≤ 3. Then a surface X with class

∑3
i=1 aiHi is not algebraically hyperbolic.

Proof. If a1 = 1, then the projection π2,3 of X onto the second and third factors gives a
birational map between X and P1×P1, hence X is rational and not algebraically hyperbolic.
If a1 = a2 = 2, then the fibers of the projection π3 exhibit a one-parameter family of elliptic
curves on X. Finally, if a1 = 2 and a2 = 3, then the fibers of the projection π3 exhibit a
one-parameter family of OP1×P1(2, 3) curves on X. Such a family necessarily has singular
members. While the general member of the family has genus 2, the singular members have
geometric genus one or less. Hence, X cannot be algebraically hyperbolic. �

Theorem 3.2. Let X be a very general surface in P1×P1×P1 of class
∑3

i=1 aiHi. Assume
that either ai ≥ 3 for all i or that one of the ai is 2 and the other two are at least 4. Then
X is algebraically hyperbolic.

Proof. Let MHi
denote the Lazarsfeld-Mukai bundle defined by

0→MHi
→ O⊗H0(P1 × P1 × P1, Hi)→ Hi → 0.

Any section in H0(P1 × P1 × P1,O(a1, a2, a3)⊗H∨i ), defines a natural map

MHi
→MO(a1,a2,a3) = T vert

X ,
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in the notation of §2. Since every tri-graded polynomial vanishing at a point can be written
as a polynomial combination of polynomials of degree 1 in each set of variables vanishing at
the point, we see that the map

⊕
s(MH1⊕MH2⊕MH3)→ T vert

X is surjective for a sufficiently
large s. Hence, the normal bundle NY/X admits a generically surjective map from MHi

for
some i.

By permuting the indices if necessary, assume that i = 1. Let f : C → X be the
normalization of a curve on X with class OX(c1, c2, c3). Then, by Proposition 2.8, the degree
of Nf/X is at least −H1 · C. Thus, we have

2g − 2−KX · C ≥ degNf/X ≥ −H1 · C.

Hence,

2g − 2 ≥ (a1 − 3)(a2c3 + a3c2) + (a2 − 2)(a1c3 + a3c1) + (a3 − 2)(a1c2 + a2c1).

If ai ≥ 3 for 1 ≤ i ≤ 3, let amax = max{ai} and amin = min{ai}. We have that

H · C ≤ 2amax

∑
i

ci.

Hence,

2g − 2 ≥ a1c3 + a3c1 + a2c3 + a3c2 ≥ amin

∑
i

ci ≥
amin

2amax

C ·H.

Thus, X is algebraically hyperbolic.
Now suppose a2 = 2 and a1, a3 ≥ 4. Then we have

2g − 2 ≥ a2c3 + a3c2 + a1c2 + a2c1 ≥ amin

∑
i

ci ≥
amin

2amax

C ·H.

A similar argument applies if a3 = 2 and a1, a2 ≥ 4.
The last remaining case is when a1 = 2 and a2, a3 ≥ 4. If the map from MH2 or MH3 to

Nf/X has non-torsion image, then we can apply the arguments in the previous two cases.
Therefore, we may assume that both MH2 and MH3 have torsion image in Nf/X . This
imposes strong restrictions on the geometry of C. In particular, we now show that C then
has to be the ramification locus of the double cover π2,3 : X → P1 × P1.

By Lemma 2.11, (TY/A)p contains all possible images of (MH2)p and (MH3)p under an
arbitrary multiplication map. Hence, (TY/A)p contains the ideal sheaf of the fiber of the
projection π2,3 passing through p. By Lemma 2.12, Y is a union of fibers of the projection
π2,3. If Yt intersects a fiber of π2,3 in two distinct points, then Y would be dense in X because
Y is invariant under the group action PGL2 × PGL2 × PGL2 and the orbit of two distinct
points under PGL2 is dense. Hence, C = Yt must consist of the ramification locus of the
double cover π2,3 : Xt → P1 × P1. The ramification locus of π2,3 is isomorphic to a curve of
class (2a2, 2a3) in P1 × P1 and has genus (2a2 − 1)(2a3 − 1) > 1. Hence, X is algebraically
hyperbolic in this case as well. �

We remark that this completely characterizes algebraic hyperbolicity of such surfaces.
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3.2. A very general surface in P2×P1. The variety P2×P1 admits two natural projections
π1 and π2 to P2 and P1, respectively. Let H1 = π∗1OP2(1) and let H2 = π∗2OP1(1). Then

Pic(P2 × P1) = ZH1 ⊕ ZH2 and KP2×P1 = −3H1 − 2H2.

