
ULRICH PARTITIONS FOR TWO-STEP FLAG VARIETIES

IZZET COSKUN AND LUKE JASKOWIAK

Abstract. Ulrich bundles play a central role in singularity theory, liaison theory and Boij-
Söderberg theory. Coskun, Costa, Huizenga, Miró-Roig and Woolf proved that Schur bundles on
flag varieties of three or more steps are not Ulrich and conjectured a classification of Ulrich Schur
bundles on two-step flag varieties. By the Borel-Weil-Bott Theorem, the conjecture reduces to
classifying integer sequences satisfying certain combinatorial properties. In this paper, we resolve
the first instance of this conjecture and show that Schur bundles on F (k, k + 3;n) are not Ulrich
if n > 6 or k > 2.

Contents

1. Introduction 1

2. The proof of the main theorem 3

References 6

1. Introduction

Let j, k, l > 0 be positive integers. Let

P = (a1, . . . , ak|b1, . . . , bj |c1, . . . , cl)
be a strictly increasing sequence of integers divided into 3 nonempty subsequences a•, b•, c•. Let
P (t) denote the sequence

P (t) = (a1 + t, . . . , ak + t|b1, . . . , bj |c1 − t, . . . , cl − t)
obtained by adding t to each of the entries in the sequence a• and subtracting t from each of the
entries in the subsequence c•. Set N = kj + kl + jl.

Definition 1.1. The partition P is called an Ulrich partition if the sequences P (t) have exactly
two equal entries for 1 ≤ t ≤ N .

Note that P (t) can have repeated entries for at most N values of t. We will refer to P (t) as the
time evolution of P at time t. Hence, Ulrich partitions are those for which there are a maximum
number of collisions among the entries during their time evolution and these collisions all occur
at consecutive times.

Two partitions P1 and P2 are equivalent if they differ by adding a constant to all the entries.
If P1 and P2 are equivalent, then P1 is Ulrich if and only if P2 is. We always consider partitions
up to equivalence. Our main theorem is the following.

Theorem 1.2. If P = (a1, . . . , ak|b1, b2, b3|c1, . . . , cl) is an Ulrich partition, then k + l ≤ 3.
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2 I. COSKUN AND L. JASKOWIAK

Given a partition P = (a1, . . . , ak|b1, . . . , bj |c1, . . . , cl), we obtain a new partition P s called the
symmetric partition by multiplying all the entries by −1 and listing the entries in the reverse
order

P s = (−cl, . . . ,−c1| − bj , . . . ,−b1| − ak, . . . ,−a1).
The partition P is Ulrich if and only if P s is Ulrich. Similarly, there is a dual partition P ∗

obtained by

P ∗ = (c1 − (N + 1)t, . . . , cl − (N + 1)t|b1, . . . , bj |a1 + t(N + 1), . . . , ak + t(N + 1)).

This is the partition P (N + 1) reordered so that the entries are increasing. By running the time
evolution backwards, it is clear that P is Ulrich if and only if P ∗ is Ulrich (see [CCHMW, §3] for
more details). We can also form (P s)∗, which is Ulrich if and only if P is.

As a consequence of the proof, we obtain a complete classification of Ulrich partitions where
the b• subsequence has length 3. Up to equivalence and these symmetries, they are

(0|1, 2, 3|8), (−8, 0|1, 2, 3|8), (0|1, 2, 5|8), (−1|1, 2, 6|7), (0|1, 3, 6|8).

We now explain the significance of Ulrich partitions. Let X ⊂ Pm be an arithmetically Cohen–
Macaulay projective variety of dimension d. A vector bundle E on X is called an Ulrich bundle if
H i(X, E(−i)) = 0 for i > 0 and Hj(X, E(−j − 1)) = 0 for j < d (see [BaHU], [BHU] and [ESW]).
These are the bundles whose Hilbert polynomials have d zeros at the first d negative integers.
They play a central role in singularity theory, liaison theory and Boij–Söderberg theory. For
example, if X admits an Ulrich bundle, then the cone of cohomology tables of X coincides with
that of Pm [ES]. Consequently, classifying Ulrich bundles on projective varieties is an important
problem in commutative algebra and algebraic geometry (see [CKM], [CCHMW], [F] for more
details and references). In particular, it is interesting to decide when representation theoretic
bundles on flag varieties are Ulrich.

