Scattering diagrams, stability conditions, and coherent sheaves on \mathbb{P}^2

Pierrick Bousseau

CNRS, Paris-Saclay

FRG Workshop on Moduli Spaces and Stability December 7 2020

- Talk based on arXiv:1909.02985.
- Main result: an algorithm computing intersection cohomology Betti numbers of moduli spaces of semistable coherent sheaves on the complex projective plane \mathbb{P}^2 .
- Form of the algorithm: a scattering diagram in the moduli space of Bridgeland stability conditions on the derived category of coherent sheaves on \mathbb{P}^2 .

Related works I will not talk about today:

- The same algorithm computes Gromov-Witten invariants (genus 0: Tim Gräfnitz arXiv:2005.14018, higher genus: B. arXiv:1909.02992).
- In combination with the topic of the present talk, one gets a new sheaves/Gromov-Witten correspondence, which can be used to prove non-trivial results on the Gromov-Witten side (N. Takahashi's conjecture: B. arXiv:1909.02992) and on the sheaf side (construction of quasimodular forms from Betti numbers of moduli spaces of one-dimensional semistable coherent sheaves on P²: arXiv:2001.05347, with Honglu Fan, Shuai Guo, Longting Wu).

- \bullet Coherent sheaves on \mathbb{P}^2 and moduli spaces.
- Bridgeland stability conditions.
- Scattering diagrams.
- Scattering diagram from stability conditions.

- \mathbb{P}^2 : complex projective plane.
- Line bundles on \mathbb{P}^2 : $\mathcal{O}(n)$, $n \in \mathbb{Z}$.
- Higher rank vector bundles on \mathbb{P}^2 ?
- Direct sums of line bundles $\bigoplus_i \mathcal{O}(n_i)$.
- Tangent bundle $T_{\mathbb{P}^2}$: rank 2 vector bundle, not a sum of line bundles.
- Euler short exact sequence:

$$0 \to \mathcal{O} \to \mathcal{O}(1)^{\oplus 3} \to T_{\mathbb{P}^2} \to 0.$$

• Much more vector bundles, coming in families (more difficult to describe in a completely elementary way).

- Consider vector bundles supported on subvarieties of \mathbb{P}^2 .
- $p \in \mathbb{P}^2$ a point, \mathcal{O}_p skyscraper sheaf.
- $C \subset \mathbb{P}^2$ curve f = 0, structure sheaf \mathcal{O}_C ,

$$0 \to \mathcal{O}(-1) \xrightarrow{f} \mathcal{O} \to \mathcal{O}_C \to 0 \,.$$

• Ideal sheaf of a point I_p , torsion free rank 1 not locally free coherent sheaf,

$$0 \to I_p \to \mathcal{O} \to \mathcal{O}_p \to 0 \,.$$

• Coherent sheaves on \mathbb{P}^2 form an abelian category $\mathsf{Coh}(\mathbb{P}^2)$.

Numerical invariants of coherent sheaves

- *E* a coherent sheaf on \mathbb{P}^2 .
- Rank r(E) ∈ Z_{≥0}, degree d(E) = c₁(E) ∈ H²(P², Z) = Z, holomorphic Euler characteristic χ(E) ∈ Z χ(E) = ch₂(E) + r(E) + ³/₂d(E).
- Define $\gamma(E) \coloneqq (r(E), d(E), \chi(E)) \in \mathbb{Z}^3$.
- Additive invariant $\gamma(F) = \gamma(E) + \gamma(G)$ if $0 \to E \to F \to G \to 0$ exact.
- Universal additive invariant: $\gamma : E \mapsto \gamma(E)$ induces

$$\Gamma := K_0(\operatorname{Coh}(\mathbb{P}^2)) \simeq \mathbb{Z}^3.$$

•
$$\gamma(\mathcal{O}(n)) = (1, n, \frac{(n+1)(n+2)}{2}), \gamma(\mathcal{T}_{\mathbb{P}^2}) = (2, 3, 8), \gamma(\mathcal{O}_L) = (0, 1, 1), \gamma(\mathcal{I}_p) = (1, 0, -1).$$

Classical stability

- Want to parametrize coherent sheaves of class γ ∈ Z³. Need to restrict the class of objects to get finite type moduli spaces (e.g. O(-n) ⊕ O(n)).
- Let *E* be a coherent sheaf on \mathbb{P}^2 . The reduced Hilbert polynomial is the monic polynomial

$$p_E(n) \coloneqq \frac{\chi(E(n))}{\alpha_E},$$

where α_E is the leading coefficient of the Hilbert polynomial $\chi(E(n))$.

