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Introduction

Talk based on arXiv:1909.02985.

Main result: an algorithm computing intersection cohomology Betti
numbers of moduli spaces of semistable coherent sheaves on the
complex projective plane P2.

Form of the algorithm: a scattering diagram in the moduli space of
Bridgeland stability conditions on the derived category of coherent
sheaves on P2.
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Introduction

Related works I will not talk about today:

The same algorithm computes Gromov-Witten invariants (genus 0:
Tim Gräfnitz arXiv:2005.14018, higher genus: B. arXiv:1909.02992).

In combination with the topic of the present talk, one gets a new
sheaves/Gromov-Witten correspondence, which can be used to prove
non-trivial results on the Gromov-Witten side (N. Takahashi’s
conjecture: B. arXiv:1909.02992) and on the sheaf side (construction
of quasimodular forms from Betti numbers of moduli spaces of
one-dimensional semistable coherent sheaves on P2:
arXiv:2001.05347, with Honglu Fan, Shuai Guo, Longting Wu).

Pierrick Bousseau (CNRS, Paris-Saclay) Scattering diagrams and stability conditions FRG Workshop 3 / 39



Plan

Coherent sheaves on P2 and moduli spaces.

Bridgeland stability conditions.

Scattering diagrams.

Scattering diagram from stability conditions.
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Coherent sheaves on P2

P2: complex projective plane.

Line bundles on P2: O(n), n ∈ Z.

Higher rank vector bundles on P2?

Direct sums of line bundles ⊕i O(ni).

Tangent bundle TP2 : rank 2 vector bundle, not a sum of line bundles.

Euler short exact sequence:

0→ O → O(1)⊕3
→ TP2 → 0 .

Much more vector bundles, coming in families (more difficult to
describe in a completely elementary way).
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Coherent sheaves on P2

Consider vector bundles supported on subvarieties of P2.

p ∈ P2 a point, Op skyscraper sheaf.

C ⊂ P2 curve f = 0, structure sheaf OC ,

0→ O(−1)
f
Ð→ O → OC → 0 .

Ideal sheaf of a point Ip, torsion free rank 1 not locally free coherent
sheaf,

0→ Ip → O → Op → 0 .

Coherent sheaves on P2 form an abelian category Coh(P2
).
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Numerical invariants of coherent sheaves

E a coherent sheaf on P2.

Rank r(E) ∈ Z≥0, degree d(E) = c1(E) ∈ H2
(P2,Z) = Z, holomorphic

Euler characteristic χ(E) ∈ Z χ(E) = ch2(E) + r(E) +
3
2d(E).

Define γ(E) ∶= (r(E),d(E), χ(E)) ∈ Z3.

Additive invariant γ(F ) = γ(E) + γ(G) if 0→ E → F → G → 0 exact.

Universal additive invariant: γ ∶ E ↦ γ(E) induces

Γ ∶= K0(Coh(P2
)) ≃ Z3 .

γ(O(n)) = (1,n, (n+1)(n+2)
2 ), γ(TP2) = (2,3,8), γ(OL) = (0,1,1),

γ(Ip) = (1,0,−1).
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Classical stability

Want to parametrize coherent sheaves of class γ ∈ Z3. Need to
restrict the class of objects to get finite type moduli spaces (e.g.
O(−n)⊕O(n)).

Let E be a coherent sheaf on P2. The reduced Hilbert polynomial is
the monic polynomial

pE(n) ∶=
χ(E(n))

αE
,

where αE is the leading coefficient of the Hilbert polynomial χ(E(n)).

A coherent sheaf E on P2 is Gieseker semistable (respectively stable)
if E is of pure dimension (that is, every nonzero subsheaf of E has a
support of dimension equal to the dimension of the support of E ),
and, for every nonzero strict subsheaf F of E , we have pF (n) ⩽ pE(n)
(respectively pF (n) < pE(n)) for n large enough.
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Moduli spaces

γ = (r ,d , χ) ∈ Z3

Mγ “coarse” moduli space of Gieseker semistable coherent sheaves on
P2 of class γ (whose points parametrize S-equivalence classes of
semistable sheaves).