Let 0 < k1 < k2 < n be three positive integers. Set k0 = 0 and k3 = n. Let V be an
n-dimensional vector space. The two-step partial flag variety F (k1, k2;n) parameterizes partial
flags W1 ⊂ W2 ⊂ V , where Wi has dimension ki. The variety F (k1, k2;n) has a minimal embed-
ding in projective space corresponding to the ample line bundle with class the sum of the two
Schubert divisors. We will always consider F (k1, k2;n) in this embedding and O(1) will refer to
the hyperplane bundle in this embedding.

The variety F (k1, k2;n) has a collection of tautological bundles

0 = T0 ⊂ T1 ⊂ T2 ⊂ T3 = V = V ⊗OF (k1,k2;n),

where V is the trivial bundle of rank n and Ti, for i = 1 or 2, is the subbundle of V of rank ki
which associates to a point [W1 ⊂W2] the subspace Wi. Let Ui = Ti/Ti−1. Given λ = (λ1|λ2|λ3)
a concatenation of partitions λi of length ki − ki−1, the Schur bundle Eλ is defined by

Eλ = Sλ1U∗
1 ⊗ Sλ2U∗

2 ⊗ Sλ3U∗
3 ,

where Sλ is the Schur functor of type λ.

Costa and Miró-Roig in [CMR] initiated the study of determining when Schur bundles are Ul-
rich. They showed every Grassmannian admits Ulrich Schur bundles and classified these bundles.
In [CCHMW], the authors showed that Schur bundles on flag varieties with three or more steps
are never Ulrich for their minimal embedding. They also constructed several infinite families
of Ulrich Schur bundles on specific two-step flag varieties and showed that many two-step flag
varieties do not admit Ulrich Schur bundles. They conjectured a complete classification of Ulrich
Schur bundles on two-step flag varieties. Their main conjecture is the following.

Conjecture 1.3. [CCHMW, Conjecture 5.9] A two-step flag variety F (k1, k2;n) does not admit
an Ulrich Schur bundle with respect to O(1) if k2 ≥ 3 and n− k2 ≥ 3.



ULRICH PARTITIONS FOR TWO-STEP FLAG VARIETIES 3

The Borel–Weil–Bott Theorem computes the cohomology of Schur bundles and allows one
to determine whether a Schur bundle is Ulrich. There is a bijective correspondence between
equivalence classes of Ulrich partitions of type (n − k2, k2 − k1, k1) and Schur bundles Eλ on
F (k1, k2;n) which are Ulrich [CCHMW, Proposition 3.5]. Hence, classifying Ulrich Schur bundles
is equivalent to classifying Ulrich partitions. Consequently, as a corollary of Theorem 1.2, we
resolve the first case of Conjecture 1.3.

Theorem 1.4. The flag variety F (k, k+3;n) does not admit an Ulrich Schur bundle with respect
to O(1) if n > 6 or k > 2.

In particular, the only two step flag varieties of the form F (k, k+ 3;n) that admit Ulrich Schur
bundles are F (1, 4; 5), F (1, 4; 6) and F (2, 5; 6). All the Ulrich Schur bundles on these varieties
have been classified in [CCHMW]. There has been work on classifying Ulrich Schur bundles on
other homogeneous varieties using the same strategy (see [Fo]).

Acknowledgements. We would like to thank Jack Huizenga and Matthew Woolf for many
discussions on Ulrich bundles on flag varieties. This paper grew out of the second author’s senior
thesis.

