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Abstract. In this paper, we prove that the normal bundle of a general Brill-Noether space curve
of degree d and genus g ≥ 2 is stable if and only if (d, g) /∈ {(5,2), (6,4)}. When g ≤ 1 and the
characteristic of the ground field is zero, it is classical that the normal bundle is strictly semistable.
We show that this still holds in positive characteristic except when the characteristic is 2, the genus
is 0 and the degree is even.

1. Introduction

Let C be a smooth connected curve defined over an algebraically closed field k (of arbitrary
characteristic). The normal bundle NC/Pr of a smooth curve controls the deformations of the curve
in Pr and plays a crucial role in many problems of geometry, arithmetic and commutative algebra.
In this paper, we show that the normal bundle of a general Brill-Noether space curve of degree d
and genus g is stable if and only if g ≥ 2 and (d, g) /∈ {(5,2), (6,4)}.

Let E be a vector bundle on a smooth curve C. Let the slope µ(E) be

µ(E) ∶=
deg(E)

rk(E)
.

Then E is called (semi)stable if every proper subbundle F (which is always assumed to be saturated
in this paper) of smaller rank satisfies

µ(F ) <
(−)
µ(E).

The bundle is called unstable if it is not semistable and strictly semistable if it is semistable but not
stable.

By the Brill-Noether Theorem (see [KL72, GrH80, Gi82, ACGH85, O11, JP14, CLT18]), a general
curve of genus g admits a nondegenerate, degree d map to Pr if and only if the Brill-Noether number
ρ(g, r, d) satisfies

ρ(g, r, d) ∶= g − (r + 1)(g − d + r) ≥ 0.

When r ≥ 3, there is a unique component of the Hilbert scheme that dominates the moduli space
Mg and whose general member parameterizes a smooth, nondegenerate curve of degree d and genus
g in Pr. We call a member of this component a Brill–Noether curve. When r = 3, we call such a
curve a Brill-Noether space curve. With this terminology, our main theorem is the following.

Theorem 1. Let C ⊆ P3 be a general Brill–Noether space curve of degree d and genus g over an
algebraically closed field k.

(1) NC is stable if and only if g ≥ 2 and (d, g) /∈ {(5,2), (6,4)}.
(2) NC is strictly semistable if and only if g < 2 and one of the following holds: char(k) ≠ 2,

g = 1, or d is odd.
(3) NC is unstable if and only if (d, g) ∈ {(5,2), (6,4)}, or all of the following hold: char(k) = 2,

g = 0, and d is even.
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The normal bundles of curves in projective space have been studied by many authors (for exam-
ple, see [ALY19, BE84, CR18, EiL92, E83, ElH84, ElL81, N83, R07, S80, S82, S83]). Our results
complete and unify these results for Brill-Noether space curves.

If (d, g) ∈ {(5,2), (6,4)}, then C lies on a unique quadric Q and NC/Q ⊂ NC gives a destabilizing
subbundle. We will describe the geometry in these two cases more explicitly in §3.

Every bundle on P1 splits as a direct sum of line bundles. Hence, the normal bundle of a smooth
rational curve can be written as NC =⊕

r−1
i=1 O(ai) for some integers a1, . . . , ar−1 with

r−1

∑
i=1

ai = (r + 1)d − 2.

If C is a general rational curve of degree at least d ≥ r in Pr, and the characteristic of the ground
field is not 2, then NC/Pr splits as equally as possible, i.e. ∣ai−aj ∣ ≤ 1 (see [S80, R07, CR18, ALY19]).
Hence, NC/Pr is strictly semistable when r − 1 divides 2d− 2 and is unstable otherwise. When r = 3
and char(k) ≠ 2, since the quantity 2d − 2 is always even, the normal bundle of a general rational
curve of degree d ≥ 3 is strictly semistable. If the characteristic is 2, we show in Lemma 3.2 that
all ai ≡ d mod 2; this obstructs semistability for rational curves with d even.

Similarly, normal bundles of genus one curves have been studied extensively (see [EiL92, ElH84,
ElL81]). By [ElH84], the normal bundle of a general nondegenerate genus one space curve is
semistable. On the other hand, on a genus one curve, there are no stable rank 2 bundles of
degree 4d. Hence, the normal bundle of a general genus one space curve of degree d ≥ 4 is strictly
semistable. Our techniques will provide short arguments reproving the g = 0 and 1 cases.

In higher genus, the previously known results were more sporadic. The stability of the normal
bundle was proved for (d, g) = (6,2) by Sacchiero [S83], for (d, g) = (9,9) by Newstead [N83], for
(d, g) = (6,3) by Ellia [E83], and for (d, g) = (7,5) by Ballico and Ellia [BE84]. Many of these
cases will be important for our inductive arguments. For completeness, we will reprove these cases
using our techniques or briefly recall the arguments. More generally, in [ElH84], Ellingsrud and
Hirschowitz announced a proof of stability of normal bundles in an asymptotic range of degrees
and genera; however, their results do not cover many of the most challenging cases of small degree.

We prove Theorem 1 by specialization. We use three basic specializations: (1) we specialize to
a curve of degree (d− 1, g) union a 1-secant line; (2) we specialize to a curve of degree (d− 1, g − 1)
union a 2-secant line; and finally (3) we specialize to a curve of degree (d−2, g−3) union a 4-secant
conic. These degenerations reduce Theorem 1 to a finite set of base cases. The most challenging
part of the paper is to verify these base cases.

We expect our techniques and results to generalize to Pr for r ≥ 3 and hopefully settle the
following conjecture.

Conjecture 1.1. The normal bundle of a general Brill-Noether curve of genus at least 2 in Pr is
stable except for finitely many triples (d, g, r).

Conjecture 1.1 is closely related to several conjectures in the literature. For example, Aprodu,
Farkas and Ortega have conjectured that the normal bundle of a general canonical curve of g ≥ 7
is stable [AFO16, Conjecture 0.4] (see also [Br17]).

Organization of the paper. In §2, we will recall basic facts about normal bundles on nodal curves
and elementary modifications. In §3, we will elaborate on the two cases (d, g) ∈ {(5,2), (6,4)} as
well as the obstruction to stability for rational curves in characteristic 2. In §4, we will introduce
several basic degenerations to reduce the theorem to a small set of initial cases. For the rest of the
paper, we will analyze these initial cases.

Acknowledgments. We would like to thank Atanas Atanasov, Lawrence Ein, Gavril Farkas, Joe
Harris, Eric Riedl, Ravi Vakil, and David Yang for invaluable conversations on normal bundles of
curves. We would also like to thank the anonymous referee for many useful suggestions.
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2. Preliminaries

In this section, we collect basic facts on normal bundles of curves, stability of vector bundles,
elementary modifications, and on certain reducible Brill–Noether curves. For more details, we refer
the reader to [ALY19, L16a, L17]. When necessary, we provide a characteristic-independent proof
here.

2.1. The normal bundle of a space curve. Let C ⊂ Pr be a smooth Brill–Noether curve of
degree d and genus g. The normal bundle NC is a rank r − 1 vector bundle that is presented as a
quotient

0→ TC → TPr ∣C → NC → 0,

of the restricted tangent bundle of Pr by the tangent bundle of C. The restricted tangent bundle
is itself naturally a quotient in the Euler exact sequence

(1) 0→ OC → OC(1)
⊕(r+1)

→ TPr ∣C → 0.

From this we see that deg(NC) = (r + 1)d + 2g − 2. Specializing to r = 3, we have that

µ(NC) = 2d + g − 1,

and therefore NC is stable if and only if all line subbundles L ⊆ NC have slope at most 2d + g − 2.
If S is a surface in P3 containing C that is smooth at the generic point of C, then we have an

associated normal bundle exact sequence

(2) 0→ NC/S → NC → NS ∣C → 0.

By adjunction, the bundle NC/S is isomorphic to OS(C)∣C . A particularly simple case is when C

is the complete intersection of two (smooth) surfaces S1 and S2 of degrees d1 and d2 in P3. In this
case the natural map

NC/S1
⊕NC/S2

→ NC

is an isomorphism, and, combining this with the adjunction isomorphism, we have NC ≃ OC(d1)⊕

OC(d2). Such a bundle is never stable, and is semistable if and only if d1 = d2. Relevant examples for
us are lines (the normal bundle is isomorphic to OP1(1)⊕2), conics (the normal bundle is isomorphic
to OP1(2)⊕OP1(4)) and elliptic quartics E (the normal bundle is isomorphic to OE(2)⊕OE(2)).

2.2. Stability of vector bundles on nodal curves. In the course of our inductive argument,
we will specialize a smooth Brill–Noether curve to a reducible nodal curve. In this section, we
generalize the definition of stability of vector bundles to allow C to be a connected nodal curve.
We will write

ν∶ C̃ → C

for the normalization of C. For any node p of C, write p̃1 and p̃2 for the two points of C̃ over p.
Given a vector bundle E on C, the fibers of the pullback ν∗E to C̃ over p̃1 and p̃2 are naturally

identified. Given a subbundle F ⊆ ν∗E, it therefore makes sense to compare F ∣p̃1 and F ∣p̃2 inside
ν∗E∣p̃1 ≃ ν

∗E∣p̃2 .

Definition 2.1. Let E be a vector bundle on a connected nodal curve C. For a subbundle F ⊂ ν∗E,

define the adjusted slope µadjC by

µadj
C (F ) ∶= µ(F ) −

1

rkF
∑

p∈Csing

codimF (F ∣p̃1 ∩ F ∣p̃2) ,

where codimF (F ∣p̃1 ∩ F ∣p̃2) refers to the codimension of the intersection in either F ∣p̃1 or F ∣p̃2 (which
are equal since dimF ∣p̃1 = dimF ∣p̃2). When the curve C is unambiguous, we will omit it from our
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notation and write simply µadj(F ). Note that if F is pulled back from C, then µadj
C (F ) = µ(F ).

We say that E is (semi)stable if for all subbundles F ⊂ ν∗E,

µadj
(F ) <

(−)
µ(ν∗E) = µ(E).

With this definition, stability is an open condition in families of connected nodal curves. To
show this, we will need the following lemma.

Lemma 2.2. Let β∶C ′ → C be a map obtained by contracting a 1- or 2- secant P1:

or

If E is a (semi)stable vector bundle on C, then β∗E is also (semi)stable.

Proof. Write ν∶ C̃ → C and ν′∶ C̃ ′ → C ′ for the normalization maps.
First consider the 1-secant case. Write x for the point of attachment (so that C ′ = C ∪x P1). Let

E be a (semi)stable vector bundle on C, and let F ⊂ ν′∗β∗E be any subbundle. Since ν′∗β∗E∣P1 is
trivial, we have

(3) µ(F ∣P1) ≤ 0.

