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Abstract. Given a zero-dimensional scheme Z, the higher-rank interpolation problem asks for the clas-
sification of slopes μ such that there exists a vector bundle E of slope μ satisfying Hi(E ⊗ IZ) = 0 for all
i. In this paper, we solve this problem for all zero-dimensional monomial schemes in P2. As a corollary,
we obtain detailed information on the stable base loci of Θ-divisors on the Hilbert scheme of points on
P2. We prove the correspondence between walls in the Bridgeland stability manifold and walls in the Mori
chamber decomposition of the effective cone conjectured in [ABCH] for monomial schemes. We determine
the Harder-Narasimhan filtration of ideal sheaves of monomial schemes for suitable Bridgeland stability
conditions and, as a consequence, obtain a new resolution better suited for cohomology computations than
other standard resolutions such as the minimal free resolution.
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1. Introduction

Interpolation problems form the technical core of many central questions in algebraic geometry, ranging
from the Nagata-Harbourne-Hirschowitz conjecture to the construction of theta divisors on moduli spaces.
In this paper, we solve the higher-rank interpolation problem for all zero-dimensional monomial schemes
in P2. Before we state our main theorem on interpolation, we introduce some terminology.

Definition 1.1. A vector bundle E on P2 satisfies interpolation for a zero-dimensional scheme Z ⊂ P2

if E ⊗ IZ is acyclic, so that H i(E ⊗ IZ) = 0 for all i.
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2 I. COSKUN AND J. HUIZENGA

Problem 1.2 (The higher-rank interpolation problem for zero-dimensional schemes). Fix a zero-
dimensional scheme Z ⊂ P2. Determine the rational numbers μ for which there exists a vector bundle of
slope μ that satisfies interpolation for Z.

If E satisfies interpolation for Z, then χ(E ⊗ IZ) = 0. By the Riemann-Roch formula, the discrimi-
nant Δ(E) of such a vector bundle is determined by its slope. The interpolation problem is, therefore,
equivalent to classifying all pairs of rational numbers (μ,Δ) which are the invariants of a vector bundle
with interpolation for Z.

Let Z be a zero-dimensional monomial scheme. The block diagram D associated to Z records the
monomials in C[x, y]/IZ (see §2 for basic properties of monomial schemes). We index the rows from
bottom to top and the columns from left to right. Let hj (respectively, vj) denote the number of boxes
in the jth row (respectively, column). Let r(D) and c(D) denote the number of rows and columns in D.
The kth horizontal slope μk and the ith vertical slope μ

′
i are defined by

μk =
1

k

k∑

j=1

(hj + j − 1)− 1, μ′i =
1

i

i∑

j=1

(vj + j − 1)− 1.

Let the slope μ(Z) of a zero-dimensional monomial scheme with block diagram D be defined by

μ(Z) = max
1≤k≤r(D)
1≤i≤c(D)

{μk, μ
′
i}.

Example 1.3. The first diagram in Figure 1 is the block diagram associated to the scheme defined by
the monomials x7, x6y, x2y3, xy4, y5. The next two diagrams in Figure 1 compute all the horizontal and
vertical slopes. For example, to compute horizontal slopes, place hj + j − 1 checkers in row j for each j.
Then the kth horizontal slope μk is one less than the average number of checkers per row in the first k
rows. In this example, the maximum slope μ(Z) is given by the horizontal slope μ3 =

19
3 .

μ′4 = 4
1
4

μ′1 = μ
′
2 = μ

′
3 = 4

μ1 = μ2 = 6

μ3 = 6
1
3

μ4 = 5
3
4

μ5 = 5
2
5

μ′7 = 5
1
7

μ′6 = 5

μ′5 = 4
3
5

Figure 1. Calculating the destabilizing object for a monomial scheme.

Our main theorem solves the higher-rank interpolation problem for monomial schemes.

Theorem 1.4. Let Z be a zero-dimensional monomial scheme. There exists a vector bundle E with slope
μ ∈ Q satisfying interpolation for Z if and only if μ ≥ μ(Z).
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More precisely, let ζ be the Chern character of a bundle E satisfying interpolation for Z. Then
there are prioritary bundles with Chern character ζ, and the general such bundle has interpolation for
Z. Furthermore, if there exist stable bundles with invariants ζ, then the general such bundle also has
interpolation for Z.

Theorem 1.4 has consequences for interpolation with respect to arbitrary zero-dimensional schemes.
By [E2, Theorem 15.17], there is a flat one-parameter torus action that specializes a homogeneous ideal
of the polynomial ring to its generic initial ideal. Let Y be an arbitrary zero-dimensional scheme and let
Z be the monomial scheme defined by the generic initial ideal of Y . Hence, we have a flat family λ ∙ Y
parameterized by C∗ specializing to Z. Let E be a vector bundle having interpolation for Z. Since being
acyclic is an open condition in flat families, we conclude that H i(E ⊗ Iλ∙Y ) = 0 for all i and general
λ ∈ C∗. Consequently, H i(λ∗E ⊗ IY ) = 0 for all i, and we obtain the following corollary.

Corollary 1.5. Let Y be a zero-dimensional subscheme of P2, and let Z be the scheme defined by
the generic initial ideal of Y . If μ ≥ μ(Z), then there exists a vector bundle E with slope μ having
interpolation for Y .

The main new ingredient that allows us to prove Theorem 1.4 is Bridgeland stability. In general,
computing the cohomology groups H i(E⊗IZ) is a difficult problem. The standard technique replaces IZ
with a conveniently chosen quasi-isomorphic complex of coherent sheaves. The main question is then to
determine which quasi-isomorphic complex is the most convenient. Unfortunately, standard resolutions
of IZ such as the minimal free resolution rarely help compute H i(E ⊗ IZ). For example, for a general
collection of points, [H] proved that the natural resolution of the ideal sheaf is in terms of exceptional
bundles. The main philosophy of this paper is that Bridgeland stability determines the optimal complex
for computing the cohomology groups H i(E ⊗ IZ).
More precisely, Bridgeland [Br2], Arcara-Bertam [AB], and Bayer-Macr̀ı [BM] have constructed Bridge-

land stability conditions for P2 parameterized by an upper half-plane (s, t), t > 0. The wall destabilizing
IZ is a semi-circular wall with center along the negative real axis [ABCH] (see §2 for details on Bridgeland
stability). Let A be the object destabilizing IZ . Then we get an exact sequence

0→ A→ IZ → B → 0,

where A and B are semi-stable objects with respect to the stability conditions along the wall.

We conjecture that if E is a minimal slope bundle satisfying interpolation for Z, then E⊗IZ is acyclic
because E ⊗ A and E ⊗ B are acyclic. Thus, the Bridgeland decomposition allows one to solve the
interpolation problem for Z assuming the solutions of the interpolation problems for A and B are known.
In this paper, we will show that for complete intersection schemes (see §5) and monomial schemes (see
§10) this philosophy works perfectly and solves the interpolation problem.
We now describe the destabilizing object for a monomial scheme in greater detail. For concreteness,

assume that the maximum defining the slope μ(Z) is achieved by μk. We will prove that the subobject
destabilizing IZ is IW (−k), where W is the monomial scheme corresponding to the subdiagram lying
above the kth row of the block diagram D. By [ABCH], the center of the Bridgeland wall corresponding
to IW (−k) is the point (s, 0) with

s = −
degZ − degW

k
−
k

2
= −
1

k

k∑

j=1

hj −
k

2
= −μ(Z)−

3

2
.

We summarize this discussion in the following theorem.

Theorem 1.6. Let Z be a zero-dimensional monomial scheme in P2 of length n with block diagram D.
Swapping x and y if necessary, assume that μk is the slope giving the maximum in the definition of μ(Z).
Let W be the monomial scheme associated to the subdiagram of D lying above the kth row. Then the ideal
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sheaf IZ is destabilized by IW (−k) along the semi-circular wall with center s = −μ(Z) − 32 and radius√
s2 − 2n.

Let P2[n] denote the Hilbert scheme parameterizing zero-dimensional schemes of length n in the pro-
jective plane P2. The main application of our theorems is to the study of stable base loci of Θ-divisors on
P2[n]. Recall that P2[n] is a smooth, irreducible, projective variety of dimension 2n containing the locus
of distinct collections of n points as a dense open subset [F1]. The Hilbert scheme admits a natural mor-

phism called the Hilbert-Chow morphism h : P2[n] → P2(n) to the symmetric product P2(n) = (P2)n/Sn,
sending a zero-dimensional scheme of length n to its support weighted with multiplicity. The map h is
a crepant resolution of singularities [F1]. Furthermore, P2[n] is a log Fano variety, hence a Mori dream
space [ABCH, Theorem 2.5]. Let B be the exceptional divisor of h parameterizing non-reduced schemes.
Let H = h∗OP2(n)(1) be the pullback of the ample generator from the symmetric product. Geometrically,
H is the class of the divisor of schemes whose support intersects a fixed line. Fogarty [F2] proves that

Pic(P2[n]) ∼= ZH ⊕ Z
B

2
.

Hence, we can express the class of every Q-divisor on P2[n] as a linear combination of H and B.
To understand the stable base locus decomposition of the cone of effective divisors, one naturally

considers Θ-divisors. Let E be a vector bundle which satisfies interpolation for some scheme Z ′ of length
n. Then there is an effective divisor

DE := {Z ∈ P
2[n] : H0(E ⊗ IZ) 6= 0},

and Z ′ is not in the base locus of DE . By a simple Grothendieck-Riemann-Roch calculation (see [ABCH])

[DE ] = c1(E)H −
r(E)

2
B,

which is a multiple of the class

μ(E)H −
1

2
B.

As a corollary of Theorem 1.4, we determine when a monomial scheme is in the stable base locus of a
linear system on P2[n].

Corollary 1.7. Let Z be a zero-dimensional monomial scheme. Then Z is in the stable base locus of the
linear system |μH − B2 | if and only if μ < μ(Z).

We can generalize Corollary 1.7 to arbitrary zero-dimensional schemes by passing to the generic initial
ideal.

Corollary 1.8. Let Y be a zero-dimensional scheme and let Z be the scheme defined by the generic
initial ideal of Y . Then Y is not in the stable base locus of the linear system |aH − B2 | if a ≥ μ(Z).

The paper [ABCH] conjectures that a scheme Z is in the stable base locus of the divisors aH − B2 for
a < μ if and only if the ideal sheaf IZ is destabilized at the Bridgeland wall with center (s, 0), where
s = −μ− 32 . This is checked in [ABCH] for n ≤ 9 and for all n provided that μ ≥

n−1
2 . As an immediate

corollary of Theorems 1.4 and 1.6, we conclude that the conjecture holds for monomial schemes.

Corollary 1.9. Let Z be a monomial scheme in P2. The conjectural correspondence between Bridgeland
walls and Mori walls holds for Z.

The organization of this paper is as follows. In §2, we will review the basics of monomial schemes, vector
bundles on P2 and Bridgeland stability. In §3, we will prove general theorems concerning interpolation.
Section 4 gives a theoretical explanation for the correspondence between Mori walls and Bridgeland walls
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conjectured in [ABCH]. In §5, we will solve the interpolation problem for all complete-intersection zero-
dimensional schemes. This will demonstrate the general philosophy in a simple example. Section 6 serves
as the roadmap for the proof of Theorem 1.4. We will describe the inductive structure and introduce
the monomial objects that occur as subobjects and quotient objects in the Bridgeland destabilizing
sequences. The next several sections will substantiate the claims in §6. In §7, we collect numerical
invariants associated to monomial objects. In §8, we check the Gieseker stability of monomial objects.
In §9, we determine the Bridgeland walls where the monomial objects are destabilized. Finally, in §10,
we solve the interpolation problem for monomial schemes.

1.1. Acknowledgements. We would like to thank Daniele Arcara, Arend Bayer, Aaron Bertram, Joe
Harris, and Emanuele Macr̀ı for many useful discussions.

2. Preliminaries

In this section, we collect basic facts concerning monomial schemes, stable vector bundles on P2, and
Bridgeland stability.

2.1. Monomial schemes. We refer the reader to [E] for details on monomial schemes.

A monomial scheme is a scheme whose homogeneous ideal is generated by monomials for some choice
of coordinates. In this paper, we will be interested in zero-dimensional monomial schemes in P2. Such a
scheme Z is generated by a set of monomials

xa1 , xa2yb2 , . . . , ybr ,

where a1 > ∙ ∙ ∙ > ar−1 and b2 < ∙ ∙ ∙ < br.
A block diagram is a left-justified diagram consisting of finitely many rows of finitely many consecutive

boxes such that the number of boxes in each row is non-increasing as we proceed from bottom to top.
The box at the lower left corresponds to the monomial 1. If a box represents the monomial xayb, then
the box to its immediate right represents the monomial xa+1yb and the box immediately above represents
the monomial xayb+1. We can represent Z by a block diagram DZ which records the monomials in the
quotient

C[x, y]
(xa1 , xa2yb2 , . . . , ybr)

.

