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Abstract. In this paper, we study the birational geometry of the Hilbert scheme P2[n] of n-points on P2. We discuss

the stable base locus decomposition of the effective cone and the corresponding birational models. We give modular
interpretations to the models in terms of moduli spaces of Bridgeland semi-stable objects. We construct these moduli

spaces as moduli spaces of quiver representations using G.I.T. and thus show that they are projective. There is a
precise correspondence between wall-crossings in the Bridgeland stability manifold and wall-crossings between Mori

cones. For n ≤ 9, we explicitly determine the walls in both interpretations and describe the corresponding flips and

divisorial contractions.
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1. Introduction

Let n ≥ 2 be a positive integer. Let P2[n] denote the Hilbert scheme parameterizing zero dimensional
subschemes of P2 of length n. The Hilbert scheme P2[n] is a smooth, irreducible, projective variety of
dimension 2n that contains the locus of n unordered points in P2 as a Zariski dense open subset [F1]. In
this paper, we run the minimal model program for P2[n]. We work over the field of complex numbers C.

The minimal model program for a parameter or moduli space M consists of the following steps.

(1) Determine the cones of ample and effective divisors on M and describe the stable base locus
decomposition of the effective cone.

(2) Assuming that the section ring is finitely generated, for every effective integral divisor D on M,
describe the model

M(D) = Proj

⊕
m≥0

H0(M,mD)


and determine an explicit sequence of flips and divisorial contractions that relate M to M(D).

(3) Finally, if possible, find a modular interpretation of M(D).

Inspired by the seminal work of Birkar, Cascini, Hacon and McKernan [BCHM], there has been recent
progress in understanding the minimal model program for many important moduli spaces, including the
moduli space of curves (see, for example, [HH1], [HH2]) and the Kontsevich moduli spaces of genus-zero
stable maps (see, for example, [CC1], [CC2]). In these examples, there are three ways of obtaining
different birational models of M.

(1) First, one may run the minimal model program on M.
(2) Second, one can vary the moduli functor.
(3) Third, since these moduli spaces are constructed by G.I.T., one can vary the linearization in the

G.I.T. problem.

These three perspectives often produce the same models and provide three different sets of tools for
understanding the geometry of M.

In this paper, we study the birational geometry of the Hilbert scheme of points P2[n], a parameter space
which plays a central role in algebraic geometry, representation theory, combinatorics, and mathematical
physics (see [N] and [G]). We discover that the birational geometry of P2[n] can also be viewed from these
three perspectives.

First, we run the minimal model program for P2[n]. In Theorem 2.5, we show that P2[n] is a Mori
dream space. In particular, the stable base locus decomposition of P2[n] is a finite decomposition into
rational polyhedral cones. Hence, in any given example one can hope to determine this decomposition
completely. In §10, we will describe all the walls in the stable base locus decomposition of P2[n] for n ≤ 9.
By the work of Beltrametti, Sommese, Göttsche [BSG], Catanese and Göttsche [CG] and Li, Qin and
Zhang [LQZ], the ample cone of P2[n] is known. We will review the description of the ample cone of P2[n]

in §3.

The effective cone of P2[n] is far more subtle and depends on the existence of vector bundles on P2

satisfying interpolation. Let n = r(r+1)
2 + s with 0 ≤ s ≤ r and assume that s

r or 1− s+1
r+2 belongs to the

set

Φ = {α | α > φ−1} ∪
{

0
1
,
1
2
,
3
5
,

8
13
,
21
34
, . . .

}
, φ =

1 +
√

5
2

,
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where φ is the golden ratio and the fractions are ratios of consecutive Fibonacci numbers. Then, in
Theorem 4.5, we show that the effective cone of P2[n] is spanned by the boundary divisor B parameterizing
non-reduced schemes and a divisor DE(n) parameterizing subschemes that fail to impose independent
conditions on sections of a Steiner bundle E on P2. The numerical conditions are needed to guarantee
vanishing properties of the Steiner bundle E. For other n, we will give good bounds on the effective cone
and discuss conjectures predicting the cone.

We also introduce three families of divisors and discuss the general features of the stable base locus
decomposition of P2[n]. For suitable parameters, these divisors span walls of the stable base locus decom-
position. As n grows, the number of chambers in the decomposition grows and the conditions defining
the stable base loci become more complicated. In particular, many of the base loci consist of loci of zero
dimensional schemes of length n that fail to impose independent conditions on sections of a vector bundle
E on P2. Unfortunately, even when E is a line bundle OP2(d), these loci are not well-understood for large
n and d. One interesting consequence of our study of the effective cone of P2[n] is a Cayley-Bacharach
type theorem (Corollary 4.8) for higher rank vector bundles on P2.

Second, we will vary the functor defining the Hilbert scheme. In classical geometry, it is not at all
clear how to vary the Hilbert functor. The key is to reinterpret the Hilbert scheme as a moduli space of
Bridgeland semi-stable objects for a suitable Bridgeland stability condition on the heart of an appropriate
t-structure on the derived category of coherent sheaves on P2. It is then possible to vary the stability
condition to obtain different moduli spaces.

LetDb(coh(X)) denote the bounded derived category of coherent sheaves on a smooth projective variety
X. Bridgeland showed that the space of stability conditions on Db(coh(X)) is a complex manifold [Br1].
We consider a complex one-dimensional slice of the stability manifold of P2 parameterized by an upper-
half plane s+ it, t > 0. For each (s, t) in this upper-half plane, there is an abelian subcategory As (which
only depends on s and not on t) that forms the heart of a t-structure on Db(coh(P2)) and a central
charge Zs,t such that the pair (As, Zs,t) is a Bridgeland stability condition on P2. Let (r, c, d) be a fixed
Chern character. Abramovich and Polishchuk have constructed moduli stacksMs,t(r, c, d) parameterizing
Bridgeland semi-stable objects (with respect to Zs,t) of As with fixed Chern character (r, c, d) [AP]. We
show that when s < 0 and t is sufficiently large, the coarse moduli scheme ofMs,t(1, 0,−n) is isomorphic
to the Hilbert scheme P2[n].

As t decreases, the moduli space Ms,t(r, c, d) changes. Thus, we obtain a chamber decomposition of
the (s, t)-plane into chambers in which the corresponding moduli spacesMs,t(r, c, d) are isomorphic. The
parameters (s, t) where the isomorphism class of the moduli space changes form walls called Bridgeland
walls. In §6, we determine that in the region s < 0 and t > 0, all the Bridgeland walls are non-intersecting,
nested semi-circles with center on the real axis.

There is a precise correspondence between the Bridgeland walls and walls in the stable base locus
decomposition. Let x < 0 be the center of a Bridgeland wall in the (s, t)-plane. Let H + 1

2yB, y < 0, be
a divisor class spanning a wall of the stable base locus decomposition. We show that the transformation

x = y − 3
2

gives a one-to-one correspondence between the two sets of walls when n ≤ 9 or when x and y are
sufficiently small. In these cases, an ideal sheaf I lies in the stable base locus of the divisors H + αB
for α < 1

2y exactly when I is destabilized at the Bridgeland wall with center at x = y − 3
2 . One may

speculate that the transformation x = y− 3
2 is a one-to-one correspondence between the two sets of walls

for any n without any restrictions on x and y.
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Third, in §7 and §8, we will see that the moduli spaces of Bridgeland stable objects Ms,t(1, 0,−n),
s < 0, t > 0, can be interpreted as moduli spaces of quiver representations and can be constructed
by Geometric Invariant Theory. In particular, the coarse moduli schemes of these moduli spaces are
projective. There is a special region, which we call the quiver region, in the stability manifold of P2

where the corresponding heart of the t-structure can be tilted to a category of quivers. The (s, t)-plane
we consider intersects this region in overlapping semi-circles of radius one and center at the negative
integers. Since the Bridgeland walls are all nested semi-circles with center on the real axis, the chambers
in the stability manifold all intersect the quiver region. Therefore, we can connect any point in the
(s, t)-plane with s < 0 and t > 0 to the quiver region by a path without crossing any Bridgeland walls.
We conclude that the moduli spaces of Bridgeland semi-stable objects are isomorphic to moduli spaces
of quiver representations. One corollary is the finiteness of Bridgeland walls. The construction of the
moduli spaces via G.I.T. also allows us to identify them with the birational models of the Hilbert scheme
[T].

The organization of this paper is as follows. In §2, we will recall basic facts concerning the geometry
of P2[n]. In §3, we will introduce families of effective divisors on P2[n] and recall basic facts about the
ample cone of P2[n]. In §4, we will discuss the effective cone of P2[n] and the general features of the stable
base locus decomposition of P2[n]. In §5, we will recall basic facts about Bridgeland stability conditions
and introduce a complex plane worth of stability conditions that arise in our study of the birational
geometry of P2[n]. In §6, we study the Bridgeland walls in the stability manifold. In §7 and §8, we show
that in every chamber in the stability manifold, we can reach the quiver region without crossing a wall.
We conclude that all the Bridgeland moduli spaces we encounter can be constructed via G.I.T. and are
projective. In §9, we derive some useful inequalities satisfied by objects on a Bridgeland wall in the
stability manifold of P2. Finally, in §10, we determine the stable base locus decomposition and all the
Bridgeland walls in the stability manifold for P2[n] explicitly when n ≤ 9.

Acknowledgements: We would like to thank Arend Bayer, Tom Bridgeland, Dawei Chen, Lawrence
Ein, Joe Harris, Emanuele Macŕı, Mihnea Popa, Artie Prendergast-Smith, and Jason Starr for many
enlightening discussions.

2. Preliminaries on the Hilbert scheme of points

In this section, we recall some basic facts concerning the geometry of the Hilbert scheme of points on
P2. We refer the reader to [F1], [F2] and [G] for a more detailed discussion.

Notation 2.1. Let n ≥ 2 be an integer. Let P2[n] denote the Hilbert scheme parametrizing subschemes of
P2 with constant Hilbert polynomial n. Let P2(n) denote the symmetric n-th power of P2 parameterizing
unordered n-tuples of points on P2. The symmetric product P2(n) is the quotient of the product P2×· · ·×P2

of n copies of P2 under the symmetric group action Sn permuting the factors.

The Hilbert scheme P2[n] parametrizes subschemes Z of P2 of dimension zero with dimH0(Z,OZ) = n.
A subscheme Z consisting of n distinct, reduced points of P2 has Hilbert polynomial n. Therefore, Z
induces a point of P2[n]. The following fundamental theorem of Fogarty asserts that P2[n] is a smooth,
irreducible variety and the locus parametrizing n distinct, reduced points of P2 forms a Zariski dense,
open subset of P2[n].

Theorem 2.2 (Fogarty [F1]). The Hilbert scheme P2[n] is a smooth, irreducible, projective variety of
dimension 2n. The Hilbert scheme P2[n] admits a natural morphism to the symmetric product P2(n) called
the Hilbert-Chow morphism

h : P2[n] → P2(n).

The morphism h is birational and gives a crepant desingularization of the symmetric product P2(n).
4



Theorem 2.2 guarantees that every Weil divisor on P2[n] is Cartier. Hence, we can define Cartier
divisors on P2[n] by imposing codimension one geometric conditions on schemes parametrized by P2[n].
The Hilbert-Chow morphism allows one to compute the Picard group of P2[n]. There are two natural
geometric divisor classes on P2[n].

Notation 2.3. Let H = h∗(c1(OP2(n)(1))) be the class of the pull-back of the ample generator from the
symmetric product P2(n). The exceptional locus of the Hilbert-Chow morphism is an irreducible divisor
whose class we denote by B.

Geometrically, H is the class of the locus of subschemes Z in P2[n] whose supports intersect a fixed line
l ⊂ P2. Since H is the pull-back of an ample divisor by a birational morphism, H is big and nef. The
class B is the class of the locus of non-reduced schemes. The following theorem of Fogarty determines
the Neron-Severi space of P2[n].

Theorem 2.4 (Fogarty [F2]). The Picard group of the Hilbert scheme of points P2[n] is the free abelian
group generated by OP2[n](H) and OP2[n](B2 ). The Neron-Severi space N1(P2[n]) = Pic(P2[n]) ⊗ Q and is
spanned by the divisor classes H and B.

The stable base locus decomposition of a projective variety Y is the partition of the the effective cone of
Y into chambers according to the stable base locus of the corresponding divisors. The following theorem
is the main finiteness statement concerning this decomposition for P2[n].

Theorem 2.5. The Hilbert scheme P2[n] is a log Fano variety. In particular, P2[n] is a Mori dream
space and the stable base locus decomposition of the effective cone of P2[n] is a finite, rational polyhedral
decomposition.

Proof. By [BCHM], a log Fano variety is a Mori dream space. The stable base locus decomposition of
the effective cone of a Mori dream space is rational, finite polyhedral [HuK]. Hence, the only claim
we need to verify is that P2[n] is log Fano. The Hilbert-Chow morphism is a crepant resolution of the
symmetric product P2(n). Consequently, the canonical class of P2[n] isKP2[n] = −3H. Hence−KP2[n] = 3H
is big and nef. However, −KP2[n] = 3H is not ample since its intersection number with a curve in
the fiber of the Hilbert-Chow morphism is zero. In Corollary 3.2, we will see that the divisor class
−(KP2[n] + εB) = 3H − εB is ample for 1 >> ε > 0. To conclude that P2[n] is log Fano, we need to know
that the pair (P2[n], εB) is klt for some small ε > 0. Since P2[n] is smooth, as long as ε is chosen smaller
than the log canonical threshold of B, the pair (P2[n], εB) is klt. Therefore, P2[n] is a log Fano variety. �

Remark 2.6. More generally, Fogarty [F1] proves that if X is a smooth, projective surface, then the Hilbert
scheme of points X [n] is a smooth, irreducible, projective variety of dimension 2n and the Hilbert-Chow
morphism is a crepant resolution of the symmetric product X(n). Moreover, if X is a regular surface (i.e.,
H1(X,OX) = 0), then the Picard group of X [n] is isomorphic to Pic(X)×Z, hence the Neron-Severi space
of X [n] is generated by the Picard group of X and the class B of the divisor of non-reduced schemes [F2,
Corollary 6.3]. Theorem 2.5 remains true with the same proof if we replace P2[n] by the Hilbert scheme
of points on a del Pezzo surface.

3. Effective divisors on P2[n]

In this section, we introduce divisor classes on P2[n] that play a crucial role in the birational geometry
of P2[n]. We also recall the description of the ample cone of P2[n] studied in [CG] and [LQZ].

Let k and n be integers such that
k(k + 3)

2
≥ n.
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Let Z ∈ P2[n] be a zero-dimensional scheme of length n. The long exact sequence associated to the exact
sequence of sheaves

0→ IZ(k)→ OP2(k)→ OZ(k)→ 0

gives rise to the inclusion
H0(P2, IZ(k))→ H0(P2,OP2(k)).

This inclusion induces a rational map to the Grassmannian

φk : P2[n] 99K Gk = G

((
k + 2

2

)
− n,

(
k + 2

2

))
.

Let Dk(n) = φ∗k(OGk
(1)) denote the pull-back of OGk

(1) by φk.