Since the ordinary slope is additive on components, and x is the only point in C ′
sing that is not also

in Csing, the definition of adjusted slope and (3) imply

µadj
C′ (F ) = µadj

C (F ∣C̃) + µ(F ∣P1) −
codimF (F ∣x̃1 ∩ F ∣x̃2)

rkF
≤ µadj

C (F ∣C̃) <
(−)
µ(E),

hence β∗E is (semi)stable.
Similarly in the 2-secant case, write C ′ = C ′′ ∪{x,y} P1. Denote by x̃1 and ỹ1 (respectively x̃2

and ỹ2) the corresponding points on P1 (respectively C ′′). Let F ⊂ ν′∗β∗E. Since ν′∗β∗E∣P1 is
trivial, we can identify the fiber of E at x̃1 with the fiber of E at ỹ1, and we have

µ(F ∣P1) ≤ −
1

rkF
⋅ codimF (F ∣x̃1 ∩ F ∣ỹ1) .

As in the 1-secant case, noting that the only difference between C ′
sing and C ′′

sing are the points {x, y},

for any subbundle F ⊂ ν′∗β∗E, we have

µadj
C′ (F ) = µadj

C′′(F ∣C̃) + µ(F ∣P1) −
1

rkF
⋅ ( codimF (F ∣x̃1 ∩ F ∣x̃2) + codimF (F ∣ỹ1 ∩ F ∣ỹ2))

≤ µadj
C′′(F ∣C̃) −

1

rkF
⋅ ( codimF (F ∣x̃1 ∩ F ∣ỹ1) + codimF (F ∣x̃1 ∩ F ∣x̃2) + codimF (F ∣ỹ1 ∩ F ∣ỹ2))

Twice applying the “triangle inequality” codim(X ∩ Y ) + codim(Y ∩Z) ≥ codim(X ∩Z),

≤ µadj
C′′(F ∣C̃) −

1

rkF
⋅ codimF (F ∣x̃2 ∩ F ∣ỹ2)

= µadj
C (F ∣C̃)

<
(−)
µ(E). �

Proposition 2.3. Let C →∆ be a family of connected nodal curves over the spectrum of a discrete
valuation ring, and E be a vector bundle on C .

(1) If the special fiber E0 = E ∣0 is (semi)stable, then the general fiber E ∗ = E ∣∆∗ is also
(semi)stable.

(2) If C →∆ is smooth, and E0 is semistable, then any subbundle F ∗ ⊂ E ∗ with µ(F ∗) = µ(E ∗)

extends to a subbundle F ⊂ E .
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Proof. Write ν∶ C̃ → C for the normalization.
For part (1), after possibly making a base change, let F ∗ ⊂ ν∗E ∗ be a subbundle with µ(F ∗)

maximal. Since µ is constant in flat families and codim(X ∩ Y ) is lower semicontinuous, µadj is
upper semicontinuous in flat families. Therefore, if F ∗ extends to a subbundle F ⊂ ν∗E , then

(4) µadj
(F ∗

) ≤ µadj
(F0) <

(−)
µ(E0) = µ(E

∗
).

Otherwise, we make a blowup β̃∶ C̃ ′ → C̃ in order to extend F ∗ ⊂ ν∗E ∗ to a subbundle F ⊂ β̃∗ν∗E .
By semistable reduction, we may ensure that the central fiber remains reduced. By gluing along
sections identified under ν, the blowup β̃ induces a map β∶C ′ → C , which is an isomorphism away
from the central fiber, and on the central fiber consists of replacing nodes by 1- and 2-secant P1’s.
Applying Lemma 2.2, β∗E0 is (semi)stable. Therefore (4) holds for β∗E .

For part (2), we imitate the above argument to extend F ∗ to a subbundle of β∗E . Since C →∆
is smooth, β can be obtained by iteratively contracting 1-secant P1s. Since µ(F ∗) = µ(E ∗) and
β∗E0 is semistable, we must in particular have equality in equation (3) from the proof of Lemma
2.2 for every such contraction; thus, F is trivial along every exceptional divisor of β. In particular,
F ∗ already extends to a subbundle F ⊂ E without blowing up. �

2.3. Elementary modifications of vector bundles. Let E be a vector bundle on a scheme X
and let F ⊂ E be a subbundle For any effective Cartier divisor D ⊂ X, we define the elementary
modification of E at D towards F to be the kernel of the natural evaluation map

E[D → F ] ∶= ker (E → (E/F )∣D) .

By [ALY19, Proposition 2.6], E[D → F ] is again a vector bundle, which is a subsheaf of E.

Remark 1. From this definition we see that an inclusion S ↪ E factors through E[D → F ] if and
only if the restriction to D factors through F ∣D:

S∣D ↪ F ∣D ↪ E∣D.

Remark 2. Elementary modifications have a nice geometric interpretation in terms of projective
bundles. Suppose that E is a vector bundle of rank 2 on a smooth curve C and F is a line subbundle
of E. In this case PF is a section of the P1-bundle PE over C. The surface PE[p→ F ] is obtained
from PE by blowing up the point PFp and blowing down the proper transform of the fiber PEp.
For more details see [B96, §III.24].

In the special case that F is a direct summand of E, write E ≃ F ⊕ E′. Then we see that
E/F ≃ E′, and so we have

(5) E[D → F ] = ker (F ⊕E′
→ E′

∣D) ≃ F ⊕E′
(−D).

More generally, we can describe how elementary modifications play with respect to short exact
sequences. For simplicity we focus here on the rank 2 case that is of interest in this paper. Suppose
that C is a curve, S and Q are line bundles on C and E is a rank 2 bundle on C that sits in the
exact sequence

0→ S → E → Q→ 0.

Let p be a smooth point on C. Consider a line subbundle F of E and write k′ for the order to
which the fibers of S and F agree over p (i.e., the length of the support of PF ∩ PS in PE in a
neighborhood of p). Let k be the minimum of k′ and n. Then we claim that the modification
E[np→ F ] sits in the exact sequence

(6) 0→ S((k − n)p)→ E[np→ F ]→ Q(−kp)→ 0.

This follows from combining the observation that S((k − n)p) ↪ E[np → F ] is saturated with a
Chern class computation to determine the twist at p in the quotient. For a more detailed exposition
on elementary modifications, we refer the reader to [ALY19, §2–3].
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Let q ∈ Pr be a point. In this paper we will be primarily concerned with modifications of the
normal bundle NC/Pr towards pointing bundles NC→q, which we now recall. For a more detailed
exposition see [ALY19, §5–6]. Write

UC,q = {p ∈ C ∶ TpC ∩ q = ∅}.

Let πq ∶C → Pr−1 denote the projection map from q. Note that πq ∣UC,q
is unramified by construction.

If UC,q is dense in C and contains the singular locus of C, then we may define NC→q to be the
unique extension to all of C of the bundle

NC→q ∣UC,q
∶= ker (NC ∣UC,q

→ Nπq ∣UC,q
) ,

where Nπq denotes the normal sheaf of πq. Our notation NC→q is intended to suggest the geometry
of sections: they point towards q in Pr. Projection from q induces an exact sequence

(7) 0→ NC→q → NC → π∗qNπq(C ∩ q)→ 0.

In this paper we will be primarily interested in the two simplest cases

(i) The point q ∈ Pr is general so that UC,q = C, and NC→q ≃ OC(1) by [ALY19, Proposition 6.2],
(ii) The point q ∈ C is general so that UC,q = C ∖ {q}, and NC→q ≃ OC(1)(2q) by [ALY19,

Proposition 6.3].

By convention, when modifying towards a pointing bundle, we will write

NC[p→ q] ∶= NC[p→ NC→q].

The following foundational result of Hartshorne-Hirschowitz underpins our degenerative approach.

Lemma 2.4 ([HH85, Corollary 3.2]). Let X∪Y be a connected nodal curve in Pr. Write {p1, . . . , pn} =
X ∩ Y and let qi ∈ TpiY be a choice of point. Then

NX∪Y ∣X ≃ NX(p1 +⋯ + pn)[p1 → q1]⋯[pn → qn].

Given a vector bundle E on a reducible nodal curve X∪Y , restriction to the component X yields
an exact sequence

(8) 0→ E∣Y (−X ∩ Y )→ E → E∣X → 0.

If the vector bundle E is the normal bundle of the union NX∪Y , then we can make this explicit
using Lemma 2.4. Write qi,Y for a choice of point in TpiY and qi,X for a choice of point in TpiX.
Then (8) yields the sequence

(9) 0→ NY [p1 → q1,X]⋯[pn → qn,X]→ NX∪Y → NX(p1 +⋯ + pn)[p1 → q1,Y ]⋯[pn → qn,Y ]→ 0.

We will now illustrate how information about the normal bundle (such as presentations in exact
sequences) can be combined with the data of modifications towards pointing bundles with the
following three examples. In future similar situations, we will point the reader to these examples
and omit the details.

Example 2.5. For a curve C ⊂ P3 and general points p, q ∈ C, consider the modified normal bundle
NC[p → q]. Combining the sequence (7) coming from projection from q with (6), we see that this
bundle sits in the exact sequence

0→ [NC→q ≃ OC(1)(2q)]→ NC[p→ q]→ π∗qNπq(q − p)→ 0.

Example 2.6. Consider a line L ⊂ P3, points p1, p2 ∈ L and p′1, p
′
2 ∈ P3, such that the four points

p1, p
′
1, p2, p

′
2 span P3. Write Hi for the span of L and the point p′i. The line L is the complete

intersection of H1 and H2, and so

NL ≃ NL/H1
⊕NL/H2

≃ OP1(1)⊕OP1(1).
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Furthermore, the pointing bundle NL→p′i
is isomorphic to NL/Hi

from which we conclude, using (5),
that

NL(p1)[p1 → p′1] ≃ NL/H1
(p1)⊕NL/H2

≃ OP1(2)⊕OP1(1),

NL(p1 + p2)[p1 → p′1][p2 → p′2] ≃ NL/H1
(p1)⊕NL/H2

(p2) ≃ OP1(2)⊕OP1(2).

Example 2.7. Suppose that D is an elliptic normal curve (i.e., the complete intersection of two
quadrics in P3) and let p and q be general points on D. We will consider the modified normal
bundle ND[p → q]. Since it is one condition for a quadric containing p and q to contain the line
p, q, there must be a quadric Q in the pencil containing D that also contains the line p, q. The line
p, q is contained in TpQ and therefore the normal directions ND/Q∣p and ND→q ∣p coincide in ND ∣p.
Combining the normal bundle exact sequence (2) for D ⊂ Q with (6) yields the exact sequence of
vector bundles

0→ ND/Q → ND[p→ q]→ NQ∣D(−p)→ 0.

In fact, this exact sequence is split; choosing another quadric Q′ from the pencil defining D gives the
complement ND/Q′(−p) to ND/Q. Let L = p, q be the 2-secant line to D joining p and q. Combining
the above discussion with Lemma 2.4, we see that

ND∪L∣D ≃ ND(p + q)[p→ q][q → p] ≃ ND/Q(p + q)⊕ND/Q′ .

More generally, to deal with other curves on quadric surfaces and multiple modifications [np→ q]
in the course of our degenerations, we will make use of the following lemma, which computes that
k = 1 in applying (6) to the normal bundle exact sequence.

Lemma 2.8. Let D be a (smooth) curve of type (a, b) on a smooth quadric surface Q. If q is a
general point of D, then inside PND, the two sections coming from the line subbundles ND→q and
ND/Q meet transversely at a + b − 2 points.