A coherent sheaf E on P² is Gieseker semistable (respectively stable) if E is of pure dimension (that is, every nonzero subsheaf of E has a support of dimension equal to the dimension of the support of E), and, for every nonzero strict subsheaf F of E, we have p_F(n) ≤ p_E(n) (respectively p_F(n) < p_E(n)) for n large enough.

•
$$\gamma = (r, d, \chi) \in \mathbb{Z}^3$$

- *M_γ* "coarse" moduli space of Gieseker semistable coherent sheaves on *P*² of class *γ* (whose points parametrize *S*-equivalence classes of semistable sheaves).
- M_{γ} projective scheme, constructed by geometric invariant theory.
- M_{γ} is smooth if γ is primitive.
- M_{γ} is singular in general.
- Drézet-Le Potier (1985): M_{γ} is irreducible. Precise determination of classes γ such that M_{γ} is non-empty.
- When there exists a stable object of class γ , M_{γ} has dimension $r^2 + 3dr + d^2 2r\chi + 1$.

- Want to compute the Betti numbers $b_j(M_{\gamma}) \coloneqq \dim H^j(M_{\gamma}, \mathbb{Q})$.
- We will compute the Betti numbers $b_j(M_{\gamma})$ when M_{γ} is smooth.
- We will compute the intersection Betti numbers *Ib_j(M_γ)* := dim *IH^j(M_γ,* ℚ) in general.
- The intersection Betti numbers *Ib_j(M_γ)* are (refined) Donaldson-Thomas invariants of the non-compact Calabi-Yau 3-fold *K*_{P²}, local P², total space of the canonical line bundle *O*(-3) of P².

Strategy

- View Gieseker stability as a particular point in a larger space of more general notions of stability conditions σ .
- Consider moduli spaces M^{σ}_{γ} of σ -semistable objects.
- Study M^{σ}_{γ} as a function of σ .
- Wall-crossing phenomenon: across codimension 1 loci in the space of stability conditions, the topology of M^{σ}_{γ} jumps.
- Two things to understand:
 - How do the intersection Betti numbers of M^σ_γ change across the walls? Wall-crossing formula? Answer (specific to P² and using that K_{P²} is a Calabi-Yau 3-fold): Kontsevich-Soibelman wall-crossing formula for Donaldson-Thomas invariants of Calabi-Yau categories of dimension 3.
 - How to move nicely in the space of stability conditions? Answer: scattering diagram.

To extend the notion of stability, need to replace the abelian category $\operatorname{Coh}(\mathbb{P}^2)$ of coherent sheaves on \mathbb{P}^2 by the bounded derived category $D^b \operatorname{Coh}(\mathbb{P}^2)$ of coherent sheaves on \mathbb{P}^2 . Roughly, need to consider bounded complexes of coherent sheaves.

Definition (Bridgeland)

A prestability condition σ on $D^b \operatorname{Coh}(\mathbb{P}^2)$ consists of a pair $\sigma = (Z, \mathcal{A})$, such that:

- A is the heart of a bounded t-structure on D^b Coh(ℙ²) (in particular, an abelian category inside D^b Coh(ℙ²)).
- Z is a linear map $Z: \Gamma \to \mathbb{C}$, called the *central charge*.
- For every nonzero object *E* of *A*, we have $Z(E) = \rho(E)e^{i\pi\phi(E)}$ with $\rho(E) \in \mathbb{R}_{>0}$, and $0 < \phi(E) \leq 1$, that is Z(E) is contained in the upper half-plane minus the nonnegative real axis.
- A nonzero object F of A is σ -semistable if for every nonzero subobject F' of F in A, we have $\phi(F') \leq \phi(F)$. We require the Harder-Narasimhan property, that is, that every nonzero object E of A admits a finite filtration $0 \subset E_0 \subset E_1 \cdots \subset E_n = E$ in A, with each factor $F_i := E_i/E_{i-1} \sigma$ -semistable and $\phi(F_1) > \phi(F_2) > \cdots > \phi(F_n)$.