Proposition 3.1. (1) The class of Dk(n) is given by

Dk(n) = kH − B

2
.

(2) ([BSG], [CG], [LQZ] Lemma 3.8) Dk(n) is very ample if k ≥ n.
(3) ([BSG], [CG], [LQZ] Proposition 3.12) Dn−1(n) is base-point-free, but not ample.
(4) When k ≤ n−2, the base locus of Dk(n) is contained in the locus of subschemes that fail to impose

independent conditions on curves of degree k.

Proof. Recall that a line bundle L on a projective surface S is called k-very ample if the restriction map
H0(S,L)→ H0(S,OZ ⊗L) is surjective for every Z in the Hilbert scheme S[k+1]. In [CG], Catanese and
Göttsche determine conditions that guarantee that a line bundle is k-very ample. When S = P2, their
results imply that OP2(n) is n-very ample. It follows that φk is a morphism on P2[n] when k ≥ n− 1 and
an embedding when k ≥ n.

Observe that φn−1 is constant along the locus of schemes Z ∈ P2[n] that are supported on a fixed
line l. By Bezout’s Theorem, every curve of degree n − 1 vanishing on Z must vanish on l. Hence,
H0(P2, IZ(n−1)) is the space of polynomials of degree n−1 that are divisible by the defining equation of
l. Therefore, Dn−1(n) is base-point-free, but not ample. Assertions (2) and (3) of the proposition follow.
We refer the reader to §3 of [LQZ] for a more detailed exposition.

The line bundle OGk
(1) is base-point-free on the Grassmannian. Hence, the base locus of Dk(n) is

contained in the locus where φk fails to be a morphism. φk fails to be a morphism at Z when the
restriction map H0(P2,OP2(k)) → H0(P2,OZ ⊗OP2(k)) fails to be surjective for Z ∈ P2[n], equivalently
when Z fails to impose independent conditions on curves of degree k. Assertion (4) follows.

Finally, to prove (1), we can intersect the class Dk(n) with test curves. Fix a set Γ of n − 1 general
points in P2. Let l1 be a general line in P2. The schemes p ∪ Γ for p ∈ l1 have Hilbert polynomial n and
induce a curve Rl1 in P2[n] parametrized by l1. The following intersection numbers are straightforward
to compute

Rl1 ·H = 1, Rl1 ·B = 0, Rl1 ·Dk(n) = k.

Let l2 be a general line in P2 containing one of the points of Γ. Similarly, let Rl2 be the curve induced in
P2[n] by Γ and l2. The following intersection numbers are straightforward to compute

Rl2 ·H = 1, Rl2 ·B = 2, Rl2 ·Dk(n) = k − 1.

These two sets of equations determine the class of Dk(n) in terms of the basis H and B. This concludes
the proof of the proposition. �

Corollary 3.2 ([LQZ]). The nef cone of P2[n] is the closed, convex cone bounded by the rays H and
Dn−1(n) = (n− 1)H − B

2 . The nef cone of P2[n] equals the base-point-free cone of P2[n].
6



Proof. Since the Neron-Severi space of P2[n] is two-dimensional, the nef cone of P2[n] is determined by
specifying its two extremal rays. The divisor H is the pull-back of the ample generator of the symmetric
product P2(n) by the Hilbert-Chow morphism. Hence, it is nef and base-point-free. However, since it has
intersection number zero with curves in fibers of the Hilbert-Chow morphism, it is not ample. It follows
that H is an extremal ray of the nef cone of P2[n]. By Proposition 3.1 (3), Dn−1(n) is base-point-free,
hence nef, but not ample. It follows that Dn−1(n) forms the second extremal ray of the nef cone. The
base-point-free cone is contained in the nef cone and contains the ample cone (which is the interior of
the nef cone). Since the extremal rays of the nef cone are base-point-free, we conclude that the nef and
base-point-free cones coincide. The last fact holds more generally for extremal rays of Mori dream spaces
[HuK]. �

In order to understand the birational geometry of P2[n], we need to introduce more divisors. If n >
k(k+3)

2 , then we have another set of divisors on P2[n] defined as follows. Let Ek(n) be the class of the
divisor of subschemes Z of P2 with Hilbert polynomial n that have a subscheme Z ′ ↪→ Z of degree

(
k+2

2

)
that fails to impose independent conditions on polynomials of degree k. For example, a typical point
of E1(n) consists of Z ∈ P2[n] that have three collinear points. A typical point of E2(n) consists of
subschemes Z ∈ P2[n] that have a subscheme of degree six supported on a conic. We will now calculate
the class Ek(n) by pairing it with test curves. These test curves will also play an important role in the
discussion of the stable base locus decomposition.

Let C(n) denote the fiber of the Hilbert-Chow morphism h : P2[n] → P2(n) over a general point of the
diagonal. We note that

C(n) ·H = 0, C(n) ·B = −2.

Let r ≤ n. Let Cr(n) denote the curve in P2[n] obtained by fixing r − 1 general points on a line l, n− r
general points not contained in l and a varying point on l. The intersection number are given by

Cr(n) ·H = 1, Cr(n) ·B = 2(r − 1).

Proposition 3.3. The class of Ek(n) is given by

Ek(n) =
(
n− 1
k(k+3)

2

)
kH − 1

2

(
n− 2

k(k+3)
2 − 1

)
B

Proof. We can calculate the class Ek(n) by intersecting with test curves. First, we intersect Ek(n) with
C1(n). We have the intersection numbers

Ek(n) · C1(n) =
(
n− 1
k(k+3)

2

)
k, H · C1(n) = 1, B · C1(n) = 0.

To determine the coefficient of B we intersect Ek(n) with the curve C(n). We have the intersection
numbers

Ek(n) · C(n) =
(

n− 2
k(k+3)

2 − 1

)
, H · C(n) = 0, B · C(n) = −2.

The class follows from these calculations. �

We next consider a generalization of the divisors Dk(n) introduced earlier. We begin with a definition.

Definition 3.4. A vector bundle E of rank r on P2 satisfies interpolation for n points if the general
Z ∈ P2[n] imposes independent conditions on sections of E, i.e. if

h0(E ⊗ IZ) = h0(E)− rn.
7



Assume E satisfies interpolation for n points. In particular, we have h0(E) ≥ rn. Let W ⊂ H0(E) be a
general fixed subspace of dimension rn. A scheme Z which imposes independent conditions on sections of
E will impose independent conditions on sections in W if and only if the subspace H0(E⊗IZ) ⊂ H0(E)
is transverse to W . Thus, informally, we obtain a divisor DE,W (n) described as the locus of schemes
which fail to impose independent conditions on sections in W . We observe that the class of DE,W (n) will
be independent of the choice of W , so we will drop the W when it is either understood or irrelevant to
the discussion.

Remark 3.5. We can informally interpret Dk(n) as the locus of schemes Z such that Z∪Z ′ fails to impose
independent conditions on curves of degree k, where Z ′ is a sufficiently general fixed scheme of degree(
k+2

2

)
− n. Choosing W = H0(IZ′(k)) ⊂ H0(OP2(k)), we observe that Dk(n) = DOP2 (k)(n).

To put the correct scheme structure on DE,W (n) and compute its class, consider the universal family
Ξn ⊂ P2[n]×P2, with projections π1, π2. The locus of schemes which fail to impose independent conditions
on sections of W can be described as the locus where the natural map

W ⊗OP2[n] → π1∗(π∗2(E)⊗OΞn) =: E[n]

of vector bundles of rank rn fails to be an isomorphism. Consequently, it has codimension at most 1; since
the general Z imposes independent conditions on sections in W it is actually a divisor. Furthermore, its
class (when given the determinantal scheme structure) is just c1(E[n]), which can be computed using the
Grothendieck-Riemann-Roch Theorem

ch(E[n]) = (π1)∗
(

ch(π∗2(E)⊗OΞn) · Td
(
P2[n] × P2/P2[n]

))
,

noting that the higher pushforwards of π∗2E ⊗ OΞn all vanish. A simple calculation and the preceding
discussion results in the following proposition.

Proposition 3.6. Let E be a vector bundle of rank r on P2 with c1(E) = aL, where L is the class
of a line, and suppose E satisfies interpolation for n points. The divisor DE(n) has class aH − r

2B.
Furthermore, the stable base locus of the divisor class DE(n) lies in the locus of schemes which fail to
impose independent conditions on sections of E.

We thus obtain many effective divisors that will help us understand the stable base locus decomposition
of P2[n]. Since the discussion only depends on the rays spanned by these effective divisors, it is convenient
to normalize their expressions so that the coefficient of H is one. The divisors Dk(n) give the rays

H − B

2k
.

The divisors Ek(n) give the rays

H − k + 3
4(n− 1)

B.

Furthermore, whenever there exists a vector bundle E on P2 of rank r with c1(E) = aL satisfying
interpolation for n points we have the divisor DE(n) spanning the ray

H − r

2a
B.

4. The stable base locus decomposition of the effective cone of P2[n]

In this section, we collect facts about the effective cone of the Hilbert scheme P2[n] and study the
general features of the stable base locus decomposition of P2[n].

8



Fix a point p ∈ P2. Let Un(p) ⊂ P2[n] be the open subset parametrizing schemes whose supports do not
contain the point p. There is an embedding of Un(p) in P2[n+1] that associates to the scheme Z ∈ Un(p)
the scheme Z ∪ p in P2[n+1]. The induced rational map

ip : P2[n] 99K P2[n+1]

gives rise to a homomorphism
i∗p : Pic(P2[n+1])→ Pic(P2[n]).

Observe that i∗p(H) = H and i∗p(B) = B. Hence, the map i∗p does not depend on the point p and gives
an isomorphism between the Picard groups.

For the purposes of the next lemma, we identify the Neron-Severi space N1(P2[n]) with the vector space
spanned by two basis elements labelled H and B. Let Eff(P2[n]) denote the image of the effective cone of
P2[n] under this identification. We can thus view the effective cones of P2[n] for different n in the same
vector space. Under this identification, we have the following inclusion.

Lemma 4.1. Eff(P2[n+1]) ⊆ Eff(P2[n]).

Proof. Let D be an effective divisor on P2[n+1]. Then i∗p(D) is a divisor class on P2[n]. Since i∗p(H) = H
and i∗p(B) = B, under our identification, D and i∗p(D) represent the same point in the vector space
spanned by H and B. The proof of the lemma is complete if we can show that i∗p(D) is the class of an
effective divisor. Let p1 be a point such that there exists a scheme consisting of n + 1 distinct, reduced
points p1, . . . , pn+1 not contained in D. Therefore, ip1(Un(p1)) 6⊂ D and D ∩ ip1(Un(p1)) is an effective
divisor on ip1(Un(p1)). Since i∗p(D) does not depend on the choice of point p, we conclude that i∗p(D) is
the class of an effective divisor on P2[n]. �

Remark 4.2. Let n1 < n < n2. By Lemma 4.1, if we know Eff(P2[n1]) and Eff(P2[n2]), then we bound
Eff(P2[n]) both from above and below.

We saw in Proposition 3.6 that if E is a vector bundle of rank r and c1(E) = aL satisfying interpolation
for n points, then we get an effective divisor on P2[n] with class aH − r

2B. In view of this, it is important
to understand vector bundles that satisfy interpolation for n points. Recall from the introduction the
definition of the set Φ:

Φ = {α | α > φ−1} ∪
{

0
1
,
1
2
,
3
5
,

8
13
,
21
34
, . . .

}
, φ =

1 +
√

5
2

,

where φ is the golden ratio and the fractions are ratios of consecutive Fibonacci numbers. The following
theorem of the fourth author guarantees the existence of vector bundles satisfying interpolation for n
points.

Theorem 4.3. [Hui, Theorem 4.1] Let

n =
r(r + 1)

2
+ s, s ≥ 0.

Consider a general vector bundle E given by the resolution

0→ OP2(r − 2)⊕ks → OP2(r − 1)⊕k(s+r) → E → 0.

For sufficiently large k, E is a vector bundle that satisfies interpolation for n points if and only if s
r ∈ Φ.

Similarly, let F be a general vector bundle given by the resolution

0→ F → OP2(r)⊕k(2r−s+3) → OP2(r + 1)⊕k(r−s+1) → 0.

For sufficiently large k, F has interpolation for n points if and only if 1− s+1
r+2 ∈ Φ.
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Remark 4.4. In Theorem 4.3, the rank of E is kr and c1(E) = k(r2 − r+ s)L. Hence, the corresponding
effective divisor DE(n) on P2[n] lies on the ray H − r

2(r2−r+s)B. Similarly, the rank of F is k(r + 2) and

c1(F ) = k(r2 + r + s− 1)L. Hence, the divisor DF (n) on P2[n] lies on the ray H − r+2
2(r2+r+s−1)

B.

A consequence of Theorem 4.3 is the following theorem that determines the effective cone of P2[n] in a
large number of cases.

Theorem 4.5. Let

n =
r(r + 1)

2
+ s, 0 ≤ s ≤ r.

(1) If s
r ∈ Φ, then the effective cone of P2[n] is the closed cone bounded by the rays

H − r

2(r2 − r + s)
B and B.

(2) If 1− s+1
r+2 ∈ Φ and s ≥ 1, then the effective cone of P2[n] is the closed cone bounded by the rays

H − r + 2
2(r2 + r + s− 1)

B and B.

Proof. The proof of this theorem relies on the idea that the cone of moving curves is dual to the effective
cone. Recall that a curve class C on a variety X is called moving if irreducible curves in the class C
cover a Zariski open set in X. If C is a moving curve class and D is an effective divisor, then C ·D ≥ 0.
Thus each moving curve class gives a bound on the effective cone. To determine the effective cone, it
suffices to produce two rays spanned by effective divisor classes and corresponding moving curves that
have intersection number zero with these effective divisors.

The divisor class B is the class of the exceptional divisor of the Hilbert-Chow morphism. Consequently,
it is effective and extremal. Alternatively, to see that B is extremal, notice that C1(n) is a moving curve
with C1(n) ·B = 0. Hence, B is an extremal ray of the effective cone.

The other extremal ray of the effective cone is harder to find. Observe that when s
r ∈ Φ, Theorem 4.3

constructs an effective divisor DE(n) along the ray H − r
2(r2−r+s)B. Hence, the effective cone contains

the cone generated by B and H − r
2(r2−r+s)B.

Let Z be a general scheme of dimension zero and length n. The dimension of the space of curves of
degree r in P2 is r(r+3)

2 . Since a general collection of simple points impose independent conditions on
curves of degree r and

r(r + 3)
2

− r(r + 1)
2

− s = r − s ≥ 0,

Z is contained in a smooth curve C of degree r. The scheme Z defines a divisor DZ on the smooth curve
C of degree n. The genus of C is (r−1)(r−2)

2 . Therefore, by the Riemann-Roch Theorem

h0(C,OC(DZ)) ≥ r(r + 1)
2

+ s− (r − 1)(r − 2)
2

+ 1 = 2r + s ≥ 2.