The corresponding block diagram has bi+1 − bi rows of ai boxes for 1 ≤ i ≤ r − 1. The length of the
scheme Z is the total number of boxes in the diagram. Figure 2 depicts the block diagram associated to
the scheme generated by the monomials x5, x4y2, x3y3 and y5.

x5

y5

x3y3

x4y2

Figure 2. Representing a monomial scheme by a block diagram.

Conversely, given a block diagram D, we can associate a monomial scheme Z(D) to it such that

D = DZ(D). Suppose that D has nj rows of length aj for 1 ≤ j ≤ r− 1. Set ar = 0 and set bi =
∑i−1
j=1 nj

for 1 ≤ i ≤ r. The monomial scheme Z(D) is the scheme generated by the monomials xaiybi for 1 ≤ i ≤ r.
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The minimal free resolution of a monomial ideal is easy to determine from the set of generators. If Z
is generated by the monomials xa1 , xa2yb2 , . . . , ybr , then the minimal free resolution has the form

0→
r−1⊕

i=1

O(−ai − bi+1)
M
−→

r⊕

i=1

O(−ai − bi)→ IZ → 0,

whereM is the r× (r−1) matrix with entries mi,i = ybi+1−bi , mi+1,i = −xai−ai+1 and mi,j = 0 otherwise.
For example, the minimal free resolution of the monomial scheme in Figure 2 is given by

0→ O(−7)2 ⊕O(−8)









y2 0 0
−x y 0
0 −x y2

0 0 −x3









−−−−−−−−−−−−−−−→ O(−5)⊕O(−6)2 ⊕O(−5)
(x5, x4y2, x3y3, y5)
−−−−−−−−−−−−−−→ IZ → 0.

Observe that every Betti diagram of a zero-dimensional scheme occurs as the Betti diagram of a zero-
dimensional monomial scheme [E].

2.2. Coherent sheaves on P2 and stability. We refer the reader to [LP] and [HuL] for general back-
ground material. All sheaves in this paper will be coherent.

Let E be a coherent sheaf on P2. The dimension dimE of E is the dimension of the support Supp(E).
We say E is pure of dimension d if dimE = d and every non-trivial coherent subsheaf F ⊂ E has
dimF = d.

If E has dimension d, the Hilbert polynomial PE(m) = χ(E(m)) of E is of the form

PE(m) = αd
md

d!
+O(md−1).

The reduced Hilbert polynomial pE is defined by

pE =
PE
αd
.

Then E is (Gieseker) semistable (resp. stable) if E is pure and for every nontrivial F ⊂ E we have
pF ≤ pE (resp. <), where polynomials are compared for all sufficiently large m.
In the main case of interest, E is pure of dimension 2 with rank r > 0. While the numerical invariants

(r = ch0, c1 = ch1, ch2) can always be used for any coherent sheaf, it is useful to instead use the invariants
(r, μ,Δ) whenever r 6= 0, where the (Mumford) slope μ and discriminant Δ are defined by

μ =
c1

r
Δ =

1

2
μ2 −

ch2
r
.

Note that if a Chern character ξ is scaled by a number λ, then λξ has the same slope and discriminant
as ξ. The discriminant also satisfies the identity Δ(E⊗F ) = Δ(E)+Δ(F ). The sheaf E is stable if and
only if every nontrivial subsheaf F ⊂ E has μ(F ) ≤ μ(E), with Δ(F ) > Δ(E) in case of equality.
In terms of the slope and discriminant, the Riemann-Roch formula becomes particularly simple. For

a sheaf E of nonzero rank, we have

χ(E) = r(P (μ)−Δ),

where

P (m) = POP2 (m) =
1

2
(m2 + 3m+ 2)
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is the Hilbert polynomial of the trivial sheaf. We also define the Euler characteristic χ(E,F ) of a pair of
coherent sheaves by

χ(E,F ) =
2∑

i=0

(−1)i dimExti(E,F ).

When both sheaves have nonzero rank, this invariant is computed by a Riemann-Roch formula

χ(E,F ) = r(E)r(F )(P (μ(F )− μ(E))−Δ(E)−Δ(F )).

Since Euler characteristics depend only on Chern characters, the Euler characteristic induces a pairing
K(P2)×K(P2)→ Z. By abuse of notation, we will write expressions such as χ(ζ, ξ) or χ(ζ, E) to denote
this pairing. The derived dual induces a homomorphism K(P2) → K(P2), so we will similarly write ζ∗

for the dual Chern character.

Every coherent sheaf of rank r ≥ 1 has a Harder-Narasiman filtration with respect to the Mumford
slope. We will denote the maximal and minimal slopes in the filtration by μmax and μmin, respectively.

The Bogomolov inequality states that a stable sheaf of nonzero rank satisfies Δ ≥ 0. A result of Drezet
and Le Potier refines the Bogomolov inequality to classify the admissible numerical invariants of stable
sheaves. In other words, they classify the numerical invariants ξ such that the moduli space M(ξ) of
stable coherent sheaves is nonempty.

Theorem 2.1. [Dr, DLP, LP] There is an explicit function δ : Q→ Q such that the moduli space M(ξ)
is positive-dimensional if and only if Δ(ξ) ≥ δ(μ(ξ)).

The cases where the space M(ξ) is zero-dimensional (and precisely 1 point, corresponding to an
exceptional bundle) can also be explicitly determined.

2.3. Bridgeland stability. In this subsection, we recall the definition of Bridgeland stability conditions
and describe the chamber decomposition of the stability manifold of P2. We refer the reader to [AB],
[ABCH], [BC], [Br1], and [Br2] for more detailed information.

Let Db(P2) denote the bounded derived category of coherent sheaves on P2. Let L denote the class of
a line. A Bridgeland stability condition σ on P2 consists of a pair σ = (A,Z) such that A is the heart of
a bounded t-structure on Db(P2) and Z : K(Db(P2)) → C is a homomorphism satisfying the following
properties:

(1) (Positivity) For every non-zero object E ofA, Z(E) lies in the semi-closed upper half-plane {reiπθ | r >
0, 0 < θ ≤ 1}. Writing Z = −d(E) + ir(E), one may view this condition as two separate positivity
conditions requiring r(E) ≥ 0 and if r(E) = 0, then d(E) > 0.

(2) (Harder-Narasimhan property) For an object E of A, let the Z-slope of E be defined by setting
μ(E) = d(E)/r(E) with the understanding that μ(E) = ∞ if r(E) = 0. An object E is called Z-stable
(resp. semistable) if for every proper subobject F , μ(F ) < μ(E) (resp. ≤). The pair (A,Z) is required
to satisfy the Harder-Narasimhan property. Namely, every object of A has a finite filtration

0 = E0 ↪→ E1 ↪→ ∙ ∙ ∙ ↪→ En = E

such that Fi = Ei/Ei−1 is Z-semi-stable and μ(Fi) > μ(Fi+1) for all i.

The category of coherent sheaves with the stability function Z(E) = − deg(E) + i rk(E) is not a
Bridgeland stability condition on P2 because Z is zero on sheaves supported on points. The idea of
Bridgeland, Arcara and Bertram is to fix this problem by tilting the category. Given s ∈ R, let Qs be
the full subcategory of coh(P2) consisting of torsion sheaves or sheaves Q where μmin(Q) > s (where, as
in §2.2, μmin denotes the minimum slope of a Harder-Narasimhan factor with respect to the Mumford
slope). Similarly, let Fs be the full subcategory of coh(P2) consisting of torsion free sheaves F with
μmax(F ) ≤ s.
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By [Br2, Lemma 6.1], each pair (Fs,Qs) of full subcategories satisfies the two properties

(a) For all F ∈ Fs and Q ∈ Qs, Hom(Q,F ) = 0.
(b) Every coherent sheaf E fits in a short exact sequence 0 → Q → E → F → 0, where Q ∈ Qs,
F ∈ Fs and the extension class are uniquely determined up to isomorphism.

A pair of full subcategories (F ,Q) of an abelian category A satisfying conditions (a) and (b) is called a
torsion pair. A torsion pair (F ,Q) defines the heart of a new t-structure on Db(A) by setting [HRS]

A(F ,Q) := {E ∈ D
b(P2) | H−1(E) ∈ F ,H0(E) ∈ Q, and Hi(E) = 0 otherwise}.

The natural exact sequence

0→ H−1(E)[1]→ E → H0(E)→ 0

for such an object of A implies that the objects of the heart are all given by pairs of objects F ∈ F and
Q ∈ Q together with an extension class in Ext2A(Q,F ) [HRS].

Definition 2.2. Let As be the heart of the t-structure on Db(coh(P2)) obtained from the torsion-pair
(Fs,Qs). Define a central charge by setting

Zs,t(E) = −
∫

P2
e−(s+it)L ch(E).

The above formula for Zs,t(E) can be expanded out as a formula in terms of the Chern character of E.
If E has nonzero rank, it is convenient to express the central charge in terms of the slope and discriminant
of E. Specifically, if ξ = (r, μ,Δ) is a Chern character with r 6= 0, we have

Zs,t(ξ) = r(Δ−
1

2
(s+ it− μ)2) = −

1

2
r((μ− s)2 − t2 − 2Δ) + irt(μ− s).

The slope function μs,t is then given by

μs,t(ξ) =
(μ− s)2 − t2 − 2Δ

2t(μ− s)
.

Theorem 2.3 (Bridgeland [Br2], Arcara-Bertram [AB], Bayer-Macr̀ı [BM]). For each s ∈ R and t > 0,
the pair (As,Zs,t) defines a Bridgeland stability condition on Db(coh(P2)).

Fix a class ξ in the numerical Grothendieck group. Then there exists a locally finite set of walls in the
(s, t)-half plane, depending only on ξ, such that as the stability condition σ = σs,t varies in a chamber,
the set of σ-(semi)-stable objects of class ξ does not change ([Br2], [BM], [BM2]). We call these walls
Bridgeland walls.

Suppose ξ, ζ ∈ K(P2) ⊗ R are two linearly independent real Chern characters. By contrast with
Bridgeland walls, a potential Bridgeland wall is a set in the (s, t)-half-plane of the form

W (ξ, ζ) = {(s, t) : μs,t(ξ) = μs,t(ζ)},

where μs,t is the slope associated to Zs,t. Bridgeland walls are always potential Bridgeland walls. The
potential Bridgeland walls for ξ are all the potential walls W (ξ, ζ) as ζ varies in K(P2) ⊗ R. If E,F ∈
Db(P2), we also write W (E,F ) as a shorthand for W (ch(E), ch(F )).
The potential walls W (ξ, ζ) can be easily computed in terms of the Chern characters ξ = (r, c, d) and

ζ = (r′, c′, d′).

(1) If μ(ξ) = μ(ζ) (where the Mumford slope is interpreted as ∞ if the rank is 0) then the wall
W (ξ, ζ) is the vertical line s = μ(ξ) (interpreted as the empty set when the slope is infinite).
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(2) Otherwise, without loss of generality assume μ(ξ) is finite, so that r 6= 0. The walls W (ξ, ζ) and
W (ξ, ξ + ζ) are equal, so we may further reduce to the case where both ξ and ζ have nonzero
rank. Then we may encode ξ = (r1, μ1,Δ1) and ζ = (r2, μ2,Δ2) in terms of slope and discriminant
instead of ch1 and ch2. The wall W (ξ, ζ) is the semicircle centered at the point (s, 0) with

s =
1

2
(μ1 + μ2)−

Δ1 −Δ2
μ1 − μ2

and having radius ρ given by

ρ2 = (s− μ1)
2 − 2Δ1.

If this expression is negative, we define the virtual radius of W (ξ, ζ) by this formula, and the wall
is empty.

In the principal case of interest, the Chern character ξ = (r, μ,Δ) has nonzero rank r 6= 0 and
nonnegative discriminant Δ ≥ 0. In this case, the potential walls for ξ consist of a vertical wall s = μ
together with two disjoint nested families of semicircles on either side of this line [ABCH]. Specifically,

for any s with |s− μ| >
√
2Δ, there is a unique semicircular potential wall with center (s, 0) and radius

ρ satisfying
ρ2 = (s− μ)2 − 2Δ.

The semicircles are centered along the s-axis, with smaller semicircles having centers closer to the vertical
wall. Every point in the (s, t)-half-plane lies on a unique potential wall for ξ. When r > 0, only the
family of semicircles left of the vertical wall is interesting, since an object E with Chern character ξ can
only be in categories As with s < μ. Similarly, for objects with r < 0 only the family of semicircles to
the right of the vertical wall is relevant.

Occasionally it will be important to consider potential walls for 1-dimensional sheaves as well. For
a Chern character ξ = cL + dL2 with c 6= 0, the potential Bridgeland walls are concentric semicircles
centered at the point ( dc , 0). These semicircles foliate the upper half-plane.

