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Abstract. This paper studies the geometry of one-parameter specializations of subvarieties of Grassmannians
and two-step flag varieties. As a consequence, we obtain a positive, geometric rule for expressing the structure
constants of the cohomology of two-step flag varieties in terms of their Schubert basis. A corollary is a positive,
geometric rule for computing the structure constants of the small quantum cohomology of Grassmannians. We
also obtain a positive, geometric rule for computing the classes of subvarieties of Grassmannians that arise as
the projection of the intersection of two Schubert varieties in a partial flag variety. These rules have numerous
applications to geometry, representation theory and the theory of symmetric functions.
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1. Introduction

This paper studies the geometry of one-parameter specializations of subvarieties of Grassmannians and two-
step flag varieties. The first consequence of our study is a new positive, geometric rule for expressing the
structure constants of the cohomology ring of Grassmannians in terms of their Schubert basis (Theorem 3.21).
Such rules are known as Littlewood-Richardson rules. In fact, much more generally, Algorithm 3.12 provides
a positive, geometric algorithm for computing the classes of subvarieties of the Grassmannian that arise as the
projection of the intersection of two Schubert varieties in a partial flag variety. The second main application of
our study is a positive, geometric rule for computing the structure constants of two-step flag varieties in terms
of their Schubert basis (Theorem 4.21). Since the three-pointed Gromov-Witten invariants of a Grassmannian
can be calculated as ordinary intersections of Schubert cycles in two-step flag varieties [BKT], we also obtain a
quantum Littlewood-Richardson rule for Grassmannians (Theorem 5.1).
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The partial flag variety F (k1, . . . , kr; n) parameterizes nested sequences of r linear subspaces V k1

1 ⊂ · · · ⊂ V kr
r

of dimensions ki of a fixed n-dimensional vector space V . Partial flag varieties are fundamental objects in
algebraic geometry, combinatorics and representation theory. Consequently their cohomology rings have been
studied extensively (see [BGG], [FPi] or [Ful2]). Although there are many presentations for their cohomology
rings, there were no proven Littlewood-Richardson rules for flag varieties except in the case of Grassmannians.

Littlewood-Richardson coefficients exhibit a very rich structure which is best revealed by positive geometric
rules. For instance, in recent years, new Littlewood-Richardson rules for the Grassmannians have enabled Kly-
achko, Knutson, Tao, Woodward and their collaborators to resolve long standing problems such as Horn’s Con-
jecture and the Saturation Conjecture (see [KT] and [KTW]). Vakil using a geometric Littlewood-Richardson
rule was able to establish the reality of Schubert calculus [V2].

In the case of Grassmannians there are many Littlewood-Richardson rules. For example, there are Littlewood-
Richardson rules in terms of Young tableaux [Ful1], puzzles [KT], and checkers [V1]. A. Knutson conjectured
a rule in terms of puzzles (see ([BKT])) for two-step flag varieties and A. Buch extended the conjecture to
three-step flag varieties. However, except for multiplying very special classes (e.g. Monk’s formula [Ful1]), a
proven rule has eluded mathematicians. Even in the case of Grassmannians, the known rules are insufficient
and unsatisfactory for answering many natural geometric questions.

Fix an ordered basis e1, . . . , en of a vector space V . Let W1, . . . , Wk be k distinct subspaces of V spanned
by consecutive elements of the ordered basis. Consider the subvariety Σ of G(k, n) parameterizing k-planes
that intersect each Wi in a specified dimension (subject to the necessary compatibility conditions). The first
problem we address in this paper is:

Problem 1.1. Give a positive, geometric rule for computing the cohomlogy class of Σ.

Note that when the vector spaces Wi are totally ordered with respect to inclusion, the subvariety Σ is a
Schubert variety. If the vector spaces Wi have no inclusion relations among them, then Σ is the intersection of
two Schubert varieties in G(k, n). More generally, the projection of the intersection of two Schubert varieties
in F (k1, . . . , kr; n) to G(ki, n) can be described as a variety of the form Σ. Our first main result is a positive,
geometric rule for expressing the class of Σ in terms of Schubert cycles.

Theorem 3.32: Algorithm 3.12 gives a positive, geometric rule for computing the class of Σ.

A corollary of this theorem is a new Littlewood-Richardson rule for Grassmannians. Frank Sottile has pointed
out that Algorithm 3.12 and Theorem 3.32 also give a positive, geometric rule for computing Kogan coefficients
(See [BS], [Kog]). I am grateful to Frank Sottile for this valuable observation.

Corollary 1.2 (Frank Sottile). Algorithm 3.12 computes the Kogan coefficients.

The second main result of this paper is a positive geometric rule for computing the structure constants of
two-step flag varieties in terms of their Schubert basis.

Theorem 4.21: Algorithm 4.19 is a Littlewood-Richardson rule for two-step flag varieties.

The strategy that leads to the rule works to compute the classes of subvarieties of other partial flag varieties.
However, to keep this paper at a reasonable length, we restrict our discussion to two-step flag varieties. The
reader may consult [CV] for an example for three-step flag varieties. In addition to being a step in understanding
the geometry of arbitrary partial flag varieties, the study of two-step flag varieties is interesting in its own right.
For instance, the work of Buch, Kresch and Tamvakis ([BKT]) has highlighted a beautiful relation between the
small quantum cohomology of Grassmannians and the cohomology of two-step flag varieties.

The final result of this paper is a quantum Littlewood-Richardson rule for Grassmannians.

Theorem 5.1: Algorithm 4.19 gives a quantum Littlewood-Richardson rule for Grassmannians.

The small quantum cohomology rings of Grassmannians have been studied extensively (see [B], [Bu] or
[BKT] for references). However, as in the case of flag varieties, there was not a positive combinatorial procedure
for finding the quantum Littlewood-Richardson coefficients of Grassmannians. Using the results in [BKT], the
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problem of computing three-pointed Gromov-Witten invariants turns to a problem of intersecting three Schubert
cycles in a two-step flag variety. Hence, our algorithm also solves the quantum Littlewood-Richardson problem.

Our Littlewood-Richardson rules will be in terms of combinatorial objects called Mondrian tableaux. Mon-
drian tableaux supply a convenient tool for recording the rank table for the intersections of two flags. We start
with the intersection of two Schubert varieties defined with respect to two transverse flags. We specialize the
flags via codimension one degenerations. In the process we force the intersection of the two Schubert cycles
defined with respect to the two flags to break into a union of Schubert cycles. The limits that occur during this
process are again recorded by Mondrian tableaux.

*

Figure 1. The product σ2
1 = σ2 + σ1,1 in G(2, 4).

Here we give a simple example of how the rule works. See Figure 1 for geometric pictures and the Mondrian
tableaux corresponding to them. Consider the problem of calculating σ2

1 in G(2, 4). Geometrically, we would
like to compute the class of the locus of lines in P3 that intersect two skew lines l1 and l2. When l1 and l2 are
skew, describing the lines that intersect both is difficult. Suppose l1 and l2 intersected at a point. Then the lines
that intersect both l1 and l2 would either contain l1 ∩ l2 or they would be contained in the plane spanned by
l1 and l2. Both of these are Schubert varieties (σ2 and σ1,1, respectively). To conclude that when the lines are
skew that the class is still σ2 +σ1,1, we form a one-parameter family of lines by rotating l1 around a pivot point
until it intersects l2. The variety of lines that intersect both l1 and l2 form a flat family. By the properness of
the Hilbert scheme there exists a flat limit when l1 and l2 intersect. The class of the flat limit is equal to the
class of any of the varieties in the family. The flat limit has to be supported along the locus of lines containing
l1 ∩ l2 or contained in the span of l1 and l2. Finally, a (very easy) tangent space calculation shows that the two
cycles in the Grassmannian parameterizing lines that intersect li intersect generically transversally even when
l1 and l2 intersect at a point. It follows that σ2

1 = σ2 + σ1,1.

One aim of this paper is to show that this example captures the geometry of Grassmannians. The class of the
intersection of two Schubert varieties in the Grassmannian can be calculated (in a sense that will become clear)
by judiciously repeating this example. Similarly for two-step flag varieties there are three simple examples that
capture the geometry. The first is the calculation

σ2,1,2
1,0,0 · σ2,1,2

1,1,0 = σ2,1,2
2,2,0 + σ1,2,2

2,1,0 + σ1,2,2
1,1,1

in F (1, 3; 5). The left-hand side of Figure 2 depicts this calculation. Geometrically this calculation corresponds
to finding the class of pointed planes (p, P ) in P4 where the point intersects a line l2 (drawn as the red square)
and the plane contains the point and intersects the lines l1 and l3. We rotate l1 until it intersects l2. Either the
plane P intersects l1 ∩ l2, but the point p is distinct from l1 ∩ l2. In that case P must contain l2 and we obtain
the Schubert variety σ2,1,2

2,2,0 . Or the point p might coincide with l1 ∩ l2. In this case, we get the Schubert variety

σ1,2,2
2,1,0 . Finally, if neither the plane P nor the point p intersects l1 ∩ l2, then they have to be contained in the

new span of l1, l2 and l3. In this case, we get the Schubert variety σ1,2,2
1,1,1 .
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l3

l2
l1 l1

l2

l3

Figure 2. Two calculations in two-step flag varieties.

The second calculation is

σ1,2,1
1,0,0 · σ1,2,1

1,1,0 = σ1,2,1
3,1,0 + σ1,1,2

2,1,0 + σ1,2,1
2,1,1 + σ1,1,2

1,1,1

in F (2, 3; 6). This calculation is depicted in the middle of Figure 2. Geometrically this calculation corresponds
to finding the class of line and plane pairs (l, P ) in P5, where the line l intersects two planes l1 and l3 and the
plane P contains l and intersects the plane l2. We rotate l1 until it intersects l2. The possible limits in this
case are similar to the previous examples. Either l intersects l1 ∩ l3. In this case we get the Schubert variety
σ1,2,1

3,1,0 . Or P may intersect l1 ∩ l2. In this case we get the Schubert variety σ1,1,2
2,1,0 . Else both l and P have to

be contained in the new span of l1, l2 and l3. The last variety is not a Schubert variety, but by increasing the
intersection of l1 and l2 by one more dimension is easily seen to break into a sum of two Schubert varieties
σ1,2,1

2,1,1 + σ1,1,2
1,1,1 . Finally, the third calculation is

σ2,1,2
1,0,0 · σ1,2,2

1,1,0 = σ1,2,2
3,1,0 + σ1,2,2

2,2,0 + σ1,2,2
2,1,1 .

This example is represented on the left panel of Figure 2 and is similar to the previous ones.

Algorithms 3.12 and 4.19 are generalizations of these simple examples. We will degenerate the flags that
define the intersection of two Schubert varieties via specified codimension one degenerations. The flat limits are
determined by the following observation.

Observation 1.3. Suppose Λ is a k-plane that intersects a set of k-vector spaces Wi in specified dimensions di.
Then Λ will be forced to intersect the spans of Wi1 , . . . , Wij

in given dimensions di1,...,ij
. Consider a codimension

one specialization of the vector spaces Wi. Then any limit of Λ has to intersect the limits of the vector spaces
Wi in dimension at least di. Similarly, Λ has to intersect the limits of the spans of Wi1 , . . . , Wij

in dimension
at least di1,...,ij

.

Theorem 3.32 and Theorem 4.45 will check that this observation suffices to determine the set-theoretic
components of the flat limit of codimension one degenerations in Grassmannians and two-step flag varieties. As
a matter of fact, the same observation applies to arbitrary partial flag varieties and can be used to calculate
the classes of subvarieties in them. Theorems 3.32 and 4.45 will also show that for the specified degenerations
each of the components occur with multiplicity one.

The idea to study the geometry of flag varieties via degenerations dates back at least to Pieri. Recently R.
Vakil proved a geometric Littlewood-Richardson rule for Grassmannians using degenerations [V1]. Our approach
is similar to Vakil’s. However, even in the case of Grassmannians, by choosing a more natural and canonical
degeneration order, we are able to clarify the geometry significantly. The result is a simpler and more efficient
rule. In fact, as already mentioned, our methods apply in a much more general setting and give an algorithm
to express the classes of a large collection of subvarieties of Grassmannians in terms of Schubert cycles.
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We remark that the positive, geometric rules proved in this paper have many applications to reality questions,
Schubert calculus over fields other than complex numbers and saturation type conjectures. To keep this paper
relatively short, we postpone the discussion of these applications to a future paper.

Finally, it should be stressed that the algorithms described in this paper do not only compute classes of sub-
varieties of Grassmannians or two-step flag varieties. They describe the limits of subvarieties of Grassmannians
and two-step flag varieties under specializations of the defining flags. The end result of the algorithm is not a
collection of cohomology classes, but actual subvarieties.

Acknowledgments: I would like to thank C. Desjardins, S. Grushevsky, J. Harris, A. Knutson, A. Kresch,
B. Osserman, F. Sottile and H. Tamvakis for fruitful conversations. I am grateful to F. Sottile for pointing out
Corollary 1.2. I am greatly indebted to R. Vakil and A. Buch for their constant help and unfailing support. They
have generously volunteered their time and effort to implement the algorithms in this paper. Their suggestions
have greatly improved the accuracy, content and presentation of this paper.

2. Preliminaries

In this section we collect well-known facts about flag varieties and the quantum cohomology of Grassmannians.
For more detailed discussions the reader can consult [GH] Ch.1 §5, [FPi] and [BKT].

Notation 2.1. Let ki be an increasing sequence of positive integers. We denote the Grassmannian of k-
dimensional subspaces of an n-dimensional vector space by G(k, n). When we interpret this Grassmannian
as the parameter space of (k−1)-dimensional linear subspaces of Pn−1, we will use the notation G(k−1, n−1).

Let F (k1, . . . , kr; n) denote the r-step flag variety of r-tuples of linear subspaces (V1, · · · , Vr) of an n-
dimensional fixed vector space, where Vi are ki-dimensional linear spaces and Vi ⊂ Vi+1 for all 1 ≤ i ≤ r − 1.
When we would like to consider the flag variety as a parameter space for nested sequences of linear subspaces
of projective space, we will use the notation F(k1 − 1, . . . , kr − 1; n − 1).

2.1. The cohomology of flag varieties. Let F• : 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = V be a fixed complete flag in
the n-dimensional vector space V . Given a partition λ : n−k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0, we define the Schubert
variety Σλ in G(k, n) with respect to the flag F• to be

Σλ(F•) := {[W ] ∈ G(k, n) | dim(W ∩ Fn−k+i−λi
) ≥ i, ∀ 1 ≤ i ≤ k}.

We denote the Poincaré dual of the class of Σλ by σλ. The codimension of Σλ in G(k, n) is equal to the
weight of the partition |λ| =

∑
i λi. The classes of Schubert varieties form an additive basis of the homology of

G(k, n). The structure constants cν
λ,µ in the product σλ · σµ =

∑
ν cν

λ,µσν are called the Littlewood-Richardson
coefficients.

Similarly, the cohomology of the r-step flag variety F (k1, . . . , kr; n) is generated by Poincaré duals of the
classes of Schubert varieties. Schubert varieties are parameterized by permutations ω of length n for which
ω(i) < ω(i + 1) whenever i /∈ {k1, . . . , kr}. More explicitly, the Schubert variety Xω(F•) is defined by

Xω(F•) := { (V1, . . . , Vr) ∈ F (k1, k2; n) | dim(Vi ∩ Fj) ≥ #{α ≤ i : ω(α) > n − j} ∀ i, j }

The Poincaré duals of the classes of all the Schubert varieties form an additive basis for the cohomology of
the flag variety. The structure constants with respect to this basis are known as the Littlewood-Richardson
coefficients for flag varieties.

