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Abstract. For every n ≥ 3, we exhibit infinitely many extremal effective

divisors on M1,n, the Deligne-Mumford moduli space parameterizing stable

genus one curves with n ordered marked points.
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1. Introduction

Let Mg,n denote the Deligne-Mumford moduli space of stable genus g curves
with n ordered marked points. Understanding the cone of pseudo-effective divisors
Eff(Mg,n) is a central problem in the birational geometry of Mg,n. Since the

1980s, motivated by the problem of determining the Kodaira dimension of Mg,n,

many authors have constructed families of effective divisors onMg,n. For example,
Harris, Mumford and Eisenbud [HMu, H, EH], using Brill-Noether and Gieseker-
Petri divisors showed thatMg is of general type for g > 23. Using Kozsul divisors,
Farkas [F] extended this result to g = 22. Logan [Lo], using generalized Brill-
Noether divisors, obtained similar results for the Kodaira dimension ofMg,n when
n > 0.

Although we know many examples of effective divisors onMg,n, the structure of

the pseudo-effective cone Eff(Mg,n) remains mysterious in general. Inspired by the

work of Keel and Vermeire [V] onM0,6, Castravet and Tevelev [CT1] constructed a

sequence of non-boundary extremal effective divisors onM0,n for n ≥ 6. For higher
genera, Farkas and Verra [FV1, FV2] showed that certain variations of pointed Brill-
Noether divisors are extremal onMg,n for g− 2 ≤ n ≤ g. However, for fixed g and
n, these constructions yield only finitely many extremal divisors. This raises the
question whether there exist g and n such that Eff(Mg,n) is not finitely generated.

During the preparation of this article the first author was partially supported by the NSF
grant DMS-1200329 and the second author was partially supported by the NSF CAREER grant
DMS-0950951535 and an Alfred P. Sloan Foundation Fellowship.
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Motivated by this question, in this paper we study the moduli space of genus
one curves with n ordered marked points and show that their effective cones are
not finitely generated when n ≥ 3.

Let a = (a1, . . . , an) be a collection of n integers satisfying
∑n
i=1 ai = 0, not

all equal to zero. Define Da in M1,n as the closure of the divisorial locus param-
eterizing smooth genus one curves with n ordered marked points (E; p1, . . . , pn)
such that

∑n
i=1 aipi = 0 in the Jacobian of E, which is E itself. Call a =

(a1, . . . , an) the weights of Da. By definition, Da is the same divisor as D−a,
where −a = (−a1, . . . ,−an). The number of irreducible components of Da de-
pends on a. In Section 3.2, we will show that for n ≥ 3, Da is irreducible if and
only if gcd(a1, . . . , an) = 1.

A Mori dream space is a Q-factorial projective variety X such that the Cox ring
of X is finitely generated and the Néron-Severi space is equal to Pic(X)⊗Q. The
notion was introduced by Hu and Keel in [HK]. Mori dream spaces are the simplest
varieties from the point of view of the minimal model program (MMP); one can
run MMP for every effective divisor. Their nef cones coincide with their semi-
ample cones and their effective cones are rational polyhedral [HK]. By exhibiting
nef line bundles that are not semi-ample, Keel [K, Corollary 3.1] observed that
Mg,n cannot be a Mori dream space if g ≥ 3 and n ≥ 1. In a recent work [CT2],

Castravet and Tevelev showed that M0,n is not a Mori dream space for n ≥ 134.

Our main theorem shows that the effective cone of M1,n is not finite polyhedral

when n ≥ 3 and, thus, M1,n is very far from being a Mori dream space. This
provides further contrary evidence to expectations that the cones of divisors of
Mg,n are well-behaved.

We summarize our main result as follows.

Theorem 1.1. Suppose that n ≥ 3 and gcd(a1, . . . , an) = 1. Then Da is an
extremal and rigid effective divisor on M1,n. Moreover, these Da’s yield infinitely

many extremal rays for Eff(M1,n). Consequently, Eff(M1,n) is not finite polyhedral

and M1,n is not a Mori dream space.

We prove that Da is extremal by exhibiting irreducible curves C whose defor-
mations are Zariski dense in Da and satisfy C ·Da < 0.

The divisor class of Da was first calculated by Hain [Ha, Theorem 12.1] using
normal functions. The restriction of this class to the locus of curves with rational
tails was worked out by Cavalieri, Marcus and Wise [CMW] using Gromov-Witten
theory. Two other proofs were recently obtained by Grushevsky and Zakharov [GZ]
and by Müller [M]. We remark that all of them considered more general cycle classes
inMg,n for g ≥ 1, by pulling back the zero section of the universal Jacobian or the
Theta divisor of the universal Picard variety of degree g − 1. Pagani [P2, Lemma
3] calculated an extension of this divisor to the universal curve over M1,n−1.

The symmetric group Sn acts onM1,n by permuting the labeling of the marked
points. Denote the quotient, which parameterizes genus one curves with n un-

ordered marked points, by M̃1,n = M1,n/Sn. In contrast to Theorem 1.1, in the

last section, we show that Eff(M̃1,n) is finitely generated. In fact, following an
argument of Keel and McKernan [KM], we prove the following result.

Theorem 5.1. The effective cone of M̃1,n is the closed, simplicial cone generated
by the boundary divisors.
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Let G be a subgroup of Sn. Consider the action of G onM1,n by permuting the

labelings of the marked points and denote the quotient space by M1,n/G. If there
are infinitely many extremal divisors Da, that are pairwise non-proportional and
invariant under the action of G, then Eff(M1,n/G) is not finitely generated. For ex-
ample, let n = 6 and let G be the subgroup of S6 generated by three transpositions
(12), (34) and (56). Then for any a + b + c = 0, the divisor D(a,a,b,b,c,c) descends

to a well-defined divisor DG
(a,a,b,b,c,c) on M1,6/G. Moreover, if gcd(a, b, c) = 1 and

a, b, c are nonzero, then DG
(a,a,b,b,c,c) is irreducible and extremal on M1,6/G. More

generally, as pointed out by the referee, our techniques show the following result.

