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Abstract. This paper studies the geometry of one-parameter specializations in partial flag varieties.
The main result is a positive, geometric rule for multiplying Schubert cycles in the cohomology of partial
flag varieties. This rule can be interpreted as a generalization of Pieri’s rule to arbitrary products and
arbitrary partial flag varieties. It has numerous applications to geometry, representation theory and the
theory of symmetric functions.
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1. Introduction

This paper studies the geometry of one-parameter specializations in partial flag varieties. The main
result is a positive, geometric rule for computing the structure constants of the cohomology of partial
flag varieties in terms of their Schubert basis. The program of giving positive, geometric formulae for
expressing classes of products in the cohomology of flag varieties was started in the nineteenth century
by Pieri, Schubert and others. Pieri’s formula for multiplying a special Schubert cycle with an arbitrary
Schubert cycle in the Grassmannian is one of the fundamental results of the theory. The rule presented
in this paper is a generalization of Pieri’s rule for multiplying arbitrary cycles in arbitrary partial flag
varieties. We thus complete the program started more than a century ago for the partial flag varieties.

Partial flag varieties are fundamental objects in algebraic geometry, combinatorics and representation
theory. Consequently, their cohomology rings have been studied extensively (see, for example, [BGG],
[FPi] or [Ful2]). Although there are many presentations for their cohomology rings, surprisingly, a positive
rule for multiplying Schubert cycles in arbitrary partial flag varieties have eluded mathematicians for many
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decades. There are many positive rules for multiplying special classes of Schubert cycles. There are also
positive rules for multiplying Schubert cycles in special flag varieties. For example, for Grassmannians
there are many Littlewood-Richardson rules in terms of Young tableaux, puzzles, checkers and Mondrian
tableaux among others (see, for example, [Ful1], [KT], [V1], [C2]). For arbitrary partial flag varieties
Monk’s rule and its generalizations give a positive rule for multiplying codimension one and more generally
special Schubert cycles with an arbitrary Schubert cycle. The first positive, geometric rule for multiplying
any two Schubert cycles in two-step flag varieties was given in [C2]. However, before the precursor to the
rule presented in this paper was announced in [C1], there was not even a conjectural rule for multiplying
arbitrary Schubert cycles in arbitrary partial flag varieties. A. Knutson had conjectured a rule for two-step
flag varieties in terms of puzzles. This conjecture was extended by A. Buch to three-step flag varieties.

Recently, A. Knutson and R. Vakil have outlined a program for obtaining a positive rule for multiplying
Schubert cycles in arbitrary partial flag varieties. Their program is very similar to the one carried out in
this paper. This paper makes their program precise by identifying the varieties that occur in the limit of
the degenerations. (The order of degeneration described in this paper is different from the one proposed
by Knutson and Vakil. However, the analysis in this paper applies verbatim to their order of degeneration
and identifies completely the limits of the specializations in their order. Our order is more efficient and
simplifies the geometry whenever possible.)

The structure constants of the cohomology of flag varieties exhibit a very rich structure which is best
revealed by positive geometric rules. For instance, in recent years, new Littlewood-Richardson rules for
Grassmannians have enabled Klyachko, Knutson, Tao, Woodward and their collaborators to resolve long
standing conjectures such as the Saturation Conjecture and the Horn’s Conjecture (see [KT] and [KTW]).
Vakil using his checker rule resolved the reality of Schubert calculus for Grassmannians [V2]. Similar
results follow for partial flag varieties from the rule presented here.

We will phrase our rule in terms of combinatorial objects called Mondrian tableaux. A Mondrian
tableau is a very convenient short hand for recording the rank conditions of a vector space with respect
to two flags. Recall that the partial flag variety F (k1, . . . , kr; n) parameterizes r-tuples (V1, . . . , Vr) of
subspaces of an n-dimensional vector space V , where Vi ⊂ Vi+1 and dim(Vi) = ki for every i. A Mondrian
tableau M for F (k1, . . . , kr; n) records ki vector spaces expressible as a span of basis elements of a fixed
ordered basis for each 1 ≤ i ≤ r. We can associate an irreducible subvariety ΣM of F (k1, . . . , kr; n) to M .
Let W i be one of the vector spaces recorded by M . Let #iW

i(M) denote the number of vector spaces
(inclusive) among the ki that M records that are contained in W i. We consider r-tuples (V1, . . . , Vr)
where the dimension of intersection of Vi with every vector space W i recorded by M is at least #iW

i(M)
and that satisfy certain non-degeneracy and consistency conditions.

e1

e2

e3

e4

e5

e6

e7

e8

Figure 1. An example of a Mondrian tableau.

For example, Figure 1 depicts a typical Mondrian tableau for F (1, 3, 5; n), n ≥ 8. The ordered basis
is placed along the diagonal of a Mondrian tableau from southwest to northeast. (When depicting
Mondrian tableaux, we omit the basis from the picture.) We use color and line type to denote constraints
imposed on the different vector spaces. In this example, red and solid, blue and dashed, and black
and dotted squares depict vector spaces imposing constraints on V1, V2 and V3, respectively. When
drawing Mondrian tableau if two squares of different colors overlap, we only draw the square imposing
a constraint on the vector space with lowest index. The conditions we impose on Mondrian tableau
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guarantee that this causes no confusion. With this caveat in mind, the Mondrian tableau in Figure 1
depicts one red and solid vector space W 1

1 =< e5, e6 >, three blue and dashed vector spaces W 2
1 =<

e1, e2, e3, e4 >, W 2
2 =< e4, e5, e6, e7, e8 >, W 2

3 =< e5, e6 > and five black and dotted vector spaces
W 3

1 =< e1, e2, e3, e4 >, W 3
2 =< e3, e4 >, W 3

3 =< e5, e6 >, W 3
4 =< e4, e5, e6, e7 >, W 3

5 =< e6, e7, e8 >.
We can associate a subvariety of F (1, 3, 5; 8) to this Mondrian tableau by taking the closure of the locus
of triples (V1, V2, V3) in F (1, 3, 5; 8) satisfying the rank constraints imposed by the Mondrian tableau.
These conditions are easy to read from the figure. For example, V1 is required to intersect the red vector
space W 1

1 . V2 is required to intersect the blue vector spaces W 2
1 and W 2

3 . Since V1 ⊂ V2, the intersection
of V2 with W 2

3 coincides with the intersection of V1 with W 1
1 . V2 is required to have a two-dimensional

intersection with W 2
2 . Since V2 ⊂ V3, the two-dimensional subspace of V2 contained in W 2

2 must be
contained in the subspace of V3 spanned by the intersections of V3 with W 3

3 , W 3
4 and W 3

5 . Similarly, the
one dimensional subspace of V2 contained in W 2

1 must be a subspace of the two dimensional subspace of
V3 contained in W 3

1 . V3 is required to intersect W 3
2 , W 3

3 and W 3
5 each in a one dimensional subspace and

W 3
1 and W 3

4 each in a two dimensional subspace.

A Schubert variety or the intersection of two Schubert varieties in a partial flag variety can be expressed
as the variety associated to a Mondrian tableau. The variety associated to a Mondrian tableau is a
Schubert variety exactly when all the squares comprising the Mondrian tableau can be totally ordered
by inclusion. Algorithm 3.8 describes how to associate a Mondrian tableau to the intersection of two
Schubert varieties. In order to calculate the structure constants of F (k1, . . . , kr; n), we begin with the
Mondrian tableau M associated to the intersection of two Schubert varieties. The rule consists of changing
some of the vector spaces recorded by M and replacing M by one or more Mondrian tableaux. The way
we change the vector spaces recorded by M corresponds to a one-parameter specialization arising from a
family of the form (1− t)ei + tej , where ei and ej are elements of our special basis. We will describe the
order for the degenerations in Rules 3.19 and 3.21. We remark that there is flexibility in the order that
the specializations are carried out. One could choose other orders such as the one suggested by Knutson
and Vakil. The main advantage of the order described in Rule 3.19 is that it is canonically associated to
the variety whose class we would like to compute and does not depend on a choice of basis.

Figure 2. A step of the algorithm.

Figure 2 shows a step of the algorithm for the Mondrian tableau depicted in Figure 1. In this example,
we change the basis by replacing e1 with (1− t)e5 + te1. When t = 1, we have the original configuration.
As long as t 6= 0, the resulting set of vectors is still a basis. We can define a subvariety of the flag
variety as before by simply replacing every occurrence of e1 in the definitions with (1 − t)e5 + te1. We
obtain an isomorphic variety. The interesting geometry occurs when t = 0. When t = 0, we have to
determine the flat limit of the family of varieties defined away from t = 0. In the limit, the variety breaks
into a union of other varieties. In this example, the support of the flat limit of the family is reducible
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consisting of four irreducible components. Each of these irreducible components is a variety associated
to a Mondrian tableau. (These are depicted below the original tableau in Figure 2.) Furthermore, the
family is generically reduced along each of the components. (Proving these two claims in general, that
the limit is supported along varieties associated to Mondrian tableaux and that the limit is reduced along
the generic point of each of these varieties, is the purpose of this paper.) Consequently, the class of the
variety associated to the original Mondrian tableau is the sum of the classes of the varieties associated
to the resulting Mondrian tableaux.

More generally, the move on a Mondrian tableau M corresponds to a specialization of the variety
associated to M . The specialization considered gives rise to a flat family of subvarieties of F (k1, . . . , kr; n),
where the general member is isomorphic to ΣM . The rule records the flat limit of such a family. It turns
out that the maximal dimensional components of the flat limit are again varieties associated to Mondrian
tableaux M1, . . . , Mj and that the flat limit is generically reduced along each of these components. Hence,
the class of the variety ΣM is equal to the sum of the classes of the varieties associated to ΣMi

. We can
then inductively repeat the procedure for each of the Mi until we break all the varieties into a union of
Schubert cycles.

The crucial point in this program is to determine the components of the limit ΣM1
, . . . , ΣMj

of the
specialization. The necessary calculations that enable us to achieve this have been carried out in [C2].
The author recommends skimming that paper (at least the rule for Grassmannians) before attempting
to read this one. In this paper, we use those calculations and induction to extend the rule from two-step
flag varieties to arbitrary partial flag varieties.

The principle that allows us to determine the limits is relatively simple. The specialization increases the
dimensions of the intersection of the vector spaces imposing constraints on the r-tuple (V1, . . . , Vr). Let
W i

1(0) and W i
2(0) be the limits of two of the vector spaces recorded by M . Suppose dim(W i

1(0)∩W i
2(0))

is larger than dim(W i
1 ∩ W i

2). Let (V1(0), . . . , Vr(0)) be a general point of an irreducible component of
the flat limit. Either Vj(0)∩W i

1(0)∩W i
2(0) has larger dimension than Vj ∩W i

1 ∩W i
2 or the subspaces of

Vj contained in W i
1 and W i

2 specialize to lie in the span of W i
1(0) and W i

2(0). This is true for all possible
intersections and all the vector spaces V1, . . . , Vr. As one runs through all the possibilities one obtains all
the limits. In fact, all the maximal dimensional components of the flat limit correspond to the case when
the subspace of at most one of vector spaces in the r-tuple, say Vh, contained in two neighboring vector
spaces (see Definition 3.22) become dependent and all other subspaces remain as independent as possible
unless forced to become dependent by this dependency and the compatibility conditions. We will make
this more precise in §3 and §4. §5 contains some sample calculations for three and four step flag varieties.
The reader might want to turn to these examples and the examples in [C2] while reading the paper.

Returning to the example in Figure 2, the degeneration (1− t)e5 + te1 specializes the blue and dashed
vector space W 2

1 and the black and dotted vector space W 3
1 . The blue and dashed neighbors of W 2

1 are
W 2

2 and W 2
3 . The dotted and black neighbors of W 3

1 are W 3
3 and W 3

4 . Label the four tableaux in the
second row I, II, III, IV from left to right. If in the limit the subspaces of V2 and V3 contained in W 2

1 (0)
and W 3

1 (0) remain independent from the subspaces contained in the neighboring vector spaces, we get
the limit associated to the Mondrian tableau IV . The subspaces of V2 contained in W 2

1 (0) and W 2
3 may

become dependent. In this case, V2 (and necessarily V3) intersect W̃ 2
3 = W̃ 3

3 =< e5 >. We denote this by

deleting the squares corresponding to W 2
3 and W 3

3 and drawing the squares corresponding to W̃ 2
3 and W̃ 3

3 .

In addition, we have to remember that the vector space W̃ 2
1 = W̃ 3

1 =< e1, . . . , e6 > contains a two and

three dimensional subspace of V2 and V3, respectively. We draw the squares corresponding to W̃ 2
1 = W̃ 3

1 .

Finally, V1 either has to coincide with the intersection of V2 with W̃ 2
3 or V2 has to intersect W 1

1 in a
two-dimensional subspace. The dimension of the latter locus is too small to support a component of the
flat limit, so we conclude that V1 has to intersect W̃ 1

1 in a one-dimensional subspace and depict this by

replacing the square corresponding to W 1
1 with the square corresponding to W̃ 1

1 . We obtain the Mondrian
tableau III . The subspaces of V2 contained in W 2

1 (0) and W 2
2 may become dependent. This forces the

subspaces of V3 contained in W 3
1 (0) and W 3

4 to become dependent. We depict this by deleting the squares

corresponding to W 2
1 , W 2

2 , W 3
1 and W 3

4 and drawing the squares corresponding to W̃ 2
2 = W̃ 3

4 =< e4, e5 >.
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In addition, we draw the squares corresponding to W̃ 3
1 =< e1, . . . , e7 > and W̃ 2

1 =< e1, . . . , e8 > to denote

that W̃ 3
1 and W̃ 2

1 contain a 5-dimensional subspace of V3 and a 3-dimensional subspace of V2, respectively.
We obtain the Mondrian tableau II . Finally, the Mondrian tableau I depicts the possibility when the
subspace of V3 contained in W 3

1 (0) and W 3
4 become dependent, but the subspaces of V2 contained in

W 2
1 (0) and W 2

2 remain independent.

