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This article is an account of the afternoon sessions at Snowbird that were devoted to an
introduction to the Minimal Model Program and led by Sándor Kovács. The sections were
written by the participants based on the discussion there and then kneaded together into
one article by the fifth named author. Despite trying to make the presentation cohesive, the
reader may detect a different style of writing in each section. We hope that this will only
entertain rather than annoy the reader.

Most participants had no prior knowledge of the Minimal Model Program other than
a general (strong) background in algebraic geometry. Readers with similar preparation
form our targeted audience. As the title suggests this article is only a glimpse at this
beautiful and important area. If we succeed in raising the reader’s interest, we suggest
further investigation. A natural next step could be Kollár’s introductory, but much more
detailed article [Kol87]. We also recommend consulting other survey articles, such as
[Rei87] and [Mor87], or the technically more demanding [KMM87] and [Kol91]. For
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the serious reader who wants to learn the details we recommend [KM98], [Deb01], and
[Mat02].

For simplicity, unless otherwise stated, we will work over an algebraically closed field
of characteristic zero.

DISCLAIMER. The modern approach to the theory of minimal models was initiated by
Reid and Mori in the early 1980s. In the following decade it has grown into a whole
new area of algebraic geometry, called the Minimal Model Program, or Mori Theory. The
main architects of the Minimal Model Program were Benveniste, Kawamata, Kollár, Mori,
Reid, Shokurov, Tsunoda, and Viehweg. Many others made important contributions, but
in the spirit of this article being only a “glimpse” we will not make an attempt to sort out
and give proper credit for all the contributors in the text. The interested reader can find
this information in the aforementioned references. We hope that everyone whose name is
omitted will graciously forgive us.

ACKNOWLEDGEMENT. Our basic references at the workshop as well as during the writing
of this article have been [KM98] and [Deb01]. In particular, we have learnt from and made
use of several examples included in [Deb01]. We would like to thank Olivier Debarre for
allowing us to include these examples. We would also like to thank Karl Schwede and the
referee for useful suggestions.

1. Minimal models of surfaces

We start by discussing minimal models of surfaces. This material predates the theory
that today we call the ‘Minimal Model Program’ or ‘Mori Theory’. Incidentally, a minimal
surface according to the classical definition is not necessarily a minimal model according
to the current usage. For traditional reasons those minimal surfaces are still called mini-
mal. Therefore when speaking about surfaces one has to be careful about the meaning of
minimal. Once we have both definitions available, we will point out the difference between
them.

In this section we introduce the minimal and the canonical models of surfaces. We
will first do that following the traditional approach and then analyze the definition to make
it possible to generalize to higher dimensions. In particular, we explore the connections
between the minimality of a surface and the nef -ness of its canonical bundle.

NOTATION 1.1. Throughout this section S will denote a smooth, projective surface and C
will denote a reduced, irreducible curve.

Definition 1.2. A smooth rational curve C on a smooth projective surface S with self-
intersection C2 = −1 is called an exceptional curve of the first kind or a (−1)-curve.

A fundamental theorem of Castelnuovo asserts that (−1)-curves can be blown down.
Moreover, when a (−1)-curve is blown down the resulting surface is still smooth. In other
words the only way to produce a (−1)-curve is to blow up a smooth point on a surface.

Theorem 1.3 (Castelnuovo). If C is a (−1)-curve on a smooth surface S̃, then there exists
a morphism f : S̃ → S, where S is a smooth surface, S̃ is the blow-up of S at a point and
the exceptional divisor of the blow-up is C.

PROOF. [Har77, Theorem V.5.7] �

Castelnuovo’s theorem motivates a naive definition of a minimal surface. Namely, a
minimal surface is a surface which does not contain any (−1)-curves.

Proposition 1.4. Every surface is birational to a minimal surface.
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PROOF. If the surface contains a (−1)-curve, we blow it down using Castelnuovo’s
theorem. The Picard number of a surface is a non-negative integer. Each time we blow
down a (−1)-curve we decrease the Picard number by one. Therefore, this process must
terminate to produce a minimal surface. �

REMARK 1.5. Observe that a surface may contain infinitely many (−1)-curves. Blow up
the transverse intersection points of two general smooth cubics in P2. The automorphism
group of this surface contains a copy of Z8 generated by translations by the differences of
the nine sections of the elliptic fibration arising from the base points of the pencil of cubic
curves. Taking the orbit of a (−1)-curve by the automorphism group we see that there are
infinitely many (−1)-curves.

REMARK 1.6. Observe that the minimal model does not have to be unique for rational or
ruled surfaces. For example, if we start with the blow-up of P2 at two points, we can either
blow down the two exceptional divisors to get the minimal surface P2 or blow down the
proper transform of the line joining the two points and get the minimal surface P1 × P1.
However, the minimal model is unique for non-rational and non-birationally ruled surfaces.

Our definition of a minimal surface is inconvenient for generalizing to higher dimen-
sions. The definition of a (−1)-curve uses the fact that the ambient variety is a surface.
We therefore reformulate our definition in terms of the canonical bundle KS of the surface
S. The new definition will not be equivalent to the previous one in the case of rational and
ruled surfaces.

Definition 1.7. We will call a smooth projective surface S minimal if KS is nef, i.e., its
intersection with every effective curve is non-negative.

REMARK 1.8. When we define the notion of a minimal model for higher dimensional
varieties. We will allow certain mild singularities, called “terminal”. Surfaces with termi-
nal singularities are smooth, so in the case of surfaces this definition is equivalent to the
general one.

REMARK 1.9. If a surface contains a (−1)-curve C, then KS ·C = −1 by the adjunction
formula. Therefore, KS is not nef. Hence, a surface S that is minimal according to our
new definition is also minimal according to the old one. We also have the converse for
surfaces which are not rational or ruled.

Proposition 1.10. If a smooth projective surface contains no (−1)-curves and it is not
rational or ruled by rational curves, then its canonical bundle is nef.

PROOF. Suppose S is a surface that satisfies the hypotheses of the theorem, but KS

is not nef. Then there exists a curve B for which KS · B < 0. By (2.3) there exists
a rational curve C also satisfying KS · C < 0. Since the surface does not contain any
(−1)-curves, we conclude that KS · C < −1, or, by the adjunction formula, C2 ≥ 0.
By deformation theory, C admits non-trivial deformations. Hence the surface has to be
rational or ruled. �

In order to place our discussion in better context we need to introduce a closely related
concept, namely, that of the canonical model. Classically, the classification of surfaces was
carried out by studying their Kodaira dimensions.

Definition 1.11. The Kodaira dimension of a variety is the growth rate of the dimension
of sections of the pluricanonical series h0(X,OX(mKX)) as m tends to infinity. Alterna-
tively, the Kodaira dimension is equal to the dimension of the image of the rational map
one obtains from a sufficiently high and divisible multiple of the canonical bundle. Finally,
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it can also be reformulated as one less than the transcendence degree of the canoncial ring
⊕m≥0H

0(X,OX(mKX)).

REMARK 1.12. If the canonical ring ⊕m≥0H
0(X,O(mKX)) is finitely generated, then

we get a canonically defined map X → P(H0(X,O(lKX))) for l � 0. The image is
isomorphic to Proj(⊕m≥0H

0(X,O(mKX))), and it is called the canonical model of X .

REMARK 1.13. Depending on what one chooses to call the dimension of the empty set,
one may end up with different values in the case when H0(X,O(mKX)) = 0 for all
m > 0. In fact, both κ(X) = −1 and κ(X) = −∞ are used in the literature. Depending
on the situation, one or the other makes formulas more convenient, so there is no clear
better choice. On the bright side, this is the only case when κ(X) < 0, so the statement
"negative Kodaira dimension" is unambiguous.

An important conjecture asserts that the canonical ring of a smooth variety is always
finitely generated. The conjecture is known to be true for surfaces and threefolds. It is also
known when the canonical bundle is ample (or more generally when it is big and nef). Note
that finite generation, if true, would be a special property of the canonical bundle. Nagata
has constructed examples where the ring ⊕m≥0H

0(X,OX(mL)) is not finitely generated
for suitable line bundles L on X .