Theorem 5.2. Let G ⊂ Sn be a subgroup whose permutation action on the set
{1, . . . , n} has at least three orbits. Then Eff(M1,n/G) is not finitely generated.

It would be interesting to classify all subgroups G ⊂ Sn for which Eff(M1,n/G)
is not finitely generated. When the action of G on {1, . . . , n} has fewer than three
orbits, we do not know such a classification.

This paper is organized as follows. In Section 2, we review the divisor theory of
M1,n. In Section 3, we discuss the geometry of Da, including its divisor class and
irreducible components. In Section 4, we prove our main result Theorem 1.1. In
Section 5, we study effective divisors on M1,n/G and prove Theorems 5.1 and 5.2.

Finally, in the appendix, we analyze the singularities of M1,n and show that a
canonical form defined on its smooth locus extends holomorphically to an arbitrary
resolution.

Acknowledgements: We would like to thank Ana-Maria Castravet, Gavril Farkas,
Samuel Grushevsky, Richard Hain, Joe Harris, Ian Morrison, Martin Möller, Nicola
Pagani, Anand Patel, Nicola Tarasca and David Smyth for many valuable discus-
sions and comments regarding this paper. We thank the referee for invaluable
corrections and suggestions.

2. Preliminaries on M1,n

In this section, we recall basic facts concerning the geometry of M1,n. We refer
the reader to [AC, BF, S] for the facts quoted below.

Let λ be the first Chern class of the Hodge bundle on M1,n. Let δirr be the

divisor class of the locus in M1,n that parameterizes curves with a non-separating
node. The general point of δirr parameterizes a rational nodal curve with one node
and n ordered marked points. Let S be a subset of {1, . . . , n} with cardinality
|S| ≥ 2 and let Sc denote its complement. Let δ0;S denote the divisor class of the

locus in M1,n parameterizing curves with a node that separates the curve into a
stable genus zero curve marked by S and a stable genus one curve marked by Sc. In
addition, let ψi be the first Chern class of the cotangent bundle onM1,n associated
to the ith marked point for 1 ≤ i ≤ n. Here we consider the divisor classes on the
moduli stack instead of the coarse moduli scheme, see e.g. [HMo, Section 3.D] for
more details.

The rational Picard group of M1,n is generated by λ and δ0;S for all |S| ≥ 2.
The divisor classes δirr and ψi can be expressed in terms of the generators as

δirr = 12λ,
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ψi = λ+
∑
i∈S

δ0;S .

Since δirr and λ are proportional, we will use them interchangeably in calculations
depending on convenience. The canonical class of M1,n is

KM1,n
= (n− 11)λ+

∑
|S|≥2

(|S| − 2)δ0;S .

For n ≤ 10,M1,n is rational [Be, Theorem 1.0.1]. Moreover, the Kodaira dimen-

sion of M1,11 is zero and the Kodaira dimension of M1,n for n ≥ 12 is one [BF,
Theorem 3].1

3. Geometry of Da

Let a = (a1, . . . , an) be a sequence of integers, not all equal to zero, such that∑n
i=1 ai = 0. The divisor Da in M1,n is defined as the closure of the locus pa-

rameterizing smooth genus one curves E with n distinct marked points p1, . . . , pn
satisfying

∑n
i=1 aipi = 0 in Jac(E) = E. Equivalently, let J denote the universal

Jacobian and let η be the zero section of J . We have a map Fa :M1,n → J given
by

(E; p1, . . . , pn) 7→ OE
( n∑
i=1

aipi

)
.

Then Da is the closure of the pullback F ∗a η. Call a = (a1, . . . , an) the weights of
Da. By definition, Da = D−a, where −a = (−a1, . . . ,−an). Define the subset of
indices corresponding to nonzero entries of a as

N = {1 ≤ i ≤ n | ai 6= 0}.
The divisor class of Da was first calculated by Hain [Ha, Theorem 12.1]. About

the same time, several other calculations of the divisor class were carried out in
[CMW, GZ, M]. We remark that our setting is slightly different from loc. cit. The
morphism Fa extends naturally as a morphism F ′a to the locusMct

1,n parameterizing

curves of compact type in M1,n (see [Ha]). Let E0 be the elliptic component of

a curve of compact type (E, p1, . . . , pn) in M1,n. Let q1, . . . , qr be the points on
E0 corresponding to the nodes of E and let Qi be the set of indices of the marked
points contained in the rational tail of E attached to E0 at qi. Then

F ′a(E; p1, . . . , pn) =
( ∑
s6∈∪ri=1Qi

asps

)
+

r∑
i=1

( ∑
s∈Qi

as

)
qi ∈ J (E0) = J (E).

Consequently, F ′∗a η contains boundary divisors δ0;S for all S ⊃ N , because the
condition

∑n
i=1 aipi = 0 automatically holds by the assumption

∑
i∈N ai = 0 when

pi’s coincide in E0 for i ∈ N . On the other hand, it does not contain any of the
other boundary divisors δ0;S for S 6⊃ N . Hence, in Mct

1,n\ ∪S⊃N δ0;{S}, the two
divisors Da and F ′∗a η agree. In contrast, they disagree along δ0;S for S ⊃ N , since
Da does not contain any boundary divisor by definition.