Acknowledgements: I would like to thank S. Billey, A. Buch, J. Harris, A. Knutson and R. Vakil for
many fruitful conversations. I am grateful to Craig Desjardins for correcting many mistakes in the earlier
versions of the manuscript. A. Buch and R. Vakil have played a crucial role in clarifying, simplifying and
correcting earlier formulations of the rule presented here.

2. Preliminaries about partial flag varieties

In this section, we recall the basic facts about the cohomology of partial flag varieties.

Let 0 ≤ k1 < k2 < · · · < kr ≤ n be a collection of strictly increasing non-negative integers. Given such
a sequence, we will set k0 = 0 and kr+1 = n. The r-step partial flag variety F (k1, . . . , kr; n) parameterizes
r-tuples (V1, . . . , Vr) of vector subspaces of an n-dimensional vector space V , where the subspaces are
ordered by inclusion V1 ⊂ · · · ⊂ Vr and Vi has dimension ki. F (k1, . . . , kr; n) is a smooth projective
variety of dimension

r
∑

i=1

ki(ki+1 − ki).

Let F• : 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = V be a fixed complete flag in the n-dimensional vector space
V . The cohomology of the r-step flag variety F (k1, . . . , kr; n) has a Z-basis consisting of the cohomology
classes of Schubert varieties. Schubert varieties are parametrized by colored partitions

n − kr ≥ λ1[δ1] ≥ λ2[δ2] ≥ · · · ≥ λkr
[δkr

] ≥ 0

colored by r colors 1, . . . , r, where ki − ki−1 of the parts have the color i for 1 ≤ i ≤ r. We will denote

Schubert cycles by σ
δ1,...,δkr

λ1,...,λkr
, where the bottom row denotes the partition and the top row denotes the

color. The Schubert variety

Σδ•
λ•

(F•) = {(V1, . . . , Vr) ∈ F (k1, . . . , kr; n)| dim(Vi ∩ Fn−kr+j−λj
) ≥ #{t ≤ j|δt ≤ i}}

is defined by requiring the vector space Vi to intersect the flag element Fn−kr+j−λj
in a subspace of

dimension at least the number of parts of color less than or equal to i in the first j parts.

Example 2.1. The Schubert cycle σ1,2,1,3,2
3,2,1,1,0 in F (2, 4, 5; 8) is the Poincaré dual of the following Schubert

variety. First, we determine the flag elements that have exceptional behavior with respect to V3. These
are determined by the lower sequence 3, 2, 1, 1, 0. Taking n − k3 + i − λi, we see that they are the flag
elements F1, F3, F5, F6 and F8. The flag elements that have exceptional behavior with respect to V2 are
those to which the upper sequence 1, 2, 1, 3, 2 assigns an index less than or equal to 2. These flag elements
are F1, F3, F5, F8. Finally, the flag elements that have exceptional behavior with respect to V1 are those
where the upper sequence assigns the index 1. These are F1 and F5. In conclusion, the Schubert variety
is given by

Σ1,2,1,3,2
3,2,1,1,0(F•) = {(V1, V2, V3) ∈ F (2, 4, 5; 8)| dim(V3 ∩ F1) ≥ 1, dim(V3 ∩ F3) ≥ 2, dim(V3 ∩ F5) ≥ 3,

dim(V3 ∩ F6) ≥ 4, dim(V3 ∩ F8) ≥ 5, dim(V2 ∩ F1) ≥ 1, dim(V2 ∩ F3) ≥ 2,

dim(V2 ∩ F5) ≥ 3, dim(V2 ∩ F8) ≥ 4, dim(V1 ∩ F1) ≥ 1, dim(V1 ∩ F5) ≥ 2}.

The class of a Schubert variety depends only on the colored partition and not on the flag. Given any two
Schubert cycles, their product can be expressed as a linear combination of Schubert cycles. The purpose
of this paper is to give a positive, geometric rule for determining the corresponding structure constants.

Some authors represent Schubert cycles in the partial flag variety F (k1, . . . , kr; n) as strings of length
n consisting of 1, . . . , r, r + 1, where there are ki − ki−1 of digits in the string of value i for every
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i = 1, . . . , r + 1. The translation between the string notation and our notation is straighforward. Place
r+1 in every position in the n-string except for the positions n−kr +j−λj . In the position n−kr +j−λj

place the digit δj . We warn the reader that there are many different conventions for the string notation.
Some authors reverse the identification of the vector spaces with the digits, replacing i by r+1− i. There
are also different conventions about whether the string should be written from right to left or from left
to right. Some authors represent Schubert varieties by permutations. The natural translation between
permutations and our notation is to assign to the digits ki−1 + 1, . . . , ki the digits n − kr + j − λj in
increasing order, where λj are the parts assigned the color i. We warn the reader that most authors first
take the Poincaré dual cycle before applying this construction. In the sequel we will avoid using strings
or permutations.

3. Mondrian tableaux.

In this section, we introduce combinatorial objects called Mondrian tableaux for partial flag varieties
F (k1, . . . , kr; n). Mondrian tableaux provide a very convenient shorthand for recording the geometry of
partial flag varieties.

3.1. Preliminaries about Mondrian tableaux. We first introduce the preliminary definitions about
Mondrian tableaux for partial flag varieties.

Notation 3.1. Let V be an n-dimensional vector space. Let e1, . . . , en be an ordered basis for V . Let
1, . . . , r be r colors ordered 1 < · · · < r. A square Si is a pair consisting of a subset of the set of basis
elements

{e1, . . . , en}

and a color 1 ≤ i ≤ r. We always denote the color of a square with a superscript. When a statement
holds for squares irrespective of their color, we sometimes omit the color from the notation. Let M be a
collection of squares of colors 1, . . . , r. The side-length of a square S i (not necessarily contained in M)
is the number of basis elements in Si and is denoted by #r+1S

i(M). Similarly, the number of squares of
M of color j in Si is denoted by #jS

i(M).

Definition 3.2. We refer to the basis element in Si with lowest index (respectively, highest index) as the
left (respectively, right) corner of Si and denote it by l(Si) (r(Si)). We say a square is not chopped if
the basis elements contained in it are consecutive. Otherwise, we call the square chopped. The maximal
consecutive strings of basis elements in a square Si are called the chops of Si. We refer to the chop
containing the left corner as the left chop and denote it by lch(S i). Similarly for a chop of a square
Si, the left (respectively, right) corner of the chop refer to the basis element with smallest (respectively,
largest) index in that chop. A gap of a square Si is a basis element et such that et /∈ Si and there exists
eu and ev in Si with u < t < v. We say a basis element eu is to the left (respectively, right) of another
basis element ev if u ≤ v (respectively, u ≥ v). We say strictly left or strictly right if the inequalities are
strict. We use ≤,≥, <, > to mean left of, right of, strictly left of and strictly right of, respectively.

Definition 3.3 (Abuses of notation). We say a square Si is the span of the squares S1, . . . , Sm if the
basis elements contained in Si is equal to the union of the basis elements contained in S1, . . . , Sm. We say
that two squares Si and Sj coincide if the set of basis elements in Si is equal to the set of basis elements
in Sj (however, we allow Si and Sj to have different colors). We often abuse notation and write S i

1 ⊂ Sj
2

to mean that the set of basis elements in Si
1 is a subset of the set of basis elements in Sj

2.

A square of color i in a Mondrian tableau denotes a vector space that imposes a rank condition on the
i-th vector space Vi parameterized by the flag variety.

Definition 3.4. A Mondrian tableau M for the partial flag variety F (k1, . . . , kr; n) is a collection of
squares satisfying the following properties:
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M1 M contains exactly ki distinct squares of color i for each 1 ≤ i ≤ r.

M2 For each 1 ≤ i ≤ r − 1, every square Si of M of color i coincides with the span of the squares
of M of color i + 1 contained in Si. For each 1 ≤ i ≤ r, a square Si of M of color i does not
coincide with the span of the squares of M of color i strictly contained in S i.

M3 If Si
1 and Si

2 are two squares of M with l(Si
1) ≥ l(Si

2), then either Si
1 ⊆ Si

2 or r(Si
1) ≥ r(Si

2) as
well.

M4 A square of M of color r may have at most one gap. If Sr ∈ M has a gap g, then every square T
of M with l(T ) ≤ l(Sr) contains Sr. The collection of squares of M of color r that contain a gap
are totally ordered by inclusion, their gaps are equal, and they coincide to the right of the gap. If
g is a gap of a square of color r, then M does not contain any square T such that r(T ) ≤ g. If
a square Si

j of M of color i < r has a gap g, then g is either a gap of a square of M of color r

contained in Si
j , or there does not exist a square Si+1

j′ in M of color i+1 such that l(Si+1
j′ ) ≥ l(Si

j)

and g ∈ Si+1
j′ .

Notation 3.5 (Depicting Mondrian tableaux.). Place the ordered basis e1, . . . , en along the diagonal of
an (n × n)-grid ordered from southwest to northeast. Depict a square by drawing a square containing
the basis elements that constitute that square. If a square has a gap, we delete the intersection of the
square with the the row and column corresponding to the gap. The left (right) corner of a square is
the southwest/lower-left (northeast/upper-right) corner of the square in the picture. Every move with
Mondrian tableaux will only depend on the basis elements contained in the square. Since there is a
linear ordering on them (increasing from left to right) there is no ambiguity in referring to the lower-left
(upper-right) corner as simply the left (right) corner. Our examples will involve partial flag varieties
with four or fewer steps. We indicate the color of the square with color and line type. In examples, we
always order our colors as red (with solid lines), blue (with dashed lines), green (with dashed and dotted
lines) and black (dotted lines) in increasing order. In order to not clutter the pictures, if two squares of
different colors coincide, we draw only the one with the smallest color. Condition M2 in the definition of
a Mondrian tableau guarantees that this does not lead to ambiguities. Figure 3 depicts some examples
of Mondrian tableaux for F (1, 2, 3, 4; 6).

Figure 3. Some examples of Mondrian tableaux.

In the next section, we will describe how to associate an irreducible subvariety of F (k1, . . . , kr; n) to
a certain subset of Mondrian tableaux. Ignoring some subtleties, the subvariety ΣM associated to a
Mondrian tableau M is the closure of the locus of tuples (V1, . . . , Vr) in F (k1, . . . , kr; n) such that

(1) For every 1 ≤ i ≤ r and every square S (not necessarily contained in M), Vi intersects the
subspace of V spanned by the basis elements contained in S in dimension at least #iS(M); and

(2) The subspace of Vi contained in Si (where Si denotes the vector space spanned by the basis
elements contained in the square Si of M) is a subspace of the subspace of Vi+1 spanned by the
intersections of Vi+1 with the vector spaces corresponding to the squares of color i + 1 contained
in Si.

We will make the association between M and ΣM more precise and accurate in the next section. For the
purposes of understanding the combinatorial rule, the important information is that (a certain subset
of) Mondrian tableaux correspond to irreducible subvarieties of F (k1, . . . , kr; n). These subvarieties are
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determined by imposing rank conditions on the vector spaces (V1, . . . , Vr) based on the combinatorial
data of the Mondrian tableau. Now we will introduce the Mondrian tableaux that occur during the
combinatorial rule.

Definition 3.6. We say that a collection of squares S i1
1 , . . . , S

ij

j is totally ordered if for any two of the

squares Sik

k and Sil

l either Sik

k ⊆ Sil

l or Sil

l ⊆ Sik

k .

We say that square Si in a collection of squares M is a nested square if

(1) For every other square S̃j ∈ M , either Si ⊆ S̃j or S̃j ⊆ Si.
(2) The collection of squares in M containing Si is totally ordered.

A square that is not nested is called an unnested square. Finally, we say a Mondrian tableau M is nested
if every square in M is a nested square.

Property M2 implies that if the squares of color r in a Mondrian tableau are totally ordered, then the
tableau is nested. It is easy to encode Schubert varieties by Mondrian tableaux.

Definition 3.7. Let σδ
λ be a Schubert cycle for F (k1, . . . , kr; n). A Mondrian tableau associated to the

Schubert cycle σδ
λ is a nested tableau consisting of squares of size n−kr + i−λi and colors δi, δi +1, . . . , r

for every 1 ≤ i ≤ kr.

Figure 4 shows a Mondrian tableau associated to the Schubert cycle σ3,1,2,1
2,0,0,0 in F (2, 3, 4; 6).

A0,0,1

A1,1,2

A1,2,3

A2,3,4

Figure 4. The Schubert cycle σ3,1,2,1
2,0,0,0 in F (2, 3, 4; 6).

Note that a Mondrian tableau contains more refined information than the class of the Schubert variety.
One can recover the partial flag with respect to which the Schubert variety is defined from the Mondrian
tableau.

Next we would like to associate a Mondrian tableau to the intersection of two Schubert varieties in
F (k1, . . . , kr; n). The diagonal action of GL(n) on the product of two full-flag varieties F l(n) × F l(n)
has a dense open orbit. For any point (F•, G•) in this dense open orbit, one can choose a basis of the
underlying vector space V , so that F• and G• are opposite flags with respect to this basis. We will
assume that the two Schubert varieties are initially defined with respect to a pair of flags (F•, G•) in this
dense open subset. Then we can choose an ordered basis of V by setting ei = Fi ∩ Gn−i+1. Algorithm
3.8 describes how to associate a Mondrian tableau to the intersection of two Schubert varieties defined
with respect to F• and G•.