Let P be a general pencil in H0(C,OC(DZ)) containing Z. The corresponding divisors of degree n on C
induce a curve R in the Hilbert scheme P2[n]. We then have the following intersection numbers:

R ·H = r, and R ·B = 2(r2 − r + s).

The first intersection number is clear since it equals the degree of the curve C. The second intersection
number can be computed using the Riemann-Hurwitz formula. It is easy to see that R ·B is the degree
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of the ramification divisor of the map φP : C → P1 induced by the pencil P ⊂ H0(C,OC(DZ)). The
Riemann-Hurwitz formula implies that this degree is

2n+ (r − 1)(r − 2)− 2 = 2(r2 − r + s).

We conclude that R ·DE(n) = 0. Since Z was a general point of P2[n] and we constructed a curve in the
class R containing Z, we conclude that R is a moving curve class. Therefore, the effective divisor DE(n)
is extremal in the effective cone. We deduce that the effective cone is equal to the cone spanned by B
and H − r

2(r2−r+s)B.

When 1− s+1
r+2 ∈ Φ, then by Theorem 4.3, DF (n) is an effective divisor along the ray H− r+2

2(r2+r+s−1)
B.

Therefore, the effective cone contains the cone generated by the rays H − r+2
2(r2+r+s−1)

B and B.
Let Z be a general scheme of dimension zero and length n. The dimension of the space of curves of

degree r+ 2 in P2 is (r+2)(r+5)
2 . Since a general collection of simple points impose independent conditions

on curves of degree r + 2 and

(r + 2)(r + 5)
2

− r(r + 1)
2

− s = 3r + 5− s ≥ 0,

Z is contained in a smooth curve C of degree r + 2. The scheme Z defines a divisor DZ of degree n on
C. The genus of C is r(r+1)

2 . By the Riemann-Roch Theorem,

h0(C,OC(DZ)) ≥ r(r + 1)
2

+ s− r(r + 1)
2

+ 1 = s+ 1 ≥ 2,

provided s ≥ 1. Let P be a general pencil in H0(C,OC(DZ)) containing Z. The corresponding divisors
of degree n on C induce a curve R in the Hilbert scheme P2[n]. We then have the following intersection
numbers:

R ·H = r + 2, and R ·B = 2(r2 + r + s− 1).

Here the second number is equal to the degree of the ramification divisor of the map φP : C → P1 induced
by the pencil P ⊂ H0(C,OC(DZ)) and is computed by the Riemann-Hurwitz formula. We conclude that
R ·DF (n) = 0. Since we constructed a curve in the class R containing a general point Z, we conclude that
R is a moving curve class. Therefore, the effective divisor DF (n) is extremal in the effective cone. We
deduce that the effective cone is equal to the cone spanned by B and H − r+2

2(r2+r+s−1)
B. This concludes

the proof of the theorem. �

Remark 4.6. Several special cases of Theorem 4.5 are worth highlighting since the divisors have more
concrete descriptions.

• When n = r(r+1)
2 , then the divisor Er−1(n) parameterizing zero dimensional schemes of length n that

fail to impose independent conditions on sections of OP2(r− 1) is an effective divisor on the extremal ray
H − B

2(r−1) . Hence, the effective cone is the cone generated by H − B
2(r−1) and B.

• When n = r(r+1)
2 − 1, by Lemma 4.1, the effective cone contains the cone generated by H − B

2(r−1)

and B. By Theorem 4.5, the effective cone is equal to the cone spanned by H − B
2(r−1) and B. Hence,

the extremal ray of the effective cone in this case is generated by the pull-back of Er−1(n+ 1) under the
rational map ip : P2[n] 99K P2[n+1].

•When n = r(r+1)
2 +1, then the divisor Er−1(n) parameterizing zero-dimensional subschemes of length n

that have a subscheme of length n−1 that fails to impose independent conditions on sections of OP2(r−1)
is an effective divisor on the ray H− r+2

4(n−1)B. Hence, the effective cone is the cone generated by Er−1(n)
and B.

11



• When n = (r+1)(r+2)
2 − 2 = r(r+1)

2 + (r − 1) with r ≥ 3, a general collection of n points lies on a pencil
of curves of degree r. The base locus of this pencil consists of r2 points, and we obtain a rational map
P2[n] 99K P2[r2−n] sending n points to the r2 − n points residual to the n in the base locus of this pencil.
The pull-back of H under this map gives an effective divisor spanning the extremal ray H − r

2(r2−1)
B.

• When n = r(r+1)
2 + r

2 with r even, we can take the vector bundle in the construction of the extremal
ray of the effective cone to be a twist of the tangent bundle TP2(r− 2). The corresponding divisor lies on
the extremal ray H − 1

2r−1B. In this case, the effective cone is the cone generated by H − 1
2r−1B and B.

Remark 4.7. Theorem 4.5 determines the effective cone of P2[n] for slightly more than three quarters of
all values of n. In order to extend the theorem to other values of n = r(r+1)

2 + s, one has to consider
interpolation for more general bundles. For example, one may consider bundles of the form

0→ OP2(r − 3)⊕s → OP2(r − 1)⊕2r+s−1 → E → 0.

Provided that 2s < r and either √
2− 1 <

s

r − 1
2

or
s

r − 1
2

is a convergent of the continued fraction expansion of
√

2− 1, it is reasonable to expect that E satisfies
interpolation and the divisor DE(n) spans the extremal ray of the effective cone. Dually, consider the
bundle

0→ F → OP2(r)⊕3r−s+6 → OP2(r + 2)⊕r−s+1 → 0.
Provided that 2s > r and either

r − s+ 1
r + 5

2

>
√

2− 1 or
r − s+ 1
r + 5

2

is a convergent of the continued fraction expansion of
√

2− 1, one expects F to satisfy interpolation and
the corresponding divisor DF (n) to span the extremal ray of the effective cone of P2[n]. Unfortunately,
at present interpolation does not seem to be known for these bundles.

While the bounds may not be sharp for n not covered by Theorem 4.5, the proof still shows the
following corollary.

Corollary 4.8 (A Cayley-Bacharach Theorem for higher rank vector bundles on P2). Let n = r(r+1)
2 + s

with 0 ≤ s ≤ r.
(1) If s

r ≥
1
2 , then the effective cone of P2[n] is contained in the cone generated by H− r

2(r2−r+s)B and
B.

(2) If s
r <

1
2 , then the effective cone of P2[n] is contained in the cone generated by H − r+2

2(r2+r+s−1)
B

and B.
Let E be a vector bundle on P2 with rank k and c1(E) = aL. If

k

a
>

r

r2 − r + s
when

s

r
≥ 1

2
, or

k

a
>

r + 2
r2 + r + s− 1

when
s

r
<

1
2
,

then E cannot satisfy interpolation for n points. That is, every Z ∈ P2[n] fails to impose independent
conditions on sections of E.

We now turn our attention to describing some general features of the stable base locus decomposition
of P2[n].

Notation 4.9. We denote the closed cone in the Neron-Severi space generated by two divisor classes
D1, D2 by [D1, D2]. We denote the interior of this cone by (D1, D2). We use [D1, D2) and (D1, D2] to
denote the semi-closed cones containing the ray spanned by D1 and, respectively, D2.
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Proposition 4.10. The cone (H,B] forms a chamber of the stable base locus decomposition of P2[n].
Every divisor in this chamber has stable base locus B.

Proof. Since the divisor class H is the pull-back of the ample generator from the symmetric product
P2(n), it is base point free. Every divisor D in the chamber (H,B] is a non-negative linear combination
aH + bB. Hence, the base locus of D is contained in B. On the other hand, C(n) · D = −2b < 0,
provided that b > 0. Since curves in the class C(n) cover the divisor B, B has to be in the base locus
of D for every D ∈ (H,B]. We conclude that B is the stable base locus of every divisor in the chamber
(H,B]. �

Corollary 4.11. The birational model of P2[n] corresponding to the chamber [H,B) is the symmetric
product P2(n).

Proof. If D ∈ [H,B), then D = mH + αB with m > 0 and α ≥ 0. By proposition 4.10, the moving
part of D is mH. Since H induces the Hilbert-Chow morphism, we conclude that the birational model
corresponding to D is the symmetric product P2(n). �

Together with our earlier description of the nef cone in Proposition 3.1, this completes the description
of the stable base locus decomposition in the cone spanned by H − 1

2n−2B and B. To help determine the
chambers beyond the nef cone, a couple simple lemmas will be useful.

Lemma 4.12. Suppose 0 < α < β. The stable base locus of H −αB is contained in the stable base locus
of H − βB.

Proof. The divisor H is base-point free. There is a positive number c such that H − βB+ cH lies on the
ray spanned by H − αB. Thus any point in the stable base locus of H − αB will also be in the stable
base locus of H − βB. �

Lemma 4.13. Let C be a curve class in P2[n] with C ·H > 0, and suppose C · (H − αB) = 0 for some
α > 0. Then the stable base locus of every divisor H − βB with β > α contains the locus swept out by
irreducible curves of class C.

Proof. Since C ·H > 0 and C · (H − αB) = 0, we have C · B > 0, and thus C · (H − βB) < 0 for every
β > α. Thus any effective divisor on the ray H − βB contains every irreducible curve of class C. �

To finish the section, we wish to describe several chambers of the stable base locus decomposition
arising from divisors of the form Dk(n). The following lemma will play a key role in identifying the stable
base loci.

Lemma 4.14. Let Z be a zero-dimensional scheme of length n.

(a) If n ≤ 2d+ 1, then Z fails to impose independent conditions on curves of degree d if and only if
it has a collinear subscheme of length at least d+ 2.

(b) Suppose n = 2d+ 2 and d ≥ 2. Then Z fails to impose independent conditions on curves of degree
d if and only if it either has a collinear scheme of length at least d + 2 or it is contained on a
(potentially reducible or nonreduced) conic curve.

Proof. (a) It is clear that if Z has a collinear subscheme of length at least d + 2 then Z fails to impose
independent conditions on curves of degree d. For the more difficult direction, we proceed by induction
on d. Suppose that Z has no collinear subscheme of length d+ 2. Given a line L in P2 we can consider
the residuation sequence

(1) 0→ IZ′(d− 1) L→ IZ(d)→ IZ∩L⊂L(d)→ 0
13



where Z ′ is the subscheme of Z defined by the ideal quotient (IZ : IL). Clearly the scheme Z∩L imposes
independent conditions on curves of degree d since Z contains no collinear subscheme of length d + 2.
Thus H1(IZ∩L⊂L(d)) = 0. If we show that Z ′ imposes independent conditions on curves of degree d− 1,
then it will follow that H1(IZ′(d − 1)) = 0 and hence Z imposes independent conditions on curves of
degree d.

To apply our induction hypothesis, choose the line L such that the intersection Z ∩ L has as large a
length ` as possible. Clearly ` ≥ 2 unless Z is just a point, so Z ′ has length at most 2(d−1)+1. If ` ≤ d,
then since Z contains no collinear subscheme of length at least d+ 1 we find Z ′ also contains no collinear
subscheme of length at least d + 1, so by the induction hypothesis Z ′ imposes independent conditions
on curves of degree d − 1. On the other hand, if ` = d + 1, then Z ′ has degree d, so does not contain a
collinear subscheme of degree d+ 1.

(b) Again it is clear that if Z is contained in a conic or has a subscheme of length d+ 2 supported on
a line that Z fails to impose independent conditions on curves of degree d.

Suppose Z does not lie on a conic and that it does not contain a collinear subscheme of length d+ 2.
We will reduce to part (a) by choosing an appropriate residuation depending on the structure of Z.

If Z meets a line in a scheme of length d+1, then the subscheme Z ′ of length d+1 residual to this line
cannot also lie on a line or Z would lie on a conic. Then Z ′ imposes independent conditions on curves of
degree d+ 1 by part (a), so by the residuation sequence Z imposes independent conditions on curves of
degree d+ 2.

Next, suppose Z does not meet a line in a scheme of length d+ 1 but Z has a collinear subscheme of
length at least 3. Looking at the scheme Z ′ residual to this line, we may again apply part (a) to conclude
Z ′ imposes independent conditions on curves of degree d + 1, and thus that Z imposes independent
conditions on curves of degree d+ 2.

Finally assume no line meets Z in a scheme of length greater than 2. Choose any length 5 subscheme
Z ′′ of Z, and let C be a conic curve containing Z ′′. The curve C is in fact reduced and irreducible since Z
contains no collinear triples. Since Z does not lie on a conic, Z ∩C is a subscheme of C of length at most
2d+ 1. But any subscheme of C of length at most 2d+ 1 imposes independent conditions on sections of
OC(d) = OP1(2d). Thus if Z ′ is residual to Z ∩C in Z, we see by the residuation sequence corresponding
to C that Z imposes independent conditions on curves of degree d if Z ′ imposes independent conditions
on curves of degree d−2. Since Z ′ has degree at most (2d+2)−5 = 2(d−2)+1 and contains no collinear
triples, we conclude that it imposes independent conditions on curves of degree d− 2 by part (a). �

We now identify many of the chambers in the stable base locus decomposition.

Proposition 4.15. Let n ≤ k(k + 3)/2, so that Dk(n) is an effective divisor on P2[n]. Its class lies on
the ray H − 1

2kB.

(a) If n ≤ 2k + 1, the stable base locus of divisors in the chamber [H − 1
2kB,H −

1
2k+2B) consists of

schemes of length n with a linear subscheme of length k + 2.
(b) If n = 2k + 2, the stable base locus of divisors in the chamber [H − 1

2kB,H −
1

2k+2B) contains
the locus of schemes of length n with a linear subscheme of length k + 2 and is contained in the
locus of schemes of length n which either have a linear subscheme of length k + 2 or which lie on
a conic.

(c) In any case, the ray H − 1
2kB spans a wall in the stable base locus decomposition of the effective

cone of P2[n].

Proof. Recall that Ck(n) is the curve class in P2[n] given by fixing k− 1 points on a line, n− k points off
the line, and letting a final point move along the line. We have Ck(n) ·H = 1 and Ck(n) ·B = 2(k − 1).
It follows that Dk+1(n) ·Ck+2(n) = 0 for all k. By Lemma 4.13, if α > 1

2k+2 then the locus swept out by
14



irreducible curves of class Ck+2(n) is contained in the stable base locus of H − αB. This locus certainly
contains the locus of schemes with a linear subscheme of length k+2. On the other hand, by Proposition
3.1 the divisor Dk(n) has stable base locus contained in the locus of schemes of length n which fail to
impose independent conditions on curves of degree k.

By Lemma 4.14 (a), we see that if n ≤ 2k + 1 then the stable base locus of Dk(n) is contained in the
locus of schemes of length n with a linear subscheme of length k + 2, and therefore that the stable base
locus of divisors in the chamber [H − 1

2kB,H −
1

2k+2B) is precisely this locus.
The conclusion for (b) follows similarly by using Lemma 4.14 (b) along with Lemma 4.12.
For (c), notice that every divisor H − αB with α > 1

2k has the locus of schemes of length n with a
linear subscheme of length k + 1 in its stable base locus. Let Z be a general scheme of length n with a
linear subscheme of length k+ 1. Using the residuation sequence (1), we see that Z imposes independent
conditions on curves of degree k. By Proposition 3.1, Z does not lie in the base locus of Dk(n), so the
ray spanned by Dk(n) forms a wall in the stable base locus decomposition. �

5. Preliminaries on Bridgeland stability conditions

In this section, we review the basic facts concerning Bridgeland stability conditions introduced in [Br1]
and recall several relevant constructions from [Br2] and [AB].