1In order to study the Kodaira dimension of a singular variety, one needs to ensure that

a canonical form defined in its smooth locus extends holomorphically to a resolution. Farkas

informed the authors that such a verification for M1,n seems not to be easily accessible in the

literature. Although the Kodaira dimension of M1,n is irrelevant for our results, we will treat

this issue in the appendix by a standard argument based on the Reid-Tai criterion.
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In particular, if all ai’s are nonzero, Da and F ′∗a η differ by δ0;{1,...,n}. This issue
was already observed by Cautis [Ca, Proposition 3.4.7] for the case n = 2. In order
to clarify this distinction and for the convenience of the reader, in what follows
we will carry out a direct calculation for the class of Da, and then verify that it
matches with loc. cit. after adding δ0;S for each S ⊃ N .

3.1. Divisor class of Da. Take a general one-dimensional family π : C → B of
genus one curves with n sections σ1, . . . , σn such that every fiber contains at most
one node and the total space of the family is smooth. Suppose there are dS fibers in
which the sections labeled by S intersect simultaneously and pairwise transversally.
Let dirr be the number of rational nodal fibers. Let ω be the first Chern class of
the relative dualizing sheaf associated to π and η the locus of nodes in C. Then the
following formulae are standard [HMo]:

π∗η = dirr +
∑
S

dS ,

ω2 = −
∑
S

dS ,

σi · σj =
∑
{i,j}⊂S

dS ,

ω · σi = −σ2
i = B · ψi −

∑
i∈S

dS =
1

12
dirr.

Suppose Da has class

Da = cirrδirr +
∑
|S|≥2

cSδ0;{S}

with unknown coefficients cirr and cS , where we have used the basis including δirr
instead of λ for convenience. By [GZ, page 11], the zero section of J vanishes
along the boundary divisors δ0;S for S ⊃ N with multiplicity one. Applying the
Grothendieck-Riemann-Roch formula to the push-forward of the section

∑n
i=1 aiσi,

we conclude that

B ·Da +
∑
S⊃N

dS = c1

(
R1π∗

n∑
i=1

aiσi

)
= −π∗

((
1 +

n∑
i=1

aiσi +
1

2

( n∑
i=1

aiσi

)2)(
1− ω

2
+
ω2 + η

12

))
= − 1

12
dirr +

1

24

( n∑
i=1

a2i

)
dirr −

∑
S

∑
{i,j}⊂S

aiajdS .

By comparing coefficients on both sides of the equation, we obtain that

12cirr = −1 +
1

2

n∑
i=1

a2i ,

cS = −
∑
{i,j}⊂S

aiaj , S 6⊃ N,

cS = −
∑

1≤i<j≤n

aiaj − 1 = −1 +
1

2

n∑
i=1

a2i , S ⊃ N,



6 DAWEI CHEN AND IZZET COSKUN

where the last equality uses the assumption
∑n
i=1 ai = 0. Hence, we conclude the

following formula.

Proposition 3.1. The divisor class of Da is given by

Da =
(
− 1 +

1

2

n∑
i=1

a2i

)(
λ+

∑
S⊃N

δ0;S

)
−
∑
S 6⊃N

( ∑
{i,j}⊂S

aiaj

)
δ0;S .

Therefore, adding δ0;S for each S ⊃ N to Da, we recover the divisor class calcu-
lated in [Ha, Theorem 12.1]. As explained before, the coefficient of δ0;S for S ⊃ N
in our calculation differs by 1 from that in [Ha, CMW, GZ, M], because the pull-
back of the zero section of J contains such δ0;S in Mct

1,n, but in our setting we do
not treat it as a component of Da.

3.2. Irreducible components of Da. The divisor Da is not always irreducible.
For instance for D(4,−4) on M1,2, the condition is 4p1 − 4p2 = 0. There are two
possibilities, 2p1 − 2p2 = 0 and 2p1 − 2p2 6= 0, each yielding a component for
D(4,−4). In general for n ≥ 3, if gcd(a1, . . . , an) = 1, then Da is irreducible. If
gcd(a1, . . . , an) > 1, then Da contains more than one component. Below we will
prove this statement and calculate the divisor class of each irreducible component.

First, consider the special case n = 2. Let η(d) denote the number of positive
integers that divide d.

Proposition 3.2. Suppose a is an integer bigger than one. Then the divisor
D(a,−a) in M1,2 consists of η(a)− 1 irreducible components.

Proof. By definition, D(a,−a) is the closure of the locus parameterizing (E; p1, p2)
such that p2 − p1 is a nonzero a-torsion. Take the square [0, a] × [0, ai] and glue
its parallel edges to form a torus E. Fix p1 as the origin of E. The number of
a-torsion points p2 is equal to a2 and the coordinates (x, y) of each a-torsion point
satisfy x, y ∈ Z/a.

When varying the lattice structure of E, the monodromy group acts on (x, y).
Suppose we fix the horizontal edge and shift the vertical edge to the right until
we obtain a parallelogram spanned by [0, a] × [0, a(1 + i)]. The resulting torus is
isomorphic to E. Consequently the monodromy action sends an a-torsion point
(x, y) to (x + y, y). Similarly, we may also obtain the action sending (x, y) to
(x, x + y). Then each orbit of the monodromy action is uniquely determined by
k = gcd(x, y, a). In other words, the monodromy is transitive on the primitive
a′-torsion points for each divisor a′ of a, where a′ = a/k. Hence, the number of
its orbits is η(a). Moreover, for a′ 6= a′′, the loci of primitive a′-torsion points and
primitive a′′-torsion points are disjoint. Therefore, each of the η(a) orbits gives
rise to an irreducible component parameterizing (E, p1, p2) such that p2 − p1 is
a primitive a′-torsion, where a is divisible by a′. When a′ = 1, i.e., p2 = p1, the
corresponding component is δ0;{1,2}, hence we need to exclude it by our setting. �

Next, we consider the case n ≥ 3. If m entries of a are zero, drop them and
denote by a′ the resulting (n − m)-tuple. Then we have Da = π∗Da′ , where
π :M1,n →M1,n−m is the map forgetting the corresponding marked points. Since
the fiber of π over a general point in Da′ is irreducible, we conclude that Da and
Da′ possess the same number of irreducible components. It remains to consider the
case when all entries of a are nonzero.
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Proposition 3.3. Suppose n ≥ 3 and all entries of a are nonzero. Let d =
gcd(a1, . . . , an). Then Da consists of η(d) irreducible components.