Definition (Bridgeland)

A stability condition $\sigma = (Z, A)$ on $D^b \operatorname{Coh}(\mathbb{P}^2)$ is a prestability condition satisfying the *support property*, that is, such that there exists a quadratic form Q on the \mathbb{R} -vector space $\Gamma \otimes \mathbb{R}$ such that:

- The kernel of Z in $\Gamma \otimes \mathbb{R}$ is negative definite with respect to Q,
- For every σ -semistable object, we have $Q(\gamma(E)) \ge 0$.

We denote $\operatorname{Stab}(\mathbb{P}^2)$ the set of stability conditions on $D^b \operatorname{Coh}(\mathbb{P}^2)$. According to Bridgeland, $\operatorname{Stab}(\mathbb{P}^2)$ has a natural structure of complex manifold of dimension 3, such that the map

 $\mathsf{Stab}(\mathbb{P}^2) \to \mathsf{Hom}(\Gamma, \mathbb{C}) \simeq \mathbb{C}^3$

$$\sigma = (Z, \mathcal{A}) \mapsto Z$$

is a local isomorphism of complex manifolds (locally on $Stab(\mathbb{P}^2)$).

Bridgeland stability conditions

For every (s, t) ∈ ℝ² with t > 0, let Z^(s,t): Γ → C be the linear map defined

$$\begin{split} \gamma &= (r, d, \chi) \mapsto Z_{\gamma}^{(s,t)} \,, \\ Z_{\gamma}^{(s,t)} &\coloneqq -\frac{1}{2} (s^2 - t^2) r + ds + r + \frac{3}{2} d - \chi + i (d - sr) t \,. \end{split}$$

• If E is an object of $D^b \operatorname{Coh}(\mathbb{P}^2)$ of class $\gamma(E) \in \Gamma$, then we can write

$$Z_{\gamma(E)}^{(s,t)} = -\int_{\mathbb{P}^2} e^{-(s+it)H} \operatorname{ch}(E),$$

where $H \coloneqq c_1(\mathcal{O}(1))$.

For every (s, t) ∈ ℝ² with t > 0, the pair (Z^(s,t), Coh^{#s}(ℙ²)) is a stability condition on D^b Coh(ℙ²) (Bridgeland, Bayer-Macri, Arcara-Bertram-Coskun-Huizenga). In particular, we get an embedding of the upper half-plane {(s, t) ∈ ℝ² | t > 0} into Stab(ℙ²).

Bridgeland stability conditions

- For every $\sigma = (s, t)$ and $\gamma \in \mathbb{Z}^3$, get a moduli space M^{σ}_{γ} of σ -semistable objects of class γ .
- For every given $\gamma \in \mathbb{Z}^3$, we have $M_{\gamma}^{\sigma} = M_{\gamma}$ for t large enough.
- Gieseker stability is the limit of $\sigma = (s, t)$ Bridgeland stability conditions for t large enough.
- This picture has been used to study the birational geometry of the moduli spaces M_γ (Ohkawa, Aracara-Bertram-Coskun-Huizenga, Bertram-Martinez-Wang, Coskun-Huizenga, Coskun-Huizenga-Woolf, Li-Zhao).
- For the birational geometry: one crosses finitely many walls, corresponding to finitely birational modifications, and then the moduli space becomes empty.
- For the Betti numbers *Ib_j(M_γ)*: need to follow the other pieces of the moduli space. Problem: no *σ* such that {*M^σ_γ*}_γ is simple.