Algorithm 3.8 (Associating a Mondrian tableau to the intersection of Schubert varieties). We now describe
the algorithm that associates a Mondrian tableau M(σδ

λ, σκ
µ) to the intersection of two Schubert cycles

σδ
λ and σκ

µ in F (k1, . . . , kr; n).

Step 1: Let M(λ, δ) be the Mondrian tableau associated to σδ
λ where all the squares are left-justified and

none are chopped. Similarly, let M(µ, κ) be the Mondrian tableau associated to σκ
µ where all

the squares are right-justified and none are chopped. Place M(λ, δ) and M(µ, κ) in the same
(n × n)-grid and call the corresponding collection of squares M . Label the squares of color i of
M(λ, δ) by Ai

m1,...,mi
and the squares of color i of M(µ, κ) by Bi

n1,...,ni
, where mj (respectively,

nj) denotes the number of squares of color j ≤ i (inclusive) contained in Ai
m1,...,mi

(respectively,

Bi
n1,...,ni

). Whenever we do not wish to specify an index of the square, we will place a star instead
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of that index as in Ai
∗,...,∗,mi

. The A and B squares are totally ordered by inclusion. The smallest
A square satisfying property P will mean the A square with the least number of basis elements
(equivalently, shortest side-length) that satisfies property P .

Step 2: Let Ai
0,...,0,1, . . . , A

r
0,...,0,1,...,1 be the A squares that coincide with the smallest A square of color r.

Let B̃r be the smallest square among the squares of color r that coincide with Bi
∗,...,∗,ki

, . . . , Br
∗,...,∗,kr

.

Let Sr
1 = Ar

∗,...,∗,1 ∩ B̃. If Sr
1 is empty, the intersection of the two Schubert varieties is empty

and the algorithm terminates. Otherwise, let M1 be the collection of squares obtained from M
by deleting Ar

∗,...,∗,1 and B̃. Suppose we have inductively defined Si
α and obtained a collection of

squares Mt by deleting an A and a B square of M of the same color at each step. Suppose i is
the largest color of the squares in Mt. Let Ai

m1,...,mi
be the smallest A square of color i in Mt and

suppose that it coincides with the squares Aj
m1,...,mj

, Aj+1
m1,...,mj ,mj+1

, . . . , Ai
m1,...,mi

. For j ≤ s ≤ i,

let Bs,i denote the largest B square of color i in Mt that coincides with a B square of color s and
contains Bs

∗,...,∗,ks−ms+1. If such a square does not exist, set Bs,i = Bi,i (note that Bi,i always

exists). Let B̃i be the smallest square among Bj,i, . . . , Bi,i. Let S̃i
mi

= Ai
m1,...,mi

∩ B̃i. If S̃i
mi

is empty, then the intersection of the Schubert varieties is empty and the algorithm terminates.
Otherwise, delete Ai

m1,...,mi
and B̃i from Mt to obtain Mt+1. Let Si

mi
be the square obtained

by shrinking S̃i
mi

to be the span of the squares Si+1
α produced previously in the algorithm and

contained in S̃i
mi

. Continue defining the squares Si
α inductively. The algorithm terminates when

there are no A or B squares remaining. Let M(σδ
λ, σκ

µ) be the Mondrian tableau consisting of the

squares Si
mi

, for 1 ≤ i ≤ r and 1 ≤ mi ≤ ki.

We will later see that the variety associated to the Mondrian tableau produced by Algorithm 3.8 is
the intersection of the two Schubert varieties. We give some examples of Algorithm 3.8 in Figure 5.

Figure 5. Some examples of Algorithm 3.8.

Definition 3.9. A square F i of color i of a Mondrian tableau M is called a filler in a square Sj of M if

(1) F i is strictly contained in Sj ; and

(2) There exists a square T k of M with k < i such that l(F i) = l(T k) > l(Sj) and T k 6⊆ Sj .

Definition 3.10 (Admissible Mondrian tableaux). A Mondrian tableau for F (k1, . . . , kr; n) is called
admissible if it satisfies the following properties:

AM1 If Si
1 ( Si

2 are two squares of M of color i > 1, either there exists a square T i−1 of M of color
i− 1 such that Si

1 ⊆ T i−1 ( Si
2, or for every square T of M satisfying l(T ) ≤ l(Si

2) and T 6⊂ Si
2,
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we have Si
1 ⊂ T . Furthermore, if Si

1 does not coincide with a square T i−1 of M , then every
square S of M with l(S) ≤ l(Si

2) and S 6⊆ Si
2 either contains Si

1 or contains a filler F in S with
l(F ) < l(Si

1).

AM2 Let Si−1
2 ( Si

1 with i > 1 be two squares of M . Let Si
3 be a square of M of color i such that

Si
3 ⊂ Si−1

2 and the basis elements contained in Si
3 and Si−1

2 to the left of l(Si
3) are not equal. Then

either there exists a square Si−1
4 of M of color i− 1 with Si

3 ⊂ Si−1
4 ( Si

1 and l(Si−1
4 ) ≤ l(Si−1

2 ),
or for every square S of M such that l(S) ≤ l(Si

1) and S 6⊂ Si
1 we have that Si

3 ⊂ S.

Remark 3.11. While calculating the intersection of two Schubert varieties the tableaux that occur satisfy
the stronger condition AM1′: If S1

1 ⊂ S1
2 , then every square T of M with l(T ) < l(S1

2) contains S1
1 .

However, this condition is not necessarily preserved under projection to partial flag varieties with fewer
steps. Condition AM1 is better suited for induction. The conditions AM1 and AM2 can be used to bound
the number of limits that occur during the degenerations. If in addition to AM1 and AM2 we impose the
condition AM1′, then the number of irreducible components of the support of the degenerations we will
discuss is bounded by a quadratic function of r (the number of steps in the flag variety). For example,
for Grassmannnians there are at most 2 components. For two-step flag varieties there are at most 3
components (see [C2]).

Definition 3.12 (Normalized Mondrian tableau). A Mondrian tableau M is called normalized if M is
nested or satisfies the following two properties:

NM1 If Si
1 6= Si

2 are any two squares in M of the same color, then l(Si
1) 6= l(Si

2).

NM2 If Si
1 ( Si

2 are two squares of M of the same color i such that r(S i
1) = r(Si

2), then every square
T of M such that l(T ) ≤ l(Si

2) contains Si
1.

Definition 3.13. A Mondrian tableau M is called nice if for any 1 ≤ i ≤ r and any two squares S i
h1

,

Si
h2

of M of color i the following inequality holds:

#i+1(S
i
h1

∪ Si
h2

)(M) − #i+1S
i
h1

(M) ≥ #i(S
i
h1

∪ Si
h2

)(M) − #iS
i
h1

(M).

The translation between geometry and combinatorics is especially nice for nice Mondrian tableaux.
Normalized Mondrian tableaux are automatically nice. However, there are nice Mondrian tableaux which
are not normalized. Unfortunately, it is not possible to run our algorithm keeping all the Mondrian
tableaux nice. (The Algorithm in [C2] uses only normalized Mondrian tableaux. The Algorithm we
give in this paper will use more general tableaux. The advantage here is that we reduce the amount of
chopping of the squares in the tableaux to a minimum.)

Definition 3.14. The virtual dimension of a Mondrian tableau is given by the following expression
r

∑

i=1

∑

Si
h
∈M

(

#i+1S
i
h(M) − #iS

i
h(M)

)

.

The virtual dimension of a nice Mondrian tableau is called its dimension.

Remark 3.15. The virtual dimension of a nice Mondrian tableau will equal the dimension of the variety
associated to it. In general, the virtual dimension of a Mondrian tableau M is greater than or equal to
(and can be strictly greater than) the dimension of the variety ΣM associated to it. We will define a
more complicated dimension function that calculates the exact dimension of the variety associated to M
in the next section, but we will phrase the combinatorial rule in terms of the virtual dimension.

Let σδ
λ be a Schubert cycle in F (k1, . . . , kr; n). The sequence δ determines r − 1 subsequences

s1, . . . , sr−1, where each sj is the sequence of entries in δ that are less than or equal to j + 1 listed
in the same order as in δ. Let ijh denote the index of the h-th digit less than or equal to j in the

sequence sj . If we would like to emphasize that the subsequence is induced by δ, we will write ij
h(δ).
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For example, if δ = 1, 2, 3, 4, 4, 3, 1, 2, then s3 = δ, s2 = 1, 2, 3, 3, 1, 2 and s1 = 1, 2, 1, 2. Moreover,
i11 = 1, i12 = 3, i21 = 1, i22 = 2, i23 = 5, i24 = 6.

Lemma 3.16. The tableau associated to a Schubert variety is normalized, admissible and of dimension

r
∑

i=1

∑

Si
j
∈M

#i+1S
i
j(M) −

r
∑

i=1

ki(ki + 1)

2
,

which is equal to the dimension of the Schubert variety.

Proof. The tableau is nested, hence automatically normalized and admissible. The dimension of the
tableau is immediate from the definition. Note that the codimension of the Schubert variety is

kr
∑

i=1

λi +
r−1
∑

s=1

ks
∑

h=1

(ks+1 − ks + h − ish).

�

Lemma 3.17. The tableau associated to the intersection of two Schubert varieties

Σδ
λ ∩ Σκ

µ

in F (k1, . . . , kr; n) described by Algorithm 3.8 is normalized, admissible and of dimension equal to the
dimension of the intersection of the two Schubert varieties.

Proof. First, note that the intersection of two Schubert varieties in F (k1, . . . , kr; n) is empty if and only
if one of the intersections of a pair of squares in the construction is empty. If the intersections of any
two squares in the construction is empty, then there exists a pair of squares Ai

j and Bi
ki−j+1 that do not

intersect. The corresponding vector spaces (spanned by the basis elements in Ai
j and Bi

ki−j+1) contain a j

and (ki − j + 1)-dimensional subspace of Vi, respectively. Since Vi has dimension ki, these two subspaces
must intersect. If there are no common basis elements in these two squares, the two subspaces are
disjoint. We conclude that the intersection of the two Schubert varieties is empty. Conversely, if none of
the intersections in the construction are empty, we can explicitly build an r-tuple (V1, . . . , Vr) contained
in the intersection of the two Schubert varieties. Let Vi be the vector space spanned by the basis elements
that form the left corner of the squares of color i in the Mondrian tableau. By construction, it is clear
that Vi ⊂ Vi+1 and that the tuple obtained this way is a point in both Schubert varieties. Hence, the
intersection is non-empty. From now on we can assume that the tableau is not discarded in Algorithm
3.8 and that the intersection of the two Schubert varieties is non-empty.

Observe the following properties of the construction:

(1) There are ki squares of color i and the left and right corners of all squares of color i are distinct.
Furthermore, by construction squares of color i are the spans of squares of color i + 1 contained
in them. Hence, M1 and M2 hold and the tableau is normalized.

(2) The squares of color r are intersections of squares of color r which are not chopped. Hence the
squares of color r are not chopped. Similarly, the squares of color i < r are intersections of
squares of color i which are not chopped. They might have gaps if some of the basis elements do
not belong to squares of color i + 1 contained in the square of color i. Hence, M3 and M4 hold.

(3) If a square of color i is contained in another square of color i, then that square coincides with a
square of color i − 1. Hence, the tableau satisfies AM1 and AM2.

It follows from these observations that the initial tableau corresponding to the intersection of two
Schubert varieties is a normalized, admissible Mondrian tableau.
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Calculating the dimension is straightforward. The codimension of the intersection of the two Schubert
varieties is

kr
∑

i=1

(λi + µi) +
r−1
∑

s=1

ks
∑

h=1

(2ks+1 − 2ks + 2h− ish(δ) − ish(κ)) .

By the definition of the dimension of a Mondrian tableau and by the construction in Algorithm 3.8, one
can see that the dimension of M(σδ

λ, σκ
µ) is given by

kr(n − kr) −

kr
∑

i=1

(λi + µkr−i+1) +

r−1
∑

c=1

kc
∑

h=1

(

ich(δ) + ickc−h+1(κ) − kc+1 − 1
)

.

Recalling that the dimension of the flag variety is
∑r

i=1 ki(ki+1 − ki), the dimension of M(σδ
λ, σκ

µ) can be
seen to agree with the dimension of the intersection of the two Schubert varieties. �

Even though the initial tableau associated to the intersection of two Schubert varieties is normalized,
it is not possible to keep the tableaux normalized in the intermediate stages of the algorithm. We will
have to relax the definition of a normalized tableau.

Definition 3.18 (Semi-normalized Mondrian tableau). A Mondrian tableau M is called semi-normalized
if either M is normalized or M satisfies the following properties:

SNM1 At most two squares of the same color share a left corner.
SNM2 Let Si

1 ⊂ Si
2 be two squares of M of the same color with ej = l(Si

1) = l(Si
2). If i = r, then ej+1

is the left corner of a filler in Sr
1 . Either Sr

1 has a gap or contains a filler F with r(F ) = r(Sr
1 ).

Every square T r of M of color r with l(T r) ≤ l(Sr
1) contains Sr

1 . If i < r, then the first basis
element strictly to the right of ej which is the left corner of a square of color i + 1 is also the left
corner of a filler of Si

1.

SNM3 If the right corners of two squares Si
1 ⊂ Si

2 of M of the same color i are equal, then every square
T of M with l(T ) ≤ l(Si

2) and T 6⊂ Si
2 contains Si

1.

