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Abstract. In this paper, we study the birational geometry of the Hilbert scheme of points on a smooth,
projective surface, with special emphasis on rational surfaces such as P2,P1 × P1 and F1. We discuss

constructions of ample divisors and determine the ample cone for Hirzebruch surfaces and del Pezzo

surfaces with K2 ≥ 2. As a corollary, we show that the Hilbert scheme of points on a Fano surface is
a Mori dream space. We then discuss effective divisors on Hilbert schemes of points on surfaces and

determine the stable base locus decomposition completely in a number of examples. Finally, we interpret

certain birational models as moduli spaces of Bridgeland stable objects. When the surface is P1 × P1

or F1, we find a precise correspondence between the Mori walls and the Bridgeland walls, extending the

results of [ABCH] to these surfaces.

Contents

1. Introduction 1
2. The ample cone of the Hilbert scheme 4
3. The effective cone of the Hilbert scheme 10
4. Stable base locus decomposition of the effective cone of X [n] 13
5. Preliminaries on Bridgeland stability and Bridgeland walls 23
6. The correspondence between Bridgeland walls and Mori walls 27
References 32

1. Introduction

Bridgeland stability brings a new perspective to the study of the birational geometry of moduli
spaces of sheaves on surfaces allowing one to construct flips explicitly and to improve classical
bounds on nef and effective cones (see, for example, [AB], [ABCH] and [BM2]). In this paper,
we study the relation between the stable base locus decomposition of the effective cone and the
chamber decomposition of the stability manifold for the Hilbert scheme of points on a smooth,
projective surface. We primarily concentrate on rational surfaces such as Hirzebruch and del
Pezzo surfaces.

The paper [ABCH] describes a one-to-one correspondence between the Mori walls Mt and
Bridgeland wallsWx=t− 3

2
for P2[n] and proves the correspondence for n ≤ 9 in complete generality

and for all n in the region t ≤ −n−1
2 . Precisely, a scheme Z is in the stable base locus of the
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divisors Dt = H[n]+ B
2t for t < t0 if and only if the ideal sheaf IZ is destabilized at the Bridgeland

wall Wx=t0− 3
2
. Using the correspondence, one can determine the base loci of linear systems on

Hilbert schemes that are not apparent from a purely classical point of view. The correspondence
is also useful in the other direction allowing classical geometry constructions to determine walls
in the stability manifold. In this paper, we extend the correspondence to other surfaces such as
P1 × P1 and F1.

Let X be a smooth, projective surface over the complex numbers. Let X [n] denote the Hilbert
scheme parameterizing zero-dimensional schemes of length n. Let X(n) = Xn/Sn denote the
n-th symmetric product of X. There is a natural morphism h : X [n] → X(n), called the Hilbert-
Chow morphism, that maps a zero dimensional scheme Z of length n to its support weighted by
multiplicity.

In [F1], Fogarty proved that if X is a smooth projective surface, then X [n] is a smooth,
projective, irreducible variety of dimension 2n. The locus of n distinct, unordered points is a
Zariski-dense open subset of X [n]. Furthermore, the Hilbert-Chow morphism h : X [n] → X(n) is
a crepant resolution of singularities.

In this paper, we will study the ample and effective cones of X [n] in the Néron-Severi space
of X [n]. For simplicity, we always assume that the irregularity of the surface q(X) vanishes. In
[F2], Fogarty determined the Picard group of X [n] in terms of the Picard group of X. A line
bundle L on X naturally determines a line bundle L[n] on X [n] as follows. The line bundle L
on X gives rise to a line bundle L � · · · � L on Xn, which is invariant under the action of the
symmetric group Sn. Therefore, L� · · ·� L descends to a line bundle LX(n) on the symmetric
product X(n) under the natural quotient map π : Xn → X(n). The pull-back L[n] = h∗LX(n)

under the Hilbert-Chow morphism gives the desired line bundle on X [n].

Let B denote the class of the exceptional divisor of the Hilbert-Chow morphism. Geometri-
cally, the exceptional divisor is the divisor parameterizing non-reduced schemes in X [n]. Since
X [n] is smooth, we obtain an additional line bundle OX[n](B) on X [n]. In [F2], Fogarty proves
that if the irregularity q(X) = 0, then Pic(X [n]) ∼= Pic(X)× Z. In particular, the Néron-Severi
space of X [n] is spanned by the Néron-Severi space of X and the divisor class B.

In §2, we discuss the ample cone of X [n]. If L is an ample line bundle on X, then L[n] is a nef
line bundle on X [n]. Hence, knowing the ample cone of X allows one to determine the part of
the nef cone in the subspace where the coefficient of B is zero. Results of Beltrametti, Sommese,
Catanese and Göttsche (see [BSG], [BFS], [CG]) allow one to construct further nef divisors on
X [n] from (n − 1)-very ample line bundles on X. There are good criteria for verifying that a
line bundle is (n− 1)-very ample on a surface. For a large class of surfaces, these criteria allow
one to classify the (n− 1)-very ample line bundles. We will show that for simple surfaces such
as P2, Hirzebruch surfaces and del Pezzo surfaces with K2 ≥ 2, these constructions suffice to
determine the nef cone of X [n]. For example, in Theorem 2.4, we will prove the following:

• The nef cone of (P2)[n] is the cone spanned by H[n] and (n− 1)H[n]− B
2 , where H is the

hyperplane class in P2 [LQZ].

• The nef cone of (P1×P1)[n] is the cone spanned by H1[n], H2[n] and (n− 1)H1[n] + (n−
1)H2[n]− B

2 , where H1 and H2 are the classes of the two fibers in P1 × P1.

• Let Fr denote the surface P(OP1 ⊕OP1(r)), r ≥ 1. Then the nef cone of F[n]
r is the cone

spanned by E[n] + rF [n], F [n] and (n− 1)(E[n] + rF [n]) + (n− 1)F [n]− B
2 , where E is

the class of the exceptional curve and F is the class of a fiber in Fr.
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As a consequence of Theorem 2.4, we prove that if X is a Fano surface, then X [n] is log Fano
and, in particular, a Mori dream space.

In §3, we discuss the effective cone of X [n]. The effective cone of X [n] is much more subtle
and depends on arithmetic properties of n. In many instances, the extremal rays of the cone
can be constructed as loci of subschemes in X [n] that fail to impose independent conditions on
sections of a given vector bundle on X. Showing that these loci are divisors, in general, is a
difficult problem. Recently, Huizenga has made some progress when X = P2 (see [Hui]). Dually,
we will construct moving curves to give upper bounds on the effective cone.

In §4, we will compute the stable base locus decomposition of X [n] for X = P1 × P1 and
2 ≤ n ≤ 5 and X = F1 and 2 ≤ n ≤ 4 in full detail. A quick glance at Figures 4 and 7, will
convince the reader that these decompositions become complicated very quickly. These examples
were chosen because they have fewer than 30 chambers. As we will discuss below, there is a rich
interplay between the Mori chamber decomposition and the Bridgeland chamber decomposition.
We hope that these examples will allow readers to explore connections that we will not discuss
in this paper. On the other hand, if one restricts one’s attention to chambers that are not too far
from the nef cone, then it is possible to describe the stable base locus decomposition completely.
We will do so for P1 × P1 in Theorem 4.6 and for Fr in Theorem 4.15.

In §5, we will recall the definition of Bridgeland stability conditions. We will be interested in
very specific stability conditions on X. Let H be an ample line bundle on X, then it is possible
to find an abelian subcategory As,t of the bounded derived category Db(coh(X)) of coherent
sheaves on X such that when endowed with the central charge

Zs,t(E) = −
∫
X
e−(s+it)H · ch(E),

the pair (As,t, Zs,t) is a Bridgeland stability condition ([Br2], [AB]). We will pick a basis of the
Néron-Severi space of X and consider the slice of the stability manifold corresponding to these
Bridgeland stability conditions.

Fix a numerical class ν. Then the space of stability conditions Stab(X) has a chamber
decomposition into regions where the set of semi-stable objects with class ν in As,t remains
constant [Br2], [BM2]. In §5, we will derive the basic properties of the chamber structure for the
Hilbert scheme of points. When ν is the numerical class of an ideal sheaf of a zero-dimensional
scheme of length n, the walls in the second quadrant are nested semi-circles. We will study the
walls in detail when X is a Hirzebruch surface or a del Pezzo surface.

In §6, we will describe a precise correspondence between the Bridgeland walls and the Mori
walls for P1 × P1 and F1. The correspondence is cleanest to state when H is a multiple of the
anti-canonical bundle; however, seems to hold much more generally. When X = P1 × P1, set
H = −1

4KP1×P1 . When X = F1, set H = −1
6KF1 . Consider the divisor Dt = H[n] + B

2t for
t < 0 on X [n]. Then we find the following conjectural correspondence. The divisor Dt intersects
the Mori wall Mt0 corresponding to a subscheme Z if and only if IZ is destabilized at the wall
Wt0−c(X), where c(X) is a constant depending on the surface (c(P1×P1) = −2 and c(F1) = −3).
As in the case of P2, we can prove the correspondence for small values of n in complete generality
and for all n assuming that t is bounded above by a function depending on n and X.

The Hilbert scheme represents the Hilbert functor. When one studies the birational models
of a moduli or parameter space, it is natural to ask whether the other birational models also
have modular interpretations (see [HH1] and [HH2] for a discussion in the case of moduli spaces
of curves and [CC1] and [CC2] for the case of Kontsevich moduli spaces). Classically, it is
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not clear how to vary the Hilbert functor to get alternative moduli spaces. The key idea is to
represent the Hilbert scheme X [n] as a moduli space of Bridgeland stable objects and then to
vary the Bridgeland stability. As we will see in §6, in many cases, one thus obtains modular
interpretations of log canonical models of X [n].

Abramovich and Polishchuk [AP] have constructed moduli stacks of Bridgeland semi-stable
objects parameterizing isomorphism classes of Zs,t-semi-stable objects in As,t. There are many
open questions about the geometry of these moduli spaces. For example, it is not in general
known whether they are projective. When X = P2, there are at least two ways of showing
that the moduli spaces of Bridgeland stable objects are projective. These moduli spaces are
projective because they are isomorphic to moduli spaces of quiver representations and can be
constructed by GIT (see [ABCH], [K]). For the surfaces we consider, we do not in general know
a GIT construction of the moduli space.

Alternatively, Bayer and Macr̀ı have constructed nef divisors on the moduli space of Bridge-
land stable objects [BM2]. Given a stability condition σ = (Z,A), a choice of numerical invari-
ants ν and a fine moduli space M parameterizing Bridgeland stable objects in A with numerical
invariants ν, Bayer and Macr̀ı define a nef divisor on M by specifying its intersection number
with every curve. Let E ∈ Db(X×M) be a universal family. Define D ·C by the imaginary part
of

I

(
−Z(ΦE(OC))

Z(ν)

)
.

They prove that the divisor class is nef and if a curve has zero intersection with this divisor
class, then for any two closed points on the curve Ex and Ex′ are S-equivalent. In some cases,
it can be shown that the divisors they construct are ample, giving a more general and better
proof of the projectivity of the moduli space. This allows one to obtain modular interpretations
of certain log canonical models of the Hilbert scheme in terms of moduli spaces of Bridgeland
stable objects.

The organization of this paper is as follows: In §2, we discuss the nef cones of X [n]. In §3,
we give constructions of effective divisors and moving curves. In §4, we discuss general features
of the stable base locus decomposition of (P1 × P1)[n] and F[n]

r . We also calculate the complete
decomposition for small n. In §5, we recall preliminaries about Bridgeland stability conditions.
Finally, in §6, we study the correspondence between Bridgeland walls and Mori walls.

Acknowledgements: The second author would like to thank the Simons Foundation and the
organizers of the Simons Symposium on Rational Points over Non-algebraically Closed Fields,
Fyodor Bogomolov, Brendan Hassett and Yuri Tschinkel for a very productive and enlightening
conference. It is a pleasure to thank Daniele Arcara, Arend Bayer, Jack Huizenga and Emanuele
Macr̀ı for discussions about Bridgeland stability and the birational geometry of Hilbert schemes.

2. The ample cone of the Hilbert scheme

In this section, we survey the description of the nef cone of X [n] for surfaces such as Hirzebruch
and del Pezzo surfaces with K2 ≥ 2. In many cases, one can give a complete description of the nef
cone of X [n] using the theory of k-very ample line bundles developed by Beltrametti, Sommese,
Catanese, Göttsche and others. For more details about k-very ample line bundles, we refer the
reader to [BFS], [BSG] and [CG]. We begin by giving two constructions of nef divisors on X [n].

Construction 2.1. Let L be an ample line bundle on X. Then L�n = L � · · · � L is an ample
line bundle on Xn invariant under the action of the symmetric group Sn. Consequently, L�n
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descends to an ample line bundle L(n) on the symmetric product X(n). Since the Hilbert-Chow
morphism is birational, the induced line bundle L[n] is big and nef on X [n]. However, since L[n]
has degree zero on the fibers of the Hilbert-Chow morphism, L[n] is not ample. Hence, the line
bundle L[n] lies on the boundary of the nef cone of X [n].

Construction 2.2. Given a line bundle L on X, the short exact sequence

(1) 0 −→ L⊗ IZ −→ L −→ L⊗OZ −→ 0

induces an inclusion H0(X,L ⊗ IZ) ⊂ H0(X,L). Suppose that H0(X,L) = N > n, then this
inclusion induces a rational map

φL : X [n] 99K G(N − n,N).

Let DL(n) = φ∗L(OG(N−n,N)(1)) denote the pull-back of OG(N−n,N)(1) under the rational map
φL. A straightforward calculation using the Grothendieck-Riemann-Roch Theorem shows that
the class of DL(n) is

DL(n) = L[n]− B

2
.

