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Introduction

@ Talk based on arXiv:1909.02985.

@ Main result: an algorithm computing intersection cohomology Betti
numbers of moduli spaces of semistable coherent sheaves on the
complex projective plane P?.

@ Form of the algorithm: a scattering diagram in the moduli space of
Bridgeland stability conditions on the derived category of coherent
sheaves on P2
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Introduction

Related works | will not talk about today:

@ The same algorithm computes Gromov-Witten invariants (genus 0:
Tim Grafnitz arXiv:2005.14018, higher genus: B. arXiv:1909.02992).

@ In combination with the topic of the present talk, one gets a new
sheaves/Gromov-Witten correspondence, which can be used to prove
non-trivial results on the Gromov-Witten side (N. Takahashi's
conjecture: B. arXiv:1909.02992) and on the sheaf side (construction
of quasimodular forms from Betti numbers of moduli spaces of
one-dimensional semistable coherent sheaves on P?2:
arXiv:2001.05347, with Honglu Fan, Shuai Guo, Longting Wu).
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Coherent sheaves on P2 and moduli spaces.

Bridgeland stability conditions.
Scattering diagrams.

Scattering diagram from stability conditions.
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Coherent sheaves on P2

P2: complex projective plane.

Line bundles on P2: O(n), neZ.
Higher rank vector bundles on P??
Direct sums of line bundles &; O(n;).

Tangent bundle Tp2: rank 2 vector bundle, not a sum of line bundles.

Euler short exact sequence:

0-0->0(1)% > Tp - 0.

Much more vector bundles, coming in families (more difficult to
describe in a completely elementary way).
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Coherent sheaves on P2

Consider vector bundles supported on subvarieties of P2.

p € P? a point, O, skyscraper sheaf.
e C cP? curve f =0, structure sheaf O,

0—>(’)(—1)i>(9—>(9c—>0.

@ ldeal sheaf of a point /,, torsion free rank 1 not locally free coherent
sheaf,
0-1,-0-0,~-0.

Coherent sheaves on P2 form an abelian category Coh(IP?).
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Numerical invariants of coherent sheaves

E a coherent sheaf on P2,

Rank r(E) € Zso, degree d(E) = c1(E) € H*(P?,Z) = Z, holomorphic
Euler characteristic x(E) € Z x(E) =cha(E) + r(E) + %d(E).

Define v(E) := (r(E),d(E), x(E)) € Z3.

Additive invariant y(F) =~v(E) +~v(G) if 0 > E - F - G — 0 exact.

Universal additive invariant: v : E — v(E) induces

[ = Ko(Coh(P?)) ~Z3.

1(O(n)) = (1, n, A2y 0 (T0) = (2,3,8), v(OL) = (0,1,1),
V(IP) = (1707 _1)'
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Classical stability

@ Want to parametrize coherent sheaves of class v € Z3. Need to
restrict the class of objects to get finite type moduli spaces (e.g.
O(-n) & O(n)).

o Let E be a coherent sheaf on P2, The reduced Hilbert polynomial is
the monic polynomial

x(E(n))
(673 ’

pe(n) =

where af is the leading coefficient of the Hilbert polynomial x(E(n)).

@ A coherent sheaf E on P? is Gieseker semistable (respectively stable)
if E is of pure dimension (that is, every nonzero subsheaf of E has a
support of dimension equal to the dimension of the support of E),
and, for every nonzero strict subsheaf F of E, we have pr(n) < pg(n)
(respectively pg(n) < pe(n)) for n large enough.
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Moduli spaces

v=(r,d,x)eZ3

@ M, “coarse” moduli space of Gieseker semistable coherent sheaves on
P2 of class v (whose points parametrize S-equivalence classes of
semistable sheaves).

M, projective scheme, constructed by geometric invariant theory.
M, is smooth if v is primitive.

M, is singular in general.

Drézet-Le Potier (1985): M, is irreducible. Precise determination of
classes v such that M, is non-empty.