Proof. The fibers of ND→q and ND/Q agree at p if and only if q is contained in TpQ. This occurs
exactly at the points p where the two lines through q in Q meet D. Since D is of type (a, b) on Q,
for q general this happens at a + b − 2 points of D.

On the other hand, with multiplicity, the intersection number of these two sections is

c1(ND) − c1(ND→q) − c1(ND/Q) = (2ab + 2a + 2b) − (a + b + 2) − (2ab) = a + b − 2.

Therefore, when q is general, these sections intersect transversely at exactly a + b − 2 points. �

It is a classical fact that the normal bundle of a rational normal (i.e. (d, g) = (3,0)) or elliptic
normal (i.e. (d, g) = (4,1)) curve is semistable, which we record in the following lemma:

Lemma 2.9. Let C be a general Brill–Noether curve of degree d and genus g, where (d, g) = (3,0)
or (4,1). Then NC is semistable.

Proof. For (d, g) = (3,0), let p be a point on C, and write C ⊂ P2 for the image of C under projection
from p (which is a conic). Then the semistability of NC follows from the exact sequence

0→ [NC→p ≃ OP1(5)]→ NC → [NC(p) ≃ OP1(5)]→ 0.

For (d, g) = (4,1), we note that C is the complete intersection of two quadrics; hence NC ≃

OC(2)⊕OC(2) is semistable. �

2.4. Modifications in families. While arguing by degeneration, we will need the following tech-
nical result, explained in Remark 3.4 of [ALY19]. Suppose that we have a modification of a rank 2
vector bundle E towards two sub line bundles F1 and F2:

E[p1 → F1][p2 → F2].
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Let p1 and p2 limit to a common point p in a degeneration parameterized by a base B. More
precisely, let p1 and p2 be sections of C × B → B that intersect at p in the central fiber. Write
π∶C ×B → C for the projection, and let F1 and F2 be subbundles of π∗E.

● If F1 = F2 = F , then the limit is E[2p→ F ].
● If F1∣p and F2∣p are linearly independent, then the limit is E(−p).

This can be seen by constructing the modification (π∗E)[p1 → F1][p2 → F2] as a vector bundle
on C ×B, and using that such modifications respect pullback [ALY19, Proposition 2.8]. Sections 2
and 3 of [ALY19] discuss this setup in much greater generality for modifications that are treelike, a
condition that generalizes the assumption that F1 = F2 = F or F1∣p and F2∣p are linearly independent.

We illustrate this here with an example. Let C ⊂ P3 be a curve, and p, q, u, v ∈ C be general
points. We consider the modified normal bundle

NC[p→ q][q → p][u→ v][v → u].

As we limit v to q, the flat limit of these bundles is

NC[p→ q][u→ q](−q).

If we further limit u to p, then the flat limit is

NC[2p→ q](−q).

(Note that this is not symmetric in p and q; it depends on the order of the limits.)

2.5. Deformation theory of reducible curves. In this section, we collect some basic facts about
deformations of reducible curves that we will need. For additional details, the reader may consult
a textbook on deformation theory such as [H10, Se06].

Let C ⊂ Pr be any local complete intersection curve. Write NC = NC/Pr = NC↪Pr for the
normal bundle of C, or equivalently for the normal sheaf of the inclusion C ↪ Pr. Then first-order
deformations of C are parameterized by H0(NC), and obstructions to lifting deformations lie in
H1(NC).

Now suppose that C is nodal, and write p for a node of C. We consider deformations of C that
remain equisingular at p. Equivalently, write π∶ C̃ → C for the partial normalization of C at p, and
p1 and p2 for the points lying over p in C̃. Then equisingular deformations of C are deformations of
the pointed map (C̃, p1, p2) → Pr such that the deformations of p1 and p2 map to the same point.
Such equisingular deformations are controlled by a certain sheaf N on C, that can be constructed
in two ways:

(1) The sheaf N can be constructed as the kernel of the natural map from NC to the deformation
space T 1

p∞ of the formal neighborhood p∞ of p in C, i.e. in symbols:

N = ker(NC → T 1
p∞).

(2) Alternatively, we can push forward the normal sheaf NC̃→Pr of the map C̃ → Pr along the
map π. Evaluation at p1 and p2 then defines a map

π∗NC̃→Pr →
TpPr

Tp1C̃
⊕
TpPr

Tp2C̃
→ (

TpPr

TpC
)

2

;

the sheaf N is then the preimage of the diagonal in π∗NC̃→Pr .

Then first-order deformations of C that fail to smooth the node p correspond to H0(N), and
obstructions to lifting such deformations lie in H1(N).

Remark 3. Away from p, there is a natural isomorphism between N and NC . Working locally, a
similar construction can be done for any subset of the nodes of C. Using the set of all nodes (so the
deformations are equisingular at all nodes rather than simply equisingular at p), this construction
appears in Section 4.7.1 of [Se06], in which it is referred to as the equisingular normal sheaf.
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Now suppose that C = X ∪ Y is a reducible nodal curve, with two smooth components X and
Y , and that p ∈ X ∩ Y is a node. Then the restrictions of NC = NX∪Y to X and Y are given in
Lemma 2.4. Moreover, since NX∪Y is a vector bundle on X ∪Y , restriction to a component defines
an exact sequence (c.f. (9)):

0→ NX∪Y ∣Y (−X ∩ Y )→ NX∪Y → NX∪Y ∣X → 0.

From either description given above for the sheaf N , we deduce analogous statements for N .
Namely, N ∣X is the modification of NX where all modifications appearing in Lemma 2.4 are per-
formed except the one at p. The sequence for restriction to X takes a slightly different form (since
N is not a vector bundle in a neighborhood of p), where the subbundle appearing in the sequence
involves the restriction of the ordinary normal bundle to Y (rather than the restriction of N to Y ):

(10) 0→ NX∪Y ∣Y (−X ∩ Y )→ N → N ∣X → 0.

2.6. Reducible Brill–Noether curves. In this section we show that the basic degenerations we
will employ in the proof of Theorem 1 are in the Brill–Noether component of the Hilbert scheme.

We say that two curves X and Y meet quasi-transversely at a set of points Γ ⊂ Pr if for each
p ∈ Γ, the tangent lines TpX and TpY meet only in the isolated point p. (If r ≥ 3, two curves never
meet transversely!) The following Lemma is a special case of results of [L16a], but we include a
characteristic-independent proof of this special case.

Lemma 2.10. Let C be a general Brill–Noether curve of degree d and genus g and let R be one of
the following

(i) a 1-secant line meeting C quasi-transversely at p,
(ii) a 2-secant line meeting C quasi-transversely at p and q,

(iii) a 4-secant conic meeting C quasi-transversely at four coplanar points p1, . . . , p4.

In Case (iii) further assume that ρ(g, r, d) ≥ 1. Then C ∪R is a Brill–Noether curve of degree and
genus (i) (d + 1, g), (ii) (d + 1, g + 1), (iii) (d + 2, g + 3).

Proof. By deformation theory, it suffices to show that H1(TP3 ∣C∪R) = 0, so that the map C∪R → P3

may be lifted as C∪R is deformed to a general curve. Moreover, if C is general, then H1(TP3 ∣C) = 0
by the Gieseker-Petri Theorem. Using (8), we have an exact sequence

(11) 0→ TP3 ∣R(−R ∩C)→ TP3 ∣C∪R → TP3 ∣C → 0.

In cases (i) and (ii), TP3 ∣R ≃ O(2)⊕O(1)⊕2. Hence H1(TP3 ∣R(−p)) = 0, respectively H1(TP3 ∣R(−p−
q)) = 0, and therefore, by (11) and the Gieseker-Petri Theorem for C, we have that H1(TP3 ∣C∪R) = 0.

For part (iii), by part (ii) we may specialize C to the union of a Brill–Noether curve C ′ of degree
d − 1 and genus g − 1 and a 2-secant line L, such that R meets C ′ at three points and meets L at
one point p. Let Γ ∶= (L ∪R) ∩C ′, denoted by solid dots below.

L R

p

C ′

First, we show that (a) C ′∪L∪R is a smooth point of the Hilbert scheme and (b) we can smooth
L ∪R to a twisted cubic R′ that continues to pass through the 5-points Γ. Let N be the subsheaf
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of NL∪R(−Γ) whose sections fail to smooth the node at p (as discussed in Section 2.6). Applying
(10) in the case of restriction to L gives the exact sequence

(12) 0→ [NL∪R∣R(−p − Γ) ≃ O ⊕O(−1)]→ N → [N ∣L ≃ O(−1)⊕2
]→ 0,

where the isomorphisms within come from the explicit descriptions of R and L as complete in-
tersections (as in Example 2.6). Hence, by the long exact sequence associated to (12), we have
H1(N) = 0. By deformation theory, statement (b) follows directly from H1(N) = 0; this vanishing
also implies H1(NC′∪L∪R) = 0 (and hence, by deformation theory, statement (a)).

To complete the proof, TP3 ∣R′(−R
′ ∩ C ′) ≃ O(−1)⊕3 has no higher cohomology and so (11) and

the Gieseker-Petri Theorem for C ′ show that H1(TP3 ∣C′∪R′) = 0. Therefore C ′ ∪R′ is in the Brill–
Noether component. Since C ′ ∪ L ∪R is a smooth point of the Hilbert scheme and both C ′ ∪R′

and C ∪R are deformations of this, they are in the same component; in particular, C ∪R is in the
Brill–Noether component. �

3. The Unstable Cases

Arbitrary characteristic. In two cases — (d, g) ∈ {(5,2), (6,4)} — Theorem 1 asserts that, over
a field of any characteristic, NC is unstable. In both of these cases, C lies on a quadric Q, and from
the normal bundle exact sequence (c.f., (2)),

(13) 0→ [NC/Q ≃KC(2)]→ NC → [NQ∣C ≃ OC(2)]→ 0,

we have that NC has a subbundle NC/Q of slope 2d + 2g − 2. If (d, g) = (5,2) (respectively (6,4))
then µ(NC/Q) = 12 (respectively 18), which is strictly more than µ(NC) = 11 (respectively 15).

In fact, we can say more. Note that Ext1(OC(2),KC(2)) ≃ H
1(KC) is 1-dimensional; therefore

there are only two such extensions up to isomorphism (the split extension, and a unique nontrivial
extension).

When (d, g) = (6,4), such curves C are the complete intersection of a quadric and cubic surface,
and so (13) is split. When (d, g) = (5,2), the following lemma is equivalent to the assertion that
(13) is nonsplit:

Lemma 3.1. Let D be a Brill–Noether curve of degree 5 and genus 2 and let Q be the unique
quadric containing it. The inclusion KD ≃ ND/Q(−2) ⊆ ND(−2) induces an isomorphism on global
sections

H0
(KD) ≃H0

(ND(−2)).

Proof. As H0(KD)↪H0(ND(−2)), it suffices to show that h0(ND(−2)) = 2. We will prove this by
degenerating the curve D to the union of an elliptic normal curve E of degree 4 and genus 1 and a
general 2-secant line L meeting E quasi-transversely at p and q, which is a Brill–Noether curve by
Lemma 2.10(ii).