Since OG(N−n,N)(1) is very ample, the base locus of DL is contained in the indeterminacy locus
of φL. In particular, if φL is a morphism, then DL(n) is base-point-free and, consequently, nef.

A line bundle L on X is called k-very ample if the restriction map H0(X,L)→ H0(X,L⊗OZ)
is a surjection for every zero dimensional scheme Z of length at most k+1. In [BSG], the authors
give a useful characterization of k-very ampleness for adjoint bundles: Let L be a nef and big
line bundle on a surface S such that L2 ≥ 4k + 5. Then either KS + L is k-very ample or there
exists an effective divisor D such that L − 2D is Q-effective, D contains a zero-dimensional
subscheme of degree at most k + 1 for which k-very ampleness fails and

L ·D − k − 1 ≤ D ·D <
L ·D

2
< k + 1.

Let L be an (n − 1)-very ample line bundle on a surface X and assume that h0(X,L) = N
and h1(X,L) = h2(X,L) = 0. Then, by the long exact sequence of cohomology associated to
the exact sequence (1), we conclude that H i(X,L⊗IZ) = 0 for i > 0 and for the ideal sheaf IZ
associated to every zero-dimensional scheme Z ∈ X [n]. Let

Ξn ⊂ X [n] ×X
be the universal family and let π1 and π2 denote the natural projections. By cohomology and
base change, π1∗(π∗2L⊗ IΞn) is a vector bundle of rank N − n on X [n]. Hence, by the universal
property of the Grassmannian, φL : X [n] → G(N −n,N) is a morphism. Therefore, we conclude
that DL(n) = L[n]− 1

2B is base-point-free.

After introducing some notation, we will show that the nef divisors defined in Constructions
2.1 and 2.2 suffice to describe the nef cone of X [n] for surfaces like P2, del Pezzo surfaces with
K2 ≥ 2 and Hirzebruch surfaces.

Notation 2.3. The Picard group of P2 is generated by the hyperplane class denoted by H. The
Picard group of P1 × P1 is generated by H1 = π∗1(OP1(1)) and H2 = π∗2(OP1(1)), where πi are
the two projections.

Let Fr, r ≥ 1, denote the Hirzebruch surface P(OP1 ⊕OP1(r)). The Picard group of Fr is the
free abelian group generated by E and F , where E is the class of the section of self-intersection
of −r and F is the class of a fiber. We have the intersection numbers

E2 = −r, E · F = 1, F 2 = 0.
5



Let Dn denote the del Pezzo surface of degree n. The surface Dn is the blow-up of P2 at 9−n
general points. The Picard group is the free abelian group generated by H and E1, . . . , E9−n,
where H is the pull-back of the hyperplane class from P2 and Ei are the exceptional divisors of
the blow-up. We have the intersection numbers

H2 = 1, H · Ei = 0, Ei · Ej = −δi,j ,
where δi,j denotes the Kronecker delta function.

We summarize the nef cone of X [n] for various rational surfaces in the following theorem.

Theorem 2.4. The nef cone X [n], when X is a minimal rational surface or a del Pezzo surface
with K2 ≥ 2 is as follows:

(1) [LQZ, 3.12], [ABCH, 3.1], The nef cone of P2[n] is the closed cone bounded by

(n− 1)H[n]− 1
2
B and H[n].

(2) The nef cone of (P1×P1)[n] is the cone αH1[n] + βH2[n] + γB2 satisfying the inequalities

γ ≤ 0, α+ (n− 1)γ ≥ 0, and β + (n− 1)γ ≥ 0.

(3) The nef cone of the Hilbert scheme F[n]
r of n-points on the Hirzebruch surface Fr is the

cone α(E[n] + rF [n]) + βF [n] + γB2 satisfying the inequalities

γ ≤ 0, α+ (n− 1)γ ≥ 0, and β + (n− 1)γ ≥ 0.

(4) The nef cone of the Hilbert scheme D
[n]
9−r of n-points on a del Pezzo surface D9−r of

degree 9 − r = 5, 6 or 7 is the cone aH[n] − b1E1[n] − · · · − brEr[n] + cB2 satisfying the
inequalities

c ≤ 0, bi + (n− 1)c ≥ 0, and a+ (n− 1)c ≥ bi + bj for 1 ≤ i 6= j ≤ r.

(5) The nef cone of the Hilbert scheme D[n]
9−r of n-points on the del Pezzo surface of degree

9− r = 4 or 3 is the cone aH[n]− b1E1[n]− · · · − brEr[n] + cB2 satisfying the inequalities

c ≤ 0, bi + (n− 1)c ≥ 0, a+ (n− 1)c ≥ bi + bj for 1 ≤ i 6= j ≤ r,

and 2a+ (n− 1)c ≥
5∑
j=1

bij .

(6) The nef cone of the Hilbert scheme D[n]
2 is the cone aH[n]− b1E1[n]− · · ·− b7E7[n] + cB2

satisfying the inequalities

c ≤ 0, bi + (n− 1)c ≥ 0, a+ (n− 1)c ≥ bi + bj for 1 ≤ i 6= j ≤ r,

2a+ (n− 1)c ≥
5∑
j=1

bij , and 3a+ (n− 1)c ≥ 2bi +
6∑
t=1

bjt , jt 6= i.

Proof. By Construction 2.1, if L is an ample line bundle on X, then L[n] is nef on X [n]. By
Construction 2.2, if L is an (n − 1)-very ample line bundle on X with vanishing higher coho-
mology, then L[n] − B

2 is nef on X [n]. The proof has two parts. We first show that these two
constructions generate the cones defined by the inequalities in the theorem. Hence, the nef cone
of X [n] contains the cone described in the theorem. We then exhibit curves in X [n] that realize
each of the inequalities in the theorem. Since a nef divisor intersects every curve non-negatively,
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this shows that the nef cone has to be contained in the cone defined by the inequalities in the
theorem.

Let R be a general fiber of the Hilbert-Chow morphism over the singular locus of X(n). The
curve R has the intersection numbers R · B = −2 and R · L[n] = 0 for any line bundle L on
X. Consequently, the coefficient of B in any nef line bundle on X [n] has to be non-positive.
All other curves in X [n] that we exhibit have a very specific form. Let C be a curve in X that
admits a g1

n. The morphism f : C → P1 defined by the g1
n induces a curve C(n) in X [n]. For

the surfaces described in the theorem, the curve classes dual to the other faces of the nef cone
will be of this form. We now carry out the analysis for each of the surfaces.

If X = P2, then OP2(n− 1) is (n− 1)-ample [BSG], [LQZ]. One may deduce this either using
the criterion of Beltrametti and Sommese or using minimal resolutions directly. Let Z ∈ P2[n].
Then IZ admits a resolution

0 −→
r⊕
i=1

OP2(−ai) −→
r+1⊕
j=1

OP2(−bj) −→ IZ −→ 0,

where 0 < ai ≤ n + 1 [E, Proposition 3.8]. Let d ≥ n − 1 and tensor the sequence by OP2(d).
The associated long exact sequence of cohomology implies that

H1(P2, IZ(d)) ∼=
r⊕
i=1

H2(P2,OP2(d− ai)) = 0

since d − ai ≥ −2. We conclude that OP2(d) is (n − 1)-ample if d ≥ n − 1. Consequently, the
nef cone contains the closed cone spanned by H[n] and (n − 1)H[n] − B

2 . On the other hand,
let C be a line on P2, then the induced curve C(n) satisfies the intersection numbers

C(n) ·H[n] = 1, C(n) · B
2

= n− 1.

Therefore, a nef divisor aH[n] + bB2 satisfies b ≤ 0 and a+ (n− 1)b ≥ 0. We conclude that the
nef cone is the cone spanned by H[n] and (n− 1)H[n]− B

2 .

If X = P1 × P1, using the criterion of Beltrametti and Sommese, it is easy to see that
OP1×P1(a, b) is (n − 1)-ample if a, b ≥ n − 1. We conclude that the nef cone of (P1 × P1)[n]

contains the closed cone spanned by

H1[n], H2[n] and (n− 1)H1[n] + (n− 1)H2[n]− B

2
.

On the other hand, let Fi be a fiber of the projection πi. Then the induced curve Fi(n) has
intersection numbers

Fi(n) ·Hj [n] = 1− δi,j , Fi(n) · B
2

= n− 1.

We conclude that a nef divisor a1H1[n] + a2H2[n] + bB2 satisfies the inequalities b ≤ 0 and
ai+(n−1)b ≥ 0. Since any class satisfying these properties is a non-negative linear combination
of H1[n], H2[n] and (n−1)H1[n]+(n−1)H2[n]− B

2 , we conclude that the nef cone of (P1×P1)[n]

is the cone spanned by these classes.

By the work of Beltrametti and Sommese ([BS], [ST, Lemma 10]), it is well-known that
M = (n − 1)E + (r + 1)(n − 1)F is (n − 1)-very ample on Fr. Since the nef cone of Fr is
generated by E + rF and F , we conclude that the cone spanned by

E[n] + rF [n], F [n] and M [n] = (n− 1)(E[n] + rF [n]) + (n− 1)F [n]− B

2
7



is contained in the nef cone of F[n]
r . Consider the curves E(n) and F (n) induced in F[n]

r by a g1
n

on E and F , respectively. Then we have the intersection numbers

E(n) · E[n] = −r, E(n) · F [n] = 1, E(n) · B
2

= n− 1,

F (n) · E[n] = 1, F (n) · F [n] = 0, F (n) · B
2

= n− 1.

Consequently, the nef cone is spanned by E[n] + rF [n], F [n] and M [n].

The strategy for the surfaces D9−r is identical. On D9−r, there are finitely many (−1)-curves
whose classes can be listed explicitly (see [Ha, V.4] or [dR]). Moreover, the (n− 1)-very ample
line bundles on D9−r have been classified in [dR]. Since D9 is isomorphic to P2 and D8 is
isomorphic to F1, we may assume that 2 ≤ r ≤ 8.

When 2 ≤ r ≤ 4, then the (n − 1)-ample line bundles on D9−r are those with class aH −∑r
i=1 biEi such that bi ≥ n−1 and a ≥ bi+bj+(n−1) [dR]. Hence, given a line bundle satisfying

these inequalities, aH[n] −
∑r

i=1 biEi[n] − B
2 is nef on D

[n]
r . In particular, −(n − 1)K − B

2 =
3(n− 1)H[n]− (n− 1)

∑r
i=1Ei[n]− B

2 is nef on D[n]
9−r. Similarly, setting n = 1, any line bundle

satisfying bi ≥ 0 and a ≥ bi+ bj is nef on D9−r. Hence, the divisors aH[n]−
∑r

i=1 biEi[n] are nef
on D

[n]
9−r if bi ≥ 0 and a ≥ bi + bj . Since every divisor satisfying the inequalities in the theorem

is a non-negative linear combination of −(n − 1)K − B
2 and L[n], where L is nef on D9−r, we

conclude that the nef cone of D[n]
9−r contains the cone described in the theorem. Conversely, let

R be a (−1)-curve. When 2 ≤ r ≤ 4, then the only possible classes for R are Ei or H −Ei−Ej .
If R = Ei, we have the intersection condition

R(n) ·

(
aH[n]−

r∑
i=1

biEi[n] + c
B

2

)
= bi + (n− 1)c ≥ 0.

If R = H − Ei − Ej , we have the intersection condition

R(n) ·

(
aH[n]−

r∑
i=1

biEi[n] + c
B

2

)
= a− bi − bj + (n− 1)c ≥ 0.

We conclude that the nef cone is precisely the cone determined by the inequalities in the theorem.

When 5 ≤ r ≤ 6, the condition that that a line bundle is (n−1)-ample requires the additional
inequality 2a ≥ bi1 + · · ·+ bi5 + n− 1. Hence, −(n− 1)K − B

2 is nef on D
[n]
9−r and every divisor

in the cone described in the theorem is a non-negative linear combination of −(n − 1)K − B
2

and L[n] for a nef line bundle L on D9−r. Conversely, there are new (−1)-curves R with class
2H − Ei1 − · · · − Ei5 . Intersecting a divisor class with R(n), we see that

R(n) ·

(
aH[n]−

r∑
i=1

biEi[n] + c
B

2

)
= a− bi1 − · · · − bi5 + (n− 1)c ≥ 0.

Hence, the nef cone is the cone determined by the inequalities in the theorem.

When r = 7, assume first that n > 2. Then the same argument as in the previous two
paragraphs determines the nef cone. The class −(n− 1)K − B

2 is nef and the classes satisfying
the inequalities in the theorem can be expressed as a non-negative linear combination of −(n−
1)K− B

2 and L[n] for a nef classes L on D9−r. The new inequalities come from the new types of
(−1)-curves. The argument breaks down for n = 2 because −KD2 is not very ample, hence one
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needs to argue that −K− B
2 is nef on D[2]

2 . The linear system |−KD2 | defines a two-to-one map
f : D2 → P2. Consequently, schemes of length two fail to impose independent conditions on
sections of −KD2 if and only if they are fibers of the map f . Hence, the base locus of −K− B

2 is
the P2 = Y ∈ D[2]

2 parameterizing the fibers of f . The restriction of −K− B
2 to Y is trivial since

−K(2) · (−K − B
2 ) = 0. Consider the line bundle εH[2]−K − B

2 . Since H[2] is base-point-free,
the base locus of this line bundle is contained in Y . On the other hand, this line bundle restricts
to an ample line bundle on Y , hence is semi-ample by the Theorem of Fujita and Zariski [La,
2.1.32]. Since this is true for every ε > 0, we conclude that −K − B

2 is nef. Now the rest of the
argument follows as before. This concludes the proof of the theorem. �

Remark 2.5. The nef cone of D[n]
1 is more complicated and highlights a shortcoming of the

method for producing nef divisors described so far. Writing a divisor on D
[n]
1 as aH[n] −

b1E1[n]− · · · − b8E8[n] + cB2 we see that the nef cone has to satisfy the inequalities

c ≤ 0, bi + (n− 1)c ≥ 0, a+ (n− 1)c ≥ bi + bj for 1 ≤ i 6= j ≤ r,

2a+ (n− 1)c ≥
5∑
j=1

bij , 3a+ (n− 1)c ≥ 2bi +
6∑
t=1

bjt , 4a+ (n− 1)c ≥
3∑
t=1

2bit +
5∑
t=1

bjt ,

5a+ (n− 1)c ≥ bi1 + bi2 +
6∑
t=1

2bjt , 6a+ (n− 1)c ≥ 3bi1 +
7∑
t=1

2bjt and 3a+ nc ≥
8∑
i=1

bi.