@ When there exists a stable object of class 7, M, has dimension
r’+3dr+d>-2ry+1.
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Betti numbers

e Want to compute the Betti numbers b;(M,) := dim H (M, Q).
o We will compute the Betti numbers b;(M,) when M, is smooth.
o We will compute ‘ghe intersection Betti numbers

Ibj(M,) :=dim IH/(M,,Q) in general.
@ The intersection Betti numbers Ib;j(M,) are (refined)

Donaldson-Thomas invariants of the non-compact Calabi-Yau 3-fold
Kpz, local P2, total space of the canonical line bundle O(-3) of P2.
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@ View Gieseker stability as a particular point in a larger space of more
general notions of stability conditions o.

e Consider moduli spaces M7 of o-semistable objects.

e Study M7 as a function of o.

@ Wall-crossing phenomenon: across codimension 1 loci in the space of
stability conditions, the topology of M7 jumps.

Two things to understand:

@ How do the intersection Betti numbers of MJ change across the
walls? Wall-crossing formula? Answer (specific to P? and using that
Kp2 is a Calabi-Yau 3-fold): Kontsevich-Soibelman wall-crossing
formula for Donaldson-Thomas invariants of Calabi-Yau categories of
dimension 3.

@ How to move nicely in the space of stability conditions? Answer:
scattering diagram.
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Bridgeland stability conditions

To extend the notion of stability, need to replace the abelian category
Coh(P?) of coherent sheaves on P? by the bounded derived category
DP Coh(IP?) of coherent sheaves on P2, Roughly, need to consider
bounded complexes of coherent sheaves.
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Bridgeland stability conditions

Definition (Bridgeland)
A prestability condition o on DP Coh(P?) consists of a pair o = (Z, A),
such that:

o A is the heart of a bounded t-structure on D? Coh(IP?) (in particular,
an abelian category inside D? Coh(P?)).

@ Z is a linear map Z: — C, called the central charge.

o For every nonzero object E of A, we have Z(E) = p(E)e™(E) with
p(E) € Ryg, and 0 < ¢(E) <1, that is Z(E) is contained in the upper
half-plane minus the nonnegative real axis.

@ A nonzero object F of A is g-semistable if for every nonzero
subobject F’ of F in A, we have ¢(F") < ¢(F). We require the
Harder-Narasimhan property, that is, that every nonzero object E of
A admits a finite filtration 0 c Eg c E;---c E, = E in A, with each
factor F;:= E;/E;_1 o-semistable and ¢(F1) > ¢(F2) >+ > o(Fp).
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Bridgeland stability conditions

Definition (Bridgeland)

A stability condition ¢ = (Z,.A) on D? Coh(P?) is a prestability condition
satisfying the support property, that is, such that there exists a quadratic
form @ on the R-vector space I' ® R such that:

@ The kernel of Z in I ® R is negative definite with respect to Q,
@ For every o-semistable object, we have Q(~v(E)) > 0.

We denote Stab(IP?) the set of stability conditions on D” Coh(IP?).
According to Bridgeland, Stab(IP?) has a natural structure of complex
manifold of dimension 3, such that the map

Stab(P?) - Hom(I',C) ~ C3

o=(Z,A)»Z

is a local isomorphism of complex manifolds (locally on Stab(P?)).
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Bridgeland stability conditions

o For every (s, t) € R? with ¢t >0, let Z(1:T - C be the linear map
defined
v=(r,d,x) 2,

Zv(s’t) = —%(s2 —t)r+ds+r+ gd—x +i(d—sr)t.
o If E is an object of D? Coh(P?) of class y(E) €T, then we can write

(s,t) _ ~(s+it)H

ZW(E) ——fﬂﬂe (s+it) ch(E),
where H:=¢;(O(1)).

o For every (s, t) € R? with t > 0, the pair (Z(5), Coh® (P?)) is a
stability condition on D? Coh(P?) (Bridgeland, Bayer-Macri,

Arcara-Bertram-Coskun-Huizenga). In particular, we get an
embedding of the upper half-plane {(s,t) € R?|t > 0} into Stab(P?).
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Bridgeland stability conditions

@ For every o = (s, t) and y € Z3, get a moduli space My of
o-semistable objects of class 7.

o For every given v € Z3, we have M3 = M, for t large enough.

o Gieseker stability is the limit of o = (s, t) Bridgeland stability
conditions for t large enough.