A conjecture closely related to the finite generation of the canonical ring is the abun-
dance conjecture. The abundance conjecture asserts that if X is a minimal variety (i.e.
KX is nef and X has terminal singularities), then mKX is basepoint-free for a large and
divisible enough m. In that case the m-th pluricanonical map is actually a morphism and
its image is the canonical model. It is easy to see that in this case the canonical ring
⊕m≥0H

0(X,O(mKX)) is finitely generated.
Going back to the case of surfaces we note that even if S is a surface of general type,

the canonical model and the minimal model do not have to coincide. For example, take
a quintic surface in P3 which is smooth except for a single ordinary double point. If we
blow up the singular point, we obtain a smooth surface with nef canonical bundle. This
blow-up is a minimal model. However, the canonical model is the singular surface in P3.
More generally, the canonical models of surfaces of general type do not have to be smooth.
They can have rational double points, also known as Du Val singularities.

We conclude this section by reformulating the theorem guaranteeing the existence of
minimal models of surfaces.

Theorem 1.14. Let S be a smooth projective surface. Then there exists a morphism,
f : S → S′, which is a composition of blowing down (−1)-curves and a morphism
g : S′ → Z such that one of the following holds:

(1) S′ ' Z is a smooth surface with KZ nef;
(2) Z is a smooth curve and S′ is a minimal ruled surface over Z; or
(3) Z is a point and S′ is isomorphic to P2.

After repeating the process finitely many times we either end up with a surface with
nef canonical bundle or with cases 2 or 3. In the first case we have to study the variety by
other means. In the latter two cases we have reduced the study of the variety to smaller
dimensional varieties.

This theorem sums up the goal of the minimal model program. Given a variety X ,
the task is to find extremal KX negative curves which can be contracted. The hope is that
by repeating the procedure one ends up either with a variety where KX is nef (a minimal
model) or with a variety of smaller dimension. The rest of the notes will be a discussion
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of how far the program can be carried out for higher dimensional varieties and the various
difficulties one encounters along the way.

2. Bend and Break

The main goal of this section is to show that if KX is not nef, then there exists a
KX -negative rational curve on X . In particular, we are going to discuss one of the central
techniques of the theory, Mori’s ‘Bend & Break’ trick.

Start with a smooth projective variety X . The ultimate goal is to find a minimal model
for X , that is a birational model Xmin such that KXmin is nef.

If KX is nef, we are done, so we may assume that KX is not nef. We would like
to obtain a statement similar to (1.3). In other words we would like to identify simple
obstructions that prevent KX from being nef. In particular, we would like to get rid of
those curves on which KX is negative. As in (1.3), we want to contract such curves. In
order to do that we want to identify the simplest KX -negative curves. They should be
rational curves and their degree should be bounded by a constant only depending on the
dimension of X .

If KX is not nef, then there exists a curve C ⊂ X such that −KX ·C > 0. The idea of
‘Bend & Break’ is that we deform (“bend”) this curve inside X until it has to degenerate
to a reducible or non-reduced curve, that is, it “breaks” up. This way we produce rational
curves or if we start with rational curves, then we produce rational curves of lower degree.

To produce the desired deformation of our curve, it is more advantageous to deform
the morphism from its normalization to X . Consider, f : C → X , where C is a smooth
projective curve. First, we want to deform the morphism f without changing C or X ,
so the appropriate parameter space to consider is the open subscheme Hom(C,X) of the
Hilbert scheme Hilb(C×X) near [f ]. The local dimension of this space is at least ([Kol96,
II.1.2]):

deg f∗TX + (1 − g) dim X.

However, we actually want to deform the curve keeping a point fixed. Fixing a point
imposes dim X conditions, so we obtain that the curve can be deformed with fixing a point
if

deg f∗TX − g dim X > 0.

Hence we are in business, if we manage to make deg f ∗TX = −KX ·f C big enough.

EXAMPLE 2.1. If C is an elliptic curve, we may compose f with an isogeny ι : C → C.

f ◦ ι : C
ι
−→ C

f
−→ X

It is easy to see that
−KX ·f◦ι C = deg ι · (−KX ·f C) ,

so if we choose ι with sufficiently high degree, −KX ·f◦ι C will be large enough.

Unfortunately this only works as long as the curve admits a high degree endomor-
phism, so for curves with genus g > 1, we need a different method.

This is done by the ‘reduction mod p’ technique. Let’s assume that everything that
we encounter is defined over Z. In other words, we consider the problem over Spec Z.
Then if we reduce at the prime (0) ∈ Spec Z, we get our original problem, while reducing
at the prime (p) ∈ Spec Z we get the equivalent problem over F̄p. Over F̄p, applying
the Frobenius map allows us to make −KX ·f C as large as desired, so the deformation
space will be big enough. We will soon see that then one can produce rational curves of
bounded degree. On the other hand it is relatively easy to see that the existence of rational
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curves of bounded degree for infinitely many primes implies the existence of such a curve
in characteristic 0.

We should remark that to do this in the generality needed one has to deal with the case
when not everything is defined over Spec Z. In that case one ends up with a family over
SpecA for some finitely generated Z-algebra A and has to reduce at a prime p ∈ SpecA

and work with the problem over k(p) instead of over F̄p. For a more detailed discussion of
this step see [KM98, 1.10].

In the following we will make this a little bit more precise. The first ingredient is the
Rigidity Lemma.

Lemma 2.2 (Rigidity Lemma). [KM98, 1.6] Let Y be an irreducible variety and let
h : Y → Z be a proper surjective morphism. Assume that every fiber of h is connected
and of dimension n. Let g : Y → W be a morphism such that g(h−1(z0)) is a single point
for some z0 ∈ Z. Then g(h−1(z)) is a single point for all z ∈ Z.

Proposition 2.3 (Bend & Break I). [KM98, 1.7, 1.13] Let X be a smooth projective
variety, f : C → X a morphism from a smooth projective curve, c ∈ C an arbitrary
closed point. If −KX ·f C > 0, then there exists a rational curve C ′ on X through f(c)
such that −KX ·f C ′ > 0.

SKETCH OF PROOF. We may assume that C is not a rational curve. Let B be the
normalization of a 1-dimensional subvariety of Hom(C,X; f |c) passing through [f ] and
let B be a smooth compactification of B. One uses the above sketched ‘reduction mod p’
technique to ensure that such a B exists.

X

BC

B

E e

C0

B

Blow-up

At this point the map is not defined.

f(C)
f(c)

e(E)

e(C  )0

     c

Applying the rigidity lemma (2.2) with Y = C × B, Z = C, and W = X , one
concludes that the induced map is not well-defined on the whole of C × B. Therefore one
needs to blow-up to resolve the indeterminacies of the map. The image of (at least) one of
the exceptional curves produces a KX -negative rational curve passing through f(c). �

Proposition 2.4 (Bend & Break II). [KM98, 1.9] Let X be a projective variety and let
f : P1 → X be a morphism from a smooth rational curve. Finally let p, q ∈ P1 be two
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closed points. Assume that f can be deformed in a 1-parameter family, leaving X , and the
images of p, q fixed. More precisely, assume that there exists a smooth connected pointed
curve (B, 0B ∈ B) and a morphism F : P1 × B → X such that

• F |
P1×{0B} = f ,

• F ({p} × B) = f(p), F ({q} × B) = f(q), and
• F (P1 × B) is a surface.

Then the 1-cycle f∗P
1 is numerically equivalent to a reducible or non-reduced chain of

rational curves passing through the two fixed points, f(p) and f(q).

REMARK 2.5. Any degeneration of a rational curve is a rational tree.

SKETCH OF PROOF. Let B̄ be a smooth projective closure of B and Y = P1× B̄. Let
π : Y → B denote the projection to the second factor. F contracts {p} × B̄ to a point, but
its image is two dimensional, so it cannot contract {p′} × B̄ for all p′ ∈ P1. Therefore, by
the rigidity lemma (2.2) F cannot be extended to the entire Y . Let

Ξ = {b ∈ B̄ | F is not defined at some point of Yb = π−1(b)}.

Hence, in order to extend F over B̄, one has to pass to a blow-up of Y , denoted by
Ȳ . Let F̄ : Ȳ → X denote the extension and π̄ : Ȳ → B̄ the composition of π with the
blow-ups. Note that the exceptional curves created by the blow ups lie over the points of Ξ
and that at least one of them will not be contracted by F̄ as otherwise F would extend to
Y .

First assume that there is a b ∈ Ξ such that at least two components of Ȳb = π̄−1(b)
are not contracted to a point by F̄ . Then the images of these components give the required
chain of rational curves.