Since the tangent lines to E at p and q span P3, combining Lemma 2.4 with Example 2.6, we
see that NE∪L(−2)∣L ≃ OL ⊕OL has a 2-dimensional space of global sections. Furthermore, since
H0(NE∪L(−2)∣L(−p − q)) = 0, we have that

(14) H0
(NE∪L(−2))↪H0

(NE∪L(−2)∣E).

As in Example 2.7, choosing quadrics Q1 and Q2 whose intersection is E and such that Q1

contains L, we see that the normal bundle restricted to E

NE∪L(−2)∣E ≃ NE/Q1
(−2)(p + q)⊕NE/Q2

(−2) ≃ OE(p + q)⊕OE ,

has a 3-dimensional space of global sections. It remains to show that one of these sections is not
in the image of (14).

We claim that the unique (up to scaling) section of OE is not in the image of (14). Indeed,
since L is transverse to Q2, this section fails to smooth both nodes; if it extended across L, it must
extend to a section in H0(NL(−2)) ⊂ H0(NE∪L∣L(−2)). But NL(−2) ≃ OL(−1) ⊕OL(−1) has no
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global sections, so any extension across would have to vanish identically along L, and in particular
at p and q (which this section does not). �

Characteristic 2. Theorem 1 asserts that, in characteristic 2, there are infinitely many pairs
(d, g) = (2k,0) for which the normal bundle of a general Brill–Noether curve is unstable. This is
the first case of a more general phenomena occurring only in characteristic 2.

Let C ⊂ Pr be a Brill–Noether curve. In any characteristic, the Euler sequence (1) shows that
the bundle N∨

C(1) sits in an exact sequence

(15) 0→ N∨
C(1)→ O

⊕r+1
C →P1

(OC(1))→ 0,

where P1(OC(1)) is the first bundle of principal parts of the line bundle OC(1).

Now assume that char(k) = 2 and let π∶C → C(2) denote the (relative) Frobenius morphism.
Given a reduced point c ∈ C, the fiber of π containing c is the nonreduced point 2c. Therefore

P1
(OC(1)) ≃ π

∗π∗OC(1).

Thus N∨
C(1) ≃ π∗K is isomorphic to the pullback of a vector bundle K under Frobenius. Using

this, we have the following.

Lemma 3.2. Assume that char(k) = 2 and let C ≃ P1 be a rational curve of degree d in Pr over k.
Then the normal bundle splits as

NC ≃⊕
i

OP1(ai),

for integers ai ≡ d (mod 2).

Proof. If char(k) = 2, then N∨
C(1) ≃ π

∗K for some vector bundle K on P1. Write K ≃ ⊕OP1(ki).
Since π∗OP1(a) ≃ OP1(2a), we have NC ≃⊕OP1(d − 2ki) as desired. �

Corollary 3.3. Let C be a general rational curve in Pr of degree d ≥ r. Then NC is semistable
only if 2d ≡ 2 (mod r − 1); in characteristic 2, this can be strengthened to d ≡ 1 (mod r − 1).

Proof. In any characteristic, NC can only be semistable if µ(NC) = d + 2d−2
r−1 is an integer. In

characteristic 2, Lemma 3.2 implies that furthermore µ(NC) − d must be an even integer. �

Remark 4. When r = 3, we prove in Section 6 that Corollary 3.3 gives the only obstruction to
semistability for the normal bundle of a rational curve in characteristic 2. With a little more work,
one can show the same in any projective space.

4. Stability and degeneration I

In this section, by specializing to the union of a general Brill–Noether curve and a 4-secant conic,
we reduce Theorem 1 to the cases g ≤ 8. Our main tool will be the following first basic lemma
proving stability by degeneration.

Lemma 4.1. Suppose that C =X ∪Y is a reducible curve and E is a vector bundle on C such that
E∣X and E∣Y are semistable. Then E is semistable. Furthermore, if one of E∣X or E∣Y is stable,
then E is stable.

Proof. Write ν∶ X̃ ⊔ Ỹ → C for the normalization map. For any subbundle F ⊆ ν∗E we have

µadj
(F ) ≤ µadj

X (F ∣X̃) + µadj
Y (F ∣Ỹ ) <

(−)
µ (E∣X) + µ (E∣Y ) = µ (E) . �
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4-secant conic degenerations. Let C be a Brill–Noether curve of degree d ≥ 4 and genus g in P3.
Let H ⊂ P3 be a 2-plane meeting C transversely; let p1, . . . , p4 be four points in C ∩H. For R ⊂H
a conic through p1, . . . , p4, the union C ∪R is a Brill–Noether curve of degree d+ 2 and genus g + 3
by Lemma 2.10(iii).

p1

p4

p2

p3

C

R

Lemma 4.2. In the above setup, if C is a general Brill–Noether curve with (d, g) ≠ (3,0) or (4,1),
then

NC∪R∣R ≃ OP1(5)⊕OP1(5)

is semistable.

Proof. We will prove this lemma by degeneration of C. If C admits a degeneration to X ∪Y , where
degX ≥ 4, then we may consider degenerations X ∪ Y ∪ R of C ∪ R where the conic R meets X
alone; this reduces the case of C to the case of X.

By repeatedly applying Lemma 2.10 to pull off 1-secant lines, 2-secant lines, or 4-secant conics,
we thus reduce to the case where (d, g) satisfies

(16) ρ(g,3, d) ≥ 0, g ≥ 0, and (d, g) ≠ (3,0), (4,1),

but (d′, g′) fails to satisfy (16) for each of (d′, g′) = (d − 1, g), (d − 1, g − 1), and (d − 2, g − 3).
By inspection, this is only possible if (d, g) = (4,0), (5,2), or (6,4). (Indeed, if g ≥ 5, then

(d′, g′) = (d − 2, g − 3) satisfies (16); if g ≤ 4 and d ≥ 7, then (d′, g′) = (d − 1, g) satisfies (16); the
finitely many cases with g ≤ 4 and d ≤ 6 are easily verified.)

In these cases, C is of type (3, d−3) on a quadric. Specializing C to the union of a curve of type
(3,1) with d − 4 lines of type (0,1), it thus remains only to consider the case (d, g) = (4,0).

When C is a rational quartic curve, we specialize C to C ′∪L where C ′ is a rational normal curve
and L is a 1-secant line meeting C ′ at a point x. Since C has degree 4, we must specialize R to
meet L in one point y and C ′ in a set {z1, z2, z3} of three points:

L R

C ′

z3

yx

z1

z2

Since NC′ ≃ OP1(5) ⊕OP1(5), we may arrange for C ′ to have general tangent directions at the
points zi. Thus, NC′∪R∣R ≃ OP1(5) ⊕OP1(4). In particular, we have a distinguished subspace of
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NR∣y given by the positive subbundle OP1(5)∣y ⊂ NC′∪R∣y ≃ NR∣y — or equivalently, a distinguished
plane Λ ⊃ TyR. Since x ∈ C ′ is general, we have x ∉ Λ. Thus

NC′∪L∪R∣R ≃ NC′∪R∣R(y)[y → x] ≃ OP1(5)⊕OP1(5). �

Remark 5. For (d, g) = (4,1), the conclusion of Lemma 4.2 is false: For any R, the curve C lies on
a quadric Q containing R, and N(C∪R)/Q∣R is destabilizing.

Let p′i be a point on TpiR ∖ pi. Then by Lemma 4.2 combined with Lemma 4.1, stability for

NC[p1 → p′1][p2 → p′2][p3 → p′3][p4 → p′4]

implies stability for NC∪R, and hence for the normal bundle of a general Brill–Noether space curve
of degree d + 2 and genus g + 3.

Deformations of r-secant rational curves. In our application of the above degeneration to
reduce to a finite list of genera, we will specialize to the union of a Brill–Noether D and two
quasitransverse 4-secant conics through the same set of 4 points. To employ this degeneration, we
must know that such conics can be suitably deformed while preserving the incidence conditions
with D.

In greater generality, let D be a Brill–Noether curve, and R be a rational curve meeting D at
distinct points p1, p2, . . . , pr. The following key assumption generalizes the conclusion of Lemma 4.2:

Assumption 4.3. The restricted normal bundle ND∪R∣R is perfectly balanced with slope

µ(ND∪R∣R) ≥ r + 1.

Lemma 4.4. Under assumption 4.3, there exists a deformation R(t) of R, and pi(t) of pi, such
that the rational curve R(t) meets D quasi-transversely in p1(t), p2(t), . . . , pr(t), and pi(t) has
nonzero derivative at t = 0 for all i.

Proof. For any i, let Ni denote the vector bundle on R obtained by making elementary modifications
to NR at all points of D ∩ R except pi in the direction of D (i.e. the vector bundle obtained
by gluing the vector bundles NR∪D ∣R∖pi and NR∣R∖{p1,...,p̂i,...,pr} along the natural isomorphism
NR∪D ∣R∖{p1,...,pr} ≃ NR∣R∖{p1,...,pr}). This bundle Ni controls the deformations of D ∪ R along
D that remain equisingular at pi (c.f., the discussion in Section 2.6). Obstructions to lifting
deformations of pi to deformations of R that preserve the incidence conditions with D at the
pj lie in H1(Ni(−p1 −⋯ − pr)); it thus suffices to show

H1
(Ni(−p1 −⋯ − pr)) = 0.

The bundle Ni(−p1 −⋯ − pr) fits in an exact sequence

0→ NR∪D ∣R(−p1 −⋯ − pi−1 − 2pi − pi+1 −⋯ − pr)→ Ni(−p1 −⋯ − pr)→ Opi → 0,

The long exact sequence of cohomology implies the desired vanishing since by assumption ND∪R∣R
is perfectly balanced with slope µ(ND∪R∣R) ≥ r + 1, hence

H1
(NR∪D ∣R(−p1 −⋯ − pi−1 − 2pi − pi+1 −⋯ − pr)) = 0. �

Reduction to a finite list of genera.

Lemma 4.5. Suppose that Theorem 1 is true for all g ≤ 8. Then it is true for all g.

Proof. If ρ(g,3, d) ≥ 0 and g ≥ 9, then

(17) ρ(g − 6,3, d − 4) = ρ(g,3, d) + 2 ≥ 0 and g − 6 ≥ 2 and (d − 4, g − 6) ∉ {(5,2), (6,4)},

(18) and d − 4 ≥ 4.

By (17), a general Brill–Noether curve D of degree d − 4 and genus g − 6 has ND stable by
induction. Let H be a general hyperplane; by (18), we may let R1 ⊆ H and R2 ⊆ H be general
4-secant conics, both of which meet D at p1, . . . , p4:
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R2

R1

D

p1

p4

p2

p3

By Lemma 4.4, we may deform Ri to 4-secant conics Ri(t) meeting D at pi1(t), pi2(t), pi3(t),
and pi4(t), such that p1j(t) and p2j(t) have distinct derivatives:

Combining lemmas 4.1 and 4.2, it remains to show the stability of NC[pij(t) → p′ij(t)] for t ∈ ∆

general, where p′ij(t) denotes a point on Tpij(t)C ∖ pij(t). By the discussion in Section 2.4, these
vector bundles fit together to form a vector bundle over D × ∆ whose fiber over 0 ∈ ∆ is the
bundle ND(−p1 − p2 − p3 − p4) — which is stable since we have already seen that ND is stable by
induction. �

5. Stability and Degeneration II: Gluing Data

In order to settle the base cases g ≤ 8, we will need to use degenerations of C to reducible curves
X ∪ Y where neither NX∪Y ∣X nor NX∪Y ∣Y are necessarily stable. The basic idea is to compare
destabilizing subbundles of NX∪Y ∣X and NX∪Y ∣Y , and show that they cannot agree sufficiently
over X ∩ Y .