For future reference we note that given a Schubert cycle σλ in G(k, n), there is a special Schubert cycle

X
(d)
λ (F•) in F (k − d, k + d; n) defined by

X
(d)
λ (F•) := { (V1, V2) | dim(V1 ∩ Fn−i−λk−i

) ≥ k − d − i, dim(V2 ∩ Fn−k+j−λj
) ≥ j }

where 1 ≤ i ≤ k − d and 1 ≤ j ≤ k.

We need a convenient notation for Schubert varieties of r-step flag varieties. In analogy with the notation

for the Grassmannians we will use the notation σ
δ1,··· ,δkr

λ1,··· ,λkr
. The bottom row denotes the usual partition corre-

sponding to the kr-plane Vr in V treated as a Schubert cycle in G(kr , n). The numbers δi are integers between
1 and r. For a Schubert cycle in F (k1, . . . , kr; n), k1 of the upper indices will be 1 and ki − ki−1 of them will
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be i. The flag F• induces a complete flag G• on the largest vector space Vr. For each j, there exists a smallest
i such that

dim(Vi ∩ Gj) = dim(Vi ∩ Gj−1) + 1.

For a Zariski-open subset of the Schubert variety this index will be constant. In that case we write i on top of
λj . In the case of Grassmannians this notation reduces to the ordinary notation with a sequence of 1s on the
top row. For the complete flag variety the top row becomes the permutation defining the Schubert cycle.

Example. Fix a flag F1 ⊂ · · · ⊂ F6 in V 6. The Schubert cycle σ3,2 in G(2, 6) denotes the two-dimensional
subspaces of V 6 that meet F2 in a line and are contained in F4. The corresponding special Schubert cycle X1

σ3,2

has class σ2,1,2
2,1,0 in F (1, 3; 6). The Schubert cycle σ2,1,2

2,1,0 denotes the pairs of subspaces V1 ⊂ V2 where V1 has
dimension one and V2 has dimension 3. V2 is required to meet F2 in dimension one, F4 in dimension 2 and be
contained in F6. V1 lies in the intersection of V2 with F4.

Remark 2.2. Sometimes Schubert cycles in F (k1, . . . , kr; n) are denoted by strings of 0, 1, . . . , r of length n where
k1 of the numbers in the string are 1, ki − ki−1 of them are i and n − kr of them are 0. The translation from
our notation to this notation is straightforward. Place a 0 in a position unless it is of the form n − kr + i − λi.
Place the digit δi in position n − kr + i − λi. We warn the reader that there are different conventions for the
string notation. Some authors use a different correspondence between the digits and the subscripts of the vector
spaces. Similarly there are different conventions as to whether the string should be written from left to right or
right to left.

2.2. Gromov-Witten invariants. Let M0,m(G(k, n), d) denote the Kontsevich space of genus zero stable
maps to G(k, n) of Plücker degree d. The Kontsevich space is equipped with m evaluation morphisms,

ρ1, . . . , ρm : M0,m(G(k, n), d) → G(k, n),

where the i-th evaluation morphism maps a stable map to the image of the i-th marked point.

Given m Schubert classes σλ1
, · · · , σλm

in G(k, n), the Gromov-Witten invariant Id(σλ1
, . . . , σλm

) is defined
by the formula

Id(σλ1
, . . . , σλm

) =

∫
M0,m(G(k,n),d)

ρ∗1(σλ1
) ∪ · · · ∪ ρ∗m(σλm

).

Since the three-pointed Gromov-Witten invariants (m = 3) give the structure constants of the small quantum
cohomology ring, they are called the quantum Littlewood-Richardson coefficients.

Let Σ1, · · · , Σm be general (with respect to the PGL(n+1) action) Schubert cycles representing the Poincaré
duals of the classes σλ1

, . . . , σλm
, respectively. The following lemma asserts that the Gromov-Witten invariant

is equal to the number of rational curves that intersect Σi.

Lemma 2.3. ([FP] Lemma 14) The scheme theoretic intersection

ρ−1
1 (Σ1) ∩ · · · ∩ ρ−1

m (Σm)

is a finite number of reduced points in M0,m(G(k, n), d). Moreover,

Id(σλ1
, . . . , σλm

) = # ρ−1
1 (Σ1) ∩ · · · ∩ ρ−1

m (Σm).

Remark 2.4. Furthermore, by Kleiman’s Transversality Theorem [Kl] one can conclude that the curves contribut-
ing to the Gromov-Witten invariants are non-degenerate curves and the restriction of the tautological bundle
of G(k, n) to the curves have balanced splitting (i.e. the degree of any two summands in the Grothendieck
decomposition differ by at most one).

2.3. Scrolls. Let r1 ≤ · · · ≤ rk be non-negative integers, not all equal to zero. We let r be the sum
∑k

i=1 ri.

Let Sr1,··· ,rk
denote the k-dimensional rational normal scroll in Pr+k−1.

To construct it take k rational normal curves of degree r1, . . . , rk in P
r+k−1 such that the span of any k − 1

of them is disjoint from the span of the remaining one. Fix an isomorphism between each of these curves
and an abstract P1. Sr1,··· ,rk

is the union of the (k − 1)-planes spanned by the points corresponding under the
isomorphism. We allow some of the integers ri to be zero. In that case we obtain cones over smaller dimensional
scrolls. A scroll is balanced if |ri − rj | ≤ 1 for 1 ≤ i, j ≤ k. It is perfectly balanced if all ri are equal.
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Abstractly a scroll is the projectivization of a vector bundle of rank k on P1. Since any vector bundle E over
P

1 is a sum of line bundles, we can express the projectivization as

PE = P(OP1(−r1) ⊕ · · · ⊕ OP1(−rk)).

The scroll Sr1,··· ,rk
is the image of PE under the linear series |OPE(1)|.

Scrolls as rational curves in the Grassmannian. Since a scroll Sr1,··· ,rk
is a family of (k − 1)-planes

parameterized by a rational curve, it gives rise to a rational curve C in G(k − 1, r + k − 1). The curve C is
non-degenerate (i.e., does not lie in a subgrassmannian of the form G(k− 1, s) for s < r + k − 1) and of Plücker
degree r =

∑
ri.

Conversely, any irreducible, non-degenerate curve C in the Grassmannian G(k−1, r+k−1) of degree r gives
rise to a scroll of degree r in Pr+k−1. There are non-isomorphic scrolls of degree r in Pr+k−1. The splitting
type of the restriction of the tautological bundle of G(k − 1, r + k − 1) to C determines the isomorphism type
of the scroll (see [C]). We, therefore, obtain the following corollary of Lemma 2.3 and Remark 2.4.

Corollary 2.5. The Gromov-Witten invariant Id(σλ1
, . . . , σλm

), where σλ1
, . . . , σλm

are Schubert cycles in
G(k, n), is equal to the number of balanced scrolls of degree d and dimension d + k − 1 in Pn−1 containing m
fibers satisfying the specified Schubert conditions.

In [BKT] the authors relate the quantum three-point invariants of degree d for G(k, n) to ordinary intersec-
tions in F (k − d, k + d; n). Since we will use their Proposition 1 and Corollary 1, we summarize their results in
terms of the geometric point of view offered by Corollary 2.5.

Lemma 2.6. ([BKT] Prop.1) The only non-zero three-point quantum invariant of G(d, 2d) of degree d is

Id(σd,··· ,d, σd,··· ,d, σd,··· ,d) = 1.

By dimension restrictions, the stated invariant is the only non-zero degree d invariant. The invariant is equal
to one because there is a unique scroll of degree and dimension d in P2d−1 containing three general (d − 1)-
dimensional linear spaces A, B, C as fibers. In such a scroll, through every point p of A there is a unique line
meeting B and C. This line is pB ∩ pC, the intersections of the span of p and B and the span of p and C. This
uniquely constructs the scroll.

Lemma 2.7. ([BKT] Cor.1) Let λ, µ, ν be partitions and d ≥ 0 be an integer satisfying

(1) |λ| + |µ| + |ν| = k(n − k) + dn.

Then the degree d three-point Gromov-Witten invariants of G(k, n) equal the ordinary three-point intersections
of special Schubert varieties (see §2.1) in the flag variety F (k − d, k + d; n):

Id(σλ, σµ, σν) =

∫
F (k−d,k+d;n)

[X
(d)
λ ] ∪ [X(d)

µ ] ∪ [X(d)
ν ].

By Corollary 2.5 the Gromov-Witten invariant is equal to the number of balanced scrolls of degree d and
dimension k in Pn−1. Such a scroll is a cone over a perfectly balanced scroll with vertex a linear space of
dimension k − d − 1. It spans a Pk+d−1. To each scroll contributing to the Gromov-Witten invariant one
associates the pair of linear spaces consisting of the vertex and the span of the cone. This gives the required
bijection.

3. Mondrian tableaux and a Littlewood-Richardson rule for Grassmannians

In this section we describe a way to compute the Littlewood-Richardson coefficients of Grassmannians in
terms of combinatorial objects called Mondrian tableaux. In fact, we will give a geometric rule for computing
the classes of a much larger class of subvarieties of G(k, n). We will first give the combinatorial description of
the rule. We will then explain the geometry behind the rule. We will then present some generalizations that
are useful for studying the geometry of two-step flag varieties.

3.1. The rule combinatorially.
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3.1.1. Preliminaries. Fix n basis elements e1, . . . , en ordered by their indices. A square is a subset of the set of
basis elements. The side-length of a square S is the number of basis elements contained in S. We will denote
the side-length of S by |S|. Let M be a set of squares and let S be any square (not necessarily contained in
M). We will denote by #S(M), the number of squares of M (inclusive) contained in S.

Definition 3.1. A Mondrian tableau M for the Grassmannian G(k, n) is a collection of k distinct squares such
that

Mon1 Each square is the span of a subset of consecutive basis elements of {e1, . . . , en}.

Mon2 For each square S, the union of the squares strictly contained in S is properly contained in S.

Mon3 For any two squares S1, S2 of M ,

|S1 ∪ S2| ≥ |S1| + #(S1 ∪ S2)(M) − #S1(M).

We will depict a Mondrian tableau by placing the basis elements as unit squares along the diagonal of an
n×n grid listed from southwest to northeast. A square S in the Mondrian tableau will be depicted by a square
whose diagonal lies along the diagonal of the n × n grid and contains the unit squares corresponding to the
basis elements contained in S. Figure 3 depicts some Mondrian tableaux.

Some examples of Mondrian Tableaux Some non-examples

Mon3 not satisfied Mon2 not satisfied

unit length

Figure 3. Some examples and non-examples of Mondrian tableaux.

Remark 3.2. Condition Mon3 implies the following a priori stronger consistency condition: Let S1, . . . , Sj be
any set of squares in a Mondrian tableau M . Then

|

j⋃
l=1

Sl| ≥ |Si| + #(

j⋃
l=1

Sl)(M) − #Si(M).

A Mondrian tableau M for G(k, n) represents an irreducible subvariety ΣM of G(k, n). In Section 3.2 we
will explain how to associate a subvariety of G(k, n) to a Mondrian tableau. Briefly, the squares of a Mondrian
tableau M represent vector spaces that impose rank conditions on k-planes. The subvariety ΣM is the closure
of the locus of k-planes that intersect the vector space spanned by the basis elements contained in any square
S in dimension #S(M). We will denote the Poincaré dual of the class of ΣM by [ΣM ]. Below we will give an
algorithm for expressing [ΣM ] in terms of Schubert cycles.

3.1.2. Representing Schubert varieties as Mondrian tableaux. We now describe how to represent Schubert vari-
eties by Mondrian tableaux.

Definition 3.3. A collection of squares S1, . . . , Sr in a Mondrian tableau are called nested if the squares are
totally ordered with respect to inclusion; i.e., for any two squares Si and Sj either Si ⊆ Sj or Sj ⊆ Si for every
1 ≤ i, j ≤ r. We will say a square S in a Mondrian tableau M is nested if

(1) For any other square S′ in M either S ⊂ S′ or S′ ⊂ S.

(2) The collection of all the squares in M containing S is nested.

We will say that a Mondrian tableau is nested if all the squares in M are nested.

Definition 3.4. A Mondrian tableau associated to a Schubert variety σλ1,...,λk
in G(k, n) is a nested Mondrian

tableau S1 ⊂ S2 ⊂ · · · ⊂ Sk where the side-length |Si| = n − k + i − λi.
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Figure 4 depicts two Mondrian tableaux for σ2,1 in G(3, 6). These Mondrian tableaux represent the same
Schubert class, but different Schubert varieties.

unit size

Figure 4. Two Mondrian tableaux associated to σ2,1 in G(3, 6).

Definition 3.5. The lower-left (respectively, upper-right) corner of a square S in a Mondrian tableau M is the
basis element with least (respectively, greatest) index contained in S. We will denote the lower-left corner of S
by l(S) and the upper-right corner of S by r(S). We will say ei is southwest (respectively, northeast) of ej if
i ≤ j (respectively i ≥ j). We will say strictly southwest or northeast to mean the inequalities are strict.

Definition 3.6 (Normalized Mondrian tableau). A Mondrian tableau M is called normalized if

(1) The lower-left corners of any two squares in M are distinct.

(2) If the upper-right corners of two distinct squares S1 ⊂ S2 coincide, then any square S ∈ M with
l(S) < l(S2) contains S1.

Remark 3.7. Let M be a set of squares satisfying condition Mon1. If the lower-left (or upper-right) corners of
all the squares are distinct, then condition Mon2 automatically holds. This is clear since for any square S, l(S)
(or r(S)) cannot be contained in any of the squares strictly contained in S. Furthermore, if M is normalized,
then Mon3 automatically holds. Let S1 and S2 be any two squares of M . If l(S1) < l(S2) and r(S1) < r(S2),
then #(S1 ∪ S2)(M) − #S2(M) (respectively, #(S1 ∪ S2)(M) − #S1(M)) is at most |S1 − S2| (respectively,
|S2 − S1|). In the first case (respectively, second case), each square contributing to the count has a distinct
lower-left (respectively, upper-right) corner. If S2 ⊂ S1, then #(S1∪S2)(M)−#S2(M) is at most |S1−S2| since
each square contributing to the count occupies either a distinct upper-right or lower-left corner not contained
in S2.

3.1.3. The algorithm for normalizing a collection of squares. Let M be a finite collection of squares satisfying
condition Mon1. If for S1, S2 ∈ M , the lower-left (respectively, upper-right) corners l(S1) = l(S2) (respectively,
r(S1) = r(S2)) coincide, then either S1 ⊆ S2 or S2 ⊆ S1. We can normalize this collection of squares. In case
M is not a Mondrian tableau, it is possible that the procedure yields the empty collection. We will say discard
the tableau to refer to the latter possibility.

Algorithm 3.8 (Normalizing a collection of squares). Suppose there exists a basis element which is the lower-left
corner of more than one square. Let ei be the one with least index. Let S1 ⊆ S2 ⊆ · · · ⊆ Sr be the squares
in M that have ei as the lower-left corner. (If some of the squares in the collection coincide, pick any ordering
on them. Otherwise order them by size.) Remove ei from S2 and call the resulting square S′

2. (Pictorially this
corresponds to shrinking the square S2 by moving l(S2) northeast one unit.) Replace M by the new collection
of squares M ′ obtained by replacing S2 by S′

2. If no two squares of M ′ share the same lower-left corner, stop.
Otherwise run the procedure again, replacing M by M ′. If the side-length of any square shrinks to zero in the
process, discard the collection of squares.