μ+
√
2Δ

Rank 0 walls

μμ−
√
2Δ d/c

Positive rank walls

μ

Negative rank walls

Figure 3. Relevant potential Bridgeland walls for (i) a positive rank object with Δ ≥ 0;
(ii) a rank 0 object with Chern character cL+ dL2 and c 6= 0; (iii) a negative rank object
with Δ ≥ 0. For positive (resp. negative) rank walls, the centers of the walls converge to
μ−
√
2Δ (resp. μ+

√
2Δ).

3. Interpolation, stability, and prioritary bundles

In this section, we study the relation between stability of vector bundles on P2 and interpolation
problems. Our first main result shows that semistability is a natural condition to consider when studying
interpolation problems. We first need a simple lemma.

Lemma 3.1. Let E be a torsion-free sheaf such that H1(E ⊗ Ip) = 0 for a general point p ∈ P2. Then
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(1) μ(E) ≥ 0,
(2) H1(E) = 0, and
(3) H2(E) = H2(E ⊗ Ip) = 0.

Proof. Since p is a general point, there is an exact sequence of sheaves

0→ E ⊗ Ip → E → E ⊗Op → 0.

The long exact sequence for cohomology implies part (2) and the fact that H2(E) = H2(E ⊗ Ip) for a
general p.

As p is general, E is locally free of rank r near p. We find from H1(E ⊗ Ip) = 0 that the restriction
map H0(E) → Ep is surjective, where Ep is the fiber of E at p. Then the values of r general sections
s1, . . . , sr ∈ H0(E) span the fiber Ep, so ∧isi is a nonzero section of ∧rE. The inclusion

0→ ∧rE → (∧rE)∗∗ = detE

gives a section of detE. We conclude c1(detE) = c1(E) is effective, so μ(E) ≥ 0.
By induction on the length ` of the Harder-Narasimhan filtration of E, we show that if H1(E⊗Ip) = 0,

then H2(E) = 0. If E is semistable, then μ(E) ≥ 0 and Serre duality implies that H2(E) = 0.
In the general case, let ` ≥ 2 and suppose the result is known for torsion-free sheaves with Harder-

Narasimhan filtration of length at most ` − 1. Let 0 ⊂ E1 ⊂ ∙ ∙ ∙ ⊂ E` = E be the Harder-Narasimhan
filtration, with semistable quotients Ei/Ei−1 of decreasing slope. Consider the exact sequence

0→ E1 → E → E/E1 → 0,

with E1 semistable and E/E1 torsion-free. Then μ(E1) > μ(E) ≥ 0, so H2(E1) = 0 and H2(E1⊗Ip) = 0
for general p. We find H1((E/E1)⊗ Ip) = 0, so by induction H2(E/E1) = 0 and H2(E) = 0. �

Remark 3.2. In particular, the assumptions of Lemma 3.1 are satisfied if E is a vector bundle and
H1(E ⊗ IZ) = 0 for some fixed nonempty zero-dimensional scheme Z.

Theorem 3.3. Let Z ⊂ P2 be a nonempty zero-dimensional scheme, and suppose E is a vector bundle
such that H1(E ⊗ IZ) = 0. If the slope of E is minimal among all bundles with this property, then E is
semistable.

Proof. Suppose E is not semistable. Let F ⊂ E be a maximal destabilizing subsheaf. In the exact
sequence

0→ F → E → Q→ 0,

the sheaf F is semistable of slope μ(F ) > μ(E) and the sheaf Q is torsion-free of slope μ(Q) < μ(E). A
priori some of the singularities of F or Q could be supported at points in the support of Z. If g ∈ AutP2

is an automorphism of P2, the sheaves g∗E ⊗ IZ form a flat family over AutP2 since E is locally free.
Then if g ∈ AutP2 is general, we have H1(g∗E⊗IZ) = 0 and the sheaves g∗F, g∗Q will have singularities
disjoint from Z. Semistability of E is equivalent to semistability of g∗E, so without loss of generality we
assume the singularities of F , Q do not meet Z. This implies the sequence

0→ F ⊗ IZ → E ⊗ IZ → Q⊗ IZ → 0

is exact. We wish to show H1(Q⊗ IZ) = 0, which will follow from our assumption on E if we can show
H2(F ⊗ IZ) = 0.
By Lemma 3.1, we have μ(E) ≥ 0, so μ(F ) > 0 and H2(F ) = 0 since F is semistable. We easily

conclude H2(F ⊗ IZ) = 0 as in the proof of the lemma.
Finally, to obtain a contradiction, consider the (locally free) double dual Q∗∗, with μ(Q∗∗) = μ(Q).

Since Q is torsion-free, there is an exact sequence

0→ Q→ Q∗∗ → T → 0
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where T is 0-dimensional with support disjoint from Z. We conclude H1(Q∗∗ ⊗ IZ) = 0, which violates
the minimality assumption on E. �

While it is not at all obvious that the set of slopes of vector bundles with H1(E ⊗ IZ) = 0 actually
has a minimum, analysis of the proof nevertheless yields the following result.

Corollary 3.4. Let Z ⊂ P2 be a nonempty zero-dimensional scheme, and suppose E is a vector bundle
such that H1(E⊗IZ) = 0. Then there is a stable bundle E′ of slope μ(E′) ≤ μ(E) such that H1(E′⊗IZ) =
0.

Proof. If E is not already stable, pass from E to Q∗∗ as in the proof of the theorem. Then apply the
argument again to Q∗∗, and continue in this fashion. The ranks of the bundles we obtain are decreasing, so
this process must eventually stop, in which case the bundle we obtain is semistable. By a Jordan-Hölder
argument, we can further make the bundle stable. �

The previous results in this section merely concerned H1-vanishing of the sheaf E ⊗ IZ . For the
remainder of the section we will focus on the stronger notion of acyclicity of E ⊗ IZ instead, that is, on
the interpolation problem for Z.

In what follows, it will be useful to introduce an additional space of coherent sheaves. A torsion-free
coherent sheaf E on P2 is prioritary if

Ext2(E,E(−1)) = 0.

By Serre duality, a semistable sheaf is prioritary. For a fixed set of numerical invariants ξ ∈ K(P2), the
prioritary sheaves of Chern character ξ form an Artin stack P(ξ), which is an open substack of the stack
of coherent sheaves. We will need several facts about prioritary sheaves.

Theorem 3.5. Let ξ be a Chern character such that P(ξ) is nonempty.

(1) The stack P(ξ) is irreducible. [HiL]
(2) The stack of semistable sheaves M(ξ) forms an open substack of P(ξ), which is irreducible when
it is nonempty.

(3) If the rank of ξ is at least 2, then the general member of P(ξ) is locally free. [HiL]
(4) If the rank of ξ is at least 2, then the general member of P(ξ) is nonspecial. That is, if E ∈ P(ξ)
is general, then at most one of H i(E) with 0 ≤ i ≤ 2 is nonzero. In particular, if χ(ξ) = 0, then
the general E ∈ P(ξ) is acyclic. [GH]

Remark 3.6. We explain how part (4) of the theorem follows from [GH]. In that paper, it is shown
that if the general E ∈ P(ξ) has H2(E) = 0 then the general E is nonspecial. Let E ∈ P(ξ) be general
of rank at least 2, and suppose that H2(E) 6= 0. By [HiL], E satisfies μmax(E) − μmin(E) ≤ 1. Since
H2(E) 6= 0, we must have μ(E) ≤ −2. By part (3) of the theorem, E is locally free, μ(E∗(−3)) ≥ −1,
and μmin(E

∗(−3)) ≥ −2. Then H2(E∗(−3)) = 0 and E∗(−3) is general in its moduli stack of prioritary
sheaves, so E∗(−3) is nonspecial. By Serre duality, E is nonspecial as well.
Note that the hypothesis that ξ has rank at least 2 is crucial in (4). Indeed, if p ∈ P2, then Ip(−3) is

special, and every torsion-free sheaf with the same Chern character as Ip(−3) is of the form Iq(−3) for
some q ∈ P2.

It is also easy to increase the discriminant and decrease the number of sections of a prioritary sheaf
by the following construction. Suppose E is a torsion-free coherent sheaf with h0(E) > 0. Let E → Op
be a general map, where p ∈ P2 is general. Consider the sheaf E′ defined by the sequence

0→ E′ → E → Op → 0.
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Since E has a section, the map H0(E)→ H0(Op) is surjective. Then we compute

h0(E′) = h0(E)− 1, h1(E′) = h1(E), h2(E′) = h2(E)

rk(E′) = rk(E), μ(E′) = μ(E), Δ(E′) = Δ(E) +
1

rk(E)
, χ(E′) = χ(E)− 1.

Now E′ is again a torsion-free sheaf, so we may repeat this process so long as E′ has a section. Further-
more, if E is prioritary, then E′ is prioritary. We summarize this discussion as the following lemma.

Lemma 3.7. Let E be a torsion-free coherent sheaf, let W ⊂ P2 be a general zero-dimensional scheme
of length w ≤ h0(E), let E → OW be a general map, and define E′ by the sequence

0→ E′ → E → OW → 0.

Then
h0(E′) = h0(E)− w, H1(E′) ∼= H1(E), and H2(E′) ∼= H2(E).

If E is prioritary, then E′ is also prioritary.

We now state our most general result on interpolation. If one knows there are interpolating bundles E
for a scheme Z for a particular slope, you can increase the slope while keeping the interpolation property.

Theorem 3.8. Let Z ⊂ P2 be a nonempty zero-dimensional scheme, and suppose E is a vector bundle of
slope μ with H1(E ⊗IZ) = 0. For each μ′ ≥ μ, there is a prioritary bundle of slope μ′ with interpolation
for Z.

To be more precise, for any slope μ′ ≥ μ, let Δ′ be the unique discriminant such that any bundle F
with invariants ξ = (r′, μ′,Δ′) has χ(F ⊗IZ) = 0. If r′ is sufficiently large and divisible, then the general
F ∈ P(ξ) has interpolation for Z. Moreover, if the moduli space M(ξ) of semistable bundles is nonempty,
then the general F ∈M(ξ) has interpolation for Z as well.

Proof. By Corollary 3.4, we may assume E is a stable vector bundle. Let μ′ ≥ μ, and let k ≥ 0 be the
integer such that

μ+ k ≤ μ′ < μ+ k + 1.

If a, b are chosen appropriately, then the bundle

F = E(k)a ⊕ E(k + 1)b

has slope μ′. While F is obviously not stable, it is nevertheless prioritary by Serre duality.

We claim H1(F ⊗IZ) = 0, which will follow from the claim that H1(E(k)⊗IZ) = 0 for all k ≥ 0. We
prove this by induction on k, with k = 0 being obvious. Consider the sequence

0→ E(k − 1)→ E(k)→ E(k)|L → 0

where L is a general line. Tensoring by IZ is exact on this sequence and H1(E(k − 1) ⊗ IZ) = 0 by
induction, so it suffices to show H1(E(k)|L) = 0. From the sequence

0→ E(k − 2)→ E(k − 1)→ E(k − 1)|L → 0,

we see by induction that H1(E(k − 1)|L) = 0 since H2(E(k − 2)) = 0 as μ(E(k − 2)) ≥ −2 and E is
stable. Then the sequence

0→ E(k − 1)|L → E(k)|L → E(k)|p → 0

on L gives the required vanishing.

Lemma 3.1 now shows that H1(F ) = H2(F ) = H1(F ⊗ IZ) = H2(F ⊗ IZ) = 0. Let w = h0(F ⊗ IZ),
and let F ⊗ IZ → OW be a general map, where W ⊂ P2 is a general zero-dimensional scheme of length
w. If F ′ is the kernel

0→ F ′ → F ⊗ IZ → OW → 0,
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then F ′ is acyclic by Lemma 3.7. As the map F ′ → F ⊗ IZ is an isomorphism near Z, we see that F ′ is
actually of the form F ′′ ⊗ IZ for some subsheaf F ′′ ⊂ F , and there is an exact sequence

0→ F ′′ → F → OW → 0.

In particular, if F → OW is a general map with kernel F ′′, then F ′′ ⊗ IZ is acyclic. Moreover, F ′′ is
prioritary since F is, and μ(F ′′) = μ(F ) = μ′. �

Corollary 3.9. If Z is a zero-dimensional scheme, the set of slopes of bundles with interpolation for
Z is either a closed interval [μ,∞) ∩ Q with μ rational or an open interval (μ,∞) ∩ Q (potentially
with μ irrational). The discriminant of a bundle with interpolation is determined from the slope by the
requirement χ(E ⊗ IZ) = 0.