3.2. The combinatorial rule for multiplying Schubert cycles. In this subsection, we state the
combinatorial rule for multiplying Schubert cycles. Given an admissible, semi-normalized Mondrian
tableau M , we will move some of the squares in M in a given order and replace M with a set of new
Mondrian tableaux. In Rule 3.19 we will specify which squares to move. In Rule 3.21 we will specify
how to move the squares. We will then describe a set of Mondrian tableaux that will replace M . The
algorithm for computing the product of Schubert cycles will consist of starting with the initial tableau
described in Algorithm 3.8 and repeating this move on every Mondrian tableau resulting from this initial
tableau until every tableau is the tableau associated to a Schubert cycle. The class of the product is then
the sum of the Schubert cycles corresponding to the tableaux that result.

As we will see in the next section, geometrically the move on a Mondrian tableau M corresponds to a
one-parameter specialization of the flags defining the variety ΣM . The algorithm records the irreducible
components of the flat limit of this degeneration that have dimension equal to the virtual dimension of
M . These irreducible components of the flat limit are again varieties associated to Mondrian tableaux.
They each occur with multiplicity one in the limit. Hence, the class of the variety associated to M is the
sum of the classes of the varieties associated to the Mondrian tableaux occurring in the algorithm. A very
simple geometric criterion allows us to decide which varieties associated to a Mondrian tableau occur in
the limit. However, in practice this is cumbersome to use. We will also give a much more efficient version
of the rule. Now we will make this precise.

Observe that conditions M2, M3 and M4 of the definition of a Mondrian tableau imply that the
collection of squares of the same color that have the same left corner is totally ordered by inclusion.

Rule 3.19 (The square to move). Let M be a semi-normalized Mondrian tableau for F (k1, . . . , kr; n)
which is not nested. Let ej1 be the smallest index basis element that is the left corner of an unnested
square of M of color r. Let T r

1 be the smallest square of M of color r with l(T r
1 ) = ej1 . Define T r

i
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inductively as follows. As long as T r
i−1 strictly contains any squares, let eji

be the least index basis
element that is the left corner of a square strictly contained in T r

i−1. Let T r
i be the smallest square of M

of color r strictly contained in T r
i−1 with l(T r

i ) = eji
. If none of the squares T r

i are chopped, set T r
h to be

the square among T r
i with least index satisfying the following properties:

(1) The collection of squares contained in T r
h is totally ordered.

(2) There are no fillers in T r
h .

Set the square to move Sr = T r
h .

If one of the T r
i is chopped, let T r

m be the square with largest index among T r
i which is chopped. Set

the square to move Sr = T r
m.

Remark 3.20. Since the tableau is not nested, there exists an unnested square of color r. Hence T r
1 exists.

Since T r
1 contains finitely many squares of color r, the collection of squares T r

i is finite. Among them
there must be a square T r

l that does not strictly contain any squares of M (by property M2, once a square
does not strictly contain any squares of color r, then it does not strictly contain any squares). Clearly,
there are no fillers in T r

l and the collection of squares contained in T r
l is totally ordered. It follows that

T r
h exists and Sr is well-defined.

Rule 3.21 (The way to move squares). Let M be a Mondrian tableau which is not nested. Let Sr be the
square of M determined by Rule 3.19. Let the left chop of S be lch(S) = {ep, . . . , eq}. Then slide lch(Sr)
diagonally left by one unit (i.e., replace it by {ep+1, . . . , eq+1}). If there are any squares S ′ (of any color)
of M that contain Sr and have a chop whose right corner is eq, chop S′ at ep and slide the chop of S′

that coincides with lch(S) diagonally left by one unit as well. Keep all other squares in M unchanged.

Definition 3.22. Let the left chop of a square Sr of a Mondrian tableau M be lch(Sr) = {ep, . . . , eq}.

A neighbor N j of color j of a square S̃j of M with respect to Sr is a square of M of color j such that

(1) eq+1 ∈ N j.

(2) N j does not contain S̃j .

(3) If there exists a square S ′ of M of color j such that l(S̃j) < l(S′) < l(N j), then either S′ ⊂ S̃j

or N j ⊂ S′.

We say two vector spaces spanned by basis elements in S̃j and in a neighbor N j of S̃j are neighboring
vector spaces.

Algorithm 3.23 (Normalization of right corners). Let M be a Mondrian tableau. Let S i
1 ⊂ Si

2 with
r(Si

1) = r(Si
2) be two squares of M that violate Condition NM2. If i = r, replace Sr

2 by the square
Sr

2 − r(Sr
2 ) of color r. If i < r, let ej be the basis element with highest index strictly to the left of r(Si

2)
such that ej is the right corner of a square of color i + 1 contained in Si

2. If there does not exist such a
basis element, let ej = l(Si

2). Replace Si
2 with the square Si

2 − {ej+1, ej+2, . . . , r(S
i
2)} of color i. If these

operations result in a square without any basis elements, discard M . Call this process the normalization
of the right corner of Si

2 with respect to Si
1.

Let T j
1 , T j

2 be two squares of M of color j with r(T j
1 ) = r(T j

2 ) = eu. For the purposes of the next

algorithm, let T j
1 < T j

2 when the number of basis elements in T j
1 is less than the number of basis elements

in T j
2 or, in case of equality, when l(T j

1 ) > l(T j
2 ). Note that this is a total order on squares of color j whose

right corner is eu. We can then order pairs of squares Sj
1 ⊂ Sj

2 of squares of M with r(Sj
1) = r(Sj

2) = eu

lexicographically first by Sj
1 then by Sj

2.

Given a Mondrian tableau M that fails to satisfy Condition NM2, normalize the right corners of M
up to color i as follows.
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Step 1. Let j ≥ i be the largest color such that M has squares that fail Condition NM2. If M does not
have such squares, the process terminates. Otherwise, let eu be the largest index basis element
which is the right corner of two squares of color j that violate Condition NM2 and proceed to
the next step.

Step 2. Let Sj
1 ⊂ Sj

2 be the smallest two squares of M with r(Sj
1) = r(Sj

2) = eu that violate Condition

NM2. Let M1 be the tableau obtained by normalizing the right corner of Sj
2 with respect to Sj

1.
If the tableau is discarded, the algorithm terminates. Otherwise, let M = M1 and return to Step
1.

Algorithm 3.24 (Semi-normalization of left corners). Let M be a Mondrian tableau. Let S i
1 and Si

2 be
two squares of M of the same color such that l(Si

1) = l(Si
2). First suppose i = r. If the left corner of the

square Sr
2 − l(Sr

2) is not the left corner of a filler of Sr
1 , replace Sr

2 with the square Sr
2 − l(Sr

2) of color r.
Otherwise, leave M unchanged. Now suppose i < r. Let ej be the smallest index basis element strictly
to the right of l(Si

2) such that ej is the left corner of a square of color i +1 contained in Si
2. If there does

not exist such a basis element, let ej = r(Si
2). If ej is not the left corner of a filler of Si

1, replace Si
2 with

the square Si
2 − {l(Si

2), . . . , ej−1}. Otherwise, leave M unchanged. If these operations result in a square
without basis elements, discard M . Call this process the semi-normalization of the left corner of S i

2 with
respect to Si

1.

Given a Mondrian tableau M that violates Condition SNM2, semi-normalize the left corners of M up
to color i as follows:

Step 1. Let j ≥ i be the largest color such that M has two squares of color j violating SNM2. If M does
not have such squares, the algorithm terminates. Otherwise, let eu be the smallest index basis
element which is the left corner of two squares of color j that violate SNM2 and proceed to the
next step.

Step 2. Let Sj
1 ⊂ Sj

2 be the smallest two squares with l(Sj
1) = l(Sj

2) = eu that violate SNM2. Let M1

be the tableau obtained by by semi-normalizing the left corner of Sj
2 with respect to Sj

1. If the
tableau is discarded, the algorithm terminates. Otherwise, let M = M1 and return to Step 1.

We will first state a version of the rule that is hard to use in practice, but highlights the principle
behind the rule. We first need some terminology.

Notation 3.25. Let M be a Mondrian tableau. Given a square S i of M denote by Si(1) the square Si in
M and by Si(0) the square after the squares of M have been moved according to Rule 3.21. Similarly,
let Si

j1
, . . . , Si

jt
be any subset of the squares of color i of M . Denote by Si

j1,...,jt
(1) the square formed

by the union of the basis elements contained in these squares. Note that this square is not in general a
square of M . Suppose the lower-left chop of the square determined by Rule 3.19 is {ep, . . . , eq}. If one of
the squares Si

jh
(1) contains ep and another one Si

jl
(1) contains eq+1, let Si

j1,...,jt
(0) denote the union of

ep and the basis elements contained in the squares Si
j1

(0), . . . , Si
jt

(0). Otherwise, let Si
j1,...,jt

(0) denote

the union of the basis elements contained in Si
j1

(0), . . . , Si
jt

(0).

Definition 3.26. Let M be a Mondrian tableau. There is a total ordering on the squares S i
j1,...,jt

(1) of the

same color i. A square Si
j1,...,jt

(1) < Si
l1,...,lm

(1) if #iS
i
j1,...,jt

(M) < #iS
i
l1,...,lm

(M). If #iS
i
j1,...,jt

(M) =

#iS
i
l1,...,lm

(M), then the squares are ordered lexicographically according to the basis elements they contain.

The squares Si
j1,...,jt

(0) are ordered in the same order that the squares S i
j1,...,jt

(1) are.

Algorithm 3.27 (An impractical rule.). Let M be a semi-normalized, admissible Mondrian tableau. Let
M(0) denote the collection of squares obtained after the squares of M have been moved according to
Rule 3.21. Let

Qr = {T r
1 , . . . , T r

jr
}

be a set (possibly empty) of squares of color r, where jr ≤ kr and each T r
h is the intersection of squares

Sr
m1

(0) ∩ · · · ∩ Sr
mh

(0) of M(0) and there are no containment relations among the squares T r
h . For each

such set Qr (including the empty set), build a set of squares Rr
Qr

of color r of cardinality kr as follows.
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Take all the squares in Qr and all the squares of M(0) of color r that do not contain any of the squares
T r

h in Qr. Normalize the upper-right corners of these squares up to color r. For simplicity, even if a
square shrinks during the process, keep its label the same. Proceeding in increasing order according to
the ordering of the squares, add all the squares Sr

l1,...,lm
(0) that have fewer than #r(S

r
l1,...,lm

(1))(M)
squares of color r contained in them. For each of the set of black squares Rr

Qr
thus obtained consider all

the sets Qr−1 consisting of squares of color r − 1

Qr−1 = {T r−1
1 , . . . , T r−1

jr−1
}

where jr−1 ≤ kr−1 and each square T r−1
h contained in Qr−1 is

(1) contained in the intersection of squares Sr−1
m1

(0) ∩ · · · ∩ Sr−1
mh

(0) of color r − 1 of M(0);

(2) coincides with the span of squares of color r in RQr
;

(3) does not contain or is not contained in any of the other squares T r−1
h′ in Qr−1 for h 6= h′.

For every such set Qr−1 (including the empty set) of squares of color r−1 form a set Rr−1
Qr−1

of squares

of color r − 1 of cardinality kr−1 as follows. Take all the squares in Qr−1 and all the squares of color
r − 1 in M(0) that do not contain any of the squares T r−1

h in Qr−1. Shrink these squares so that they
are the spans of the squares of color r in Rr

Qr
contained in them. Normalize the upper-right corners of

these squares up to color r − 1. Proceeding in increasing order according to the ordering of the squares,
add all the squares

Sr−1
l1,...,lm

(0)

that contain fewer than #r−1(S
r−1
l1,...,lm

(1))(M) squares of color r−1. Shrink all the squares of color r−1,
so that they are the spans of the squares of color r in Rr

Qr
contained in them. Normalize the upper-right

corners of the squares up to color r−1. If the side-length of any square shrinks to zero discard that set of
squares. Continue building these sets of squares inductively in decreasing order. Suppose we have built
sets of squares of colors r, r − 1, . . . , i + 1. For every choice Ri+1

Qi+1
, . . . , Rr

Qr
consider any set

Qi = {T i
1, . . . , T

i
ji
}

of squares of color i where ji ≤ ki and each square T i
h contained in Qi is

(1) contained in the intersection of squares Si
m1

(0) ∩ · · · ∩ Si
mh

(0) of color i of M(0);

(2) coincides with the span of squares of color i + 1 in RQi+1
contained in it;

(3) does not contain or is not contained in any of the other squares T i
h′ in Qi for h 6= h′.

Form a set Ri
Qi

of squares of color i as follows. Take all the squares in Qi and all the squares in M(0)

of color i that do not contain any of the squares T i
h in Qi. Shrink these squares so that they are the

spans of squares of color i + 1 in Ri+1
Qi+1

contained in them. Normalize the upper-right corners of these

squares up to color i. Proceeding in increasing order, add the squares S i
l1,...,lm

(0) that have fewer than

#i(S
i
l1,...,lm

(1))(M) squares of color i to Ri
Qi

. Shrink the resulting squares of color i so that they are

the spans of squares of color i + 1 in Ri+1
Qi+1

contained in them. Normalize the upper-right corners of the

squares up to color i. If the side-length of any square shrinks to zero discard that tableau. Continuing
we end up with a collection of sets of squares R1

Q1
, . . . , Rr

Qr
for every choice of Q1, . . . , Qr that are not

discarded. Form a tableau consisting of squares of color 1, . . . , r produced in this way. Semi-normalize
the lower-left corners of the resulting tableau and proceeding from r − 1 to 1 shrink any square of color
i which is not equal to the span of squares of color i + 1 contained in it so that it is. In this way we
obtain a collection of semi-normalized Mondrian tableaux. Replace M with the set of distinct tableaux
produced by this procedure and that have the same virtual dimension as the virtual dimension of M . If
there are none, simply discard M .