Next assume that all but one curve in each fiber of π̄ is contracted by F̄ . For b ∈ Ξ,
let this curve be denoted by Eb ⊂ Ȳb. Take a multisection s of π̄ by pulling back a
divisor from X that misses f(p), f(q) and f(Ȳb \ Eb) for all b ∈ Ξ and take a finite
base change g : B̃ → B̄ so that the pull-back s̃ of s is an actual section over B̃. Let

B

p

q

B

s
p
s
q

X

f(p)
f(q)

. .
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π̃ : Ỹ = B̃ ×B̄ Ȳ → B̃, Ξ̃ = g−1(Ξ), Ỹb = π̃−1(b) and for b ∈ Ξ̃, Ẽb the intersection of
Ỹb and the preimage of Eg(b). Further let the proper transforms of {p}×B (resp. {q}×B)

on Ỹ be denoted by p̃ (resp. q̃). Finally let F̃ : Ỹ → X denote the obvious composition.
Observe that s̃, p̃, and q̃ form a set of three pairwise disjoint sections such that for

b ∈ Ξ̃ they all intersect Ỹb in Ẽb and s̃ does not intersect Ỹb \ Ẽb.
The sections s̃, p̃, and q̃ define a surjective morphism Ỹ → Ŷ = P1 × B̃ such that Ẽb

maps isomorphically onto P1×{b} and Ỹb \ Ẽb is contracted to a set of points (this follows
from the fact that s̃ avoids these curves). It follows that F̃ factors through Ŷ . However, we
have already seen above that this is impossible, so we are done. �

3. The cone of curves

Definition 3.1. Let X be a proper scheme, and let N1(X)Z denote the group of 1–cycles
modulo numerical equivalence (two 1–cycles C and C ′ are numerically equivalent if they
have the same intersection number with every Cartier divisor). Also set

N1(X)Q = N1(X)Z ⊗Z Q N1(X)R = N1(X)Z ⊗Z R

Let
NE(X) =

{∑
ai[Ci] | Ci ⊆ X proper curve, ai ∈ R>0

}
⊂ N1(X)R

and let NE(X) denote the closure of NE(X) in the Euclidean topology. NE(X) is often
called the effective cone or the cone of curves.

We have our first result relating the geometry of NE(X) to the ampleness of line
bundles.

Theorem 3.2 (Kleiman’s Criterion). Let X be a projective variety and D a Cartier divi-
sor on X . Then

D is ample ⇐⇒ D · σ > 0,∀ σ ∈ NE(X), σ 6= 0.

In other words, D is ample if and only if D is positive on NE(X)\{0}.

REMARK 3.3. It is not enough that D has positive intersection with every effective curve.
There are examples of Cartier divisors, due to Mumford, having this property which still
fail to be ample cf. §8.1. In order to be ample D must remain positive on all "limits" of
curves.

The next result describes the geometry of the cone NE(X). This is the Cone Theorem
for smooth varieties cf. (4.9).

Theorem 3.4 (Cone Theorem). [Mor82] Let X be a smooth projective variety. Then
there exists a countable set of rational curves {Γi}, Γi ⊂ X such that

0 < −KX · Γi ≤ dim(X) + 1

and
NE(X) = NE(X)KX≥0 +

∑
R≥0[Γi].

The rays R≥0[Γi] are locally discrete in the half-space (KX < 0).

SKETCH OF PROOF. Mori invented his famous ‘Bend & Break’ trick (2.3), (2.4) in
order to prove this theorem. The idea of the proof is very simple. Given any curve C ⊂ X
with KX ·C < 0, using ‘Bend & Break’ one finds that the class of C is a linear combination
of rational curves with the same property and possibly other curves on which KX is non-
negative. This is basically the content of the Cone Theorem. For details see [KM98,
1.24] �
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REMARK 3.5. See [Deb01, p. 144] for a picture of the typical geometry of NE(X). The
theorem says that NE(X) is divided into two halves by the sign of KX . It makes no
specific statement about the KX–positive half. It does say that the KX–negative portion is
generated by countably many extremal rays, and that moreover these can only accumulate
on the hyperplane KX = 0. In particular, NE(X) need not be polyhedral. For example,
consider the case of P2 blown up at the nine points of intersection of two cubics. On the
other hand, if X is Fano, i.e., −KX is ample, then NE(X) is always polyhedral cf. (4.10).

3.6. NE(X) in the case of surfaces. In this section, we examine NE(X) in the case
where X is a smooth projective surface. This is a very special case, since a curve is also a
divisor. N1(X)R carries a quadratic form defined by the intersection pairing. Fix an ample
divisor H , and let

Q(X) = {σ ∈ N1(X)|σ2 ≥ 0, σ · H ≥ 0}

This is also a convex cone, and one may ask how it is related to NE(X). It follows from
the next exercise that

Q(X) ⊂ NE(X)

EXERCISE 3.6.1. Let D be a divisor on X such that D2 > 0. Prove that either |mD| or
| − mD| is non-empty for m � 0.

SOLUTION 3.6.2. Using Riemann-Roch, we obtain:

h0(X,OX(mD)) + h2(X,OX(mD)) ≥ χ(X,OX(mD))

=
1

2
mD · (mD − KX) + χ(OX)

=
1

2
m2D2 + o(m2)

and similarly with OX(−mD). Because D2 > 0, the right-hand side goes to +∞ as m
does. It follows that

lim
m→∞

(
h0(X,OX(mD)) + h2(X,OX(mD))

)
= +∞

lim
m→∞

(
h0(X,OX(−mD)) + h2(X,OX(−mD))

)
= +∞

Suppose now that h0(X,OX(mD)) = 0 and h0(X,OX(−mD)) = 0 for all m. This
implies that

lim
m→∞

h2(X,OX(mD)) = lim
m→∞

h0(X,OX(KX − mD)) = ∞

and the same with −m, which in turn implies that h0(X,OX(2KX)) = ∞, yielding a
contradiction.

The following lemma allows us to check whether curves lie on the boundary of NE(X),
and whether they span an extremal ray (the latter is very difficult to check in general).

Lemma 3.6.3. Let X be a smooth projective surface. Then

(3.6.3.1) the class of an irreducible curve C ⊂ X such that C2 ≤ 0 lies in ∂NE(X), and
(3.6.3.2) the class of an irreducible curve C ⊂ X such that C2 < 0 spans an extremal

ray of NE(X).

PROOF. (3.6.3.1) The statement follows easily from (3.6.3.2) if C2 < 0, and so
we may assume that C2 = 0. Then, since C is irreducible, it follows that for every
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σ ∈ NE(X), C · σ ≥ 0. Let H be an ample divisor on X and assume that [C] is in the
interior of NE(X). Then so is [C] − t[H] for small t > 0. It follows, that

0 ≤ C · (C − tH) ≤ −tC · H.

However, this contradicts the fact that H is ample and so C · H ≥ 0.
For the proof of (3.6.3.2), see [Deb01, p. 145]. �

REMARK 3.6.4. (3.6.3.2) may be used to justify the assertion that the cone of curves is
not polyhedral in the case where X is P2 blown up at the nine basepoints of a general
pencil of cubics cf. [Deb01, 6.6].

EXERCISE 3.6.5. Consider the case where X is an abelian surface. In that case,

Q(X) = NE(X)

SOLUTION 3.6.6. The inclusion Q(X) ⊂ NE(X) always holds and was treated earlier.
For the reverse inclusion, suppose C ∈ NE(X). Since every curve in an abelian surface
can be moved using the group law, it will have non-negative intersection with every other
effective curve. Therefore, C2 ≥ 0, and C · H ≥ 0 is automatic.

4. Introduction to the Minimal Model Program

Classically minimal surfaces were defined as those without a (−1)-curve. This is,
however, a definition strictly restricted to surfaces. On the other hand, a non-uniruled
surface, or in other words, a surface of non-negative Kodaira dimension is minimal if and
only if KX is nef cf. (1.10). For this reason we define minimal varieties by this property
cf. (1.7), (5.4).

The Minimal Model Program starts with a variety X and is searching for a minimal
variety which is birational to X , i.e., for the minimal model of X . The natural thing to
do is to try to remove those curves C ⊂ X for which KX · C < 0. In the surface case
this is achieved by Castelnuovo’s Theorem (1.3). The higher dimensional analogue is the
Contraction Theorem (4.13). The purpose of this section is to sketch the major steps needed
to prove this theorem. This is a significant part of the MMP, but we will only state the main
theorems without proof.