Let Db(coh(P2)) denote the bounded derived category of coherent sheaves on P2.

Definition 5.1. A pre-stability condition on P2 consists of a triple (A; d, r) such that:

• A is the heart of a t-structure on Db(coh(P2)).
• r and d are linear maps:

r, d : K(D(coh(P2)))→ R
from the K-group of the derived category to R satisfying:
(*) r(E) ≥ 0 for all E ∈ A, and

(**) if r(E) = 0 and E ∈ A is nonzero, then d(E) > 0.

A pre-stability condition is a stability condition if objects of A all have the Harder-Narasimhan property,
which we now define.

Remark 5.2. The function Z = −d + ir is called the central charge and maps non-zero objects of A to
the upper-half plane {ρeiπθ | ρ > 0, 0 < θ ≤ 1}.

Definition 5.3. The slope of a nonzero object E ∈ A (w.r.t. (r, d)) is:

µ(E) :=

 d(E)/r(E) if r(E) 6= 0

+∞ if r(E) = 0

Definition 5.4. E ∈ A is stable (resp. semi-stable) if

F ⊂ E ⇒ µ(F ) < µ(E) (resp. µ(F ) ≤ µ(E))

for all nonzero proper subobjects F ⊂ E in the category A.

Definition 5.5. A pre-stability condition (A; d, r) has the Harder-Narasimhan property if every nonzero
object E ∈ A admits a finite filtration:

0 ⊂ E0 ⊂ E1 ⊂ · · · ⊂ En = E

uniquely determined by the property that each Fi := Ei/Ei−1 is semi-stable and µ(F1) > µ(F2) > · · · >
µ(Fn). This filtration is called the Harder-Narasimhan filtration of E.
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Remark 5.6. Let L denote the hyperplane class on P2. The standard t-structure with “ordinary” degree
and rank

d(E) := ch1(E) · L, r(E) := ch0(E) · L2

on coherent sheaves on P2 are not a pre-stability condition because:

r(Cp) = 0 = d(Cp)

for skyscraper sheaves Cp.
However, the resulting Mumford slope:

µ(E) :=
d(E)
r(E)

,

well-defined away from coherent sheaves on P2 of finite length, has a (weak) Harder-Narasimhan property
for coherent sheaves on P2:

E0 ⊂ E1 ⊂ · · · ⊂ En = E

where E0 := tors(E) is the torsion subsheaf of E, and for i > 0, the subquotients Fi := Ei/Ei−1 are
Mumford semi-stable torsion-free sheaves of strictly decreasing slopes µi := µ(Fi).

The following formal definition is useful:

Definition 5.7. For s ∈ R and E ∈ K(Db(coh(P2))) define:

ch(E(−s)) := ch(E) · e−sL,
where ch(E(−s)) is the Chern character of E(−sL) when s ∈ Z.

We then have the following:

Bogomolov Inequality (see [Fr, Chapter 9]). If E is a Mumford semi-stable torsion-free sheaf on P2,
then:

ch1(E(−s)) · L = 0 ⇒ ch2(E(−s)) ≤ 0

Remark 5.8. There is an even stronger inequality obtained from:

χ(P2, E ⊗ E∗) ≤ 1

for all stable vector bundles E on P2, but we will not need this.

Definition 5.9. Given s ∈ R, define full subcategories Qs and Fs of coh(P2) by the following conditions
on their objects:

• Q ∈ Qs if Q is torsion or if each µi > s in the Harder-Narasimhan filtration of Q.
• F ∈ Fs if F is torsion-free, and each µi ≤ s in the Harder-Narasimhan filtration of F .

Each pair (Fs,Qs) of full subcategories therefore satisfies [Br2, Lemma 6.1]:

(a) For all F ∈ Fs and Q ∈ Qs,
Hom(Q,F ) = 0

(b) Every coherent sheaf E fits in a short exact sequence:

0→ Q→ E → F → 0,

where Q ∈ Qs, F ∈ Fs and the extension class are uniquely determined up to isomorphism.

A pair of full subcategories (F ,Q) of an abelian category A satisfying conditions (a) and (b) is called
a torsion pair. A torsion pair (F ,Q) defines a t-structure on Db(A) [HRS] with:

D≥0 = {complexes E | H−1(E) ∈ F and Hi(E) = 0 for i < −1}
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D≤0 = {complexes E | H0(E) ∈ Q and Hi(E) = 0 for i > 0}

The heart of the t-structure defined by a torsion pair consists of:

{E | H−1(E) ∈ F ,H0(E) ∈ Q, and Hi(E) = 0 otherwise}.

The natural exact sequence:

0→ H−1(E)[1]→ E → H0(E)→ 0

for such an object of Db(A) implies that the objects of the heart are all given by pairs of objects F ∈ F
and Q ∈ Q together with an extension class in Ext2

A(Q,F ) [HRS].

Definition 5.10. Let As be the heart of the t-structure on Db(coh(P2)) obtained from the torsion-pair
(Fs,Qs) defined in Definition 5.9.

Let (d, r) be degree and rank functions defined by:

r(E) := ch1(E(−s)) · L

d(E) := −ch0(E(−s)) · L2

(the corresponding slope is the negative reciprocal of the Mumford slope of E(−s).) Then it is easy to
see that r(E) ≥ 0 for all objects of As. Furthermore, d(E) ≥ 0, where the inequality is strict unless E
is an object of the following form:

0→ F [1]→ E → T → 0,

where F is a semi-stable torsion-free sheaf satisfying c1(F (−s)) · L = 0 and T is a sheaf of finite length.
By modifying the degree, one obtains a Bridgeland stability condition as described in the next theorem.

Theorem 5.11 (Bridgeland [Br2], Arcara-Bertram [AB], Bayer-Macr̀ı [BM]). For each s ∈ R and t > 0,
the rank and degree functions on As defined by:

• rt(E) := t · ch1(E(−s)) · L
• dt(E) := −(t2/2)ch0(E(−s)) · L2 + ch2(E(−s))

define stability conditions on Db(coh(P2)) with slope function µs,t = dt/rt.

Remark 5.12. By the characterization of the objects of As that satisfy r(E) = d(E) = 0 and the Bogo-
molov inequality, it is immediate that the triples (As; rt, dt) are pre-stability conditions. The finiteness
of Harder-Narasimhan filtrations is proved by Bayer-Macr̀ı in [BM].

Fix a triple of numbers defining a Chern character

(r, c, d) ; (r, cL, dL2) on P2

(r and c are integers, and d− c2/2 is an integer).

Corollary 5.13 (Abramovich-Polishchuk, [AP]). For each point (s, t) in the upper-half plane, the moduli
stack MP2(r, c, d) of semi-stable objects of As with the given Chern character with respect to the slope
function µs,t is of finite type and satisfies the semi-stable replacement property. In particular, the moduli
stack of stable objects is separated, and if all semi-stable objects are stable, then the moduli stack is proper.

Remark 5.14. We will show that the coarse moduli spaces are projective.
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6. Potential walls

The potential wall associated to a pair of Chern characters:

(r, c, d) and (r′, c′, d′) on P2

is the following subset of the upper-half plane:

W(r,c,d),(r′,c′,d′) := {(s, t) |µs,t(r, c, d) = µs,t(r′, c′, d′)}
where µs,t are the slope functions µs,t = dt/rt defined in §5. Specifically:

µs,t(r, c, d) =
− t2

2 r + (d− sc+ s2

2 r)
t(c− sr)

and so the wall is given by:

W(r,c,d),(r′,c′,d′) = {(s, t) |(s2 + t2)(rc′ − r′c)− 2s(rd′ − r′d) + 2(cd′ − c′d) = 0}
i.e. it is either a semicircle centered on the real axis or a vertical line (provided that one triple is not a
scalar multiple of the other).

Walls are significant because if F,E are objects of Db(coh(P2)) with

ch(F ) = (r, cL, dL2) and ch(E) = (r′, c′L, d′L2)

and if F ⊂ E in As with (s, t) ∈ W(r,c,d),(r′,c′,d′), then E is not (s, t)-stable (by definition), but it may
be (s, t)-semistable and stable for nearby points on one side of the wall, but not the other. Crossing the
wall would therefore change the set of (s, t)-stable objects.

Notice that by the explicit equation for the potential wall W(r,c,d),(r′,c′,d′):

(i) if rc′ = r′c (i.e. the Mumford slopes of the triples are the same), then the wall is the vertical line:

s =
cd′ − c′d
rd′ − r′d

(ii) otherwise the wall is the semicircle with center(
rd′ − r′d
rc′ − r′c

, 0
)

and radius √(
rd′ − r′d
rc′ − r′c

)2

− 2
(
cd′ − c′d
rc′ − r′c

)
.

Now consider three cases for which

(r′, c′L, d′L2) = (r(E), c1(E), ch2(E))

is chosen to be the Chern character of a sheaf E on P2, where we assume in addition that the triple
(r′, c′, d′) is primitive (not an integer multiple of another such triple).

Case 1. E = Cx, the skyscraper sheaf, so (r′, c′, d′) = (0, 0, 1) and:

µs,t(Cx) = +∞ for all (s, t)

In this case each triple (r, c, d) gives a potential vertical wall: s = c
r . However, we will see below that

there are no proper nonzero subobjects of Cx in As. In other words, the skyscraper sheaves are stable
for all values of (s, t).

Case 2. E is supported in codimension 1, so r′ = 0 and c′ > 0.
18



Walls of type (ii) are all semicircles with the same center(
ch2(E)
c1(E)

, 0
)
.

Type (i) walls do not occur, since r = 0 would imply that cd′ = c′d at a wall, i.e. that one triple is a
scalar multiple of the other. Thus the potential walls are simply the family of semicircles, centered at a
fixed point on the real axis. These semi-circles foliate the upper-half plane

Case 3. E is a Mumford-stable torsion-free sheaf with c′ = c1(E) = 0. The rank r′ is positive and by
the Bogomolov inequality, d′ ≤ 0.

Here there is one vertical wall, with 0 = rc′ = r′c, i.e. c = 0 and:

s = 0

When c 6= 0, the potential walls are two families of nested semicircles (with varying centers)1, one in
each of the two quadrants, with centers:

(x, 0) and radius

√
x2 +

2ch2(E)
r(E)

≤ |x|

(recall that d′ = ch2(E) ≤ 0 is fixed) and

x =
rd′ − r′d
−r′c

=
rch2(E)− r(E)d
−r(E)c

Notice that x ∈ Q whenever (r, c, d) are all rational.

We will only be interested in walls lying in the second quadrant (x < 0) because a Mumford-stable
torsion-free sheaf E of degree 0 only belongs to the category As if s < 0.

Remark 6.1. There is little loss of generality in assuming c1(E) = 0 in Case 3. Indeed, if E is a Mumford-
stable torsion-free sheaf of arbitrary rank r′ and degree c′, then the set of potential walls also consists of
a single vertical line at s = c′

r′ and nested semicircles on either side. This can be seen most simply by
formally replacing the Chern classes ch(E) by ch(E(− c′

r′ )) (which shifts all walls by c′

r′ ) and reducing to
Case 3.

Proofs of the following proposition already exist in the literature but we reprove it here in order to
develop some techniques that will be useful later.

Proposition 6.2.

(a) Skyscraper sheaves Cx are stable objects for all (s,t).

(b) If E ∈ As is stable for fixed s and t >> 0, then E ∈ Qs or, if H−1(E) 6= 0, then H0(E) is a sheaf
of finite length.

(c) Torsion-free sheaves in Qs that are not Mumford semistable are not (s,t)-semistable for large t.

(d) Line bundles OP2(k), k > s, are stable objects of As for all t.

1Maciocia [Ma] recently proved that Bridgeland walls for smooth projective surfaces of Picard rank one are nested
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Proof. A short exact sequence 0→ A→ E → B → 0 of objects of As gives rise to a long exact sequence
of coherent sheaves:

0→ H−1(A)→ H−1(E)→ H−1(B)→ H0(A)→ H0(E)→ H0(B)→ 0

with H−1(∗) ∈ Fs and H0(∗) ∈ Qs. In particular, if E = H0(E) ∈ Qs is a coherent sheaf (i.e., H−1(E) =
0), then A = H0(A) is also a coherent sheaf in Qs.

Let E = Cx. Then µs,t(E) = +∞ for any (s, t). Thus E is either (s, t)-semi-stable or stable, and if
it is not stable, then there is a short exact sequence as above with B 6= 0, µs,t(A) = +∞ and A ∈ Qs.
But the only such sheaves A are torsion, supported in dimension zero. Thus the long exact sequence in
cohomology gives:

0→ H−1(B)→ A→ Cx → H0(B)→ 0
and then H−1(B) is also torsion, violating H−1(B) ∈ Fs.

Next, suppose E ∈ As and both H−1(E) and H0(E) are nonzero. The cohomology sheaves form a
short exact sequence of objects of As:

0→ H−1(E)[1]→ E → H0(E)→ 0

As t→∞:

µs,t(H−1(E)[1])→ +∞, whereas

µs,t(H0(E))→ −∞ if r(H0(E)) > 0,

µs,t(H0(E))→ 0 if r(H0(E)) = 0 and c1(H0(E)) > 0, and

µs,t(H0(E)) ≡ +∞ if r = c1 = 0.

Thus for large values of t, the inequality µs,t(H−1(E)[1]) > µs,t(H0(E)) would destabilize E unless
H−1(E)[1] is the zero sheaf or else H0(E) satisfies r = c1 = 0 . This gives (b).

Similar considerations give (c). If E ∈ Qs is not Mumford semistable, consider a sequence of sheaves:

0→ A→ E → B → 0

with Mumford slopes µ(A) > µ(E) > µ(B).

The slope of B satisfies µ(B) > s (otherwise E 6∈ Qs) and as above, the limiting µs,t slopes (to first
order in t) for large t show that E is not (s, t)-semistable for large t. One can even refine the argument to
show that if E is not Gieseker-semistable and either E is torsion or else E is Mumford-semistable, then
the higher order term (in t) exhibits the instability of E for large t. Thus (s, t)-stability of sheaves in Qs
for large t is equivalent to Gieseker stability.

Let s0 < 0, and suppose that OP2 is not (s0, t0)-semistable. Let A ⊂ OP2 have minimal rank among
all subobjects in As0 satisfying µs0,t0(A) > µs0,t0(OP2). Consider the (unique!) potential wall W :=
W((r,c,d),(1,0,0))(s0, t0) passing through (s0, t0). By Case 3, W is a semicircle centered on the x-axis in the
second quadrant, passing through the origin. It follows that µs,t(A) > µs,t(OP2) at all points (s, t) ∈W .
If A ∈ Qs for all s < 0, then each term in the Harder-Narasimhan filtration of A with respect to the
Mumford slope has slope ≥ 0. In particular, ch1(A) ≥ 0, and the kernel of the map A → OP2 (which
must map onto a sheaf with ch1 = 0) also satisfies ch1(H−1(B)) ≥ 0. But this contradicts the fact that
H−1(B) ∈ Fs0 with s0 < 0.