All the inequalities but the last one arise from curves of type C(n), where C is a (−1)-curve
on the surface. The last inequality arises from −KD1(n). The line bundles −(n − 1)KD1 and
−nKD1 are no longer (n− 1)-ample. In fact, the class −(n− 1)K − B

2 is not nef on D
[n]
1 since

it does not satisfy the last inequality. The class −nK − B
2 is nef, even though −nKD1 is not

(n−1)-ample. The base locus of the linear system −nK− B
2 consists of the locus of n points that

fail to impose independent conditions on the linear system | − nKD1 |. Let p be the base-point
of the linear system | −KD1 |. A scheme Z of length n fails to impose independent conditions
on the linear system | − nKD1 | if and only if Z is contained in a member C of the linear system
| − KD1 | and is linearly equivalent to np on C. In other words, the base locus of the linear
system −nK − B

2 is an n-dimensional scroll Y over P1. Since −KD1(n) · (−nK − B
2 ) = 0, the

restriction of −nK − B
2 to Y is equivalent to a multiple (in fact, n2−n

2 ) of the class of a fiber.
Hence εH[n] − nK − B

2 is semi-ample for every ε > 0 by the theorem of Fujita and Zariski
[La, 2.1.32]. Hence, −nK − B

2 is nef. By [dR], we conclude that any class of the form L[n] or
L[n]− B

2 , where L is a line bundle on D1, satisfying the inequalities is nef on D
[n]
1 .

Unfortunately, the cone defined by the inequalities is larger than the cone generated by such
classes. There is a further source of nef divisors we have not explored in this paper. A vector
bundle E of rank r on a surface X is called k-very ample if the map H0(X,E)→ H0(X,E⊗OZ)
is surjective for every scheme Z of length k + 1. As in the case of line bundles, if E is an
(n − 1)-very ample vector bundle of rank r on X with h0(X,E) = N , we get a morphism
φE : X [n] → G = G(N − rn,N). Then φ∗OG(1) is a base-point-free line bundle with class
c1(E)[n] − r

2B. To generate the entire cone defined by the inequalities one would have to use
this improved construction; however, we will not pursue this here any further. For the next
corollary, we simply note that, by [CG], −mK − B

2 is very ample on D
[n]
1 for m ≥ n+ 3.

9



Corollary 2.6. Let X be surface with ample anti-canonical bundle. Then X [n] is a log Fano
variety and a Mori dream space.

Proof. Recall that the surfaces with ample anti-canonical bundle are P2, P1 × P1 and the del
Pezzo surfaces Dr. By [BCHM], a log Fano variety is a Mori dream space. Therefore, it suffices
to check that X [n] is a log Fano variety when X has ample anti-canonical bundle. By Fogarty’s
Theorem [F1], the Hilbert-Chow morphism is a crepant resolution. Hence, −KX[n] = −KX [n].
Since −KX is ample on X, −KX[n] is big and nef. However, −KX[n] is not ample since it has
zero intersection with fibers of the Hilbert-Chow morphism. Nevertheless, −(KX[n] + εB) lies
in the ample cone of X [n] by Theorem 2.4 and Remark 2.5 for 1 >> ε > 0. Let l be the log
canonical threshold of B. As long as l > ε, the pair (X, εB) is klt. We conclude that X [n] is log
Fano when X has ample anti-canonical bundle. �

Remark 2.7. It would be interesting to compute the Cox ring of X [n] when X is a surface with
ample anti-canonical bundle.

3. The effective cone of the Hilbert scheme

In this section, we study the effective cone of X [n]. The effective cone of X [n] can be very
subtle and often depends on the existence of higher rank vector bundles satisfying interpolation.
We give several constructions of effective divisors and a construction of moving curves. In the
next section, we show that for small n these constructions determine the entire effective cone.

The Néron-Severi space of X [n] may be identified with the vector space spanned by the Néron-
Severi space of X and the divisor class B. Under this identification, we can view the nef and
pseudo-effective cones of X [n] for different n as cones in the same abstract vector space. Often
the effective cones are easier to determine when n satisfies certain arithmetic properties. For
example, the effective cone of P2[n] is easy to describe when n = r(r+1)

2 + j with −1 ≤ j ≤ 1,
j = r − 1 or j = r

2 for even r (see [ABCH, Remark 4.6]). For other n, it is harder to construct
the extremal effective ray. The following lemma then gives a way of bounding the effective cone
in cases when it is not so easy to determine the cone.

Lemma 3.1. Eff (X [n+1]) ⊂ Eff (X [n]).

Proof. Let p be a point of X. Then there is a rational map ρp : X [n] 99K X [n+1] defined by
mapping a zero-dimensional scheme Z to Z ∪ p. The map ρp is well-defined provided that p is
not in the support of Z. The rational map ρp induces a map ρ∗p : Pic(X [n+1]) → Pic(X [n]) on
the Picard groups. The map ρ∗p maps L[n + 1] to L[n] and B to B, consequently, it induces
the identity on the Néron-Severi spaces and is independent of p. Let D be an effective divisor
on X [n+1]. Let Z 6∈ D be a union of n + 1 distinct points p1, . . . , pn+1. Then the pull-back
of D by ρpn+1 is an effective divisor on X [n] with the same class as D. We conclude that
Eff (X [n+1]) ⊂ Eff (X [n]). �

Express a divisor class on X [n] as aL[n] + bB. In the region of the effective cone lying in the
half space b > 0, the stable base locus contains B as a divisorial component.

Proposition 3.2. Let D = aL[n] + bB be an effective divisor with b > 0. Then the stable base
locus of D contains the divisor of non-reduced schemes. If L is ample on X, then the model
corresponding to D is the symmetric product X(n) and the induced map is the Hilbert-Chow
morphism.
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Proof. Let R be the fiber of the Hilbert-Chow morphism over a general point of the diagonal of
X(n). Since the intersection numbers are R ·L[n] = 0, R ·B = −2, we conclude that R ·D < 0
for any divisor D = aL[n] + bB with b > 0. Since curves in the class R cover the divisor
B of non-reduced schemes, we conclude that B is in the base locus of D. Hence, the model
corresponding to D is the same as the model corresponding to aL[n]. If L is ample on X, then
L[n] is the pull-back to X [n] of the ample line bundle L(n) on the symmetric product X(n) by
the Hilbert-Chow morphism. Consequently, the birational model corresponding to L[n] is X(n)

[La, 2.1.B]. �

The geometry of the surface plays a critical role in the half-space b ≤ 0. We first recall the
construction of a large family of effective divisors on X [n] depending on vector bundles on X.

Definition 3.3. Let E be a rank r vector bundle on X such that h0(X,E) ≥ rn. Let W ⊂
H0(X,E) be an rn-dimensional subspace. We say that W satisfies interpolation for n points
if W ∩H0(X,E ⊗ IZ) = 0 for a general Z ∈ X [n]. We say that E satisfies interpolation for n
points if h0(X,E) = rn and h0(X,E ⊗ IZ) = 0 for a general Z ∈ X [n].

Construction 3.4. Let W be a subset of H0(X,E) that satisfies interpolation for n points. Let
E have rank r and let c1(E) = D. Let Ξn ⊂ X [n] ×X be the universal family with projections
π1 and π2. Then the locus where

W ⊗OX[n] → π1∗ (π∗2(E)⊗OΞn)

fails to be an isomorphism is a determinantal subscheme of codimension one in X [n]. Hence, we
obtain an effective divisor DE,W (n) on X [n]. By the Grothendieck-Riemann-Roch Theorem, the
class of DE,W (n) is

D[n]− r

2
B.

In particular, by finding vector bundles on X that satisfy interpolation, we generate a subcone
of the effective cone.

More generally, if W ⊂ H0(X,E) satisfies interpolation for n points and n′ ≥ n, the locus
DE,W (n′) of schemes Z ′ ∈ X [n′] that have a subscheme Z of length n such that W ∩H0(X,E ⊗
IZ) 6= 0 is a divisor in X [n′]. If W = H0(X,E), we omit it from the notation.

Example 3.5. Line bundles satisfy interpolation. Hence, if L is a line bundle on X with
h0(X,L) = n, then L[n]− B

2 is an effective divisor on X [n]. However, classifying vector bundles
on X that satisfy interpolation for n-points is a hard problem. Jack Huizenga has made progress
in classifying Steiner bundles on P2 that satisfy interpolation. Let

Φ = {x | x ≥ φ−1} ∪ {0
1
,
1
2
,
3
5
,

8
13
, · · · },

where φ = 1+
√

5
2 is the golden ratio and the fractions are consecutive ratios of Fibonacci numbers.

Let n = r(r+1)
2 + s, s ≥ 0. Consider a general vector bundle E given by the resolution

0→ OP2(r − 2)⊕ks → OP2(r − 1)⊕k(s+r) → E → 0.

Huizenga [Hui, Theorem 4.1] proves that for sufficiently large k, E is a vector bundle that
satisfies interpolation for n points if and only if s

r ∈ Φ. Similarly, let F be a general vector
bundle given by the resolution

0→ F → OP2(r)⊕k(2r−s+3) → OP2(r + 1)⊕k(r−s+1) → 0.
11



For sufficiently large k, F has interpolation for n points if and only if 1− s+1
r+2 ∈ Φ. We conclude

that if s
r ∈ Φ, then (r2 − r + s)H[n] − r

2B is effective on P2[n]. If 1 − s+1
r+2 ∈ Φ and s ≥ 1, then

(r2 + r + s− 1)H[n]− r+2
2 B is effective on P2[n].

Construction 3.6. A moving curve class C on a variety Y is a curve class whose representatives
cover a Zariski dense subset of Y . If D is an effective divisor on Y and C is a moving curve
class, then C · D ≥ 0. Hence, each moving curve class on X [n] gives a bound on the effective
cone of X [n].

Let L be a very ample line bundle on X such that h0(X,L) > n. Suppose that a general
section of L is a smooth curve of genus g < n. Then we obtain a moving curve in X [n] as
follows. Since h0(X,L) > n, by Bertini’s Theorem, a general scheme Z of length n is contained
in a smooth curve δ ∈ |L|. The scheme Z defines a divisor on the curve δ. By the Riemann-Roch
Theorem, h0(δ, Z) ≥ 2, so there exists a map f : δ → P1 such that Z is a fiber of this map. The
map f induces a curve C(n) in the Hilbert scheme X [n]. Since C(n) passes through a general
point Z ∈ X [n], we conclude that C(n) is a moving curve in X [n]. If D = M [n] + bB2 is an
effective divisor, then we have the inequality C(n) · D = δ ·M + b(g − 1 + n) ≥ 0, where the
intersection number C(n) · B2 is computed using the Riemann-Hurwitz formula.

More generally, given a moving curve C in X [n], we obtain a moving curve C ′ in X [n′] for
n′ ≥ n by taking the unions of the schemes parameterized by C with a fixed general scheme Z
of length n′ − n.

Example 3.7. Let n = r(r+1)
2 + s, 0 ≤ s ≤ r. If s

r ∈ Φ, let L = rH and if 1 − s+1
r+2 ∈ Φ, let

L = (r + 2)H in Construction 3.6. Then combining Constructions 3.4 and 3.6, we obtain the
following description of the effective cone of (P2)[n].

Theorem 3.8. [ABCH, Theorem 4.5] Let n = r(r+1)
2 + s, 0 ≤ s ≤ r.

(1) If s
r ∈ Φ, then the effective cone of P2[n] is the closed cone bounded by the rays

H[n]− r

2(r2 − r + s)
B and B.

(2) If 1 − s+1
r+2 ∈ Φ and s ≥ 1, then the effective cone of P2[n] is the closed cone bounded by

the rays

H[n]− r + 2
2(r2 + r + s− 1)

B and B.

Construction 3.6 gives bounds on the ratio of the first Chern class and the rank of a vector
bundle E on X that can satisfy interpolation for n points. If L[n]− αB2 is not effective, then a
vector bundle E with c1(E) = aL and rank r cannot satisfy interpolation for n points if r

a ≥ α.

Example 3.9. Let X = P1 × P1 and let a, b ∈ Z such that n = (a + 1)(b + 1). Then, by
Construction 3.4, the locus of schemes Z ∈ (P1 × P1)[n] that are contained in a curve of type
(a, b) is an effective divisor with class aH1[n] + bH2[n] − B

2 . Hence, the effective cone contains
the cone generated by these divisors and B.

On the other hand, if (a + 1)(b + 1) > n > (a − 1)(b − 1), then every scheme of length n
on P1 × P1 is contained in a curve of type (a, b). By Construction 3.6, any effective divisor
αH1[n] + βH2[n]− γ

2B has to satisfy aβ + bα− γ(ab− a− b+ n) ≥ 0.