2. The proof of the main theorem

In this section, we prove our main theorem.

Theorem 2.1. There does not exist Ulrich partitions (a1, . . . , ak|b1, b2, b3|c1, . . . , cl) with k+l > 3.

We begin with the following simple observation, which is a special case of [CCHMW, Lemma 4.3].

Lemma 2.2. If P = (a1, . . . , al|b1, . . . , bj |c1, . . . , ck) is an Ulrich partition, then all the entries in
the sequences a• and c• are equal modulo 2.

Proof. If P is Ulrich, the ap and cq entries of P (tpq) must be equal at some time tpq. From now
on, we will express this by saying ap and cq collide at time t = tpq. Hence ap + tpq = cq − tpq or,
equivalently, cq − ap = 2tpq. Consequently, ap and cq are equal modulo 2. Since this holds for
each 1 ≤ p ≤ l and 1 ≤ q ≤ k, we conclude that all the entries in the sequences a• and c• have
the same parity. Furthermore, their parities remain equal in P (t) for all t. �

Let P = (a1, . . . , ak|b1, b2, b3|c1, . . . , cl) be an Ulrich partition. Recall that we always assume
k, l > 0. Up to symmetry and duality, there are three possibilities:

(1) The sequence b1, b2, b3 may be consecutive.
(2) Only the entries b1, b2 may be consecutive.
(3) Finally, no two of the entries in b• are consecutive.

We will analyze each of these cases separately.

The b• sequence is consecutive. In this case, we will see that k + l ≤ 3 and up to symmetry
and duality the two possible partitions are (0|1, 2, 3|8) or (−8, 0|1, 2, 3|8). In fact, we can analyze
sequences where the b• sequence is consecutive more generally.

Proposition 2.3. Let P be an Ulrich partition of the form (a1, . . . , ak|1, 2, . . . , r|c1, . . . , cl), where
the b• sequence consists of r consecutive integers. Assume that r ≥ 3. Then k + l ≤ 3.

Proof. Without loss of generality, we may assume that at t = 1, the collision is akb1. Then for
1 ≤ t ≤ r, the collision is akbt. We claim that at t = r+1, the collision must be akc1. The collision
must be either ak−1b1 or akc1. If r is odd, then it cannot be ak−1b1 since otherwise ak−1 and ak
would have different parities. If r is even and the collision is ak−1b1, we obtain a contradiction
as follows. Let t0 be the time of the collision akc1. Until that time all the collisions must be
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between an entry from a• and an entry from b•. We conclude that t0 = ir+ 1 for some i. At time
t = t0 + 1, the collision cannot be akc2. Otherwise, we would have c2 − c1 = 2 and the collisions
c1b1 and c2b3 would occur at the same time. If i > 1, the collision at t = t0 + 1 cannot be brc1.
Hence, at t = t0 + 1, the collision must be ak−ib1. This violates parity since ak is even while ak−i
is odd. We conclude that at t = r + 1, the collision is akc1.

Hence, for t = r+1+i with 1 ≤ i ≤ r, the collisions are br+1−ic1. If the progression stops at time
t = 2r+1, we obtain the Ulrich partition (0|1, 2, . . . , r|2r+2). Else, at time t = 2r+2, the collision
must be ak−1c1. Otherwise, the collision would have to be akc2. At time t = 2r + 3, since the
collision could not be akc3, the collision would have to be ak−1c1. Then at time t = 3r+3, ak−1, br
and c2 would collide simultaneously. This contradiction shows that the collision at t = 2r + 2
must be ak−1c1. Hence, for times t = 2r + 2 + i with 1 ≤ i ≤ r, the collisions must be ak−1bi. If
the progression stops at t = 3r + 2, we obtain the Ulrich partition (−2r − 2, 0|1, 2, . . . , r|2r + 2).