Remark 3.28. It can happen that the virtual dimension of every tableaux produced by the above algorithm
is smaller than the virtual dimension of M . It is possible to remedy this situation by introducing a
more refined dimension function which computes the actual dimension of the variety associated to M
rather than an upper bound on it. We will introduce this function in the next section when we discuss
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the geometry of Mondrian tableaux. Since this is harmless for calculating the structure constants of
the cohomology of flag varieties and the refined dimension function is harder to compute, we postpone
introducing it. If M is nice, at least one of the Mondrian tableaux produced by the algorithm will have
the same virtual dimension as M .

Let ΣM be the variety associated to M . Corresponding to the move of Mondrian tableaux, there is
a one-parameter family of varieties whose general member is isomorphic to ΣM . The main claim of this
paper is that the locus that supports the components of the flat limit of this degeneration, which have
dimension equal to the virtual dimension of M , is equal to the union of the varieties associated to each
of the tableaux described in Algorithm 3.27 that have dimension equal to the virtual dimension of M .
Furthermore, the flat limit is generically reduced along these components. Hence the class of the variety
associated to M is a sum of the classes of the varieties associated to the tableaux that have the same
dimension as the variety associated to M . Finally, we claim that those that do have the same virtual
dimension are admissible, semi-normalized Mondrian tableaux. Hence, the class of the intersection of
two Schubert varieties can be inductively determined. The problem with this formulation is, of course,
that this algorithm is very impractical. Very few of the tableaux produced in Algorithm 3.27 will have
the same virtual dimension as M . One can narrow down the list of candidates considerably. This allows
one to obtain an algorithm that one can easily carry out in practice.

Definition 3.29. We will say that a square Si is a minimal square with property P if Si has property
P and none of the squares strictly contained in Si have property P .

Now we describe a more streamlined set of tableaux that we will replace M with. Let

U i1
1 , . . . , Ur

hr

be the minimal squares (with respect to inclusion) of colors i1, i1 + 1, . . . , r, respectively, that are moved
according to Rule 3.21. Let M(0) be the tableau obtained after the squares are moved according to Rule
3.21. Define the following tableaux.

Tableau M0: Starting with squares of color r − 1 and proceeding in descending order, if a square in
M(0) of color i is not the span of squares of color i + 1 contained in it, shrink that square so that it is
the span of squares of color i + 1 contained in it. Normalize the upper-right corners of the squares in
the resulting tableau. Semi-normalize the lower-left corners of the squares of the resulting tableau and
proceeding from r − 1 to 1 shrink any square of color i which is not equal to the span of squares of color
i + 1 contained in it so that it is. Figure 6 shows some examples.

Figure 6. Some examples of Tableau M0.
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Tableau M1(U
j
hN j

s ): Let N j
s be a neighbor of U j

h of color j with respect to the square determined by

Rule 3.19. For i ≥ j, let T i = U j
h(0) ∩ N j

s (0) be the square coinciding with the intersection of U j
h(0)

and N j
s (0) in color i. Let M1(U

j
hN j

s ) be the Mondrian tableau whose squares are determined as follows:

Starting with r and proceeding in descending order form the following sets M1(U
j
hN j

s )i of squares of color
i. If i ≥ j take T i and any square of color i of M(0) that does not contain T i. Shrink these squares so

that they are the spans of the squares of color i+1 in M1(U
j
hN j

s )i+1. Normalize their upper-right corners
up to color i. Proceeding in increasing order (according to the ordering of the squares) add all the squares
Si

h1,...,hj
(0) that at a given stage have fewer than #iS

i
h1,...,hj

(1) squares of color i contained in it. Shrink

these squares of color i so that they are the spans of the squares of color i+1 in M1(U
j
hN j

s )i+1 contained

in them and normalize their upper-right corners. Let the resulting set of squares be M1(U
j
hN j

s )i. Now
suppose i < j. Shrink the squares of color i of M(0) so that they are the spans of the squares in

M1(U
j
hN j

s )i+1 that they contain. Normalize the upper-right corners of the resulting squares up to color
i. We obtain in this way a collection of squares of colors 1, . . . , r. Semi-normalize the lower-left corners of
the squares in the resulting tableau and proceeding from r − 1 to 1 shrink any square of color i which is
not equal to the span of squares of color i +1 contained in it so that it is. If the side-length of any of the
squares shrink to zero during any part of this process discard this tableau. Otherwise, call the resulting
tableau M1(U

j
hN j

s ). Figure 7 depicts some examples.

Figure 7. Some examples of Tableau M1.

Remark 3.30. We can say very explicitly which squares of M(0) are modified while drawing Tableau M1.
When drawing the squares of color i for i ≥ j, form T i. Normalize the upper-right corners of T i and the
squares of M(0) of color i that do not contain T i as described above. Label by T i∗ the square that T i

transforms to under this normalization procedure. Let Bi
1, B

i
2, . . . , B

i
s be the squares of M(0) of color

i that minimally contain T i∗ ordered according to their lower-left corners from southwest to northeast.
Replace the squares Bi

1, . . . , B
i
s of M(0) with T i∗ and Bi

1,2(0), Bi
2,3(0), . . . , Bi

h,h+1(0), . . . , Bi
s−1,s(0) in
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color i. Keep all the other squares of M(0) of color i unchanged. Shrink all the squares of color i so that
they are the spans of squares of color i +1 contained in them and normalize their upper-right corners. A
similar description applies to the tableaux of type M ′

1 we now describe.

Tableau M ′

1(U
j
hN j

s ): Let N j
s be a neighbor of U j

h of color j with respect to the square determined by

Rule 3.19. For i ≥ j, let T i = U j
h(0) ∩ N j

s (0) be the square coinciding with the intersection of U j
h(0)

and N j
s (0) in color i. Let M ′

1(U
j
hN j

s ) be the Mondrian tableau whose squares are determined as follows:

Starting with r and proceeding in descending order form the following sets M ′

1(U
j
hN j

s )i of squares of color
i. If i ≥ j, take T i and any square of color i of M(0) that does not contain T i. Shrink these squares

so that they are the spans of the squares of color i + 1 in M ′

1(U
j
hN j

s )i+1. Normalize their upper-right
corners up to color i. Denote by T i∗ the square that T i transforms to under this procedure. Proceeding
in increasing order (according to the ordering of the squares) add all the squares S i

h1,...,hj
(0) that at a

given stage have fewer than #iS
i
h1,...,hj

(1) squares of color i contained in it. Shrink the squares of color

i so that they are the spans of the squares of color i + 1 in M ′

1(U
j
hN j

s )i+1 contained in them. Let the

resulting set of squares be M ′

1(U
j
hN j

s )i. Now suppose i < j. If any of the squares of M(0) of color i

that minimally contain T j∗ is not the span of the squares of color i + 1 of M ′

1(U
j
hN j

s )i+1 contained in it,
shrink that square so that it is. Take the resulting squares and any square of color i of M(0) that does
not contain T j∗. Normalize their upper-right corners up to color i. Proceeding in increasing order add
all the squares Si

h1,...,hj
(0) that have fewer than #iS

i
h1,...,hj

(1) squares of color i contained in it. Shrink

the squares of color i so that they are the spans of squares of color i + 1 in M ′

1(UjN
j
s )i+1 contained in

them and normalize their upper-right corners. Form the tableau consisting of the squares M ′

1(U
j
hN j

s )i for
i = 1, . . . , r. Semi-normalize the lower-left corners of the squares in the resulting tableau and proceeding
from r − 1 to 1 shrink any square of color i which is not equal to the span of squares of color i + 1
contained in it so that it is. If the side-length of any of the squares shrink to zero during any part of
this process, discard this tableau. Otherwise, call the resulting tableau M ′

1(U
j
hN j

s ). Figure 8 shows some
examples.

Figure 8. Some examples of Tableau M ′

1.

Tableau M2(U
j
hN<j

s ): Suppose that a neighbor N j
s = Aj

1 of color j of U j
h with southwest most lower-left

corner coincides with a square of color j − 1. Let Aj
2(0) be the minimal square of M(0) satisfying the

properties:

(1) Aj
2(0) is not contained in Aj

1.

(2) l(Aj
2(0)) ≥ l(Aj

1).
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(3) Aj
2(0) is the minimal square among the squares with southwest most lower-left corner among the

squares satisfying the previous two properties.

Suppose Aj
h(0) coincides with a square of color j − 1. Let Aj

h+1(0) be the square of color j satisfying

(1) Aj
h+1(0) is not contained in Aj

h(0).

(2) l(Aj
h+1(0)) ≥ l(Aj

h(0)).

(3) Aj
h+1(0) is the minimal square among the squares with southwest most lower-left corner among

the squares satisfying the previous two properties.

Suppose Aj
l (0) does not coincide with a square of color j − 1. (If there are no such squares, discard

this tableau.) Let Aj
1(0), . . . , Aj

l (0) be the squares produced by this procedure. Let Bj
m,m+1 = Aj

m(0) ∩

Aj
m+1(0). Set Bj

0,1 = U j
h ∩ Aj

1(0). If any of the intersections Bj
m,m+1 is empty discard this tableau.

Otherwise form the tableau M2(U
j
hN<j

s ) as follows. Proceeding in descending order form the set of

squares M2(U
j
hN<j

s )i of color i as follows. If i ≥ j, let Bi
m,m+1 = Aj

m(0) ∩ Aj
m+1(0) be the square

of color i which coincides with the intersection of Aj
m(0) and Aj

m+1(0). Take the squares Bi
m,m+1 for

m = 0, 1, . . . , l − 1 and any of the squares that do not contain any of the squares Bi
m,m+1. Shrink them

so that they are the spans of squares of color i + 1 of M2(U
j
hN<j

s )i+1 contained in them and normalize
their upper-right corners. Proceeding in increasing order (according to the ordering of the squares) add
all the squares Si

h1,...,hj
(0) that have fewer than #iS

i
h1,...,hj

(1) squares of color i contained in them at

the given stage. Shrink the squares of color i so that they are the spans of the squares of color i + 1 in
M2(U

j
hN<j

s )i+1 contained in them. Normalize their upper-right corners up to color i. If i < j, shrink

the squares of color i so that they are the spans of the squares of color i+ 1 in M2(U
j
hN<j

s )i+1 contained
in them. Normalize the upper-right corners of the resulting squares up to color i. Form the tableau
consisting of the squares M2(U

j
hN<j

s )i for i = 1, . . . , r. Semi-normalize the lower-left corners of the
squares in the resulting tableau and proceeding from r − 1 to 1 shrink any square of color i which is not
equal to the span of squares of color i + 1 contained in it so that it is. If the side-length of any of the
squares shrink to zero during any part of this process, discard this tableau. Otherwise, call the resulting
tableau M2(U

j
hN<j

s ). Figure 9 depicts some examples.

Figure 9. Some examples of Tableau M2.
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Remark 3.31. We can be more explicit about the squares that constitute M2(U
j
hN<j

s ). Let Aj
1(0), . . . , Aj

l (0)

be the squares as above. Let Bj
m,m+1 = Aj

m(0) ∩ Aj
m+1(0). If any of the intersections Bj

m,m+1 is empty

discard this tableau. For i > j, let the squares C i
1(0), . . . , Ci

hi
(0) be the minimal squares of color i of

M(0) that contain at least one Bj
m,m+1. Suppose i1, i1 + 1, . . . , i1 + s1, i2, . . . , i2 + s2, . . . , iq, . . . , iq + sq

are the indices of the squares among the squares C i
t(0) that coincide with a square Aj

p(0) for some p.

Let the square Ci
t,t+1(1) be the spans of the squares C i

t(1) and Ci
t+1(1) if neither t nor t + 1 is one of

the indices corresponding to the squares that coincide with the squares Aj
p. Let Ci

t,t+1=iu
(1) be the span

of the squares Ci
t(1), Ci

iu
(1), Ci

iu+1(1), . . . , Ci
iu+su

(1). Similarly, let Ci
iu,iu+su+1(1) be the span of the

squares Ci
iu

(1), Ci
iu+1(1), . . . , Ci

iu+su
(1) and Ci

iu+su+1(1). Replace the squares Aj
1, . . . , A

j
l in M(0) with

the squares Bj
1,2, . . . , B

j
l−1,l and the span of Uj(1), Aj

1, A
j
2, . . . , A

j
l . For each i > j, replace the squares

Ci
1(0), . . . , Ci

hi
(0) with the squares Bi

1,2, . . . , B
i
l−1,l in color i and the squares Ci

t,t+1(0). If any square of
color c is not the span of squares of color c + 1 contained in it, shrink the square so that it is the span of
the squares of color c+1 contained in it. Normalize the upper-right hand corners of the resulting tableau.
Semi-normalize the lower-left hand corners of the the resulting tableau. If any of the side-length of any
of the squares shrink to zero during the process, discard this tableau. Otherwise, label it M2(U

j
hN<j

s ).

Remark 3.32. Geometrically the tableaux of type M0, M1, M
′

1 and M2 correspond to the following cases.
In Tableau M0 the limits of the subspaces of V1, . . . , Vr contained in the vector spaces corresponding to
the squares of the tableaux remain independent. In tableaux of type M1, M ′

1 and M2 the limits of the
subspaces of Vj contained in the vector spaces corresponding to U j and N j

s become dependent. This
forces the subspaces of Vi for i > j contained in these vector spaces to also become dependent in the
limit. For i < j, the subspaces of Vi contained in the vector spaces corresponding to the minimal squares
containing the new intersection may either become dependent or remain independent. Tableaux of type
M ′

1 corresponds to the former case, whereas tableaux of type M1 and M2 correspond to the latter. The
other intersections in tableaux of type M2 are forced by the linear algebra fact that in a k-dimensional
vector space two subspaces of dimensions l and m intersect in at least a (l+m−k)-dimensional subspace.
In the limit the vector space corresponding to the square N j−1

s intersects Vj in one more dimension than
it previously did. This forces the limiting linear spaces to intersect as in tableaux of type M2.