Example 3.10. Let X = Fr. Let a, b be integers such that b ≥ ar ≥ 0. Let n = (a+1)(b+1− ra
2 ).

Using induction on i for 0 ≤ i ≤ a− 1 and the exact sequence

0→ OFr((a− i− 1)E + (b− r(i+ 1))F )→ OFr((a− i)E + (b− ri)F )→ OP1(b− ri)→ 0,
12



we see that the higher cohomology of aE + bF vanishes. Hence, by the Riemann-Roch formula,
h0(Fr, aE + bF ) = n. Then, by Construction 3.4, the locus of schemes Z ∈ F[n]

r that are
contained in a curve of class aE+ bF is an effective divisor with class aE[n]+ bF [n]− B

2 . Hence,
the effective cone contains the cone generated by these divisors and B.

4. Stable base locus decomposition of the effective cone of X [n]

In this section, we describe the stable base locus decompositions of X [n] for small n when
X is P1 × P1 or F1. Even when n and the Picard rank of X are small, the stable base locus
decomposition of X [n] can be very complicated. Moreover, the number of chambers grows very
rapidly with n. We begin by a construction that helps determine the stable base locus.

Construction 4.1. Construction 3.6 can be generalized to study the stable base loci of linear
systems on X [n]. Let R be a smooth curve on X of genus g and suppose that a general scheme
Z0 of length m ≤ n contained in R satisfies h0(R,Z0) ≥ 2. Then we obtain a curve R(m,n)
on X [n] through Z0 by considering Z ′′t = Zt ∪ Z ′, where Z ′ is a fixed scheme of length n −m
not supported on R and Zt are the fibers of a map f : R → P1 containing Z0. Then the locus
of schemes Z that have a subscheme of length m contained in a curve of type R is in the base
locus of any linear system D = L[n] + bB2 such that L · R + b(g − 1 + m) < 0. Curves in the
class R(m,n) sweep out this locus. Hence, any effective divisor that has negative intersection
with R(m,n) has to contain this locus.

Example 4.2. For example, schemes Z ∈ P2[n] that have a linear subscheme of length m are
contained in the base locus of linear systems aH[n] − B

2 if a < m − 1. Schemes Z ∈ P2[n]

that have a subscheme of length m in a conic are contained in the base locus of linear systems
aH[n] − B

2 if 2a < m − 1. More generally, schemes Z ∈ P2[n] that have a subscheme of length
(d−1)(d−2)

2 + 1 ≤ m ≤ n contained in a curve of degree d are in the base locus of linear systems
aH[n] − B

2 if da < (d−1)(d−2)
2 − 1 + m. These observations suffice to describe a large portion

of the stable base locus decomposition of P2[n]. These decompositions have been described in
detail in [ABCH], so we will turn our attention to other surfaces.

Example 4.3. Let n ≥ m > (a − 1)(b − 1). Then the locus of Z ∈ (P1 × P1)[n] that have
a subscheme of length m contained on a curve of type (a, b) is in the base locus of a divisor
αH1[n] + βH2[n]− γB2 if aβ + bα− γ(ab− a− b+m) < 0.

The stable base locus decomposition of (P1 × P1)[n]. In this subsection, we will compute
the stable base locus decomposition of (P1 × P1)[n] for 2 ≤ n ≤ 5 in full detail and discuss some
aspects of the decomposition for general n.

By Construction 3.4, the locus of schemes that have a subscheme of length two in a fiber
with class Hi is the divisor DHi(n) on (P1 × P1)[n] with class (n − 1)Hi[n] − B

2 . To compute
the class of DHi(n), let Fj , j 6= i, be a fiber with class Hj and let R be a curve of type (1, 1).
Since Fj · Hi = R · Hi = 1, the curves Fj(n, n) and R(n, n) defined in Construction 4.1 have
intersection number zero with DHi(n). This determines the class of DHi(n) up to a constant.
The constant can be determined by intersecting with Fj(1, n).

Let D = a1H1[n] + a2H2[n] + cB2 . The moving curve Fi(1, n) has intersection number zero
with both B and (n− 1)Hi[n]− B

2 . Hence, the intersection of the effective cone of (P1 × P1)[n]

with the half space a1 + a2 ≥ n− 1 is the cone generated by (n− 1)H1[n]− B
2 , (n− 1)H2[n]− B

2
and B. The stable base locus decomposition is easy to understand in this subcone.
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Lemma 4.4. (1) Let n ≤ a + b + 1 and let Z ∈ (P1 × P1)[n]. If Z does not have a subscheme
of length b+ 2 contained in a fiber with class H1 or a subscheme of length a+ 2 contained in a
fiber with class H2, then Z imposes independent conditions on sections of OP1×P1(a, b).

(2) Let n = a+ b+ 2 and let Z ∈ (P1 × P1)[n]. If Z is not contained in a curve of type (1, 1)
and does not have a subscheme of length b+ 2 contained in a fiber with class H1 or a subscheme
of length a + 2 contained in a fiber with class H2, then Z imposes independent conditions on
sections of OP1×P1(a, b).

Proof. The lemma follows by induction on a and b and residuation. Consider the exact sequences

0→ IZ1(a− 1, b)→ IZ(a, b)→ IZ∩F1⊂F1(a, b)→ 0

0→ IZ2(a, b− 1)→ IZ(a, b)→ IZ∩F2⊂F2(a, b)→ 0,
where Zi are the residual schemes defined by the ideals (IZ : IFi). By our assumption that
none of the fibers with class H1 (respectively, H2) contain a subscheme of length b+ 2 (a+ 2),
H1(IZ∩Fi⊂Fi(a, b)) = 0. If there exists a fiber Fi with class Hi that contains a subscheme of
length b+ 1 when i = 1 or a+ 1 when i = 2, then consider the residuation sequence with respect
to Fi. Otherwise, consider the residuation sequence with respect to a fiber that contains the
maximal length subscheme of Z. For concreteness, let us say that the fiber is F1. By our choice
of F1, Z1 does not have a subscheme of length b + 2 in a fiber with class H1 and cannot have
a subscheme of length a + 1 in a fiber with class H2 (otherwise the length of Z would be at
least a + b + 2 > n). Hence, by induction H1(IZ′(a − 1, b)) = 0. The long exact sequence of
cohomology implies that H1(IZ(a, b)) = 0, proving (1).

The proof of (2) is almost identical. If there are fibers that contain a subscheme of Z of
length greater than one, then using the residuation sequence for the fibers, the proof of part (2)
reduces to the proof of part (1). Otherwise, the residuation sequence

0→ IZ′(a− 1, b− 1)→ IZ(a, b)→ IZ∩R⊂R(a, b)→ 0

applied to a curve R of type (1, 1) containing a maximal length subscheme of Z and induction
proves (2). �

Notation 4.5. Let Z(a, b; j) denote the locus of schemes in X [n] that have a subscheme of length
j supported on a curve of type (a, b). For i, j ∈ Z, let Xi,j denote the divisor class iH1[n] +
jH2[n]− B

2 .

Theorem 4.6. (1) Let i, j ∈ Z be such that i+ j > n− 1 and n− 2 ≥ i, j > 0. Then the cone
generated by Xi,j , Xi+1,j , Xi+1,j+1, Xi,j+1 is a chamber of the stable base locus decomposition,
where the stable base locus consists of Z(1, 0; j + 2) ∪ Z(0, 1; i+ 2).

(2) If j = n − 1 (respectively, i = n − 1) and n − 2 ≥ i ≥ 0 (respectively, n − 2 ≥ j ≥ 0),
then the cone generated by Xi,n−1, Xi+1,n−1 and H2[n] (respectively, Xn−1,j , Xn−1,j+1, H1[n] )
is a chamber of the stable base locus decomposition, where the stable base locus is Z(0, 1; i + 2)
(respectively, Z(1, 0; j + 2)).

(3) If i + j = n − 1 and i, j > 0, then the cone generated by Xi,j , Xi−1,j+1 and Xi+1,j+1

is a chamber of the stable base locus decomposition, where the stable base locus consists of
Z(1, 0; j + 2) ∪ Z(0, 1; i+ 1).

Proof. By Construction 2.2, if n > (i + 1)(j + 1), the linear systems |OP1×P1(i, j)| give rise to
rational maps to Grassmannians. If i+ j ≥ n− 1, then (i+ 1)(j + 1) = ij + i+ j + 1 > n unless
i+ j = n− 1 and one of i or j is zero. Hence, Xi,j is an effective divisor with base locus equal
to schemes that fail to impose independent conditions on the linear system |OP1×P1(i, j)|. The
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divisors DH1(n) and DH2(n) have classes Xn−1,0 and X0,n−1, respectively. Hence, their base
locus is contained in DH1(n) = Z(1, 0; 2) and DH2(n) = Z(0, 1; 2), respectively.

By Lemma 4.4, a scheme Z of length n imposes independent conditions on |OP1×P1(i, j)| as
long as Z is not contained in the locus Z(1, 0; j + 2) ∪ Z(0, 1; i + 2). Since every divisor in
the cone generated by Xi,j , Xi+1,j , Xi+1,j+1, Xi,j+1 is a non-negative linear combination of Xi,j

and the base-point-free divisors H1[n] and H2[n], we conclude that the stable base locus in
this cone is contained in the locus Z(1, 0; j + 2) ∪ Z(0, 1; i + 2). By the same argument, for
divisors in the plane spanned by Xi+1,j and Xi+1,j+1 (respectively, Xi,j+1 and Xi+1,j+1), the
stable base locus is contained in the locus of schemes Z(1, 0; j + 2) ∪Z(0, 1; i+ 3) (respectively,
Z(1, 0; j + 3) ∪ Z(0, 1; i+ 2)).

Conversely, using the curves F1(j + 2, n) and F2(i+ 2, n) defined in Construction 4.1, where
F1 and F2 are fibers with classes H1 and H2, respectively, we see that the locus Z(1, 0; j + 2) ∪
Z(0, 1; i+2) is contained in the base locus of every divisor a1H1[n]+a2H2[n]+bB2 if a1+(i+1)b < 0
and a2 + (j+ 1)b < 0. We conclude that the cone generated by Xi,j , Xi+1,j , Xi+1,j+1, Xi,j+1 is a
chamber of the stable base locus decomposition, where the base locus is exactly Z(1, 0; j + 2) ∪
Z(0, 1; i+ 2). This concludes the proof of part (1).

The same argument shows that when i = n−1, then in the cone generated by Xn−1,j , Xn−1,j+1

and H1[n], the stable base locus is equal to Z(1, 0; j + 2). By the symmetry exchanging the two
fibers, this proves part (2).

When i + j = n − 1, the argument shows that in the cone generated by Xi,j , Xi−1,j+1 and
Xi+1,j+1 the stable base locus is equal to Z(1, 0; j + 2) ∪ Z(0, 1; i + 1). To conclude that this
cone is a chamber of the stable base locus decomposition, we use Construction 4.1 for a curve
R of type (1, 1). Then R(n, n) has intersection number a1 + a2 + (n − 1)b with the divisor
a1H1[n] + a2H2[n] + bB2 . Hence, if a1 + a2 + (n − 1)b < 0, then the locus Z(1, 1;n) is in the
base locus of D. We conclude that the cones generated by Xi,j , Xi−1,j+1 and Xi+1,j+1 with
i + j = n − 1 form chambers of the stable base locus decomposition. This concludes the proof
of part (3). �

Remark 4.7. Combining Theorem 4.6, Theorem 2.4 and Proposition 3.2, we obtain the complete
stable base locus decomposition of the cone generated by (n − 1)H1[n] − B

2 , (n − 1)H2[n] − B
2

and B.

We now turn to the explicit decomposition of the effective cone for 2 ≤ n ≤ 5. The automor-
phism of P1 × P1 exchanging the factors gives rise to a symmetry exchanging H1[n] and H2[n].
Hence, all the decompositions are symmetric with respect to the vertical axis. We explicitly
explain one half of the diagrams and leave it to the reader to exchange H1 and H2 to obtain the
rest. In each case, we will draw a cross-section of the cone and label the important rays by a
meaningful divisor on that ray rather than the point that is contained in the cross-section. In
order to avoid cluttering the diagrams, we will write Hi instead of Hi[n].

Example 4.8. Figure 1 shows the stable base locus decomposition of (P1 × P1)[2]. Recall our
convention that Xi,j = iH1[2] + jH2[2] − B

2 . The chambers in this decomposition have the
following descriptions:

(1) The effective cone is the closed cone spanned by B, X1,0 and X0,1.
(2) The base-point-free, nef and moving cones coincide and are equal to the closed cone

spanned by H1[2], H2[2] and X1,1.
(3) In the cone spanned by B, H1[2] and H2[2], the base locus is equal to B.
(4) In the cone spanned by H1[2], X1,0 and X1,1 the base locus is equal to Z(1, 0; 2).
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Figure 1. The stable base locus decomposition of (P1 × P1)[2].

(5) Finally, in the cone spanned by X1,0, X0,1 and X1,1, the base locus is equal to Z(1, 0; 2)∪
Z(0, 1; 2).

Proof. Theorem 2.4 (2) describes the base-point-free and nef cones of (P1 × P1)[n] in general.
Proposition 3.2 proves that the base locus in the cone spanned by H1[2], H2[2] and B contains
the divisor B. Since Hi[n] are base-point-free, part (3) follows. By Theorem 4.6, the cone
generated by X1,0, X1,1 and H1[2] is a chamber of the stable base locus decomposition with
base locus equal to DH1(2) = Z(1, 0; 2). By symmetry, the base locus in the cone spanned by
X0,1, X1,1 and H2[2] is the divisor DH2(2) = Z(0, 1; 2). By Theorem 4.6, in the cone generated
by X0,1, X1,0 and X1,1 the base locus is the union of the divisors Z(1, 0; 2) ∪ Z(0, 1; 2). Hence,
the moving cone of (P1 × P1)[2] is equal to the base-point-free cone in this case.