One important aspect of the the Minimal Model Program is that one must allow the
varieties to acquire singularities. (It’s often worthwhile to consider the more general setup
of singularities of pairs (cf. [Kol97]), but for the sake of simplicity here we will not do
that).

The first step of the Minimal Model Program is to contract (some) KX -negative
curves. This is an analogue of contracting (−1)-curves on surfaces. In higher dimen-
sions some of these lead to singular varieties. In order to run the MMP, we want our target
variety to be in the same category as the one we start with. Hence we have to allow singu-
larities. On the other hand, our techniques will not work on all singularities, so we need to
find the class that’s big enough so contractions do not lead out of it, but small enough so
our methods will still work.

EXAMPLE 4.1. Let φ : X → Y be a morphism between projective varieties that contracts
an irreducible divisor E ⊆ X to a point P ∈ Y and that the restriction of φ gives an
isomorphism X\E ∼= Y \P . Assume that KY is a Q-Cartier divisor. Then we can write

KX ≡ φ∗KY + aE



A FIRST GLIMPSE AT THE MINIMAL MODEL PROGRAM 11

for some a ∈ Q. Further assume that −KX |E and −E|E are ample (we will see later that
this is a commonly encountered situation). Then it follows that −KE is also ample and

−KE ≡ −(φ∗KY + (a + 1)E)|E ≡ −(a + 1)E|E ,

and this is only possible if a > −1.

These kind of examples motivate the following definitions of types of singularities that
are allowed in the Minimal Model Program.

Definition 4.2. [KM98, 2.34] Let X be a variety. Assume, that KX is Q-Cartier. Let
f : Y → X be a resolution and Ei the irreducible components of the exceptional locus of
f . Then there exists a unique collection ai ∈ Q for i = 1, 2, . . . , s such that

KY ≡ f∗KX +

s∑

i=1

aiEi.

For any i, the ai is called the discrepancy of Ei with respect to X . X is said to have

terminal

canonical

log terminal

log canonical





singularities, if





ai > 0

ai ≥ 0

ai > −1

ai ≥ −1





for all f : Y → X

and

for all i.

Note that instead of requiring the above conditions for all resolutions, it is enough if it
holds for a good resolution, that is, one whose exceptional set is a simple normal crossing
divisor.

These singularities are rather mild. Recall that a normal variety X has rational singularities
if for one (hence every) resolution of singularities φ : X̃ → X , Riφ∗OX̃ = 0 for i > 0.
Rational singularities are often the simplest singularities to deal with. For example, one
can use vanishing theorems (e.g., (4.3)) for varieties with rational singularities.

Terminal, canonical, and log terminal singularities are rational cf. [Elk81], [Kov00a].
Log canonical singularities are not always rational. For instance, a cone over a smooth
elliptic curve is log canonical, but not rational. However, it is expected that log canonical
singularities are still rather “mild”. Kollár conjectured [Kol92, 1.13] that log canonical
singularities form the natural class for Kodaira type vanishing theorems. For more de-
tails on this conjecture and for results related to it see [DB81], [Ste83], [Ish85], [Kov99],
[Kov00b].

Before stating the main theorems of the MMP let us point out that vanishing theorems
play a very important role in the theory. However, a fair treatment would require more
resources than that we have. The reader is referred to [KM98, §2.4-5] for details on the
kind of generalizations of the Kodaira Vanishing Theorem that are needed. Here we only
state a weaker version that is still very useful in numerous applications.

Theorem 4.3 (Kawamata-Viehweg Vanishing Theorem (weak form)). [KM98, 2.64]
Let X be a smooth projective variety and L a nef and big line bundle on X . Then
Hi(X,L −1) = 0 for i < dim X .

REMARK 4.4. The original version of Kodaira’s theorem required L to be ample and the
stronger version allows for a fractional part as well.

Without further ado, let us now quote the promised list of theorems that make the
MMP work.
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Theorem 4.5 (Non-vanishing Theorem). [KM98, 3.4] Let X be a proper variety with
log terminal singularities, D a nef Cartier divisor such that aD − KX is Q-Cartier, nef
and big for some a > 0. Then

H0(X,mD) 6= 0 ∀ m � 0.

Theorem 4.6 (Basepoint-free Theorem). [KM98, 3.3] Let X be a projective variety with
log terminal singularities, let D be a nef Cartier divisor and suppose that aD−KX is nef
and big for some a > 0. Then |mD| is basepoint-free for every m � 0.

Corollary 4.7. Let X be a smooth projective variety. If KX is nef and big, then |mKX | is
free for every m � 0. In particular, the canonical ring

R(X,KX) =
⊕

m≥0

H0(X,O(mKX))

is finitely generated and hence the canonical model of X exists and is isomorphic to
Proj R(X,KX).

Theorem 4.8 (Rationality Theorem). Let X be a proper variety with log terminal singu-
larities such that KX is not nef. Let a(X) be an integer such that a(X)KX is Cartier. Let
H be a nef and big Cartier divisor and define

r = r(H) = max{t ∈ R : H + tKX is nef}.

Then r is a rational number of the form u/v (u, v ∈ Z) where

0 < v ≤ a(X)(dim X + 1).

Theorem 4.9 (Cone Theorem). [KM98, 3.7] Let X be a projective variety with log ter-
minal singularities. Then

(4.9.1) there exists a countable collection of rational curves {Γi}, Γi ⊂ X such that

0 < −KX · Γi ≤ 2 dim(X)

and
NE(X) = NE(X)KX≥0 +

∑
R≥0[Γi].

(4.9.2) The rays R≥0[Γi] are locally discrete in the half-space (KX < 0).

REMARK 4.0.1. Observe that in the Cone Theorem for smooth varieties (3.4), the state-
ment is slightly stronger. Namely, the bound on the degrees of the generating rational
curves in that statement is dim X + 1 instead of the 2 dim X here.

The logical order of proof of these theorems is the following:

Non-vanishing ⇒ Basepoint-free ⇒ Rationality ⇒ Cone

For the basic strategy see [KM98, 3.9] and for the entire proof see [KM98, Chapter 3].

Corollary 4.10. Let X be a smooth Fano variety, i.e., such that −KX is ample. Then
NE(X) is a (finite) polyhedral cone.

PROOF. Because −KX is ample, −KX · C > 0 for every C ∈ NE(X), and hence
NE(X) is contained in the half-space (KX < 0). The statement follows from (4.9.2). �

REMARK 4.11. In general NE(X) is not a finite polyhedral cone already for surfaces.
For instance, the cone of curves of a Kummer surface is never a finite polyhedral cone cf.
[Kov94]. See (3.6.4) for another example.
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EXERCISE 4.12. What conclusion can you draw from comparing (4.10) and (3.6.4)?

We finish this section with a sketch of the final steps in finding our desired contractions.
Suppose that Γ is an extremal ray given to us by the Cone Theorem. We would like to find
φ : X → Y such that:

(1) φ contracts a curve if and only if it is numerically equivalent to some rational
multiple of Γ, and

(2) Y is normal and φ has connected fibers.

Theorem 4.13 (Contraction Theorem). [KM98, 3.7] Let X be a projective variety with
log terminal singularities, and F ⊆ NE(X) a KX -negative extremal face. Then there is
a unique morphism contF : X → Y to a projective variety such that (contF )∗ OX ' OY

and an irreducible curve C ⊂ X is mapped to a point by contF if and only if [C] ∈ F .
This morphism, contF , is called the contraction of F .

REMARK 4.0.1. The Contraction Theorem is often stated as part of the Cone Theorem
[KM98, 3.7]. Here we wanted to emphasize it as the statement that we were looking for in
this section.

SKETCH OF PROOF. Let F be a KX -negative extremal face. Then we can find a divi-
sor M such that M ≥ 0 on NE(X) and

{M = 0} ∩ NE(X) = F.

We observe that we may choose M so that it is a Cartier divisor and that M is nef and
aM − KX is ample for a � 0 by construction. In particular aM − KX is nef and big
and hence by the Basepoint-free Theorem (4.6) |bM | is basepoint-free for all b sufficiently
large. This gives us a morphism contF : X → Y which contracts F , with Y normal and
contF having connected fibers. �

5. Running the Minimal Model Program

We start this section with a definition.