On the other hand, if A 6∈ Qs for some s < 0, let s0 < s′ < 0 be the smallest such s. Then by assumption
there is a quotient sheaf A′ of A with µ(A′) = s′, and it follows that lim(s,t)→(s′,t′) µs,t(A′) = −∞ (taken
along the wall W ). The kernel sheaf A′′ ⊂ A of the map to A′ is then nonzero, the map A′′ → OP2 is
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also nonzero and determines a destabilizing subobject of OP2 at (s0, t0), contradicting our assumption on
the minimality of the rank of A among all destabilizing subobjects. This proves that OP2 is stable at an
arbitrary point (s0, t0), and since tensoring by OP2(k) translates the upper half plane, it follows that all
line bundles are stable for all values of (s, t) with s < k. This gives (d). �

A potential wall W(r,c,d),ch(E) for E will be an actual wall if the equality of (s, t)-slopes is realized by
a semi-stable subobject A ⊂ E with ch(A) = (r, c, d) at some point of the wall. When E is a coherent
sheaf, the rank of a subsheaf of E is bounded by the rank of E. Unfortunately, while a subobject A ⊂ E
in one of the categories As is necessarily also a sheaf, it may not be a subsheaf and indeed it may, a priori,
be a sheaf of arbitrarily large rank. The following lemma will be useful for bounding such subobjects.

Lemma 6.3. Let E be a coherent sheaf on P2 (not necessarily Mumford-semistable) of positive rank with
ch1(E) = 0 satisfying:

ch2(E) < 0
and suppose A → E is a map of coherent sheaves which is an inclusion of µs0,t0-semi-stable objects of
As0 of the same slope for some

(s0, t0) ∈W := W(ch(A),ch(E))

Then A→ E is an inclusion of µs,t-semi-stable objects of As of the same slope for every point (s, t) ∈W .

Proof. First, we prove that E ∈ Qs for all (s, t) ∈ W . Since E ∈ Qs0 by assumption, it follows that
E ∈ Qs for all s ≤ s0. The set of (s, t) ∈W such that E 6∈ Qs, if non-empty, has a well-defined infimum
s′ > s0, and then by definition, the end of the Harder-Narasimhan filtration for E must be:

0→ E′′ → E → E′ → 0

with µ(E′) = s′. But then lim(s,t)→(s′,t′)− µs,t(E′) = −∞ and so in particular, µs,t(E′′) > µs,t(E) for
(s, t) near (s′, t′) on the wall. But the walls for E are disjoint (as in Case 3 above), and it follows that
µs,t(E′′) > µs,t(E) for all (s, t) on W , including (s0, t0), contradicting the assumption that E is (s0, t0)-
semistable. Similarly, we may conclude that A ∈ Qs for all (s, t) ∈ W , since otherwise A would admit a
subsheaf A′′ that destabilizes E at (s′, t′) and hence also at (s0, t0).

Next, consider the exact sequence of cohomology sheaves:

0→ H−1(B)→ A→ E → H0(B)→ 0

for B = E/A in As0 . It is immediate that H0(B) ∈ Qs for all (s, t) ∈W , since the quotient of a sheaf in
Qs is also in Qs. The issue is to show that H−1(B) ∈ Fs for all s < s0 and (s, t) ∈W . But this follows the
same argument as the previous paragraph. If not, then there is a Harder-Narasimhan filtration starting
with:

0→ F ′′ → H−1(B)→ F ′ → 0
with F ′′ Mumford semistable, µ(F ′′) = s′′ and (s′′, t′′) ∈W . Then:

0→ F ′′[1]→ B → B′ → 0

has µs′′,t′′(B′) < µs′′,t′′(B) = µs′′,t′′(E), which violates the assumption that E is µs0,t0-semistable. �

The following corollary is immediate:

Corollary 6.4. Suppose E is a coherent sheaf as in Lemma 6.3, and let (s1, 0) and (s2, 0), with s1 < s2,
be the two intersection points of the (semi-circular) wall W with the x-axis. Let K = ker(A→ E) be the
kernel sheaf. Then:

K ∈ Fs and A ∈ Qs
for every s1 < s < s2.
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The next corollary completes the circle of ideas from Proposition 6.2:

Corollary 6.5. Mumford-stable torsion-free coherent sheaves E ∈ Qs are (s, t)-stable objects of As for
t >> 0.

Proof. When E = OP2(k) is a line bundle, the Corollary follows from Proposition 6.2 (d) . When E has
higher rank, then the Bogomolov inequality is sharp, and moreover, by (formally) twisting by −µ(E), we
may as well assume that ch1(E) = 0 and ch2(E) < 0. Observe that finiteness of the Harder-Narasimhan
filtration implies that given any Mumford-stable torsion-free sheaf E ∈ Qs, we can find a t such that E is
(s, t) Bridgeland stable. Here we show that t can be chosen uniformly depending only on the invariants
of E.

Suppose A → E satisfies the conditions of Lemma 6.3 for some value (s, t) ∈ W . Our strategy is to
find a uniform upper bound on the diameter of the (semi-circular) wall W . It will follow that above such
a wall, E must be (s, t)-stable.

We separate into two cases:

(i) A ⊂ E is a subsheaf, necessarily satisfying µ(A) < µ(E) = 0. In fact, we can say more, namely
that µ(A) ≤ −1/ch0(E). But then by Lemma 6.3, it follows that no wall Wch(A),ch(E) that exhibits
E as a semi-stable object may extend past s = −1/ch0(E) on the x-axis. It follows that for all values
of (s, t) above the wall W(∗,ch(E)) passing through (−1/ch0(E), 0), the stable vector bundle E may not
be destabilized by a subsheaf of E. This is because for t >> 0, any given subsheaf A ⊂ E of smaller
Mumford slope has smaller (s, t)-slope. Thus if A ⊂ E destabilized E for some value (s, t), then there
would necessarily be a wall above (s, t) for which Lemma 6.3 applies.

(ii) A→ E has nontrivial kernel K ⊂ A. Let (s1, 0) and (s2, 0) be the intersections of WA,E with the
x-axis. Then by Corollary 3.2,

µ(K) ≤ s1 and µ(A) > s2.

Now suppose µ(K) ≤ −(r(E) + 1). Since E is Mumford stable, all quotients of E have non-negative
c1. Hence, c1(A) ≤ c1(K). Combining this with:

ch0(A) ≤ ch0(K) + ch0(E)

it follows that:

µ(A) =
c1(A)
ch0(A)

≤ c1(K)
ch0(A)

≤ ch0(K)µ(K)
ch0(K) + ch0(E)

≤ −1

This means that any semicircular wall for such an A must be bounded by the larger of the wall through
(−(r + 1), 0) and the wall through (−1, 0). This gives the desired uniform bound. �

Remark 6.6. In specific examples, one can do much better than these bounds, as we shall see when we
make our detailed analysis of the Hilbert scheme.

Remark 6.7. Proposition 6.2 and Corollary 6.5 allow us to identify the Hilbert scheme P2[n] with the
coarse moduli schemes of Ms,t(1, 0,−n) for s < 0 and t sufficiently large.

22



7. The quiver region

Fix an integer k ∈ Z and consider the three objects:

OP2(k − 2)[2], OP2(k − 1)[1], OP2(k) ∈ Db(coh(P2))

This is an “Ext-exceptional” collection, in the sense of [M, Definition 3.10], where it is shown that the
extension-closure of these three objects:

A(k) := 〈OP2(k − 2)[2], OP2(k − 1)[1], OP2(k)〉
is the heart of a t-structure. Moreover, Macŕı explains that:

Lemma 7.1 (Macŕı). [M, Lemma 3.16] If A is the heart of a t-structure and

OP2(k − 2)[2], OP2(k − 1)[1], OP2(k) ∈ A
then A = A(k).

The objects of A(k) are complexes:

Cn0 ⊗C OP2(k − 2)→ Cn1 ⊗C OP2(k − 1)→ Cn2 ⊗C OP2(k).

In particular, a subobject in A(k) of an object E• of dimensions (n0, n1, n2) has dimensions (m0,m1,m2)
with mi ≤ ni for each i. Thus, quite unlike the category of coherent sheaves (or any of the categories As
above) there are only finitely many possible invariants for subobjects of an object with given invariants.
It also immediately follows that:

Observation 7.2. For any choices of ζ0, ζ1, ζ2 ∈ H, if we define:

Zζ0,ζ1,ζ2(OP2(k − i)[i]) := ζi

then the pair (A(k), Zζ0,ζ1,ζ2) is a stability condition. Here Z = d + ir in terms of the rank and degree
functions defined before.

Remark 7.3. Here the finiteness of Harder-Narasimhan filtrations is trivial. Also, notice that this space
of stability conditions is three (complex) dimensional, with fixed t-structure, unlike the upper-half plane,
which was two real dimensional, with varying t-structures. Clearly A(k) 6= As for any k or s (there is
no coherent sheaf shifted by 2 in any As). Nevertheless, we will find isomorphisms of moduli spaces of
stable objects.

For fixed k, the conversion (n0, n1, n2) 7→ (r, c, d) from dimensions to Chern classes is:

C :=


1 −1 1

k − 2 −(k − 1) k

(k−2)2

2
−(k−1)2

2
k2

2


Vice versa, the conversion from Chern classes to dimensions is:

C−1 =


k(k−1)

2
−(2k−1)

2 1

k(k − 2) −(2k − 2) 2

(k−1)(k−2)
2

−(2k−3)
2 1
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Example 7.4. (i) For each integer k, the twisted Koszul complex:

C1 ⊗C OP2(k − 2)→ C2 ⊗C OP2(k − 1)→ C1 ⊗C OP2(k)
is exact except at the right, where the cokernel is isomorphic to the skyscraper sheaf Cx. This matches
the dimension computation:

C−1

 0
0
1

 =

 1
2
1


(ii) Every stable torsion-free sheaf E of degree slope:

−1 < µ(E) ≤ 0

is the middle cohomology of a “monad” that is exact elsewhere:

Cn0 ⊗C OP2(−1)→ Cn1 ⊗C OP2 → Cn2 ⊗C OP2(1)

or in other words, E[1] ∈ A(1) (see, e.g. [BH]).

In the case we will consider, IZ is the ideal sheaf of a subscheme Z ⊂ P2 of length l(Z) = n. This is
stable and torsion-free with Chern character (1, 0,−n), so as an object of A(1), the associated monad for
IZ [1] has Chern character (−1, 0, n) and dimension invariants:

(n0, n1, n2) = (n, 2n+ 1, n).

Other than the monad, we will assume k = −d is non-positive.

The Dimension Invariants for IZ [1] in A(−d) are:

C−1

 −1
0
n

 =
(
n− d(d+ 1)

2
, 2n− d(d+ 2), n− (d+ 1)(d+ 2)

2

)
In particular,

(2) n ≥ (d+ 1)(d+ 2)
2

is a necessary condition for any object with Chern classes (−1, 0, n) to belong to A(−d). On the other
hand,

(3) n ≤ d(d+ 1)
2

is needed for an object with Chern character (1, 0,−n) to be in A(−d).

Suppose (A, Z) is an arbitrary stability condition on Db(coh(P2)). For each integer i ∈ Z, there is a
stability condition (A[i], Z[i]) with:

A[i] := {A[i] | A is an object of A} and Z[i](A[i]) := (−1)iZ(A[i]).

More interestingly, one can interpolate between these integer shifts. For each 0 < φ < 1, define:

• Qφ = 〈Q ∈ A | Q is stable with arg(Z(Q)) > φπ〉.

• Fφ = 〈F ∈ A | F is stable with arg(Z(F )) ≤ φπ〉.

and define A[φ] = 〈Qφ,Fφ[1]〉 and Z[φ](E) = e−iπφZ(E).
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This extends to an action of R on the manifold of stability conditions.

Remark. This action of R is the restriction of an action by ˜GL(2,R)+ (the universal cover of the set
of matrices of positive determinant) established by Bridgeland in [Br1] but we will not need this larger
group action. It is important to notice that moduli spaces of stable objects are unaffected by the action.
Specifically:

(a) Stable objects of A with arg(Z)/π = ψ > φ are identified with stable objects of A[φ] with
arg(Z[φ])/π = ψ − φ.

(b) Stable objects of A with arg(Z)/π = ψ ≤ φ are identified with stable objects of A[φ] with
arg(Z[φ])/π = 1 + (ψ − φ) via A 7→ A[1].

Finally, we have the following:

Proposition 7.5. If (s, t) satisfy:

(4) (s− (k − 1))2 + t2 < 1

then each moduli space of (s, t)-stable objects (with fixed invariants) is isomorphic to a moduli space of
stable objects in A(k) for suitable choices of ζ0, ζ1, ζ2 (depending upon (s, t)).

Proof. First note that OP2(k) and OP2(k − 2)[1] are stable objects of As for all k − 2 < s < k (see [AB]
for the latter). Moreover, the semicircle (s− (k − 1))2 + t2 = 1 is the potential wall corresponding to:

arg(Z(s,t)(OP2(k − 2)[1])) = arg(Z(s,t)(OP2(k)))

Below this wall, the former has smaller arg than the latter.

It is useful to divide the region (3) into four subregions.

(R1) is the region: s ≥ k − 1, (s− (k − 1
2))2 + t2 > 1

(R2) is the region: s > k − 1, (s− (k − 1
2))2 + t2 ≤ 1

(R3) is the region: s < k − 1, (s− (k − 3
2))2 + t2 > 1

(R4) is the region: s < k − 1, (s− (k − 3
2))2 + t2 ≤ 1

Within these regions, we have the following inequalities on the args (suppressing the subscript on the
Z).

(R1) OP2(k − 2) and OP2(k − 1) both shift by 1, and:

arg(Z(OP2(k − 2)[1])) < arg(Z(OP2(k))) < arg(Z(OP2(k − 1)[1]))

(R2) OP2(k − 2) and OP2(k − 1) both shift by 1, and:

arg(Z(OP2(k − 2)[1])) < arg(Z(OP2(k − 1)[1])) ≤ arg(Z(OP2(k)))

(R3) OP2(k − 2) shifts by 1, and:

arg(Z(OP2(k − 1))) < arg(Z(OP2(k − 2)[1])) < arg(Z(OP2(k)))

(R4) OP2(k − 2) shifts by 1, and:

arg(Z(OP2(k − 2)[1])) ≤ arg(Z(OP2(k − 1))) < arg(Z(OP2(k)))

For (s, t) in each region, there is a choice of φ(s, t) ∈ (0, 1) so that:

OP2(k − 2)[2],OP2(k − 1)[1],OP2(k) ∈ A[φ(s, t)]
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By Lemma 7.1, it follows that A[φ(s, t)] = A(k) and (s, t)-stability is the same as Z[φ(s, t)]-stability for
ζi := Z(s,t)[φ(s, t)](OP2(k − i)[i]). Thus the two stability conditions are in the same R-orbit, and their
moduli spaces are isomorphic. �

Corollary 7.6. For every (s0, t0) and every choice of invariants, the moduli space of (s0, t0)-stable objects
is isomorphic to a moduli space of stable objects of A(k) for some choice of k and ζ0, ζ1, ζ2.