Otherwise, at time t = 3r + 3, the collision must either be akc2 or ak−2c1. Then at time
t = 3r+ 4, the only possible collisions are ak−2c1 or akc2, respectively, since the distance between
consecutive entries in a• or c• has to be at least r > 2. If the order is akc2 and ak−2c1, then at
time t = 3r + 4 the entry c2 is 3r + 2 and ak−2 is −r − 2. The entries ak−2, br and c2 collide
simultaneously at time t = 5r+5. Hence, the order of collisions must be ak−2c1 at time t = 3r+3
and akc2 at time 3r + 4. If r ≥ 5, then at time t = 3r + 5, there cannot be any collisions. If
3 ≤ r ≤ 4, the only possible collision at time t = 3r+ 5 is ak−3c1. But then ak−3, br and c2 collide
simultaneously at time t = 5r + 8. This is a contradiction. Hence, the time evolution must stop
at time t = 3r + 2 and we conclude the proposition. �

In particular, we conclude that up to equivalence and symmetries, the only Ulrich partitions
where the b• sequence consists of three or more consecutive integers are (0|1, 2, . . . , r|2r + 2) and
(−2r − 2, 0|1, 2, . . . , r|2r + 2).

2.1. Exactly two of the b• entries are consecutive. Up to symmetry and duality, we may
assume that b1 and b2 are consecutive.

Lemma 2.4. Assume that b1 and b2 are the only two consecutive entries in the b• sequence
and P = (a1, . . . , ak|b1, b2, b3|c1, . . . , cl) is Ulrich. Then the b• sequence up to equivalence and
symmetry must be 1, 2, 5 or 1, 2, 6. In the first case, at time t = 1 the collision is akb1. In the
second case, at time t = 1 the collision is b3c1.

Proof. At time t = 1, the collision is either akb1 or b3c1. First, assume that at time t = 1 the
collision is b3c1. Since b2 and b3 are not consecutive, the collision at time t = 2 cannot be c1b2.
By parity, the collision cannot be b3c2. Consequently, at time t = 2 the collision must be akb1.
Hence, at time t = 3, the collision is akb2. If at time t = 4 the collision is akc1, then the b•
sequence is 1, 2, 6. Otherwise, the only possible collision is ak−1b1 since akb3 or b2c1 cannot occur
before akc1 and b3c2 is excluded by parity. Moreover, the distance |b3−b2| ≥ 8 and ak−ak−1 = 2.

The last collision at time t = N is either a1b3 or b1cl. If it is b1cl, then the collisions at time
t = N − 1 and t = N − 2 must be b2cl and alb3, respectively. Note that at time t = N − 2, the
collision cannot be b1cl−1. Otherwise, cl − cl−1 = 2 and cl would collide with ak at the same time
as cl−1 collides with ak−1. Then at time t = N − 3, the collision cannot be ak−1b3 or cl−1b1 by
parity. Since b3 − b2 ≥ 8, the collision cannot be a1cl. We conclude that at t = N − 3 there are
no possible collisions. This is a contradiction.

If the last collision is a1b3, then the two previous collisions must be b1cl and b2cl by parity. At
time t = N − 3, the collision cannot be b1cl−1 since cl− cl−1 cannot be 2. The collision cannot be
a2b3 by parity. It cannot be a1cl since b3 − b2 ≥ 8. We obtain a contradiction. We conclude that
if at t = 1 the collision is b3c1, then at t = 4 the collision must be akc1 and the b• sequence is up
to equivalence 1, 2, 6.
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Next assume that the collision at t = 1 is akb1. Let t = 2j + 1 be the first odd time when
the collision is not of the form aib1. If j = 1, since the entries in b• are not consecutive, at time
t = 3 the collision must be b3c1. Then at time t = 4, by parity, the only possible collision is
akc1. Therefore, the b• sequence is 1, 2, 5. If j > 1, then ak − ak−1 = 2. The collision at time
t = 2j + 1 must be b3c1. Otherwise, the collision would have to be akb3. Then at time t = 2j + 2,
by parity the collision would have to be akc1. Then the collisions ak−1b3 and b3c1 would happen
at the same time at t = 2j + 3. We conclude that at time t = 2j + 1 the collision is b3c1. At time
t = 2j + 2, by parity we cannot have a collision of the form aib1 or b3cl−1. We conclude that the
collision must be akc1. If j > 1, then at time r = 2j + 2 the collisions ak−1c1 and akb3 occur at
the same time leading to a contradiction. We conclude that j = 1 and the b• sequence is 1, 2, 5.
This concludes the proof of the lemma. �

We thus obtain two standard Ulrich partitions of type (1, 3, 1) given by (0|1, 2, 5|8) and
(−1|1, 2, 6|7). To conclude the analysis in this case, we argue that these Ulrich partitions cannot
be extended to longer Ulrich partitions.

Lemma 2.5. The only Ulrich partition of the form

(a1, . . . , ak−1, ak = 0|b1 = 1, b2 = 2, b3 = 5|c1 = 8, c2, . . . , cl)

is (0|1, 2, 5|8). The only Ulrich partition of the form

(a1, . . . , ak−1, ak = −1|b1 = 1, b2 = 2, b3 = 6|c1 = 7, c2, . . . , cl)

is (−1|1, 2, 6|7).

Proof. Suppose there exists an Ulrich partition of the form (a1, . . . , ak−1, 0|1, 2, 5|8, c2, . . . , cl) with
k or l bigger than 1. Then the last collision at time t = N must be either a1b3 or b1cl. If the
collision is a1b3, then by parity the collision at time t = N − 1 must be b1cl. Then a1 and cl
have different parities and can never collide. We obtain a contradiction. We conclude that at
t = N the collision must be b1cl. Hence, at time t = N − 1 the collision is b2cl. If the collision at
t = N − 2 is a1b3, then the distance between a1 and ak (which is equal to N − 7) is equal to the
distance between c1 and cl. Hence, these pairs collide simultaneously leading to a contradiction.
We conclude that at time t = N − 2, the collision must be b1cl−1. Hence the collisions at times
t = N − 3, N − 4 must be b2cl−1 and b3cl, respectively. However, at time t = N − 5 there are
no possible collisions. The collision cannot be b1cl−2 by parity. There are no collisions between
cl−1, cl and any entries in the b• sequence. On the other hand, if a1 collides with cl, then at time
t = N − 4 the a1b3 collision coincides with the b2cl−1 collision. This contradiction shows that
k = l = 1.

Suppose there exists an Ulrich partition of the form (a1, . . . , ak−1,−1|1, 2, 6|7, c2, . . . , cl) with
k or l bigger than 1. The argument is almost identical to the previous case. The last collision
at time t = N cannot be a1b3. Otherwise, at time t = N − 1 the collision would have to be b1cl
and the distance between a1 and ak would equal to the distance between c1 and cl. We conclude
that the collision at time t = N is b1cl. Hence, at time t = N − 1 the collision is b2cl. At time
t = N−2, the collision cannot be a1b3, otherwise at that time cl would be at position 3 and would
have different parity from a1. We conclude that at time t = N − 2 the collision must be b1cl−1.
This determines the collisions at t = N − 3, N − 4 which must be b2cl−1 and b3cl. Then, as in the
previous case, at time t = N − 5, there cannot be any collisions leading to a contradiction. This
shows that k = l = 1. �

2.2. None of the b• entries are consecutive. In this case, we have the following lemma.

Lemma 2.6. Let (a1, . . . , ak|b1, b2, b3|c1, . . . , cl) be an Ulrich partition with k, l > 0 and none
of the entries in the b• sequence are consecutive. Then up to equivalence and symmetry the b•
sequence is 1, 3, 6.
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Proof. Without loss of generality, we may assume that at t = 1 the collision is akb1. By parity
and the fact that b2 − b1 > 1, we conclude that at t = 2 the collision must be b3c1. Similarly, by
parity and the fact that b3 − b2 > 1, at time t = 3 the collision is either akb2 or ak−1b1. If the
collision is akb2, then the collision at t = 4 has to be akc1. By parity, it cannot be ak−1b1. It
cannot be b3c2 otherwise the collisions b1c1 and b2c2 would occur at the same time. We conclude
that at time t = 0 the b• sequence must be 1, 3, 6 and ak = 0 and c1 = 8.