Definition 5.1. A variety X of dimension n is called uniruled if there exist a variety Y of
dimension n− 1 and a dominant rational map P1 × Y 99K X . Equivalently, X is uniruled
if for a general x ∈ X , there exists a rational curve through x.

REMARK 5.2. By [MM86], the above condition can be replaced by the following: for a
general x ∈ X , there exists a curve C ⊂ X such that −KX · C > 0.

Thus if X is uniruled, then κ(X) = −1. In fact, the two conditions are conjectured
to be equivalent. Uniruled surfaces are exactly the ones with negative Kodaira dimension.
In the context of the MMP it is clear why these cases behave differently with respect to
finding a minimal model in the classical sense, i.e., by contracting (−1)-curves. According
to the modern definition, uniruled varieties do not admit a minimal model, but we will see
below that we still get a pretty good description of them as Fano fiber spaces.

Next we analyze what happens after we apply the Contraction Theorem.

5.3 CASES OF CONTRACTIONS. Let X be a smooth projective variety. If it is not min-
imal, then by the Cone Theorem (4.9) there is a KX -negative extremal ray on NE(X)
and by the Contraction Theorem (4.13) there is a morphism φ : X → Y with connected
fibers onto a normal projective variety Y . In order to successfully run the MMP, we need
to repeat this procedure and hence make sure that Y also satisfies the conditions of the
Contraction Theorem.
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CASE I. dim Y < dim X . In this case, X is uniruled and φ is a Fano fibration. To see
this, let F denote the class of a fiber of the map φ. Then −KX |F is positive on every curve
and ρ(F ) = 1 because all curves on F are rationally proportional, so −KF = −KX |F
is ample, implying that F is Fano. Understanding the geometry of X is now reduced
to understanding lower dimensional varieties. Note that in this case X does not admit a
minimal model.

CASE II. dim Y = dim X , and there is an exceptional divisor, whose image via φ has
codimension at least two. In this case φ is called a divisorial contraction. In this case, Y
may be mildly singular and so we have our first reason to enlarge our category of varieties
that we run the Minimal Model Program on beyond the smooth ones. It turns out that if X
has log terminal singularities, then so does Y , so this class of singularities allows us to run
the Minimal Model Program by iterating the contraction of a KX -negative extremal ray.

CASE III. dim Y = dim X , but the codimension of the exceptional variety of φ is at least
two. In this case, φ is called a small contraction. Here we run into difficulties, because
Y will turn out to be a pretty unpleasant variety. For one thing, KY will not be Q-Cartier
and this torpedos most of the steps required for running the Minimal Model Program.
Therefore this case needs a new solution.

Because we need to allow singularities, we have to redefine the meaning of "minimal".

Definition 5.4. A variety X is said to have Q-factorial singularities if every Weil divisor
on X is Q-Cartier.

A variety X is called a minimal model if it has terminal Q-factorial singularities and
KX is nef.

If X is a smooth 3-fold, then it turns out that the morphism provided by the Contraction
Theorem cannot be a small contraction. Still, small contractions might arise while running
the Minimal Model Program on a smooth 3-fold. Namely, running the Minimal Model
Program for the first time might produce a divisorial contraction, with the resulting variety
Y singular. Then a second application of the Minimal Model Program might very well
produce a small contraction, so we have to deal with this situation even if we are primarily
interested in minimal models of smooth varieties.

Allowing mild singularities lets us incorporate divisorial contractions into the Minimal
Model Program, but how are we to deal with small contractions? First, it is clear that if
φ : X → Y is a small contraction, then KY is not Q-Cartier. (Indeed, if it were, then
consider a curve C that is contracted by φ. On the one hand, we have KX · C < 0; on the
other hand, since φ is small we must have KX ≡ φ∗KY , so KX · C = KY · φ∗(C) = 0.)

The solution to a small contraction is to replace X by some variety other than Y . The
variety to use is the “flip” X+ of X defined as follows.

Definition 5.5. [KM98, 2.8] Let φ : X → Y be a small contraction such that −KX

is Q-Cartier and φ-ample. A variety X+ together with a proper birational morphism
φ+ : X+ → Y is called a flip of φ if KX+ is Q-Cartier and φ+-ample, and φ+ is a small
contraction. By slight abuse of terminology, the rational map (φ+ ◦ φ−1) : X 99K X+ is
also called a flip. A flip gives the following diagram:

X //_______

φ

−KX is φ-ample
��

@@
@@

@@
@@

X+

φ+

K
X+ is φ+-ample

}}||
||

||
||

Y
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The variety X+ in the definition of a flip is birational to the original variety X . While
it is far from clear why a flip exists, it turns out that the flip of φ is unique if it exists.
Indeed, if there is a flip, then

X+ ' Proj
⊕

n≥0

φ∗OX(nm0KX)

where m0 is a positive integer such that m0KX is Cartier.
Now the Minimal Model Program proceeds as follows:

5.6 MMP.

(1) Start with an arbitrary variety X .
(2) Replace X by a smooth projective model. (This is possible by Hironaka’s reso-

lution of singularities [Hir64]).
(3) If X is minimal, stop.
(4) If X is not minimal, use the Contraction Theorem (4.13) to produce a morphism

φ : X → Y .
(5) If φ is a Fano fiber space, stop.
(6) If φ is a divisorial contraction, replace X by Y and return to (3).
(7) If φ is a small contraction, perform a flip, replace X by X+ and return to (3).

In order for this to work one needs to ensure that the steps are indeed possible to take
and that they produce varieties that are suitable for the next step. In particular, one needs
to prove that flips exist and the flip of a variety with terminal Q-factorial singularites also
has terminal Q-factorial singularites.

Once this is done, it follows that the above algorithm can always take the next step,
but one also needs to make sure that the process terminates. Divisorial contractions lower
the Picard number and flips do not change them. This means that there can be only finitely
many divisorial contractions in any given run of the MMP. The only missing step at this
point is to prove that that there cannot be an infinite sequence of flips.

All of these steps have been established for threefolds in the 1980s (for explicit refer-
ences, see [KM98], or the bibliography at the end). The existence of flips for fourfolds has
been recently proved by Shokurov [Sho03], but at the time of the writing of this article,
termination of flips is only known in dimension three.

5.7. Flops. Recall that a minimal model is a projective variety X with terminal sin-
gularities such that KX is nef. Although canonical models are unique, minimal models
are not necessarily. It is, however, conjectured that any two minimal models in the same
birational equivalence class are connected by a sequence of flops:

Definition 5.7.1. [KM98, 6.10] Let φ : X → Y be a small contraction such that KX is
Q-Cartier and numerically φ-trivial. Assume that D is a Q-Cartier divisor on X such that
−D is φ-ample. A variety X◦ together with a proper birational morphism φ◦ : X◦ → Y is
called a flop of φ if KX◦ is Q-Cartier and numerically φ◦-trivial, D◦, the proper transform
of D, is φ◦-ample and φ◦ is a small contraction. As in the case of flips, by slight abuse of
terminology, the rational map (φ◦ ◦ φ−1) : X 99K X◦ is also called a flop. A flop gives
the following diagram:

X //_______

φ

−D is φ-ample, and

KX is numerically φ-trivial
  

@@
@@

@@
@@

X◦

φ◦

D◦ is φ◦-ample, and

KX◦ is numerically φ◦-trivial
}}||

||
||

||

Y



16 CADMAN, COSKUN, JABBUSCH, JOYCE, KOVÁCS, LIEBLICH, SATO, SZCZESNY, ZHANG

REMARK 5.7.2. It is known in dimension 3, that a pair of birational minimal varieties are
connected by a sequence of flops.

REMARK 5.7.3. Using the notation of (5.7.1), observe that KX is nef if and only if KX◦

is.

Though minimal models are not unique in general, there is a case when they are. The
reader should have no problem supplying a proof for this.

EXERCISE 5.7.4. If X has terminal singularities and KX is ample, then X has a unique
minimal model (itself).

6. Where next?

Once we reach a minimal model, we are happy, but we need more work before we
can rest. In this article we will only briefly touch on this issue, and spend even less than
a glimpse on it, but this should not give the impression that this part is not an equally
important part of classification theory.

According to the Basepoint-free Theorem (4.6), if KX is nef and big, some multiple of
it is basepoint-free. This means that if X is of general type, then a minimal model provided
by the MMP admits a canonical model and a birational morphism onto it. The canonical
model admits pluricanonical embeddings giving rise to many ways of investigation.