1-secant degenerations. In some cases, we can construct a modification of the restrictionNX∪Y ∣X
whose stability rules out a destabilizing subbundle of NX∪Y ∣X that could agree sufficiently with
a destabilizing subbundle of NX∪Y ∣Y . This technique works well when we can understand the
geometry of Y explicitly. Here we apply this technique when Y = L is a 1-secant line.

Let D be a smooth Brill–Noether curve and L a quasi-transverse 1-secant line meeting D at p.
Although ND∪L∣L is not semistable, so we cannot apply Lemma 4.1, we can identify the unique
destabilizing subbundle of ND∪L∣L, and construct a modification of ND∪L∣D as described above.

For inductive arguments it will be more useful to consider a slightly more general setup: Let
N ′
D∪L be any vector bundle equipped with an isomorphism with ND∪L over an open set U of

D ∪L containing L, and write N ′
D for the bundle obtained by gluing ND ∣U to N ′

D∪L∣D∖p along the
isomorphism ND ∣U∖p ≃ ND∪L∣U∖p ≃ N

′
D∪L∣U∖p. To state the lemma, let q ∈ L ∖ p.
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D
Lp

q

Lemma 5.1. In the above setup, if N ′
D[p → q][p → q] ≃ N ′

D[2p → q] is (semi)stable, then N ′
D∪L is

also (semi)stable.

Proof. Write ν∶D ⊔L→D ∪L for the normalization map, and p̃1 and p̃2 for the points above p on
L and D respectively. Suppose that F ⊆ ν∗N ′

D∪L is a line subbundle.
First, we consider the restriction of F to L. Let x be a point on TpD and let Λ be the plane

spanned by x and L. Let H be another plane such that L = Λ ∩ H. Then by Lemma 2.4 and
Example 2.6,

N ′
D∪L∣L ≃ NL(p)[p→ x] ≃ NL/H ⊕NL/Λ(p) ≃ OP1(1)⊕OP1(2).

Consequently,

(19) µ(F ∣L) ≤

⎧⎪⎪
⎨
⎪⎪⎩

2 if F ∣p̃1 = NL/Λ(p)∣p̃1 ;

1 otherwise.

Second, we consider the restriction of F to D. If F ∣p̃2 = ND→q(p)∣p̃2 , then, by Remark 1,
F ∣D is a subbundle of N ′

D∪L∣D[p → q] ≃ N ′
D(p)[2p → q]; otherwise F ∣D(−p̃2) is a subbundle of

N ′
D(p)[2p → q]. Because N ′

D[2p → q] is (semi)stable by assumption and of slope µ(N ′
D) − 1, it

follows that N ′
D(p)[2p→ q] is (semi)stable of slope µ(N ′

D). Consequently,

(20) µ(F ∣D) <
(−)

⎧⎪⎪
⎨
⎪⎪⎩

µ(N ′
D) + 1 if F ∣p̃2 ≠ ND→q(p)∣p̃2 ;

µ(N ′
D) otherwise.

Finally, by [ALY19, Lemma 8.5], the subspace NL/Λ(p)∣p̃1 glues to the subspace ND→q(p)∣p̃2 .
Consequently,

(21) codimF (F ∣p̃1 ∩ F ∣p̃2) ≥

⎧⎪⎪
⎨
⎪⎪⎩

1 if F ∣p̃1 = NL/Λ(p)∣p̃1 and F ∣p̃2 ≠ ND→q(p)∣p̃2 ;

0 otherwise.

To finish the proof, we simply combine (19), (20), and (21), to obtain

µadj
(F ) = µ(F ∣L) + µ(F ∣D) − codimF (F ∣p̃1 ∩ F ∣p̃2) <

(−)
µ(N ′

D) + 2 = µ(N ′
D∪L). �

Lemma 5.2. Assume that the characteristic of the ground field is not 2. Suppose that ND is
(semi)stable. If q ∈ P3 is a general point and p ∈ D has ordinary ramification, then the elementary
modification ND[2p→ q] is (semi)stable.

Proof. Let Λ ⊂ P3 be a 2-plane containing TpD that is not the osculating 2-plane to D at p. For
parameter s ∈ P1, let Ls be the pencil of lines through p in Λ specializing to TpD when s = 0 and
let q(s) be a choice of point on Ls ∖ p.
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D

TpD

p

As (semi)stability is open, and ND(−p) is (semi)stable by assumption, it suffices to show that
the modifications ND[2p → q(s)] for s ≠ 0 fit together into a flat family specializing to ND(−p)
when Ls = TpD. To do this, we first observe that, for s ≠ 0,

ND[2p→ q(s)] ∶= ker(ND →
ND ∣2p

ND→q(s)∣2p
)

is determined by the 2-dimensional subspace ND→q(s)∣2p of the 4-dimensional space ND ∣2p. As the
Grassmannian Gr(2,4) is separated and proper, there is a unique limit of these spaces as s→ 0. It
suffices to prove, by a calculation in local coordinates, that this subspace is ND(−p)∣2p ⊆ ND ∣2p.

Choose an affine neighborhood A3
xyz ⊆ P3 and coordinates such that p = (0,0,0), the tangent line

TpD is y = z = 0, the osculating two-plane is z = 0, and Λ is y = 0. Let q(s) = (1,0, s) so that Ls is
the line through (1,0, s) and (0,0,0).

Let t be an étale local coordinate at p for D. Then in an étale neighborhood of p, the curve D
is given parametrically by

D(t) =
⎛
⎜
⎝

t
t2 + a3t

3 +⋯

b3t
3 +⋯

⎞
⎟
⎠
.

We trivialize ND in a neighborhood of p by B/By and B/Bz. A section of ND is then given by

(22) (m0 +m1t +m2t
2
+⋯)

B

By
+ (n0 + n1t + n2t

2
+⋯)

B

Bz
.

We must determine the conditions on the mi and ni such that this section points towards q(s) to
second order in t. The vector from D(t) on D to q(s)

D(t) − q(s) =
⎛
⎜
⎝

t − 1
t2 + a3t

3 +⋯

b3t
3 +⋯ − s

⎞
⎟
⎠

is equivalent as a section of ND to its translate by a tangent vector

D(t) − q(s) − (t − 1)D′
(t) =

⎛
⎜
⎝

t − 1
t2 + a3t

3 +⋯

b3t
3 +⋯ − s

⎞
⎟
⎠
−
⎛
⎜
⎝

t − 1
(t − 1)(2t + 3a3t

2 +⋯)

(t − 1)(3b3t
2 +⋯)

⎞
⎟
⎠
=
⎛
⎜
⎝

0
2t + (3a3 − 1)t2 +⋯
−s − 3b3t

2 +⋯

⎞
⎟
⎠
.

This normal vector now corresponds to the section

(2t + (3a3 − 1)t2 +⋯)
B

By
+ (−s − 3b3t

2
+⋯)

B

Bz

under our chosen trivialization. The condition on the mi and ni for a section as in (22) to point
towards q(s) at 2p is that

det(
2t +⋯ m0 +m1t +⋯
−s +⋯ n0 + n1t +⋯

) = −sm0 + (2n0 + sm1)t +⋯

vanish to second order in t. When s ≠ 0, this cuts out the 2-dimensional subspace m0 = 2n0+sm1 = 0
in the four dimensional vector space with coordinates m0,m1, n0, n1.
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In characteristic distinct from 2, the limit as s → 0 of this subspace is simply m0 = n0 = 0, i.e.
the subspace ND(−p)∣2p ⊂ ND ∣2p as claimed. �

Corollary 5.3. Suppose that ND is (semi)stable for D a general Brill–Noether curve of degree d
and genus g in P3. Then NC is (semi)stable for C a general Brill–Noether curve of degree d + ε
and genus g in P3, where

ε =

⎧⎪⎪
⎨
⎪⎪⎩

1 if char(k) ≠ 2;

2 if char(k) = 2.

Proof. We specialize C to the union of a general Brill–Noether curve D with ε one-secant lines.
Applying Lemma 5.1, it suffices to show that ND[2p→ q] (respectively ND[2p1 → q1][2p2 → q2]) is
(semi)stable, where the pi denote general points on D, and the qi denote general points in P3.

As we limit p1 and p2 together to a common point p, the vector bundles ND[2p1 → q1][2p2 → q2]

fit together to form a vector bundle with central fiber ND(−2p) (c.f. the discussion in Section 2.4)
— which is (semi)stable by assumption.

In characteristic distinct from 2, we apply Lemma 5.2 to conclude that ND[2p→ q] is (semi)stable
as desired. �

6. Reduction to a finite list of (d, g)

In this section we combine the results of the previous section to reduce the proof of Theorem 1
to a finite list of base cases.

Proposition 6.1. Suppose that Theorem 1 holds for curves of degree d and genus g with

(23) (d, g) ∈ {(3,0), (4,1), (5,1), (6,2), (7,2), (6,3), (7,3),

(7,4), (8,4), (7,5), (8,5), (8,6), (9,6), (9,7), (10,7), (9,8), (10,8)}.

Then Theorem 1 holds in all cases. If the characteristic of the ground field is not 2, then it suffices
to replace list (23) with

(24) (d, g) ∈ {(3,0), (4,1), (6,2), (6,3), (7,4), (7,5), (8,6), (9,7), (9,8)}.

Proof. We will prove this by induction on d and g. By Lemma 4.5, it suffices to prove this when g ≤ 8.
If the characteristic is not equal to 2, then by Corollary 5.3, it suffices to check (semi)stability for the
smallest degree in each genus for which Theorem 1 asserts that the normal bundle is (semi)stable.
Similarly, if the characteristic is 2, it suffices to check (semi)stability for the two smallest degrees.

Note that, for rational curves of even degrees in characteristic 2, we have already established
that the normal bundles are unstable. Thus we do not need to include (4,0) in our list (23). �

Remark 6. By Lemma 2.9, we already know semistability for (d, g) = (3,0) and (4,1). This
establishes Theorem 1 for curves of genus 0 in any characteristic, and for curves of genus 1 in
characteristic distinct from 2.

Remark 7. The reason that the cases (6,2) and (7,4) appeared in our list (23) of remaining cases
is that the cases (5,2) and (6,4) were exceptions to Theorem 1, and so our induction on the degree
broke down. In fact, one cannot degenerate such curves to the union of a Brill–Noether curve D
of degree d − 1 and genus g with a 1-secant line and apply Lemma 5.1 (even without applying
Lemma 5.2); in both cases, ND[2p→ q] is unstable (if Q denotes the unique quadric containing D
then ND/Q(−2p) ⊂ ND[2p→ q] is destabilizing).