We let H = H1 + H2 be the very ample class defining the Segre embedding. Let X be
a very general surface with class aH1 + bH2, where a, b are nonnegative integers. Then
KX = OX(a− 3, b− 2). By the generalized Noether-Lefschetz Theorem [RS09], if a ≥ 3 and
b ≥ 2, then every curve C on X has class OX(c, d) for some c, d ≥ 0. The H-degree of C is
given by

degH(C) = ac+ ad+ bc.

Lemma 3.3. Let X be a very general surface in P2 × P1 of class aH1 + bH2. If b = 1 or
a ≤ 3 or (a, b) = (4, 2), then X is not algebraically hyperbolic.

Proof. If b = 1, then X is birational to P2, hence rational. If a ≤ 3, then the projection
onto P1 gives a covering of X by plane curves of degree a ≤ 3. Since these curves are either
rational (if a ≤ 2) or elliptic curves (if a = 3), X cannot be algebraically hyperbolic.

Now suppose that a = 4, b = 2. Then we can view X as the vanishing of gs2 + hst + kt2

where g, h and k are degree 4 polynomials in the variables x, y, z on P2. Such X can be
viewed as a double cover of P2 branched over the octic curve B defined by h2 − 4gk = 0,
which is smooth for a general choice of g, h and k. The preimage of a bitangent line to B
is a geometric genus 1 curve in X with two nodes. It follows that such surfaces are not
algebraically hyperbolic. �

Theorem 3.4. Let X be a very general surface in P2 × P1 of class aH1 + bH2. Then X is
algebraically hyperbolic if and only if

b ≥ 3, a ≥ 4 or b = 2, a ≥ 5.

Proof. We use the ample class H = H1 +H2. Let f : C → X be a curve on X with f(C) in
the classOX(c, d). Then degH(C) = (a+b)c+ad. Since a(c+d) ≤ (a+b)c+ad ≤ (a+b)(c+d),
we have that

c+ d ≥ 1

a+ b
degH(C).

Hence, to prove algebraic hyperbolicity, it suffices to bound 2g(C) − 2 below by a multiple
of c + d. As in the proof of Theorem 3.2, H1 and H2 form a section dominating collection
of line bundles for aH1 + bH2. Hence, by Proposition 2.7, MH1 or MH2 maps generically
surjectively to Nf/X . We discuss the possibilities separately.

Case 1: MH1 maps generically surjectively to Nf/X and a ≥ 5, b ≥ 2. Then we have

2g − 2−KX · C ≥ −H1 · C,
so that

2g − 2 ≥ ((a− 4)H1 + (b− 2)H2) · C = (a− 4)(bc+ ad) + (b− 2)ac.

Since a ≥ 5, b ≥ 2, we are done.
Case 2: MH1 maps generically surjectively to Nf/X , a = 4 and b ≥ 3. Observe that in

Case 2, f ∗MH1 has a rank 1 quotient bundle Q of degree q, the degree of the torsion-free
part of Nf/X . By Lemma 2.13, we obtain a scroll P(Q′)→ C of H1 degree q+H1 ·C. Let S
be the image of the scroll in P2 × P1, and let S = αH1 + βH2. From the description of the
scroll P(Q′) in the proof of Lemma 2.13, we see that the fibers of P(Q′)→ C over a point p

10



map to lines in P2 × {π2(f(p))}. Thus, S ·H2 consists of one line for every point of C ·H2,
so α = H2 ·C = ac. Since H2

1 · S = q+H1 ·C, we know that β = q+H1 ·C. Because C lies
in S, it follows that β ≥ d. Thus,

degNf/X ≥ q = β − C ·H1 ≥ d− C ·H1.

It follows that

2g − 2−KX · C ≥ d− C ·H1

or

2g − 2 ≥ d+ (a− 4)H1 · C + (b− 2)H2 · C = d+ (a− 4)(bc+ ad) + (b− 2)ac.

If b ≥ 3, then we see that this last is at least c+ d, and we are done.
Case 3: MH2 maps generically surjectively to Nf/X and b ≥ 3, a ≥ 4. Then we have

2g − 2−KX · C ≥ −H2 · C,

so that

2g − 2 ≥ ((a− 3)H1 + (b− 3)H2) · C = (a− 3)(bc+ ad) + (b− 3)(ac).