One hopes that something similar can be done even if X is not of general type. This
is summarized in the following.

Conjecture 6.1 (Abundance Conjecture). Let X be a proper variety with log canonical
singularities. Then

(6.1.1) ⊕∞
m=0H

0(X,OX(mKX)) is a finitely generated ring.
(6.1.2) If KX is nef, then |mKX | is basepoint-free for some m > 0.

REMARK 6.2. It is relatively easy to see that if KX is nef, then (6.1.2) implies (6.1.1).
In general, the Minimal Model Program reduces (6.1.1) to (6.1.2), and as a consequence,
frequently only (6.1.2) is called the Abundance Conjecture.

The conjecture is known to be true in dimensions two and three and as it was pointed
out above the basepoint-free theorem (4.6) implies that it also holds if KX is nef and big.

7. Minimal models of surfaces, revisited

In this section, we will examine how the Minimal Model Program handles the clas-
sification of surfaces. Eschewing logical difficulties, the goal is simply to see how the
foundational theorems and conjectures of the MMP work in the case of surfaces; we make
no claims that the “proofs” described here actually fit in a non-circular manner into alge-
braic geometry as it presently exists. As we have done all along, we restrict our attention
to characteristic 0, although most of the results concerning the classification of surfaces
remain valid (with a few more cases in characteristics 2 and 3).

Let X be a smooth projective surface. To run the MMP, we look at the canonical class
KX . If it is nef, then we stop and scratch our heads (the MMP cannot help us anymore).
In a moment we will see that this case can be analyzed a bit for surfaces: in particular,
one can classify surfaces of Kodaira dimension 0 and 1, while those of Kodaira dimension
2 (surfaces of general type) remain a mystery. (One can try to approach such surfaces
using the canonical model, but we will not dwell on this here.) The goal of the MMP is to
contract (numerical equivalence classes of) curves until we reach this case.
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7.1. KX is not nef. If the canonical class is not nef, then the cone of curves contains
extremal rays. Let Γ be an integral rational generator for an extremal ray, and let the
resulting extremal contraction be φ : X → X ′. We find three cases:

(i) The map φ is birational. In this case, one can check that X ′ is a smooth blow-
down of X along a (−1)-curve.

(ii) The map φ has 1-dimensional fibers. In this case, every fiber must be integral
(since any curve in a fiber is numerically equivalent to a multiple of Γ) and
rational, which implies (using Tsen’s theorem) that φ exhibits X as a projective
bundle over a smooth curve, i.e., X is a ruled surface.

(iii) The map φ is the constant map to a point. In this case, since every contracted
curve is numerically equivalent to a multiple of Γ, we see that the Picard number
of X is 1 and X is Fano. It follows that X ∼= P2.

To summarize, when KX is not nef, we can find a birational map X → X̃ which is a
sequence of finitely many blow-downs along (−1)-curves such that either KX̃ is nef, or

X̃ → B is a ruled surface, or X̃ ∼= P2. This leaves us with the problem of studying what
happens when the minimal model program cannot help us.

7.2. KX is nef. We can split this up according to the Kodaira dimension. It is easy
to see that the Kodaira dimension of cases (ii) and (iii) above is −1 (as no multiple of
the canonical class ever acquires global sections). Conversely, we can invoke a classical
theorem of Enriques.

Theorem 7.2.1. A smooth complex surface X is birationally ruled if and only if H0(X,ω⊗m
X ) = 0

for all m ≤ 6.

Since any birationally ruled surface has Kodaira dimension −1, we see that the case
of surfaces with κ = −1 is completely described by (ii) and (iii) above.

Corollary 7.2.2. If KX is nef then X is not birationally ruled.

Thus, (i) above is disjoint from (ii) and (iii). Castelnuovo’s criterion also tells us what
happens when KX is at the boundary of the nef cone:

Corollary 7.2.3. If KX ≡ 0, then 12KX ∼ 0.

(More precisely, one has mKX ∼ 0 for m = 1, 2, 3, 4, or 6.) Thus, the rougher
relation of being numerically equivalent to 0 implies that a small multiple of KX is in fact
linearly equivalent to 0. This tells us (among other things) that the Kodaira dimension of
X is 0 if and only if KX ≡ 0 if and only if KX is torsion in Pic(X). The class of surfaces
with κ = 0 includes the Abelian surfaces, K3 surfaces, certain Z2-quotients of these, the
Enriques surfaces, and hyperelliptic surfaces.

If K2
X > 0, then one sees easily by a simple computation using the Riemann-Roch

theorem that κ(X) = 2. Then by the Basepoint-free Theorem (4.6) it follows that X
admits a birational morphism onto its canonical model. The investigation of canonical
models will not be addressed in these notes.

The remaining case is when KX is nef, K2
X = 0, but KX 6≡ 0. We claim that in this

case κ(X) = 1 and X is an elliptic surface, i.e., it admits a fibration π : X → B such that
almost all fibers of π are non-singular elliptic curves. Conversely, if κ(X) = 1, it is easy
to verify that K2

X = 0. Since birationally ruled surfaces have Kodaira dimension 0, we see
that any surface of Kodaira dimension 1 must be elliptically fibered. This will “complete”
the classification of surfaces.
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The Abundance Conjecture holds for surfaces (6.2) and it implies the existence of
an elliptic fibration structure immediately: for some m > 0, the m-pluricanonical map
provides a morphism χ : X → B.

Since by definition mKX is a pullback along χ of a Cartier divisor on B, it follows
(upon replacing B by its normalization if necessary) that in fact mKX = χ∗(mKB +Lm).
Choosing m large enough guarantees that χ has connected fibers.

Since K2
X = 0, it is not big, χ cannot be generically finite. (Indeed, if it were,

one could easily find two hyperplane sections of the image which intersected transversely
and did not pass through the locus of positive-dimensional fibers, and this would cause a
contradiction.) Since KX is nef and KX 6≡ 0, the image of the canonical map cannot be a
point. Hence B must be a curve.

That the generic fiber is smooth now follows from the fact that we are in characteristic
0, so the generic fiber of any dominant map from a smooth variety to any variety must be
smooth. Furthermore, since mKX is the pullback of a Cartoer divisor from B, the smooth
fibers must be elliptic curves.

It is important to note that one usually proves the abundance conjecture for surfaces by
showing that a surface of Kodaira dimension 1 admits an elliptic fibration structure. The
point is to show that for some m > 0, there are sufficiently many members of the linear
system mKX (i.e., at least two). It immediately follows that any member of such a sys-
tem has arithmetic genus one. Showing the existence of enough sections of ω⊗m

X directly
is fairly complicated, and may be found in any of the standard references on algebraic
surfaces.

8. Examples

8.1. Mumford’s example of a non-ample divisor that’s positive on every curve.
In this section we give an example, due to Mumford, of a complete non-singular surface
X , and a divisor D, such that D · Y > 0 for all effective curves Y , but D is not ample.
We’ll follow the argument given by Hartshorne [Har70].

Let C be a non-singular complete curve, and E a bundle of rank 2 on C. Let X
be the ruled surface P(E ), π : X → C the associated projection, and D the divisor
corresponding to the line bundle OX(1). Finally let S = ⊕m≥0 Symm(E ). Note that
then P(E ) ' ProjS .

Recall the following correspondence between effective curves and subsheaves of the
symmetric powers of E .

Theorem 8.1.1. [Har70, Chapter I, Proposition 10.2] For any positive integer m there
exists a one-to-one correspondence between

• effective curves Y on X (possibly reducible with multiple components), having
no fibers as components, of degree m over C, and

• sub-line bundles M of Symm(E ).

The correspondence is given by

Y 7→ π∗(OX(m) ⊗ OX(−Y ))

and

M 7→ subschemes of X defined by the homogenous ideal M · S

Furthermore, under this correspondence

D · Y = m(deg E ) − deg M .
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Recall that a vector bundle E on a curve is stable if for every sub-vector bundle

(deg F )/(rank F ) < (deg E )/(rank E ).

We then have the following:

Theorem 8.1.2. [Har70, Chapter I, Theorem 10.5] Let C be a curve of genus g ≥ 2 over
the complex numbers. Then, for any r > 0, d ∈ Z, there exists a stable bundle E of rank r
and degree d, such that Symm(E ) is stable for all m > 0.