7. Base Cases: Applications of Gluing Data

In this section, we establish those base cases appearing in Proposition 6.1 which can be studied
using the techniques of Section 5.
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The case (d,g) = (5,1). We degenerate to the union of an elliptic normal curve C with a 1-secant
line. By Lemma 5.1, it suffices to show NC[2u→ v] is semistable, where u ∈ C and v ∈ P3 are general.
Fix a quadric Q containing C, and specialize v to a general point on C. By Lemma 2.8, there are
exactly two points on C at which the fibers of NC→v and NC/Q meet transversely; specialize u to
one of them. Then applying (6) with k = 1 (by virtue of Lemma 2.8) to the normal bundle exact
sequence (2) for C ⊂ Q, we see that NC[2u→ v] fits in an exact sequence

0→ [NC/Q(−u) ≃ OC(2)(−u)]→ NC[2u→ v]→ [NQ∣C(−u) ≃ OC(2)(−u)]→ 0,

so is semistable as desired.

The cases (d,g) = (9,7), (10,7), (9,8), and (10,8). When (d, g) = (10,7), or (10,8), respec-
tively, we first degenerate the curve to the union of a general Brill–Noether curve C of degree 9 and
genus 7 or 8, respectively, and general 1-secant line M , meeting C at u. Choose a point v ∈M ∖ u
so M = uv. By Lemma 5.1, it suffices to show that NC(u)[2u→ v] is stable.

Therefore, in order to deal with all of our cases (d, g) ∈ {(9,7), (10,7), (9,8), (10,8)}, we begin
with a curve C of degree 9 and genus 7 or 8. We will degenerate C to the union of a general
canonical curve D (of degree 6 and genus 4) and a union R of rational curves meeting D quasi-
transversely at a set Γ of 6 points (three general 2-secant lines when g = 7, and the union of a
general 2-secant line with a general 4-secant conic when g = 8, respectively).

D R

(d, g) = (9,7)

D R

(d, g) = (9,8)

Write Q for the unique quadric containing D. In both cases, the tangent lines to R at Γ are
transverse to Q, and so applying (6) with k = 0 to the normal bundle exact sequence (2) for D ⊂ Q,
we see that the restricted normal bundle ND∪R∣D fits into a balanced exact sequence:

(25) 0→ [ND/Q ≃ OD(3)]→ ND∪R∣D → [NQ∣D(Γ) ≃ OD(2)(Γ)]→ 0.

In particular, ND∪R∣D is strictly semistable, and ND/Q gives a destabilizing line bundle.
Similarly, after specializing v to a point on D, Lemma 2.8 asserts that there are 4 points u on D

where the fibers ND→v ∣u and ND/Q∣u coincide to first order. Specializing u to one of these points,
and applying (6) with k = 1, we again have a balanced exact sequence

(26) 0→ ND/Q → ND∪R∣D(u)[2u→ v]→ NQ∣D(Γ)→ 0.

In particular, ND∪R∣D(u)[2u→ v] is strictly semistable, and ND/Q gives a destabilizing line bundle.

Let L be a line component of R, meeting D at p1 and p2 with p′i ∈ TpiD ∖ pi, and denote by Λi
the plane spanned by p′i and L. Then

ND∪R∣L ≃ NL/Λ1
(p1)⊕NL/Λ2

(p2) ≃ OP1(2)⊕OP1(2).

Combining this with Lemma 4.2, the restriction of ND∪R (resp. ND∪R(u)[2u → v]) to each of the
components of R is also strictly semistable.

In particular, writing ν∶D ⊔ R → D ∪ R for the normalization, any destabilizing subbundle
F ⊂ ν∗ND∪R (resp. F ⊂ ν∗ND∪R(u)[2u → v]) must be destabilizing on every component and agree
at the points lying over the nodes D∩R. The key observation is that, because ND/Q is a subbundle
of ND as well, its fiber at each of the points of Γ is exactly the subspace that does not smooth that
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node. On the other hand, if L denotes a component of R which is a line, then any destabilizing
O(2) has a fiber at one or more of the nodes that fails to smooth it (otherwise it would be a
subbundle of NL ≃ O(1) ⊕O(1)). It thus remains to show that ND/Q is the unique destabilizing
subbundle of ND∪R∣D (resp. ND∪R∣D(u)[2u→ v]), or equivalently:

Lemma 7.1. The sequences (25) and (26) are nonsplit, i.e.

H0
(ND∪R∣D(−2)(−Γ)) = 0 and H0

(ND∪R∣D(−2)(−Γ)(u)[2u→ v]) = 0.

Proof. To show the desired vanishing, we degenerate two points of Γ together to a common point
p on D:

p p

Let N denote the bundle obtained by gluing ND∪R∣D∖p to ND(p)∣D∖(Γ∖p) along the natural isomor-
phism ND∪R∣D∖Γ ≃ ND(p)∣D∖Γ. By Section 2.4, the bundles ND∪R∣D (resp. ND∪R∣D(u)[2u → v])
fit together to form a bundle whose central fiber is the bundle N (resp. N(u)[2u → v]). It thus
remains to show

H0
(N(−2)(−Γ)) = 0 and H0

(N(u)[2u→ v](−2)(−Γ)) = 0.

To do this, we use the exact sequences coming from applying (6) (with k = 1 for the modification
at u in the second case) to the normal bundle sequence for D ⊂ Q:

0→ [ND/Q(p) ≃ OD(3)(p)]→ N → [NQ∣D(Γ − p) ≃ OD(2)(Γ − p)]→ 0

0→ [ND/Q(p) ≃ OD(3)(p)]→ N(u)[2u→ v]→ [NQ∣D(Γ − p) ≃ OD(2)(Γ − p)]→ 0;

twisting these sequences by OD(−2)(−Γ) and taking global sections, it remains to check that

H0
(OD(1)(−(Γ − p))) =H0

(OD(−p)) = 0.

This is clear since the five points of Γ − p = Γred are in linear general position. �

8. Stability and degeneration III: Limits of Gluing Data

As in the previous section, we again want to degenerate to reducible curves X ∪Y where neither
NX∪Y ∣X nor NX∪Y ∣Y are necessarily stable, but the destabilizing subbundles on each component
do not agree at X ∩ Y . The fundamental difficulty we address in this section is that it is often
difficult to compute the destabilizing subbundles on each component without further degeneration.
We therefore study the agreement conditions at X ∩ Y as the points of X ∩ Y come together.

Let D be a Brill–Noether curve. Fix distinct points q, p11, . . . , p1r1 , p21, . . . , p2r2 ∈ D. Let Ri
be a rational curve meeting D quasi-transversely exactly at q, pi1, . . . , piri , such that the tangent
directions at q to D, R1, and R2 span P3.
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R1 R2

D
q

p1j

p2j

Assume that both Ri satisfy Assumption 4.3. Using this assumption we may apply Lemma 4.4
to show that there exists an étale neighborhood ∆ = qi(t) of q ∈ D, which we normalize so q1(t)
and q2(t) have distinct derivatives at t = 0, and deformations Ri(t) of Ri, and pij(t) of pij , such
that for t ∈ ∆, the rational curve Ri(t) meets D quasi-transversely in qi(t), pi1(t), . . . piri(t).

Suppose that, for t ∈ ∆∗ ∶= ∆∖ 0, the normal bundle ND∪R1(t)∪R2(t) is not stable. These bundles fit

together to form a vector bundle N̂ over ∆∗. However, since D∪R1∪R2 is not lci, its normal sheaf
is not a vector bundle; there is therefore no obvious way to extend N̂ over ∆. Thus, extracting
information at the central fiber is subtle.

By the discussion in Section 2.4, we may nevertheless extend the restriction N̂ ∣D to a bun-
dle N on D × ∆ whose fiber N ∶= N ∣0 over 0 ∈ ∆ is obtained from gluing ND∪R1∪R2 ∣D∖q to
ND(q)∣D∖{p11,...,p1r1 ,p21,...,p2r2} along the natural isomorphism

ND∪R1∪R2 ∣D∖{q,p11,...,p1r1 ,p21,...,p2r2}
≃ ND ∣D∖{q,p11,...,p1r1 ,p21,...,p2r2}

≃ ND(q)∣D∖{q,p11,...,p1r1 ,p21,...,p2r2}.

Write ν∶D ⊔R1(t) ⊔R2(t) → D ∪R1(t) ∪R2(t) for the normalization map. Let L̂ ⊂ ν∗N̂ be a

destabilizing line bundle, i.e. which satisfies µadj(L̂) ≥ µ(N̂ ). Let `D, `1, and `2 denote the slopes of

the restriction of L̂ to D, R1(t), and R2(t), and c denote the number of nodes of D∪R1(t)∪R2(t)

above which the fibers of L̂ do not coincide (for t ∈ ∆∗). Since being perfectly balanced is open,

Condition 4.3 implies that the N̂ ∣Ri(t) are perfectly balanced. We therefore have

(27) `i ≤ µ(N̂ ∣Ri(t)) and c ≥ 0,

but

µadj
(L̂) = `1 + `2 + `D − c ≥ µ(N̂ ∣R1(t)) + µ(N̂ ∣R2(t)) + µ(N̂ ∣D).

If `D > µ(N̂ ∣D), i.e. N ∗ = N̂ ∣D is unstable, then N is unstable by Proposition 2.3. Thus either:

(i) N is unstable, or

(ii) (27) is an equality — i.e. `i = µ(N̂ ∣Ri(t)) and c = 0 — and `D = µ(N).

In case (ii), our first task is to translate the condition that (27) is an equality to information

about the restriction L∗ = L̂∣D. (The condition that `D = µ(N) already concerns L∗.) To do this,

observe that since the N̂ ∣Ri(t) are perfectly balanced, we have a canonical isomorphism

ϕ∗ij ∶ PN
∗
∣qi(t)

∼
ÐÐ→ PN ∗

∣pij(t) for t ∈ ∆∗.

Writing L∗ = L̂∣D, the condition that (27) is an equality then implies that

(28) L
∗
∣pij(t) = ϕ

∗
ij(L

∗
∣qi(t)) for t ∈ ∆∗.
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By Proposition 2.3, we can extend L∗ across the central fiber to a subbundle L ⊂ N , and consider
the restriction L ∶= L∣0 ⊂ N to the central fiber. Our second task is to figure out what (28) implies
for L. (Figuring out what `D = µ(N) implies for L is easy: Since µ is constant in flat families, it
implies µ(L) = µ(N).)

To do this, we observe that the bundles ND∪Ri(t) fit together to form bundles N̂i over ∆ (including

over t = 0). Writing Ni = N̂i∣D, there are natural inclusions Ni ⊂ N , which are isomorphisms away
from Ri(t) ∩D (here i = 3 − i denotes the other index) — so in particular at qi(t) for t ≠ 0, and
at pij(t) for all t. This inclusion induces a birational isomorphism on projectivizations PNi ⇢ PN .