If b ≥ 3, a ≥ 4, then we see that

2g − 2 ≥ bc+ ad ≥ c+ d.

Case 4: MH1 has torsion image in Nf/X and b = 2, a ≥ 5. By Lemma 2.11, we see that
for a general p ∈ Y , (TY)p contains the ideal sheaf of the fiber of the projection π1 of X
onto the P2 factor. By Lemma 2.12, Y is a union of fibers of the projection map π1. If a
generic fiber of π1 on Y were two distinct points, then Y would be dense in X because Y is
invariant under the PGL3 × PGL2 action and the orbit of two distinct points under PGL2

is dense. Hence, f(C) is contained in the ramification locus of π1. The ramification locus
is isomorphic to a curve in P2 of degree 2a, which has genus larger than 1 for the range of
degrees we consider.

Thus, X is always algebraically hyperbolic.
�

This completely determines when X is algebraically hyperbolic.

3.3. A very general surface in Fe × P1. This example generalizes the previous two
examples. Let e ≥ 0 be a nonnegative integer. Let Fe denote the Hirzebruch surface
P(OP1 ⊕ OP1(e)). Since we have already discussed P1 × P1 × P1, we assume e ≥ 1. The
complement of E×P1 ∼= P1×P1 in Fe×P1 is homogeneous. The surface Fe admits a natural
projection to P1. Let F denote the class of a fiber and let E denote the class of a section
with self-intersection −e. Then Pic(Fe) = ZE ⊕ ZF . Let π2 be the natural projection of
Fe × P1 to P1 and let H = π∗2OP1(1). We then have

Pic(Fe × P1) = ZE ⊕ ZF ⊕ ZH and KFe×P1 = −2E − (e+ 2)F − 2H.

Let X be a very general surface of class a1E + a2F + a3H. If a1, a3 ≥ 2, a2 ≥ e+ 2, then by
the generalized Noether-Lefschetz Theorem, Pic(X) ∼= Pic(Fe × P1) and every curve on X
has the class c1E + c2F + c3H. We set L to be the very ample class E + (e+ 1)F +H. We
then have

degL(C) = a1c2 + a2c1 + a2c3 + a3c2 + a1c3 + a3c1 − ea1c1.
11



As usual, let amin and amax be the minimum and the maximum of the ai. Observe that

degL(C) ≤ 2amax

3∑
i=1

ci.

By adjunction,

KX = (a1 − 2)E + (a2 − e− 2)F + (a3 − 2)H.

Lemma 3.5. Suppose X is as above. Consider the three numbers a1, a3 and a′2 = a2 − ea1.
Then X is not algebraically hyperbolic in any of the following situations

• if any of a1, a
′
2 or a3 is less than 2.

• if a3 = 2 and one of a1 and a′2 is equal to 2.
• if (a1, a3) is (2, 3) or (3, 2).
• if e = 1, a1 = 2, a′2 = 2 and a3 ≥ 1.

Outside of these situations, the pullback of E from Fe does not contain any rational or genus
1 curve.

Proof. Consider the following two surfaces:

• The pullback of E from Fe.
• The pullback of F from Fe.

Each of these surfaces is isomorphic to a P1 × P1, and intersecting each surface with X, we
obtain curves of classes (a′2, a3) and (a1, a3) on the P1 × P1. Using the fact that the genus
of a curve on P1 × P1 of class (m,n) is (m− 1)(n− 1), we obtain the result in the first two
cases.

Now consider the third case. Consider the one-parameter family of the pullbacks of F from
Fe. This gives a 1-parameter family of genus 2 curves in a P1 × P1. Since the discriminant
locus in P1×P1 is ample, the family must contain singular elements having geometric genus
at most 1. Thus, the surface is not algebraically hyperbolic in this case.