After finitely many steps we will obtain a collection of squares M that do not share the same lower-left
corner. If M is not normalized, then there exists two squares S1 ⊂ S2 such that S1 ⊂ S2, r(S1) = r(S2) and
violate Condition 2 in Definition 3.6. Let ei be the basis element with largest index which is the upper-right
corner of such squares. Let S1 ⊂ S2 ⊂ · · · ⊂ Sr be the squares with r(Sj) = ei and which violate Condition 2 in
Definition 3.6. Remove ei from S2 call the resulting square S′

2. Replace M by the new collection M ′ obtained
by replacing S2 by S′

2. If M ′ is normalized, stop. Otherwise, repeat by replacing M by M ′. If the side-length
of any square shrinks to zero in the process, discard the collection of squares.

Figure 5 shows an example of the Algorithm 3.8 applied to a Mondrian tableau.
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Figure 5. The normalization algorithm applied to a Mondrian tableau.

Lemma 3.9. The algorithm for normalizing a collection of squares transforms a Mondrian tableau for G(k, n)
to a normalized Mondrian tableau for G(k, n).

Proof. It is clear that the algorithm terminates. We need to check that at each stage the procedure transforms
a Mondrian tableau to a Mondrian tableau. Here we check the case when we shrink the lower-left corner of a
square. The case when we shrink the upper-right corner is analogous. Mon1 holds since S′

2 is still the span of
consecutive basis elements and the other squares do not change. Note that if S′

2 has the same lower-left corner
as a different square S in M ′, then S ⊂ S′

2. Otherwise, S′
2 ⊂ S, but |S| = |S2 ∪ S| − 1 contrary to Mon3 for

M since S1 and S2 are not contained in S. Hence, all the containment relations that hold in M except for
S1 ⊂ S2 hold for M ′ when S2 is replaced by S′

2. Furthermore, there are no new containment relations among
the squares in M ′. We only need to check the conditions Mon2 and Mon3 for S′

2. S′
2 cannot be the span of

squares contained in it, otherwise S2 would be as well. This would contradict Mon2 for M . Finally, suppose S
is a square of M ′ such that

i) |S ∪ S′
2| < |S| + #(S ∪ S′

2)(M
′) − #S(M ′), or

ii) |S ∪ S′
2| < |S′

2| + #(S ∪ S′
2)(M

′) − #S′
2(M

′).

We have that a) |S ∪ S′
2| = |S ∪ S2| unless ei /∈ S and b) |S ∪ S′

2| = |S ∪ S2| − 1. If we are in case i and a,
then

|S ∪ S2| < |S| + #(S ∪ S2)(M) − #S(M).

If we are in case i and b, then

|S ∪ S2| − 1 < |S| + #(S ∪ S2)(M) − r + 1 − #S(M),

where r ≥ 2. Both contradict Mon3 for M . If we are in case ii and a, then

|S ∪ S2| < |S2| − 1 + #(S ∪ S2)(M) − #S2(M) + 1.

If we are in case ii and b, then

|S ∪ S2| − 1 < |S2| − 1 + #(S ∪ S2)(M) − r + 1 − #S2(M) + 1.

Both of these contradict Mon3 for M as well. We conclude that Mon3 holds for M ′. Hence, normalization
preserves the property of being a Mondrian tableau. Observe that the side-length of a square cannot shrink to
zero when running the process for Mondrian tableaux. �

3.1.4. The algorithm. We now describe a procedure that turns a given Mondrian tableau into a collection of
Mondrian tableaux associated to Schubert varieties. We will refer to this algorithm as the Grassmannian
Algorithm. We first need a definition.

Definition 3.10. Let S = {ei, . . . , ej} be a square in a normalized Mondrian tableau M . Then a square N of
M is a neighbor of S if the following conditions hold:

(1) ej+1 ∈ N .

(2) S is not contained in N .

(3) If the lower-left corner l(S′) of another square S′ is between l(S) and l(N), then either S′ ⊂ S or
N ⊂ S′.

Observe that the set of neighbors of a square is totally ordered. Figure 6 shows an example of a square and
its neighbors.
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neighbors of S

S

Figure 6. The neighbors of a square.

Definition 3.11 (Distinguished square). Let M be a normalized Mondrian tableau. Among the squares of M
that are not nested, the square S whose lower-left corner is furthest southwest is called the distinguished square
of M .

We can now state the Grassmannian Algorithm. Suppose M is a normalized Mondrian tableau. If M is not
the tableau associated to a Schubert variety, we will slide the distinguished square S of M northeast by one
unit. This move corresponds to a specialization of the vector spaces defining the variety ΣM associated to M .
As a result, ΣM will specialize to a (generically reduced) union of one or more subvarieties each of which is
associated to a Mondrian tableau. The algorithm will replace M by the Mondrian tableaux corresponding to
the limit subvarieties. We will explain how to determine the limits geometrically in Section 3.2.

Figure 7. Step 2 of the Grassmannian Algorithm.

Algorithm 3.12 (Grassmannian Algorithm). Let M be a Mondrian tableau for G(k, n).

GA1. If M is nested, the algorithm terminates. Otherwise, normalize M .

GA2. Let S be the distinguished square of M . Let S′ be the shift of S one unit to the northeast. (If
S = {ei, . . . ,j }, then S′ = {ei+1, . . . , ej+1}.) Let N1, . . . , Nr be the set of neighbors of S ordered by
their side-lengths in increasing order. For each neighbor Nu of S, let Mu be the tableau obtained from
M by replacing Nu and S with the intersection S′ ∩ Nu and the span S ∪ Nu. Let M0 be the tableau
obtained from M by replacing S with S′

If S′ contains the smallest neighbor N1 of S, replace M by the tableau M1 only. Otherwise, for every
neighbor Nu of S construct the tableau Mu. If S′ is contained in the largest neighbor of S or if M0 is
not a Mondrian tableau, replace M by the set of tableaux M1, . . . , Mr. Otherwise, replace M by the
set of tableaux M0, M1, . . . , Mr. See Figure 7 for an example.

GA3. Return to Step 1 and run the algorithm for each of the tableaux Mi constructed in Step 2.

Remark 3.13. GA2 should be interpreted as asserting the following statement. Let M be a Mondrian tableau.
If S′ contains the smallest neighbor of S, then [ΣM ] = [ΣM1

]. Suppose S′ does not contain the smallest neighbor
of S. If S′ is contained in the largest neighbor of S or if M0 is not a Mondrian tableau, then [ΣM ] =

∑r
i=1[ΣMi

].
Otherwise, [ΣM ] =

∑r
i=0[ΣMi

].

Remark 3.14. We remark that if S′ is not contained in Nr and S′ does not contain N1, then M0 fails to be a
Mondrian tableau if and only if |S ∪ Nr| = |Nr| + #(S ∪ Nr)(M) − #Nr(M).
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Lemma 3.15. The Grassmannian Algorithm replaces a Mondrian tableau for G(k, n) with Mondrian tableaux
for G(k, n).

Proof. By Lemma 3.9 normalizing a Mondrian tableau gives a Mondrian tableau. It is clear that every Mi

replacing M has the same number of squares as M . They clearly satisfy Mon1. M0 is by assumption a
Mondrian tableau. Hence, in that case there is nothing further to check. We can assume that i ≥ 1. The
collection of squares M1, . . . , Mr are normalized. M and Mi differ only in squares S, Ni, S

′ ∩ Ni and SN i, the
span of S and Ni. Since l(S) = l(SN i) and l(S′ ∩ Ni) = l(Ni), the lower-left corners of the squares in Mi are
distinct. If S′ does not contain N1, then any two squares that share an upper-right corner in Mi also share an
upper-right corner in M . Hence Condition 2 in Definition 3.6 is also clear. If S′ contains N ′, then Condition 2
in Definition 3.6 holds for M1 because by the definition of the distinguished square every square whose lower-left
corner is southwest of l(SN i) contains l(SN i). It follows that Mon2 and Mon3 are satisfied for Mi by Remark
3.7.

�

The Grassmannian Algorithm begins with a Mondrian tableau and terminates with a collection of tableaux
associated to Schubert varieties. Note that the step GA2 replaces a normalized Mondrian tableau with tableaux
that satisfy Condition 2 in Definition 3.6. Furthermore, except for possibly Tableau M0, the tableaux Mi

constructed in GA2 are automatically normalized. In M0 the lower-left corner of at least one square moves
strictly northeast. In Mi, for i > 0, the total side-length of the squares increases by one. Since the tableau is
contained in an n × n grid, the algorithm has to terminate.

Remark 3.16. The reason that Condition 2 in Definition 3.8 does not simply read that the squares all have
distinct upper-right corners is to avoid infinite loops in the Grassmannian Algorithm. Otherwise, if the distin-
guished square contains its smallest neighbor, shrinking SN1 gives back the tableau we started with.

Definition 3.17. A degeneration path for a Mondrian tableau M is a sequence of Mondrian tableaux

M1 → M2 → · · · → Mp

such that M1 = M , Mp is the Mondrian tableau associated to a Schubert variety and for every 1 ≤ i ≤ p − 1
the tableau M i+1 is one of the tableaux replacing M i in GA2 in Algorithm 3.12.

The main theorem for Grassmannians is:

Theorem 3.18. Let M be a Mondrian tableau for G(k, n) and let ΣM denote the associated subvariety of
G(k, n). Express the Poincaré dual of the class of ΣM as a sum of Schubert cycles

∑
cλσλ. Then the coefficient

cλ is equal to the number of degeneration paths starting with M and ending in a Mondrian tableau associated
to σλ.

Theorem 3.18 in particular applies to the intersection of Schubert varieties. More generally the projection
of the intersection of two Schubert varieties in any partial flag variety is a variety associated to a Mondrian
tableau.

3.1.5. The Littlewood-Richardson rule. We now describe how to multiply two Schubert cycles σλ and σµ in
G(k, n).

Algorithm 3.19 (Littlewood-Richardson Rule). LR1 Take the Mondrian tableau associated to σλ where all
the squares have the same lower-left corner e1. Label the squares of this Mondrian tableau A1 ⊂ A2 ⊂
· · · ⊂ Ak. Take the Mondrian tableau associated to σµ where all the squares have the same upper-right
corner en. Label the squares of this Mondrian tableau B1 ⊂ B2 ⊂ · · · ⊂ Bk. Place the two Mondrian
tableaux on the same n × n grid.

LR2 For every 1 ≤ i ≤ k form the square ABi = Ai ∩Bk−i+1. If any of the squares ABi is empty, stop. The
product of the two Schubert cycles is zero. Otherwise form the Mondrian tableau M(λ, µ) consisting of
the squares AB1, . . . , ABk.

LR3 Run the Grassmannian Algorithm on the Mondrian tableau M(λ, µ).
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Remark 3.20. Provided that the intersection of two Schubert varieties is non-empty, then the initial tableau
corresponding to the intersection is normalized. This is clear from the construction.

A corollary of Theorem 3.18 is the following Littlewood-Richardson rule.

Theorem 3.21 (Littlewood-Richardson rule). The Littlewood-Richardson coefficient cν
λ,µ for G(k, n) is equal

to the number of degeneration paths starting with M(λ, µ) in an n × n grid and ending in a Mondrian tableau
associated to σν in Algorithm 3.19.

We illustrate Theorem 3.21 by calculating σ2
2,1 in G(3, 6).

Figure 8. The product σ2
2,1 = σ3,3 + 2σ3,2,1 + σ2,2,2 in G(3, 6).

3.1.6. A more efficient algorithm. The efficiency of the Littlewood-Richardson rule given in Theorem 3.21 can
be improved by eliminating unnecessary steps in the Grassmannian Algorithm. In this subsection we state
a variation of the Littlewood-Richardson rule. This modified algorithm is important for characterizing the
minimal set of Mondrian tableaux that are needed to calculate the Littlewood-Richardson coefficients for all
G(k, n).

Definition 3.22. A Littlewood-Richardson tableau is a Mondrian tableau consisting of squares D1, · · · , Ds and
ABs+1, . . . , ABk such that

(1) Either the collection of squares D1 ⊂ D2 ⊂ · · · ⊂ Ds is nested; or there is a unique square Dt such that
the collection of D squares omitting Dt is nested, Dt ⊂ Du for u > t and the lower-left and upper-right
corners of Dt are strictly northeast of the lower-left and upper-right corners of Du for u < t.

(2) For every s + 1 ≤ i ≤ k, the lower-left and upper-right corners of ABh are strictly northeast of the
lower-left and upper right corners of ABh−1 and of all the squares Du. If two squares Du ⊂ Dv have
the same lower-left corners, then the D squares contained in Dv are nested.

(3) Dt−1 touches or intersects Dt. Ds touches or intersects ABs+1. ABi touches or intersects ABi+1 for
every s + 1 ≤ i ≤ k − 1.

Algorithm 3.23 (Simplifying Littlewood-Richardson Tableaux). Let M be a Littlewood-Richardson tableau.

(1) If the tableau is nested, stop. The algorithm terminates. If the D squares are nested, let the active
square be Ds. Otherwise, there is a unique D-square Dt as in Definition 3.22. Let the active square be
Dt−1. Slide the active square northeast by one unit. If there are any squares that are contained in the
active square and share the same lower-left corner, slide those squares northeast by one unit as well.
Denote the resulting tableau by M2
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(2) If the active square is Dt−1, then its only neighbor is Dt. If the active square is Ds, then its only
neighbor is ABs+1. Form the tableau M1 by replacing the active square and its neighbor in M2 with
their new intersection (the intersection in M2) and the old span (the span in M) of the active square
and its neighbor. If the last condition of the definition is not satisfied for the largest square contained
in the active square, slide it northeast until it touches the lower-left corner of the new intersection,
dragging any square that becomes lower-left justified with it.

(3) If after the move the active square does not contain its neighbor or is not contained in its neighbor and
if M2 is a Mondrian tableau, then replace M by the two tableaux M1 and M2. Otherwise, replace M
by M1 only. Apply the algorithm to each of the resulting tableaux.

Algorithm 3.24 (The Modified Littlewood-Richardson Rule). MLR1 Run steps LR1 and LR2 of the Algorithm
3.19 to form the Mondrian tableau M(λ, µ). If there are any basis elements that are not contained in
any of the squares of M(λ, µ) remove them from the grid.

MLR2 Apply the Algorithm 3.23 to M(λ, µ).

It is clear that after step MLR1, the resulting tableau is a Littlewood-Richardson tableau. It is also clear that
the algorithm for simplifying Littlewood-Richardson tableaux transforms each Littlewood-Richardson tableau
to one or two Littlewood-Richardson Tableaux and terminates in a collection of tableaux associated to Schubert
varieties.

Theorem 3.25 (Littlewood-Richardson Rule II). The Littlewood-Richardson coefficient cν
λ,µ is the number of

times the Mondrian tableau associated to σν occurs in the Modified Littlewood-Richardson Algorithm applied to
M(λ, µ).

We illustrate Theorem 3.25 by recalculating σ2
2,1 in G(3, 6).

Figure 9. The product σ2
2,1 = σ3,3 + 2σ3,2,1 + σ2,2,2 in G(3, 6).

3.2. The geometry of Mondrian tableaux.

3.2.1. The variety associated to a Mondrian tableau. In this subsection we explain the geometry behind Mon-
drian tableaux. We show how to associate a subvariety of the Grassmannian to each Mondrian tableau.

Notation 3.26. For the rest of this paper, we will denote combinatorial objects, such as squares in a Mondrian
tableau, by capital letters in the math font (e.g., Si). We will denote the geometric objects represented by the
combinatorial objects by the corresponding letter in Roman font (e.g., Si).
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In a Mondrian tableau, a square of side-length s represents a vector space of dimension s. The unit squares
along the diagonal of the n × n grid represent the basis elements e1, . . . , en. The square represents the vector
space spanned by the basis elements it contains. Correspondingly, if a square S1 is contained in another square
S2, then the corresponding linear space S1 is a subspace of the linear space S2.