The following proposition is straightforward to check.

Proposition 3.33. The virtual dimension of each of the tableaux M0, M1(U
j
h, N j

s ), M ′

1(U
j
h, N j

s ) and

M2(U
j
h, N<j

s ) described above is less than or equal to the virtual dimension of M .

Remark 3.34. The cases when the tableaux have virtual dimension strictly smaller than that of M can
be determined in terms of the combinatorial properties of M . When the flag variety is a two-step flag
variety, this analysis has been carried out completely in [C2]. For flag varieties with three or more steps,
this is still straightforward. However, remembering the exceptions is more cumbersome than calculating
the dimension at each stage. We will, therefore, leave this analysis to the reader.

Algorithm 3.35. Let M be a semi-normalized, admissible Mondrian tableau. If M is nested, the algorithm
terminates. Otherwise, let Sr be the square of M determined by Rule 3.19. Move Sr according to Rule
3.21. Let

U i
1, . . . , U

r
wr

= Sr

be the minimal squares (with respect to inclusion) of each color that have a part that moves according
to Rule 3.21. For all the squares U c

hc
with c ≥ i and for every neighbor of them relative to Sr form the

tableaux M0, M1(U
c
hc

N c
s ), M ′

1(U
c
hc

N c
s ), M2(U

c
hc

N<c
s ) whenever appropriate. Replace M with the set of

distinct tableaux among these that have the same virtual dimension as M .

Figure 10 depicts an example of Algorithm 3.35.

The following proposition is straightforward to verify.
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Figure 10. An example of Algorithm 3.35.

Proposition 3.36. Let M be a semi-normalized, admissible Mondrian tableau for F (k1, . . . , kr; n). Any
tableau produced when applying Algorithm 3.35 to M is an admissible, semi-normalized Mondrian tableaux
for F (k1, . . . , kr; n).

We can now inductively determine the class of the product of two Schubert varieties.

Algorithm 3.37 (Algorithm for determining the structure constants of the cohomology of partial flag
varieties). Let σδ

λ and σκ
µ be two Schubert cycles in F (k1, . . . , kr; n).

Step 1: Form the tableau M(σδ
λ, σκ

µ) according to Algorithm 3.8. If the product is zero, stop. Otherwise,

set M = M(σδ
λ, σκ

µ) and proceed to Step 2.

Step 2: If M is nested, stop. Otherwise, apply Algorithm 3.35 to M . If none of the tableaux produced
by Algorithm 3.35 have the same virtual dimension as M , stop. Otherwise proceed to Step 3.

Step 3: For every tableau produced in Step 2, return to Step 2 and run the Algorithm again.

Definition 3.38. A degeneration path for an admissible, semi-normalized Mondrian tableau M is a
sequence of Mondrian tableaux

M1 → M2 → · · · → Mp

where M1 = M , Mp is a Mondrian tableau associated to a Schubert variety and for every 1 < i ≤ p the
tableau M i is a tableau in the set of tableaux that replaces M i−1 in Algorithm 3.35.

It is easy to see that Algorithm 3.37 terminates with the tableaux associated to Schubert varieties.
The main theorem of this paper is the following.

Theorem 3.39. Let σδ
λ and σκ

µ be two Schubert cycles for F (k1, . . . , kr; n). Let σδ
λ · σκ

µ =
∑

cν,α
λ,δ,µ,κσα

ν

be their product in the cohomology ring of F (k1, . . . , kr; n). Then the coefficient cν,α
λ,δ,µ,κ is equal to the

number of degeneration paths starting with M(σδ
λ, σκ

µ) in an (n × n)-grid and ending in a Mondrian
tableau associated to σα

ν produced by the Algorithm 3.37.
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The proof of this theorem will be by interpreting the moves on the Mondrian tableaux as degenerations.
We will determine the flat limit of the degeneration by induction on the number of steps r.

Let kj1 < · · · < kjs
be a subsequence of the sequence k1 < · · · < kr. Then there is a natural projection

πj1 ,...,js
: F (k1, . . . , kr; n) → F (kj1 , . . . , kjs

)

sending the r-tuple (V1, . . . , Vr) to the s-tuple (Vj1 , . . . , Vjs
). We would like to associate a Mondrian

tableau for F (kj1 , . . . , kjs
) to the image of the projection of a variety associated to a Mondrian tableau.

This is easy to do.

Algorithm 3.40. Let πj1,...,js
: F (k1, . . . , kr; n) → F (kj1 , . . . , kjs

) be a natural projection between two
partial flag varieties. Let M(k1, . . . , kr) be a Mondrian tableau for F (k1, . . . , kr; n). Then the Mondrian
tableau associated to the image of the projection is the tableau consisting of the squares of colors j1, . . . , js.

Note that the semi-normalization of the projected tableau is an admissible, semi-normalized tableau
for F (kj1 , . . . , kjs

). This is the mechanism that allows us to carry out the dimension counts inductively.

Remark 3.41. In fact, the algorithm computes not only the Littlewood-Richardson coefficients, but also
the class of the projection of the intersection of two Schubert varieties in the full-flag variety to any
partial flag variety F (k1, . . . , kr; n).

3.3. Proofs of combinatorial statements.

Proof of Proposition 3.33. This proposition is straightforward. Its proof is analogous (but easier) to the
proofs of the Lemmas leading to the proof of Proposition 4.41 in [C2]. Here we briefly recall the main
steps.

We begin the analysis with the tableau M0. If Sr(0), the square determined by Rule 3.19 does not
contain the smallest neighbor of Sr or is not contained in the largest neighbor of Sr, then clearly M(0)
has the same virtual dimension as M . The side-lengths of the squares and containment relations among
them do not change. Starting with squares of color r − 1 and proceeding in decreasing order, shrinking
the side-length of squares of color i so that they are the spans of squares of color i + 1 contained in them
clearly preserves the dimension. Finally, we assert that the normalization of the upper-right corners and
semi-normalization of the lower-left corners of the tableaux cannot increase the virtual dimension of a
Mondrian tableau. This is easy to see. Each time we shrink a square of color i, we decrease the number of
squares of color i+1 that it contains by at least 1 and decrease the number of squares of color i it contains
by at most 1. Also note that since we do not allow the normalization if the square becomes lower-left
justified with a filler, if a square of color i is contained in a square of color i − 1 as a result of shrinking
it, it must also be contained in a square of color i. From these observations it is clear that normalization
of upper-right corners and the semi-normalization of lower-left corners preserves or decreases the virtual
dimension. The analysis in the cases when Sr(0) contains the smallest neighbor of Sr or it is contained
in the largest neighbor of Sr is similar. We leave it to the reader.

Let U j be a minimal square of color j containing Sr that moves according to rule 3.21 and let N j be
a neighbor of U j . Let T j = U j(0) ∩ N j in M1(U

j , N j). Suppose that either T j does not coincide with a
square of color less than j or if it does T j is not contained in any squares of M(0) of color less than j that
did not contain N j . Then for i > j, the number of squares of color i+1 in squares of color i increases by
at most the number of squares of color i+1 not contained in either N j or U j , but contained in the union
of N j and U j . The number of containment relations among squares of color i+1 increases by at least the
same amount. The total side-lengths of squares of color r increases by one. The number of containment
relations among squares of color j also increases by at least one. Since normalization of the upper-right
corners and semi-normalization of lower-left corners does not increase the virtual dimension, we conclude
that the virtual dimension of M1(U

j , N j) is at most equal to the virtual dimension of M . Now suppose
that the smallest color square that T j coincides with has color i0. Suppose that i1 is the least color of a
square which coincides with T j and is contained in a minimal square Si1

h of color i1 containing T j and

Sk, but not N j . Then for i > i1, the number of squares of color i + 1 in squares of color i increases by at
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most the number of squares of color i+1 not contained in either N j or Si1
h , but contained in the union of

N j and Si1
h . The number of containment relations among squares of color i + 1 increases by at least the

same amount. The total side-lengths of squares of color r increases by one. The number of containment
relations among squares of color i1 also increases by at least one. It follows that the virtual dimension of
M1(U

jN j) and M ′

1(U
jN j) is less than or equal to the virtual dimension of M . The analysis for Tableaux

of type M2 is almost identical, hence left to the reader. �

Proof of Proposition 3.36. By construction each of the tableaux of type M0, M1, M
′

1 and M2 have ki

squares of color i. Hence they all satisfy M1. Again by construction every square of color 1 ≤ i ≤ r− 1 is
the span of squares of color i + 1 contained in them. Hence the first half of M2 holds by construction. If
the tableau is normalized, the second half of M2 also holds automatically. If a square S i

1 ⊂ Si
2 have the

same lower-left corner in one of the tableaux, then there cannot be a square of color i that has the same
upper-right corner as Si

2 and contained in Si
2. Otherwise, SNM2 would be violated for M . Hence, M2

holds for the tableaux resulting in Algorithm 3.35. M3 is clear by construction. By Rule 3.19 it follows
that if a square of color r has a gap, then we move the square which has a gap. By Rule 3.21 it follows
that M4 is preserved for squares of color r. Since M satisfies M4 for squares of color i, M4 follows by
construction for the tableaux of type M0, M1, M

′

1 and M2. It is straightforward to check that if M is
admissible and semi-normalized that the tableaux of type M0, M1, M

′

1 and M2 are also admissible and
semi-normalized. �

4. The geometry of Mondrian tableaux

4.1. Geometric preliminaries. In this subsection we will explain how to associate an irreducible sub-
variety of F (k1, . . . , kr; n) to a Mondrian tableau.

Notation 4.1. The squares of a Mondrian tableau represent vector spaces spanned by the basis elements
they contain. In the rest of the paper we will distinguish between the squares of Mondrian tableaux and
the vector spaces they represent by using the ordinary math font for the squares (such as S i) and the
Roman font for the corresponding vector space (such as Si).

We begin by defining the variety associated to a nice, semi-normalized, admissible Mondrian tableau.
If the Mondrian tableau is not nice, the definition needs to be slightly modified.

Definition 4.2 (The variety associated to a nice Mondrian tableau). Let M be a nice Mondrian
tableau. The variety ΣM associated to M is the Zariski closure in F (k1, . . . , kr; n) of the locus of r-
tuples (V1, . . . , Vr) that satisfy the following conditions:

(1) For every 1 ≤ i ≤ r and every square Si
h of M , the dimension of intersection of Vi with Si

h is
#iS

i
h(M).

(2) For every 1 ≤ i ≤ r and any two squares Si
h1

, Si
h2

of M , the dimension of intersection of Vi with

Si
h1

∩ Si
h2

is #i(S
i
h1

∩ Si
h2

)(M).

(3) For every 1 ≤ i ≤ r − 1 and for every square S i
h of M , the subspace of Vi contained in Si

h is

a subspace of the subspace of Vi+1 spanned by the subspaces of Vi+1 contained in Si+1
l , where

Si+1
l ⊂ Si

h.

If the Mondrian tableau is not nice, then the previous definition has to be modified. If there are two
squares Si

h1
and Si

h2
that fail the inequality

(1) #i+1(S
i
h1

∪ Si
h2

)(M) − #i+1S
i
h1

(M) ≥ #i(S
i
h1

∪ Si
h2

)(M) − #iS
i
h1

(M),

then Vi has to intersect Si
h1

in dimension greater than #iS
i
h1

(M). We modify the definition as follows:

Definition 4.3 (The variety associated to a Mondrian tableau in general). Let M be an admissible,
semi-normalized Mondrian tableau. The variety ΣM is the closure of the locus of r-tuples (V1, . . . , Vr)
that satisfy the following properties:
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(1) For every 1 ≤ i ≤ r and every square S (not necessarily a square of M), the vector space Vi

intersects the vector space S in a vector space of dimension at least #iS(M).

(2) For every 1 ≤ i ≤ r − 1 and for every square S i
h of M , the subspace of Vi contained in Si

h is

a subspace of the subspace of Vi+1 spanned by the subspaces of Vi+1 contained in Si+1
l , where

Si+1
l ⊂ Si

h.

(3) For every 1 ≤ i ≤ r − 1 and every pair of squares S i
h1

and Si
h2

and any square Si+1
m contained

in either of Si
h1

or Si
h2

, the span of the subspaces of Vi contained in Si
h1

and Si
h2

intersects the
subspace of Vi+1 spanned by the vector spaces corresponding to the squares of color i + 1 of M
except for Si+1

m contained in Si
h1

or Si
h2

in dimension at least #iS
i
h1

(M)+#iS
i
h2

(M)−#i(S
i
h1

∩

Si
h2

)(M) − 1.

Remark 4.4. The variety associated to a Mondrian tableau M has a stratification by varieties associated
to Mondrian tableaux. We will not need this in what follows, so we leave the description to the reader.
However, when one would like to extend the rule presented here to K-theory or equivariant cohomology
this stratification is useful.

We can make this definition a little bit more explicit. We first associate a new collection M ′ of squares
to M .