Main idea

- Do not try to follow the full set $\{M^{\sigma}_{\gamma}\}_{\gamma}$.
- Couple γ and σ via the central charge Z_{γ}^{σ} : for a given γ , focus on the codimension 1 set of the stability conditions σ such that Z_{γ}^{σ} has a given phase θ .
- Show that the resulting picture form a consistent scattering diagram in the sense of Kontsevich-Soibelman and Gross-Siebert.
- Key point: for $\theta = \pi/2$, it is possible to identify the initial data of the scattering diagrams, i.e. there exists σ such that $\{M_{\gamma}^{\sigma}|\operatorname{Arg} Z_{\gamma}^{\sigma} = \frac{\pi}{2}\}_{\gamma}$ is simple enough.
- Previous explicit connection between stability conditions and scattering diagrams: Bridgeland (2016). Main differences: Bridgeland considers a fixed abelian category (e.g. abelian category of quiver representations) and the scattering diagram lives in a "quotient" of the space of stability conditions. For us: abelian hearts of stability conditions on D^b Coh(P²) are moving and the scattering diagram lives in a "slice" of the space of stability conditions.

Change of variables

• Draw the upper half-plane $\{(s, t) \in \mathbb{R}^2 | t > 0\}$ in different coordinates.

• Define
$$x = s, y = -\frac{1}{2}(s^2 - t^2)$$
.

- The map $(s, t) \mapsto (x, y)$ identifies the upper half-plane $\{(s, t) \in \mathbb{R}^2 | t > 0\}$ with the upper-parabola $U := \{(x, y) \in \mathbb{R}^2 | y > -\frac{x^2}{2}\}.$
- For $\sigma = (x, y) \in U$, the central charge becomes

$$Z_{\gamma}^{\sigma} \coloneqq ry + dx + r + \frac{3}{2}d - \chi + i(d - rx)\sqrt{x^2 + 2y}.$$

- Key reason for the (x, y) coordinates: Re Z^σ_γ = 0 is an affine equation in x and y, defining a line in U.
- Main claim: the collections of half-lines $\{\sigma | \operatorname{Re} Z_{\gamma}^{\sigma} = 0, M_{\gamma}^{\sigma} \neq \emptyset\}$ locally decorated by the Betti numbers $Ib_j(M_{\gamma}^{\sigma})$ defines a consistent scattering diagram.

Local scattering diagram

Local scattering diagram

Local scattering diagrams

- $(M, \mathfrak{g}), M \coloneqq \mathbb{Z}^2, \mathfrak{g} = \bigoplus_{m \in M} \mathfrak{g}_m$ a *M*-graded Lie algebra over \mathbb{Q} (that is, with $[\mathfrak{g}_m, \mathfrak{g}_{m'}] \subset \mathfrak{g}_{m+m'}$) such that $[\mathfrak{g}_m, \mathfrak{g}_{m'}] = 0$ if *m* and *m'* are collinear.
- For every nonzero m ∈ M, a local ray ρ of class m for (M, g) is a pair (|ρ|, H_ρ), where:
 - $|\dot{\rho}|$ is a subset of $M_{\mathbb{R}} := \mathbb{R}^2$ of the form either $\mathbb{R}_{\geq 0}m$ or $-\mathbb{R}_{\geq 0}m$.
 - $H_{\rho} \in \mathfrak{g}_m$.

The local ray $\rho = (|\rho|, H)$ of class *m* is *outgoing* if $|\rho| = -\mathbb{R}_{\geq 0}m$, and *ingoing* if $|\rho| = \mathbb{R}_{\geq 0}m$. We denote $m_{\rho} \in M$ the class of a local ray ρ .

A local scattering diagram for (M, \mathfrak{g}) is a collection \mathfrak{D} of local rays $\rho = (|\rho|, H_{\rho})$, such that for every nonzero $m \in M$, there is at most one ingoing local ray of class m in \mathfrak{D} , and at most one outgoing ray of class m in \mathfrak{D} .