To complete the proof there remains to show that the effective cone is equal to the cone
spanned by X1,0, X0,1 and B. We already know that these divisors are effective, so it suffices
to give moving curves dual to each face of the cone. The moving curves F1(1, 2) and F2(1, 2)
defined in Construction 4.1 are dual to the faces spanned by X1,0, B and X0,1, B, respectively.
Similarly, let R be a curve of type (1, 1). The moving curve R(2) defined in Construction 3.6 is
dual to the face spanned by X1,0 and X0,1. This concludes the discussion of this example. �

Example 4.9. Figure 2 shows the stable base locus decomposition of (P1×P1)[3]. The chambers
have the following description.

Figure 2. The stable base locus decomposition of (P1 × P1)[3].

(1) The effective cone is the closed cone spanned by B, X2,0 and X0,2.
(2) The base-point-free cone is the closed cone generated by H1[3], H2[3] and X2,2.
(3) The moving cone is the closed cone generated by H1[3], H2[3] and X1,1.
(4) In the cone generated by B, H1[3] and H2[3], the base locus is divisorial equal to B.
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(5) For 0 ≤ i ≤ 1, in the cone generated by H1[3], X2,i and X2,i+1, the base locus is
Z(1, 0; i+ 2).

(6) In the cone generated by X2,0, X1,1 and X2,1 the base locus is Z(1, 0; 2) ∪ Z(0, 1; 3).
(7) Finally, in the cone generated by X1,1, X2,1, X2,2 and X1,2, the base locus is Z(1, 0; 3)∪

Z(0, 1; 3).

Proof. Part (2) follows from Theorem 2.4. Part (4) follows from Proposition 3.2. Parts (5), (6)
and (7) follow from Theorem 4.6. Since B, Z(1, 0; 2) and Z(0, 1; 2) are divisors and Z(1, 0; 3)
and Z(0, 1; 3) have codimension 2, part (3) follows from parts (4), (5), (6) and (7). Hence, there
remains to prove part (1). The divisors X2,0, X0,2 and B are effective. To show that the effective
cone is equal to the cone generated by them, we exhibit dual moving curves. The moving curves
F1(1, 3) and F2(1, 3) are dual to the faces spanned by X2,0, B and X0,2, B, respectively. Let R
be a curve of type (1, 1). Then, the moving curve R(3) is dual to the face spanned by X2,0 and
X0,2. This concludes the discussion of this example. �

Example 4.10. Figure 3 shows the stable base locus decomposition of (P1×P1)[4]. The chambers
in the decomposition have the following descriptions.

Figure 3. The stable base locus decomposition of (P1 × P1)[4].

(1) The effective cone is the closed cone generated by B, X3,0, X1,1 and X0,3.
(2) The base-point-free cone is the closed cone spanned by H1[4], H2[4] and X3,3.
(3) The moving cone is the closed cone spanned by H1[4], H2[4], X1,2 and X2,1.
(4) In the cone spanned by H1[4], H2[4] and B the base locus is divisorial equal to B.
(5) The stable base locus contains the divisor Z(1, 0; 2) (respectively, Z(0, 1; 2)) exactly in

the cone spanned by H1[4], X3,0 and X1,1 (respectively, H2[4], X0,3 and X1,1).
(6) The stable base locus contains the divisor Z(1, 1; 4) exactly in the cone spanned by

X3,0, X0,3 and X1,1. Hence, to give a complete description of the stable base locus
decomposition, it suffices to give the stable base locus decomposition of the moving cone.

(7) In the cone spanned by X2,1, X1,2 and X2,2, the stable base locus is Z(1, 0; 3)∪Z(0, 1; 3).
(8) In the cone spanned by Xi,j , Xi+1,j , Xi+1,j+1, Xi,j+1, for i+ j ≥ 3 and 2 ≥ i, j > 0, the

stable base locus is Z(1, 0; j + 2) ∪ Z(0, 1; i+ 2).
(9) In the cone spanned by H1[4], X3,i and X3,i+1, for 1 ≤ i ≤ 2, the base locus is Z(1, 0; i+2).
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Proof. Parts (2) and (4) follow from Theorem 2.4 and Proposition 3.2. Parts (7), (8), (9)
follow from Theorem 4.6. Parts (4)-(9) imply (3). Since H1[4] and H2[4] are base-point-
free, in the cone spanned by X1,1, H1[4] and H2[4], the base locus is contained in the divisor
Z(1, 1; 4). Similarly, in the cone spanned by X3,0, X0,3 and H1[4] and H2[4], the base locus
is contained in the union of divisors Z(1, 0; 2) ∪ Z(0, 1; 2). The curves F1(2, 4) and F2(2, 4)
defined in Construction 4.1 are dual to the faces H1[4], X1,1 and H2[4], X1,1. Therefore, the
divisors Z(1, 0; 2) and Z(0, 1; 2) are contained in the base locus precisely in the cones generated
by H1[4], X3,0, X1,1 and H2[4], X0,3, X1,1, respectively, proving (5). Let Ri,j denote a curve of
type (i, j). The curve R1,1(4, 4) defined in Construction 4.1 is dual to the face spanned by
X3,0 and X0,3. Therefore, the divisor Z(1, 1; 4) is in the stable base locus exactly in the cone
spanned by X1,1, X3,0 and X0,3, proving (6). Finally, to prove (1), note that the moving curves
F1(1, 4), R2,1(4), R1,2(4) and F2(1, 4) defined in Constructions 3.6 and 4.1 are dual to the faces
[B,X3,0], [X3,0, X1,1], [X1,1, X0,3] and [X0,3, B], respectively. �

Example 4.11. Figure 4 shows the stable base locus decomposition for (P1 × P1)[5]. The locus
Z(1, 1; 4) of schemes that have a subscheme of length 4 contained in a curve of type (1, 1) is a
divisor with class 4H1[5] + 4H2[5] − 3

2B. It is easy to calculate this class by intersecting with
test curves. Let R be an irreducible curve of type (1, 2) or (2, 1). Since a curve of type (1, 1) has
intersection number 3 with R, as long as 5 points vary on R, the scheme they determine does
not lie in Z(1, 1; 4). Hence, the curves R(5) defined in Construction 3.6 are dual to Z(1, 1; 4) and
determine its class up to a multiple, which can easily be determined by pairing with another
curve. Since these curves are also dual to the faces X4,0, Z(1, 1; 4) and X0,4, Z(1, 1; 4), we
conclude that the effective cone of (P1 × P1)[5] is the cone spanned by B, X4,0, Z(1, 1; 4) and
X0,4. The chambers of the stable base locus decomposition have the following description.

Figure 4. The stable base locus decomposition of (P1 × P1)[5].

(1) The effective cone is the closed cone spanned by B, X4,0, Z(1, 1; 4) and X0,4.
(2) The base-point-free cone is the closed cone spanned by H1[5], H2[5] and X4,4.
(3) The moving cone is the closed cone spanned by H1[5], H2[5], X1,2 and X2,1.
(4) In the cone generated by B, H1[5] and H2[5] the base locus is the divisor B.
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(5) The divisor Z(1, 0; 2) (respectively, Z(0, 1; 2)) is in the stable base locus precisely in the
cone generated by H1[5], X4,0 and X2,1 (respectively, H2[5], X0,4 and X1,2).

(6) The divisor Z(1, 1; 4) is contained in the base locus precisely in the cone spanned by X1,2,
X2,1 and Z(1, 1; 4). Hence, it suffices to describe the stable base locus in the moving cone
to get a complete description of the stable base locus.

(7) Let i+ j > 3, 3 ≥ i, j > 0. In the cone spanned by Xi,j , Xi+1,j , Xi+1,j+1 and Xi,j+1, the
base locus is Z(1, 0; j + 2) ∪ Z(0, 1; i+ 2).

(8) Let 0 ≤ i ≤ 3. In the cone generated by X4,i, X4,i+1 and H1[5], the base locus is
Z(1, 0; i+ 2).

(9) In the cone generated by X3,1, X2,2 and X3,2, the base locus is Z(1, 0; 3) ∪ Z(0, 1; 4).
(10) In the cone generated by X2,1, X3,1 and X2,2, the base locus is Z(1, 0; 3) ∪ Z(0, 1; 4) ∪

Z(1, 1; 5).
(11) Finally, in the cone spanned by X2,1, X1,2 and X2,2 the base locus is Z(1, 0; 3)∪Z(0, 1; 3)∪

Z(1, 1; 5).

Proof. We proved (1) before stating the decomposition. Parts (2), (4), (7), (8) and (9) follow
from Theorems 2.4, 4.6 and Proposition 3.2. The curves F1(2, 5) and F2(2, 5) are dual to the
faces spanned by X2,1H1[5] and X1,2H2[5], respectively. Consequently, the divisors Z(1, 0; 2)
and Z(0, 1; 2) are in the base loci in the cones spanned by X2,1, X4,0 and H1[5] and X1,2, X0,4

and H2[5], respectively. Similarly, R1,1(4, 5) is dual to the face spanned by X2,1 and X1,2, so
the divisor Z(1, 1; 4) is in the base locus in the cone generated by Z(1, 1; 4), X1,2 and X2,1. On
the other hand, the divisors X1,2 and X2,1 are pull-backs of O(1) from the Grassmannian via
the rational map induced by the linear systems |OP1×P1(1, 2)| and |OP1×P1(2, 1)|, respectively.
By Lemma 4.4, a scheme Z imposes independent conditions on these linear systems unless Z
is contained in Z(1, 1; 5) ∪ Z(1, 0; 3) ∪ Z(0, 1; 3). Since H1[5] and H2[5] are base-point-free, it
follows that the moving cone is equal to the cone generated by X2,1, X1,2, H2[5] and H1[5]. This
proves parts (3), (5) and (6). Finally, to conclude the proof, note that the curve R1,1(5, 5) is
dual to the face generated by X4,0 and X0,4. Hence, Z(1, 1; 5) is contained in the base locus
of any divisor in the cone generated by Z(1, 1; 4), X4,0 and X0,4. Parts (10), (11) follow. This
concludes the discussion of this example. �

Remark 4.12. We will refrain from listing the explicit cone decompositions for n > 5. However,
the reader should have no trouble determining these decompositions for the next few cases. The
reason for listing these decompositions in such great detail will be apparent when we match
these to the Bridgeland walls in the last section.

The stable base locus decomposition of F[n]
r . In this subsection, we discuss some gen-

eral features of the stable base locus decomposition of F[n]
r . We also compute the complete

decomposition for F[n]
1 , when 2 ≤ n ≤ 4.

Denote divisors on F[n]
r by aE[n] + bF [n] + cB2 . By Construction 3.4, the locus of schemes

that have a subscheme of length two contained in a fiber is an effective divisor in F[n]
r with

class (n − 1)F [n] − B
2 . Consequently, the effective cone contains the cone spanned by E[n],

(n − 1)F [n] − B
2 and B. Moreover, the intersection of the effective cone with the half-space

b+(n−1)c ≥ 0 equals this cone. Let R be a curve of class E+rF . Then, applying Construction
3.6, we conclude that the face generated by E[n] and B is dual to R(1), which is a moving curve.
Similarly, the moving curve F (1) is dual to the face generated by (n− 1)F [n]− B

2 and B. The
stable base locus decomposition in the subcone generated by E[n] + rF [n], (n− 1)F [n]− B

2 and
B is easy to describe.
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Lemma 4.13. Let |aE + (ar + b)F | be a linear system on Fr such that 0 ≤ a, b.
(1) If Z is a scheme of length n ≤ a + b + 1, then Z imposes independent conditions on

the linear system unless Z has a subscheme of length a + 2 contained in a fiber or a
subscheme of length b+ 2 contained in the exceptional curve.

(2) If Z is a scheme of length n = a+ b+ 2, then Z imposes independent conditions on the
linear system unless Z is contained in a curve with class E + rF or has a subscheme of
length a+2 contained in a fiber or a subscheme of length b+2 contained in the exceptional
curve.

Proof. The lemma follows by the residuation and induction on a and b. Consider the three exact
sequences,

(1) 0→ IZF
(aE + (ar + b− 1)F )→ IZ(aE + (ar + b)F )→ IZ∩F⊂F (aE + (ar + b)F )→ 0,

(2) 0→ IZE
((a−1)E+(ar+b)F )→ IZ(aE+(ar+b)F )→ IZ∩E⊂E(aE+(ar+b)F )→ 0, and

(3) 0→ IZR
((a− 1)(E + rF ))→ IZ(a(E + rF ))→ IZ∩R⊂R(a(E + rF ))→ 0.

If Z has a subscheme of length a + 1 contained in a fiber F or of length b + 1 contained
in E, we use the exact sequences (1) and (2), respectively, and induction to conclude that
H1(IZ(aE + (ar + b)F )) = 0. Otherwise, if b > 0, we use the exact sequence (1), where
F is a fiber containing a maximal length subscheme of Z, and induction to conclude that
H1(IZ(aE + (ar + b)F )) = 0. If b = 0, we use the exact sequence (3), where R is a curve
of class E + rF containing a maximal length subscheme of Z, and induction to conclude that
H1(IZ(aE + (ar + b)F )) = 0. �

Notation 4.14. Let Z(a, b;m) denote the locus of F[n]
r parameterizing schemes that have a sub-

scheme of length m contained in a curve with class aE + bF . Let Xi,j denote the divisor
i(E[n] + rF [n]) + jF [n]− B

2 . Xi,j is effective if and only if i ≥ 0 and j ≥ −ir.