Proof. Everything follows immediately from the theorem except for the statement that the set is actually
non-empty. For non-emptiness, we only need to produce a sheaf E with H1(E⊗IZ) = 0, and E = OP2(n)
for large n will do. �

Remark 3.10. In the cases we study in this paper, it will always be the case that the interval in the
previous corollary takes the form [μ,∞)∩Q with μ rational. We expect the set of slopes of bundles with
interpolation for Z to always be a closed interval [μ,∞)∩Q with μ rational as a consequence of the fact
that P2[n] is a Mori dream space. This would follow if given a linear system |D| not containing Z in its
stable base locus, we could always find a Θ-divisor in |mD|, for some m > 0, not containing Z. Since we
do not know whether this interval is always closed, we make the following definition.

Definition 3.11. The minimal interpolating slope μ⊥min(IZ) of a zero-dimensional scheme Z is the infi-
mum of the set of slopes of bundles with interpolation for Z.

Remark 3.12. It can in fact happen that there are F ∈ P(ξ) with interpolation for Z but thatM(ξ) is
empty. For example, consider the case where Z = p is a point. If W is a general collection of 2 points,
then the sheaf

F = O3P2 ⊕ IW (1)

is prioritary of slope 1/4 and acyclic to Ip. But Δ(F ) = 13
32 , while any semistable bundle of slope 1/4 has

discriminant at least 2132 by Theorem 2.1. More generally, a stable bundle of slope μ with interpolation

for p exists if μ ∈ {0} ∪ [13 ,∞), while prioritary bundles with interpolation for p exist for all μ ≥ 0. Any
prioritary bundle with slope 0 ≤ μ < 1

3 that has interpolation for p must have OP2 as a factor in its
Harder-Narasimhan filtration.

With this new language, the main theorem of [H] on the cone of effective divisors on P2[n] can be
restated as follows.

Theorem 3.13 ([H]). If Z ∈ P2[n] is a general collection of points, then μ⊥min(IZ) is the minimum
nonnegative slope of a stable vector bundle E with χ(E ⊗ IZ) = 0. Furthermore, the cone of effective
divisors of P2[n] is spanned by

μ⊥min(IZ)H −
1

2
B and B.

We will also need a couple similar results where the role of IZ is replaced by a pure 1-dimensional
sheaf. The proofs are considerably easier.

Proposition 3.14. Let G be a pure 1-dimensional sheaf, and suppose E is a vector bundle such that
E ⊗G is acyclic. Then E and G are semistable.
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Proof. As in the proof of Theorem 3.3, consider an exact sequence

0→ F → E → Q→ 0.

By applying a general automorphism of P2, we may assume the singularities of these sheaves avoid the
support of G. We obtain an exact sequence

0→ F ⊗G→ E ⊗G→ Q⊗G→ 0.

Since E ⊗G is acyclic and the sheaves are 1-dimensional, we have χ(Q⊗G) ≥ 0. Riemann-Roch shows
that this is equivalent to μ(Q) ≥ μ(E), so E is semistable. A similar argument shows G is semistable. �

Theorem 3.15. Let F be a semistable pure 1-dimensional sheaf, and suppose E is a prioritary bundle
such that E⊗F is acyclic. Let (r, μ,Δ) be the numerical invariants of E, and fix a rational number Δ′ ≥
Δ. If r′ is sufficiently divisible, then E′ ⊗ F is acyclic for a general prioritary bundle E′ ∈ P(r′, μ,Δ′).

The only reason for potentially changing the rank is to ensure that χ(E′) = r′(P (μ)−Δ′) is an integer.

Proof. Let r′ = kr be a multiple of r such that r′(P (μ)−Δ′) is an integer. Replacing E be Ek we may
as well assume r′ = r, so r(P (μ)−Δ) and r(P (μ)−Δ′) are both integers. Then

Δ′ −Δ =
w

r

for some integer w ≥ 0. If E → OW is a general map with W a general zero-dimensional scheme of length
w and

0→ E′ → E → OW → 0

then E′ ⊗ F ∼= E ⊗ F but Δ(E′) = Δ(E) + wr = Δ
′. �

If F is a pure 1-dimensional sheaf, then any bundle E with E⊗F acyclic has slope determined by the
requirement χ(E⊗F ) = 0. The theorem shows that the admissible discriminants of such bundles form a
ray. In the cases under consideration in this paper, it will always be a closed ray of the form [Δ,∞)∩Q,
with Δ rational.

Definition 3.16. The minimal interpolating discriminant Δ⊥min(F ) of a semistable pure 1-dimensional
sheaf F is the infimum of the set of discriminants of bundles E with E ⊗ F acyclic.

4. Correspondence between Bridgeland walls and interpolation

In this section, we demonstrate the correspondence between the geometry of a Bridgeland wall and
the numerical invariants of a vector bundle orthogonal to the objects defining the wall. The center of the
wall corresponds to the slope of the orthogonal object, while the radius corresponds to the discriminant.

Proposition 4.1. Let ξ1, ξ2 ∈ K(P2) be linearly independent Chern characters with either rank 0 or
nonnegative discriminant. Suppose ζ = (r, μ,Δ) is a Chern character with r 6= 0 and Δ > −18 , and

χ(ζ∗, ξ1) = χ(ζ
∗, ξ2) = 0.

Then the wall W (ξ1, ξ2) is semicircular, with center (s, 0) and radius ρ given by

μ = −s−
3

2
and 2Δ = ρ2 −

1

4
.

Conversely, if the nonempty semicircular wall W (ξ1, ξ2) has center (s, 0) and radius ρ, then up to scale
there is a unique ζ as above.

We begin with an elementary lemma.
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Lemma 4.2. Let ξ be a nonzero Chern character, and let (s0, t0) be a point in the Bridgeland plane.
Then

<(Zs0,t0(ξ)) = 0

if and only if there is a semicircular potential wall for ξ with center (s0, 0) and radius t0.

Proof. We will only need the case where ξ has nonzero rank, so we omit the other easy cases.

Suppose ξ = (r, μ,Δ) with r 6= 0. We have

< (Zs0,t0(ξ)) = −
1

2
r((s0 − μ)

2 − t20 − 2Δ),

so if <(Zs0,t0(ξ)) = 0, then |s0 − μ| > 2Δ and

t0 =
√
(s0 − μ)2 − 2Δ.

There is a unique semicircular potential wall with center (s0, 0), and its radius is t0 (see §2.3). �

Proof of Proposition 4.1. (⇒) If both ξi have rank 0, there is no ζ which gives χ(ζ∗, ξ1) = χ(ζ∗, ξ2) = 0
unless ξ1, ξ2 are linearly dependent. We, therefore, assume ξ1 has nonzero rank.

Next, we reduce to the case where ξ2 also has nonzero rank. If say ξ2 = (0, ch1, ch2) = (0, c, d), then
we must have c 6= 0 since χ(ζ∗, ξ2) = 0 and ξ2 6= 0. Consider the Chern characters ξ1, ξ1+ kξ2, where k is
a large integer. Then W (ξ1, ξ2) = W (ξ1, ξ1 + kξ2) and χ(ζ

∗, ξ1 + kξ2) = 0. The discriminant of ξ1 + kξ2
is also nonnegative for large k since it grows like Ck2c2 for some constant C > 0. Therefore, we may
replace ξ2 by ξ1 + kξ2 and prove the result for ξ1, ξ1 + kξ2 instead.

Assuming the ranks of the ξi are nonzero, write ξi = (ri, μi,Δi). Put

s0 = −μ−
3

2
and t0 =

√

2Δ +
1

4
.

We claim μs0,t0(ξi) = 0. We compute

< (Zs0,t0(ξi)) = −
1

2
ri((μi − s0)

2 − t20 − 2Δi)

= −
1

2
ri

((

μi + μ+
3

2

)2
−
1

4
− 2Δ− 2Δi

)

= −ri(P (μi + μ)−Δ−Δi)

= −
1

r
χ(ζ∗, ξi)

= 0.

Thus μs0,t0(ξi) = 0 unless perhaps =(Zs0,t0(ξi)) = 0. If =(Zs0,t0(ξi)) = 0, then we find s0 = μi and
t20 = −2Δi, so

−2Δi = 2Δ+
1

4
.

Since Δ > −18 and Δi ≥ 0, this is a contradiction.
We conclude μs0,t0(ξi) = 0, so that (s0, t0) is a point on the wall W (ξ1, ξ2). By Lemma 4.2, there is

a potential wall for ξ1 centered at (s0, 0) with radius t0. Since Δ1 ≥ 0, potential walls for ξ1 foliate the
upper half-plane, and we conclude W (ξ1, ξ2) must be this semicircle.

(⇐) As before, we may assume the ξi both have nonzero rank. Suppose the wallW (ξ1, ξ2) is nonempty,
with center (s0, 0) and radius t0 > 0, and consider the Chern character

ζ = (r, μ,Δ) =

(

1,−s0 −
3

2
,
1

2
t20 −

1

8

)

.
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Then by our earlier calculation
0 = <(Zs0,t0(ξi)) = −χ(ζ

∗, ξi)

since the real part of the central charge vanishes at the top point of any potential wall. To see that ζ is
unique up to scale, view the equations

χ(ζ∗, ξ1) = χ(ζ
∗, ξ2) = 0

as a system of equations in the two variables μ,Δ. Riemann-Roch shows this is equivalent to the system

P (μ+ μ1)−Δ1 = Δ

P (μ+ μ2)−Δ2 = Δ.

Each equation gives a parabola in the (μ,Δ)-plane, and they are translates of one another. The hypothesis
that W (ξ1, ξ2) is a semicircle instead of a line gives that μ1 6= μ2, so they intersect in precisely one
point. �

5. Complete intersection schemes

In this section, we solve the interpolation problem for an arbitrary complete intersection scheme. The
proof for monomial schemes will follow essentially the same basic outline, even if the details will be
substantially more complicated.

Theorem 5.1. Let Z be a (potentially non-reduced) zero-dimensional complete intersection Z = V (f, g),
where deg f = a and deg g = b, with a ≤ b. Then

μ⊥min(IZ) = b+
a− 3
2
.

Proof. The ideal sheaf IZ has a resolution

0→ OP2(−a− b)→ OP2(−a)⊕OP2(−b)→ IZ → 0.

Equivalently, there is an exact sequence

0→ OP2(−a)→ IZ → OC(−b)→ 0.

We guess that this is the Bridgeland destabilizing sequence of IZ .
We compute the wall W (OP2(−a), IZ). We have

ch(OP2(−a)) = (1,−a,
a2

2
), ch(IZ) = (1, 0,−ab),

so the center of the wall is the point (s, 0) with

s = −
1

2
a− b

and the radius ρ satisfies

ρ2 =
1

4
(a− 2b)2.

Then if ζopt ∈ K(P2) is the class with r(ζopt) 6= 0 such that

χ(ζ∗opt,OP2(−a)) = χ(ζ
∗
opt, IZ) = 0,

we must have

μopt(IZ) := μ(ζopt) = −s−
3

2
= b+

a− 3
2

and

Δopt(IZ) := Δ(ζopt) =
1

2
ρ2 −

1

8
=
1

8
((a− 2b)2 − 1).
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We wish to show that if r(ζopt) is sufficiently large and divisible, then a general E ∈ P(ζopt) has
interpolation for Z. To do this we show that both E(−a) and E ⊗OC(−b) are acyclic. By Theorem 3.5,
E(−a) is acyclic since χ(E(−a)) = 0.
To analyze E⊗OC(−b), we solve the interpolation problem for OC(−b). Here the destabilizing sequence

is

0→ OP2(−b)→ OC(−b)→ OP2(−a− b)[1]→ 0.

The corresponding wall has the same center

s = −
1

2
a− b

as the wall W (OP2(−a), IZ), but its radius ρ
′ satisfies

(ρ′)2 =
1

4
a2.

Observe that

ρ2 − (ρ′)2 = b(b− a).

Thus the wall W (OP2(−b),OC(−b)) is always nested in W (OP2(−a), IZ), but can be equal in case a = b.
If ζ ′opt is a class orthogonal to OP2(−b) and OC(−b), then

μopt(OC(−b)) := μ(ζ
′
opt) = b+

a− 3
2

and

Δopt(OC(−b)) := Δ(ζ
′
opt) =

1

8
(a2 − 1).

By Theorem 3.5, if r(ζ ′opt) is sufficiently large and divisible and E ∈ P(ζ
′
opt) is general, then E(−b) and

E(−a − b) are both acyclic. Therefore, E ⊗ OC(−b) is acyclic as well. By Theorem 3.15, the general
E ∈ P(ζopt) also has E ⊗OC(−b) acyclic since Δopt(IZ) ≥ Δopt(OC(−b)).
We can easily verify that the guessed destabilizing sequences for IZ and OC(−b) are the actual desta-

bilizing sequences. The object OC(−b) is semistable along the wall W (OP2(−b),OC(−b)) since it is an
extension of semistable objects of the same slopes. Furthermore, it is semistable for all points outside
this wall since it is a Gieseker stable sheaf. Hence, we deduce that IZ is semistable along the wall
W (OP2(−a), IZ) by the same argument.
So far we have proved that μ⊥min(IZ) ≤ μopt(IZ). For the other inequality, we produce a curve α in the

Hilbert scheme passing through Z such that α ∙ DE = 0, where DE is the divisor corresponding to the
vector bundle E with invariants ζopt having interpolation for Z. To do this, keep the curve C of degree
a fixed but vary the cutting curve of degree b in a one-parameter family of curves having no common
components with C. Any scheme Z ′ parameterized in this way also has the same destabilizing sequence

0→ OP2(−a)→ IZ′ → OC(−b)→ 0.