Finally, consider the last case. Intersecting X with the 1-parameter family of F1’s cor-
responding to the fibers of the projection onto the P1 factor, we get a 1-parameter family
of curves of class 2E + 4F on F1. Viewing F1 as the blowup of P2 at a point, we obtain a
1-parameter family of quartic plane curves singular at the point of the blowup. Such curves
generically have genus 2. This family of curves must meet the discriminant locus, so it
must parameterize curves with extra singularities, which have genus at most 1. The result
follows. �

Theorem 3.6. Let e > 0 and let X be a very general surface of class a1E + a2F + a3H in
Fe × P1. Let a′2 = a2 − ea1. Then X is algebraically hyperbolic in the following cases:

• if a′2 ≥ 2 and a1, a3 ≥ 3
• if a3 = 2, a1 ≥ 4, and a′2 ≥ 3
• if a1 = 2, a3 ≥ 4 and a′2 ≥ 2 + δe,1 where δe,1 is 0 if e 6= 1 and 1 if e = 1

Proof. We first consider the case when a2−ea1 ≥ 2, a1, a3 ≥ 3. The collection of line bundles
E+eF, F and H are a section dominating collection of line bundles for a1E+a2F +a3H (see
Example 2.6). Hence, by Proposition 2.7, ME+eF , MF or MH maps generically surjectively
to Nf/X . We discuss the three possibilities separately.
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Case 1: ME+eF maps generically surjectively to Nf/X . Then

2g − 2−KX · C ≥ −(E + eF ) · C,
so that

2g− 2 ≥ (a2− ea1 + e− 2)(a1c3 + a3c1) + (a1− 3)(a2c3 + a3c2) + (a3− 2)(a1c2 + a2c1− ea1c1)

≥ (2 + 3e)c1 + 3c2 + 3ec3 ≥
3

2amax

degL(C).

Case 2: MF maps generically surjectively to Nf/X . Then

2g − 2−KX · C ≥ −F · C,
so that

2g− 2 ≥ (a2− ea1 + e− 3)(a1c3 + a3c1) + (a1− 2)(a2c3 + a3c2) + (a3− 2)(a1c2 + a2c1− ea1c1)

≥ 2c1 + (a1 + a3)c2 + a2c3 ≥
1

amax

degL(C).

Case 3: MH maps generically surjectively to Nf/X . Then

2g − 2−KX · C ≥ −H · C,
so that

2g− 2 ≥ (a2− ea1 + e− 2)(a1c3 + a3c1) + (a1− 2)(a2c3 + a3c2) + (a3− 3)(a1c2 + a2c1− ea1c1)

≥ 3ec1 + 3c2 + (3e+ a2)c3 ≥
3

2amax

degL(C).

We now consider the case a3 = 2, a2 − ea1 ≥ 3, a1 ≥ 4. If either MF or ME+eF map to
Nf/X with non-torsion image, then we see by the above discussion that degNf/X is at least
c1 + c2 + c3, so it remains to consider the case where both bundles have torsion image. By
Lemma 2.11 this occurs when (TY/A)p contains all possible images of (MF )p and (ME+eF )p
under a multiplication map. This implies that (TY/A)p contains the ideal sheaf of the fiber
of the projection to Fe. By Lemma 2.12, it follows that Y consists of a union of fibers of this
projection map. If the curve is contained in E (i.e., the exceptional curve of Fe times P1),
then we already know that the curve has higher genus. We may assume that the curve is
not contained in E. Since PGL2 acts transitively on the set of pairs of distinct points in P1,
it follows that f(C) must be contained in the ramification locus of the double cover. This
means that C is isomorphic to a curve of class 2a1E + 2a2F in Fe. Furthermore, for the
general X this curve is smooth. Thus, the genus of C is at least

(2a1E+2a2F ) ·((2a1−2)E+(2a2−2−e)F ) = −2a1(2a1−2)e+2a1(2a2−2−e)+2a2(2a1−2)

= 2a1(2a2 − 2a1 − e) + 2a2(2a1 − 2).

Since a2 ≥ a1e+ 3, we see that the first term is positive, and hence the entire sum is greater
than 1. We conclude that X is algebraically hyperbolic.

We now consider the case a1 = 2, a3 ≥ 4, and a2 − ea1 ≥ 2 + δe,1 where δe,1 = 0 if e 6= 1
and 1 if e = 1. If either MF or MH maps to Nf/X with non-torsion image, then we see that
degNf/X is at least c1 + c2 + c3 (in the case e = 1, we get slightly worse bounds on a2 coming
from Case 2). It remains to consider the case where both bundles have torsion image. It
follows from Lemma 2.11 that (TY/A)p contains the image of (MH)p and (MF )p in (TX/A)p
under all possible multiplication maps. Let ` be a fiber of the projection of Fe × P1 → Fe.
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Then the ideal sheaf of ` is contained in (TY/A)p. By Lemma 2.12, it follows that Y is a
union of fibers of the map from X to the exceptional divisor E. We may assume that the
curve is contained in E. Then, by the transitive group action, it follows that Y must be
contained in the ramification locus of the double cover. Thus, C is isomorphic to a curve
of class (2(a2 − e), 2a3) in E ∼= P1 × P1. Thus, the genus is always greater than 1 in this
case. �

Note that this completely characterizes when such X are algebraically hyperbolic.