The squares in a Mondrian tableau represent the vector spaces which impose rank conditions on k-planes
parameterized by G(k, n). The k-planes are required to intersect S in dimension at least equal to the number
of squares (inclusive) contained in S. For example, in a Mondrian tableau S1 ⊂ · · · ⊂ Sk associated to the
Schubert cycle σλ, the k-planes are required to intersect Si in dimension at least i.

Now we can define the variety associated to arbitrary Mondrian tableaux. Let M be a Mondrian tableau.
Recall that for any square S in the n × n grid, |S| denotes the side-length of S. Denote the number of squares
of M contained in S (including S if S is a square of M) by #S(M).

Definition 3.27. Let M be a Mondrian tableau for G(k, n). Define the variety ΣM associated to M to be the
closure of the locus of k-planes [Λ] ∈ G(k, n) that satisfy

(1) For any square S of M , dim(Λ ∩ S) = #S(M).

(2) For any two squares Si, Sj of M , dim(Λ ∩ Si ∩ Sj) = #(Si ∩ Sj)(M).

In other words, ΣM is the closure of the locus of k-planes Λ where one can choose a basis of Λ such that each
vector space S corresponding to a square in M contains #S(M) basis elements and a basis element is contained
in Si and Sj only if it is contained in St for some St ⊂ Si ∩ Sj , where Si, Sj and St are squares of M .

Let S1 ⊂ S2 be two squares of M that share the same lower-left corner ei. Suppose that the squares of M
contained in S1 do not have ei as a lower-left corner. Suppose there does not exist a square strictly containing
S1 and strictly contained in S2. Then the locus of k-planes that have a #S1(M)-dimensional subspace in S1 and
a #S2(M)-dimensional subspace in S2 is the same as the locus of k-planes that have a #S1(M)-dimensional
subspace in S1 and an (#S2(M) − 1)-dimensional subspace in S2 − {ei}. Moreover, the same analysis applies
with the lower-left replaced by upper-right. Consequently, the variety associated to a Mondrian tableau and to
its normalization are the same variety.

Lemma 3.28. Let M be a Mondrian tableau. Let M ′ be its normalization. Then ΣM = ΣM ′ .

We now calculate the dimension of ΣM .

Lemma 3.29. Let M be a normalized Mondrian tableau. Then the variety associated to M is an irreducible
subvariety of G(k, n) of dimension ∑

S∈M

|S| −
∑

S∈M

#S(M).

Proof. To see that the variety ΣM is irreducible, we inductively construct it. A Mondrian tableau consisting
of a single square is projective space PS. Hence it is irreducible and of the dimension claimed in the lemma.
Suppose inductively the varieties associated to a Mondrian tableau with k − 1 squares is irreducible of the
claimed dimension. Let M be a Mondrian tableau with k squares S1, . . . , Sk. Let S1 be the square in M whose
lower-left corner is furthest southwest. Let M ′ be the tableau obtained from M by removing S1. Then the
Zariski-open subset of ΣM used in the definition is a non-empty Zariski open set in a projective bundle over a
Zariski open subset of ΣM ′ . Namely, over this open subset consider the (k− 1)-dimensional subspace contained

in the union of
⋃k

i=2 Si. By assumption each of the k-planes parameterized by ΣM intersect this subspace in a
(k − 1)-dimensional subspace. Note that we need condition Mon3 for this to be possible. Hence, on this open
subset we get a well-defined dominant morphism to ΣM ′ . The fibers are open subsets in a projective space
P|S|−#S(M). By induction it follows that ΣM is irreducible of the claimed dimension. �

Remark 3.30. The reason for insisting on condition Mon3 in the definition of a Mondrian tableau is to make
sure that ΣM is not empty and the dimension is given by Lemma 3.29. Even if a collection of squares M is not
a Mondrian tableau, we can associate the quantity

∑
S∈M |S| −

∑
S∈M #S(M) to it. We can still associate a

variety to M by asking the k-planes to intersect the vector spaces represented by the squares of M in dimension
at least equal to the number of squares contained in that square. In this case the quantity gives an upper bound
on the dimension.
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3.2.2. Degenerations. We now would like to discuss the geometry underlying the Grassmannian Algorithm.

We will obtain the combinatorial Littlewood-Richardson rule by interpreting the move on the Mondrian
tableau M as a degeneration of the linear spaces defining the subvariety ΣM of G(k, n). We will describe the
flat limits of this degeneration and see that the flat limit is a union of the varieties associated to the Mondrian
tableaux described in the Grassmannian Algorithm each occurring with multiplicity one. It will follow that the
class of ΣM is a sum of the classes of the varieties associated to the resulting tableaux. We then repeat the
process for each of the resulting tableaux.

Let M be a normalized Mondrian tableau that is not nested. Let S = {ei, . . . , ej} be the distinguished
square. The Grassmannian Algorithm instructs us to move S northeast by one unit. This move represents a
one-parameter family of vector spaces S(t) parameterized by P1, where S(t) is the vector space

S(t) =< tei + (1 − t)ej+1, ei+1, . . . , ej > .

Corresponding to this one-parameter family of vector spaces, there is a flat one-parameter family of subvarieties
of G(k, n), where the general member is isomorphic to ΣM . The variety ΣM (t) is defined in the same way as
ΣM , except that in every occurence the basis element ei is replaced by the vector tei + (1 − t)ej+1. Note that
ΣM (1) = ΣM . In a Zariski open subset of P1, these varieties are related by a linear transformation given by a
change of basis. Hence, they are isomorphic. Consequently, they form a flat family. Let ΣM (0) denote the flat
limit of this family. Our task at hand is to describe the irreducible components of ΣM (0) that have the same
dimension as ΣM and the multiplicity of ΣM (0) along each of these components.

Observation 3.31 (The main geometric observation). For a square U , let U denote the vector space spanned by
the basis elements contained in U . For t 6= 0, let U(t) denote the vector space spanned by the basis elements
contained in U unless U contains ei but not ej+1. In the latter case, let U(t) denote the vector space spanned by
tei + (1− t)ej+1 and the basis elements contained in U −{ei}. Let S1, . . . , Sr be squares of a Mondrian tableau
M . For t 6= 0, let S1,...,r(t) denote the span of the vector spaces S1(t), . . . , Sr(t). Let S1,...,r(0) be the flat limit
of the spans over t = 0. Note that the limit of the spans does not have to be the span of the limits. If one of the
squares is equal to S and one of the squares contains the basis element ej+1 and not ei, then the limiting vector
space S1,...,r(0) is the span of ei and the limiting vector spaces S1(0), . . . , Sr(0). Otherwise, S1,...,r(0) is the span
of the limiting vector spaces S1(0), . . . , Sr(0). Let S1,...,r(0) and S1,...,r(1) denote the squares corresponding to
the vector spaces S1,...,r(0) and S1,...,r(1), respectively.

The k-planes parameterized by ΣM (t) intersect the span S1,...,r(t) in dimension greater than or equal to the
number of squares of M contained in S1,...,r(1). Since the condition of intersecting a linear space in at least
a given dimension is a closed condition, the k-planes parameterized by the flat limit ΣM (0) must satisfy the
property that they must intersect S1,...,r(0) in dimension greater than or equal to the number of squares of M
contained in S1,...,r(1). Furthermore, this must hold for any set of squares S1, . . . Sr of M . We will shortly see
that this observation suffices to determine the support of ΣM (0).

Every subvariety of the Grassmannian is contained in a variety associated to a Mondrian tableau since for
instance the Grassmannian is associated to a Mondrian tableau. In terms of Mondrian tableaux Observation 3.31
asserts that if we are looking for minimal dimensional varieties associated to Mondrian tableaux that support
ΣM (0) we can restrict our attention to very special tableaux. For any collection of squares S1(1), . . . , Sr(1) in
M denote by S1,...,r(1) the union of the basis elements contained in all the squares. Denote by S1,...,r(0):

• The union of the basis elements in the squares S1(0), . . . , Sr(0) after the distinguished square has been
moved if none of the squares contain ei or none of the squares contain ej+1.

• The union of ei and the basis elements in S1(0), . . . , Sr(0) if at least one square Sj(1) contains ei and
one square Sj′ (1) contains ej+1.

Then Observation 3.31 asserts that we can assume that a variety associated to a Mondrian tableau M̃ that
contains a component of the limit ΣM (0) satisfies the property that #S1,...,r(0)(M̃) ≥ #S1,...,r(1)(M). We will
see that the varieties associated to such Mondrian tableaux have dimension at most the dimension of ΣM and
those that have the same dimension are the ones described by the Grassmannian Algorithm. Furthermore, they
each occur with multiplicity one in the limit.
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Theorem 3.32 (Geometric Formulation of the Algorithm). The support of the flat limit ΣM (0) is equal to the
union of the varieties associated to the Mondrian tableaux described in Step 2 of the Grassmannian Algorithm.
ΣM (0) is generically reduced along each of these components.

3.2.3. The proof that Theorem 3.32 implies Theorems 3.18 and 3.21.

Proof of Theorem 3.18. We have already observed that the Grassmannian Algorithm transforms a Mondrian
tableau to a set of Mondrian tableaux. Furthermore, if one continues applying the algorithm to each of the
resulting tableaux, eventually every tableau decomposes to the union of tableaux corresponding to Schubert
varieties. We interpret Step 2 of the algorithm as the degeneration described above. Theorem 3.32 implies that
the support of the flat limit is the union of the varieties associated to the tableaux described in Step 2 of the
algorithm. Moreover, the limit is reduced at the generic point of each of these components. Hence the class of
ΣM is the sum of the classes of the varieties associated to these tableaux. Theorem 3.18 follows. �

Proof of Theorem 3.21. In order to conclude the proof of Theorem 3.21, it suffices to show that the class of the
variety Σλ ∩ Σµ is equal to the class of the variety associated to the Mondrian tableau described in Step LR2
of Algorithm 3.19.

Initially the two Schubert varieties are defined with respect to two transverse flags. GL(n) acts with a dense
orbit on the product of two complete flag varieties. For every pair of flags (F•, G•) in the dense orbit there is a
basis e1, . . . , en of the underlying vector space such that Fi =< e1, . . . , ei > and Gi =< en, en−1, . . . , en−i+1 >.
The initial tableau depicts the two Schubert varieties defined in terms of such a pair of opposite flags. Hence,

the intersection (if non-empty) is irreducible of dimension k(n−k)−
∑k

i=1 λi−
∑k

i=1 µi. It is easy to see that the
intersection is empty if and only if in LR2 one of the squares ABi is empty. Recall that ABi is the intersection
of Ai and Bk−i+1. Ai (respectively, Bk−i+1) contains an i (respectively, k − i + 1) dimensional subspace of the
k-planes. Since these two subspaces in a k-plane have to intersect, there has to be common basis elements to
Ai and Bk−i+1 for every 1 ≤ i ≤ k. Conversely, if the squares ABi are non-empty for every i, then the span of
the basis elements that form the lower-left corner of ABi give a k-plane in the intersection. We can now assume
that Σλ ∩ Σµ is non-empty.

To conclude the proof it suffices to show that the variety associated to M(λ, µ) has the same dimension as
Σλ ∩ Σµ and has an open subset contained in Σλ ∩ Σµ. The dimension of the variety associated to M(λ, µ) is
by Lemma 3.29 equal to

k∑
i=1

(n − k + 1 − λi − µk−i+1) − k = k(n − k) −

k∑
i=1

λi −

k∑
i=1

µi.

It follows that the two varieties have the same dimension. Consider the open subset of M(λ, µ) consisting of k
planes that have a basis v1, . . . , vk, where vi ∈ ABi and vi /∈ ABj for j 6= i. Clearly this open subset is contained
in Σλ ∩ Σµ. Since the two varieties are irreducible of the same dimension and share a dense open subset, we
conclude that the two coincide. Hence by Theorem 3.18 Algorithm 3.19 computes the Littlewood-Richardson
coefficients. �

Proof of Theorem 3.32. The proof of Theorem 3.32 has two steps. In Step 1 we will use the Observation
3.31 to determine the set theoretic components of the flat limit ΣM (0). This step will show that the irreducible
components of ΣM (0) are supported along subvarieties of G(k, n) associated to the Mondrian tableaux described
in the Grassmannian Algorithm. Once we know that the set theoretic limits are that simple, in Step 2 an easy
local calculation shows that they all occur with multiplicity one.

Observe that if the square S we move starts containing its smallest neighbor N1, then the variety associated to
the tableau M1 is the same variety as the variety associated to M . This is simply the reverse of the normalization
process for the upper-right corners of the squares. This case should be interpreted not as a degeneration, but
as replacing M with the equivalent tableau M1 (where two tableaux are equivalent if their associated varieties
are equal). In this case there is nothing further to prove. For the rest of the proof we will assume that after
moving S, its smallest neighbor is not contained in S.

Lemma 3.33. The varieties associated to the tableaux M0, . . . , Mr described in Step 2 of the Grassmannian
Algorithm have the same dimension as the variety associated to M .



18 IZZET COSKUN

Proof of Lemma 3.33. M0 is obtained from M by simply sliding a square one unit. Since the square does not
contain its smallest neighbor and is not contained in its largest neighbor, the side-lengths and the containment
relations among the squares remain the same. As long as M0 is a Mondrian tableau, then the dimension of the
associated variety is calculated by Lemma 3.29 and is clearly equal to the dimension of ΣM .

Let Ni be a neighbor of S. In the tableau Mi the two squares S and Ni are replaced by the intersection
S(0) ∩ Ni and the span of S and Ni. All the other squares remain unchanged. Given two vector spaces
the sum of their dimensions is equal to the sum of the dimensions of their intersection and span. Since
dim(S(0) ∩ Ni) = dim(S ∩ Ni) + 1. We conclude that the total of the side-lengths of the squares in Mi is
one larger than that of M .

On the other hand, the total number of containment relations among squares increases by one as well. Let T
be any square of M other than S or Ni. Let # ∗ T (M) denote the number of squares of M strictly containing
T . Then #T (M) = #T (Mi) and # ∗ T (M) = # ∗ T (Mi).

Since S does not contain the smallest neighbor of S, S(0) ∩Ni cannot contain any squares of Mi other than
S(0) ∩ Ni that are not already contained in S and Ni. Hence if any square is contained in both S and Ni, it is
contained in S(0) ∩ Ni and in the span of S and Ni. If a square is contained in only one of S or Ni, then it is
contained in their span, but not in S(0) ∩ Ni, unless the square is S(0) ∩ Ni. Finally if a square T is neither
contained in S nor in Ni, it cannot be contained in either of S(0) ∩ Ni or the span of S and Ni. A priori T
could be contained in the span of S and Ni. But then the lower-left hand corner would be between S and Ni.
Hence by the definition of a neighbor, T would have to be contained in S.

Similarly, any square that contains S necessarily contains S(0) ∩ Ni. If the square also contains Ni, then it
contains their span. If it only contains one of S and Ni, but not both, then it contains the intersection S(0)∩Ni,
but not the span of S and Ni. If it contains both S and Ni, then it contains both S(0) ∩ Ni and the span of S
and Ni. Since none of the other squares change, it follows that #T (M) = #T (Mi).

Finally to conclude the proof of the lemma, we observe that neither S contains Ni nor Ni contains S.
However, the span of S and Ni contains S(0)∩Ni. By Lemma 3.29 it follows that ΣMi

has the same dimension
as ΣM . �

We can now continue with the proof of Theorem 3.32. Let Y be an irreducible component of the flat limit
ΣM (0) of dimension equal to the dimension of ΣM . By the Observation 3.31 the k-planes parameterized by Y
have to intersect the vector spaces Si(0) in dimension at least equal to the number of squares in M contained
in Si. Let Λ be a general k-plane parameterized by Y . Suppose that the dimension dim(Λ ∩ Si(0)) = #Si(M)
for every square of M and dim(Λ∩ Si(0)∩ Sj(0)) = #(Si ∩Sj)(M) for every pair of squares Si and Sj in M . It
follows that the support of Y has to be contained in ΣM0

. Since they are both irreducible varieties of the same
dimension, we conclude that supp(Y ) = ΣM0

.