Then for all such Z ′, we must have E ⊗ IZ′ acyclic, and thus α ∙DE = 0. �

6. Monomial objects

When studying the interpolation problem for a monomial scheme Z, it is natural to decompose Z
into simpler monomial schemes. If this decomposition is chosen correctly, checking interpolation for Z
reduces to checking interpolation for simpler schemes. The proof of Theorem 1.4 will be by induction on
the complexity of Z. In this section, we will give the roadmap of the proof and describe the inductive
process in detail. The actual verifications of the claims will take up the next several sections.
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Let Z be a monomial scheme with ideal sheaf IZ . The main issue is to determine the Bridgeland
destabilizing sequence

0→ A→ IZ → B → 0.

Then to solve the interpolation problem for IZ , one solves the interpolation problem for the simpler
objects A and B. While the objects A and B are not themselves monomial ideal sheaves, they are closely
related to monomial schemes. In the course of running this argument, there are only 3 essentially different
types of objects which arise as destabilizing subobjects or quotient objects. This bounded complexity is
what allows us to solve the interpolation problem for monomial schemes. In this section, we introduce
the 3 different types of monomial objects, and describe how they are destabilized.

6.1. Notation. Before describing the various types of monomial objects, we fix some notation common
to each situation. Consider a monomial scheme Z, and write n for its degree. Its block diagram D = DZ
has r(D) rows and c(D) columns. The minimal powers of x, y in IZ are xr(D) and yc(D), respectively.
We write L for the line y = 0 and L′ for the line x = 0. We denote a fat line such as the nonreduced
scheme yk = 0 by kL.

For any k with 1 ≤ k ≤ c(D), we define a monomial scheme Wk corresponding to the ideal quotient
(IZ : yk) and another monomial scheme Zk by the intersection Zk = Z ∩ kL. Similarly, for any k with
1 ≤ k ≤ r(D), we define a monomial scheme W ′k corresponding to the ideal quotient (IZ : x

k) and
another monomial scheme Z ′k = Z ∩ kL

′.

In terms of the block diagram DZ , the block diagrams DWk and DZk split the diagram into the parts
above and below the kth horizontal line, respectively (indexing rows from the bottom, starting at 0
underneath the first row of boxes). The block diagrams DW ′k and DZ

′
k
split DZ into the parts right and

left of the kth vertical line, respectively (see Figure 4). We denote by wk and w
′
k the degree of Wk and

W ′k, respectively. Then degZk = n−wk and degZ
′
k = n−w

′
k. Finally, we let ` (or `(Z)) be the number

of “full” rows of length c(D) in the block diagram, and we let `′ be the number of columns of length
r(D).

In further constructions, we will always denote “vertical” constructions with a prime (e.g., Z ′k) and
leave “horizontal” constructions unadorned (e.g., Zk).

Z3

W3
Z ′4

W ′4

Figure 4. The schemes W3, Z3 and W
′
4, Z

′
4 for a monomial scheme.

6.2. Rank 1 monomial objects. Despite the complicated name, a rank 1 monomial object is just an
ideal sheaf IZ of a monomial scheme. We call IZ trivial if Z is empty, so that IZ = OP2 , and we assume
IZ is nontrivial. For each k with 1 ≤ k ≤ r(D), there is an exact sequence

0→ IWk(−k)
yk
→ IZ → IZk⊂kL → 0.

For each k, we obtain a potential Bridgeland wall W (IWk(−k), IZ) for IZ . Similarly, by exchanging the
roles of x and y, we obtain another family

0→ IW ′k(−k)
xk
→ IZ → IZ′k⊂kL′ → 0
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of sequences which potentially destabilize IZ . Bridgeland walls for IZ are nested semicircles to the left
of the vertical wall s = 0 in the (s, t)-plane. The destabilizing sequence for IZ always corresponds to the
largest wall constructed in this way (see §9).

Figure 5. The radii that need to be compared to find the destabilizing subobject of a
rank 1 monomial object IZ .

Observe that (up to exchanging x and y) the destabilizing subobject is a twist of a rank 1 monomial
object IWk(−k), with degWk < degZ (potentially Wk is empty, in case k = r(D)). The cokernel,
however, is something new which we must study.

6.3. Rank 0 monomial objects. Here we describe a class of objects which (up to exchanging x and y)
contains all the destabilizing quotient objects of rank 1 monomial objects. In order to not disrupt the
flow of the argument, we will defer the simple definition of a horizontally pure monomial scheme to §7.2.
It combinatorially captures the condition for a rank 0 sheaf to arise as a destabilizing quotient object of
a rank 1 monomial object.

Definition 6.1. A rank 0 monomial object is an ideal sheaf IZ⊂kL, where Z ⊂ kL is a horizontally pure
monomial scheme whose block diagram D has r(D) = k.

For an alternate self-contained definition, we will see that Z is horizontally pure if and only if IZ⊂kL
is a (Gieseker) semistable sheaf (see Theorem 8.1).

As in the rank 1 case, we construct several potentially destabilizing subobjects of a rank 0 monomial
object, and guess that the actual destabilizing subobject corresponds to the sequence which gives the
largest Bridgeland wall. Consider the block diagram D of Z. By assumption r(D) = k, so there are
`′ > 0 columns of k boxes. For each i with `′ ≤ i ≤ c(D), we consider the map

IW ′i (−i)
xi
−→ IZ⊂kL,

which is (typically) neither injective nor surjective as a map of sheaves. The kernel is OP2(−k − i) and
the cokernel is IZ′i⊂kL∩iL′ . Viewing the rows of the diagram

IW ′i (−i) IZ⊂kL

OP2(−i) IZ′i⊂kL

OP2(−k)⊕OP2(−i) IZ′i

as complexes, the vertical maps are quasi-isomorphisms. Let F • be the complex in the final row, supported
in degrees −1 and 0. Then F • is the mapping cone of the map IW ′i (−i) → IZ⊂kL, and there is a
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distinguished triangle
IW ′i (−i)→ IZ⊂kL → F

• → ∙

For each i, we have a potential wall

W (IW ′i (−i), IZ⊂kL)

for the rank 0 object IZ⊂kL. Walls for this object are all concentric semicircles. If we choose i to maximize
the radius of this wall, then in fact all the objects in the previous distinguished triangle lie in the the
category As along the wall, and the triangle becomes an exact sequence. Furthermore, IZ⊂kL is first
destabilized along this wall (see §9).
Again in this case, the destabilizing subobject is a twist of a rank 1 monomial object, where the

monomial scheme has smaller degree than Z (since `′ > 0 in the previous construction). This time the
rank −1 complex F • is new.

k

`′

Figure 6. The radii that need to be compared to find the destabilizing subobject of a
rank 0 monomial object IZ⊂kL.

6.4. Rank −1 monomial objects. A rank −1 monomial object is a complex F • of the form

OP2(−k)⊕OP2(−i)
(yk,xi)
−−−−→ IZ ,

supported in degrees −1 and 0, where Z is a monomial scheme whose block diagram has r(D) = k and
c(D) = i. Then there are ` > 0 rows of length i and `′ > 0 columns of length k. The destabilizing
quotient object of a rank 0 monomial object is always a rank −1 monomial object (see §9).
The cohomology sheaves of such a complex are given by

H−1(F •) = OP2(−k − i), H0(F •) = IZ⊂kL∩iL′ .

Thus, F • is in the category As if and only if s lies to the right of the vertical wall s = −i − k. We
will show that F • is Gieseker stable (see Theorem 8.1), in the sense that it is (s, t)-Bridgeland stable for
sufficiently large t.

Observe that if Z is the complete intersection kL∩ iL′, then F • is quasi-isomorphic to OP2(−i− k)[1];
in this case we call F • trivial. Thus, we assume that Z is nontrivial. Potential destabilizing objects of F •

are analogous to the destabilizing objects in the rank 1 case. For any j with ` ≤ j < k (note the strict
inequality) there are maps of complexes

OP2(−k) OP2(−k)⊕OP2(−i) OP2(−i)

IWj (−j) IZ IZj⊂jL



INTERPOLATION FOR MONOMIAL SCHEMES 21

giving a distinguished triangle in the derived category. For each j, we obtain a wall where the three
vertical complexes here have the same Bridgeland slope. By interchanging the roles of x and y, we get a
similar diagram and another set of walls. Then F • is destabilized along the largest wall constructed in
this fashion (see §9).

k

`

`′

i

Figure 7. The radii that need to be compared to find the destabilizing subobject of a
rank −1 monomial object OP2(−k)⊕OP2(−i)→ IZ .

Without loss of generality assume the largest wall corresponds to the first construction above, where x
and y have not been swapped, and let the largest wall correspond to the index j, as in the diagram. Then
the destabilizing subobject is quasi-isomorphic to IW⊂(k−j)L(−j), and by our choice of j the scheme Wj
has the required purity property for this sheaf to be a twisted rank 0 monomial object (see Proposition
7.3). On the other hand, the quotient object OP2(−i) → IZj⊂jL is quasi-isomorphic to the rank −1
monomial object

OP2(−j)⊕OP2(−i)→ IZj .

Since j < k, both schemes Wj and Zj are nonempty, and hence of smaller degree than Z.

Example 6.2. In Figure 8, we illustrate the inductive procedure by decomposing the monomial scheme
Z of degree 48 defined by the monomials x9, x7y2, x6y4, x4y5, x3y6, y8. In the figure, block diagrams with
no dotted lines denote rank 1 monomial objects. Rank 0 monomial objects are indicated by a single
dotted line and rank −1 monomial objects are denoted with two dotted lines. The left branch under any
object denotes the destabilizing subobject and the right branch denotes the quotient object. A small
arrow indicates the horizontal or vertical line that corresponds to the largest Bridgeland wall.

The destabilizing sequence for IZ is

0→ IW5(−5)→ IZ → IZ5⊂5L → 0,

where W5 is the monomial scheme with ideal (x
4, x3y, y3) and Z5 is the monomial scheme with ideal

(x9, x7y2, x6y4, y5). The left branch in the figure further decomposes IW5(−5) until every object is a line
bundle or a shift of a line bundle. For example, at the first step, IW5(−5) has destabilizing sequence

0→ Ip(−8)→ IW5(−5)→ IU⊂3L′(−5)→ 0,

where p is the point with ideal (x, y) and U is the monomial scheme with ideal (x3, y3). At this point, it
is easy to decompose these monomial objects into line bundles and their shifts and Figure 8 depicts the
outcome.

The right branch further decomposes the rank 0 monomial object IZ5⊂5L. In order to inductively
analyze Z5 with our usually notation, set Z = Z5. Let W

′
7 be the monomial scheme with ideal (x

2, y2)
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O(−9)

⊗O(−5)

⊗O(−8)

⊗O(−8)

⊗O(−5)

⊗O(−7)

⊗O(−4)

O(−10) O(−11)[1]

⊗O(−7)

O(−9) O(−11)[1]

O(−9)

O(−11)[1]

O(−10)[1]O(−9)

O(−11)[1]O(−8)

Figure 8. Inductive procedure for decomposing the degree 48 monomial scheme Z with
ideal (x9, x7y2, x6y4, x4y5, x3y6, y8). We have μ⊥min(IZ) = 8

3
5 . See Example 6.2 for details.
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and let Z ′7 be the monomial scheme with ideal (x
7, x6y4, y5). The destabilizing sequence is

0→ IW ′7(−7)→ IZ=Z5⊂5L → F
• → 0,

where F • is the rank −1 monomial object

OP2(−5)⊕OP2(−7)
(y5,x7)
−−−−→ IZ′7 .

The rest of the diagram shows the further decomposition of these objects into line bundles and their
shifts.

6.5. Outline of the proof of Theorems 1.4 and 10.1. Here we discuss the general outline of the
structure of the rest of the paper. The basic strategy is reminiscent of the argument for complete
intersections in §5.

(1) Calculate the numerical invariants associated to monomial objects. Determine the radii of the
potential Bridgeland walls, so that the actual destabilizing wall can be computed. See §7.

(2) Define the horizontal purity condition in the definition of a rank 0 monomial object (§7.2). Verify
that the destabilizing quotient object of a rank 1 monomial object is a rank 0 monomial object
(Proposition 7.2), and that the destabilizing subobject of a rank −1 monomial object is a rank 0
monomial object (Proposition 7.3).