Mγ projective scheme, constructed by geometric invariant theory.

Mγ is smooth if γ is primitive.

Mγ is singular in general.

Drézet-Le Potier (1985): Mγ is irreducible. Precise determination of
classes γ such that Mγ is non-empty.

When there exists a stable object of class γ, Mγ has dimension
r2
+ 3dr + d2

− 2rχ + 1.

Pierrick Bousseau (CNRS, Paris-Saclay) Scattering diagrams and stability conditions FRG Workshop 9 / 39



Betti numbers

Want to compute the Betti numbers bj(Mγ) ∶= dimH j
(Mγ ,Q).

We will compute the Betti numbers bj(Mγ) when Mγ is smooth.

We will compute the intersection Betti numbers
Ibj(Mγ) ∶= dim IH j

(Mγ ,Q) in general.

The intersection Betti numbers Ibj(Mγ) are (refined)
Donaldson-Thomas invariants of the non-compact Calabi-Yau 3-fold
KP2 , local P2, total space of the canonical line bundle O(−3) of P2.

Pierrick Bousseau (CNRS, Paris-Saclay) Scattering diagrams and stability conditions FRG Workshop 10 / 39



Strategy

View Gieseker stability as a particular point in a larger space of more
general notions of stability conditions σ.

Consider moduli spaces Mσ
γ of σ-semistable objects.

Study Mσ
γ as a function of σ.

Wall-crossing phenomenon: across codimension 1 loci in the space of
stability conditions, the topology of Mσ

γ jumps.

Two things to understand:

How do the intersection Betti numbers of Mσ
γ change across the

walls? Wall-crossing formula? Answer (specific to P2 and using that
KP2 is a Calabi-Yau 3-fold): Kontsevich-Soibelman wall-crossing
formula for Donaldson-Thomas invariants of Calabi-Yau categories of
dimension 3.

How to move nicely in the space of stability conditions? Answer:
scattering diagram.
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Bridgeland stability conditions

To extend the notion of stability, need to replace the abelian category
Coh(P2

) of coherent sheaves on P2 by the bounded derived category
Db Coh(P2

) of coherent sheaves on P2. Roughly, need to consider
bounded complexes of coherent sheaves.
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Bridgeland stability conditions

Definition (Bridgeland)

A prestability condition σ on Db Coh(P2
) consists of a pair σ = (Z ,A),

such that:

A is the heart of a bounded t-structure on Db Coh(P2
) (in particular,

an abelian category inside Db Coh(P2
)).

Z is a linear map Z ∶Γ→ C, called the central charge.

For every nonzero object E of A, we have Z(E) = ρ(E)e iπφ(E) with
ρ(E) ∈ R>0, and 0 < φ(E) ⩽ 1, that is Z(E) is contained in the upper
half-plane minus the nonnegative real axis.

A nonzero object F of A is σ-semistable if for every nonzero
subobject F ′ of F in A, we have φ(F ′) ⩽ φ(F ). We require the
Harder-Narasimhan property, that is, that every nonzero object E of
A admits a finite filtration 0 ⊂ E0 ⊂ E1 ⋅ ⋅ ⋅ ⊂ En = E in A, with each
factor Fi ∶= Ei/Ei−1 σ-semistable and φ(F1) > φ(F2) > ⋅ ⋅ ⋅ > φ(Fn).
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Bridgeland stability conditions

Definition (Bridgeland)

A stability condition σ = (Z ,A) on Db Coh(P2
) is a prestability condition

satisfying the support property, that is, such that there exists a quadratic
form Q on the R-vector space Γ⊗R such that:

The kernel of Z in Γ⊗R is negative definite with respect to Q,

For every σ-semistable object, we have Q(γ(E)) ⩾ 0.