Observe M0 fails to be a Mondrian tableau when |S∪Nr|−|Nr| = #(S∪Nr)(M)−#Nr(M). In this case, if the
limiting positions of the subspaces of the k-planes remain independent dim(Λ∩Si(0)∩Sj(0)) = #(Si ∩Sj)(M0),
then the dimension of the subspace of Λ contained in Nr has to increase by one. The same holds if S(0) is
contained in Nr. If there were a component Y , by the Observation 3.31 it would be contained in the variety
associated to the normalization of M0. Note that the variety corresponding to the normalization of M0, if non-
empty, has dimension strictly smaller than the dimension of ΣM . It follows that such a locus cannot support
an irreducible component of the flat limit. For future reference, we need estimates on this dimension. In this
case it is easy to calculate this dimension exactly. Let er be the lower-left corner of Nr. Let p ≥ r be the
largest index such that er, er+1, . . . , ep−1, ep are all lower-left corners of squares in M . Suppose s of these basis
elements are lower-left corners of squares strictly contained in Nr. Then the dimension of ΣM is p − r + 1 − s
larger than the dimension of the variety associated to the normalization of M0 assuming it is non-empty.

We can now assume that the subspaces of Λ contained in Si(0) and Sj(0) for at least two vector spaces i and
j intersect in dimension greater than the number of squares contained in Si(0) ∩ Sj(0). Let T be the smallest
dimensional linear space that is the span of consecutive basis elements with the property that the intersection
of Λ with T has dimension larger than the number of squares of M0 contained in T. If there is more than
one vector space with the same dimension, let T be the one that contains a basis element with least index.
List the minimal vector spaces of M0 with respect to inclusion Si1(0), . . . , Sim

(0) that contain T in order of
their lower-left most corners. The fact that Λ intersects T leads the conditions imposed by Si1(0), . . . , Sim

(0)
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to be automatically satisfied. However, by Observation 3.31 any k-plane in the flat limit must still intersect
the limit of the spans Sih,ih+1

(0) in dimension equal to the number of squares contained in the span of the
squares Sih

and Sih+1
in M . Hence, we can replace the tableau M0, by the tableau where we delete the squares

Si1(0), . . . , Sim
(0) and draw the squares T, Si1,i2(0), . . . , Sim−1,im

(0). Recall that the squares Sih,ih+1
(0) are the

spans of the squares Sih
(0) and Sih+1

(0) unless one of the squares is S and the other square contains ej+1 and
not ei. Call the resulting tableau of squares U1. If the dimension of the subspace of Λ contained in Si for
a square Si of U1 is equal to #Si(U1) and for any two vector spaces Λ ∩ Si ∩ Sj = #(Si ∩ Sj)(U1), then by
Observation 3.31 Y has to be contained in the variety associated to U1. Otherwise, we repeat the process. Since
this cannot go on indefinitely, we obtain a tableau Ua whose associated variety must contain the irreducible
component Y of ΣM (0).

The first step will be complete if we can show that the variety associated to every tableau other than
M1, . . . , Mr obtained by this process has dimension strictly smaller than dim(ΣM ).

First observe that the total side-lengths of the squares in Ur is at most one more than the total side-lengths
of the squares in M . Let S1, . . . , Sj be a collection of squares ordered by their lower-left corners intersecting in
a non-empty square. Let Sh,h+1 denote the span of consecutive squares. Then we have the easy observation
that

j∑
h=1

|Sh| = |S1 ∩ S2 ∩ · · · ∩ Sj | +

j−1∑
h=1

|Sh,h+1|.

Hence the procedure preserves or decreases the total side-length of the squares of a tableau unless the first
square S1 = S(0) and S2 contains ej+1 and not ei. (Note that any square with lower-left corner southwest of S
contains S, so it cannot be minimal if S is in the list.) In the latter case since the side-length of the span is one
larger, the side-length increases by one. Since S can occur in the procedure at most once, the total side-length
of the squares increases by at most one.

Second we observe that the procedure increases the total number of containment relations by at least j − 1.
Let R be a square other than S1, . . . , Sj , then the procedure does not change the number of squares contained
in R. The procedure also does not change the number of squares containing R unless the lower-left corner of R
is between the lower-left corners of Sh and Sh+1 and the upper-right corner of R coincides with the upper-right
corner of Sh+1. If none of the squares are equal to S, then this is clear. If S1 = S, then the argument is identical
to the argument in the proof of Lemma 3.33.

Note that if j = 1, then the total side-length of the squares has to decrease by at least one since this case
corresponds to simply shrinking the side-length of one square. Hence to preserve dimension, we must have
j ≥ 2 for each run of the procedure. However, the total side-length can increase by at most one. We conclude
that in order to obtain a variety with dimension equal to dim(ΣM ) we can run the procedure at most once.
Furthermore, in this case j = 2, S1 = S(0) and ej+1 ∈ S2. The square T has to be the full intersection of S(0)
and S2 and if there is a square S′ whose lower-left corner is between the lower-left corner of S and S2 and not
contained in S, then S′ must contain S2. We conclude that S2 has to be a neighbor Ni of S. Furthermore, the
support of the irreducible component Y of ΣM (0) has to be contained in ΣMi

. Since both are irreducible of the
same dimension we conclude that supp(Y ) = ΣMi

.

We thus conclude that the support of ΣM (0) is contained in the union of the varieties associated to the
tableaux described by Step 2 of the Grassmannian Algorithm. Furthermore, it is easy to write explicit families
of k-planes that show that the support of ΣM (0) is the union of the varieties associated to the tableaux described
by Step 2 of the Grassmannian Algorithm.

There remains to show that ΣM (0) is generically reduced along each of these components. It suffices to check
the multiplicity at the generic point of each irreducible component. Without loss of generality, we may assume
that the Mondrian tableau M consists only of S and the neighbors N1, . . . , Nr. Let M → P1 denote the total
space of the family of varieties associated to Mondrian tableaux. For t 6= 0, let V (t) be the vector space which
is the span of S(t) and Nr(t). Let V (0) denote the limit of V (t). Suppose there are p squares in M contained in
the span of the squares S and Nr. Over a dense Zariski-open subset U of M intersecting every component of
ΣM (0), the morphism obtained by restricting the k-planes to their p-dimensional subspaces contained in V (t) is
a smooth morphism. Let T be a square contained in S or Nr, but not equal to S or any of the neighbors. After
possibly shrinking U to another Zariski open intersecting every component of ΣM (0), the morphism quotienting
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out the p-planes by their subspaces contained in T is a smooth morphism. It follows that to determine the
multiplicities it suffices to treat the case when the tableau consists only of S and the neighbors N1, . . . , Nr.

By induction this reduces to a computation in the Grassmannian of lines. Suppose S has only one neighbor.
Then the multiplicity of each tableau is one and the variety associated to each tableau occurs as a component
of ΣM (0). This easily follows either by the Pieri rule for the Grassmannian of lines or by an easy direct tangent
space calculation. Now suppose r > 1. For t 6= 0, let V (t) denote the span of S(t) and Nr−1(t). Let V (0) denote
the limit of V (t). We can restrict the (r + 1)-planes to the r-plane contained in V (t). By induction it follows
that each component occurs with multiplicity one. This concludes the proof of Theorem 3.32. �

3.3. Amplifications of Theorem 3.32. In this subsection we discuss some amplifications of Theorem 3.32.
The Grassmannian Algorithm dictates a precise order of degeneration. For many questions, this precise order
may be inconvenient. The question arises whether it is necessary to follow this order. In fact, we will shortly
observe that the proof of Theorem 3.32 uses very few facts about S. We now make this precise.

Let M be a normalized Mondrian tableau. Let S be any square of the Mondrian tableau with the property
that any other square S′ of M with l(S′) < l(S) contains S. Call such squares degeneratable squares. Note that
the distinguished square of M is such a square.

Let S be a degeneratable square. Then we can slide S northeast by one unit. The new feature in this case
is that if there exists any squares that contain S and have the same upper-right corner as S, we need to split
those squares to two pieces at the lower-left corner of S and slide their parts that coincide with S northeast as
well.

If S is the square S = {ei, . . . , ej}, this move corresponds to the degeneration where ei is replaced by
tei + (1 − t)ej+1. Corresponding to this degeneration of vector spaces, there is a flat family of varieties ΣM (t)
obtained by applying to ΣM the linear transformation for t 6= 0 giving the change of basis. Let ΣM (0) be the
flat limit of this family at t = 0. We would like to describe ΣM (0). In this case the description remains almost
identical. For the convenience of the reader we spell this out.

Algorithm 3.34 (A slightly different degeneration). Let M ′ be the tableau where the squares that move are
placed in their new position. For any square T of M , let T (1) denote the original position of T in M and T (0)
denote the new position of T in M ′. Let N1, . . . Nr be the neighbors of S in M . Let M0 be the normalization
of M ′.

If S(0) contains the smallest neighbor of S, replace M by the tableau formed by replacing S(0) and N1 in M ′

with the span of S(1) and N1 and the intersection of S(0) and N1. Otherwise, for every neighbor Ni form the
tableau Mi by replacing in M ′ the squares S(0) and Ni with the span of S(1) and Ni and the intersection of S(0)
and Ni. If S(0) is contained in the largest neighbor Nr of S or if |Nr|+ #(S ∪ Nr)(M)− #Nr(M) = |S ∪Nr|,
then replace M by the tableaux M1, . . . , Mr. Otherwise, replace M by the tableaux M0, M1, . . . , Mr.

Corollary 3.35. The support of the flat limit ΣM (0) is equal to the union of the varieties associated to the
tableaux described in the Algorithm 3.34. ΣM (0) is generically reduced along each of these varieties.

Proof. The statement is an immediate corollary of the proof of Theorem 3.32. If the set theoretic statement is
correct, then the fact that ΣM (0) is generically reduced along each component follows by the same multiplicity
calculation as in the proof of 3.32. The proof that the set theoretic limits are contained in the union of the
varieties associated to M0, M1, . . . , Mr is again obtained by a dimension count. We observe that the dimension
counts in the proof of Theorem 3.32 only used the fact that any square whose lower-left corner is to the southwest
of l(S) contains S. Since we are assuming this about S, the corollary follows. �

The corollary implies that we can obtain many different Littlewood-Richardson Rules by taking different
degeneration orders. We also observe that the corollary implies Theorem 3.25.

Proof of Theorem 3.25. Note that the more efficient algorithm eliminates any basis elements that is not used
in the description of the variety. This does not change the variety. Similarly the more efficient algorithm
slides squares that do not intersect any other squares. We can interpret such slides as a relabeling of the basis
elements. Since under this relabeling none of the vector spaces change, the variety associated to the tableau
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does not change. Finally, the more efficient algorithm does not normalize. Note that in Littlewood-Richardson
tableaux every square has at most one neighbor. Furthermore, if a square S1 shares the same lower-left corner
with a square strictly contained in it, then the collection of squares contained in S1 is nested. Hence, normalizing
preserves the property that there is only one neighbor for Littlewood-Richardson tableaux. Hence by Algorithm
3.34 only Tableau M1 can occur if we first normalize and move the squares until we move the active square.
Since this is equivalent to moving the active square and sliding the squares contained in it that share the same
lower-left corner with it, Theorem 3.25 follows. �

Remark 3.36. In addition to being more efficient, the importance of Theorem 3.25 stems from the fact that it
singles out Littlewood-Richardson tableaux as the smallest class of tableaux that are necessary to calculate all
Littlewood-Richardson coefficients of all Grassmannians by the method proposed in this paper.

Corollary 3.35 indicates that in the definition of Mondrian tableaux one should relax the condition that
squares be spans of consecutive basis elements. This also is a useful feature when tackling many problems. In
particular, in the algorithm for two-step flag varieties we would like to allow for vector spaces that are not spans
of consecutive basis elements.

Definition 3.37. A square S is called chopped if it is not the span of consecutive basis elements. The maximal
intervals of the basis elements contained in S are called the chops of S. The lower-left most chop lch(S) is the
chop that contains l(S). Let ei be a basis element such that ei /∈ S. Suppose that there exists indices h < i < j
such that eh, ej ∈ S. We will then call ei a gap of S.

We will depict a chopped square S in a Mondrian tableau by deleting the parts of the square along the row
and column corresponding to a gap of S.

Allowing arbitrary collections of squares makes using and working with Mondrian tableau fairly difficult and
is not necessary for most applications. We will settle on an intermediate ground and allow our squares to be
chopped in certain simple ways.

Definition 3.38 (Generalized Mondrian Tableau). A generalized Mondrian tableau M is a collection of (possibly
chopped) squares satisfying conditions Mon2 and Mon3 and the following two conditions:

Mon1a No square is contained strictly to the southwest of a gap of another square.

Mon1b Let S and S′ be any two squares in M with the property that l(S′) ≥ l(S). Then either one of the two
squares contains the other and if g is a gap of both they coincide northeast of g. Or the gaps of S′ are
a subset of the gaps of S, r(S′) ≥ r(S) and if g is a gap of S′, S and S′ coincide northeast of g.

Let M be a collection of squares satisfying Mon1a and Mon1b. If S and S′ in M are two squares with
l(S) = l(S′), then either S ⊂ S′ or S′ ⊂ S. Let g be the first gap northeast of l(S). Say it is a gap of S. By
definition either S ⊂ S′ or S and S′ agree northeast of g. Since S and S′ agree southwest of g as well, we still
have S ⊂ S′. The definition of a normalized tableau has to be slightly revised to account for the fact that the
squares are no longer spans of consecutive basis elements.

Definition 3.39. We say that a generalized Mondrian tableau M is normalized if

(1) The lower-left corners of any two squares of M are distinct.

(2) Let S ⊂ S′ be any two squares of M . If the upper-right corner of lch(S) equals the upper-right corner
of lch(S′), then every square whose lower-left corner is southwest of l(S′) contains S.

We will always work with tableaux that satisfy Condition 2 in Definition 3.39. We note that a slight
modification of Algorithm 3.8 transforms a generalized Mondrian tableau satisfying Condition 2 in Definition
3.39 to a generalized Mondrian tableau satisfying Condition 1.

Algorithm 3.40 (Normalizing generalized Mondrian tableaux.). Let M be a collection of squares satisfying
Mon1a and Mon1b. Suppose there are squares that share the same lower-left corner. Let ei be the southwest
most basis element which is the lower-left corner of more than one square. List S1 ⊆ · · · ⊆ Sr the squares that
have ei as their lower-left corner. Remove ei from S2 and label the resulting square S′

2. Replace S2 in M with
S′

2 and label the resulting collection M ′. If all the lower-left corners of the squares in M ′ are distinct, stop.
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Otherwise, repeat by replacing M with M ′. Discard the tableau if the side-length of any square shrinks to zero.

After finitely many applications M will be a collection of squares with distinct lower-left corners. If M is
normalized, stop. Otherwise there is a basis element ei which is the upper-right corner of lch(S) and lch(S′) for
a pair of squares S ⊂ S′ and not all squares S′′ with l(S′′) < l(S′) contain S. Let ei be the northeast most basis
element with this property. Let S1 ⊆ S2 ⊆ · · · ⊆ Sr be the set of squares containing ei as the upper-right corner
of their lower-left chops and that fail Condition 2 in Definition 3.39. Remove ei from S2 and label the resulting
square S′

2. Let M ′ be the collection of squares obtained by replacing S2 in M by S′
2. If M ′ is normalized, stop.

Otherwise, repeat by replacing M by M ′. If the side-length of any of the squares shrink to zero, discard the
tableau.