Proof. If an entry of a equals 1 or −1, say an = 1, then we can freely choose
p1, . . . , pn−1 and a general choice uniquely determines pn. In other words, Da is
birational to M1,n−1 which is irreducible.

Consider the remaining case when |ai| > 1 for all i. Since d|ai, we conclude
that |ai| ≥ d for all i. If |ai| > d for all i, without loss of generality, assume
that a1 > 0 > an and |a1| > |an|, otherwise we can use −a instead of a. Fix
p1, . . . , pn−1 and replace pn by p′n = 2p1 − pn. Then a = (a1, . . . , an) becomes
a′ = (a1 + 2an, a2, . . . , an−1,−an). Note that pn and p′n uniquely determine each
other, and for general points in Da we have p′n 6= pi for 1 ≤ i < n, otherwise we
would have |ai| = |an| = 1. Moreover, |a1 + 2an| < |a1| by assumption. Therefore,
using such transformations, we can decrease

∑n
i=1 |ai| until one of the entries is

equal to d (or −d). Note that none of the integers in the resulting sequence of
numbers is zero.

Without loss of generality, assume that we have reduced to the case an = d.
Fix p1, . . . , pn−1 and set

∑n−1
i=1 aipi to be the origin of E. Then pn is a d-torsion.

Analyzing the monodromy associated to Da 99KM1,n−1 as in the proof of Propo-
sition 3.2, we see that Da has at most η(d) irreducible components. On the other
hand for each positive factor s of d, the locus parameterizing

∑n
i=1 bipi = 0 where

bi = ai/s gives rise to at least one component of Da. Hence Da contains exactly
η(d) irreducible components. Since n ≥ 3, none of the components is a boundary
divisor of M1,n. �

We remark that the results in Propositions 3.2 and 3.3 were also obtained by
[Bo, Theorems 4.1] in the context of flat geometry and by [P2, Corollary 1] using
abelian covers of elliptic curves.

Next, we calculate the classes of the components of Da when d > 1. Let D′a be
the irreducible component of Da such that at its general point

∑n
i=1 aipi = 0 but∑n

i=1(ai/s)pi 6= 0 for any s dividing d and s > 1. Equivalently, D′a parameterizes
the closure of the locus of points where

∑n
i=1(ai/d)pi is d-torsion, but not torsion

of smaller order. Recall that N is the set of indices i for ai 6= 0.

Proposition 3.4. Suppose gcd(a1, . . . , an) = d > 1. Then the divisor D′a has class

D′a =

∏
p|d

(
1− 1

p2

)(Da + λ+
∑
S⊃N

δ0;S

)
,

where the product ranges over all primes p dividing d.

We remark that for n = 2 the above divisor class was calculated by Cautis [Ca,
Proposition 3.4.7] and also communicated personally to the authors by Hain.

Proof. Let bi = ai/d and b = (b1, . . . , bn). For an integer m, use the notation
mb = (mb1, . . . ,mbn). Note that

Da = Ddb =
∑
t|d

D′tb,
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where t ranges over all positive integers dividing d. By Proposition 3.1, we have

Da + λ+
∑
S⊃N

δ0;S = d2

(
Db + λ+

∑
S⊃N

δ0;S

)
.

For an integer t ≥ 2, define

σ(t) = t2
∏
p|t

(
1− 1

p2

)
,

where the product ranges over all primes p dividing t. We also set σ(1) = 1. Using
the above observation, it suffices to prove that∑

t|d

σ(t) = d2

for all d. Note that

σ(t) =
∑
m|t

µ(m)
( t
m

)2
,

where µ is the Möbius function. The desired equality thus follows from the classic
Möbius inversion formula, see [HW, §16.4]. �

Corollary 3.5. If gcd(a1, . . . , an) > 1, the divisor class D′a is not extremal.

Proof. By Proposition 3.4, D′a is a positive linear combination of effective divisor
classes, not all proportional. �

4. Extremality of Da

In this section, we will prove Theorem 1.1. Recall that an effective divisor D
in a projective variety X is called extremal, if for any linear combination D =
a1D1 + a2D2 with ai > 0 and Di pseudo-effective, D and Di are proportional. In
this case, we say that D spans an extremal ray of the pseudo-effective cone Eff(X).
Furthermore, we say that D is rigid, if for every positive integer m the linear system
|mD| consists of the single element mD. An irreducible effective curve contained
in D is called a moving curve in D, if its deformations cover a dense subset of D.

The following well-known lemma gives a simple criterion for the extremality and
rigidity of an effective divisor. We recall its proof for the convenience of the reader.

Lemma 4.1. Suppose that C is a moving curve in an irreducible effective divisor
D satisfying C ·D < 0. Then D is extremal and rigid.

Proof. Let us first prove the extremality of D. Suppose that D = a1D1 + a2D2

with ai > 0 and Di pseudo-effective. If D1 and D2 are not proportional to D, we
can assume that they lie on the boundary of Eff(X) and moreover that Di − εD is
not pseudo-effective for any ε > 0. Otherwise, we can replace D1 and D2 by the
intersections of their linear span with the boundary of Eff(X).