(3) Show that each type of monomial object is Gieseker semistable (Theorem 8.1). Any Gieseker
semistable object is Zs,t-semistable everywhere outside a single semicircular wall where it is
destabilized.

(4) For each monomial object F , consider the hypothesized destabilizing sequence

0→ A→ F → B → 0

which was guessed in this section. Use the Gieseker semistability property and induction to show
that A and B are semistable outside semicircular walls nested inside the wall W (A,F ) (see §9).
Conclude that this sequence is actually the destabilizing sequence for F .

(5) Inductively solve the interpolation problem for all three types of monomial objects simultaneously
by making use of the destabilizing sequences (see §10).

7. Calculation of numerical invariants & Purity

In this section, we collect several numerical calculations concerning Bridgeland walls associated to
monomial objects defined in §6. We also introduce the purity condition for a rank 0 monomial object.
We preserve the notation from §6.1.

7.1. Invariants of rank 1 monomial objects. Recall that a rank one object is just a monomial ideal
sheaf IZ . The potential destabilizing sequences are of the form

0→ IWk(−k)→ IZ → IZk⊂kL → 0

0→ IW ′k(−k)→ IZ → IZ′k⊂kL′ → 0

and the destabilizing sequence is the sequence above which gives the largest wall. We compute

ch(IWk(−k)) = (1,−k,
k2

2
− wk), ch(IZ) = (1, 0,−n),

so the wall W (IWk(−k), IZ) is centered at the point (sk, 0) in the Bridgeland plane with

sk = −
k

2
+
wk − n
k
;
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similarly, the wall W (IW ′k(−k), IZ) is centered at the point (s
′
k, 0) with

s′k = −
k

2
+
w′k − n
k
.

Note that Δ(IZ) = n ≥ 0, so the discussion of potential Bridgeland walls in §2.3 applies, as does
Proposition 4.1. Potential walls for IZ are nested semi-circles to the left of the vertical wall s = 0, with
larger walls having more negative centers (see [ABCH] and §2.3). Therefore, the largest wall corresponds
to the minimum number among the sk (with 1 ≤ k ≤ r(D)) and the s′k (with 1 ≤ k

′ ≤ c(D)).

Remark 7.1. When s2k < 2n, the wall constructed above is empty since the virtual radius ρk given by
ρ2k = s

2
k − 2n is imaginary. In §9, we will show that if sk or s

′
k corresponds to the largest possible wall,

then it is nonempty and the destabilizing sequence is an exact sequence in categories As along the wall.

For each k, let ζk ∈ K(P2) be a class with r(ζk) 6= 0 such that

χ(ζ∗k , IWk(−k)) = χ(ζ
∗
k , IZ) = 0,

and analogously let ζ ′k be an orthogonal class for the other type of potential destabilizing sequence; these
are unique up to scale. Keeping Proposition 4.1 in mind, we define

μk(IZ) := μ(ζk) = −sk −
3

2

and

Δk(IZ) := Δ(ζk) =
1

2
ρ2k −

1

8
.

The slopes μk(IZ) are precisely the slopes defined in the introduction, so they have a convenient combi-
natorial description in terms of block diagrams. We similarly define

μ′k(IZ) = μ(ζ
′
k) Δ′k = Δ(ζ

′
k).

Then the potential wall with largest radius corresponds to a class ζopt with invariants (μopt(IZ),Δopt(IZ))
given by

μopt(IZ) = max
k
{μk(IZ), μ

′
k(IZ)}

Δopt(IZ) = max
k
{Δk(IZ),Δ

′
k(IZ)}

In fact, Δopt(IZ) may be easily determined from μopt(IZ) by applying Riemann-Roch to the equality
χ(ζ∗opt, IZ) = 0:

Δopt(IZ) = P (μopt(IZ))− n.

7.2. Purity of monomial schemes. We now introduce the purity condition in the definition of a rank
0 monomial object. Suppose Z is a monomial scheme with k rows in its block diagram, and consider the
k horizontal slopes μ1(IZ), . . . , μk(IZ) defined in the previous subsection. We say that Z is horizontally
pure if μi(IZ) ≤ μk(IZ) for 1 ≤ i ≤ k. We will see in the next section that this condition can naturally
be interpreted in terms of the Gieseker semistability of the pure 1-dimensional sheaf IZ⊂kL.

Proposition 7.2. Let Z be a monomial scheme, and suppose the largest potential wall constructed for
the rank one monomial object IZ corresponds to the horizontal slope μopt(IZ) = μk(IZ). Then Zk is
horizontally pure, so the quotient object IZk⊂kL is a rank 0 monomial object.

If the destabilizing sequence of IZ corresponds to splitting up Z as W ′k and Z
′
k, we could discuss an

analogous notion of vertically pure monomial schemes, but we prefer to reduce to the horizontal case by
swapping the x and y coordinates.
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Proof. From the block diagram interpretation of horizontal slopes μi(IZ), it is clear that

μi(IZk) = μi(IZ) ≤ μopt(IZ) = μk(IZ) = μk(IZk)

for 1 ≤ i ≤ k = r(DZk). �

7.3. Invariants of rank 0 monomial objects. Consider a rank 0 monomial object F = IZ⊂kL, where
Z is a horizontally pure scheme with r(D) = k. To construct potential walls for this object, we let `′

be the number of columns in D of length k and allowed i to be any index with `′ ≤ i ≤ c(D). We then
considered a sequence

0→ IW ′i (−i)→ F → (OP2(−k)⊕OP2(−i)→ IZ′i)→ 0.

We compute Chern characters

ch(IW ′i (−i)) = (1,−i,
i2

2
− w′i) ch(F ) = (0, k,−

k2

2
− n).

All Bridgeland walls for this object are concentric circles with fixed center

s0 = −
n

k
−
k

2
,

and the radius of the wall corresponding to this sequence is ρ′i given by

(ρ′i)
2 = s20 −

(

i(k − i) +
2ni

k
+ w′i

)

.

As in the rank 1 case, let ζ ′i ∈ K(P
2) be a class with nonzero rank such that χ((ζ ′i)

∗, ξ) = 0 for each
Chern character ξ of a term in the destabilizing sequence. We define

Δ′i(F ) = Δ(ζ
′
i) =

1

2
(ρ′i)

2 −
1

8
and

μopt(F ) = −s0 −
3

2
Δopt(F ) = max

i
{Δ′i(F )}.

Hence, μopt(F ) depends only on ch(F ) and not on the finer structure of Z itself, while maximizing the
radius of the wall corresponds to maximizing the Δ′i(F ).

7.4. Invariants of rank −1 monomial objects. Here the story is similar to rank 1 monomial objects,
so we will be more brief. Let F • = OP2(−k) ⊕ OP2(−i) → IZ . The potential “horizontal” destabilizing
sequences look like

0→ IWj⊂(k−j)L(−j)→ F
• → (OP2(−j)⊕OP2(−i)→ IZj )→ 0

with ` ≤ j < k, and there are analogous potential “vertical” destabilizing sequences. The Chern charac-
ters of two objects from the sequence are given by

ch(F •) = (−1, k+ i,−
k2 + i2

2
−n) ch(OP2(−j)⊕OP2(−i)→ IZj ) = (−1, j + i,−

j2 + i2

2
− (n−wj)),

from which we compute the center (sj , 0) of the corresponding Bridgeland wall as

sj = −
1

2
(j + k)−

wj

k − j
.

Analogously there are centers of the form s′j coming from potential vertical destabilizing sequences. We

have Δ(F •) = ki − n ≥ 0, so the discussion of potential Bridgeland walls from §2.3 applies. Potential
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walls for F • lie to the right of the vertical wall s = −k − i, and grow larger as their centers increase.
Maximizing the Bridgeland wall then corresponds to maximizing the sj and s

′
j . Denote by ρj , ρ

′
j the

virtual radii of the corresponding walls.

We choose classes ζj , ζ
′
j ∈ K(P

2) orthogonal to the terms of the corresponding destabilizing sequences.
Define

μj(F
•) = μ(ζj) = −sj −

3

2

Δj(F
•) = Δ(ζj) =

1

2
ρ2j −

1

8
,

and analogously define μ′j(F
•),Δ′j(F

•). Then

μopt(F
•) = min

j
{μj(F

•), μ′j(F
•)}

Δopt(F
•) = max

j
{Δj(F

•),Δ′j(F
•)},

noticing that by contrast with the rank 1 case we must minimize the slopes.

7.5. Purity revisited. As a last result in this section, let us verify that the rank 0 destabilizing subobject
of a rank 1 monomial object satisfies the necessary purity condition. We preserve the notation from the
previous subsection.

Proposition 7.3. Suppose the largest potential destabilizing wall for the rank −1 monomial object F •

corresponds to a sequence

0→ IWj⊂(k−j)L(−j)→ F
• → (OP2(−j)⊕OP2(−i)→ IZj )→ 0.

Then Wj is a horizontally pure monomial scheme. The destabilizing subobject of a rank −1 monomial
object is a twisted rank 0 monomial object.

Proof. The hypothesis gives μopt(F
•) = μj(F

•). The block diagram DWj has r(DWj ) = k − j since
r(DZ) = k. We must check that μk−j(IWj ) ≥ μm(IWj ) for each 1 ≤ m < k − j. The part of the block
diagram of Wj lying above the mth horizontal just corresponds to the scheme Wj+m. This inequality
therefore amounts to showing

(1)
wj

k − j
+
k − j − 3
2

≥
wj − wj+m
m

+
m− 3
2
.

Since μopt(F
•) = μj(F

•), we are given the inequality μj(F
•) ≤ μj+m(F •), or

1

2
(j + k) +

wj

k − j
≤
1

2
(j +m+ k) +

wj+m

k − j −m
.

Rearrange this to get

wj+m ≥ (k − j −m)

(
wj

k − j
−
1

2
m

)

.

Substituting this estimate into Inequality 1 yields an equality, so the required inequality is true. �

8. Gieseker semistability of monomial objects

We say that an object F of a category As is Gieseker semistable if it is Zs,t-semistable for all sufficiently
large t. This notion is independent of the choice of s. If F is a pure sheaf, then this notion of Gieseker
semistability coincides with the usual notion of Gieseker semistability of sheaves.

The goal of this section is to prove the following result.

Theorem 8.1. Monomial objects are Gieseker semistable.
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The Gieseker semistability condition ensures that a monomial object which is destabilized along a
semicircular wall is Zs,t-semistable at all points lying outside the semicircle [ABCH]. In particular, if
another semicircular potential wall lies outside the wall where a monomial object is destabilized, then
that object is semistable along the larger wall.

As usual, there are separate arguments to be given depending on the rank of the monomial object.
The rank 1 case is clear, since ideal sheaves are Gieseker stable.

Proposition 8.2. Rank 0 monomial objects are Gieseker semistable sheaves.

Proof. Consider a rank 0 monomial object IZ⊂kL. Any subsheaf of IZ⊂kL is itself an ideal sheaf, so
corresponds to a closed subscheme Z ′ ⊂ kL. Any homogeneous ideal

J ⊂ C[x, y, z]/(yk)

is of the form yj ∙ J ′ for some homogeneous ideal J ′ such that the subscheme of (k− j)L defined by J ′ is
zero-dimensional. Denoting by J̃ the ideal sheaf on kL corresponding to the ideal J , there is an inclusion
J̃ ⊂ IZ⊂kL if and only if the subscheme defined by J ′ contains the scheme Wj constructed from Z. Then
if J̃ ⊂ IZ⊂kL, we conclude that the reduced Hilbert polynomial satisfies p(J̃) ≤ p(IZ∪jL⊂kL). Thus it
suffices to check that p(IZ∪jL⊂kL) ≤ p(IZ⊂kL) for 0 < j < k.
We have an exact sequence

0→ IZ∪jL⊂kL → IZ⊂kL → IZj⊂jL → 0.

It is enough to show that p(IZ⊂kL) ≤ p(IZj⊂jL). Using the sequences

0 → IZ⊂kL → OkL → OZ → 0
0 → OP2(−k) → OP2 → OkL → 0

we find that the (ordinary) Hilbert polynomial of IZ⊂kL is

POkL(x)− POZ (x) = POP2 (x)− POP2 (−k)(x)− n = kx−

(

n+
k2 − 3
2

)

,

so the reduced Hilbert polynomial of IZ⊂kL is

p(IZ⊂kL) = x− μk(IZ).

Likewise, we find
p(IZj⊂jL) = x− μj(IZj ) = x− μj(IZ).

The required inequality then follows from the horizontal purity of Z. �

Proposition 8.3. Rank −1 monomial objects are Giesker stable.

Proof. Let
F • := (OP2(−k)⊕OP2(−i)→ IZ)

be a rank −1 monomial object, and let s > −i− k, so that F • ∈ As. If F • is not Zs,t-stable for all large
t, there must be a destabilizing subobject A• ⊂ F • such that μs,t(A•) > μs,t(F •) for all large t. Consider
the exact sequence in As

0→ A• → F • → B• → 0,

which induces an exact sequence of cohomology sheaves

0→ H−1(A•)
α
→ OP2(−k − i)→ H

−1(B•)→ H0(A•)→ IZ⊂kL∩iL′ → H
0(B•)→ 0.