@ This picture has been used to study the birational geometry of the
moduli spaces M, (Ohkawa, Aracara-Bertram-Coskun-Huizenga,
Bertram-Martinez-Wang, Coskun-Huizenga, Coskun-Huizenga-Woolf,
Li-Zhao).

@ For the birational geometry: one crosses finitely many walls,
corresponding to finitely birational modifications, and then the moduli
space becomes empty.

@ For the Betti numbers Ib;(M,): need to follow the other pieces of the
moduli space. Problem: no o such that { M7}, is simple.
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o Do not try to follow the full set {MJ},.

e Couple v and o via the central charge Z7: for a given =, focus on the
codimension 1 set of the stability conditions o such that Z7 has a
given phase 6.

@ Show that the resulting picture form a consistent scattering diagram
in the sense of Kontsevich-Soibelman and Gross-Siebert.

e Key point: for § = /2, it is possible to identify the initial data of the
scattering diagrams, i.e. there exists o such that {MJ[|ArgZy = 7}, is
simple enough.

@ Previous explicit connection between stability conditions and
scattering diagrams: Bridgeland (2016). Main differences: Bridgeland
considers a fixed abelian category (e.g. abelian category of quiver
representations) and the scattering diagram lives in a “quotient” of
the space of stability conditions. For us: abelian hearts of stability
conditions on D? Coh(P?) are moving and the scattering diagram
lives in a “slice” of the space of stability conditions.
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Change of variables

o Draw the upper half-plane {(s,t) € R2|t > 0} in different coordinates.
o Define x =5,y = —%(52 - t2).
e The map (s,t) — (x,y) identifies the upper half-plane
{(s,t) e R?|t > 0} with the upper-parabola
Us={(x,y) Ry >-%}.
@ For 0 = (x,y) € U, the central charge becomes

o 3 ,
Z7 = ry+dx+r+§d—x+l(d—rx)\/x2+2y.

@ Key reason for the (x,y) coordinates: Re Z7 =0 is an affine equation
in x and y, defining a line in U.

o Main claim: the collections of half-lines {o|Re Z7 =0, MJ # &}
locally decorated by the Betti numbers /bj(My) defines a consistent
scattering diagram.
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Local scattering diagram
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Local scattering diagram
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Local scattering diagrams

o (M,g), M:=72, g=®mem 9m a M-graded Lie algebra over Q (that
is, With [@m, @m’] € Gm+m’) such that [gm, gm] =0 if m and m’ are
collinear.

@ For every nonzero me M, a local ray p of class m for (M, g) is a pair
(Iol, H,), where:

e |p| is a subset of Mg := R? of the form either Ryom or —Ryom.

o H,egm.
The local ray p = (|p|, H) of class m is outgoing if |p| = —R3om, and
ingoing if |p| = Ryom. We denote m, € M the class of a local ray p.
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Local scattering diagram

A local scattering diagram for (M, g) is a collection © of local rays
p = (|pl, Hy), such that for every nonzero m e M, there is at most one

ingoing local ray of class m in ®, and at most one outgoing ray of class m
in .
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Local scattering diagram: automorphisms

e Order k automorphism attached to a ray p = (|p|, H,), the
automorphism of g given by: &, = exp([H,,-]).

@ Let © be a local scattering diagram for (M, g). We fix some smooth
path a:[0,1] - Mg — {0}, t — «(t), with transverse intersection with
respect to all the rays p = (|p|, H,) € ©. Let p1,...,pn be the
successive rays p of ® intersected by the path « at times t; < < ty.
The automorphism associated to « is the automorphism of g defined
by

P17
where, for every j=1,..., N, ¢; := sign(det(a’(t;), m,;)) € {£1}.
o D is consistent if ®2 =id for every loop a (i.e. with a(0) = a(1)).

DN o...0 dEL
O .—¢pNo o®
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Local scattering diagram: consistent completion

Proposition

Let © be a local scattering diagram for (M, g). Then, there exists a
unique consistent local scattering diagram S(©) such that the set of
incoming rays of S(®) and © are identical.
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Local scattering diagram
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Scattering diagram
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Scattering diagram

e Still fix (M, g).
e U open subset in R?, U its closure.
@ For every o € U, think of My as the tangent space to U at o.