Theorem 4.15. (1) Let n − 2 ≥ i, j > 0 and let i + j > n − 1. The cone generated by
Xi,j , Xi+1,j , Xi+1,j+1 and Xi,j+1 is a chamber of the stable base locus decomposition, where the
base locus is Z(1, 0; j + 2) ∪ Z(0, 1; i+ 2).

(2) Let i = n − 1 and n − 2 ≥ j ≥ 0 (respectively, j = n − 1 and n − 2 ≥ i ≥ 0). The
cone generated by E[n] + rF [n], Xn−1,j and Xn−1,j+1 (respectively, F [n], Xi,n−1 and Xi+1,n−1)
is a chamber of the stable base locus decomposition, where the stable base locus is Z(1, 0; j + 2)
(respectively, Z(0, 1; i+ 2)).

(3) The locus Z(1, r;n) is contained in the stable base locus of a divisor aE[n] + bF [n] + cB2
if and only if b+ (n− 1)c < 0.

(4) If −ir ≤ j < 0, then the stable base locus contains the divisor E[n] = Z(1, 0; 1).

Proof. The divisor Xi,j is the pull-back of O(1) from the Grassmannian by the rational map
induced by the linear system |i(E + rF ) + jF |. By Lemma 4.13, if n ≤ i+ j + 1, the map is a
morphism along the locus of schemes Z that are not contained in Z(1, 0; j + 2) ∪ Z(0, 1; i+ 2).
Hence, the stable base locus of Xi,j is contained in Z(1, 0; j+2)∪Z(0, 1; i+2). Since E[n]+rF [n]
and F [n] are base-point-free, we conclude that the stable base locus of the divisors contained in
the cone generated by Xi,j , Xi+1,j , Xi+1,j+1, Xi,j+1 is contained in Z(1, 0; j+ 2)∪Z(0, 1; i+ 2).

On the other hand, consider the curves E(j + 2, n) and F (i + 2, n) defined in Construc-
tion 4.1. These curves have intersection number zero with divisors along the face generated
by Xi,j+1Xi+1,j+1 and Xi+1,jXi+1,j+1, respectively. Consequently, the base locus in the cone
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generated by Xi,j , Xi+1,j , Xi+1,j+1, Xi,j+1 contains Z(1, 0; j + 2) ∪ Z(0, 1; i+ 2). Part (1) of the
theorem follows. A similar argument proves (2).

To finish the proof of (3), we observe that the curve R(n, n) defined in Construction 4.1, where
R has the class E + rF , is dual to the face spanned by E[n] and (n− 1)F [n]− B

2 . We conclude
that the locus Z(1, r;n) is contained in the base locus of any divisor with b + (n − 1)c < 0. If
n ≤ r+1, then every scheme of length n is contained in a curve of class E+rF and we conclude
that the effective cone of F[n]

r is the cone E[n], (n − 1)F [n] − B
2 and B. We may assume that

n > r + 1. Since the base locus of any divisor with b + (n − 1)c ≥ 0 is contained in the union
of the base loci of E[n], B and (n − 1)F − B

2 , which is equal to Z(1, 0; 1) ∪ B ∪ Z(0, 1; 2), we
conclude that Z(1, r;n) is not contained in the stable base locus of such a divisor.

Finally, since the curve E(1, n) whose deformations cover the divisor E[n], has negative inter-
section number with any Xi,j such that −ir ≤ j < 0, E[n] is in the base locus. This concludes
the proof of the theorem. �

Example 4.16. Figure 5 shows the stable base locus decomposition of F[2]
1 . The chambers have

the following description.

Figure 5. The stable base locus decomposition of F[2]
r .

(1) The effective cone is the closed cone spanned by B, E[2] and X0,1.
(2) The base-point-free cone is the closed cone spanned by E[2] + F [2], F [2] and X1,1.
(3) The moving cone is the closed cone spanned by X1,0, E[2] + F [2] and F [2].
(4) In the cone spanned by X1,0, X1,1 and E[2] + F [2], the stable base locus is Z(1, 0; 2).
(5) In the cone spanned by B, E[2] + F [2] and F [2], the base locus is B.
(6) In the cone spanned by E[2], E[2] + F [2] and B, the base locus is B ∪ Z(1, 0; 1).
(7) In the cone spanned by E[2], E[2] + F [2] and X1,0, the base locus is Z(1, 0; 1).
(8) In the cone spanned by F [2], X1,1 and X0,1 the base locus is Z(0, 1; 2).
(9) In the cone spanned by X1,0, X1,1, and X0,1 the base locus is Z(1, 0; 2) ∪ Z(0, 1; 2).

Proof. Theorem 2.4, Theorem 4.15 and Proposition 3.2 imply (2), (4), (5), (6), (7) and (8).
The effective cone contains the cone spanned by B,E[2] and X0,1. In view of the discussion
preceding Theorem 4.15, to prove (1), it suffices to exhibit a moving curve dual to the face
spanned by E[2], X0,1. Let R be a curve in the class E + F . Then the curve R(2) defined in
Construction 3.6 is the required moving curve. Since the base loci described in parts (5)-(9) all
contain a fixed divisor and the base locus in (4) is not divisorial, parts (4)-(9) imply (3). The
curves E(1, 2), E(2, 2) and F (2, 2) defined in Construction 4.1 are dual to the faces spanned by
[B,E[2] + F [2]], [E[2] + F [2], X0,1], and [F [2], X1,1], respectively. Part (9) follows. �
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Example 4.17. Figure 6 shows the stable base locus decomposition of F[3]
1 . The chambers have

the following descriptions.

Figure 6. The stable base locus decomposition of F[3]
1 .

(1) The effective cone is the closed cone generated by E[3], B,X0,2 and X1,0.
(2) The base-point-free cone is the closed cone generated by E[3] + F [3], F [3] and X2,2.
(3) The moving cone is the closed cone generated by E[3] + F [3], F [3], X1,1 and X2,0.
(4) The divisor B is in the base locus precisely in the cone spanned by E[3], F [3] and B.
(5) The divisor Z(1, 0; 1) is in the base locus precisely in the cone spanned by E[3], B and

X1,0.
(6) The divisor Z(1, 1; 3) is in the base locus precisely in the cone spanned by E[3], X0,2, and

X1,0.
(7) The divisor Z(0, 1; 2) is the base locus precisely in the cone spanned by F [3], X1,0 and

X0,2. We are thus reduced to describing the stable base locus decomposition of the
moving cone.

(8) In the cone spanned by E[3] + F [3], X2,1 and X2,2, the stable base locus is Z(1, 0; 3).
(9) In the cone spanned by F [3], X1,2 and X2,2, the stable base locus is Z(0, 1; 3).

(10) In the cone spanned by X1,1, X1,2, X2,2 and X2,1, the stable base locus is Z(1, 0; 3) ∪
Z(0, 1; 3).

(11) In the cone spanned by X2,0, E[3] + F [3] and X2,1 the stable base locus is Z(1, 0; 2).
(12) In the cone spanned by X2,0, X1,1 and X2,1 the stable base locus is Z(0, 1; 3)∪Z(1, 0; 2).

Since the proof is analogous to the cases of F[2]
1 and (P1 × P1)[3], we leave it to the reader.

Example 4.18. We complete our discussion of the stable base locus decomposition of F[n]
r , by

describing the stable base locus decomposition of F[4]
1 . Figure 7 shows the decomposition. The

chambers have the following interpretations.
(1) The effective cone is the closed cone spanned by B, E[4], 3E[4] + 3F [4]−B and X0,3.
(2) The base-point-free cone is the closed cone spanned by E[4] + F [4], F [4] and X3,3.
(3) The moving cone is the closed cone spanned by X2,0, X1,1, F [4] and E[4] + F [4].
(4) The divisor B is in the base locus in the cone generated by B,E[4], and F [4]. The divisor

Z(1, 0; 1) is in the base locus in the cone generated by B,E[4], and 3E[4] + 3F [4] − B.
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Figure 7. The stable base locus decomposition of F[4]
1 .

The divisor Z(1, 1; 3) is in the base locus in the cone generated by X1,1, E[4], and 3E[4]+
3F [4] − B. Finally, the divisor Z(0, 1; 2) is in the base locus in the cone generated by
X1,1, X0,3, and F [4]. Hence, it suffices to describe the decomposition of the moving cone.

(5) The decomposition in the cone spanned by X3,0, X0,3, F [4] and E[4] + F [4] is as in The-
orem 4.15.

(6) In the cone spanned by X2,0, X2,1, X3,0, the stable base locus is Z(1, 1; 4) ∪ Z(1, 0; 2) ∪
Z(0, 1; 4).

(7) In the cone spanned by X2,0, X1,1, X2,1, the stable base locus is Z(1, 1; 4) ∪ Z(1, 0; 2) ∪
Z(0, 1; 3).

(8) Finally, in the cone spanned by X1,1, X1,2, X2,1, the stable base locus is Z(1, 1; 4) ∪
Z(1, 0; 3) ∪ Z(0, 1; 3).

Proof. The divisor Z(1, 1; 3) of schemes that have a subscheme of length 3 contained in a curve
with class E + F has class 3E[4] + 3F [4] − B. The proof of parts (1)-(5) is now analogous to
the previous cases. By Lemma 4.13, the base loci in the cones described in parts (6)-(8) are
contained in the claimed loci. The curves E(m, 4), F (m, 4) and R(4, 4), where R is a curve of
class E + F on F1, defined in Construction 4.1 show that the claimed loci are contained in the
stable base locus. This completes the proof. �

5. Preliminaries on Bridgeland stability and Bridgeland walls

In this section, we recall preliminaries concerning Bridgeland stability. We refer the reader
to [AP], [AB], [Br1] for more detailed information. We then determine the general features of
Bridgeland walls.

Bridgeland stability conditions. Let X be a smooth projective variety. Let Db(X) denote
the bounded derived category of coherent sheaves on X. A Bridgeland stability condition σ on
X consits of a pair σ = (A, Z) such that A is the heart of a bounded t-structure on Db(X) and
Z : K(Db(X))→ C is a homomorphism satisfying the following properties:

(1) (Positivity) For every non-zero object E of A, Z(E) lies in the semi-closed upper half-plane:

Z(E) = reiπθ, where r > 0, 0 < θ ≤ 1.
23



Writing Z = −d(E) + ir(E), one may view this condition as two separate positivity conditions
requiring r(E) ≥ 0 and if r(E) = 0, then d(E) > 0.

(2) (Harder-Narasimhan property) For an object E of A, let the Z-slope of E be defined by
setting µ(E) = d(E)/r(E) with the understanding that µ(E) = ∞ if r(E) = 0. An object E
is called Z-(semi)-stable, if for every proper subobject F , µ(F )(≤) < µ(E). The pair (A, Z)
is required to satisfy the Harder-Narasimhan property. Namely, every object of A has a finite
filtration

0 = E0 ↪→ E1 ↪→ · · · ↪→ En = E

such that Fi = Ei/Ei−1 is Z-semi-stable and µ(Fi) > µ(Fi+1) for all i.

One also imposes a technical support property, which we will not mention here. The set of
stability conditions on Db(X) satisfying these three properties is called the stability manifold of
X and is denoted by Stab(X). In [Br1], Bridgeland proves the following theorem.

Theorem 5.1 (Bridgeland). The map (A, Z) 7→ C is a local homeomorphism onto an open
set in a linear subspace of Hom(K(Db(X)),C). In particular, the space Stab(X) of stability
conditions on X is a complex manifold.

When dim(X) > 2, we do not know in general whether the stability manifolds Stab(X) are
non-empty (see [BMT] and [To] for a discussion and references). When X is a surface, Bridgeland
[Br2] and Arcara and Bertram [AB] have constructed stability conditions. We will only use the
region in the stability manifold corresponding to these special stability conditions.

Example 5.2. If X is a curve, then setting A to be the category of coherent sheaves on X and
Z(E) = −deg(E) + i rk(E), one obtains a Bridgeland stability condition. If X is a surface and
H is an ample line bundle on X, one can still define A to be the category of coherent sheaves
on X and Z(E) = −degH(E) + i rk(E), where the degree is measured with respect to the
ample line bundle H. However, this is not a Bridgeland stability condition because Z is zero on
sheaves supported on points. The idea of Bridgeland, Arcara and Bertram is to fix this problem
by tilting the category.

Bridgeland stability conditions for surfaces. For the remainder of this section, let X be a
smooth, projective surface and let H be an ample line bundle. Mumford stability with respect
to H gives rise to a Harder-Narasimhan filtration.

Definition 5.3. Given s ∈ R, define full subcategories Qs and Fs of coh(X) by the following
conditions on their objects:

• Q ∈ Qs if Q is torsion or if each µi > sH2 in the Harder-Narasimhan filtration of Q.
• F ∈ Fs if F is torsion-free, and each µi ≤ sH2 in the Harder-Narasimhan filtration of F .

By [Br2, Lemma 6.1], each pair (Fs,Qs) of full subcategories satisfies the two properties:

(a) For all F ∈ Fs and Q ∈ Qs, Hom(Q,F ) = 0.
(b) Every coherent sheaf E fits in a short exact sequence 0 → Q → E → F → 0, where

Q ∈ Qs, F ∈ Fs and the extension class are uniquely determined up to isomorphism.

A pair of full subcategories (F ,Q) of an abelian category A satisfying conditions (a) and (b) is
called a torsion pair. A torsion pair (F ,Q) defines a t-structure on Db(A) [HRS] with:

D≥0 = {complexes E | H−1(E) ∈ F and Hi(E) = 0 for i < −1}

D≤0 = {complexes E | H0(E) ∈ Q and Hi(E) = 0 for i > 0}
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The heart of the t-structure defined by a torsion pair consists of:

{E | H−1(E) ∈ F ,H0(E) ∈ Q, and Hi(E) = 0 otherwise}.
The natural exact sequence:

0→ H−1(E)[1]→ E → H0(E)→ 0

for such an object of Db(A) implies that the objects of the heart are all given by pairs of objects
F ∈ F and Q ∈ Q together with an extension class in Ext2

A(Q,F ) [HRS].