The advantage to working with Ni is that N̂i∣Ri(t) is perfectly balanced, so we obtain regular maps
defined over ∆ (in particular for t = 0):

ϕij ∶ PNi∣qi(t)
∼
ÐÐ→ PNi∣pij(t) for t ∈ ∆,

that are compatible with the ϕ∗ij in the sense that the following diagram commutes:

PNi∣qi(t) PNi∣pij(t)

PN ∣qi(t) PN ∣pij(t)

ϕij

ϕ∗ij

We now restrict to the graph of qi(t). Then the map Ni ⊂ N drops rank exactly over t = 0.
Its kernel at t = 0 is the one-dimensional subspace Di ⊂ ND∪Ri ∣q corresponding to sections that
fail to smooth the node at q, and its image is given by the one-dimensional subspace of Fi ⊂ N ∣q
corresponding to the tangent direction of Ri at q. The rational map PNi ⇢ PN is thus obtained
by blowing up at Di, and contracting the proper transform of the fiber over q to Fi:

PNi∣qi(t) Di Fi PN ∣qi(t)

The line subbundle L∣qi(t) ⊂ N ∣qi(t) defines a section of PN ∣qi(t) and (by curve-to-projective
extension) of PNi∣qi(t); if the first of these sections does not pass through Fi, then the second must
pass through Di. Combining this with (28), when we pass to the central fiber, the fibers of L at
the pij can sometimes be described in terms of

Dij ∶= ϕij(Di).

Namely, by our assumption that the tangent directions to D, R1, and R2 span P3, the subspaces
F1 and F2 are disjoint. The fiber L∣q ⊂ N ∣q thus either:

(a) Coincides with neither F1 nor F2: In this case, L∣pij =Dij .
(b) Coincides with F1 but not F2: In this case, L∣p2j =D2j and L∣q = F1.
(c) Coincides with F2 but not F1: In this case, L∣p1j =D1j and L∣q = F2.

The upshot of this is the following lemma.
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Lemma 8.1. With the above notation, if

every sub-line-bundle of. . . has slope. . .
N ≤ µ(N)

N[pij →Dij] < µ(N)

N[q → F1][p2j →D2j] < µ(N)

N[q → F2][p1j →D1j] < µ(N),

then ND∪R1(t)∪R2(t) is stable, for t ∈ ∆ generic. In particular, if these four vector bundles are
merely semistable, then ND∪R1(t)∪R2(t) is stable for t ∈ ∆ generic.

Now suppose that Ri is a 2-secant line (meeting D at q and pi1), and write q′ ∈ TqD ∖ q and
p′i1 ∈ Tpi1D ∖ pi1 for points on the tangent lines to D at q and pi1 respectively. Then we have the
explicit decomposition (c.f., Example 2.6)

(29) ND∪Ri ∣Ri ≃ NRi→q′(q)⊕NRi→p′i1
(pi1) ≃ OP1(2)⊕2.

In particular, we see that Assumption 4.3 is satisfied. Moreover, we may use this decomposition to
compute the subspace Di1: In terms of (29),

Di = NRi→p′i1
(pi1)∣q ⇒ Di1 = NRi→p′i1

(pi1)∣pi1 .

To describe this in a way that is compatible with the isomorphism

ND∪Ri ∣D ≃ ND(q + pi1)[q → pi1][pi1 → q],

we apply Lemma 8.4 of [ALY19], which states that under this isomorphism we have

(30) Di1 = ND→q(pi1)∣pi1 ⊂ ND(q + pi1)[q → pi1][pi1 → q]∣pi1 .

When both R1 and R2 are 2-secant lines, we have N ≃ ND[p11 → q][p21 → q]. Substituting in the
Di1 given in (30), Lemma 8.1 thus gives:

Corollary 8.2. If R1 and R2 are 2-secant lines, and the bundles

(a) ND[p11 → q][p21 → q],
(b) ND[2p11 → q][2p21 → q],
(c) ND[p11 → q][q → p11][2p21 → q], and
(d) ND[2p11 → q][p21 → q][q → p21].

are all semistable, then ND∪R1(t)∪R2(t) is stable for t ∈ ∆ generic.

Remark 8. Since (d) is obtained from (c) by permuting p21 and p11, it suffices to prove semistability
of (a)–(c).

Now suppose only that R1 is a 2-secant line. Applying Lemma 8.1, the stability of ND∪R1(t)∪R2(t)

for t ∈ ∆ generic follows from the assertions that:

every sub-line-bundle of. . . has slope. . .
N ≤ µ(N)

N[p11 → q][p2j →D2j] < µ(N)

N[q → p11][p2j →D2j] < µ(N)

N[q → F2][p11 → q] < µ(N).

This follows in turn from the assertion that

N[p11 → q] and N[q → p11]

are stable. We therefore have:

Corollary 8.3. Suppose that R1 is a 2-secant line, and write p′2j ∈ Tp2jR2 ∖ p2j for points on the
tangent lines to R2 at the p2j. If the bundles

(a) ND[p2j → p′2j][2p11 → q] and
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(b) ND[p2j → p′2j][p11 → q][q → p11]

are both stable/semistable, then ND∪R1(t)∪R2(t) is stable for t ∈ ∆ generic.

The bundles ND[p2j → p′2j][2p11 → q] and ND[p2j → p′2j][p11 → q][q → p11] appearing in Corol-
lary 8.3 are rank 2 vector bundles of odd degree, and hence stability is equivalent to semistability.

9. Base Cases: Applications of Limits of Gluing Data

The cases (d,g) = (7,2), (6,3), (7,3), (7,4), (8,4), and (8,5). In these cases, we degenerate
to the union of a general Brill–Noether D curve of degree d − 2 and genus g − 2, a 2-secant line R1

through general points q and p11, and a 2-secant line R2 through q and another general point p21.

R1R2

q

p21
p11

D

Then R1 and R2 satisfy Assumption 4.3, and so by Lemma 4.4, the union D ∪R1 ∪R2 deforms
to the union of D and two general 2-secant lines, which by Lemma 2.10(ii) is a Brill–Noether curve
of degree d and genus g. By Corollary 8.2, it suffices to check that the three bundles 8.2(a)-(c) are
semistable when D is a general curve of degree d − 2 and genus g − 2.

(d,g) = (7,2). Here D is of degree 5 and genus 0. We further degenerate D to the union of a
general rational normal curve C (i.e., degree 3 and genus 0) and two general 1-secant lines u1, v1

and u2, v2 meeting C at u1 and u2 respectively. By Lemma 5.1, it therefore suffices to show that
the bundles

(a) NC[p11 → q][p21 → q][2u1 → v1][2u2 → v2], and
(b) NC[2p11 → q][2p21 → q][2u1 → v1][2u2 → v2], and
(c) NC[p11 → q][q → p11][2p21 → q][2u1 → v1][2u2 → v2],

are semistable. Limiting u1 to p11 and u2 to p21 (c.f. the discussion in Section 2.4), we obtain

(a) NC(−p11 − p21)[p11 → v1][p21 → v2]

(b) NC(−2p11 − 2p21)

(c) NC(−p11 − 2p21)[p11 → v1][q → p11]

After further limiting p11 to p21 in (a) (resp. q to p11 in (c)), and using the fact that NC→v1 ∣p11 is
a general subspace, these bundles all specialize to twists of NC , and are therefore semistable.

(d,g) = (6,3) and (7,3). When (d, g) = (6,3), then D is of degree 4 and genus 1. For uniformity
of notation, we write C =D.

When (d, g) = (7,3), then D is of degree 5 and genus 1. We further degenerate D to the union
of a general Brill–Noether curve C of degree 4 and genus 1, with a general 1-secant line M meeting
C at u. Write v ∈M ∖ u for another point on M . By Lemma 5.1, in these cases it suffices to prove
semistability of the bundles 8.2(a)-(c) with the extra modification [2u→ v].

Combining these cases, it suffices to show that the following 6 bundles on C are semistable:

(a) NC[p11 → q][p21 → q] and NC[2u→ v][p11 → q][p21 → q],
(b) NC[2p11 → q][2p21 → q] and NC[2u→ v][2p11 → q][2p21 → q],
(c) NC[p11 → q][q → p11][2p21 → q] and NC[2u→ v][p11 → q][q → p11][2p21 → q].

Lemma 9.1. Let C be an irreducible curve, and u, v, p11, p21, q be general points on C. Suppose
that the following bundles are semistable:
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(1) NC[2p11 → q]
(2) NC[2p11 → q][2p21 → q]
(3) NC[p11 → q][q → p11][2p21 → q].

Then all of the following bundles are also semistable:

(a) NC[p11 → q][p21 → q]
(b) NC[p11 → q][p21 → v]
(c) NC[2u→ v][p11 → q][p21 → q]
(d) NC[2u→ v][2p11 → q][2p21 → q]
(e) NC[2u→ v][p11 → q][q → p11][2p21 → q]
(f) NC[u→ v][v → u][p11 → q][p21 → q]
(g) NC[u→ v][v → u][2p11 → q][2p21 → q]
(h) NC[u→ v][v → u][2p11 → q][p21 → q][q → p21].

Proof. We argue by specializing the various points on C, to reduce to twists of bundles that we
already assumed or proved were semistable.

(a) Specialize p21 to p11; the resulting bundle is NC[2p11 → q], i.e. (1).
(b) Specialize v to q; the resulting bundle is NC[p11 → q][p21 → q], i.e. (a).
(c) Specialize u to p21; the resulting bundle is NC[p11 → q][p21 → v](−p21), c.f. (b).
(d) Specialize u to p21; the resulting bundle is NC[2p11 → q](−2p21), c.f. (1).
(e) Specialize u to q; the resulting bundle is NC[p11 → q][q → v][2p21 → q](−q).

Then specialize v to p11; the resulting bundle is NC[p11 → q][q → p11][2p21 → q](−q), c.f. (3).
(f) Specialize u to p21; the resulting bundle is NC[p11 → q][v → p21](−p21).

Exchanging v and p21, this is NC[p11 → q][p21 → v](−v), c.f. (b).
(g) Specialize v to p21; the resulting bundle is NC[u→ p21][2p11 → q][p21 → q](−p21).

Then specialize u to p11; the resulting bundle is NC[p11 → q][p21 → q](−p11 − p21), c.f. (a).
(h) Specialize v to p11; the resulting bundle is NC[u→ p11][p11 → q][p21 → q][q → p21](−p11).

Then specialize u to q; the resulting bundle is NC[p11 → q][p21 → q](−p11 − q), c.f. (a). �

Applying Lemma 9.1(a)(c)(d)(e), and using (2) and (3) directly, it remains only to show that
the three bundles (1)–(3) are semistable.

Let Q be a quadric containing C. In cases (1) and (3), specialize p11 to one of the two points
guaranteed by Lemma 2.8 for the point q ∈ C; in case (2), specialize both p11 and p21 to the two
points guaranteed by Lemma 2.8 for the point q ∈ C. After these specializations, the inclusion
C ⊂ Q induces normal bundle exact sequences for the modified bundles (1), (2), and (3):

0→ NC/Q(−p11)→ NC[2p11 → q]→ NQ∣C(−p11)→ 0

0→ NC/Q(−p11 − p21)→ NC[2p11 → q][2p21 → q]→ NQ∣C(−p11 − p21)→ 0

0→ NC/Q(−2p21)→ NC[p11 → q][q → p11][2p21 → q]→ NQ∣C(−p11 − q)→ 0.