Lemma 3.41. Let M be a collection of squares satisfying Mon1a and Mon1b. Applying the Algorithm 3.40 to
the lower-left hand corners of the squares in M preserves Mon1a and Mon1b.

Proof. Mon1a clearly holds when we shrink lower-left corners: If S′
2 is contained southwest of a gap of a square

S when we shrink l(S2), then S2 is also contained southwest of S. This contradicts Mon1a for M . Mon1b holds
when we shrink lower-left corners. We only need to check it for S′

2. Suppose l(S) < l(S2). If S2 ⊂ S in M ,
then S′

2 ⊂ S in M ′. If g is a gap of S′
2 and S in M ′, then g is a gap of S2 and S in M , hence S′

2 and S agree
northeast of g. Otherwise, r(S) ≤ r(S2) and any gap of S2 is a gap of S and S2 and S agree northeast of any
gap g of S2 by Mon1b for M . Since r(S2) = r(S′

2) and the gaps of S′
2 are a subset of the gaps of S2, Mon1b

holds for these squares. If l(S) = l(S2), either S2 ⊂ S and Mon1b holds as before. Else S = S1. If g is a gap of
S′

2, then g must also be a gap of S1, hence the two agree northeast of g and Mon1b holds. If l(S) > l(S2) and
S ⊂ S2 in M , then S ⊂ S′

2 in M ′. If g is a gap of S and S′
2 in M ′, then g is a gap of S and S2 in M . Since S

and S2 agree in M northeast of g, S′
2 and S agree northeast of g in M ′. If l(S) > l(S2) and S 6⊂ S2 in M , then

if l(S′
2) ≤ l(S) and g is a gap of S′

2, then g is a gap of S2 in M , hence Mon1b holds. If l(S′
2) < l(S), since the

gaps of S are a subset of the gaps of S2 and r(S) ≥ r(S2) = r(S′
2), we must have S′

2 ⊂ S. If g is a gap of S′
2

and S in M ′, then g is a gap of S2 and S in M , hence S′
2 and S agree northeast of g. �

The final amplification of Theorem 3.32 we will discuss is an algorithm for finding the classes of varieties
associated to generalized Mondrian tableaux. Define the variety ΣM associated to a generalized Mondrian
tableau M as in Definition 3.27. The proof of Lemma 3.29 holds without change. Hence ΣM is an irreducible
subvariety of G(k, n) of dimension

∑
S∈M |S| −

∑
S∈M #S(M).

Algorithm 3.42. Let S be a square of a normalized, generalized Mondrian tableau M with the property that
any square whose lower-left corner is southwest of l(S) contains S. Move the lch(S) northeast by one unit. If
any square S′ containing S has a chop whose upper-right corner coincides with the upper-right corner of lch(S),
chop S′ at l(S) and slide the chop of S′ coinciding with lch(S) by one unit as well. Suppose lch(S) is given by
{ei, . . . , ej}, then define a neighbor of S exactly as in Definition 3.10. Apply Algorithm 3.34.

Lemma 3.43. Algorithm 3.42 transforms a normalized, generalized Mondrian tableau to normalized, generalized
Mondrian tableaux of the same dimension.

Proof. For a square T , let T (0) denote the new position of T in M ′. Let T (1) denote the old position of T
in M . The tableaux M1, . . . , Mr are normalized. The lower-left corners of all the squares are clearly distinct
since they are the same as the lower-left hand corners of the squares in M . The upper-right hand corners of the
lower-left chops of the squares are also as in M , except possibly if S(0) contains its smallest neighbor N1. If
S(0) or a square containing S(0) contains N1, then every square whose lower-left corner is southwest of S also
contains N1. Condition 2 in Definition 3.39 holds for any other square since it holds for M . By an argument
analogous to that in Remark 3.7, M1, . . .Mr satisfy Mon2 and Mon3.

In Mi let I = S(0)∩Ni and U = S ∪Ni. If U or any of the squares T (0) that move are contained southwest
of a gap g of another square, then S and T would be contained southwest of g in M contradicting Mon1a for
M . Suppose I were contained entirely to the southwest of a gap of a square X(0). If l(X(0)) < l(S), then
S ⊂ X(1) in M . Hence, g is a gap of S(0). Either g is also a gap of Ni, in which case Ni and S agree northeast
of g contradicting that I is contained southwest of g. Otherwise g is not a gap of Ni, hence r(S(0)) ∈ Ni by
Mon1b for M . This contradicts that I is contained southwest of g. If l(X) > l(S), then either X ⊂ S or S
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agrees with X northeast of g. If X ⊂ S and g is a gap of S, then X and S agree northeast of g. Otherwise,
g ∈ I. By Mon1b for M, the gaps of Ni are a subset of the gaps of S. Hence in any of the cases I cannot be
contained southwest of g. We conclude that Mon1a holds for Mi.

If X and Y are squares of Mi neither of which are in the set {U, I}, then Mon1b holds for X and Y . If
l(X) < l(S), then I ⊂ X since S(0) ⊂ X(0). Suppose g is a gap of I and X . Then g is a gap of S(0). Hence
S(0) and X agree northeast of g. If g is also a gap of Ni, then X , S and Ni, hence also I agree northeast of
g. If g is a gap of U , then it is a gap of both Ni and S, hence either X contains Ni and S or agrees with both
northeast of g. Therefore, either X contains U or agrees with U northeast of g. If X does not contain Ni, then
the gaps of Ni are a subset of the gaps of X . Note that the gaps of U are a subset of the gaps of Ni. Hence
the gaps of U are a subset of the gaps of X . If l(S) < l(X) < l(N), then either X ⊂ S or N ⊂ X . If N ⊂ X ,
then a gap of X is also a gap of N and consequently also a gap of S. S and N agree northeast of g and they
agree with X . Hence both U and I agree with X northeast of g. Also g is a gap of both U and I. If X ⊂ S,
then X ⊂ U . If g is a gap of both X and U , then g is a gap of S and N , hence they all agree northeast of g. If
g is a gap of I, then it is a gap of S(0) and hence of X . Since S(0) and X agree northeast of it, X and I agree
northeast of it as well. If l(X) > l(Ni), either Ni contains X or the gaps of X are a subset of the gaps of Ni

and hence also of S. In the latter case the gaps of X are clearly a subset of the gaps of U and I. If g is a gap
of X both U and I agree with it northeast of g. If Ni contains X , then U contains X . If g is a gap of both U
and X , then S and Ni agree with X northeast of g, hence so does U . If I contains X , then the argument is the
same as in the previous case. If I does not contain X , then S does not contain X . The gaps of X are contained
in the gaps of S and hence of I. If g is a gap of X , then S(0) agrees with X northeast of g and so does I. We
conclude that Mon1b holds for the Tableau Mi.

Finally, whenever M0 occurs, M ′ satisfies Mon1a and Mon1b and Condition 2 in Definition 3.39. If
r(lch(S(0))) = r(lch(S′)) in M ′, then r(lch(S(1))) = r(lch(S′(1))) in M . Otherwise, S(0) would contain
its smallest neighbor, hence M0 would not occur. We might need to normalize the lower-left corner of S(0). By
Lemma 3.41 normalizing the lower-left hand corners preserves Mon1a and Mon1b. In this case it is easy to see
that Condition 2 in Definition 3.39 is preserved. We conclude that M0 is a normalized, generalized Mondrian
tableau. Finally, the proof of Lemma 3.33 remains unaltered. This concludes the proof of the lemma. �

We interpret the move described in Algorithm 3.42 as the usual degeneration of the variety ΣM . Let ΣM (0)
denote the flat limit of this family. The fact that Algorithm 3.42 can be used to compute the classes of generalized
Mondrian tableaux follows from the following corollary of Theorem 3.32.

Corollary 3.44. Let M be a generalized Mondrian tableau. Consider the flat family corresponding to the
move of generalized Mondrian tableau. Then the support of the flat limit ΣM (0) is equal to the union of the
varieties associated to the tableaux described by Algorithm 3.42. ΣM (0) is generically reduced along each of
those varieties.

Proof. It suffices to show that the supports of the irreducible components of ΣM (0) are contained in the union
of the claimed varieties. The multiplicity calculations remain unchanged. We use Observation 3.31 to determine
the set theoretic limits. We observe that the basic dimension estimate in the proof of Theorem 3.32 remains
unchanged for generalized Mondrian tableaux. The proof of Theorem 3.32 depended on the estimate that if in
the limit the k-planes intersect a linear space contained in the intersection of the limiting positions of j > 1
minimal linear spaces with respect to inclusion, then the dimension decreases by at least j − 1 if one of the
vector spaces is not S(0) and by at least j − 2 if one of the vector spaces is S(0). Once we know this the
corollary immediately follows as in the proof of Theorem 3.32. By the Observation 3.31 this is easy to see.
Preserving the notation in the proof of Theorem 3.32, suppose T is minimally contained in Si1(0), . . . , Sij

(0). If
T intersects the lower-left chops of all the squares, the proof remains unchanged. The sum of the side-lengths
of the squares increase by at most one and the containment relations increase by at least j − 1. If T is not
contained in the lower-left chops of all the squares Sih

, then taking the spans of consecutive squares increases
the total side-length by the total number G of gaps Sih

has along the lower left chop of Sih+1
as h varies from

1 to j − 2. Note that here we are using that Sih
and Sih+1

agree northeast of the first gap of Sih+1
. However,

in that case, requiring Λ to intersect Sih,ih+1
(0) in dimension #Sih,ih+1

(M) does not account for Observation
3.31. Λ has to also intersect Sih,ih+2

(0) in dimension #Sih,ih+2
(M). This imposes G conditions on Λ. It follows

that if j > 1, the dimension decreases by at least j − 1. This concludes the proof of Corollary 3.44. �
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4. Painted Mondrian tableaux and a Littlewood-Richardson rule for two-step flag

varieties.

In this section we obtain a Littlewood-Richardson rule for two-step flag varieties. Recall that F (k1, k2; n)
denotes the two-step flag variety that parameterizes pairs of vector spaces V1 ⊂ V2 of dimensions k1 and k2,
respectively, of a fixed n-dimensional vector space V . We preserve the notation from §2.1 and §3.

4.1. Preliminary combinatorial definitions. In this subsection we introduce combinatorial objects called
painted Mondrian tableaux. As in §3.1, fix a basis e1, . . . , en. A square will denote a span of the basis elements.
In addition, the squares will now have one of two colors: red or black. The black squares will denote the vector
spaces that impose rank conditions on V2. The red squares will denote the vector spaces that impose rank
conditions on V1.

Notation 4.1. Let M be a collection of red and black squares. For any square S, let |S| denote the side-length of
the square S. Let #BS(M) denote the number of black squares (inclusive) of M contained in S. Let #RS(M)
denote the number of red squares (inclusive) of M contained in S.

Definition 4.2. Let R be a chopped red square in a collection of red and black squares M . A gap of R is a unit
square ei 6∈ R such that l(R) < ei < r(R) and ei is a gap of a black square contained in R. A hole of R is a
unit square ei 6∈ R such that l(R) < ei < r(R), but ei is not contained in any black squares B with l(B) ≥ l(R).

Definition 4.3. A painted Mondrian tableau M for F (k1, k2; n) is a collection of distinct black squares

B1, . . . , Bk2
and distinct red squares R1, . . . , Rk1

such that

PM1 The black squares B1, . . . , Bk2
form a generalized Mondrian tableau for G(k2, n).

PM2 Each red square is the span of the black squares it contains.

PM3a No red square is contained southwest of a gap of another red square. If g is a gap of a square S of M ,
then there exists a black square B ⊂ S with l(B) > g. If ei is a basis element not contained in a red
square R and l(R) < ei < r(R), then ei is either a gap or a hole of R.

PM3b Let R and R′ be two red squares of M with l(R′) ≥ l(R). Either one of the squares is contained in the
other and if g is a gap of both R and R′, then their gaps coincide northeast of g. Or r(R′) ≥ r(R) and
if g is a gap of R′, then either g is a gap of R or there does not exist a black square B with l(B) ≥ l(R′)
contained in R and containing g. Furthermore, in the latter case if g is a gap of both R and R′, then
the gaps of R and R′ coincide northeast of g.

PM3c Let g be a gap of a red square R. If S and S′ are two black squares of M contained in R with l(S′) <
g < l(S), then S ⊂ S′.

PM4 No red square is the span of the red squares it strictly contains.

PM5 Let Ri and Rj be any two red squares in M . Then

|Ri ∪ Rj | ≥ |Ri| + #R(Ri ∪ Rj)(M) − #RRi(M);

and

#B(Ri ∪ Rj)(M) ≥ #BRi(M) + #R(Ri ∪ Rj)(M) − #RRi(M).

We will place the basis elements e1, . . . , en on an n × n grid ordered from southwest to northeast. We will
depict the red squares in red and the black squares in black. In order to not clutter the diagrams if a red square
coincides with a black square, we will only draw the red square. This should not cause any confusion. Figure
10 depicts some examples.

A painted Mondrian tableau M represents an irreducible subvariety ΣM of the two-step flag variety. We will
describe how to associate a subvariety to a painted Mondrian tableau in detail in Section 4.3. Roughly, ΣM

is the closure of the locus of pairs (V1, V2) ∈ F (k1, k2; n) where V1 (respectively, V2) intersects the subspaces
spanned by the basis elements contained in red (respectively, black) squares in specified dimensions. Denote by
[ΣM ] the Poincaré dual of the class of ΣM .

It is easy to represent Schubert varieties in two-step flag varieties by painted Mondrian tableaux.
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Figure 10. Three examples of painted Mondrian tableaux.

Definition 4.4. The painted Mondrian tableau M(λ, δ) associated to the Schubert cycle σδ
λ is a painted Mon-

drian tableau consisting of k2 nested black squares B1 ⊂ · · · ⊂ Bk2
, where the side-length of Bi is n−k2 + i−λi,

and k1 red squares R1 ⊂ · · · ⊂ Rk1
coinciding with the black squares to which δ assigns the index 1.

Unit size

Figure 11. A painted Mondrian tableau associated to σ2,1,1,2
1,1,1,0 in F (2, 4; 6).

Given the intersection of two Schubert varieties in F (k1, k2; n), we can also associate a painted Mondrian
tableau to the intersection. We now describe this procedure.

Algorithm 4.5 (The Algorithm for associating a painted Mondrian tableau to a Schubert problem.). Let σδ
λ and

σκ
µ be two Schubert cycles in F (k1, k2; n).

1 Let M(λ, δ) be the painted Mondrian tableau associated to σδ
λ where the squares are not chopped and

all the squares have e1 as their lower-left corner. Similarly, let M(µ, κ) be the painted Mondrian tableau
associated to σκ

µ where the squares are not chopped and all the squares have en as their upper-right
corner. Place M(λ, δ) and M(µ, κ) in the same n × n grid. Label the black squares of M(λ, δ) by
A1 ⊂ · · · ⊂ Ak2

and the red squares by AR1 ⊂ · · · ⊂ ARk1
. Label the black squares of M(µ, κ) by

C1 ⊂ · · · ⊂ Ck2
and the red squares by CR1 ⊂ · · · ⊂ CRk1

.

2 For every 1 ≤ i ≤ k2, if r(Ai) < l(Ck2−i) shrink the tableau by removing the rows and columns
corresponding to the basis elements between r(Ai) and l(Ck2−i). Replace every square with its restriction
to this tableau. Keep the labeling of the squares the same.