Definition 5.4. Let As be the heart of the t-structure on Db(coh(X)) obtained from the torsion-
pair (Fs,Qs) in Definition 5.3. Define the central charge by setting

Zs,t(E) = −
∫
X
e−(s+it)Hch(E).

With this definition, (As, Zs,t) is a Bridgeland-stability condition.

Theorem 5.5 (Bridgeland [Br2], Arcara-Bertram [AB], Bayer-Macr̀ı [BM1]). For each s ∈ R
and t > 0, the pair (As, Zs,t) define Bridgeland stability conditions on Db(coh(X)).

Bridgeland walls. Fix a class ν in the numerical Grothendieck group. Then there exists a
locally finite set of walls in Stab(X), depending only on ν, such that as the stability condition σ
varies in a chamber, the set of σ-(semi)-stable objects of class ν does not change ([Br2], [BM1],
[BM2]). We will call these walls Bridgeland walls.

We are interested in calculating the Bridgeland walls in the case of an ideal sheaf IZ of n
points on X. We will record the numerical invariant by (ch0, ch1, ch2). If Z ∈ X [n], then the
corresponding invariant is (1, 0,−n). It has been worked out in several contexts ([ABCH], [Ma])
that the potential walls are lines or non-intersecting nested semi-circles. Let (s, t) be a point
of a Bridgeland wall. Then there exists an object E destabilizing an object of the category As
with invariant (1, 0,−n). Hence, the Zs,t-slope of E has to equal the Zs,t-slope of an object with
invariant (1, 0,−n).

µs,t(E) = −<(Zs,t(E))
=(Zs,t(E))

=
ch2(E)− s ch1(E) ·H + s2−t2

2 ch0(E)H2

t ch1(E) ·H − st ch0(E)H2
.

In particular,

µs,t(IZ) =
n− s2−t2

2 H2

st H2
.

Equating the two slopes and assuming that t > 0 and s < 0, we get the equation of a semi-circle

(s− x)2 + t2 = r2,

where the center is (x, 0) with

x =
n ch0(E) + ch2(E)

ch1(E) ·H
, and the radius r =

√
x2 − 2n

H2
.

Observe that two distinct semi-circles do not intersect. We will index the Bridgeland walls by
their centers and denote them by Wx.

Example 5.6. When X = P2 and H is the hyperplane class, then the potential Bridgeland walls
have center (x, 0) with

x =
n ch0(E) + ch2(E)

ch1(E)
and radius r =

√
x2 − 2n.
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Example 5.7. When X = P1 × P1 and H is the ample class aH1 + bH2, then the potential
Bridgeland wall corresponding to E with c1(E) = αH1 + βH2 has center (x, 0) with

x =
n ch0(E) + ch2(E)

aβ + bα
and radius r =

√
x2 − n

ab
.

Example 5.8. When X = Fr is a Hirzebruch surface and H is the ample class aE + bF with
b > ra, then the potential Bridgeland wall corresponding to E with c1(E) = αE+βF has center
(x, 0) with

x =
n ch0(E) + ch2(E)
−aαr + aβ + bα

and radius r =

√
x2 − 2n

−a2r + 2ab
.

Example 5.9. When X = D9−r is a del Pezzo surface and H is an ample class aH −
∑r

i=1 biEi,
then the potential Bridgeland wall corresponding to E with c1(E) = αH−

∑r
i=1 βiEi has center

(x, 0) with

x =
n ch0(E) + ch2(E)
aα−

∑r
i=1 biβi

and radius r =

√
x2 − 2n

a2 −
∑r

i=1 b
2
i

.

Rank one walls. The key problem is to determine which of these walls are actual Bridgeland
walls in Stab(X). By [ABCH, Proposition 6.2(d)] line bundles L are stable objects of As for
L · H > s and all t > 0. More generally, any destabilizing subsheaf of IZ of rank one has the
form

IZ′ ⊗ L ⊂ IZ
for some ideal sheaf IZ′ and some line bundle L on X. Any such subsheaf is a subobject in the
category As as long as s < L ·H. Hence, these sheaves give rise to rank one walls Wx with

x =
n+ L2

2 − l(Z
′)

L ·H
,

where l(Z ′) denotes the length of Z ′.

Example 5.10. Taking X = P2, H the hyperplane class and L = OP2(−k), we get the rank one
walls with center

x = −n
k
− k

2
+
l(Z ′)
k

.

Example 5.11. Taking X = P1×P1, H = aH1 + bH2 and L = OP1×P1(−α,−β), we get the rank
one walls with center

x =
−n− αβ + l(Z ′)

aβ + bα
.

Example 5.12. Taking X = Fr, H = aE + bF and L = OFr(−αE − βF ), we get the rank one
walls with center

x =
−n+ α2r

2 − αβ + l(Z ′)
−aαr + bα+ aβ

.

Higher rank walls. The geometry of the moduli spaces of Bridgeland semi-stable objects
becomes harder to understand once we cross a higher-rank wall. Hence, it is important to
bound the centers of higher rank walls that can occur. We use an observation from [ABCH] to
get the desired bound.

Suppose that F → IZ is a destabilizing subsheaf of rank at least two giving rise to a Bridgeland
wall Wx. Let 0 → K → F → IZ be the kernel of the morphism. Then, by [ABCH, Corollary
6.4], we have that both F and K[1] have to be contained in all the categories As along the wall
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Wx. Even though Proposition 6.2, Lemma 6.3 and Corollary 6.4 of [ABCH] are stated for P2,
the proofs do not use the fact that the surface is P2, but only use categorical properties and the
fact that walls are nested semi-circles.

We conclude that

x− r ≥ c1(K) ·H
rk(K)

, x+ r ≤ c1(F) ·H
rk(F)

.

Combining this with rk(K) = rk(F)− 1 and c1(K) ·H ≥ c1(F) ·H, we obtain that

x+ r ≤ c1(F) ·H
rk(F)

≤ c1(K) ·H
rk(F)

rk(K)
rk(K)

≤ (x− r) rk(K)
rk(F)

.

Hence, we obtain the following inequality on the centers of potential walls of higher rank

rk(F)(x+ r) ≤ c1(F) ·H ≤ (rk(F)− 1)(x− r).
In particular, one obtains the bound

x2 ≤ n

2H2

(2rk(F)− 1)2

rk(F)(rk(F)− 1)
.

Example 5.13. When X = P2 and H is the hyperplane class, the inequality translates to

x2 ≤ n(2rk(F)− 1)2

2rk(F)(rk(F)− 1)
.

Example 5.14. When X = P1 × P1 and H is aH1 + bH2, the inequality translates to

x2 ≤ n (2rk(F)− 1)2

4ab rk(F)(rk(F)− 1)
.

Example 5.15. When X = Fr and H = aE + bF , the inequality translates to

x2 ≤ n (2rk(F)− 1)2

2(−a2r + 2ab) rk(F)(rk(F)− 1)
.

We call the Bridgeland wall where all ideal sheaves are destabilized the collapsing wall. We
remark that the inequalities become strictly sharper as the rank of F increases. In particular, if
the inequalities force the centers of potential walls of rank r to be larger than that of a collapsing
wall, then for every r′ > r the centers of the potential walls are larger than that of the collapsing
wall. This observation will help us eliminate potential higher rank walls.

6. The correspondence between Bridgeland walls and Mori walls

In this section, we calculate the Bridgeland walls for the examples we discussed in §4 and
find that there is a precise correspondence between the Bridgeland walls and the Mori walls.
The correspondence is cleanest when H is a multiple of the anti-canonical bundle. The most
interesting aspect of this correspondence is that it does not depend on the number of points,
making it a powerful tool for studying base loci decompositions. However, the correspondence
appears to be much more general: Traversing the Bridgeland walls for a specific H corresponds
to running a log minimal model program along a face [−K,D] in the Néron-Severi space of X [n],
where there is a precise relation between H and D . When H is a multiple of −K, then the
corresponding face is [−K,B].

The Bridgeland walls for (P1 × P1)[n]. We let H = 1
2H1 + 1

2H2. Since the Hilbert-Chow
morphism is a crepant resolution, we see that H[n] = −1

4K(P1×P1)[n] . The coefficient of 1
4 is a
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normalization chosen so that the transformation is a nice integer. We will denote a Bridgeland
wall with center x by Wx. The radius of Wx is

√
x2 − 4n. We now calculate the Bridgeland

walls for n = 2, 3 and all the walls with sufficiently small center for all n.

Example 6.1. When n = 2, the Bridgeland walls are as follows:

(1) The wall W−4 given by the destabilizing objects OP1×P1(0,−1) and OP1×P1(−1, 0).
(2) The collapsing wall W−3 given by the destabilizing object OP1×P1(−1,−1).

Proof. Since every sheaf of length two on P1 × P1 is contained in a curve of type (1, 1), there
exists a map OP1×P1(−1,−1) → IZ destabilizing every ideal sheaf. Hence, W−3 is a collapsing
wall. We have already described the rank one walls in Example 5.11. It suffices to show that
there are no higher rank walls. By Example 5.14, the center of any higher rank wall has to
satisfy the inequality x2 ≤ 9 = (−3)2. Hence, any potential higher rank wall either coincides or
is contained in W−3. �

Consider the divisors Dt = H[2] + B
2t , t < 0, in Figure 1. Then the divisor crosses Mori walls

at t = −2 and −1. At a Mori wall Mt, the divisor Dt picks up as base locus the sheaves that are
destabilized at the Bridgeland wall Wx=t−2. We will see that this picture persists for all n ≥ 2.

Example 6.2. When n = 3, the Bridgeland walls are as follows:

(1) The wall W−6 given by the destabilizing objects OP1×P1(0,−1) and OP1×P1(−1, 0).
(2) The wall W−4 given by the destabilizing objects OP1×P1(−1,−1), Ip(0,−1) and Ip(−1, 0).

Proof. Since every scheme of length 3 is contained in a curve of type (1, 1), W−4 is a collapsing
wall. Using Example 5.14, we see that any higher rank wall satisfies x2 ≤ 27

2 < 16. Hence, all
the walls are rank one walls. The description follows from Example 5.11. �

As in the previous example, setting Dt = H[2] + B
2t , t < 0, in Figure 2, we see that the Mori

walls occur at t = −4,−2. At the Mori wall Mt, the divisor Dt picks up the locus of sheaves
destabilized at Wx=t−2 in its base locus.

Unfortunately, we do not know how to compute all the Bridgeland walls as n increases. Two
difficulties arise. We do not know how to control higher rank walls in general. We also do
not know how to control walls where none of the objects destabilized are ideal sheaves. In
particular, we do not know whether walls of the latter kind exist. However, if we bound x
from above (depending on n), then we can compute all the Bridgeland walls and show that the
correspondence persists for all n. We have the following proposition.

Proposition 6.3. Let Dt = 1
2H1[n] + 1

2H2[n] + B
2t , for t < 0, be a divisor on (P1 × P1)[n].

Assume that 1− n ≥ t. Then there is a one-to-one correspondence between the Mori walls Mti

and the Bridgeland walls Wxi=ti−2 when 1− n ≥ t and −1− n ≥ x. An ideal sheaf IZ is in the
base locus of Dt if and only if IZ is destabilized at Wxi=ti−2 for t > ti.

Proof. Since ti ≤ 1 − n, xi = ti − 2 ≤ −1 − n. By Example 5.14, we have that the centers of
higher rank walls satisfy x2 ≤ 9n

2 . Since (n + 1)2 ≥ 9n
2 for all n ≥ 2, we conclude that there

cannot be any higher rank walls in this range. Consequently, all the Bridgeland walls are rank
one walls, which have been determined in Example 5.11. We see that the Bridgeland walls occur
at W−2n,W−2n+2, · · · ,W−n−1 and correspond to destabilizing objects IZ′(0,−1) or IZ′(−1, 0),
where the length of Z ′ giving the wall W−2n+2j has length j. Finally, W−n−1 also corresponds
to the destabilizing object OP1×P1(−1,−1).
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On the other hand, by Theorem 4.6, the Mori walls occur at t = −2i for n−1
2 ≤ i ≤ n − 1.

When −2i ≤ t < −2i − 2, the stable base locus consists of schemes that have subschemes of
length at least i + 2 contained in a fiber. When Dt crosses the value t = −n + 1, then Dt

contains the locus of schemes contained in a curve of type (1, 1). This concludes the proof of
the proposition. �

Remark 6.4. The correspondence seems to work in greater generality and can be proved for a
larger part of the cone than covered in Proposition 6.3. For example, when n = 4 the rank one
Bridgeland walls are W−8,W−6,W−5,W−4 corresponding to destabilizing objects OP1×P1(0,−1),
Ip(0,−1), OP1×P1(−1,−1) and OP1×P1(−1,−2) or IZ′(0,−1) with l(Z ′) = 2, respectively. The
sheaves obtained by switching the two fiber classes also give rise to the same walls. These corre-
spond precisely to the Mori walls in Figure 3, which occur at t = −6,−4,−3,−2. Similarly, when
n = 5 the rank one Bridgeland walls occur at W−10,W−8,W−6,W−5,W− 14

3
. These correspond

precisely to the Mori walls in Figure 4, which occur at t = −8,−6,−4,−3 and −8
3 .

One may conjecture that there is always a one-to-one correspondence between Bridgeland
walls and Mori walls given by the relation x = t− 2. Even when one does not a priori know this
correspondence, it is still very useful for guessing base loci of linear systems on (P1 × P1)[n].