Then H−1(A•) is a subsheaf of OP2(−k−i), and the cokernel of α is a subsheaf of H
−1(B•). Since H−1(B•)

is torsion-free (as it is in Fs), the cokernel of α must be torsion-free. Hence, either H−1(A•) = OP2(−k−i)
and α is an isomorphism; or H−1(A•) = 0.
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First, suppose H−1(A•) = 0. Since the rank of F • is −1, we have μs,t(F •) → ∞ as t → ∞. On the
other hand, as t→∞ we have either

(1) μs,t(A
•)→ −∞ if H0(A•) has positive rank,

(2) μs,t(A
•)→ 0 if H0(A•) is 1-dimensional, or

(3) μs,t(A
•) ≡ ∞ if H0(A•) is 0-dimensional.

Thus, in the first two cases A• cannot destabilize F • for large t. The final case also cannot happen
because there are no nonzero homomorphisms from a 0-dimensional sheaf to F •. To see this, it suffices
to show that HomDb(P2)(Op, F

•) = 0 for any point p. There is a distinguished triangle

IZ → F
• → (OP2(−i)⊕OP2(−k))[1]→ ∙,

and applying HomDb(P2)(Op,−) shows the required vanishing.

Next, suppose H−1(A•) = OP2(−k− i) and α is an isomorphism. The previous long exact sequence of
cohomology sheaves induces a short exact sequence

0→ H−1(B•)→ H0(A•)→ T → 0,

where T ⊂ IZ⊂kL∩iL′ is a 0-dimensional sheaf. Then H
−1(B•) and H0(A•) have the same rank r and

first Chern class c1. If r 6= 0, these sheaves have the same slope, which is absurd since H−1(B•) ∈ Fs
and H0(A•) ∈ Qs. Thus r = 0, and since H−1(B•) is torsion-free, we find H−1(B•) = 0. Then B•

is a (nonzero) 0-dimensional sheaf, so μs,t(B
•) ≡ ∞. This contradicts the assumption that B• was a

destabilizing quotient object of F •. �

9. Nesting of Bridgeland walls for monomial objects

Int this section, we show that the conjectured destabilizing walls for monomial objects are the actual
destabilizing walls. Recall that a monomial object is trivial if it is either a line bundle (in the rank 1 case)
or a shift of a line bundle (in the rank −1 case). For simplicity, we will also call twisted trivial monomial
objects trivial. Rank 0 monomial objects are never trivial in this sense. Trivial monomial objects are
always Zs,t-stable if they are in As [ABCH].

Theorem 9.1. Let F be a nontrivial monomial object, and consider the largest potential destabilizing
wall for F , as constructed in §6. Then F is destabilized along this wall, and F is Zs,t-semistable at all
points on and outside this wall.

Precisely, consider the distinguished triangle

A→ F → B → ∙.

corresponding to the wall. Then the wall W (A,F ) is nonempty, and there is an exact sequence

0→ A→ F → B → 0

of semistable objects of the categories As along the wall. The object A is either trivial or it is a twisted
monomial object destabilized along a wall nested inside W (A,F ). Similarly, the monomial object B is
either trivial or it is a monomial object destabilized along a wall nested inside W (A,F ).

The nonemptiness of the wall and the exactness of the sequence along the wall are both consequences
of the nesting statements (see §9.1 and §9.2). Since monomial objects are Gieseker semistable, they are
all Zs,t-semistable outside their destabilizing walls. We conclude that proving the theorem reduces to
proving the nesting statements, which forms the technical heart of the argument.

For the proof, we consider each type of nontrivial monomial object F separately and proceed by
induction on the degree n of the monomial scheme in a monomial object. We summarize facts which
were discussed in section 6 to describe the structure of the induction.
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(1) Suppose F has rank −1. Its destabilizing subobject is a twisted rank 0 object corresponding to
a monomial scheme of smaller degree, and its destabilizing quotient object is a (possibly trivial)
rank −1 object corresponding to a monomial scheme of smaller degree. We conclude by induction.

(2) Suppose F has rank 0. The destabilizing subobject is a (potentially trivial) twisted rank 1 object
corresponding to a monomial scheme of smaller degree. Its quotient object is a (potentially trivial)
rank −1 object corresponding to a monomial scheme of no larger degree. Using induction on the
subobject and applying the rank −1 case to the quotient object allows us to conclude.

(3) Finally, suppose F has rank 1. Similarly to the rank 0 case, a rank 1 object gives another
“smaller” (potentially trivial) twisted rank 1 object and a rank 0 object which corresponds to
a monomial scheme of no larger degree. We use induction on the rank 1 object and run the
preceding argument for rank 0 objects on the quotient.

Thus to prove the nesting statements for F , we may assume inductively that the theorem is known
for A and B. Before showing the nesting statements, let us show that the nonemptiness of the wall and
exactness of the sequence follow from nesting. The same inductive structure is useful for proving these
facts.

9.1. Nonemptiness of destabilizing walls. Assume the nesting result holds. Observe that the only
way both the subobject A and the quotient object B of F can be trivial is if F = IZ⊂kL has rank 0 and
Z is a complete intersection scheme kL ∩ iL′, in which case the destabilizing sequence is

0→ OP2(−i)→ F → OP2(−k − i)[1]→ 0.

Since k > 0, the corresponding wall is nonempty.

If either A or B is a nontrivial twisted monomial object, then by induction (as described above)
we conclude that object is destabilized along a nonempty wall. By nesting, F is destabilized along a
nonempty wall as well.

9.2. Exactness of destabilizing triangles. Again assume the nesting result holds, and consider the
triangle

A→ F → B → ∙

If A is nontrivial, then by induction it is destabilized along a nonempty wall nested inside W (A,F ). Then
it is in the categories As along its destabilizing wall, so it is in some of the categories As along W (A,F )
as well. It is then in the categories along the entire wall. The same argument applies to B.

We must also see that F lies in the categories As along the wall W (A,F ). If F has rank 0, there is
nothing to prove. In the rank 1 case, one uses the formulas of §7 to check the wall W (A,F ) lies to the
left of the vertical wall for F , and in the rank −1 case the wall W (A,F ) lies to the right of the vertical
wall for F .

Finally, we must consider what happens when either A or B is trivial. There are four cases to consider.

Case 1: A trivial, F has rank 1. Say F = IZ . All potential walls for F left of the vertical wall for F are
semicircles with centers left of −

√
2Δ(IZ) = −

√
2n.We must see that if A = OP2(−k) then −k > −

√
2n,

or k2 < 2n. Up to swapping x and y, the only way to have A = OP2(−k) is if r(DZ) = k. Then

μopt(IZ) = μk(IZ) =
n

k
+
k − 3
2

while

μ′1(IZ) = k − 1,

and by maximality of the wall μk(IZ) ≥ μ′1(IZ). The required inequality follows.
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Case 2: A trivial, F has rank 0. We let F = IZ⊂kL and A = OP2(−i). It is enough to see that −i > s0,
where s0 is the center of all the potential walls for F . By §7.3, this amounts to the inequality

i <
n

k
+
k

2
.

We have i = c(DZ), so horizontal purity of Z gives

i− 1 = μ1(IZ) ≤ μk(IZ) =
n

k
+
k − 3
2
,

and the inequality is immediate.

Case 3: B trivial, F has rank 0. Again say F = IZ⊂kL, and write B = OP2(−k − i)[1]. The block
diagram DZ must then have `

′ = i full columns of k boxes. We must see that −k − i ≤ s0, or

i ≥
n

k
−
k

2
.

Considering that wk−1 = i, this follows immediately from the purity hypothesis μk(IZ) ≥ μk−1(IZ).
Case 4: B trivial, F has rank −1. Write

F = (OP2(−k)⊕OP2(−i)→ IZ) and B = OP2(−j − i)[1],

so that F is destabilized by the jth horizontal line and there are ` = j full rows of i boxes in DZ . Walls
for F are nested semicircles to the right of the vertical wall s = −k − i, and they all have centers lying
to the right of

−k − i+
√
2Δ(F ) = −k − i+

√
2(ki− n).

It is then enough to show

−j − i ≤ −k − i+
√
2(ki− n),

or (k − j)2 < 2(ki− n). This follows from the inequality μj(F ) ≤ μ′i−1(F ).
In every case, A, F, and B are all objects in As along the wall, and the triangle is an exact sequence.

9.3. Nesting for rank 1 objects. Consider the conjectured destabilizing sequence of a rank 1 object

0→ IWk(−k)→ IZ → IZk⊂kL → 0.

By induction, we may assume both the subobject and the quotient object have the conjectured destabi-
lizing sequences.

Lemma 9.2. If IWk(−k) is nontrivial, it is destabilized along a wall nested in W (IWk(−k), IZ), and

μopt(IWk) + k ≤ μopt(IZ).

Proof. The destabilizing wall for IWk(−k) is centered k units to the left of the destabilizing wall for IWk .
Since the slopes μopt(IWk) and μopt(IZ) correspond to the centers of the destabilizing walls for IWk and
IZ , the nesting statement is equivalent to the displayed inequality.
By assumption, μopt(IZ) = μk(IZ). There are two cases to consider, corresponding to whether

μopt(IWk) = μi(IWk) or μopt(IWk) = μ
′
i(IWk).

First, suppose μopt(IWk) = μi(IWk). By the block diagram interpretation of horizontal slopes (see
Figure 9), we find

(i+ k)μi+k(IZ) = kμk(IZ) + iμi(IWk) + ik.

The choice of k gives μi+k(IZ) ≤ μk(IZ), from which we conclude

μopt(IWk) + k = μi(IWk) + k ≤ μk(IZ) = μopt(IZ).
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k

k

i

Figure 9. The block diagram interpretation of the equation (i+k)μi+k(IZ) = kμk(IZ)+
iμi(IWk) + ik.

On the other hand, suppose μopt(IWk) = μ
′
i(IWk). Again by the block diagram interpretation of

vertical slopes (see Figure 10), we have

μopt(IWk) = μ
′
i(IWk) = k + μ

′
i(IZ) ≤ k + μopt(IZ),

as required.

i

k

Figure 10. The block diagram interpretation of the equation μ′i(IWk) = k + μ
′
i(IZ).

�

Lemma 9.3. The rank zero object IZk⊂kL is destabilized along a wall nested in W (IZ , IZk⊂kL), and

Δopt(IZk⊂kL) ≤ Δopt(IZ).

(Note that both objects have the same μopt.)

Proof. Write F = IZk⊂kL. In the block diagramDZk of Zk, there are some number `
′ > 0 of columns of full

height k. By induction, F is destabilized by some twisted rank one object IW ′i (−i) with `
′ ≤ i ≤ c(D(Zk)).

In particular, since i ≥ `′, notice that W ′i can be obtained as a vertical slice from either Z or from Zk.
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Since Δopt(F ) and Δopt(IZ) correspond to the radii of the corresponding destabilizing walls, the
nesting statement amounts to the inequality Δopt(F ) ≤ Δopt(IZ). To show the inequality, note that by
the choice of k, we have

n− w′i
i
+
i− 3
2
= μ′i(IZ) ≤ μk(IZ) = μk(IZk) =

n− wk
k

+
k − 3
2
.

Interpret this inequality as a lower bound for w′i:

w′i ≥
1

2
i(i− k) + n−

i

k
(n− wk).

Recalling our computations from Section 7,

Δopt(F ) = Δi(F ) = P (μk(IZ)− i)− w
′
i

and
Δopt(IZ) = P (μk(IZ))− n.

Then

Δopt(IZ)−Δopt(F ) = −
1

2
i(i− k)− n+

i

k
(n− wk) + w

′
i.

Substituting the lower bound for w′i gives Δopt(F )−Δopt(IZ) ≥ 0. �

9.4. Nesting for rank 0 objects. Here we consider a rank 0 object F = IZ⊂kL and its destabilizing
sequence

0→ IW ′i (−i)→ F → G
• → 0,

where G• is the rank −1 object

G• := OP2(−k)⊕OP2(−i)→ IZ′i .

To show that the walls nest appropriately, the purity hypothesis on Z is essential.

Lemma 9.4. If IW ′i (−i) is nontrivial, it is destabilized along a wall nested in W (IW ′i (−i), F ), and

μopt(IW ′i ) + i ≤ μopt(F ).

Proof. As in previous cases, the inequality precisely encodes the nesting of the walls.

First, supposeW ′i is destabilized horizontally, with μj(IW ′i ) = μopt(IW ′i ). From our explicit calculations
in Section 7, we have μopt(F ) = μk(IZ), and since Z is horizontally pure μk(IZ) ≥ μj(IZ). By the block
diagram interpretation of horizontal slopes,

μopt(IW ′i ) + i = μj(IW ′i ) + i = μj(IZ) ≤ μk(IZ) = μopt(F ).