Algorithm 4.5. Let M be an admissible, semi-normalized Mondrian tableau. Associate to M a set of
squares M ′ as follows. If the tableau is nice, associate to M , M itself. If not, let Sr

1 be the larger of the
two minimal squares of color r that share a lower-left corner and have the northeast most lower-left corner
among such squares. If Sr

1 and the first square Sr
2 with its lower-left corner northeast of Sr

1 and which
is not contained in Sr

1 fail inequality (1) for i = r, shrink the lower-left corner of Sr
1 until the lower-left

corner of the shrunk square coincides with l(Sr
2). Otherwise proceed to the next pair of squares of color r

that share a lower-left corner. Repeat this procedure until the set of squares of color r are nice. If during
the process the side-length of any square of color r shrinks to zero, discard the tableau and associate the
empty set as ΣM to M . Proceeding in decreasing order from r to 1 apply the same procedure to squares
of color i. That is let Si

1 be the larger of the two minimal squares of color i that share a lower-left corner
and have the northeast most lower-left corner among such squares. If S i

1 and the first square Si
2 with

its lower-left corner northeast of Sr
1 and which is not contained in Sr

1 fail the inequality (1), then shrink
the lower-left corner of Si

1 until it coincides with l(Si
2). Repeat until the inequality is satisfied for every

square. If the side-length of a square shrinks to zero during the process, discard the tableau and assign
to M the empty set. Let M ′ be the collection of squares obtained by this procedure.

Definition 4.6. We define the actual dimension (or simply the dimension) of a Mondrian tableau M
as follows. If in the above procedure, the side-length of any square shrinks to zero, we set the dimension
equal to −1. Otherwise, let ai be the total number of times a square of color i starts being contained in
a square of color i, but not of smaller color while runnning Algorithm 4.5. Let a =

∑r
i=1 ai. Let bi be

the total number of fillers of color i + 1, which have lower-left corner strictly northeast of l(S i) and are
contained in a square Si of color i, that cease to be contained in Si after the lower-left corner of Si is
shrunk in Algorithm 4.5. Let b =

∑r
i=1 bi. Define the discrepancy d to be d = max(0, a − b). The actual

dimension of a semi-normalized, admissible Mondrian tableau is equal to the virtual dimension minus the
discrepancy. In particular, since the discrepancy is at least 0, the actual dimension is always less than or
equal to the virtual dimension of M .

Proposition 4.7. The variety ΣM associated to a semi-normalized, admissible Mondrian tableau M , if
non-empty, is irreducible of dimension equal to the (actual) dimension of the Mondrian tableau.

Proof. We prove this proposition by induction on r. When r = 1, then the Mondrian tableau is a
generalized Mondrian tableau in the sense of [C2]. The irreducibility and the dimension for Grassmannians
is proved in Lemma 3.8 of [C2]. Briefly one may construct a non-empty Zariski open subset of the variety
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associated to a generalized Mondrian tableau as an open set in a tower of projective bundles. If the
tableau consists of one square, then the associated variety is projective space. Hence irreducible and of
the claimed dimension. Take the largest square with southwest most lower-left corner. If we delete this
square, we obtain a tableau for G(k − 1, n). By induction we can assume that this variety is irreducible
of the claimed dimension. To obtain the variety in G(k, n) for every point in the variety in G(k−1, n) we
have to choose a vector in the vector space represented by the square which does not lie in the (k − 1)-
plane represented by the point in G(k − 1, n). Over the open set described in the definition this is an
open set in a projective bundle over the variety in G(k− 1, n) of the claimed dimension. The proposition
follows in the case r = 1.

The proposition now follows by induction on r. First suppose that the tableau is nice. There are
projection maps

πs : F (k1, . . . , kr; n) → F (ks, . . . , kr; n)

for every 1 ≤ s < r. Given a variety associated to a Mondrian tableau, the image of the variety under the
projection πs is again a variety associated to a Mondrian tableau in F (ks, . . . , kr; n). In fact, this variety
is easy to describe. We simply take the variety associated to the Mondrian tableau where we only take
the squares of color s, s + 1, . . . , r. Restricted to the open set described in the definition of ΣM ,the map

π2 : F (k1, . . . , kr; n) → F (k2, . . . , kr; n)

realizes ΣM as an open set in a tower of projective bundles over an open subset of the variety Σπ2(M).
The fiber dimension of the projection is

∑

S1
h
∈M

(#2S
1
h(M) − #1S

1
h(M)).

The irreducibility and the dimension calculation follow by induction. If the tableau is not nice the
argument is almost identical. We can still construct an open subset of the variety inductively as an
open set in a tower of projective space and Grassmannian bundles, so the variety is still irreducible. We
now calculate the dimension. Associate to M the collection of squares M ′ as in Algorithm 4.5. When
we shrink a square Si of color i, the virtual dimension of the tableau increases if the shrinking of S i

is contained in a square T i−1 of color i − 1, but not of color i. In that case the shrinking of S i starts
sharing a lower-left corner with a filler (whose lower-left corner is the same as l(T i−1)) contained in Si.
The vector space Vi−1 contained in Ti−1 still intersects the subspace of Vi contained in Ti−1 along the
subspace spanned by the subspaces of Vi corresponding to the squares of color i of M contained in T i−1.
Also Vi−1 has to intersect the span of the subspaces contained in squares of color i omitting those in
M ′ that are contained in Si

2 as in item (3) of the definition. Hence, the actual dimension of the variety
remains constant. Now suppose we shrink a square Si of color i so that it is contained in a square U i

of color i, but not in a square of color i − 1. In this case the virtual dimension of the tableau decreases.
The actual dimension of the variety strictly decreases as well except when S i is contained in T i−1 and it
is the shrinking of a square that was not previously contained in T i−1. In the latter case the dimension
of the variety does not change. The actual dimension of the variety associated to M follows from this
calculation. �

Remark 4.8. One can improve the efficiency of Algorithm 3.35 and Algorithm 3.37 by replacing M with
tableaux whose actual dimension (as opposed to virtual dimension) is equal to the dimension of M .
Another advantage of using the actual dimension is that every branch of the degeneration tree ends in a
Schubert variety. No tableau is ever discarded midway through the algorithm. The disadvantage is that
calculating the actual dimension of a tableau which is not nice is more cumbersome.

4.2. Degenerations. In this section, we interpret the move described by Rule 3.21 as a degeneration of
the vector spaces defining the variety associated to a Mondrian tableau. Using this geometric description
we prove Theorem 3.39.
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Let Sr denote the square determined by Rule 3.19. Suppose that the lower-left chop of Sr is given by
lch(Sr) = {ep, . . . , eq}. Then there is a one-parameter family of bases parameterized by an open set in
P1 given by

{e1, . . . , ep−1, tep + (1 − t)eq+1, ep+1, . . . , eq, eq+1, . . . , en}.

These set of vectors form a basis of V as long as t is not 0. Corresponding to this family of bases and
for every vector space Ti for a square T i of V , there exists a flat family of vector spaces Th

i (t). Suppose
T i = {ei1 , . . . , eim

}. Set ei(t) = ei if i 6= p. Set ep(t) = tep + (1 − t)eq+1. Then Ti(t) for t 6= 0 is the
vector space spanned by the basis elements

{ei1(t), . . . , eim
(t)}.

We will denote by Ti(0) the flat limit of these vector spaces. Explicitly, if at most one of ep and eq+1 are
contained in Ti, then Ti(0) is the vector space spanned by the basis elements

{ei1(0), . . . , eim
(0)}.

If both ep and eq+1 are in T i, then Ti(0) is equal to Ti. Note that this agrees with Rule 3.21 for moving
squares.

Let M be a Mondrian tableau. The degeneration just described leads to flat families of vector spaces
corresponding to the squares of M . For t 6= 0, let ΣM (t) denote the variety defined exactly as in Definition
4.3, but replacing every occurrance of ep with tep +(1− t)eq+1. Note that for t 6= 0, the variety associated
to M is projectively equivalent to ΣM (t) under a simple change of basis. Hence ΣM (t) forms a flat family
over a Zariski open subset of P1. By the properness of the Hilbert scheme, there exists a flat limit ΣM (0)
of this family. We will refer to this specialization as the standard specialization of the variety associated
to the Mondrian tableau M . Our task in this subsection is to describe the flat limit ΣM (0).

Notation 4.9. Let M be a Mondrian tableau. For any collection S i
h1

, . . . , Si
hm

of squares of M of color i,

we will denote by Si
h1,...,hm

the square of color i given by the union of the basis elements in S i
h1

, . . . , Si
hm

.

We will denote by Si
h1,...,hm

or sometimes by Si
h1,...,hm

(1) the corresponding vector space in V spanned

by those basis elements. We will use Si
h1,...,hm

(t) to denote the vector space over the fiber at t 6= 0 and

Si
h1,...,hm

(0) to denote the flat limit of the corresponding vector space under the degeneration described
above.

Theorem 4.10 (The Geometric Littlewood-Richardson Rule). Let M be an admissible, semi-normalized
Mondrian tableau whose virtual dimension equals its actual dimension. Let ΣM (t) be the standard special-
ization of the variety associated to M . Then the support of the flat limit ΣM (0) is equal to the union of the
varieties associated to the Mondrian tableaux described in Algorithm 3.37 that have the same dimension
as the variety associated to M . Moreover, ΣM (0) is generically reduced along each of these varieties.

The combinatorial rule for computing the structure constants of the cohomology of partial flag varieties
immediately follows from Theorem 4.10.

Theorem 4.10 implies Theorem 3.39. The class σδ
λ ·σ

κ
µ can be computed as the Poincaré dual of the class

of the intersection of two Schubert varieties Σδ
λ and Σκ

µ defined with respect to opposite flags. The variety

associated to the initial Mondrian tableau M(σδ
λ, σκ

µ) is precisely such an intersection. By Lemma 3.17

and Proposition 4.7, the variety associated to M(σδ
λ, σκ

µ) is irreducible of dimension equal to the dimension

of Σδ
λ ∩ Σκ

µ. Since a Zariski open subset of the variety associated to M(σδ
λ, σκ

µ) is clearly contained in
the intersection of the two Schubert varieties, we conclude that the two coincide. By Theorem 4.10,
the class of the variety is equal to the sum of the classes of the varieties associated to the Mondrian
tableaux described by the Algorithm 3.37. In turn, the classes of each of these are the sum of the classes
of the varieties associated to the Mondrian tableaux described by Algorithm 3.37. The algorithm clearly
terminates with a collection of tableaux corresponding to Schubert varieties. (Note for instance that if
we partially order the tableaux lexicographically by the positions of the lower-left corners of the squares
of color 1, 2, . . . , r and the total side-length of the squares of color r in that order, then each stage of
the algorithm the order of the resulting tableaux is strictly larger than the initial tableau. Since all the
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tableaux reside in an (n×n)-grid this process cannot go on indefinitely.) Hence, Algorithm 3.37 expresses
the class of the variety associated to M(σδ

λ, σκ
µ) as a sum of Schubert classes. This concludes the proof

of Theorem 3.39. �

Proof of Theorem 4.10. The proof of Theorem 4.10 has two main steps. The first step is to determine the
support of the flat limit of the standard specialization of the variety associated to M . This is the hardest
step. Luckily the main work has been carried out in [C2]. We simply build on it by induction. The
second step is to show that flat limit is generically reduced along each maximal dimensional irreducible
component of the flat limit. Given that the support of the flat limit has a very simple description given
by Algorithm 3.37, the second step is a consequence of an easy tangent space calculation. In fact, that
the multiplicities are one can be reduced to the fact that in Pieri’s Rule or Monk’s Rule every summand
occurs with multiplicity one.

We begin with step 1. On the r-tuples (V1, . . . , Vr) there are no visible conditions other than the
rank conditions that we impose on them. However, a priori in the limit the r-tuples that lie in the flat
limit ΣM (0) could satisfy some non-apparent conditions. The main content of the theorem is that the
obvious conditions are the only conditions that the r-tuples of vector spaces satisfy. We will prove the
theorem by writing down the necessary conditions that the linear spaces need to satisfy. We will then
observe that these conditions already force the dimension of the locus that satisfy them to be at most of
dimension equal to the dimension of the variety associated to M . We thus bound the support of ΣM (0).
We then inductively see that the components that have the same dimension as ΣM are the varieties that
correspond to tableaux of type M0, M1, M

′

1 and M2.

Observation 4.11 (The main geometric observation). Let M be an admissible, semi-normalized Mondrian
tableau. Let (V1(t), · · · , Vr(t)) be an r-tuple of vector spaces lying in ΣM (t) for t 6= 0. Then for every
1 ≤ i ≤ r and any collection of indices h1, . . . , hm, the vector space Vi(t) intersects the vector space
Si

h1,...,hm
(t) in dimension at least #iS

i
h1,...,hm

(M). Since intersecting a given vector space in at least a

given dimension is a closed condition, any r-tuple (V1(0), . . . , Vr(0)) contained in the flat limit ΣM (0)
has to satisfy the following condition. For every 1 ≤ i ≤ r and any collection of indices h1, . . . , hm, the
vector space Vi(0) intersects Si

h1,...,hm
(0) in dimension at least #iS

i
h1,...,hm

(M).

Furthermore, the subspace of Vi(t) contained in Si
h1,...,hm

(t) is a subspace of the subspace of Vi+1(t)

spanned by the subspaces of Vi+1(t) contained in Si+1
lr

(t), where Si+1
lr

is contained in Si
hj

for at least one

hj . In the limit the subspace of Vi(0) contained in Si
h1,...,hm

(0) has to be contained in the limit of this
vector space.

Note that Observation 4.11 is consistent with the way we draw the tableaux of types M0, M1, M
′

1 and
M2. In fact, the way tableaux are drawn in Rule 3.27 and the way the tableaux M0, M1, M

′

1 and M2 are
drawn is simply a combinatorial encoding of this observation.