Local scattering diagram: automorphisms

- Order k automorphism attached to a ray $\rho = (|\rho|, H_{\rho})$, the automorphism of g given by: $\Phi_{\rho,k} := \exp([H_{\rho}, -])$.
- Let \mathfrak{D} be a local scattering diagram for (M, \mathfrak{g}) . We fix some smooth path $\alpha: [0,1] \to M_{\mathbb{R}} - \{0\}, t \mapsto \alpha(t)$, with transverse intersection with respect to all the rays $\rho = (|\rho|, H_{\rho}) \in \mathfrak{D}$. Let ρ_1, \ldots, ρ_N be the successive rays ρ of \mathfrak{D} intersected by the path α at times $t_1 \leq \cdots \leq t_N$. The *automorphism associated to* α is the automorphism of \mathfrak{g} defined by

$$\Phi^{\mathfrak{D}}_{\alpha} := \Phi^{\epsilon_N}_{\rho_N} \circ \cdots \circ \Phi^{\epsilon_1}_{\rho_1},$$

where, for every j = 1, ..., N, $\epsilon_j := \operatorname{sign}(\operatorname{det}(\alpha'(t_j), m_{\rho_j})) \in \{\pm 1\}$.

• \mathfrak{D} is *consistent* if $\Phi^{\mathfrak{D}}_{\alpha}$ = id for every loop α (i.e. with $\alpha(0) = \alpha(1)$).

Proposition

Let \mathfrak{D} be a local scattering diagram for (M,\mathfrak{g}) . Then, there exists a unique consistent local scattering diagram $S(\mathfrak{D})$ such that the set of incoming rays of $S(\mathfrak{D})$ and \mathfrak{D} are identical.

Local scattering diagram

Scattering diagram

- Still fix (M, \mathfrak{g}) .
- U open subset in \mathbb{R}^2 , \overline{U} its closure.
- For every $\sigma \in U$, think of $M_{\mathbb{R}}$ as the tangent space to U at σ .

For every $m \in M$, a ray ρ of class m in U for (M, \mathfrak{g}) is a pair $(|\rho|, H_{\rho})$, where

- $|\rho|$ is a subset $|\rho|$ of \overline{U} of the form $|\rho| = \text{Init}(\rho) \mathbb{R}_{\geq 0}m$ for some $\text{Init}(\rho) \in \mathbb{R}^2$, or of the form $|\rho| = \text{Init}(\rho) [0, T_{\rho}]m$ for some $\text{Init}(\rho) \in \mathbb{R}^2$ and some $T_{\rho} \in \mathbb{R}_{>0}$.
- H_{ρ} is a nonzero element of \mathfrak{g}_m .

We denote $m_{\rho} \in M$ the class of a ray ρ .

A scattering diagram on U for (M, \mathfrak{g}) is a collection \mathfrak{D} of rays $\rho = (|\rho|, H_{\rho})$ in U for (M, \mathfrak{g}) , such that:

- For every $\sigma \in U$ and for every nonzero $m \in M$, there is at most one ray ρ in \mathfrak{D} of class m such that σ belongs to the interior of $|\rho|$.
- There do no exist rays $\rho_1 = (|\rho_1|, H_{\rho_1})$ and $\rho_2 = (|\rho_2|, H_{\rho_2})$ in \mathfrak{D} such that the endpoint of $|\rho_1|$ coincides with the initial point of $|\rho_2|$, and such that $H_{\rho_1} = H_{\rho_2}$.

Scattering diagram

- Let 𝔅 be a scattering diagram, and let σ ∈ U. The local scattering diagram 𝔅_σ for (M,𝔅) is a local picture of 𝔅 around the point σ, M_ℝ = M ⊗ ℝ being identified with the tangent space to U at σ.
- A scattering diagram D on U for (M, g) is consistent if, for every σ ∈ U, the local scattering diagram D_σ for (M, g) is consistent.

Scattering diagram from stability conditions

- Construct a scattering diagram on $U = \{(x, y) \in \mathbb{R}^2 | y > -\frac{x^2}{2}\} \subset \text{Stab}(\mathbb{P}^2).$
- $M = \mathbb{Z}^2 = \{(r, -d)\}.$
- ⟨-,-⟩: ∧² M → Z, ⟨(a,b), (a',b')⟩ = 3(a'b ab') (skew-symmetrized Euler form of P², or Euler form of K_{P²}).
- \mathfrak{g} : the $\mathbb{Q}(q^{\pm \frac{1}{2}})$ -Lie algebra

$$\mathfrak{g} \coloneqq \bigoplus_{m \in M} \mathbb{Q}(q^{\pm \frac{1}{2}}) z^m$$

with Lie bracket given by

$$[z^m, z^{m'}] \coloneqq (-1)^{\langle m, m' \rangle} (q^{\frac{\langle m, m' \rangle}{2}} - q^{-\frac{\langle m, m' \rangle}{2}}) z^{m+m'}$$