Remark 6.5. Recently, Bayer and Macr̀ı have constructed nef divisors on the moduli spaces of
Bridgeland semi-stable objects. For the moduli spaces discussed here, their arguments show that
their nef divisor is ample. Hence, these moduli spaces are projective. Therefore, one obtains
a modular interpretation of the log anti-canonical models of (P1 × P1)[n] with respect to the
boundary divisor B, at least in the ranges covered by Proposition 6.3.

The Bridgeland walls for F[n]
1 . We describe the correspondence between Bridgeland walls

and Mori walls for the Hilbert schemes F[n]
1 . Let H = 1

3E + 1
2F . Observe that H = −1

6KF1 .
In this subsection, we will see that if we set Dt = −1

6KF[n]
1

+ B
2t for t < 0, then there is a

correspondence between the Mori wall Mt and the Bridgeland wall Wx=t−3–at least in certain
ranges. The coefficient 1

6 is chosen to make the correspondence be given by an integer. We begin
by listing the Bridgeland walls for n = 2 and n = 4.

Example 6.6. The Bridgeland walls when n = 2 are as follows:
(1) The wall W−9 corresponding to the destabilizing object OF1(−E).
(2) The wall W−6 corresponding to the destabilizing object OF1(−F ).
(3) The wall W−5 corresponding to the destabilizing object OF1(−E − F ).

Proof. Every scheme of length two is contained in a curve of class E + F . Hence, W−5 is a
collapsing wall. By Example 5.15 any higher rank wall Wx satisfies x2 ≤ 81

4 < 25. Hence, the
only walls are rank one walls and have been described in Example 5.12. �

The Mori walls corresponding to the divisor Dt = −1
6KF[2]

1

+ B
2t occur at t = −6,−3,−2 as can

be seen from Figure 5. Using the given descriptions of the base loci, the reader can easily check
that the divisor Dt picks up a subscheme in its base locus at t if and only if the corresponding
ideal sheaf is destabilized at the Bridgeland wall Wt−3.

Example 6.7. The Bridgeland walls when n = 4 are as follows:
(1) The wall W−21 corresponding to the destabilizing object OF1(−E).
(2) The wall W−15 corresponding to the destabilizing object Ip(−E).
(3) The wall W−12 corresponding to the destabilizing object OF1(−F ).
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(4) The wall W−9 corresponding to the destabilizing objects IZ′(−E), where l(Z ′) = 2 and
Ip(−F ).

(5) The wall W−7 corresponding to the destabilizing object OF1(−E − F ).
(6) The wall W− 33

5
corresponding to the destabilizing object OF1(−E − 2F ).

Proof. Every scheme of length 4 is contained in a curve with class E + 2F . Hence, W− 33
5

is a

collapsing wall. By Example 5.15 any higher rank wall Wx satisfies x2 ≤ 81
2 <

(
33
5

)2. Hence, all
the Bridgeland walls are rank one walls and are described in Example 5.12. �

The reader can compare this to Figure 7. The divisor Dt = −1
6KF[2]

1

+ B
2t crosses walls

precisely when t = −18,−12,−9,−6,−4,−18
5 . From the description of the base loci, we see that

the divisor Dt picks up a subscheme in its base locus at t if and only if the corresponding ideal
sheaf is destabilized at the Bridgeland wall Wt−3.

As in the case of P2 and P1× P1, while we do not know how to prove this correspondence for
every wall, we can prove it for walls in certain ranges.

Proposition 6.8. Let Dt = 1
3E[n] + 1

2F [n] + B
2t , for t < 0, be a divisor on F[n]

1 . Assume that
2 − 2n ≥ t. Then there is a one-to-one correspondence between the Mori walls Mti and the
Bridgeland walls Wxi=ti−3 when 2− 2n ≥ t and −1− 2n ≥ x. An ideal sheaf IZ is in the base
locus of Dt if and only if IZ is destabilized at Wxi=ti−3 for t > ti.

Proof. The proof of this proposition is analogous to the proof of Proposition 6.3. Since (−2n−
1)2 > 81n

8 for n ≥ 2, in this range there are only rank one Bridgeland walls, which have been
described in Example 5.12. We see that they occur at x = −6n+ 3 + 6l(Z ′), when α = 1, β = 0,
or at x = −3n + 3l(Z ′), when α = 0, β = 1, or at x = −2n− 2 when α = β = 1. On the other
hand, in this range the stable base locus decomposition is described by Theorem 4.15. The
divisor Dt intersects the Mori wall spanned by Xi,n−1−i and E[n] +F [n] when t = −6n+ 6 + 6i.
Similarly, Dt intersects the Mori wall spanned by Xn−i−1,i and F [n] at t = −3n+3+3i. Finally,
Dt intersects the wall spanned by Xn−1,0 and X0,n−1 at t = −2n+1. One obtains the proposition
by matching the two descriptions. �

Remark 6.9. One can speculate that the relation x = t − 3 gives a one-to-one correspondence
between Bridgeland and Mori walls in general. As in the case of P1 × P1, at least in the cases
covered by Proposition 6.8, one obtains a modular interpretation of the log canonical models
Proj(R(−KF[n]

1

− cB)), where R(−KF[n]
1

− cB) is the log canonical ring associated to the divisor
−KF[n]

1

− cB.

The correspondence for other slices. The correspondence between the two sets of walls
extends beyond the slice we have studied so far. We can decompose the ample cone of X into
chambers such that for ample classes in a chamber the Bridgeland walls with respect to the
central charge −

∫
X e
−(s+it)Hch(E) have the same order with respect to the same destabilizing

objects.

Example 6.10. For (P1 × P1)[2] the rank one Bridgeland walls with respect to aH1 + bH2 are:

• W− 2
a
,W− 1

a
corresponding to OP1×P1(0,−1) and Ip(0,−1).

• W− 2
b
,W− 1

b
corresponding to OP1×P1(−1, 0) and Ip(−1, 0).

• W− 3
a+b

corresponding to OP1×P1(−1,−1).
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Correspondingly, the ample cone of P1 × P1 decomposes into regions separated by hyperplanes
a = b

2 , a = b and a = 2b. When 2b > a > b, then the rank one walls are W− 2
b
,W− 2

a
,W− 3

a+b

ordered by increasing centers and W− 3
a+b

is a collapsing wall. Whereas, when a > 2b, the
relevant walls are W− 2

b
,W− 1

b
, where W− 1

b
is a collapsing wall. The threshold value a = 2b is the

value where the three walls W− 2
a
, W− 3

a+b
and W− 1

b
become equal. Similarly, at the threshold

value a = b, the walls W− 2
a

and W− 2
b

become equal.

We can similarly divide the ample cone of X [n] into regions, where in a fixed region the face
spanned by −K and D intersect the same Mori walls in the same order.

Example 6.11. For (P1 × P1)2 these regions are separated by the planes spanned by [−K,X1,2],
[−K,X2,2] and [−K,X2,1]. Note that if D is in the region bounded by [−K,X2,2] and [−K,X1,2],
then it intersects the walls [X1,0, H2[2]], [X0,1, H1[2]] and [X1,0, X0,1] in order (see Figure 1).
These precisely correspond to the (rank one) Bridgeland walls in the region 2b > a > b, where a
scheme Z defines a Mori wall if and only if the ideal sheaf IZ is destabilized at the corresponding
Bridgeland wall. If D is in the region bounded by [−K,X1,2] and [−K,H2[2]], then [−K,D]
intersects the walls [X1,0, H2[2]] and [X0,1, H2[2]]. These precisely correspond to the (rank one)
Bridgeland walls in the region a > 2b.

Example 6.12. As a final example, we work out the two decompositions for (P1×P1)[3]. The rank
one Bridgeland walls with respect to aH1 +bH2 are the walls W− 3

a
,W− 2

a
,W− 1

a
corresponding to

IZ′(0,−1) with length of Z ′ = 0, 1 or 2, the walls W− 3
b
,W− 2

b
,W− 1

b
obtained by symmetry and

the wall W− 4
a+b

corresponding to OP1×P1(−1,−1). The ample cone of P1 × P1 decomposes into
chambers where the boundaries are given by the hyperplanes a = b, 2a = 3b, a = 3b, 3a = 2b
and 3a = b. If 3

2b > a > b, then the rank one Bridgeland walls are W− 3
b
,W− 3

a
,W− 2

b
and W− 4

a+b

listed in the order of increasing centers. When 2a = 3b, the walls W− 3
a

and W− 2
b

coincide. When

3b > a > 3
2b, then the rank one Bridgeland walls are W− 3

b
,W− 2

b
,W− 3

a
and W− 4

a+b
listed in the

order of increasing centers. When a = 3b, the three walls W− 3
a
, W− 1

b
and W− 4

a+b
coincide. If

a > 3b, then the walls are W− 3
b
,W− 2

b
,W− 1

b
.

Correspondingly, the ample cone of (P1 × P1)[3] decomposes into regions bounded by the
faces [−K,X4,2], [−K,X3,2], [−K,X2,2], [−K,X2,3], [−K,X2,4]. By symmetry, let us assume that
a > b. If D is in the region bounded by [−K,X2,2] and [−K,X2,3], then [−K,D] intersects
the walls [X2,0, H2[3]], [X0,2, H1[3]] and [X2,0, X0,2] in order (see Figure 2). These correspond
precisely to the (rank one) Bridgeland walls in the region 3

2b > a > b. If D is in the region
bounded by [−K,X2,3] and [−K,X2,4], then [−K,D] intersect the Mori walls that correspond
to the Bridgeland walls in the region 3b > a > 3

2b. Similarly, if D is in the region bounded by
[−K,X2,4] and [−K,H2[3]], then the Mori walls correspond to the walls in the region a > 3b.

Remark 6.13. One can conjecture that there is always a one-to-one correspondence between the
walls decomposing the ample cone of P1×P1 into chambers and the walls decomposing the ample
cone of (P1 × P1)[n]. Since the decompositions are symmetric about a = b, we may assume that
a ≥ b. Based on the examples, one can predict that the critical ratio

−n− i1j1 +m1

j1a+ i1b
=
−n− i2j2 +m2

j2a+ i2b
,
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where two rank one walls become equal corresponds to the wall [−K,D], where D = αH1[n] +
βH2[n]− γB2 with (α, β, γ) satisfying the two equations

jsα+ isβ − (isjs + n−ms − is − js)γ = 0,

for s = 1, 2. For example, the walls (n − k)a = nb correspond to the walls [−K,D], where
D = (n− 1)H1[n] + (n− 1 + k)H2[n]− B

2 .

Using Figure 3 and Example 5.11, the reader can check that for (P1×P1)[4] the two sets of walls
occur at a = b, 3a = 4b, 2a = 3b, a = 2b and a = 4b and at [−K, 3H1[4]+(3+k)H2[4]−B

2 ] with k =
0, 1, 3

2 , 2, 3. Similarly, by Figure 4 and Example 5.11, for (P1 × P1)[5] the two sets of walls occur
at a = b, 4a = 5b, 3a = 4b, 3a = 5b, 2a = 5b and a = 5b and at [−K, 4H1[4] + (4 + k)H2[4]− B

2 ]
with k = 0, 1, 2, 5

2 , 3, 4.
Suppose that an ample divisor D is contained in a chamber determined by two walls [−K,D1]

and [−K,D2] in the ample cone of (P1 × P1)[n]. Suppose that a = n
k1
b and a = n

k2
b are

the corresponding chambers in the ample cone of P1 × P1. Then, in the examples, there is a
one-to-one correspondence between the Mori walls that intersect [−K,D] and the (rank one)
Bridgeland walls that occur for an ample divisor aH1 + bH2 satisfying n

k1
b < a < n

k2
b. One can

speculate that there is a one-to-one correspondence between Mori walls intersecting [−K,D] and
Bridgeland walls in full generality. Furthermore, one can expect that running the log minimal
model program in the face [−K,D] corresponds to the birational transformations that take place
as one crosses the Bridgeland walls, giving modular interpretations to all the models.

We leave it to the reader to check that a similar story holds for F[n]
1 for 2 ≤ n ≤ 4 using §4.

It would be interesting to explore the connection between the Bridgeland walls and Mori walls
for other smooth, projective surfaces, especially those with ample canonical bundle.

References

[AP] D. Abramovich, and A. Polishchuk, Sheaves of t-structures and valuative criteria for stable complexes. J. Reine

Angew. Math. 590 (2006), 89–130.

[AB] D. Arcara, and A. Bertram. Bridgeland-stable moduli spaces for K-trivial surfaces, to appear J. European Math.
Soc.

[ABCH] D. Arcara, A. Bertram, I. Coskun, and J. Huizenga. The birational geometry of the Hilbert scheme of points on
P2 and Bridgeland stability. preprint.

[BH] W. Barth, and K. Hulek. Monads and moduli of vector bundles, Manuscripta Math. 25, 1978, 323–447.

[BM1] A. Bayer, and E. Macr̀ı. The space of stability conditions on the local projective plane. Duke Math. J. 160 (2011),
263–322.

[BM2] A. Bayer, and E. Macr̀ı. Projectivity and birational geometry of Bridgeland moduli spaces. preprint.
[BMT] A. Bayer, E. Macr̀ı, and Y. Toda, Bridgeland stability conditions on 3-folds I: Bogomolov-Gieseker type inequalities,

preprint.
[BFS] M. Beltrametti, P. Francia, and A.J. Sommese. On Reider’s method and higher order embedding. Duke Math. J.

58, (1989), 425–439.
[BS] M. Beltrametti, A. Sommese. On k-spannedness for projective surfaces, LNM 1417 (1988), 24–51.

[BSG] M. Beltrametti, A. Sommese. Zero cycles and kth order embeddings of smooth projective surfaces, with an appendix
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