3.4. P3 blown up at a single point. Let A be the blowup of P3 at a point q. Let H denote
the pullback of the hyperplane class in P3 and let E be exceptional divisor over q. Then

Pic(A) = ZH ⊕ ZE and KA = −4H + 2E.

The effective cone of A is spanned by E and H − E and the nef cone of A is spanned by
H and H − E. In the chamber bounded by E and H, the divisor E is in the stable base
locus. Consequently, any irreducible effective divisor with class aH − bE must either have
a = 0, b = −1 or a ≥ b ≥ 0. The exceptional divisor E is isomporphic to P2 and not
algebraically hyperbolic, so let us restrict to the case a ≥ b ≥ 0. Let X be a very general
surface in the class aH − bE. If a ≥ 4 and b ≥ 2, then by the generalized Noether-Lefschetz
Theorem [RS09] any curve on X has class cH − dE restricted to X.

Lemma 3.7. Let X be a surface in the blowup of P3 at a point q with class aH − bE. If
1 ≤ b ≤ 3 or a ≤ b+ 1, then X is not algebraically hyperbolic.

Proof. The intersection of X with the exceptional divisor E is a plane curve of degree b. If
b ≤ 3, this curve is either rational or elliptic. Hence, X cannot be algebraically hyperbolic.
Observe that a must be at least b in order for O(aH−bE) to have sections. If a = b+1, then
the projection of X from p gives a birational map from X to P2, hence X is rational. Finally,
if a = b, then the image of X in P3 is a cone, and is hence covered by rational curves. �

We further remark that by [CR19] if b = 0 and a ≥ 5, then the very general X is
algebraically hyperbolic. If b = 0 and a ≤ 4 it is well-known that X contains rational curves
and is not algebraically hyperbolic. The following theorem covers the remaining cases.

Theorem 3.8. Let X be a very general surface in the blowup of P3 at a point p with class
aH − bE. If a ≥ b+ 2 ≥ 6, then X is algebraically hyperbolic.

Proof. The complement of E in A is homogeneous. Since we have b ≥ 4, the intersection of
X with the exceptional divisor E is a curve of high genus. All other curves on X intersect
the complement of E, hence we can use our technique. We take 2H − E as our very ample
class. The divisor classes H and H −E form a section dominating collection of line bundles
for aH − bE. Suppose there is a curve C with class OX(cH − dE) for c ≥ d ≥ 0 on X. We
have

deg2H−E(C) = 2ac− bd.
Since H and H−E are a section dominating collection, either MH or MH−E maps generically
surjectively to Nf/X .

Case 1: MH maps generically surjectively to Nf/X and a ≥ b+ 3 ≥ 7. We have

2g − 2−KX · C ≥ −H · C,
14



or equivalently

2g − 2 ≥ (a− 5)ac− (b− 2)bd.

If a ≥ b+ 3, then we see that

2g − 2 ≥ (b− 2)((b+ 3)c− bd) ≥ (b− 2)3c ≥ 3(b− 2)

2a
deg2H−E(C).

Case 2: MH−E maps generically surjectively to Nf/X and a ≥ b+ 2 ≥ 6. we have

2g − 2−KX · C ≥ −(H − E) · C,

or equivalently

2g − 2 ≥ (a− 5)ac− (b− 3)bd ≥ (b− 3)((b+ 2)c− bd) ≥ (b− 3)2c ≥ b− 3

a
deg2H−E(C).

It follows that X is algebraically hyperbolic.
Case 3: MH−E → Nf/X has torsion image and a = b + 2 ≥ 6. By Lemma 2.11, this

means that for a general point (p,X) ∈ Y that the map (⊕sMH−E)p → TX/A factors through
TY/A → TX/A. It follows that (TY/A)p contains the degree b + 2 hypersurfaces in Pn with a
b-fold point at q and containing the line ` from p to q. Applying Lemma 2.12, we see that
since the family Y was constructed to be invariant under the automorphisms of Pn fixing p
and q, ` must intersect X set theoretically in just two points: p and q, since otherwise, the
automorphisms of A would show that Y was dense in X .