Proof. The moduli spaces of stable objects of fixed invariants (r′, c′, d′) remain unchanged as (s, t) moves
along the unique potential wall W(∗,(r′,c′,d′))(s, t) through (s, t). Since each such wall is either a semicircle
or vertical line, it will intersect one (or more) of the quiver regions treated in Proposition 7.5, and then
by that Proposition, the moduli space is isomorphic to a moduli space of the desired type. �

Corollary 7.7. Let E be a Mumford-stable torsion-free sheaf on P2 with primitive invariants. There are
finitely many isomorphism types of moduli spaces of (s, t)-stable objects with invariants ch(E).

Proof. As usual, we will assume for simplicity that c1(E) = 0. The set of potential walls W((r,c,d),ch(E))

where the isomorphism type of the moduli spaces might change, due to a subobject with invariants

(r, c, d), consists of a nested family of semicircles, all of which contain (−
√
|2ch2(E)

r(E) |, 0) in the interior, by

the analysis of §6. Each potential wall intersects a “quiver region” for some −
√
|2ch2(E)

r(E) | < k ≤ 0 where

the moduli spaces of stable objects are identified with moduli spaces of stable objects in the categories
A(k) by Proposition 7.5. But in the latter categories, there are only finitely many possible invariants
of an object with any given dimension invariants (n0, n1, n2). From this it follows immediately that for
each k only finitely many of the potential walls actually yield semi-stable objects with invariants ch(E).
Since there are only finitely many k to consider, the corollary follows. �

8. Moduli of stable objects are GIT quotients

By Corollary 7.6, in order to prove the projectivity of the moduli spaces of (s, t)-stable objects with
fixed Chern classes, we only need to establish:

Proposition 8.1. The moduli spaces of stable objects of (non-negative!) dimension invariants ~n =
(n0, n1, n2), for each stability condition Z = (ζ0, ζ1, ζ2) on A(k), may be constructed by Geometric In-
variant Theory. In particular, these moduli spaces are quasi-projective, and projective when equivalence
classes of semi-stable objects are included.

Proof. We reduce this to Proposition 3.1 of A. King’s paper [K], on moduli of quiver representations.
First, we may assume without loss of generality that:

arg(Z(n0, n1, n2)) < π

since otherwise ni 6= 0⇒ arg(ζi) = π, and there is either a single stable object (one of the generators of
A(k)), or else n0 + n1 + n2 > 1 and there are no Z-stable objects with these invariants.

Let ζi = (ai, bi) so that, given dimension invariants ~d = (d0, d1, d2),

Z(~d) = (~d · ~a, ~d ·~b).
The criterion for stability will not change if we substitute:

~a↔ ~a−~b
(
~n · ~a
~n ·~b

)
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and so we may assume without loss of generality, that:

~n · ~a = Re(Z(n0, n1, n2)) = 0

and an object E with invariants ~n is stable if and only if:

d0a0 + d1a1 + d2a2 < 0

for all dimension invariants ~d of subobjects F ⊂ E. This is invariant under scaling ~a, and since there are
only finitely many ~d to check, we may assume that ~a ∈ Z3. Thus, our objects are complexes:

Cn0 ⊗OP2(k − 2)→ Cn1 ⊗OP2(k − 1)→ Cn2 ⊗OP2(k)

and our stability condition reduces to a triple (a0, a1, a2) of integers satisfying n0a0 + n1a1 + n2a2 = 0,
with respect to which the complex is stable if and only if every sub-complex with invariants (d0, d1, d2)
satisfies d0a0 + d1a1 + d2a2 < 0.

These complexes are determined by two triples of matrices:

Mx,My,Mz : Cn0 → Cn1 and Nx, Ny, Nz : Cn1 → Cn2

satisfying N∗M∗ = 0, and in particular, they are parametrized by a closed subscheme of the affine space of
all pairs of triples of matrices (= representations of the P2-quiver). In this context, King [K] constructs the
the geometric-invariant-theory quotient by the action of GL(n0)×GL(n1)×GL(n2) with the property that
the quotient parametrizes (a0, a1, a2)-stable (or equivalence classes of semi-stable) quiver representations.
Our moduli space of complexes is, therefore, the induced quotient on the invariant subscheme cut out by
setting the compositions of the matrices to zero. �

Remark 8.2. There is a natural line bundle on the moduli stack of complexes, defined as follows [K]. A
family of complexes on P2 parametrized by a scheme S is a complex:

U(k − 2)→ V (k − 1)→W (k) on S × P2

where U, V,W are vector bundles of ranks n0, n1, n2 pulled back from S, twisted, respectively, by the
pullbacks of OP2(k − 2),OP2(k − 1),OP2(k).

In this setting, the “determinant” line bundle on S:

(∧n0U)⊗a0 ⊗ (∧n1V )⊗a1 ⊗ (∧n2W )⊗a2

is the pull back of the ample line bundle on the moduli stack of complexes that restricts to the ample
line bundle on the moduli space of semi-stable complexes determined by Geometric Invariant Theory.

9. Walls for the Hilbert scheme

Here, we explicitly describe a number of “actual” walls for the moduli of (s, t)-stable objects with
Chern classes (1, 0,−n). The results of this section will later be matched with the computation of the
stable base locus decomposition in §10. There are two types of walls we will consider, for which “crossing
the wall” means decreasing t (with fixed s) across a critical semicircle.

• Rank One Walls for which an ideal sheaf IZ is (s, t)-destabilized by a subsheaf, necessarily of
rank one and of the form:

0→ IW (−d)→ IZ → IZ/IW (−d)→ 0

Crossing the wall replaces such ideal sheaves with rank one sheaves E that are extensions of the
form:

0→ IZ/IW (−d)→ E → IW (−d)→ 0
Notice that E has a non-trivial torsion subsheaf, so is obviously not a stable sheaf in the ordinary
sense (i.e. for t >> 0).
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• Higher Rank Walls for which an ideal sheaf IZ is (s, t)-destabilized by a sheaf A of rank ≥ 2
which is a sub-object of IZ in the category As. If we denote by F the quotient, which is necessarily
a two-term complex, then there is an associated exact sequence of cohomology sheaves:

0→ H−1(F )→ A→ IZ → H0(F )→ 0

and crossing this wall produces complexes E whose cohomology sheaves fit into a long exact
sequence of the form:

0→ H−1(F )→ H−1(E)→ 0→ H0(F )→ H0(E)→ A→ 0

• The Collapsing Wall, the innermost semicircle, with the property that for (s, t) on the semi-
circle, there are semi-stable but no stable objects, and for (s, t) in the interior of the semi-circle,
there are no semi-stable objects whatsoever.

Remark 9.1. In this paper, we will not consider the walls for which no ideal sheaf is destabilized (as the
wall is crossed). By Proposition 6.2, any such wall has to be contained in a higher rank wall. It is not
clear whether such walls exist.

The potential walls for P2[n] in the (s, t)-plane with s < 0 and t > 0 are semi-circles with center (x, 0)
and radius

√
x2 − 2n, where

x =
ch2(F) + r(F)n

c1(F)
and F is the destabilizing object giving rise to the wall.

Rank One: The rank one destabilizing sheaves have the form:

IW (−k) ⊂ IZ .
Observe that any such subsheaf is actually a subobject in every category As with s < −k. They give rise
to walls Wx with

x = −n
k
− k

2
+
l(W )
k

.

Observation 9.2. If the potential wall corresponding to OP2(−k) is contained inside the collapsing wall,
then all the potential walls arising from IW (−m) with m ≥ k and m2 ≤ 2n are contained in the collapsing
wall.

Proof. Let Wx1 be the wall corresponding to OP2(−k). Let Wx2 be the wall corresponding to IW (−m).
Since the potential walls are nested semi-circles, it suffices to show that x1 ≤ x2. We have that

x1 = −n
k
− k

2
, x2 = − n

m
− m

2
+
l(W )
m

.

If for contradiction we assume that x1 > x2, we obtain the inequality

−n
k
− k

2
> − n

m
− m

2
+
l(W )
m

,

which implies the inequality
km(m− k) > 2n(m− k) + 2k l(W ).

This contradicts the inequality
km ≤ m2 ≤ 2n

of the hypotheses. �

Remark 9.3. If IW (−m) gives rise to an actual Bridgeland wall for P2[n], then by Proposition 6.2 and
Corollary 6.4, m2 ≤ 2n.
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Higher Rank Walls: Suppose that φ : F → IZ is a sheaf destabilizing IZ at a point p of the wall
Wx with center (x, 0). Let K be the kernel

0→ K → F → IZ .
By Corollary 6.4, both F and K[1] have to belong to all the categories As along the wall Wx. From this,
we conclude the inequalities

x−
√
x2 − 2n ≥ d(K)

r(K)
,

and

x+
√
x2 − 2n ≤ d(F)

r(F)
.

Since we have that
d(F) ≤ d(K)

and
r(F) = r(K) + 1,

we can combine these inequalities to obtain the following set of inequalities

x+
√
x2 − 2n ≤ d(F)

r(F)
≤ d(K)
r(K)

r(K)
r(F)

≤
(
r(F)− 1
r(F)

)(
x−

√
x2 − 2n

)
.

Rearranging the inequality, we get the following bound on the center of a Bridgeland wall

(5) x2 ≤ n(2r(F)− 1)2

2r(F)(r(F)− 1)
.

Similarly, we get the following inequality for the degree d(F):

r(F)
(
x+

√
x2 − 2n

)
≤ d(F) ≤ (r(F)− 1)

(
x−

√
x2 − 2n

)
.

The following observation will be useful in limiting the number of calculations we need to perform.

Observation 9.4. Suppose that s > r > 1, then

(2s− 1)2

2s(s− 1)
<

(2r − 1)2

2r(r − 1)
.

To see this inequality, notice that
(2r − 1)2

2r(r − 1)
= 2 +

1
2r(r − 1)

.

Hence, if s > r > 1, then 2s(s− 1) > 2r(r− 1) and the claimed inequality follows. Thus if Inequality (5)
forces all rank r walls to lie within the collapsing wall, rank s walls also lie in the collapsing wall.

Remark 9.5. In particular, if x < −n
2 − 1, then the only Bridgeland walls with center at x correspond

to rank one walls with k = 1. Therefore, x = −n − 1
2 + l(W ) and an ideal sheaf I is destabilized by

IW (−1) when crossing the wall with center at x. On the other hand, let n
2 ≤ d ≤ n − 1 be an integer.

By Proposition 4.15, the only walls in the stable base locus decomposition of the effective cone of P2[n]

contained in the convex cone generated by H and H − 1
nB are spanned by the rays H − 1

2dB. Setting
y = −d, we see that the transformation x = y− 3

2 gives a one-to-one correspondence between these walls.
Furthermore, a scheme is contained in the stable base locus after crossing the wall spanned by H+ 1

2yB if
and only if the corresponding ideal sheaf I is destabilized at the Bridgeland wall with center at x = y− 3

2 .
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10. Explicit Examples

In this section, we work out the stable base locus decomposition and the Bridgeland walls in the
stability manifold of P2[n] for n ≤ 9. These examples are the heart of the paper and demonstrate how
to calculate the wall-crossings in given examples. We preserve the notation for divisor classes and curve
classes introduced in §3.

In each example, we will list the walls and let the reader check that there is a one-to-one correspondence
between the Bridgeland walls with center at x < 0 and the walls spanned by H + 1

2yB, y < 0, in the
stable base locus decomposition given by x = y − 3

2 .
To compactly describe the stable base locus decomposition of P2[n] for n ≤ 9 we will need to introduce

a little more notation.
• Let A2,k(n) be the curve class in P2[n] given by fixing k − 1 points on a conic curve, fixing n− k

points off the curve, and allowing an nth point to move along the conic. We have

A2,k(n) ·H = 2 A2,k(n) ·B = 2(k − 1).

• Let Lk(n) be the locus of schemes of length n with a linear subscheme of length at least k. Observe
that Lk(n) is swept out by irreducible curves of class Ck(n).
• Let Qk(n) be the locus of schemes of length n which have a subscheme of length k contained in

a conic curve. Clearly Qk(n) is swept out by A2,k(n).
• If D is a divisor class, by a dual curve to D we mean an effective curve class C with C ·D = 0. By

Lemma 4.13, if C is a dual curve to H − αB with α > 0, then the locus swept out by irreducible
curves of class C lies in the stable base locus of H − βB for β > α.

In the stable base locus tables that follow, the stable base locus of the chamber spanned by two adjacent
divisors is listed in the row between them. We note that the effective cone is spanned by the first and last
listed divisor classes. In every case, this statement is justified by Theorem 4.5. We do not list dual curves
to the final edge of the cone when these curves are complicated as they are irrelevant to the discussion of
the stable base locus; the dual curve can be found in the proof of Theorem 4.5. When also give geometric
descriptions of effective divisors spanning each ray.

10.1. The walls for P2[2]. In this example, we work out the stable base locus decomposition of P2[2] and
the corresponding Bridgeland walls.

The stable base locus decomposition of P2[2] is as follows.

Divisor class Divisor description Dual curves Stable base locus

B B C1(2)
B

H H C(2)
∅

H − 1
2B D1(2) C2(2)

Proof. The nef and effective cones of P2[2] follow from Proposition 3.1 and Theorem 4.5. The stable base
locus in the cone spanned by H and B is described in Proposition 4.10. For larger n, the stable base
locus decomposition will have chambers analogous to the chambers here; we will not mention them when
justifying the decomposition. �

The Bridgeland walls of P2[2] are described as follows.
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• There is a unique semi-circular Bridgeland wall with center x = −5
2 and radius 3

2 in the (s, t)-plane
with s < 0 and t > 0 corresponding to the destabilizing object OP2(−1).

Proof. Let IZ be ideal sheaf corresponding to Z ∈ P2[2]. Since Z is contained on a line, IZ admits a
non-zero map OP2(−1)→ IZ . Hence, already every ideal sheaf IZ is destabilized at the wall with x = −5

2
arising from OP2(−1). By Observation 9.2, this is the only rank 1 wall.

Suppose there were any walls given by a rank 2 destabilizing sheaf F . Then, by Inequality (5), the
center x of the corresponding wall satisfies x2 < 9

2 . Since 9
2 <

25
4 , by Observation 9.4, we conclude that

any potential higher rank destabilizing wall has to be contained inside the wall given by OP2(−1), which
already destabilizes all the ideal sheaves. We conclude that when n = 2, there is a unique destabilizing
wall with center x = −5

2 . �

P2[2] admits three birational models corresponding to the stable base locus decomposition.
(1) The divisor class H induces the Hilbert-Chow morphism h : P2[2] → P2(2).
(2) A divisor D contained in the open cone bounded by H and H − B

2 is ample. A sufficiently high
multiple of D gives an embedding of P2[2].