3 Starting with i = 1 and proceeding in increasing order apply the following procedure. Consider the
smallest remaining black square Ai of M(λ, δ). If Ai does not coincide with a red square in M(λ, δ),
draw the intersection of Ai with the largest remaining black square Cj in M(µ, κ) in black. Delete both
Ai and Cj . If Ai coincides with a red square ARj in M(λ, δ) and CRk1−j+1 is smaller than the largest
remaining black square in M(µ, κ), form the intersection of Ai with the black square coinciding with
CRk1−j+1 in M(µ, κ) in black. Delete both squares. Otherwise form the intersection of Ai with the
largest remaining black square in M(λ, δ) in black. Delete both squares. Label the resulting square Bi.
If any of the intersections is empty, stop. The algorithm terminates. The intersection of the Schubert
varieties is empty.

4 For every 1 ≤ i ≤ k1, draw the intersection of the red squares ARi ∩ CRk1−i+1 in red. Delete ARi and
CRk1−i+1. Label the intersection Ri. If any of the Ri are empty, stop. The algorithm terminates.

5 Define the Mondrian tableau associated to the intersection M(σδ
λ, σκ

µ) to be the painted Mondrian
tableau consisting of the black squares Bi and red squares Ri.

Figure 12 gives three examples of Algorithm 4.5.

Definition 4.6. A painted Mondrian tableau is called normalized if the following two conditions hold:
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Figure 12. Three examples for Algorithm 4.5.

(1) Any two squares of the tableau that have the same color have distinct lower-left corners.

(2) Let S ⊂ S′ be any two squares of the tableau of the same color such that lch(S) and lch(S′) have the
same upper-right corner. Then every square whose lower-left corner is southwest of l(S′) contains S.

Remark 4.7. As in Remark 3.7, Conditions PM4 and PM5 automatically hold for a normalized painted Mondrian
tableau.

The following definition will play an important role in determining the degeneration order.

Definition 4.8. Let S be a black square of a normalized painted Mondrian tableau M . A black square F of M
is called a filler in S if F is strictly contained in S and F shares the same lower-left corner with a red square
not contained in S.

It is possible to describe limits of degenerations for varieties associated to painted Mondrian tableaux. How-
ever, for obtaining a Littlewood-Richardson rule we do not need to work with such general tableaux. We will
make further assumptions on the painted Mondrian tableaux to simplify the geometry and the algorithm.

Definition 4.9. A normalized painted Mondrian tableau M for F (k1, k2; n) is called admissible if the following
additional conditions hold.

APM1 If there is a containment relation between two distinct red squares R1 ⊂ R2 of M , then any square S of
M with l(S) ≤ l(R2) contains R1.

APM2 If there is a containment relation between two distinct black squares B1 ⊂ B2 of M , then either any
square S of M with l(S) ≤ l(B2) contains B1 or B1 is contained in a red square R of M strictly
contained in B2. If B1 does not coincide with R, then any square S with l(S) ≤ B2 either contains B1

or contains a filler F with l(F ) < l(B1).

APM3 Let R1 ⊂ B be a red square strictly contained in a black square of M . Let B1 ⊂ R1 be a square that does
not coincide with R northeast of l(B1). Then either B1 is contained in every square S with l(S) ≤ l(B)
or there exists a red square R2 ⊂ B strictly contained in B with l(R2) < l(R1) and B1 ⊂ R2.

Definition 4.10. Let M be a normalized painted Mondrian tableau for F (k1, k2; n). Let S be a square of any
color in M . A red neighbor of S is a neighbor of S in the tableau consisting of S and the red squares of M . A
black neighbor of S is a neighbor of S in the tableau consisting of S and the black squares of M .

Lemma 4.11. The tableau associated to the intersection of two Schubert varieties (if non-empty) is normalized
and admissible.

Proof. We can assume that the intersection of any of the squares is non-empty. The following are clear from
the construction:

(1) The black squares are not chopped since they are intersections of non-chopped squares. Hence Mon1a
and Mon1b vacuously hold.

(2) No two black squares share an upper-right or lower-left corner since the lower-left (respectively, upper-
right) corners of the squares correspond to distinct lower-left (respectively, upper-right) corners of the
tableau associated to σκ

µ (respectively, σδ
λ). The latter are all distinct. Similarly, the lower-left and

upper-right corners of red squares are distinct. Hence PM1, PM4 and PM5 hold.
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(3) The red squares are not chopped. They are intersections of non-chopped red squares. Furthermore,
every square contained in a red square is contained in a black square contained in it. The red squares
are the spans of the black squares contained in them. The reason for Step 2 in Algorithm 4.5 is to
ensure these last two statements hold. Otherwise, the red squares could have holes. We would then
have to restrict the red squares so that they are the spans of black squares contained in them. In any
case, PM2, PM3a,b,c hold.

(4) There are no containment relations among any two red squares. There may be containment relations
among black squares. However, in the construction a square of the tableau associated to σδ

λ does not
intersect the largest remaining black square, only when it coincides with a red square. In that case
the black square formed coincides with the corresponding red square. Hence APM1, APM2 and APM3
hold.

From these observations it is clear that the tableau corresponding to the intersection of two Schubert varieties
is a normalized, admissible painted Mondrian tableau. �

Definition 4.12. Let M be a painted Mondrian tableau. Define the dimension of a tableau M to be

k2∑
i=1

|Bi| +

k1∑
i=1

#BRi(M) −

k2∑
i=1

#BBi(M) −

k1∑
i=1

#RRi(M).

Lemma 4.13. The tableau associated to a Schubert variety Σδ
λ where δ assigns 1 to the indices i1 < · · · < ik1

has dimension
k2∑
l=1

(n − k2 − λl) +

k1∑
j=1

(ij − j),

equal to the dimension of the Schubert variety.

Proof. This is immediate from the definition of the dimension of a tableau. �

Lemma 4.14. Assuming it is non-empty, the tableau associated to the intersection of two Schubert varieties
Σδ

λ and Σκ
µ where δ associates 1 to the indices i1 < · · · < ik1

and κ associates 1 to the indices j1 < · · · < jk1

has dimension
k2∑
l=1

(n − k2 − λl − µk2−l+1) +

k1∑
l=1

(il + jk1−l+1 − k2) − k1,

equal to the dimension of intersection of the Schubert varieties Σδ
λ and Σκ

µ.

Proof. The sum of the side-lengths of the black squares is
∑k2

l=1(n−k2−λl−µk2−l+1+1). If k2−il+1 ≤ jk1−l+1,
then Rl contains jk1−l+1−k2 + il black squares. If k2 − il +1 > jk1−l+1, then k2 − il +1− jk1−l+1 black squares
strictly contain the black square Bil

and Rl contains one black square. Hence, the dimension of the tableau is
equal to

k2∑
l=1

(n − k2 − λl − µk2−l+1 + 1) +

k1∑
l=1

(−k2 + il + jk1−l+1) − k1 − k2.

This is equal to dimension claimed in the lemma. Note that the dimension of the intersection of the Schubert
varieties (if non-empty) is equal to this as well. �

4.2. The combinatorial Littlewood-Richardson rule. We now state the Littlewood-Richardson rule for
two-step flag varieties. The algorithm for computing the classes of painted Mondrian tableau will be very similar
to the Grassmannian Algorithm. We will move squares in the tableau and replace the tableau by new tableaux.
The move on the Mondrian tableau M corresponds to a degeneration of the vector spaces defining the variety
ΣM . In the flat limit the variety ΣM will specialize to the union of one or more varieties associated to painted
Mondrian tableaux. The algorithm replaces the original tableau with the tableaux corresponding to the limiting
varieties. As in the case of the Grassmannians, the limits are determined by the requirement that the limiting
vector spaces have to intersect the limits of the vector spaces spanned by the basis elements contained in the
squares of M and the spans of these vector spaces in given dimensions. We now make this discussion precise.
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Rule 4.15 (The rule for locating the square to move). Let M be a normalized, admissible painted Mondrian
tableau. If M is nested, there is no square to move. The algorithm terminates. Otherwise, among the squares
of M that are not nested, let T1 be the black square whose lower-left corner is furthest southwest. For i > 1,
set Ti be the black square contained in Ti−1 whose lower-left corner is furthest southwest. Among the squares
Ti, let Th be the square with smallest index satisfying the following two properties:

(1) Th does not contain any fillers.
(2) The collection of squares contained in Th is nested.

Set S = Th to be the square to move.

Rule 4.16 (The rule for moving squares). Let M be a normalized, admissible painted Mondrian tableau. Let
S be the square determined by Rule 4.15. We move S by shifting the lower-left most chop of S northeast by
one unit. If there are any squares (red or black) S′ that contain S and have a chop whose upper-right corner
coincides with the upper-right corner of lch(S), we chop S′ at l(S) and move the chop coinciding with lch(S)
northeast by one unit. (Note that in case lch(S) = lch(S′) this means we move lch(S′) as well.) We keep all
other squares fixed.

After moving S according to Rule 4.16, we will replace M by a collection of tableaux. As usual, we need a
procedure for normalizing the resulting tableaux.

Algorithm 4.17 (Normalizing painted Mondrian tableaux.). Let M be a collection of red and black squares where
the black squares satisfy Mon1a and Mon1b, the red squares satisfy PM2, PM3a, PM3b. If M is normalized,
stop. If the tableaux consisting of black squares is not normalized, run Algorithm 3.40 on the black squares of
M . If the resulting tableau is normalized, stop. Otherwise, if two red squares share a common lower-left corner,
let ei be the southwest most unit square that is the lower-left corner of two red squares. Let S1 ⊂ · · · ⊂ Sr be
all the red squares that have ei as their lower-left corner. Consider the black squares contained in S2 whose
lower-left corners are strictly northeast of the lower-left corner of S2. Let B be the square whose lower-left
corner is southwest most among them. Shrink S2 by moving its lower-left corner northeast to coincide with
the lower-left corner of B. Repeat until no two red squares share a common lower-left corner. If during the
procedure the side-length of a square shrinks to zero, discard the tableau. If the tableau is not normalized
repeat the procedure for the upper-right corners of the red squares failing Condition 2 in Definition 4.6 starting
with the northeast most basis element.

Let S(0) be the new position of the square S and let S(1) refer to the old position. If S coincides with a
red square R in M , let R(1) denote the old position of R and R(0) the new position of R. Let M ′ denote the
tableau where all the squares that move are placed in their new position and all other squares are kept as in
M .

M0 If any of the red squares in M ′ is not equal to the span of the black squares contained in it, shrink the
red square so that it is the span of the black squares contained in it. Normalize the resulting tableau.
See Figure 13 for examples.

Figure 13. Some examples of Tableau M0 .

M1(NR) Suppose S coincides with a red square R of M . For a red neighbor NR of R form the tableau M1(NR)
as follows: Replace the red squares NR and R(0) in M ′ with the intersection R(0) ∩NR and the span
of R(1) and NR in red. List all the black squares S(0) = Bi1 , . . . , Bij

in M ′ minimal with respect to
inclusion that contain the intersection R(0) ∩ NR. Order them by their lower-left corners (southwest
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to northeast). Replace the black squares Bi1 , . . . , Bij
in M ′ with the following squares drawn in black:

S(0) ∩ NR, the span of S(1) and Bi2 and the spans of Bih
and Bih+1

for 2 ≤ h ≤ j − 1. If any of the
red squares is not equal to the span of the black squares contained in it, shrink the red square so that
it is the span of the black squares contained in it. Normalize the resulting tableau. Figure 14 gives an
example of this tableau.

Figure 14. An example of Tableau M1(NRi) .

M2(Ni) For every black neighbor N1, . . . , Nr of S in M form the tableau M2(Ni) as follows: Replace S(0) and
Ni in M ′ with the intersection S(0)∩Ni and the span of S(1) and Ni in black. If any of the red squares
R is not the span of the black squares contained in it, shrink R by removing the basis elements from R
that are not contained in black squares contained in R. Normalize the resulting tableau. See Figure 15
for examples.

Figure 15. Some examples of Tableau M2(NRi) .

M3(NR) Suppose the largest black neighbor B1 of S in M coincides with a red square R1. If Bh−1 in M coincides
with a red square Rh−1, set Bh to be the black square with southwest most lower-left corner among
the black squares satisfying l(Bh) > l(Rh−1) and Bh 6⊂ Rh−1. Among the squares B1, B2, . . . , suppose
Bl+1 is the black square with least index which does not coincide with a red square. Then draw the
tableau M3(NR) as follows. Replace S(0), B1, . . . , Bl+1 in M ′ with the black squares S(0) ∩ B1, B1 ∩
B2, . . . , Bl ∩ Bl+1 and the span of S(1), B1, B2, . . . , Bl+1. If any of the intersections are empty, discard
the tableau. If any of the red squares is not equal to the span of the black squares contained in it,
shrink the red square so that it is the span of the black squares contained in it. Normalize the resulting
tableau. See Figure 16 for examples.

Figure 16. Some examples of Tableau M3(NR) .
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Algorithm 4.18 (The algorithm for simplifying painted Mondrian tableaux.). Let M be a normalized, admissible
painted Mondrian tableau. If M is nested stop. Otherwise, let S be the square determined by the Rule 4.15.
Move S following Rule 4.16. Replace M by the tableaux among M0, M1(NR), M2(Ni) and M3(NR) that have
the same dimension as M . Repeat the process for each of the resulting tableaux.

Algorithm 4.19 (Littlewood-Richardson Rule for two-step flag varieties). Given two Schubert cycles σλ and σµ

form the painted Mondrian tableau associated to their intersection following Algorithm 4.5. Apply Algorithm
4.18 for simplifying painted Mondrian tableaux until every tableau is the tableau associated to a Schubert
variety.

We will see in Proposition 4.41 that each normalized, admissible painted Mondrian tableau is replaced
by normalized, admissible painted Mondrian tableaux and that the algorithm terminates. Hence at the end
the tableau corresponding to the intersection of two Schubert varieties is replaced by a collection of tableaux
associated to Schubert varieties.

Definition 4.20. A degeneration path for a painted Mondrian tableau M is a sequence of painted Mondrian
tableaux

M1 → M2 → · · · → Mp

such that M1 = M , Mp is the Mondrian tableau associated to a Schubert variety and for every 1 ≤ i ≤ p − 1
the tableau M i+1 is one of the tableaux replacing M i in Algorithm 4.18

The main theorem of this paper is the following theorem which asserts that Algorithm 4.19 is indeed a
Littlewood-Richardson rule for two-step flag varieties.

Theorem 4.21 (Littlewood-Richardson Rule for two-step flag varieties). Let σλ and σµ be two Schubert cycles
in the two step flag variety F (k1, k2; n). Let their product be σδ

λ ·σ
κ
µ =

∑
ν cν

λµσα
ν . The coefficient cν

λµ is equal to

the number of degeneration paths starting with the tableau M(σδ
λ, σκ

µ) in an n × n grid and ending in a painted
Mondrian tableau associated to σα

ν .

The proof of Theorem 4.21 is very similar to the proof of Theorem 3.21. We interpret the transformations
of the Mondrian tableaux as degenerations of the vector spaces represented by the Mondrian tableaux. There
are corresponding flat families of subvarieties of F (k1, k2; n). The Algorithm 4.18 records the flat limit of these
degenerations. The degenerations eventually terminate in varieties associated to Schubert varieties. In §4.3 we
discuss this more precisely.

Remark 4.22. As in the case of Grassmannians, it is possible to make the Algorithm 4.19 more efficient. This
was done in the author’s original formulation of the rule. We refer the reader to the author’s original manuscript.

4.2.1. Examples. Before discussing the geometry of painted Mondrian tableaux and proving Theorem 4.21, we
calculate some intersections in two-step flag varieties using Algorithm 4.19.