We denote Stab(P2
) the set of stability conditions on Db Coh(P2

).
According to Bridgeland, Stab(P2

) has a natural structure of complex
manifold of dimension 3, such that the map

Stab(P2
)→ Hom(Γ,C) ≃ C3

σ = (Z ,A)↦ Z

is a local isomorphism of complex manifolds (locally on Stab(P2
)).
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Bridgeland stability conditions

For every (s, t) ∈ R2 with t > 0, let Z (s,t)
∶Γ→ C be the linear map

defined
γ = (r ,d , χ)↦ Z (s,t)

γ ,

Z (s,t)
γ ∶= −

1

2
(s2

− t2
)r + ds + r +

3

2
d − χ + i(d − sr)t .

If E is an object of Db Coh(P2
) of class γ(E) ∈ Γ, then we can write

Z
(s,t)
γ(E) = −∫P2

e−(s+it)H ch(E) ,

where H ∶= c1(O(1)).

For every (s, t) ∈ R2 with t > 0, the pair (Z (s,t),Coh#s(P2
)) is a

stability condition on Db Coh(P2
) (Bridgeland, Bayer-Macri,

Arcara-Bertram-Coskun-Huizenga). In particular, we get an
embedding of the upper half-plane {(s, t) ∈ R2

∣ t > 0} into Stab(P2
).
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Bridgeland stability conditions

For every σ = (s, t) and γ ∈ Z3, get a moduli space Mσ
γ of

σ-semistable objects of class γ.

For every given γ ∈ Z3, we have Mσ
γ =Mγ for t large enough.

Gieseker stability is the limit of σ = (s, t) Bridgeland stability
conditions for t large enough.

This picture has been used to study the birational geometry of the
moduli spaces Mγ (Ohkawa, Aracara-Bertram-Coskun-Huizenga,
Bertram-Martinez-Wang, Coskun-Huizenga, Coskun-Huizenga-Woolf,
Li-Zhao).

For the birational geometry: one crosses finitely many walls,
corresponding to finitely birational modifications, and then the moduli
space becomes empty.

For the Betti numbers Ibj(Mγ): need to follow the other pieces of the
moduli space. Problem: no σ such that {Mσ

γ }γ is simple.
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Main idea

Do not try to follow the full set {Mσ
γ }γ .

Couple γ and σ via the central charge Zσγ : for a given γ, focus on the
codimension 1 set of the stability conditions σ such that Zσγ has a
given phase θ.

Show that the resulting picture form a consistent scattering diagram
in the sense of Kontsevich-Soibelman and Gross-Siebert.

Key point: for θ = π/2, it is possible to identify the initial data of the
scattering diagrams, i.e. there exists σ such that {Mσ

γ ∣ArgZ
σ
γ =

π
2 }γ is

simple enough.

Previous explicit connection between stability conditions and
scattering diagrams: Bridgeland (2016). Main differences: Bridgeland
considers a fixed abelian category (e.g. abelian category of quiver
representations) and the scattering diagram lives in a “quotient” of
the space of stability conditions. For us: abelian hearts of stability
conditions on Db Coh(P2

) are moving and the scattering diagram
lives in a “slice” of the space of stability conditions.
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Change of variables

Draw the upper half-plane {(s, t) ∈ R2
∣t > 0} in different coordinates.

Define x = s,y = −
1
2(s

2
− t2

).

The map (s, t)↦ (x , y) identifies the upper half-plane
{(s, t) ∈ R2

∣t > 0} with the upper-parabola

U ∶= {(x , y) ∈ R2
∣y > −

x2

2 }.

For σ = (x , y) ∈ U, the central charge becomes

Zσγ ∶= ry + dx + r +
3

2
d − χ + i(d − rx)

√

x2
+ 2y .

Key reason for the (x , y) coordinates: Re Zσγ = 0 is an affine equation
in x and y , defining a line in U.