For every me M, a ray p of class m in U for (M, g) is a pair (|p|, H,),
where

e |p| is a subset |p| of U of the form |p| = Init(p) — Rygm for some
Init(p) € R?, or of the form |p| = Init(p) — [0, T,]m for some
Init(p) € R? and some T, € R.o.,

@ H, is a nonzero element of g,,.

We denote m, € M the class of a ray p.
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Scattering diagram

A scattering diagram on U for (M, g) is a collection © of rays p = (|p|, H,)
in U for (M, g), such that:
@ For every o € U and for every nonzero m e M, there is at most one ray
p in © of class m such that o belongs to the interior of |p)|.
@ There do no exist rays p1 = (|p1], Hp,) and p2 = (|p2|, Hp,) in ® such
that the endpoint of |p;| coincides with the initial point of |pz|, and
such that H,, = H,,.
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Scattering diagram

o Let ® be a scattering diagram, and let o € U. The local scattering
diagram ©, for (M, g) is a local picture of © around the point o,
Mg = M ® R being identified with the tangent space to U at o.

@ A scattering diagram © on U for (M, g) is consistent if, for every
o € U, the local scattering diagram D, for (M, g) is consistent.
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Scattering diagram from stability conditions

Construct a scattering diagram on

U={(x,y) e R?y > —%2} c Stab(IP?).

M=72={(r,~d)}.

(=, =) A>M —Z, ((a,b),(a',b")) =3(a’b - ab’) (skew-symmetrized
Euler form of P2, or Euler form of Kpz).

g the Q(q*2)-Lie algebra

g:= @ Q(g*2)z"

meM

with Lie bracket given by

(m,m") {m,m

(27,27 ] = (1)) (g7 — g )z
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Scattering diagram from stability conditions

@ Poincaré polynomial:

X L e 28T '
167(q>) := (=q2)~ "™ Z(:) (=1)16;(M7)q
J=

NI~

@ Consider the set ® of rays
R, = {0 € U|Z ¢ iRu, IbI(q?) 0},

of direction m, = (r,-d) € M, with elements

4
116%,(q?)
HP%J - Z Z ; ¢ z™ €Om,
yel, ~q2—q 2
y=ty'

for every o € R,.
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Scattering diagram from stability conditions

Lemma (B)
D is a scattering diagram for (M, g).

Theorem (B)

The scattering diagram ® is consistent.

@ Expression of the Kontsevich-Soibelman formula for
Donaldson-Thomas invariants of local P2

@ A key technical point (Li-Zhao): if E is o-semistable and
~(E) # (0,0, %), then Ext>(E,E) = 0.

@ Then, use results of Meinhardt relating intersection cohomology and
Donaldson-Thomas theory, and make the wall-crossing argument in
the motivic Hall algebra.
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The scattering diagram © (Figure due to Tim Grafnitz)
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The initial scattering diagram

®ij,: the scattering diagram consisting uniquely of rays defined by the line
bundles O(n) and their shifts O(n)[1].
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Main result

Theorem (B)

We have © = S(D;,): © is the consistent completion of D;,. In particular,
® can be algorithmically reconstructed from 2.

@ Explicit version, at the level of cohomology of moduli spaces of
semistable objects, of the classical fact that the derived category
DP Coh(P?) is generated by the line bundles O(n) (Beilinson).

@ Key point: need to show that ® coincides with ®;, near the parabola.

@ Use a quiver description of the stability conditions near the parabola.
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Using the quiver description

e Do)

. Z° — e, AR
¥(O[1])

Zl o 1)2))
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An example: v =(0,4,4)

Mo,4,4): a 17-dimensional projective variety, singular compactification of
the family of 3-dimensional Jacobians over the part of the 14-dimensional
linear system of quartic curves in P? parametrizing smooth curves.

S_o S_1 S0 51

P(M.4a)) =[12]q(1+q+4q> +4¢> +4q* + ¢° + ¢°).
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Application

Working with Hodge numbers rather than with Betti numbers:

Theorem (B)

For every v, the natural pure Hodge structure on /H®*(M,) is Hodge-Tate,
i.e. with A9 =0 for p # q.

For M, smooth, this was known (Ellingsrud-Strgmme, Beauville) using
that Kiinneth components of the Chern classes of the universal sheaf
generate the cohomology. It is new for M, singular.
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Thank you for your attention !
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