(3) The divisor class H − B
2 induces a Mori fibration φ : P2[2] → (P2)∗. The support of a scheme with

Hilbert polynomial 2 is contained in a unique line. The morphism φ maps a scheme Z ∈ P2[2] to
the unique line containing Z. The fibers of the morphism φ are equal to P2 ∼= (P1)(2) ∼= P1[2].

10.2. The walls for P2[3]. The stable base locus decomposition of P2[3] is as follows.

Divisor class Divisor description Dual curves Stable base locus

B B C1(3)
B

H H C(3)
∅

H − 1
4B D2(3) C3(3)

L3(3) = E1(3)
H − 1

2B E1(3) C2(3)

Proof. Except for the final chamber spanned by H − 1
4B and H − 1

2B, everything here is analogous to
the n = 2 case. Since C3(3) is dual to H− 1

4B, the stable base locus in this final chamber contains L3(3).
But since L3(3) = E1(3), which is the divisor spanning H − 1

2B, we conclude the stable base locus is
actually L3(3). �

The Bridgeland walls in the (s, t)-plane with s < 0 and t > 0 are the following two semi-circles Wx

with center (x, 0) and radius
√
x2 − 6.

• The rank one wall W− 7
2

corresponding to the destabilizing object OP2(−1).
• The two overlapping rank one walls W− 5

2
corresponding to the destabilizing object OP2(−2) or

Ip(−1). This wall also arises as rank two and rank three walls corresponding to destabilizing
objects OP2(−2)⊕2 and OP2(−2)⊕3.

Proof. Let IZ be the ideal sheaf of a zero-dimensional scheme of length three. If the scheme is collinear,
then there exists a non-zero map OP2(−1)→ IZ . These sheaves are destabilized at the wall with center
x = −7

2 . The next rank 1 wall with k = 1, occurs when l(W ) = 1 and has center x = −5
2 . A zero-

dimensional scheme of length three is always contained on a conic, hence there exists a non-zero map
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OP2(−2)→ IZ . Hence, all IZ are destabilized at the wall with center x = −5
2 . By Observation 9.2, there

are no other rank one walls with center x < −5
2 .

By Inequality (5), the centers of the rank 2 and 3 walls have to satisfy

x2 ≤ 27
4
, x2 ≤ 25

4
.

By Observation 9.4, we conclude that any potential destabilizing wall arising from a sheaf of rank r ≥ 4
would be strictly contained inside the wall W− 5

2
. Since at W− 5

2
all the ideal sheaves are destabilized, the

only other potential walls arise from rank 2 or 3 sheaves. Notice that in the rank 3 case, any potential
wall that is not contained in the interior of the semicircle defined by W− 5

2
coincides with W− 5

2
.

We now discuss the rank 2 walls. If there is a rank 2 sheaf F giving rise to a wall, we obtain the
inequality

2(x+
√
x2 − 6) ≤ d(F) ≤ x−

√
x2 − 6.

We may assume that 25
4 < x2 ≤ 27

4 . We conclude that −4 < d(F) < −3. Since d(F) is an integer, we
conclude that for any potential wall produced by a rank 2 sheaf either coincides with W− 5

2
or is strictly

contained in the semicircle defined by it. Since the generic ideal sheaf IZ is generated by three quadratic
equations, there exists a non-zero morphism O⊕3

P2 (−2) → IZ . Hence the wall W− 5
2

does also arise as a
rank two and rank three wall. �

The Hilbert scheme P2[3] admits the following three birational models:
(1) The divisor class H induces the Hilbert-Chow morphism h : P2[3] → P2(3).
(2) A divisor in the interior of the cone spanned by H and H − B

4 is ample and a sufficiently high
multiple of D gives an embedding of P2[3].

(3) The divisor class H − B
4 induces a divisorial contraction φ : P2[3] → G(3, 6) onto its image.

The morphism φ restricted to the divisor E1(3) maps E1(3) to (P2)∗ with fibers isomorphic to
P3 = P1(3) = P1[3]. The resulting model may be interpreted as the moduli space of Bridgeland
stable objects Ms,t(1, 0,−3), for a point (s, t) between the walls W− 7

2
and W− 5

2

10.3. The walls for P2[4]. The stable base locus decomposition of P2[4] is as follows.

Divisor class Divisor description Dual curves Stable base locus

B B C1(4)
B

H H C(4)
∅

H − 1
6B D3(4) C4(4)

L4(4)
H − 1

4B D2(4) C3(4)
L3(4) = E1(4)

H − 1
3B E1(4) A2,4(4)

Proof. The stable base locus for the chamber spanned by H − 1
6B and H − 1

4B follows from Proposition
4.15 (a); recall that we showed C4(4) was dual to H − 1

6B and that L4(4) lied in the base locus of D2(4).
In the future many chambers will follow from this proposition, and we will not comment about them. On
the other hand the stable base locus for the final chamber follows as in the final chamber for n = 3. �
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The Bridgeland walls in the (s, t)-plane with s < 0 and t > 0 are the following three semi-circles Wx

with center (x, 0) and radius
√
x2 − 8:

• The rank one wall W− 9
2

corresponding to the destabilizing object OP2(−1).
• The rank one wall W− 7

2
corresponding to the destabilizing object Ip(−1).

• The rank one wall W−3 corresponding to the destabilizing object OP2(−2). This wall also arises
as a rank two wall corresponding to the destabilizing object OP2(−2)⊕2.

Proof. Let IZ be the ideal sheaf of a zero-dimensional scheme of length four. The rank one walls with
k = 1 have centers x = −9

2 ,−
7
2 , corresponding to sheaves of length four that are collinear and sheaves of

length four that have a collinear length three subscheme. Since every scheme of length four is contained
in a conic, there is a non-zero map OP2(−2) → IZ . Hence, all the ideal sheaves are destabilized at the
wall with center x = −3. By Observation 9.2, there are no other rank one walls with center x < −3.

By Inequality (5), the center of a potential rank 2 wall has to satisfy the inequality x2 ≤ 9. By
Observation 9.4, there cannot be any potential walls of rank r ≥ 3 that are not contained in the semicircle
defined by W−3. Furthermore, any potential rank 2 wall, either has x = −3 and coincides with W−3 or
is strictly contained in the semicircle defined by W−3. Since the resolution of a general zero-dimensional
scheme of length four has the form

0→ OP2(−4)→ OP2(−2)⊕OP2(−2)→ IZ → 0,

W−3 also occurs as a rank 2 wall corresponding to OP2(−2)⊕OP2(−2). �

The Hilbert scheme P2[4] admits five birational models.
(1) The divisor class H gives rise to the Hilbert-Chow morphism h : P2[4] → P2(4).
(2) A divisor contained in the open cone bounded by H and H − B

6 is ample and a sufficiently high
multiple gives an embedding of P2[4].

(3) The divisor H − B
6 induces a small contraction φ : X4 → G(6, 10) onto its image. The morphism

φ is an isomorphism outside the locus of schemes supported on a line. The morphism φ maps
the locus of schemes in P2[4] supported on a line to (P2)∗ with fibers isomorphic to P4 = P1(4) =
Hilb4(P1).

(4) X4 admits a flip Xfl
4 and the model for a divisor contained in the open cone bounded by H − B

6

and H − B
4 is Xfl

4 . This flip Xfl
4 can be interpreted as the coarse moduli scheme of Bridgeland

stable objects Ms,t(1, 0,−4) for (s, t) between the walls W− 9
2

and W− 7
2
.

(5) The divisor H − B
4 induces a divisorial contraction φ : Xfl

4 → G(2, 6). The morphism φ is an
isomorphism in the complement of E1(4).

10.4. The walls for P2[5]. The stable base locus decomposition of P2[5] is as follows.

Divisor class Divisor description Dual curves Stable base locus

B B C1(5)
B

H H C(5)
∅

H − 1
8B D4(5) C5(5)

L5(5)
H − 1

6B D3(5) C4(5)
L4(5)

continued on next page
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continued from previous page

Divisor class Divisor description Dual curves Stable base locus

H − 1
4B D2(5) C3(5)

Proof. The last two chambers here both follow from Proposition 4.15 (a). �

The Bridgeland walls in the (s, t)-plane are the following three semi-circles Wx with center at (x, 0)
and radius

√
x2 − 10.

• The rank one wall W− 11
2

corresponding to the destabilizing object OP2(−1).
• The rank one wall W− 9

2
corresponding to the destabilizing object Ip(−1).

• The two coinciding rank one walls W− 7
2

corresponding to destabilizing objects OP2(−2) and
IZ′(−1), where Z ′ is a zero-dimensional scheme of length two.

Proof. Let IZ be the ideal sheaf of a zero-dimensional scheme of length five. The rank one walls with
k = 1 have centers x = −11

2 ,−
9
2 ,−

7
2 corresponding to collinear schemes of length five and schemes of

length five that have collinear subschemes of lengths four and three, respectively. Since every scheme of
length five is contained in a conic, there exists a non-zero map OP2(−2)→ IZ . Hence, every ideal sheaf
IZ is destabilized at the rank one wall with k = 2 and center x = −7

2 . By Observation 9.2, there are no
other potential rank one walls with x < −7

2 .
By Inequality (5), the center of a potential rank 2 wall has to satisfy the inequality x2 ≤ 45

4 . Since
45
4 < 49

4 , by Observation 9.4, we conclude that any potential wall of rank bigger than one has to be
contained in the semicircle defined by W− 7

2
. �

10.5. The walls for P2[6]. The stable base locus decomposition of P2[6] is as follows.

Divisor class Divisor description Dual curves Stable base locus

B B C1(6)
B

H H C(6)
∅

H − 1
10B D5(6) C6(6)

L6(6)
H − 1

8B D4(6) C5(6)
L5(6)

H − 1
6B D3(6) C4(6)

L4(6)
H − 1

5B DTP2 (1)(6) A2,6(6)
Q6(6) = E2(6)

H − 1
4B E2(6) C3(6)

Proof. Since A2,6(6) is dual to H − 1
5B, the locus Q6(6) = E2(6) lies in the stable base locus of the

chamber (H − 1
5B,H −

1
4B]. Since H − 1

4B is spanned by E2(6), we conclude that this divisor actually
is the stable base locus in this chamber.

Observe that L4(6) is contained in the stable base locus of the chamber spanned by H− 1
6B and H− 1

5B

since C4(6) is dual to H − 1
6B. By Lemma 4.12, the stable base locus of this chamber is contained in
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Q6(6), the stable base locus of the final chamber. Note that DTP2 (1)(6) spans the edge H − 1
5B, and

that by Proposition 3.6 its stable base locus lies in the locus of schemes of length 6 which fail to impose
independent conditions on sections of TP2(1). It therefore suffices to show that any Z ∈ Q6(6) \ L4(6)
imposes independent conditions on sections of TP2(1)—this will also prove that TP2(1) actually satisfies
interpolation for 6 points. This follows immediately from Lemma 10.1, to follow. �

Lemma 10.1. Let C be a conic curve, possibly singular or nonreduced. If Z ⊂ C is a zero-dimensional
subscheme of length 2k which contains no linear subscheme of length k + 1, then Z imposes independent
conditions on sections of TP2(k − 2); furthermore, every section of TP2(k − 2)⊗ IZ vanishes along C.

Proof. Since h0(OC(k)) = 2k + 1 we have h0(OC(k) ⊗ IZ) ≥ 1, so there is a curve of degree k which
contains Z but not C. Even when C is singular or nonreduced, it is possible to choose this curve to have
zero-dimensional intersection with C since Z does not have a linear subscheme of length k + 1. In the
singular case, Z does not meet the singularity, so the degree k curve can be taken to be a union of k lines
meeting C properly. On the other hand, if C = 2L is nonreduced, then the scheme residual to Z ∩ L in
Z is a subscheme of L of length k. Every curve of degree k− 1 which contains such a scheme contains L,
so any curve of degree k which contains Z but not 2L must not contain L.

We conclude that Z is the complete intersection of C and a curve of degree k, and thus that IZ |C ∼=
OC(−k). Now consider the exact sequences

0→ TP2(k − 4)→ TP2(k − 2)⊗ IZ → (TP2(k − 2)⊗ IZ)|C = TP2(−2)|C → 0

0→ TP2(−4)→ TP2(−2)→ TP2(−2)|C → 0.
Since h0(TP2(−2)) = h1(TP2(−4)) = 0 we have h0(TP2(−2)|C) = 0, so the map

H0(TP2(k − 4))→ H0(TP2(k − 2)⊗ IZ)

is an isomorphism. But
h0(TP2(k − 2))− 4k = h0(TP2(k − 4)),

so Z imposes the required number 4k of conditions on sections of TP2(k − 2). �

The Bridgeland walls in the (s, t)-plane are the following five semi-circles Wx with center at (x, 0) and
radius

√
x2 − 12.

• The rank one wall W− 13
2

corresponding to the destabilizing object OP2(−1).
• The rank one wall W− 11

2
corresponding to the destabilizing object Ip(−1).

• The rank one wall W− 9
2

corresponding to the destabilizing object IZ′(−1), where Z ′ is a zero-
dimensional scheme of length two.
• The rank one wall W−4 corresponding to the destabilizing object OP2(−2).
• The rank coinciding rank one walls W− 7

2
corresponding to the destabilizing objects OP2(−3),

Ip(−2), and IZ′(−1), where Z ′ is a zero-dimensional scheme of length three.

Proof. Let IZ be the ideal sheaf of a scheme of length six. The rank one walls with k = 1 have centers
x = −13

2 ,−
11
2 ,−

9
2 ,−

7
2 corresponding to schemes of length six that have a subscheme of length six, five,

four or three supported along a line, respectively. The rank one walls with k = 2 have centers x = −4,−7
2

corresponding to schemes of length six that have a subscheme of length six or five supported along a
conic, respectively. Finally, the rank one wall with k = 3 has center x = −7

2 . Since every scheme of length
six is contained in a cubic curve, there exists a non-zero map OP2(−3)→ IZ . Hence, every ideal sheaf is
destabilized at the wall W−7/2. By Observation 9.2, there are no other rank one walls with x < −7

2 .
By inequality (5), the centers of a potential rank 2, 3 or 4 walls have to satisfy the inequality x2 ≤

54
4 , x

2 ≤ 50
4 , x

2 ≤ 49
4 . By Observation 9.4, we conclude that any potential wall defined by a destabilizing
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sheaf of rank r ≥ 5 has to be contained in the semicircle defined by W− 7
2
. Similarly, any potential

wall defined by a destabilizing sheaf of rank 4 either coincides with W− 7
2

or is strictly contained in the
semicircle defined by W− 7

2
.

We now have to analyze the rank 2 and 3 walls. For rank 2 walls, by inequality (5), we have that
2(x+

√
x2 − 12) ≤ d(F) ≤ x−

√
x2 − 12. We may assume that

49
4
< x2 ≤ 54

4
.

Hence, −6 < d(F) < −4. We conclude that any destabilizing rank 2 sheaf has degree d(F) = −5. Now
we can bound the second Chern character of F . We have that the center of the semicircle is given by

−7
2
> x =

ch2(F) + 12
−5

≥ −3
√

6
2
.