Now, let C be a curve of genus g ≥ 2 over the complex numbers. Then there exists
a stable bundle E of rank 2 and degree 0 such that Symm(E ) is stable for all m > 0. As
above, let X = P(E ), D the divisor corresponding to OX(1), and Y an effective curve on
X . If Y is a fiber of π, then D · Y = 1. If Y is an irreducible curve of degree m over C,
then Y corresponds to a sub-line bundle M ⊆ Symm(E ). Now, Symm(E ) is stable and
of degree 0 (since deg E = 0), thus deg M < 0. Therefore,

D · Y = m(deg E ) − deg M = −deg M > 0.

Hence D · Y > 0 for every effective curve Y on X .
However, D is not ample because D2 = 0.

ACKNOWLEDGEMENT. The following examples are based on examples in [Deb01, §6.6].
We thank Olivier Debarre for allowing us to include them here.

8.2. The Contraction Theorem in action. (cf. [Deb01, 6.14]). The Contraction
Theorem (4.13) guarantees the existence of an extremal contraction π : X → Y , un-
der which the entire numerical equivalence class of the generator of the extremal ray is
contracted. We know that if the dimension of Y is lower than the dimension of X , then π
is a Fano fibration over Y . This example deals with the simple case where X is a projective
bundle over Y .

Let E be a rank r + 1 vector bundle over a smooth projective variety Y , and let
X = P(E ). Let ` be the class of a line in one of the fibers of π. It is clear that all such lines
are numerically equivalent, and that a curve is contracted if and only if it is numerically
equivalent to a multiple of `. It follows that the ray generated by ` is extremal. We now
verifiy that it is KX–negative.

X comes with a line bundle, denoted by OX(1) whose restriction to each projective
fiber is O(1), and defined by the property that π∗OX(1) = E . We have the following exact
sequence for the relative cotangent bundle, ΩX/Y .

0 → ΩX/Y → π∗
E ⊗ OX(−1) → OX → 0

from which we deduce that

OX(KX/Y ) ' det(ΩX/Y ) ' π∗ det(E ) ⊗ OX(−r − 1)

Combining this with KX = KX/Y + π∗KY we obtain that

OX(KX) ' π∗(det(E ) ⊗ OY (KY )) ⊗ OX(−r − 1).

The intersection of ` with any class pulled back from Y is trivial, and deg (OX(1)|`) = 1.
It follows that

(8.2.1) KX · ` = −(r + 1)
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8.3. A Fano fibration that is not a projective bundle, and a divisorial contraction
that is not a smooth blow-up. (cf. [Deb01, 6.16]). In this subsection we follow [Deb01,
6.16] almost verbatim. Let C be a smooth projective curve of genus g. Let d be a positive
integer, and Jd(C) the Jacobian of C which parameterizes isomorphism classes of invert-
ible sheaves of degree d on C. Further let C(d) be the symmetric product of d copies of C,
that is, Cd/Sd. Then there is a map

πd : C(d) → Jd(C),

called the Abel-Jacobi map, defined by

(p1, · · · , pd) 7→ OC(p1 + · · · + pd).

For d > 2g − 1, h1(C,OC(p1 + · · · + pd)) = 0, so

h0(C,OC(p1 + · · · + pd)) = d + (1 − g)

by Riemann-Roch. Thus π : C(d) → Jd(C) is a Pd−g-bundle, hence it is the contraction
of a KC(d) -negative extremal ray by the previous example (8.2).

Note that for any positive d, all fibers of πd are projective spaces, although πd need
not be flat. Let `d be the class of a line in a fiber. Observe that a curve is contracted
by πd if and only if it is contained in one of the fibers, which holds if and only if the
curve is numerically equivalent to a (rational) multiple of `d. We conclude that πd is the
contraction of the extremal ray R≥0[`d], but at this point we do not yet know whether it is
a KC(d) -negative extremal ray.

CLAIM 8.3.1. KC(d) · `d = g − d − 1.

PROOF. The formula holds for d > 2g − 1 by (8.2.1). We will prove the formula by
descending induction on d. Assume it holds for d. Pick a point of C to get an embedding
ι : C(d−1) ↪→ C(d). Then C(d−1) · `d = 1. The adjunction formula and the projection
formula yield, that

KC(d−1) · `d−1 = ι∗(KC(d) + C(d−1)) · `d−1

= (KC(d) + C(d−1)) · ι∗`d−1

= (KC(d) + C(d−1)) · `d

= (g − d − 1) + 1 = g − (d − 1) − 1.

(8.3.2)

�

It follows that for d ≥ g, the map πd is the contraction of the KC(d) -negative extremal
ray R≥0[`d].

(8.3.3) If d = g + 1, the general fiber is P1, but some fibers are larger when g ≥ 3, so
the contraction is not a projective bundle.

(8.3.4) If d = g, the general fiber of πd is a point. The contraction of the locus of R+[`d]
is

{L ∈ Jg(C) : h1(C,L) > 0}

and the general fiber over the image of the exceptional locus is P1. But some
fibers are larger when g ≥ 6, because the curve C has a g1

g−2, and so the con-
traction is not a smooth blow-up.
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8.4. A flip. (cf. [Deb01, 6.17]). Recall that if E is a locally free sheaf on Z, then a
morphism X → P(E ) is equivalent to a morphism φ : X → Z, an invertible sheaf L on
X , and a surjection φ∗E → L (cf. [Har77, II.7.12]). The identity map P(E ) → P(E )
corresponds to the projection π : P(E ) → Z and the natural surjection π∗E → OP(E )(1).

Let r, s be positive integers. Let

πYr,s
: Yr,s = P(OPs ⊕ OPs(1)⊕r+1) → Ps

and
πXr,s

: Xr,s = P(OPs×Pr ⊕ OPs×Pr (1, 1)) → Ps × Pr

be projective space bundles. Let εr,s : Xr,s → Yr,s be the morphism determined by the
composition

φ : Xr,s

πXr,s

−→ Ps × Pr p1
−→ Ps,

and the surjection

φ∗(OPs ⊕ OPs(1)⊕r+1) ' π∗(OPs×Pr ⊕ OPs×Pr (1, 0)⊕r+1) �

� π∗(OPs×Pr ⊕ OPs×Pr (1, 1)) � OXr,s
(1).

Note that ε∗r,sOYr,s
(1) ' OXr,s

(1) by construction. Since Xr,s is symmetric in r and s,
we have the following diagram.

Xr,s

εr,s

||zz
zz

zz
zz εs,r

""D
DD

DD
DD

D

Yr,s
fr,s

//________ Ys,r

(8.4.1)

Proposition 8.4.2. If r < s, then fr,s is a flip (see Definition 5.5).

PROOF. We will prove this by finding small contractions Yr,s → Zr,s and Ys,r → Zr,s

and then verifying that KYr,s
and KYs,r

have the right numerical properties on contracted
curves. First we have to examine things in more detail.

We claim that εr,s is a blowup along a smooth subvariety. There is a section Ps → Yr,s

determined by the projection OPs ⊕OPs(1)⊕r+1 → OPs
. Let Pr,s be the image of this sec-

tion. The ideal sheaf of Pr,s is the image of the natural map π∗OPs(1)⊕r+1⊗OYr,s
(−1) → OYr,s

.
The preimage of this under εr,s is the map

π∗
OPs×Pr (1, 0)⊕r+1 ⊗ OXr,s

(−1) � π∗
OPs×Pr (1, 1) ⊗ OXr,s

(−1) → OXr,s
.

Thus the ideal sheaf of ε−1(Pr,s) is invertible.
It follows by the universal property of blowups that there is a unique morphism from

Xr,s to the blowup of Yr,s along Pr,s (cf. [Har77, II.7.14]). We leave to the reader to check
that this is an isomorphism, which proves the claim.

Let Er,s be the exceptional divisor of εr,s. We have seen that Er,s is defined by the
vanishing of the map π∗OPs×Pr (1, 1) → OXr,s

(1). As this is symmetric in r and s, it
follows that Er,s = Es,r.