Since C ·D < 0, at least for one of the Di’s, say D1, we have C ·D1 < 0. Without
loss of generality, rescale the class of D1 such that C ·D1 = −1. Take a very ample
divisor class A and consider the class Fn = nD1 + A for n sufficiently large. Then
Fn can be represented by an effective divisor. Suppose C · A = a and C ·D = −b
for some a, b > 0. Note that if C has negative intersection with an effective divisor,
then it is contained in that divisor. Since C is moving in D, it further implies
that D is contained in that divisor. It is easy to check that C · (Fn − kD) < 0 for
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any k < (n − a)/b. Moreover, the multiplicity of D in the base locus of Fn is at
least equal to (n− a)/b. Consequently En = Fn − (n− a)D/b is a pseudo-effective
divisor class. As n goes to infinity, the limit of En/n has class D1−D/b. Since En is
pseudo-effective, we conclude that D1 −D/b is also pseudo-effective, contradicting
the assumption that D1 − εD is not pseudo-effective for any ε > 0.

Next, we prove the rigidity. Suppose for some integer m there exists another
effective divisor D′ such that D′ ∼ mD. Without loss of generality, assume that
D′ does not contain D, for otherwise we just subtract D from both sides. Since
C ·D < 0, we have C ·D′ < 0, and hence D′ contains C. But C is moving in D,
hence D′ has to contain D, contradicting the assumption. �

Although we can give a uniform proof of Theorem 1.1 as in Section 4.2, for the
reader to get a feel, let us first discuss the case n = 3 in detail.

4.1. Geometry of M1,3. Let a = (a1, a2, a3). If a3 = 0, then a2 = −a1 are not
relatively prime unless they are 1 and −1. In that case, we require p1 = p2, which
cannot hold in M1,n. Hence, D(1,−1,0) by definition is empty. Therefore, below we
assume that gcd(a1, a2, a3) = 1 and none of the ai’s is zero.

Fix a smooth genus one curve E with a marked point p1. Vary two points p2, p3
on E such that

∑3
i=1 aipi = 0 in the Jacobian of E. Let X be the curve induced in

M1,n by this one parameter family of three pointed genus one curves. We obtain
deformations of X by varying the complex structure on E. Since these deformations
cover a Zariski dense subset of Da, we obtain a moving curve in the divisor Da.
We have the following intersection numbers:

X · δirr = 0,

X · δ0;{i,j} = a2k − 1 for k 6= i, j,

X · δ0;{1,2,3} = 1.

The intersection numbers X · δirr and X · δ0;{i,j} are straightforward. At the
intersection with δ0;{1,2,3}, p1, p2, p3 coincide at the same point t in E. Blow up

t and we obtain a rational tail R ∼= P1 that contains the three marked points.
Without loss of generality, suppose a1 > 0 and a2, a3 < 0. The pencil induced by
a1p1 ∼ (−a2)p2+(−a3)p3 degenerates to an admissible cover π of degree a1. By the
Riemann-Hurwitz formula, π is totally ramified at p1, has ramification order (−ai)
at pi for i = 2, 3, and is simply ramified at t. Suppose π(p1) = 0, π(p2) = π(p3) =∞
and π(t) = 1 in the target P1. Then in affine coordinates π is given by

π(x) =

3∏
i=1

(x− pi)ai .

The condition imposed on t is that

(x− p1)a1 − (x− p2)−a2(x− p3)−a3

has a critical point at t and π(t) = 1. Solving for t, we easily see that t exists and is
uniquely determined by p1, p2, p3, namely, the four points t, p1, p2, p3 have unique
moduli in R.

We remark that similar test curve calculations were extensively used in [GZ, M].
The former takes advantage of the theta function, while the latter relies on the
theory of limit linear series.

Now we can prove Theorem 1.1 for the case n = 3.
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Proof. Using the divisor class Da in Proposition 3.1 and the above intersection
numbers, we see that

X ·Da = −1.

By assumption both X and Da are irreducible. Moreover, X is a moving curve
inside Da. Therefore, by Lemma 4.1 Da is an extremal and rigid divisor.

To see that we obtain infinitely many extremal rays of Eff(M1,3) this way, let
us take a = (n+ 1,−n,−1). Then D(n+1,−n,−1) is irreducible and its divisor class
lies on the ray

c

(
λ+ δ0,{1,2,3} + δ0,{1,2} +

1

n
δ0,{1,3} −

1

n+ 1
δ0,{2,3}

)
, c > 0.

As n varies, we obtain infinitely many extremal rays. �

4.2. Geometry of M1,n for n ≥ 4. In this section suppose n ≥ 4. First, let us

consider pulling back divisors from M1,3.

Let π : M1,n → M1,3 be the forgetful map forgetting p4, . . . , pn. Assume that
gcd(a1, a2) = 1. In Section 4.1 we have shown that D(a1,a2,−a1−a2) is extremal.
Now fix a smooth genus one curve E with fixed p3, p4, . . . , pn in general position.
Varying p1, p2 in E such that

∑3
i=1 aipi = 0, we obtain a curve X moving in-

side π∗D(a1,a2,−a1−a2). We have also seen that (π∗X) · D(a1,a2,−a1−a2) < 0 on

M1,3, hence by the projection formula, we have X · (π∗D(a1,a2,−a1−a2)) < 0. Since
π∗D(a1,a2,−a1−a2) is irreducible, we conclude the following.

Proposition 4.2. Let a = (a1, a2,−a1−a2, 0, . . . , 0) for gcd(a1, a2) = 1. Then the
divisor class Da is extremal in Eff(M1,n).