We can now determine the support of the flat limit using Observation 4.11. We will do this by induction
on r. When r = 1, then the Theorem is proved in [C2]. For the convenience of the reader we very briefly
recapitulate the main points in the argument.

Let Y be an irreducible component of the flat limit ΣM (0). If the k1-dimensional vector space V1

parameterized by a general point of Y intersects the vector spaces S1
h(0) in dimension #1S

1
h(0) and the

vector spaces S1
h(0) ∩ S1

j (0) in dimension #1(S
1
h ∩ S1

j (0))(M(0)), then Y has to be contained in ΣM0
.

If the k1-dimensional vector space V1 parameterized by a general point of Y intersects a vector space
S1

h(0) ∩ S1
j (0) in dimension greater than #1(S

1
h ∩ S1

j (0))(M(0)), then the dimension of Y can be bound
from above as follows. Let T be the smallest dimensional vector space spanned by consecutive basis
elements such that dim(V1 ∩T) > #1T (M(0)) (if there are two such vector spaces, let T be the one with
southwest most lower-left corner). Suppose that the number of vector spaces S1

h that minimally (with
respect to inclusion) contain T is i ≥ 2. Order them according to their lower-left corners S1

1(0), . . . , S1
i (0).

Denote the virtual dimension of M by vdim. Then the dimension of Y is at most vdim(M)− i+1 unless
one of the vector spaces is S1(0), the limit of the vector space associated to the square determined by
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Rule 3.19. In the latter case, the dimension of the locus is at most vdim(M) − i + 2. To see this we
argue as follows. We add T to M(0). But then the conditions imposed by the vector spaces S1

h(0), where
S1

h(0) are the squares of M(0) that minimally contain T , are automatically satisfied. We can then delete
those squares. By Observation 4.11, the conditions imposed by the spans of S1

h(0) and S1
h+1(0) are not

recorded. We therefore add the squares S1
h,h+1(0) as h varies from 1 to i − 1. It is easy to calculate the

locus of k1-planes satisfying these constraints. It follows from this dimension calculation that the only
loci of dimension equal to vdim(M) that can support Y has to be among ΣM0

and ΣM(S1N1
s ).

The case r > 1 is argued similarly. First we make the following simple observation which follows by
induction building on the proof of Theorem 3.32 in [C2].

Observation 4.12. Let M be a Mondrian tableau for F (k1, . . . , kr; n). Let Sr be the square of M moved
according to Rule 3.21. Let X ⊂ ΣM (0) be a locus where the subspaces Vi remain as independent
as dictated by M(0) for i < i0. Suppose for the points parameterized by X the subspaces of Vi0

minimally (with respect to inclusion) contained in the vector spaces Si0
1 , . . . , Si0

m become dependent along
a subspace T. Suppose there exists N vector spaces corresponding to the squares of M(0) of color i0
minimally containing T and contained in the span of Si0

1 , . . . , Si0
m. Suppose for the points parameterized

by X the subspaces Vi for i ≥ i0 contained in vector spaces corresponding to squares of M(0) remain
independent except if the dependence is implied by Observation 4.11. Then the dimension of X is at
most dim(ΣM ) − N + 1 unless T is the vector space corresponding to the new intersection of a square
of M moved by Rule 3.21 with another square of M . In the latter case, the dimension of X is at most
dim(ΣM ) − N + 2.

Now we can determine the support of ΣM (0) by induction on the number of steps in F (k1, . . . , kr; n).
The induction step is almost identical to the proof of the Geometric Littlewood-Richardson Rule for
two-step flag varieties in [C2]. Consider the projection

π : F (k1, . . . , kr; n) → F (k2, . . . , kr; n).

As discussed, the image of a variety associated to a Mondrian tableau M is the variety associated to
the Mondrian tableau obtained by taking all the squares of colors 2, 3, . . . , r. Let Y be an irreducible
component of the support of ΣM (0). If the general fiber dimension of the projection of Y is equal to
the general fiber dimension of the projection of ΣM , then the dimension of the image has to be equal to
the dimension of the image of ΣM . The possible images of the projection are determined by induction.
Otherwise, we have to bound the dimension of the image of the projection over a component where the
general fiber dimension increases by a given amount. Recall that the fiber dimension of the projection of
ΣM is calculated by

∑

S1
h
∈M

(

#2S
1
h(M) − #1S

1
h(M)

)

.

Suppose in an irreducible component Y of the support of the flat limit, the general fiber dimension of
the projection of Y is equal to the general fiber dimension of the projection of ΣM . The projection of ΣM

is a variety Σπ(M) associated to an admissible Mondrian tableau π(M). By induction, the projection of
Y has to be contained in one of the varieties associated to π(M(0))0, π(M(0))1, π(M(0))′1 or π(M(0))2.
By Observation 4.11, V1 has to intersect each S1

h(0) in dimension at least #1S
1
h(0)(M(0)). If at a general

point of Y the subspaces of V1 contained in S1
h(0) are as independent as dictated by M(0), then Y has to

be contained in the variety associated to the Mondrian tableau M ′, where M ′ is the Mondrian tableau
corresponding to the projection of Y (prior to semi-normalization of the lower-left corners) together with
the squares of color 1 of M(0) shrunk so that they are the spans of the squares of color 2 contained in
them. This Mondrian tableau is one of types M0, M1, M

′

1 or M2 depending on M ′. Since both Y and
the variety associated to this Mondrian tableau are irreducible of the same dimension, we conclude that
they are equal. In case the subspaces of V1 contained in S1

h(0) are not as independent as dictated by
M(0), add to M ′ a minimal square T 1

h for which the vector space V1 parameterized by Y intersects T1
h in

dimension greater than #1T
1
h (M(0)). By Observation 4.11, the conditions imposed by squares of M(0)
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that minimally contain T 1
h are automatically satisfied, so they can be deleted from M(0). However, the

conditions imposed by the consecutive spans still need to be satisfied. As in the case of the Grassmannian,
by Observation 4.12, it is easy to see that except for tableaux of type M1 or M ′

1 the variety associated
to the resulting tableau has dimension strictly smaller than dim(ΣM ).

Now we can assume that the general fiber dimension of the projection of Y to F (k1, . . . , kr; n) is larger
than the general fiber dimension of the projection of ΣM . Suppose first that at a general point of Y , the
subspaces of V1 contained in S1

h1
(0) and S1

h2
(0) remain independent for any two squares of color 1. There

are a few cases. Since the fiber dimension increases, the total number of squares of color 2 contained in
squares of color 1 has to increase.

Let S1
0(0) be the square with lower-left most corner such that S1

0(0) has a larger dimensional intersection
with V2 than #2S

1
0(1)(M). Let W be the vector space spanned by the basis elements northeast of (and

including) l(S1
0(0)). This case splits to a few cases.

Case A There exists a square S2(0) /∈ S1
0(0) of color 2 with lower-left corner southwest of S1

0(0) such that
the dimension of V2 ∩ S2(0) ∩ S1

0(0) is greater than #2(S
2(1) ∩ S1

0(1))(M). Suppose B2 is the
minimal square (with respect to inclusion) among such squares. This case splits to two cases.

i Either the dimension of V2 ∩ W = #2W (M); or

ii The dimension of V2 ∩ W > #2W (M).

Case B There does not exist a square S2(0) /∈ S1
0(0) with lower-left corner southwest of S1

0(0) such that
the dimension of V2 ∩ S2(0)∩ S1

0(0) is greater than #2(S
2(0)∩ S1

0(0))(M). In that case let B2(0)
be the smallest square (with respect to inclusion) such that V2 ∩ B2(0) ∩ S1

0(0) is greater than
#2(B

2(1) ∩ S2
0(1))(M).

The possibilities Case A ii and Case B have strictly smaller dimension unless a square of color 2 starts
being contained in a square of color 1 as a result of the move or as a result of shrinking the square of color
2 because of normalization of upper-right corners or to make it the span of squares of color 3 contained
in it. These cases lead to the tableaux of types M0 or M1 in the respective cases. All other such loci
have strictly smaller dimension. The argument is identical to the argument given for the correponding
cases in the proof of Theorem 4.45 in [C2]. Case A i corresponds to the variety associated to a tableau
of type M2. The argument that all other loci have lower dimension is indentical to the argument given
for the corresponding case in the proof of Theorem 4.45 in [C2].

Finally we can assume that at least two of the subspaces of V1 contained in two vector spaces cor-
responding to squares of color 1 of M(0) become dependent in the limit. Using Observation 4.12 it is
easy to see that the dimension stricty decreases unless the two squares of color 1 are neighbors. The
corresponding tableaux are either of type M1 or M ′

1. It follows from this discussion that the support of
the limit is contained in the union of the varieties corresponding to the tableaux in Algorithm 3.35.

Note that it is easy to see that the support of ΣM (0) contains each of the varieties described by
Algorithm 3.35. One can explicitly write down a sequence of vector spaces that specialize to a general
point of each of the varieties associated to the Mondrian tableaux. In each of the limits either all the vector
spaces contained in the vector spaces corresponding to the squares of the tableaux remain independent
or there exists a smallest index i such that two of the subspaces contained in neighboring vector spaces
become dependent. All other subspaces remain as independent as possible given M and the fact that
these two subspaces became dependent. This is clear for the tableaux M0, M1 and M ′

1, but is also true
for the tableaux of type M2. In tableaux of type M2 except for the intersection of U i with the neighbor
N i−1

s , the other intersections are a consequence of the linear algebra fact that in a vector of dimension k
two subspaces of dimension l and m have to intersect in a subspace of dimension at least l + m− k. The
other intersections are an application of this fact to the subspace of Vi contained in the vector spanned
by the basis elements northeast of l(N i−1

s ). (See also Remark 3.32.)

Finally there remains to check that ΣM (0) is generically reduced along each of the maximal dimensional
varieties. There are many ways of checking this. To see that the variety associated to the Tableau
M1(U

jN j
s ) occurs with multiplicity one, we can assume that the Tableau M consists of U j and the
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neighbors of N j
s of color j. There exists a smooth morphism from a Zariski open subset of the total space

of the family ΣM (t) to an open subset of a family ΣM ′(t), where M ′ is the tableau consisting of U j and
the neighbors of U j of color j. The restriction of Σ

M1(UjN
j
s ) is the pull-back of the corresponding divisor

on ΣM ′(t). To check the multiplicity it suffices to carry out the calculation on the family ΣM ′(t). But
now consider the projection to the variety G(Vj , n). Σ

M1(UjN
j
s ) is the pull-back of a corresponding divisor

in the family for G(Vj , n). The multiplicity of the divisor in the latter family is one. This is immediate
from Pieri’s rule for the Grassmannian of lines and induction on the number of neighbors of U j (see the
proof of Theorem in [C2]). It follows that the miltiplicity of Σ

M1(UjN
j
s ). The multiplicity calculations for

the other tableaux are similar and left to the reader.

It is also possible to give a proof that does not depend on Pieri’s rule or Monk’s rule. There are at
least two ways of doing this. For each of the tableaux it is easy to write curves in the total space of the
family that intersects the fiber with multiplicity one and intersects only one of the tableaux that occur.
Alternatively one can calculate the dimension of the Zariski tangent space to the fiber at a general point
of the central fiber directly. These are both easy and left to the reader. �

Remark 4.13. It is possible to prove many variations of Theorem 4.10. It is possible to alter the order of
degeneration. For instance, a similar analysis applies to the order proposed by Knutson and Vakil. One
can also desingularize the total space of the family using a Bott-Samelson type resolution and obtain
restrictions on the singularities of the central fiber. This has been carried out in similar situations.

5. Examples.

In this section we give a few examples to illustrate the algorithm by calculating some simple products
in three and four step flag varieties.

5.1. Example 1. The first example calculates

σ2,1,3,2
1,0,0,0 · σ2,1,3,2

0,0,0,0 = σ1,2,3,2
2,1,0,0 + σ1,2,2,3

2,0,0,0 + σ1,2,2,3
1,1,0,0 + σ2,1,3,2

2,2,0,0

in F (1, 3, 4; 6). Figure 11 shows how the algorithm calculates this product. As usual we have used red,
blue and black for the colors 1, 2 and 3, respectively. We also remind our short hand that if two squares
of different colors coincide we only depict the one with the smaller color.

5.2. Example 2. The second example calculates

σ2,3,1,4
0,0,0,0 · σ1,3,4,2

0,0,0,0 = σ1,3,2,4
1,1,1,0 + σ1,2,3,4

1,1,0,0 + σ1,3,2,4
2,1,0,0

in F (1, 2, 3, 4; 6). Figure 12 shows how the algorithm calculates this product. We have used red, blue,
green and black to depict the colors 1, 2, 3 and 4, respectively.

5.3. Example 3. Our third example is a more involved calculation in F (1, 3, 4; 7). We calculate

σ3,2,1,2
2,1,0,0 · σ1,2,3,2

1,1,1,0 = σ1,3,2,2
2,2,2,2 + σ1,2,3,2

2,2,2,1 + 2σ1,3,2,2
3,2,2,1 + 2σ1,2,3,2

3,2,1,1 + σ3,1,2,2
3,3,3,0 + σ2,1,3,2

3,3,1,0

+σ1,2,3,2
3,2,2,0 + σ2,1,3,2

3,3,1,1 + σ3,1,2,2
3,3,2,1 + σ1,3,2,2

3,3,2,0 + σ1,2,3,2
3,3,1,0

using the algorithm. Figure 13 shows the calculation.
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Figure 11. A calculation in F (1, 3, 4; 6).

Figure 12. A calculation in F (1, 2, 3, 4; 6).
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