If the collision at time t = 3 is ak−1b1, then by parity the collision at t = 4 may only be one
of akb2, b2c1 or b3c2. It cannot be b2c1, otherwise akb3 and ak−1b2 would occur at the same time
since both ak−1, ak and b2, b3 would be two apart. Similarly, it cannot be b3c2, otherwise akc2 and
ak−1c1 would occur at the same time. We conclude that at t = 4, the collision is akb2. At time
t = 5, the collision cannot be b3c2 by parity. Hence, it is either ak−2b1 or akc1. It cannot be akc1,
otherwise at time t = 6 all three ak−1, b2 and c1 collide. Hence, at t = 5 the collision is ak−2b1.
In this case, we have that b3 − b2 ≥ 5. Now consider the last two collisions at t = N and N − 1.
They are either a1b3 at t = N and b1cl at t = N − 1, or b1cl at t = N and a1b3 at t = N − 1.
Notice that it cannot be the latter. Otherwise, the distance between a1 and ak would be equal to
the distance between c1 and cl and the pair would collide simultaneously. We conclude that the
collisions at t = N and N − 1 must be a1b3 and b1cl, respectively. Then at time t = N − 3, the
collision cannot be a2b3 by parity. It cannot be a1b2 or b2cl because of the distances between the
entries in the b• sequence. Finally, it cannot be b1cl−1 since otherwise the distance between cl and
cl−1 would be 2 and they would collide with the pair ak and ak−1 simultaneously. We conclude
that this case is not possible. This concludes the proof of the lemma. �

We thus obtain the standard Ulrich partition of type (1, 3, 1) given by (0|1, 3, 6|8). To conclude
the analysis in this case, we argue that this Ulrich partition cannot be extended to longer Ulrich
partitions.

Lemma 2.7. The only Ulrich partition of the form

(a1, . . . , ak−1, ak = 0|b1 = 1, b2 = 3, b3 = 6|c1 = 8, c2, . . . , cl)

is (0|1, 3, 6|8).

Proof. Suppose there were a longer Ulrich partition. Then the last two collisions at time t = N
and t = N−1 must be a1b3 and b1cl, respectively. Otherwise, as in the previous cases, the distance
between a1 and ak would equal the distance between c1 and cl. But then at time t = N − 2 there
cannot be any collisions. The entries cl and ak do not collide with any entries in the b• sequence
or with each other by the distribution of the b• sequence. The collision cannot be b1cl−1 and it
cannot be ak−1b3. Otherwise, the distance between ak and ak−1 would be 2 and the collisions
akb1 and ak−1b2 would be at the same time. This contradiction concludes the proof. �

Proof of Theorem 1.2. Let P = (a1, . . . , ak|b1, b2, b3|, c1, . . . , cl) be an Ulrich partition. If the
b• sequence is consecutive, then by Proposition 2.3, up to symmetry, duality and equivalence
P = (−8, 0|1, 2, 3|8) or (0|1, 2, 3|8). If only two entries in the b• sequence are consecutive, then by
Lemmas 2.4 and 2.5, P = (0|1, 2, 5|8) or P = (−1|1, 2, 6|7). Finally, if none of the entries in the
b• sequence are consecutive, then by Lemmas 2.6 and 2.7, P = (0|1, 3, 6|8). In all cases we have
that k + l ≤ 3. This concludes the proof. �
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