We pause for an illustrative remark. Since Er,s is a section of πXr,s
, it follows that

Er,s
∼= Ps × Pr. Moreover, Pr,s

∼= Ps, and the morphism εr,s restricted to Er,s is the
projection onto the first factor. This means that in diagram (8.4.1), εr,s contracts the Pr

factor, while εs,r contracts the Ps factor. We might speculate that there is a morphism
Yr,s → Zr,s contracting Pr,s such that Zr,s = Zs,r. Then Xr,s → Zr,s would contract the
whole divisor Er,s. Now we construct Zr,s.
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We claim that the linear system corresponding to OYr,s
(1) is base point free. Since we

have a surjection

(8.4.3) π∗(OPs ⊕ OPs(1)⊕r+1) � OYr,s
(1),

at every point of Yr,s at least one of the summands maps into OYr,s
(1). At every point,

each of the summands has a nonvanishing global section, and hence so does OYr,s
(1),

which proves the claim.
Let cr,s : Yr,s → PN be the morphism defined by H0(Yr,s,OYr,s

(1)). We claim that
this contracts Pr,s to a point and embeds the complement of Pr,s. For the former, note first
that every section OYr,s

→ OYr,s
(1) factors through the surjection (8.4.3), which can be

deduced from
π∗OYr,s

(1) ' OPs ⊕ OPs(1)⊕r+1.

By projecting onto the first summand, we obtain from each section an endomorphism of
OYr,s

(we don’t claim this is unique). Note further that the section vanishes on Pr,s if and
only if this endomorphism is zero. Conversely, if it is nonzero, then the section does not
vanish on any point of Pr,s. This implies that cr,s(Pr,s) is a point. The second part of the
claim is left to the reader.

Let Zr,s be the image of cr,s. Since Zr,s is also the image of Xr,s by the morphism
given by H0(X,OXr,s

(1)), it follows that Zr,s = Zs,r, so we have a commutative diagram.

Yr,s
fr,s

//________

!!
DD

DD
DD

DD
Ys,r

}}zz
zz

zz
zz

Zr,s

It remains to be shown that KYr,s
is negative on contracted curves and KYs,r

is positive
on contracted curves. By the technique we used in (8.2), we compute

OYr,s
(KYr,s

) ' π∗
OPs(r − s) ⊗ OYr,s

(−r − 2).

Let ` be a line in Pr,s. Then OYr,s
(−r − 2)|` is trivial since ` is contracted by cr,s and

OYr,s
(1) ' c∗r,sOPN (1). Moreover, π∗OPs(r− s)|` has degree r− s since Pr,s is a section

of π. It follows that KYr,s
· ` = r − s. Likewise KYs,r

· `′ = s − r where `′ is a line in
Ps,r. This finishes the proof since we assumed r < s. �

8.5. A small contraction whose exceptional locus is disconnected. (cf. [Deb01,
6.19], [Kaw89, p. 599]). On a smooth 4-fold X ′′, let C ′′ be a smooth curve and S′′ be a
smooth surface that meet transversely in a finite number of points x1, . . . , xr. First, blow-
up X ′′ along the curve C ′′ to get a new 4-fold X ′. Let C ′ be the exceptional divisor of this
blow-up and let S′ be the strict transform of S′′, which is isomorphic to S′′ blown-up at
the points x1, . . . , xr (because the intersection of C ′′ and S′′ is transverse). Let E′

i be the
exceptional curve in S′ lying above xi, and let P ′

i be the complete inverse image of xi in
X ′. Now blow up X ′ along the S′ to get a 4-fold X . Let S be the exceptional divisor, and
let C be the strict transform of C ′. Let Pi be the strict transform of P ′

i and let Ei = Pi∩S.
Let Γi be a fiber over one of the points E ′

i and let L be a line in one of the planes in C
that gets contracted to a point in C ′′. Let α : X → X ′′ denote the composition of the two
blow-ups (cf. [Deb01, Figure on p. 161]).

The key to the analysis is to consider the relative effective cone of curves NE(α)
generated by the effective curves in X which are contracted to a point in X ′′. Since this
cone is dual to the cone of the relative Neron-Severi group, it has dimension 2. Note also
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that each Γi has the same class in NE(α) because they are fibers in the family S → S ′;
call that class [Γ]. Using basic facts in intersection theory, one can show that [L] and [Γ]
form a basis for the linear subspace generated by NE(α) (using the fact that [C] and [S]
form a dual basis). One further shows that Ei ≡ L − Γ. Since NE(α) is generated by
[L], [Γ], and [Ei], we find that as a cone NE(α) is generated by [Γ] and [Ei] = [L] − [Γ].
Because NE(α) is an extremal subcone of NE(X), we conclude that the two extremal
rays of NE(α) must be extremal rays of NE(X). The contraction associated to [Γ] is
simply the blow-up X → X ′, but the contraction c : X → Y associated to [L] − [Γ] is
new. It must contract each of the Ei’s and because Pi

∼= P2, each Pi must be contracted
as well. It is not too hard to check that no other curves are numerically equivalent to the
Ei, which by the Contraction Theorem (4.13) means that the exceptional locus of c is the
disjoint union of P1, . . . , Pr. Since this is a small contraction, it follows that one must find
a flip for c : X → Y in order to continue with the Minimal Model Program.

8.6. A flip in dimension 3. (cf. [Deb01, 6.20]). In this example we construct a flip
in dimension three. We work over an algebraically closed field of characteristic zero. We
will begin with a map that contracts a curve with positive intersection with the canonical
bundle. This is the end result of a flip. It will then be easier to construct the map which is
a small contraction of a K-negative extremal curve.

We begin with the projective bundle X+ = P(OP1 ⊕ OP1(1) ⊕ OP1(2)) over P1. The
line bundle OX+(1) gives a map f : X+ → Y to P5 where the image Y is a cone over a
cubic scroll. (We remind the reader that a cubic scroll is the embedding of the Hirzebruch
surface F1

∼= P(OP1(1) ⊕ OP1(2)) in P4 by the line bundle OF1
(1). Both the exceptional

curve and the fibers map to lines under this map.)
Let H denote the class of a divisor in the linear system associated to OX+(1) and let

F denote the class of a fiber. Then the map f contracts the unique curve C in the class
H2 − 3HF to the cone point of Y . Figure 8.6.1 depicts this map. We would like f to be
the flip of another map g : X → Y .

Y

f
X+

C

FIGURE 8.6.1. The map f contracts the curve C.

We now describe the construction of g and X . On X+ there is a minimal subscroll
isomorphic to F1 containing C. The standard normal bundle sequence,

0 → NC/F1
→ NC/X → (NF1/X)|C → 0

allows us to compute the normal bundle of C in X:

NC/X
∼= OP1(−1) ⊕ OP1(−2).

We blow up X+ along C to obtain X+
1 . The exceptional divisor S1 is isomorphic to the

Hirzebruch surface F1. Let E be the exceptional curve on S1. A similar calculation shows
that the normal bundle of E in X+

1 is isomorphic to OP1(−1) ⊕ OP1(−1). We blow up
X+

1 along E. Let X2 denote the resulting threefold.
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The exceptional divisor S2 of the new blow-up is isomorphic to P1 × P1. The new
exceptional divisor S2 meets the old exceptional divisor S1 along the proper transform
of E, which by abuse of notation we will continue to call E. Figure 8.6.2 depicts the
exceptional divisors of these blow-ups.

X2 X+

1

S2

S1

E C

S1

E

X+

FIGURE 8.6.2. The exceptional divisors of the blow-up.

We now observe that E is a KX2
-negative extremal curve. (If not, it could be expressed

as a linear combination of the proper transform of a fiber of S1 and a fiber of S2. Checking
the intersection product of E with S1 and S2 leads to a contradiction.) By the Contraction
Theorem (4.13) we can contract E to obtain the threefold X1. When we contract E, the
image of the old exceptional divisor is isomorphic to the projective plane P2. The image
of the second exceptional divisor is P1. Note that E is a fiber of P1 × P1 for one of the
projections. Once we contract it, all the fibers linearly equivalent to it on the surface get
contracted. The image of the two exceptional divisors now looks like P2 with a rational
curve C ′ meeting it transversely.

Next observe that the lines on the P2 are KX1
-negative extremal curves. Again by the

Contraction Theorem (4.13) we can contract them. We get a threefold X with a rational
double point. The image of C ′, which we will continue to call C ′, is a KX -negative
extremal curve. We can contract this curve to obtain the cone over a cubic scroll. Let the
resulting map be denoted by g : X → Y . Our original map f : X+ → Y is the flip of g.
Note that the KX+ positive curve C replaces the KX -negative curve C ′. We thus obtain
our example of a flip in dimension three. Figure 8.6.3 depicts these contractions.

X2 X1 X

S2

S1

C ′

C ′
E

FIGURE 8.6.3. The contractions to get Y from X2
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