Corollary 4.3. For n ≥ 4, the cone Eff(M1,n) is not finite polyhedral.

Proof. For a = (a1, a2,−a1 − a2, 0, . . . , 0) with gcd(a1, a2) = 1, by Proposition 3.1
we have

Da = (−1 + a21 + a22 + a1a2)
(
λ+

∑
{1,2,3}⊂S

δ0;S

)
− a1a2

( ∑
{1,2}⊂S

36∈S

δ0;S

)
+a1(a1 + a2)

( ∑
{1,3}⊂S

26∈S

δ0;S

)
+ a2(a1 + a2)

( ∑
{2,3}⊂S

16∈S

δ0;S

)
.

By varying a1, a2, we obtain infinitely many extremal rays. �

Next we consider Da in general for n ≥ 4 and gcd(a1, . . . , an) = 1. Let Da(E, η)
be the locus in M1,n parameterizing (E; p1, . . . , pn) such that

∑n
i=1 aipi = η for

fixed η ∈ Jac(E) on a fixed genus one curve E.
For S = {i1, . . . , ik}, consider the locus δ0;S(E) of curves parameterized in δ0;S

whose genus one component is E. Blow down the rational tails and pi1 , . . . , pik
reduce to the same point q in E. For fixed η 6= 0, the condition( k∑

j=1

aij

)
q +

∑
j 6∈S

ajpj = η

does not hold for q and pj in general position in E. Hence δ0;S(E) is not contained

in Da(E, η) for η 6= 0, and Da(E, η) is irreducible of codimension-two in M1,n.
If η = 0, the above argument still goes through with the exception when S ⊃ N ,

where N is the set of indices i for ai 6= 0. This is because the condition
∑n
i=1 aipi =
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0 automatically holds if all the marked points pi with i ∈ N coincide, due to the
assumption

∑
i∈N ai = 0 and aj = 0 for j 6∈ N . In other words, Da(E, 0) is

reducible. One of its components is Da(E) whose general points parameterize n
distinct points p1, . . . , pn in E such that

∑n
i=1 aipi = 0 and the others are δ0;S(E)

for S ⊃ N whose general points parameterize E attached to a rational tail that
contains marked points labeled by S. Denote by δN (E) the union of δ0;S(E) for all
S ⊃ N . It is nonempty, because {1, . . . , n} ⊃ N for any N .

Now let us prove Theorem 1.1 for the case n ≥ 4.

Proof. Note that for η 6= 0, Da(E, η) is disjoint from Da. This is clear in the interior
of M1,n. At the boundary, if k marked points coincide, say p1 = · · · = pk = q in
E, then ( k∑

i=1

ai

)
q +

n∑
j=k+1

ajpj

has to be η for Da(E, η) and 0 for Da, which cannot hold simultaneously for η 6= 0.
Since n ≥ 4, take n − 3 very ample divisors on M1,n and consider their in-

tersection restricted to Da(E, η), which gives rise to an irreducible curve Ca(E, η)
moving in Da(E, η). Restricting to Da(E, 0), we see that Ca(E, η) specializes to
Ca(E, 0) which consists of one component Ca(E) contained in Da(E) and the other
components CN (E) contained in δN (E). Moreover, Ca(E, 0) is connected, hence
Ca(E) and CN (E) intersect each other. Therefore, we conclude that

(Ca(E) + CN (E)) ·Da = Ca(E, η) ·Da = 0,

CN (E) ·Da > 0,

Ca(E) ·Da < 0.

The curve Ca(E) is moving in Da(E) and also varies with the complex structure
of E, hence it is moving in Da. Since it has negative intersection with Da and Da

is irreducible, by Lemma 4.1 we thus conclude that Da is extremal and rigid. �

Corollary 4.4. For n ≥ 3 the moduli space M1,n is not a Mori dream space.

Proof. By [HK, 1.11 (2)], if M1,n is a Mori dream space, its effective cone would
be the affine hull spanned by finitely many effective divisors, which contradicts the
fact that Eff(M1,n) has infinitely many extremal rays. �

5. Effective divisors on M1,n/G

Let G be a subgroup of Sn permuting the labelings of the n ordered marked
points. LetM1,n/G be the quotient ofM1,n under the action of G. In this section,

we study Eff(M1,n/G).

First, consider the special case G = Sn. Denote the quotient spaceM1,n/Sn by

M̃1,n, the moduli space of stable genus one curves with n unordered marked points.

The rational Picard group of M̃1,n is generated by δ̃irr and δ̃0;k for 2 ≤ k ≤ n, where

δ̃irr is the image of δirr and δ̃0;k is the image of the union of δ0;S for all |S| = k.
In the case of genus zero, Keel and McKernan [KM] showed that the effective

cone of M̃0,n is spanned by the boundary divisors. Here we establish a similar

result for M̃1,n.
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Theorem 5.1. The effective cone of M̃1,n is the closed simplicial cone spanned by

the boundary divisors δ̃irr and δ̃0;k for 2 ≤ k ≤ n.

Proof. It suffices to show that any irreducible effective divisor is a nonnegative
linear combination of boundary divisors. Suppose D is an effective divisor different
from any boundary divisor and has class

D = aδ̃irr +

n∑
k=2

bk δ̃0;k.

If C is a curve class whose irreducible representatives form a Zariski dense subset

of a boundary divisor δ̃0;k, then C · D ≥ 0. Otherwise, the curves in the class

C and, consequently, the divisor δ̃0;k would be contained in D, contradicting the
irreducibility of D. We first show that bk ≥ 0 by induction on k. Here the argument
is exactly as in Keel and McKernan.