Hence, these give us two curves on each X. If we can show that these curves do not have
genus 0 or 1, we conclude that X is algebraically hyperbolic.

(1) The curve of points residual to a line meeting X to order b+ 1 at q. This locus is a
curve isomorphic to the curve E ∩X. For a general X, this is a smooth plane curve
of degree at least 4, hence has genus at least 3.

(2) The curve D of points x ∈ X such that the line joining x and q is tangent to X at
x. The curve D is isomorphic to the branch locus of the projection π of X from q.
The projection π realizes X as a double cover of P2. Comparing canonical bundles,
we compute the class of X

2KX = π∗(2KP2 + [D]).

Hence, D is a plane curve of degree 2b + 2. Since b ≥ 4, this curve is a curve of
degree at least 10 in P2. Furthermore for a general X, D is smooth. To see this,
choose coordinates such that q = [0 : 0 : 0 : 1]. Assume that X has equation
fb+2(x, y, z) + fb+1(x, y, z)w+ fb(x, y, z)w2, where fi is a homogeneous polynomial in
x, y, z of degree i. Then the branch curve is given by the equation f 2

b+1 − 4fbfb+2.
One can easily choose the polynomials fi, b ≤ i ≤ b + 2, so that the resulting plane
curve is smooth, for example a Fermat type equation. We conclude that the genus
of D is at least 36 in the cases we are interested in.

This completes the proof that X is algebraically hyperbolic.
�

In summary, we see that X is algebraically hyperbolic if b = 0, a ≥ 5 or if a ≥ b + 2 ≥ 6.
It is not algebraically hyperbolic otherwise.
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3.5. P(1, 1, 1, n). Let A = P(1, 1, 1, n), and let X be a very general hypersurface in A of class
O(mn). Then A is the cone over the degree n Veronese surface. The blowup Ã of A at the
unique singular point is smooth, with Picard group generated by H (the pullback of O(n))
and F which is a divisor satisfying nF ∼= H−E. The surface X is smooth, with Picard group
generated by F . We have the equations KÃ = −2H − (3−n)F and KX = (n(m− 1)− 3)F .

Lemma 3.9. We have that X will not be algebraically hyperbolic if n = 1, m ≤ 4 or m = 2,
n ≤ 4.

Proof. Observe that if n = 1, we are in the case of projective space. Hypersurfaces in
projective space are algebraically hyperbolic when m ≥ 5 and not if m ≤ 4. If m = 2,
then we are considering double covers of P2 branched along a curve of degree 2n. If n = 3,
then the bitangent lines to the branch locus have preimage consisting of a rational curve,
and if n = 4, the bitangent lines have preimage consisting of an elliptic curve, so neither is
algebraically hyperbolic. �

Proposition 3.10. X is algebraically hyperbolic if m ≥ 4, n ≥ 2, m = 3, n ≥ 4 or m =
2, n ≥ 5.

Proof. First, we address the cases where m ≥ 3. For these cases, observe that H is a section-
dominating line bundle for O(mH). Thus, we have a map MH → Nf/X whose image is not
torsion. This implies that

degNf/X ≥ −H · C = −nF · C.

Thus,

2g − 2 ≥ (KX − nF ) · C = (n(m− 2)− 3)F · C.

If m ≥ 4, n ≥ 2 or m = 3, n ≥ 4, we see that n(m − 2) − 3 is at least 1, so algebraic
hyperbolicity follows.

Next, consider the case m = 2. Consider the bundle MF . This bundle is not quite section
dominating for O(mH). If a section of F vanishes at a point of Ã, it vanishes on the entire
line through that point and the cone point (here we picture A as the cone over a Veronese
surface). There are two cases. First, suppose that some copy of MF maps nontrivially to
the free part of ML. Then we have

degNf/X ≥ −F · C

so that

2g − 2 ≥ (n(m− 1)− 4)F · C.

If m = 2, we see that X is algebraically hyperbolic provided that n ≥ 5.
Now suppose that none of the copies of MF map nontrivially to the free part of Nf/X .

This means that at a general point p of Y , we have that (T vert
Y )p contains all surfaces in A

with fixed intersection with a line passing through the exceptional divisor. If m = 2, then
this shows that the curve must be the ramification divisor of the double cover, which does
not have genus 0 or 1 provided that n is at least 5, as required. �

The only remaining cases are m = 3, n = 2, 3.
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