On the other hand, suppose W ′i is destabilized vertically, with μ
′
j(IW ′i ) = μopt(IW ′i ). The required

inequality is
w′i − w

′
i+j

j
+
j − 3
2
+ i = μ′j(IW ′i ) + i ≤ μopt(F ) =

n

k
+
k − 3
2

Here the choice of i gives an inequality Δi(F ) ≥ Δi+j(F ). Written out, this is equivalent to

w′i+j ≥
1

2
j(2i+ j − k)−

j

k
n+ w′i.

Making this substitution proves the required inequality. �

Lemma 9.5. If the rank −1 object G• is nontrivial, it is destabilized along a wall nested in W (F,G•),
and

μopt(G
•) ≥ μopt(F ).
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Proof. Suppose G• is destabilized by a rank zero object A. The walls W (G•, A) and W (F,G•) are both
walls for G•, which is a stable object to the right of the vertical wall s = μ(G•). The correct nesting
amounts to showing the center of W (F,G•) lies to the right of the center of W (G•, A), and this is
equivalent to the displayed inequality.

As usual, there are two cases to consider based on whether G• is destabilized horizontally or vertically.
First, suppose G• is destabilized horizontally, with μj(G

•) = μopt(G
•), where ` ≤ j < k. We know

μopt(F ) = μk(IZ), and by purity of Z, μj(IZ) ≤ μk(IZ), so

n− wj
j

+
j − 3
2
≤
n

k
+
k − 3
2
.

Viewing this as a lower bound on wj then shows that

μj(G
•) =

1

2
(j + k) +

wj

k − j
−
3

2
≥
n

k
+
k − 3
2
= μopt(F ).

If instead G• is destabilized vertically with μ′j(G
•) = μopt(G

•), we have an inequality Δj(F ) ≤ Δi(F ),
where `′ ≤ j < i. As in Lemma 9.4, we get the inequality

w′j ≥
1

2
(j − i)(i+ j − k) +

n

k
(i− j) + w′i,

which implies

μ′j(G
•) =

1

2
(j + i) +

w′j − w
′
i

i− j
−
3

2
≥
n

k
+
k − 3
2
= μopt(F )

as required. �

9.5. Nesting for rank −1 objects. Finally, we consider a nontrivial rank −1 object

F • := OP2(−k)⊕OP2(−i)→ IZ

such that r(D(Z)) = k and c(D(Z)) = i. Without loss of generality, the conjectured destabilizing
sequence is

0→ E(−j)→ F • → G• → 0,

where E is the rank 0 object IWj⊂(k−j)L and G
• is the rank −1 object

G• := OP2(−j)⊕OP2(−i)→ IZj .

Here ` ≤ j < r(D(Z)), where ` is the number of full rows in D(Z).

Lemma 9.6. The twisted rank 0 object E(−j) is destabilized along a wall nested in W (E(−j), F •), and

Δopt(E) ≤ Δopt(F
•).

(We have μopt(E) + j = μopt(F
•).)

Proof. If E is destabilized by the rank one object A, then E(−j) is destabilized by A(−j). The correct
nesting of the wallsW (E(−j), A(−j)) andW (E(−j), F •) is equivalent to the inequality. If A corresponds
to the vertical slope μ′m(E), then one uses the inequality μj(F

•) ≤ μ′m(F
•) to conclude the required

inequality on discriminants. �

Lemma 9.7. If the rank −1 object G• is not trivial, then it is destabilized along a wall nested in
W (G•, F •), and

μopt(G
•) ≥ μopt(F

•).
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Proof. Equivalence between nesting and the inequality is easy. For the inequality, either G• is destabilized
horizontally or vertically by a rank 0 object. In case it is destabilized horizontally, say with μopt(G

•) =
μm(G

•) (where m ≥ `(Zj) = `(Z)), the inequality follows from the inequality μm(F •) ≥ μj(F •). On the
other hand, if G• is destabilized vertically with μopt(G

•) = μ′m(G
•), we have m ≥ `′(Zj) ≥ `′(Z) and

therefore an inequality μ′m(F
•) ≥ μj(F •), allowing us to conclude μopt(G•) ≥ μopt(F •). �

10. Interpolation for monomial objects

We conclude the paper by solving the interpolation problem for a monomial object.

Theorem 10.1. Let F be a monomial object, and let ζ = (r, μ,Δ) be a Chern character such that
χ(ζ∗, F ) = 0. Suppose r is sufficiently large and divisible, and let E ∈ P(ζ) be a general prioritary
bundle. Let μopt(F ),Δopt(F ) be the combinatorial invariants defined in Section 7.

(1) If F has rank 1, then E ⊗ F is acyclic if and only if μ ≥ μopt(F ). That is, μ⊥min(F ) = μopt(F ).
(2) If F has rank 0, then E ⊗ F is acyclic if and only if Δ ≥ Δopt(F ), i.e. Δ⊥min(F ) = Δopt(F ).
(3) If F has rank −1, then E ⊗ F is acyclic if and only if μ ≤ μopt(F ).

The hard part of the theorem is to show that acyclicity holds. To establish acyclicity, let ζopt(F ) =
(r, μopt(F ),Δopt(F )) where r is sufficiently large and divisible, and suppose F is destabilized as

0→ A(−j)→ F → B → 0,

where j is chosen so that A is a monomial object. By induction on the complexity of a monomial object,
we assume the theorem is known for A and B if they are nontrivial.

For each type of monomial object, we must first show that E⊗F is acyclic for a general E ∈ P(ζopt(F )).

Lemma 10.2. If F is a rank 1 monomial object, then E ⊗ F is acyclic for a general E ∈ P(ζopt(F )).

Proof. If A = OP2 is trivial, then E(−j) is acyclic by Theorem 3.5.
Suppose A is nontrivial. By Lemma 9.2, we have

μopt(A) + j ≤ μopt(F ),

so μ(E(−j)) ≥ μopt(A). As χ(E(−j) ⊗ A) = 0, we find by induction that E ⊗ A(−j) is acyclic if E is
general and its rank is sufficiently large and divisible.

Similarly, by Lemma 9.3 we have

Δopt(B) ≤ Δopt(F ).

We have χ(E ⊗ B) = 0, so again by induction E ⊗ B is acyclic for general E with sufficiently large and
divisible rank.

Increasing the rank to a common multiple if necessary, we conclude E ⊗ F is acyclic for a general
E ∈ P(ζopt(F )). �

The same statement is easily proved in the rank 0 case using the results of §9.4. We omit the proof,
which follows the same formal framework.

In the rank 1 case, it follows that μ⊥min(F ) ≤ μopt(F ). Likewise, in the rank 0 case, we have Δ
⊥
min(F ) ≤

Δopt(F ). However, in the rank −1 case we do not have an analogue of Theorems 3.8 or 3.15, so a separate
argument must be given to prove acyclicity. Due to the next result and Serre duality, the rank 1 and
rank −1 interpolation problems are in fact equivalent.

Proposition 10.3. The derived dual of a rank −1 monomial object is, up to twists and shifts, a rank 1
monomial object.
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Proof. Consider the rank −1 monomial object

F • := (OP2(−k)⊕OP2(−i)→ IZ),

and look at the generators xa1 , xa2yb2 , . . . , ybr of the ideal IZ . By definition, we have a1 = i and br = k.
Then the minimal free resolution of IZ looks like

0→
r−1⊕

j=1

O(−aj − bj+1)→ O(−i)⊕
r−1⊕

j=2

O(−aj − bj)⊕O(−k)→ IZ → 0.

Then F • is quasi-isomorphic to the complex

r−1⊕

j=1

O(−aj − bj+1)→
r−1⊕

j=2

O(−aj − bj)

of locally free sheaves, sitting in degrees −1 and 0. The derived dual is the complex

G• :=




r−1⊕

j=2

O(aj + bj)→
r−1⊕

j=1

O(aj + bj+1)





sitting in degrees 0 and 1. The matrix in the minimal free resolution of IZ is









yb2−b1

−xa1−a2 yb3−b2

−xa2−a3
. . .

ybr−br−1

−xar−1−ar









,

while the matrix in G• is obtained by deleting the first and last rows of this matrix and taking the
transpose. If Z ′ is the monomial scheme cut by the (r− 2)× (r− 2) minors of the matrix in G•, then G•

is quasi-isomorphic to IZ′(i+ k)[−1]. �

Remark 10.4. Preserve the notation from the proof. There is a simple description of the scheme Z ′

in terms of block diagrams. Draw the block diagram of Z as a subset of the rectangle with k rows and
i columns. Take the complement of the block diagram of Z in this rectangle, and rotate the resulting
configuration of blocks by 180◦. The corresponding block diagram is the block diagram of Z ′ (see Figure
11). Using this interpretation of the dual, it is easy to check

μopt(F
•) = −μopt(IZ′) + i+ k − 3,

so the invariant μopt transforms appropriately under Serre duality.

Z ′Z

Figure 11. The block diagram interpretation of the dual of a rank −1 monomial object.

We have now established acyclicity in every case where it is supposed to hold. We must still show
acyclicity cannot hold in any other case. By duality, it suffices to consider the rank 1 and rank 0 cases.
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10.1. Dual curves for rank 1 monomial objects. Let IZ be a rank 1 monomial object. We have
seen that a general E ∈ P(ζopt(IZ)) has E ⊗ IZ acyclic. Correspondingly, there is a divisor

DE = c1(E)H −
r(E)

2
B ∼ μ(E)H −

1

2
B

on P2[n] such that Z is not in the stable base locus of DE . Denote by S− ⊂ P2[n] the stable base locus of
a divisor class (μ(E)− ε)H − 12B with ε > 0 sufficiently small. If α is a curve on P

2[n] with α ∙DE = 0,
then α ⊂ S−. To show that μ⊥min(IZ) = μopt(IZ), it suffices to show that Z ∈ S

−.

Suppose IZ is destabilized horizontally by a sequence

0→ A(−j)→ IZ → B → 0,

where j is chosen so that A is a rank 0 monomial object. By looking at other extensions

0→ A(−j)→ IZ′ → B → 0,

(where Z ′ ∈ P2[n] is not necessarily monomial) we can obtain a curve α in P2[n] which passes through Z
and has α ∙DE = 0. Note that since E⊗A(−j) and E⊗B are acyclic, any such ideal sheaf automatically
has E ⊗ IZ′ acyclic, and thus Z ′ is not in the stable base locus of DE . We must check that there is a
complete curve of such extensions.

To do this, consider the block diagram DZ of Z. Since μj(IZ) ≥ μj+1(IZ), the (j + 1)st row of DZ
must be shorter than the jth row of DZ . Then the block diagram of Zj has more “full” columns of length
j than the block diagram of Wj has columns. It follows that there is a monomial scheme Z

′ whose block
diagram is obtained from the block diagram of Z by removing one box from each of the first j rows. For
any p = [u : v] ∈ L = P1, let Yp ⊂ P2 be the scheme given by the complete intersection

Yp = jL ∩ {vx− uz = 0}.

For all p 6= [0 : 1], the scheme Z ′ ∪ Yp has degree n, and these schemes form a flat family over L whose
limit over p = [0 : 1] is Z. Note that, as p varies, the ideal sheaf I(Z′∪Yp)∩jL⊂jL has constant isomorphism
type since IYp⊂jL = OjL(−1). Thus the ideal sheaf of each scheme Z

′∪Yp can be realized as an extension
of B by A(−j), and we conclude that these schemes all lie in S−.

10.2. Optimality of interpolation for rank 0 monomial objects. Let F = IZ⊂kL be a rank 0
monomial object. Rather than produce a dual curve we will content ourselves with showing no bundle
E with Δ(E) < Δopt(F ) satisfies interpolation. Note that a similar argument can be given in the rank 1
case as well.

Consider the destabilizing sequence

0→ A(−i)→ F → B• → 0,

where A is a rank 1 monomial object and B• is a rank −1 monomial object. Suppose E has E⊗F acyclic
and Δ(E) < Δopt(F ). By Proposition 3.14, E is semistable. We have χ(F⊗E) = 0 and χ(A(−i)⊗E) > 0
since the point (μ(E),Δ(E)) lies below the parabola χ(A(−i)⊗E) = 0 in the (μ,Δ)-plane. If the derived
dual of B• is written as IZ′(i+ k)[−1], then by Serre duality

R−1Γ(B• ⊗L E) = H2(E∗ ⊗ IZ′(i+ k − 3))
∗.

This space is easily seen to vanish by the semistability of E. Likewise, H2(A(−i) ⊗ E) = 0, and from
χ(A(−i)⊗ E) > 0 we deduce h0(A(−i)⊗ E) > 0. But then h0(F ⊗ E) 6= 0, contradicting the acyclicity
of F ⊗ E.
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