Let C be the curve class in M̃1,n induced by fixing a genus one curve E with
n−1 fixed marked points and letting an n-th point vary along E. Since the general
n-pointed genus one curve occurs on a representative of C, C is a moving curve
class. We conclude that C · D ≥ 0 for any effective divisor. On the other hand,

since C · δ̃0;2 = n − 1 and C · δ̃irr = C · δ̃0;k = 0, for 2 < k ≤ n, we conclude that
b2 ≥ 0.

By induction assume that bk ≥ 0 for k ≤ j. We would like to show that bj+1 ≥ 0.
Let E be a genus one curve with n − j fixed points. Let R be a rational curve

with j + 1 fixed points p1, . . . , pj+1. Let Cj be the curve class in M̃1,n induced

by attaching R at pj+1 to a varying point on E. Since the general point on δ̃0;j is
contained on a representative of the class Cj , we conclude that Cj is a moving curve

in δ̃0;j . Hence, Cj · D ≥ 0. On the other hand, Cj has the following intersection
numbers with the boundary divisors:

Cj · δ̃irr = 0,

Cj · δ̃0;i = 0 for i 6= j, j + 1,

Cj · δ̃0;j+1 = n− j,

Cj · δ̃0;j = −(n− j).
Hence, we conclude that bj+1 ≥ bj ≥ 0 by induction.

There remains to show that the coefficient a is nonnegative. Fix a general pencil
of plane cubics and a rational curve R with n+ 1 fixed marked points p1, . . . , pn+1.

Let Cn be the curve class in M̃1,n induced by attaching R at pn+1 to a base-point

of the pencil of cubics. The class Cn is a moving curve class in the divisor δ̃0;n.

Consequently, Cn · D ≥ 0. Since Cn · δ̃irr = 12, Cn · δ̃0;k = 0 for k < n and

Cn · δ̃0;n = −1, we conclude that 12a ≥ bn ≥ 0. This concludes the proof that the

effective cone of M̃1,n is generated by boundary divisors. �

Next, as suggested by the referee, we consider the case when the action of G on
{1, . . . , n} has at least three orbits.

Theorem 5.2. Let G ⊂ Sn be a subgroup whose permutation action on the set
{1, . . . , n} has at least three orbits. Then Eff(M1,n/G) is not finitely generated.
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Proof. Without loss of generality, assume that three orbits of G are given by
{1, . . . , k}, {k + 1, . . . , k + l} and {k + l + 1, . . . , k + l + m}, respectively. Use
ak to denote a k-tuple whose entries are all equal to a. Take three nonzero integers
a, b and c such that ka+ lb+mc = 0 and gcd(a, b, c) = 1. Denote by DG

(ak,bl,cm) the

closure of the locus parameterizing smooth pointed genus one curves (E; p1, . . . , pn)
in M1,n/G such that

a
( k∑
i=1

pi

)
+ b
( k+l∑
j=k+1

pj

)
+ c
( k+l+m∑
h=k+l+1

ph

)
= 0

in E. By assumption, DG
(ak,bl,cm) is a well-defined effective divisor on M1,n/G.

Note that
f∗DG

(ak,bl,cm) = D(ak,bl,cm)

under the quotient map f : M1,n → M1,n/G. In Theorem 1.1 and its proof, we
have shown a curve C moving in D(ak,bl,cm) satisfying C · D(ak,bl,cm) < 0. The

image of C is a moving curve in DG
(ak,bl,cm) and by the projection formula we have

(f∗C) · DG
(ak,bl,cm) < 0. As a consequence, we conclude that DG

(ak,bl,cm) spans an

extremal ray of Eff(M1,n/G).
Finally, we claim that varying the values of a, b and c, the divisors DG

(ak,bl,cm)’s

give rise to infinitely many distinct extremal rays. It suffices to prove the same claim
for their pullbacks D(ak,bl,cm) on M1,n. When the gcd(a, b, c) = 1, these divisors
are extremal and rigid. Hence, it suffices to exhibit infinitely many relatively prime
solutions to the equation ka+ lb+mc = 0. Let

k′ =
k

gcd(k, l)
, l′ =

l

gcd(k, l)
.

Taking a = l′, b = −k′ and c = 0 evidently gives a relatively prime triple satisfying
the equation. Now we can obtain infinitely many relatively prime solutions by
setting a = l′, b = −k′ − tml′, c = tll′ and letting t vary over integers. �

Appendix A. Singularities of M1,n

Let M1,n be the underlying coarse moduli scheme of M1,n. Denote by M
reg

1,n its

smooth locus. Below we will show that a canonical form defined on M
reg

1,n extends

holomorphically to any resolution of M1,n.

Since M1,n is rational when n ≤ 10 [Be], in this case there are no nonzero
holomorphic forms on any resolution. We may, therefore, assume that n ≥ 11 as
needed. The standard reference on the singularities of Mg,n dates back to [HMu]
and some recent generalizations include [Lo, Lu, FV1, CF, BFV].

Let (C;x) = (C;x1, . . . , xn) be a stable curve with n ordered marked points.
Let φ be a non-trivial automorphism of C such that φ(xi) = xi for all i, and
suppose that the order of φ is k. If the eigenvalues of the induced action of φ on
H0(C,ωC ⊗ Ω1

C(x1 + · · ·xn))∨ are e2πikj/k with 0 ≤ kj < k, then the age of φ is
defined as

age(φ) =
∑
j

kj
k
.