Since ch2(F) is a half integer, we conclude that ch2(F) = 6. In other words, F is a coherent sheaf of
rank 2 with c1(F) = −5 and ch2(F) = 6. This is not actually possible, since then c2(F) would not be an
integer. Thus there are no rank 2 walls.

Next, we work out the rank three walls. By inequality (5), we have that 3(x +
√
x2 − 12) ≤ d(F) ≤

2(x−
√
x2 − 12). We may assume that

49
4
< x2 ≤ 50

4
.

Hence, we conclude that −9 < d(F) < −8. Since the degree is an integer, we conclude that the only
potential rank three walls either coincide with W− 7

2
or are strictly contained in the semicircle defined by

W− 7
2
. �

10.6. The walls for P2[7]. The stable base locus decomposition of P2[7] is as follows.

Divisor class Divisor description Dual curves Stable base locus

B B C1(7)
B

H H C(7)
∅

H − 1
12B D6(7) C7(7)

L7(7)
H − 1

10B D5(7) C6(7)
L6(7)

H − 1
8B D4(7) C5(7)

L5(7)
H − 1

6B D3(7) C4(7), A2,7(7)
L4(7) ∪Q7(7)

H − 1
5B DTP2 (1)(7) A2,6(7)

Q6(7) = E2(7)
H − 5

24B E2(7)

Proof. All chambers besides the chamber spanned by H − 1
6B and H − 1

5B are completely analogous to
previous cases. In this chamber, we need only show that if Z ∈ Q6(7) \ (L4(7) ∪Q7(7)) then Z imposes
independent conditions on sections of TP2(1). This follows easily from Lemma 10.1. �
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The case n = 7 is interesting because we see the first example of a collapsing rank two wall. The
Bridgeland walls in the (s, t)-plane are the following six semi-circles Wx with center at (x, 0) and radius√
x2 − 14.
• The rank one wall W− 15

2
corresponding to the destabilizing object OP2(−1).

• The rank one wall W− 13
2

corresponding to the destabilizing object Ip(−1).
• The rank one wall W− 11

2
corresponding to the destabilizing object IZ′(−1), where Z ′ is a scheme

of length two.
• The two coinciding rank one walls W− 9

2
corresponding to the destabilizing objects OP2(−2) and

IZ′(−1), where Z ′ is a scheme of length 3.
• The rank one wall W−4 corresponding to the destabilizing object Ip(−2).
• The rank two wall W− 39

10
corresponding to the destabilizing object TP2(−4).

Proof. By Gaeta’s Theorem [E], the syzygies for a general zero dimensional scheme of length seven is
given by

OP2(−5)⊕OP2(−4)→ OP2(−3)⊕3 → IZ → 0.
By the twisting the Euler sequence by OP2(−4), we obtain the short exact sequence of sheaves

0→ OP2(−4)→ OP2(−3)⊕3 → TP2(−4).

Hence, IZ fits in a short exact sequence

0→ TP2(−4)→ IZ → OP2(−5)[1]→ 0

in the category. Since c1(TP2(−4)) = −5L and ch2(TP2(−4)) = 11
2 , the sheaf TP2(−4) gives rise to the

wall W− 39
10

. We conclude that the wall W− 39
10

is a collapsing wall in the sense that all the ideal sheaves
IZ are destabilized by the time we reach W− 39

10
.

Let IZ be the ideal sheaf of a scheme of length seven. The rank one walls with k = 1 have centers
x = −15

2 ,−
13
2 ,−

11
2 ,−

9
2 corresponding to subschemes of length seven that have a collinear subscheme of

length seven, six, five and four, respectively. The rank one walls with k = 2 have centers x = −9
2 ,−4

corresponding to schemes of length seven that have a subscheme of length seven and six, respectively,
supported along a conic. Finally, a potential rank one wall with k = 3 has center x = −23

6 . However,
−39

10 < −
23
6 . Hence, the potential wall W− 9

2
is strictly contained in W− 39

10
and all the ideal sheaves are

destabilized before reaching the wall W− 9
2
. By Observation 9.2, these are the only rank one walls with

x < −39
10 .

By Inequality (5), the centers of the potential rank 2 and rank 3 walls have to satisfy

x2 ≤ 63
4

and x2 ≤ 175
12

,

respectively. Since 175
12 < (39

10)2, by observation 9.4, we conclude that any potential wall of rank three or
higher is contained in the semicircle defined by W− 39

10
.

We now have to analyze the rank 2 walls. We have the inequality

2(x+
√
x2 − 14) ≤ d(F) ≤ x−

√
x2 − 14.

Since (39
10)2 < x2 ≤ 63

4 , we conclude that −28/5 < d(F) < −5. Since d(F) is an integer, no such walls
are possible. �

10.7. The walls for P2[8]. The stable base locus decomposition of P2[8].
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Divisor class Divisor description Dual curves Stable base locus

B B C1(8)
B

H H C(8)
∅

H − 1
14B D7(8) C8(8)

L8(8)
H − 1

12B D6(8) C7(8)
L7(8)

H − 1
10B D5(8) C6(8)

L6(8)
H − 1

8B D4(8) C5(8)
L5(8)

H − 1
7B DTP2 (2)(8) A2,8(8)

L5(8) ∪Q8(8)
H − 1

6B D3(8) C4(8), A2,7(8)
L4(8) ∪Q7(8)

H − 3
16B Dcoker(O(1)2→O(2)5)(8)

Proof. The last three chambers are interesting here. To get the easiest one out of the way, consider the
chamber spanned by H − 1

7B and H − 1
6B. Since C5(8) is dual to H − 1

8B, every divisor H − αB with
α > 1

8 contains L5(8) in its stable base locus. Since A2,8(8) is dual to H − 1
7B, the stable base locus in

the chamber spanned by H− 1
7 and H− 1

6B contains L5(8)∪Q8(8). But Proposition 4.15 (b) shows that
the base locus of D3(8) is actually contained in L5(8)∪Q8(8), so we conclude L5(8)∪Q8(8) is the stable
base locus in this chamber.

For the final chamber in the cone, spanned by H− 1
6B and H− 3

16B, first observe that since the curves
C4(8) and A2,7(8) are dual to H − 1

6B the stable base locus is contained in L4(8) ∪Q7(8). For the other
containment, we make use of another description of a divisor spanning the edge of the effective cone. A
general collection of 8 points lies on a unique pencil of cubic curves, and so determines a 9th point given
as the final base point of this pencil. Fixing a line ` in P2, we obtain a divisor in P2[8] described as the
locus where the 9th point lies on `. An elementary calculation shows this divisor spans the ray H − 3

16B.
Since varying the line ` does not change the class of the divisor, the stable base locus of the class

H − 3
16B lies in the locus of schemes Z of length 8 which either fail to impose independent conditions

on cubics or such that the base locus of the pencil containing Z is positive dimensional. In the former
case, we saw in Lemma 4.14 (b) that Z lies in L5(8)∪Q8(8), which is contained in L4(8)∪Q7(8). On the
other hand, suppose Z imposes independent conditions on cubics but that the base locus of the pencil
containing Z is positive dimensional, with a reduced, irreducible curve C in its base locus. Since the
restriction map

H0(OP2(3))→ H0(OC(3))

is surjective, this is only possible if Z ∩C has length at least h0(OC(3)). As C could be a line or a conic,
this means Z lies in L4(8) ∪Q7(8).

For the chamber spanned by H − 1
8B and H − 1

7B, it suffices to show that if Z ∈ Q8(8) \ L5(8) then
Z imposes independent conditions on sections of TP2(2); this follows from Lemma 10.1. �

The Bridgeland walls in the (s, t)-plane are the following six semi-circles Wx with center at (x, 0) and
radius

√
x2 − 16.
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• The rank one wall W− 17
2

corresponding to the destabilizing object OP2(−1).
• The rank one wall W− 15

2
corresponding to the destabilizing object Ip(−1).

• The rank one wall W− 13
2

corresponding to the destabilizing object IZ′(−1), where Z ′ is a scheme
of length two.
• The rank one wall W− 11

2
corresponding to the destabilizing object IZ′(−1), where Z ′ is a scheme

of length three.
• The rank one wall W−5 corresponding to the destabilizing object OP2(−2)
• The coinciding rank one walls W− 9

2
corresponding to the destabilizing objects Ip(−2) and IZ′(−1),

where Z ′ is a scheme of length four.
• The rank one wall W− 25

6
corresponding to the destabilizing object OP2(−3). This wall coincides

with the rank two wall corresponding to the destabilizing object OP2(−3)⊕2.

Proof. Let IZ be the ideal sheaf of a scheme of length eight. The rank one walls with k = 1 have
centers x = −17

2 ,−
15
2 ,−

13
2 ,−

11
2 ,−

9
2 corresponding to subschemes of length eight that have a collinear

subscheme of length eight, seven, six, five and four, respectively. The rank one walls with k = 2 have
centers x = −5,−9

2 corresponding to schemes of length eight that have a subscheme of length eight and
seven, respectively, supported along a conic. Finally, the rank one wall with k = 3 has center x = −25

6 .
Since every scheme of length seven is contained in a curve of degree three, we have a non-zero map
OP2(−3) → IZ . Hence, all the ideal sheaves IZ are destabilized at the wall W− 25

6
. As in the previous

cases, these are the only potential rank one Bridgeland walls with x < −25
6 .

By inequality (5), the centers of the potential rank 2 and rank 3 walls have to satisfy

x2 ≤ 18 and x2 ≤ 50
3
,

respectively. Since 50
3 < (25

6 )2, by observation 9.4, we conclude that any potential walls defined by sheaves
of rank three or higher are contained in the semicircle defined by W− 25

6
. We now analyze the potential

rank 2 walls more closely. For rank 2 walls we have the inequality

2(x+
√
x2 − 16) ≤ d(F) ≤ x−

√
x2 − 16.

Since 625
36 < x2 ≤ 49

3 , we conclude that −6 < d(F) < −32/6. Since d(F) is an integer, we conclude that
the potential rank 2 walls either are contained in the semicircle defined by W− 25

6
or coincide with it. In

fact, when a scheme of length 8 is contained in the complete intersection of two cubics, we get a non-zero
map OP2(−3)⊕OP2(−3)→ IZ destabilizing the ideal sheaf. The corresponding semicircle coincides with
W−25/6. �

10.8. The walls for P2[9]. The stable base locus decomposition of P2[9].

Divisor class Divisor description Dual curves Stable base locus

B B C1(9)
B

H H C(9)
∅

H − 1
16B D8(9) C9(9)

L9(9)
H − 1

14B D7(9) C8(9)
L8(9)

continued on next page
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continued from previous page

Divisor class Divisor description Dual curves Stable base locus

H − 1
12B D6(9) C7(9)

L7(9)
H − 1

10B D5(9) C6(9)
L6(9)

H − 1
8B D4(9) C5(9), A2,9(9)

L5(9) ∪Q9(9)
H − 1

7B DTP2 (2)(9) A2,8(9)
L5(9) ∪Q8(9)

H − 1
6B D3(9)

Proof. The only part which is not routine at this point is to determine the stable base locus in the final
chamber, spanned by H− 1

7B and H− 1
6B. It clearly contains L5(9)∪Q8(9) and is contained in the locus

of schemes of degree 9 which fail to impose independent conditions on curves of degree 3. One checks
that if a scheme Z of degree 9 fails to impose independent conditions on curves of degree 3 but does not
lie in L5(9)∪Q8(9) then it is a complete intersection of two cubics. We must show that if a scheme Z is
a complete intersection of two cubics then it does not lie in the stable base locus of this chamber.

To do this, we need to introduce some more effective divisors on P2[9]. Consider a vector bundle Ek
given by a general resolution

0→ OP2(1)k+1 → OP2(2)2k+1 → Ek → 0.

Then h0(Ek) = 9k + 3. We will see soon that Ek satisfies interpolation for 9 points. Thus the divisor
DEk

(9) will have class spanning the ray H− k
6k+2B. As k →∞ this ray tends to H− 1

6B, so by Proposition
3.6 it suffices to show that if Z is a complete intersection of cubics then it imposes independent conditions
on sections of Ek.

If Z is a complete intersection of two cubics then its ideal sheaf admits a resolution

0→ OP2(−6)→ OP2(−3)⊕2 → IZ → 0,

so we have an exact sequence

0→ Ek(−6)→ Ek(−3)⊕2 → Ek ⊗ IZ → 0.

It is straightforward to check from the defining sequence for Ek that H0(Ek(−3)) = H1(Ek(−3)) = 0,
so H0(Ek ⊗ IZ) ∼= H1(Ek(−6)). We can also check that h1(Ek(−6)) = 3, so Z imposes the full 9k
independent conditions on sections of Ek. �

The Bridgeland walls in the (s, t)-plane are the following seven semi-circles Wx with center at (x, 0)
and radius

√
x2 − 18.

• The rank one wall W− 19
2

corresponding to the destabilizing object OP2(−1).
• The rank one wall W− 17

2
corresponding to the destabilizing object Ip(−1).

• The rank one wall W− 15
2

corresponding to the destabilizing object IZ′(−1), where Z ′ is a scheme
of length two.
• The rank one wall W− 13

2
corresponding to the destabilizing object IZ′(−1), where Z ′ is a scheme

of length three.
• The coinciding rank one walls W− 11

2
corresponding to the destabilizing objects OP2(−2) and

IZ′(−1), where Z ′ is a scheme of length four.
• The rank one wall W−5 corresponding to the destabilizing object Ip(−2)
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• The coinciding rank one walls W− 9
2

corresponding to the destabilizing objects OP2(−3), IZ′(−2),
where Z ′ has length two, and IZ′′(−1), where Z ′′ has degree five.

Proof. Let IZ be the ideal sheaf of a scheme of length nine. The rank one walls with k = 1 have centers
x = −19

2 ,−
17
2 ,−

15
2 ,−

13
2 ,−

11
2 ,−

9
2 corresponding to schemes of length nine that have collinear subschemes

of length nine, eight, seven, six, five and four, respectively. The rank one walls with k = 2 have centers
x = −11

2 ,−5,−9
2 corresponding to schemes of length nine that have a subscheme of length nine, eight

and seven, respectively, supported along a conic. Finally, the rank one wall with k = 3 has center
x = −9

2 . Since every scheme of length nine is supported along a cubic curve, there is a non-zero map
OP2(−3) → IZ . Hence, every ideal sheaf IZ is destabilized at the wall W− 9

2
. By Observation 9.2, these

are all the rank one walls with x < −9
2 .

By inequality (5), the centers of potential rank 2 walls have to satisfy the inequality x2 ≤ 81/4. Since
81/4 = (−9/2)2, by Observation 9.2, we conclude that any wall defined by a higher rank sheaf either is
contained in the semicircle defined by W− 9

2
or coincides with W− 9

2
. If Z is a complete intersection of two

cubics, then IZ admits a map OP2(−3)⊕OP2(−3)→ IZ . Hence, the wall W− 9
2

also occurs as a rank two
wall corresponding to OP2(−3)⊕2. �
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