Scattering diagram from stability conditions

• Poincaré polynomial:

$$Ib_{\gamma}^{\sigma}(q^{\frac{1}{2}}) \coloneqq (-q^{\frac{1}{2}})^{-\dim M_{\gamma}^{\sigma}} \sum_{j=0}^{2\dim M_{\gamma}^{\sigma}} (-1)^{j} Ib_{j}(M_{\gamma}^{\sigma})q^{\frac{j}{2}}.$$

 \bullet Consider the set ${\mathfrak D}$ of rays

$$R_{\gamma} \coloneqq \{ \sigma \in U \, | \, Z_{\gamma}^{\sigma} \in i \mathbb{R}_{>0} \,, \, Ib_{\gamma}^{\sigma}(q^{\frac{1}{2}}) \neq 0 \} \,,$$

of direction $m_{\gamma} = (r, -d) \in M$, with elements

$$\mathcal{H}_{\rho_{\gamma,\sigma}} := \left(-\sum_{\substack{\gamma' \in \Gamma_{\gamma} \\ \gamma = \ell \gamma'}} \frac{1}{\ell} \frac{l b_{\gamma'}^{\sigma}(q^{\frac{\ell}{2}})}{q^{\frac{\ell}{2}} - q^{-\frac{\ell}{2}}} \right) z^{m_{\gamma}} \in \mathfrak{g}_{m_{\gamma}},$$

for every $\sigma \in R_{\gamma}$.

Scattering diagram from stability conditions

Lemma (B)

 \mathfrak{D} is a scattering diagram for $(M,\mathfrak{g}).$

Theorem (B)

The scattering diagram \mathfrak{D} is consistent.

- Expression of the Kontsevich-Soibelman formula for Donaldson-Thomas invariants of local ℙ².
- A key technical point (Li-Zhao): if *E* is σ -semistable and $\gamma(E) \neq (0, 0, *)$, then $\text{Ext}^2(E, E) = 0$.
- Then, use results of Meinhardt relating intersection cohomology and Donaldson-Thomas theory, and make the wall-crossing argument in the motivic Hall algebra.

The scattering diagram \mathfrak{D} (Figure due to Tim Gräfnitz)

33 / 39

The initial scattering diagram

 \mathfrak{D}_{in} : the scattering diagram consisting uniquely of rays defined by the line bundles $\mathcal{O}(n)$ and their shifts $\mathcal{O}(n)[1]$.

Theorem (B)

We have $\mathfrak{D} = S(\mathfrak{D}_{in})$: \mathfrak{D} is the consistent completion of \mathfrak{D}_{in} . In particular, \mathfrak{D} can be algorithmically reconstructed from \mathfrak{D}_{in} .

- Explicit version, at the level of cohomology of moduli spaces of semistable objects, of the classical fact that the derived category D^b Coh(P²) is generated by the line bundles O(n) (Beilinson).
- Key point: need to show that \mathfrak{D} coincides with \mathfrak{D}_{in} near the parabola.
- Use a quiver description of the stability conditions near the parabola.

Using the quiver description

An example: $\gamma = (0, 4, 4)$

 $M_{(0,4,4)}$: a 17-dimensional projective variety, singular compactification of the family of 3-dimensional Jacobians over the part of the 14-dimensional linear system of quartic curves in \mathbb{P}^2 parametrizing smooth curves.

$$P(M_{(0,4,4)}) = [12]_q (1+q+4q^2+4q^3+4q^4+q^5+q^6).$$

Working with Hodge numbers rather than with Betti numbers:

Theorem (B)

For every γ , the natural pure Hodge structure on $IH^{\bullet}(M_{\gamma})$ is Hodge-Tate, i.e. with $h^{p,q} = 0$ for $p \neq q$.

For M_{γ} smooth, this was known (Ellingsrud-Strømme, Beauville) using that Künneth components of the Chern classes of the universal sheaf generate the cohomology. It is new for M_{γ} singular.

Thank you for your attention !

- (日)