These sequences are balanced because µ(NC/Q) = 8 = µ(NQ∣C), so this establishes the semistability
of the modified bundles in (1), (2), and (3) as desired.

(d,g) = (7,4), (8,4), and (8,5). When (d, g) = (7,4), then D is of degree 5 and genus 2. For
uniformity of notation, we write C =D.

When (d, g) = (8,4), then D is of degree 6 and genus 2. We further degenerate D to the union
of a general Brill–Noether curve C of degree 5 and genus 2, with a general 1-secant line M meeting
C at u. Write v ∈M ∖ u for another point on M . By Lemma 5.1, in these cases it suffices to prove
semistability of the bundles 8.2(a)-(c) with the extra modification [2u→ v].

When (d, g) = (8,5), then D is of degree 6 and genus 3. We further degenerate D to the union
of a general Brill–Noether curve C of degree 5 and genus 2, with a general 2-secant line M meeting
C at u and v. Since NC∪L∣L ≃ OL(2) ⊕OL(2) is semistable, it suffices to show that each of the
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bundles (a)-(c) are semistable when restricted to C, i.e. it suffices to prove semistability of the
bundles 8.2(a)-(c) with the extra modification [u→ v][v → u].

Combining these cases, we have to check the semistability of 9 modifications of NC . Applying
Lemma 9.1(a)(c)(d)(e)(f)(g)(h), and using (2) and (3) directly, it suffices to check that the three
modifications (1), (2), and (3) are semistable for C a general curve of degree 5 and genus 2.

Let Q be the unique quadric containing C. In all cases, specialize p21 to one of the three points
on C guaranteed by Lemma 2.8 for which NC→q ∣p21 and NC/Q∣p21 coincide to first order. Then after
these specializations, the inclusion C ⊂ Q induces the following normal bundle exact sequences for
the modified bundles in (1), (2), and (3):

0→ NC/Q(−2p11)→ NC[2p11 → q]→ NQ∣C → 0

0→ NC/Q(−2p11 − p21)→ NC[2p11 → q][2p21 → q]→ NQ∣C(−p21)→ 0

0→ NC/Q(−p11 − p21 − q)→ NC[p11 → q][q → p11][2p21 → q]→ NQ∣C(−p21)→ 0.

These sequences are balanced because µ(NC/Q) = 12 and µ(NQ∣C) = 10, so this establishes the
semistability of the modified bundles in (1), (2), and (3) as desired.

The cases (d,g) = (8,6) and (9,6). In these cases, we degenerate to the union of a general
Brill–Noether curve D of degree d − 3 and genus g − 4 = 2, a general 2-secant line R1, meeting D
quasi-transversely precisely at q and p11, a general 4-secant conic R2, meeting D quasi-transversely
precisely at q, p21, p22, and p23.

R1

p11

p21

q

p22

p23

D

R2

Then R1 and R2 satisfy Assumption 4.3, and so by Lemma 4.4, the union D ∪R1 ∪R2 deforms
to the union of D, a 2-secant line, and a 4-secant conic, which by Lemma 2.10(ii) and (iii) is a
Brill–Noether curve of degree d and genus g. By Corollary 8.3, it suffices to check that the two
bundles

(a) ND[p21 → p′21][p22 → p′22][p23 → p′23][2p11 → q] and
(b) ND[p21 → p′21][p22 → p′22][p23 → p′23][p11 → q][q → p11]

are stable when D is a general curve of degree d−3 and genus 2. Limiting p11 to p21, these bundles
fit into families whose central fibers are

(a) ND[p22 → p′22][p23 → p′23][p21 → q]
(b) ND[p22 → p′22][p23 → p′23][q → p21]

These bundles are symmetric under exchanging p21 and q, so it suffices to show the stability of the
first bundle.

When (d, g) = (8,6), then D is of degree 5 and genus 2; in this case, for uniformity of notation,
we write C =D, so our problem is simply to show the stability of the bundle

(31) NC[p22 → p′22][p23 → p′23][p21 → q].

When (d, g) = (9,6), then D is of degree 6 and genus 2. We further degenerate D to the union
of a general Brill–Noether curve C of degree 5 and genus 2, with a general 1-secant line M meeting
C at u. Write v ∈M ∖ u for another point on M . By Lemma 5.1, in these cases it suffices to prove
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stability for the bundle

NC[p22 → p′22][p23 → p′23][p21 → q][2u→ v].

Limiting u to p21 reduces the stability of this bundle to the stability of

ND[p22 → p′22][p23 → p′23][p21 → v],

and subsequently limiting v to q reduces its stability to the stability of (31).
All that remains is thus to show that (31) is stable. The normal bundle exact sequence for the

inclusion of C in the unique quadric Q containing it gives rise to the exact sequence

(32) 0→ NC/Q(−p21 − p22 − p23)→ NC[p22 → p′22][p23 → p′23][p21 → q]→ OC(2)→ 0.

These bundles have slopes 9, 9.5, and 10, respectively; hence it suffices to show that this sequence
is nonsplit, i.e. that

H0
(NC(−2)[p22 → p′22][p23 → p′23][p21 → q]) = 0.

By Lemma 3.1, all sections of NC(−2) come from H0(NC/Q(−2)), which has dimension 2. After
imposing three negative modifications out of the quadric at general points, we therefore have no
global sections as desired.

10. Curves of degree 6 and genus 2

This case was done by Sacchiero in [S83]. For completeness, we provide a characteristic-
independent proof here. We shall need the following lemma:

Lemma 10.1. Let E be a vector bundle on a smooth curve C sitting in an exact sequence

0→ L1 → E → L2 → 0,

where L1 and L2 are line bundles. If µ(L2) = µ(L1) + 2, and

Hom(L2(−p),E) ≃H0
(E ⊗L∨2(p)) = 0

for all p ∈ C, then E is stable.

Proof. Let φ∶F ↪ E be a line subbundle (which recall is always assumed to be saturated). Then
either φ factors through L1 ↪ E, in which case F ≃ L1 is not destabilizing, or projection from E to
L2 gives a nonzero map F → L2.

In the second case, F ≃ L2(−p1 −⋯−pn). Since Hom(L2(−p),E) = 0 for all p ∈ C by assumption,
but Hom(L2(−p1 −⋯ − pn),E) ≠ 0, we must have n ≥ 2. Therefore

µ(F ) = µ(L2) − n = µ(E) − n + 1 < µ(E). �

Now let C be a general Brill–Noether curve of degree d = 6 and genus g = 2. Since d > g + r, our
curve C is a projection of a general Brill–Noether curve C̃ ⊂ P4; by Lemma 13.2 and the proof of
Proposition 13.5 of [ALY19], C̃ is a quadric section of a cubic scroll. Thus, C lies on a cubic surface
S singular along a line (the projection of the cubic scroll), and the normal bundle exact sequence
for C in S gives

(33) 0→ OC(2)→ NC/P3 → L→ 0,

for some line bundle L. Taking the second wedge power, we have

OC(2)⊗L ≃ ∧
2NC/P3 =KC(4).

Thus L ≃ KC(2). We have µ(OC(2)) = 12 and µ(KC(2)) = 14, so by Lemma 10.1, it suffices to
show for any p ∈ C,

H0
(NC(−2)⊗K∨

C(p)) = 0.
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Let q ∈ C be conjugate to p under the hyperelliptic involution on C, so K∨
C(p) ≃ OC(−q) and we

must show H0(NC(−2)(−q)) = 0. As NC/S(−2) ≃ OC has one nowhere-vanishing section, it suffices

to show NC/S(−2)↪ NC(−2) is surjective on global sections; i.e., that h0(NC(−2)) = 1.
We now prove this by degeneration. (We could not degenerate first, since our desired degeneration

would break the exact sequence (33).) Namely, we degenerate C to the union D ∪u L of a general
curve D of degree 5 and genus 2, and a general 1-secant line L meeting at the point u. Let v be a
point on L away from u. By [ALY19, Lemma 8.5], it suffices to show h0(ND(−2)(u)[2u→ v]) = 1.

Let Q be the unique quadric containing D. By Lemma 3.1, H0(ND(−2)) is 2-dimensional. When
we twist up by u, we have an exact sequence

0→ ND/Q(−2)(u)→ ND(−2)(u)→ OD(u)→ 0.

As ND/Q(−2)(u) ≃ KD(u) has exactly a 2-dimensional space of global sections and vanishing H1,

the associated long exact sequence in cohomology gives h0(ND(−2)(u)) = 3. Consequently, the
image of the evaluation map

H0
(ND(−2)(u))→ ND(−2)(u)∣u

is a 1-dimensional subspace of the fiber at u. Since the line L is general, the fiber ND→v ∣u will not
coincide with this 1-dimensional subspace. Therefore, the inclusion ND(−2) ⊂ ND(−2)(u)[u → v]
induces an isomorphism on global sections. Combining this with Lemma 3.1, the inclusion

ND/Q(−2) ⊂ ND(−2)(u)[u→ v]

also induces an isomorphism on global sections. Modifying once more towards v, and noting
that the generality of v guarantees that ND→v and ND/Q are transverse at u, we conclude that
ND/Q(−2)(−u) ⊂ ND(−2)(u)[2u→ v] induces an isomorphism on global sections. Thus

h0
(ND(−2)(u)[2u→ v]) = h0

(ND/Q(−2)(−u)) = h0
(KD(−u)) = 1.

11. Curves of degree 7 and genus 5

In this section, for completeness we recall Ballico and Ellia’s argument [BE84] that shows that
if C is a non-hyperelliptic and non-trigonal space curve of degree 7 and genus 5, then NC is stable.
Equivalently, they show that N∨

C(3) is stable. The bundle N∨
C(3) has degree 6, hence we need that

it does not admit a line bundle of degree 3 or more. Let

0→ L→ N∨
C(3)→M → 0

be a destabilizing sequence. An elementary Riemann-Roch calculation shows that h0(IC(3)) ≥ 3,
where IC denotes the ideal sheaf of C in P3. Since there cannot be a cubic surface double along a
curve of degree 7, the long exact sequence associated to the exact sequence

0→ I2
C(3)→ IC(3)→ N∨

C(3)→ 0

shows that the image of
h∶H0

(IC(3))→H0
(N∨

C(3))

has dimension at least 3. Consequently,

dim(H0
(L) ∩ im(h)) + dim(H0

(M)) ≥ 3.

If the degree of L is at least 3, then the degree of M is at most 3. Since the curve is not trigonal
or hyperelliptic, we conclude that h0(M) ≤ 1. Hence, dim(H0(L) ∩ im(h)) ≥ 2. Thus, there are
two cubics in the ideal of C whose image in N∨

C(3) lie in the same line subbundle L. Hence, these
cubics are everywhere tangent along C. By Bezout’s Theorem, these cubic surfaces intersect in a
curve of degree 9 and cannot be tangent along a curve of degree 7. Consequently, N∨

C(3) cannot
have a line subbundle of degree 3 or more and is stable.

This completes the proof of Theorem 1.
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