Main claim: the collections of half-lines {σ∣Re Zσγ = 0,Mσ
γ ≠ ∅}

locally decorated by the Betti numbers Ibj(M
σ
γ ) defines a consistent

scattering diagram.
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Local scattering diagram
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Local scattering diagram
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Local scattering diagrams

(M,g), M ∶= Z2, g =⊕m∈M gm a M-graded Lie algebra over Q (that
is, with [gm,gm′] ⊂ gm+m′) such that [gm,gm′] = 0 if m and m′ are
collinear.
For every nonzero m ∈M, a local ray ρ of class m for (M,g) is a pair
(∣ρ∣,Hρ), where:

∣ρ∣ is a subset of MR ∶= R2 of the form either R⩾0m or −R⩾0m.
Hρ ∈ gm.

The local ray ρ = (∣ρ∣,H) of class m is outgoing if ∣ρ∣ = −R⩾0m, and
ingoing if ∣ρ∣ = R⩾0m. We denote mρ ∈M the class of a local ray ρ.
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Local scattering diagram

A local scattering diagram for (M,g) is a collection D of local rays
ρ = (∣ρ∣,Hρ), such that for every nonzero m ∈M, there is at most one
ingoing local ray of class m in D, and at most one outgoing ray of class m
in D.
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Local scattering diagram: automorphisms

Order k automorphism attached to a ray ρ = (∣ρ∣,Hρ), the
automorphism of g given by: Φρ,k ∶= exp([Hρ,−]).
Let D be a local scattering diagram for (M,g). We fix some smooth
path α∶ [0,1]→MR − {0}, t ↦ α(t) , with transverse intersection with
respect to all the rays ρ = (∣ρ∣,Hρ) ∈D. Let ρ1, . . . , ρN be the
successive rays ρ of D intersected by the path α at times t1 ⩽ ⋅ ⋅ ⋅ ⩽ tN .
The automorphism associated to α is the automorphism of g defined
by

ΦD
α ∶= ΦεN

ρN
○ ⋅ ⋅ ⋅ ○Φε1

ρ1
,

where, for every j = 1, . . . ,N, εj ∶= sign(det(α′(tj),mρj )) ∈ {±1}.

D is consistent if ΦD
α = id for every loop α (i.e. with α(0) = α(1)).
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Local scattering diagram: consistent completion

Proposition

Let D be a local scattering diagram for (M,g). Then, there exists a
unique consistent local scattering diagram S(D) such that the set of
incoming rays of S(D) and D are identical.
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Local scattering diagram
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Scattering diagram
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Scattering diagram

Still fix (M,g).

U open subset in R2, Ū its closure.

For every σ ∈ U, think of MR as the tangent space to U at σ.

For every m ∈M, a ray ρ of class m in U for (M,g) is a pair (∣ρ∣,Hρ),
where

∣ρ∣ is a subset ∣ρ∣ of Ū of the form ∣ρ∣ = Init(ρ) −R⩾0m for some
Init(ρ) ∈ R2, or of the form ∣ρ∣ = Init(ρ) − [0,Tρ]m for some
Init(ρ) ∈ R2 and some Tρ ∈ R>0.,

Hρ is a nonzero element of gm.

We denote mρ ∈M the class of a ray ρ.
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Scattering diagram

A scattering diagram on U for (M,g) is a collection D of rays ρ = (∣ρ∣,Hρ)
in U for (M,g), such that:

For every σ ∈ U and for every nonzero m ∈M, there is at most one ray
ρ in D of class m such that σ belongs to the interior of ∣ρ∣.

There do no exist rays ρ1 = (∣ρ1∣,Hρ1) and ρ2 = (∣ρ2∣,Hρ2) in D such
that the endpoint of ∣ρ1∣ coincides with the initial point of ∣ρ2∣, and
such that Hρ1 = Hρ2 .
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Scattering diagram

Let D be a scattering diagram, and let σ ∈ U. The local scattering
diagram Dσ for (M,g) is a local picture of D around the point σ,
MR =M ⊗R being identified with the tangent space to U at σ.

A scattering diagram D on U for (M,g) is consistent if, for every
σ ∈ U, the local scattering diagram Dσ for (M,g) is consistent.
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Scattering diagram from stability conditions

Construct a scattering diagram on
U = {(x , y) ∈ R2

∣y > −
x2

2 } ⊂ Stab(P2
).