If φ acts trivially on a codimension-one subspace of the deformation space of
(C;x), we say that φ is a quasi-reflection. For a quasi-reflection, all but one of the
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eigenvalues of φ are equal to one and age(φ) = 1/k. By the Reid-Tai Criterion,
see e.g. [HMu, p. 27], if age(φ) ≥ 1 for any φ ∈ Aut(C;x), then a canonical
form defined on the smooth locus of the moduli space extends holomorphically
to any resolution. Moreover, suppose that Aut(C;x) does not contain any quasi-
reflections, then the resulting singularity is canonical if and only if age(φ) ≥ 1 for
any φ ∈ Aut(C, x), see e.g. [Lu, Theorem 3.4]. The quasi-reflections form a normal
subgroup of Aut(C, x). One can consider the action modulo this subgroup and use
the Reid-Tai Criterion, see [Lu, Proposition 3.5]. In particular, no singularities
arise if and only if Aut(C, x) is generated by quasi-reflections.

According to the above, the upshot is to carry out the age calculation. ForM1,n,
its age has been worked out explicitly in [P1, Corollary 4.8] in the context of inertia
stack and twisted sector. Alternatively, one can perform an elementary calculation
as follows to figure out the locus of points whose age is possibly smaller than one.

The automorphism φ induces an action on H0(C,ωC ⊗Ω1
C(x1 + · · ·+xn))∨. We

have an exact sequence:

0→
⊕

p∈Csing

torp → H0
(
C,ωC ⊗ Ω1

C

( n∑
i=1

xi

))
→
⊕
α

H0
(
Cα, ω

⊗2
Cα

(∑
β

pαβ

))
→ 0,

where Cα’s are the components of the normalization of C and pαβ ’s are the inverse
images of nodes in Cα.

First, we show that for an irreducible elliptic curve E with n distinct marked
points, we have age(φ) ≥ 1. The automorphism group of E has order 2 if j(E) 6=
0, 1728, has order 4 if j(E) = 1728, and has order 6 if j(E) = 0. Since φ fixes all
x1, . . . , xn, if n ≥ 3, then φ has order k = 2 or 3. If k = 2, then n = 3 or 4, and
hence by [HMu, p. 37, Case c2)] we have age(φ) = n−1

2 ≥ 1. If k = 3, then n = 3,
and hence [HMu, p. 38, Case c3)] implies that age(φ) ≥ 1.

Next, consider a stable nodal genus one curve (C;x) with n ordered marked
points. Let C0 be its core curve of genus one. Then C0 is either irreducible elliptic,
or consists of a circle of copies of P1. It is easy to see that φ acts trivially on
every component of C\C0. Let C0 be a circle of l copies of P1, i.e. B1, . . . , Bl are
glued successively at the nodes p1, . . . , pl, where Bi ∼= P1, Bi ∩ Bi+1 = pi+1 and
pl+1 = p1. By the stability of (C;x), each Bi contains at least one more node or
marked point, which has to be fixed by φ. Therefore, φ acts non-trivially on Bi
only if it acts as an involution, switching pi and pi+1 and fixing the other nodes and
marked points on Bi. This implies that l = 2 and k = 2. By [HMu, p. 34], either
age(φ) ≥ 1 or Aut(C, x) is generated by this elliptic involution, which is a quasi-
inflection and does not induce a singularity. Thus, we are left with the case when
C0 is an irreducible elliptic curve E and φ is induced by a non-trivial automorphism
of E fixing all marked points and acting trivially on the other components of C.

If E contains at least one marked point x, [FV1, proof of Theorem 1.1 (ii)] says
that age(φ) ≥ 1. We can also see this directly using [HMu, p. 37-39, Case c)] as
follows. If the order n of φ is 2, then the action restricted toH0(K⊗2E (x)) contributes
1/2 to age(φ). At a node p of E, suppose that the two branches have coordinates
y and z. Then torp is generated by ydz⊗2/z = zdy⊗2/y, see [HMu, p. 33]. The
action of φ locally is given by y → −y and z → z, hence torp also contributes
1/2. Consequently we get age(φ) ≥ 1. If k = 3, at p the action is locally given by
y → ζy and z → z, where ζ is a cube root of unity, hence torp contributes 1/3. At
x, take a translation invariant differential dz. Then locally dz⊗2 is an eigenvector
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of H0(K⊗2E (x + p)). The action φ is locally given by x → ζx, hence it contributes
2/3. We still get age(φ) ≥ 1/3 + 2/3 = 1. If k = 4, similarly torp contributes

1/4. Locally take dz⊗2 and dz⊗2/z as eigenvectors of H0(K⊗2E (x + p)). We get
an additional contribution equal to 2/4 + 1/4. In total we still have age(φ) ≥ 1.
Finally, since φ cannot fix both x and p, the case k = 6 does not occur. Similarly, if
E contains more than one node, φ fixes all the nodes, and hence the same analysis
implies that age(φ) ≥ 1.

Based on the above analysis, we conclude that the locus of non-canonical sin-
gularities of M1,n is contained in the locus of curves (C, x) where the core curve
of C is an unmarked irreducible elliptic tail E attached to the rest of C at a node
p. Moreover, G = Aut(C, x) = Aut(E, p) fixes all marked points and acts triv-
ially on the other components of C. Harris and Mumford [HMu, p. 40-42] proved

that any canonical form defined in M
reg

g,n extends holomorphically to any resolu-
tion over the locus of curves of this type. Strictly speaking, Harris and Mumford
discussed the case Mg. They constructed a suitable neighborhood of a point in

Mg parameterizing an elliptic curve attached to a curve C1 of genus g − 1 without
any automorphisms. In their construction, the only property of C1 they need is
that C1 does not have any non-trivial automorphisms. Hence, their construction is
applicable to the case when C1 is replaced by an arithmetic genus zero curve with n
marked points for n ≥ 2. Therefore, there is a neighborhood of (C, x) in M1,n such
that any canonical form defined in the smooth locus of this neighborhood extends
holomorphically to a desingularization of the neighborhood. This thus completes
the proof.
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