M = Z2
= {(r ,−d)}.

⟨−,−⟩∶⋀2 M → Z, ⟨(a,b), (a′,b′)⟩ = 3(a′b − ab′) (skew-symmetrized
Euler form of P2, or Euler form of KP2).

g: the Q(q±
1
2 )-Lie algebra

g ∶= ⊕
m∈M

Q(q±
1
2 )zm

with Lie bracket given by

[zm, zm
′
] ∶= (−1)⟨m,m

′⟩
(q

⟨m,m′⟩
2 − q−

⟨m,m′⟩
2 )zm+m

′
.
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Scattering diagram from stability conditions

Poincaré polynomial:

Ibσγ (q
1
2 ) ∶= (−q

1
2 )
−dimMσ

γ

2 dimMσ
γ

∑

j=0

(−1)j Ibj(M
σ
γ )q

j
2 .

Consider the set D of rays

Rγ ∶= {σ ∈ U ∣Zσγ ∈ iR>0 , Ib
σ
γ (q

1
2 ) ≠ 0} ,

of direction mγ = (r ,−d) ∈M, with elements

Hργ,σ ∶=

⎛

⎜
⎜
⎜

⎝

− ∑

γ′∈Γγ
γ=`γ′

1

`

Ibσγ′(q
`
2 )

q
`
2 − q−

`
2

⎞

⎟
⎟
⎟

⎠

zmγ ∈ gmγ ,

for every σ ∈ Rγ .

Pierrick Bousseau (CNRS, Paris-Saclay) Scattering diagrams and stability conditions FRG Workshop 31 / 39



Scattering diagram from stability conditions

Lemma (B)

D is a scattering diagram for (M,g).

Theorem (B)

The scattering diagram D is consistent.

Expression of the Kontsevich-Soibelman formula for
Donaldson-Thomas invariants of local P2.

A key technical point (Li-Zhao): if E is σ-semistable and
γ(E) ≠ (0,0,∗), then Ext2

(E ,E) = 0.

Then, use results of Meinhardt relating intersection cohomology and
Donaldson-Thomas theory, and make the wall-crossing argument in
the motivic Hall algebra.
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The scattering diagram D (Figure due to Tim Gräfnitz)
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The initial scattering diagram

Din: the scattering diagram consisting uniquely of rays defined by the line
bundles O(n) and their shifts O(n)[1].

-3 -2 -1 1 2 3

-4

-2

2

4
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Main result

Theorem (B)

We have D = S(Din): D is the consistent completion of Din. In particular,
D can be algorithmically reconstructed from Din.

Explicit version, at the level of cohomology of moduli spaces of
semistable objects, of the classical fact that the derived category
Db Coh(P2

) is generated by the line bundles O(n) (Beilinson).

Key point: need to show that D coincides with Din near the parabola.

Use a quiver description of the stability conditions near the parabola.
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Using the quiver description
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An example: γ = (0,4,4)
M(0,4,4): a 17-dimensional projective variety, singular compactification of
the family of 3-dimensional Jacobians over the part of the 14-dimensional
linear system of quartic curves in P2 parametrizing smooth curves.

T0 =

p ps−1 s0
��� @@I

6
4 4

T1 =

p p p ps−2 s−1 s0 s1
�
�
�
���

��� @@I
���

6

@
@
@I

@@I

P(M(0,4,4)) = [12]q(1 + q + 4q2
+ 4q3

+ 4q4
+ q5

+ q6
) .
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Application

Working with Hodge numbers rather than with Betti numbers:

Theorem (B)

For every γ, the natural pure Hodge structure on IH●
(Mγ) is Hodge-Tate,

i.e. with hp,q = 0 for p ≠ q.

For Mγ smooth, this was known (Ellingsrud-Strømme, Beauville) using
that Künneth components of the Chern classes of the universal sheaf
generate the cohomology. It is new for Mγ singular.
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Thank you for your attention !
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