We first calculate
σ2,1,2

1,0,0 · σ2,1,2
1,1,0 = σ1,2,2

2,1,0 + σ2,1,2
2,2,0 + σ1,2,2

1,1,1

in F (1, 3; 5). See Figure 17 for the calculation.

Next we calculate
σ2,1,2,1

1,0,0,0 · σ2,1,2,1
1,0,0,0 = σ1,2,2,1

1,1,0,0 + σ2,1,2,1
1,1,1,0 + σ2,1,1,2

1,1,0,0 + σ2,2,1,1
1,1,1,1

in F (2, 4; 5). See Figure 18 for the calculation.

We now begin discussing some basic properties of admissible, normalized, painted Mondrian tableaux.

Lemma 4.23. Let M be a normalized, painted Mondrian tableau. If a black square B coincides with a red
square R, then B cannot be a filler in any of the squares that contain it.

Proof. Suppose B ⊂ T is a filler. Then l(B) = l(R′) for some red square R′ not contained in T . Since M is
normalized and l(B) = l(R), l(B) cannot be the lower-left corner of any red squares other than R. Since B and
R coincide, R ⊂ T leading to a contradiction. �
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Figure 17. A sample calculation in F (1, 3; 5)

Figure 18. A sample calculation in F (2, 4; 5)

Lemma 4.24. Let M be a normalized painted Mondrian tableau. Let S be the square defined by Rule 4.15.
Then every square whose lower-left corner is southwest of l(S) contains S.

Proof. Since every red square is a span of black squares, it suffices to check the lemma for black squares. Let
S′ be a black square with l(S′) < l(S). We can assume that l(S′) > l(T1), otherwise S′ would be nested. By
Mon1b if lch(S) ⊂ S′, then S ⊂ S′. Hence, we may assume that S′ has a gap contained in lch(S). Since
l(S′) < l(S), there must exist Ti for i < h that does not contain S′. Suppose Ti0 is the smallest index square
that does not contain it. We must have l(Ti0) < l(S′) by the order of degeneration. Hence the gaps of S′ must
be a subset of the gaps of Ti0 . This is a contradiction since S is contained in Ti0 and S′ has a gap contained
in lch(S). In the terminology of the previous section S is a degeneratable square for the generalized Mondrian
tableau consisting of the black squares of M . �

Lemma 4.25. Let M be a normalized, admissible painted Mondrian tableau. Let S be determined by the Rule
4.15. Then S can have at most two black neighbors. If S has two black neighbors, then the smallest neighbor
coincides with a red square. Any square of M can have at most one red neighbor.
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Proof. In fact if B1 ⊂ B2 are two black squares with l(B2) > l(S) and B1 6⊂ S, then B1 must coincide with
a red square. Otherwise, by APM2 there would exist a red square R1 strictly contained in B2 and containing
B1. If B1 does not coincide with R1, then by APM2 either B1 ⊂ S or S contains a filler F with l(F ) < l(B1).
The first case is ruled out by assumption. The second case contradicts the definition of S. Hence, B1 must
coincide with a red square R1. Suppose there were more than two black neighbors: N1 ⊂ N2 ⊂ · · · ⊂ Nr.
Then N1, . . . , Nr−1 would have to coincide with red squares. However, by APM1 the square S would have to
contain all of these red square but the one coinciding with Nr−1. This contradicts the definition of a neighbor.
If a square T of M has more than one red neighbor RN1 ⊂ RN2, then by APM1 the square RN1 has to be
contained in T contradicting the definition of a neighbor. The lemma follows. �

Lemma 4.26. Let M be a normalized painted Mondrian tableau. Let S be the square defined by Rule 4.15.
Suppose S 6= T1. Then either S is a filler in Th−1; or there exists a black square B such that l(B) > l(S),
B 6⊂ S and B ⊂ Th−1. Furthermore, in the latter case any square S′ with l(S′) < l(S) contains B.

Proof. By assumption T1 6= S. By Rule 4.15 either Th−1 contains a filler F or the squares contained in Th−1

are not nested. Otherwise we would be moving Th−1 instead of S. In the first case necessarily l(F ) ≥ l(S). If
l(S) = l(F ), then S = F since M is normalized. If l(F ) > l(S), then F cannot be contained in S since otherwise
it would be a filler of S contradicting Rule 4.15. If Th−1 does not contain any fillers, then the squares in Th−1

are not nested. Hence there exists B ⊂ Th−1 with l(B) > l(S). Since the squares contained in S are nested B
cannot be contained in S. Finally, in case S 6= F , there remains to show F or B is contained in every square
S′ with l(S′) < l(S). We can assume l(S′) > l(T1), otherwise the claim is trivial. Either S′ is Ti for some i < h
or there exists a minimal index i0 such that Ti0 does not contain S′. We can assume we are in the latter case.
We must have l(S′) > l(Ti0). Hence the gaps of S′ are a subset of the gaps of Ti0 . By Mon1b, every square
contained in Ti0 and whose lower-left corner is northeast of l(S′) is also contained in S′. �

Lemma 4.27. Let M be a normalized, admissible painted Mondrian tableau. Let S 6= T1 be the square deter-
mined by Rule 4.15. If S is a filler in Th−1, then S has at most one black neighbor N that does not coincide
with a red square.

Proof. Suppose lch(S) = {ei, . . . , ej}. Since S is a filler, it shares a lower-left corner with a red square R. We
can assume that ej+1 is not a hole of R. Otherwise S does not have any neighbors. Moreover, ej+1 cannot be
a gap of R. Otherwise S and R would coincide and S could not be a filler by Lemma 4.23. Since S does not
coincide with R, there must exist black squares in R not contained in S. Let B be the one with the southwest
most lower-left corner. Note that ej+1 ∈ B. We know that there can be at most two black neighbors of S
and if there are two then the smaller one coincides with a red square. Let N1 ⊂ N2 be the two neighbors. If
l(B) < l(N1), then we have a contradiction unless N2 = B. But in that case N1 which coincides with a red
square R1 is contained in R. Hence by APM1, N1 ⊂ R1 ⊂ S contradicting the definition of a neighbor. We
can assume l(B) > l(N1). Then the gaps of N1 are a subset of the gaps of B. If B has a gap, then N1, S and
B agree northeast of the gap. We again conclude that N1 ⊂ R1 ⊂ R contradicting APM1. So there can be at
most one neighbor. In fact it has to coincide with B and by APM1 cannot coincide with a red square. �

Lemma 4.28. Let M be a normalized, painted Mondrian tableau. Let S be the square determined by Rule
4.15. Suppose S 6= T1 is not a filler in Th−1. Let N be the minimal (with respect to inclusion) black square not
contained in S with l(N) > l(S) such that any square S′ with l(S) < l(S′) < l(N) is either contained in S or
contains N . Then N ⊂ Th−1. In particular, if S has two black neighbors, then the smaller one is contained in
every square S′ with l(S′) < l(S).

Proof. By Lemma 4.26 Th−1 contains a square B 6⊂ S with l(B) > l(S). If l(B) ≤ l(N), then N ⊆ B ⊂ Th−1

by assumption. If l(B) > l(N), N ⊂ Th−1 by Mon1b and the minimality of N . �

The following observation will play a crucial role in the dimension calculations.
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Proposition 4.29. Let M be a normalized, painted Mondrian tableau. Let S be the square of M determined
according to Rule 4.15. If the length of intersection of a red square R with another red square increases when
moving S according to 4.16, then either S coincides with R or there exists a red square R′ not contained in R
with l(R′) = l(S).

Proof. Suppose lch(S) = {el, . . . , ej}. If all the red squares containing S also contain ej+1, then the length of
the intersection of two red squares do not increase. However, there may be a red square R containing S that
does not contain ej+1. If ej+1 is a hole of R, then the move cannot increase the length of intersection of R
with any red square since no red square R′ with l(R′) > l(R) can contain ej+1. By PM3a, we can assume that
ej+1 is a gap of R which is not a hole. If l(S) = l(R), then S contains any square contained in R by Mon1b
and PM3c. Since R is the span of the black squares it contains by PM2, R must coincide with S. Otherwise,
l(R) < l(S). Let B be the square with l(B) = l(R). Let Ti0 for 1 ≤ i0 < h be the square with largest index
such that l(Ti0) ≤ l(B). Either B = Ti0 ; or the gaps of B are a subset of the gaps of Ti0 . In either case ej+1

is a gap of Ti0 . Hence, S, B and Ti0 agree northeast of ej+1 by Mon1b. Hence Th−1 agrees with S northeast
of ej+1. By Rule 4.16 there cannot be any squares S′ ⊂ Th−1 with l(Th−1) < l(S′) < l(S). Hence any square
contained in Th−1 is also contained in S by Mon1b. By Lemma 4.26 S must be a filler in Th−1. The red square
R′ with l(R′) = l(S) is the red square in the lemma. �

Observe that the tableau M ′ formed after moving S is not necessarily a painted Mondrian tableau. The
Conditions Mon2 and Mon3 do not have to be satisfied for the black squares in M ′. Nevertheless, define the
virtual dimension of M ′ by associating to it the same quantity as in Definition 4.12.

Lemma 4.30. The virtual dimension of M ′ is less than or equal to the dimension of M . The dimension of the
normalization of M ′ is less than or equal to the dimension of M .

Proof. The sum of the side-lengths of the black squares in M and M ′ are equal. If S(0) does not contain the
smallest black neighbor of S and S(0) is not contained in the largest black neighbor of S, then the number of
containment relations among the squares in M and M ′ are also equal. Hence the virtual dimension of M ′ is
equal to the dimension of M .

By Condition 2 in the definition of normalization, S(0) can contain at most one of the black neighbors of
S. If S(0) contains the smallest black neighbor N , then every square whose lower-left corner is (non-strictly)
southwest of l(S) and did not contain N also contains N . This increases the number of containment relations
among the black squares by the number of such squares. On the other hand, the number of black squares that
are contained in red squares increases by the number among them which are red. If N coincides with a red
square, the number of containment relations among the red squares increases by the same amount. Hence, the
virtual dimension of M ′ strictly decreases except when the following are satisfied:

(1) N does not coincide with a red square; and
(2) Every square whose lower-left corner has index less than or equal to l(S) and does not contain N is red.

Note that in particular these conditions imply that S should coincide with a red square. Hence, S is not a filler
and by Lemma 4.26 the squares with lower-left corner strictly southwest of l(S) contain N .

If S(0) is contained in the largest black neighbor N of S, then the number of containment relations among
black squares increases by one. If l(N) is the lower-left corner of a red square, then the total number of black
squares in red squares increases by one. If in addition l(S) is the lower-left corner of a red square, then the
number of containment relations among the red squares increases by one. Hence, the virtual dimension of M ′

is strictly smaller than the dimension of M except when S does not coincide with a red square and l(N) is the
lower-left corner of a red square. Observe that it is not possible for S(0) to be contained in a red neighbor RN
of S where the black square B that has the same lower-left corner as RN is contained in S. B would be a filler
for S contradicting Rule 4.15. This is the main reason for choosing the degeneration order in Rule 4.15. It
follows that the virtual dimension of M ′ is at most equal to the dimension of M .

If l(S) is the lower-left corner of a red square R, then we shrink R by one unit. This either preserves the
virtual dimension or decreases it in case the lower-left corner of R coincides with the lower-left corner of a red
square not contained in R.
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Next we check that normalizing does not increase the virtual dimension of the tableau. We will say that a
square U ′ is a shrinking of a square U in M ′ if U ′ is obtained by shrinking the lower-left corner of a square in
M ′. Since M is normalized, at each stage of the normalization process for M ′ at most two black squares and
two red squares can share the same lower-left corner. If T is a square of the tableau, denote by T ′ the square
T −l(T ). If a black square T has the same lower-left corner as a square it contains, we shrink its lower-left corner
by one. Suppose T ′ is not contained in any new squares. Then this operation decreases containment relations
among black squares by one and the total side-length of black squares by one. It does not change containment
relations among red squares or black squares and red squares. Hence, it preserves virtual dimension. Suppose
T ′ starts being contained in b black squares and r red squares. Then this changes the virtual dimension by r−b.
We note that each time T ′ is contained in a red square R, it must also be contained in the black square B whose
lower-left corner is the same as R. We already saw this for the square S. Suppose T ′ is not a shrinking of S,
but some other black square T ′′ necessarily with l(T ′′) > l(S) in M . If B were properly contained in T ′, then
B would be strictly contained in T ′′ in M . Hence by APM2 for M , B would be contained in a red square R′

contained in T and containing B. B cannot coincide with R′ since then R and R′ would have the same lower-left
corner contradicting that M is normalized. But then by APM2 either S would contain B or a filler F with
l(F ) < l(B). Both are contradictions since either F or B would be a filler in S. Finally, normalizing the red
squares clearly preserves or decreases virtual dimension. No new black squares can be contained in a red square
during the normalization. One fewer black square can be contained in it exactly when one containment relation
among the red squares is eliminated. Note that in case a red square starts being contained in a red square that
it was not previously contained in prior to normalization, then the virtual dimension strictly decreases.

Finally, if S(0) contains the smallest black neighbor of S and has the same lower-left corner as a square
contained in S, then we need to shrink the upper-right corner of lch(S(0)′) (the shrinking of S(0)) by one unit.
Let S = S1, . . . , Sr be the squares with the property that the index of l(Si) is one larger than the index l(Si−1)
and Si ⊂ S. Then the total side-length of black squares decreases by one. The number of containment relations
among black squares increases by r − 2. The number of black squares contained in red squares increases by the
number of red squares among S2, . . . , Sr. Containment relations among red squares do not change. Hence the
dimension stays constant or decreases. Of course, if at any stage the side-length of a square shrinks to zero we
discard the tableau and assign to it dimension −1. We leave it to the reader to formulate the cases when the
dimension stays constant. We will summarize this below. �

We will use the following observations to verify that the tableaux M0, M1(NR), M2(Ni) and M3(NR) are
normalized, admissible painted Mondrian tableaux.

Observation 4.31. If after moving S a red square R(0) of M ′ has a new gap, then R(1) in M contains S and has
ej+1 as a gap. The new gap of R(0) is l(S). Since every square with lower-left corner southwest of l(S) contains
S, there can be no red squares contained southwest of l(S). Hence PM3a for M implies PM3a holds for M ′.
PM3c holds for M ′ since any square with lower-left corner southwest of l(S) contains S and PM3c holds for
M . PM3b holds for the squares in M ′ that have l(S) as their new gap and the gap l(S). However, some red
squares that had ej+1 may no longer have it as a gap. We note that a red square R′(1) with l(S) < l(R′(1)) in
M that has ej+1 as a gap must be contained in every red square whose lower-left corner is southwest of l(R′(1))
by PM3b for M . It is easy to see that PM3b also holds for M ′.

Observation 4.32. Normalization of M ′ preserves the properties PM3a, b, c. Note that normalization either
preserves or eliminates the gaps of a red square. Similarly, it either preserves holes or may turn holes which
were also gaps into gaps. As in the proof of Lemma 4.30 if shrinking a black square T results in T sharing the
lower-left corner with a black square B and a red square R, then either T ′ contains R or is contained in B. In
the second case a hole or a gap of R is clearly preserved. In the first case, if T ′ contains a hole which is not
a gap, then the squares contained in R cannot be nested. Since by APM2 the square S must contain R, this
contradicts Rule 4.15. Shrinking the lower-left corner l(B) for a black square B ⊂ R whose lower-left corner
agrees with l(R) for a red square does not alter the holes and gaps of R. It follows that PM3a and PM3c hold
for the normalization of M ′. The proof of PM3b is analogous to the proof of Lemma 3.41, hence left to the
reader.
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Observation 4.33. Suppose S(0) does not contain the smallest neighbor of S, then APM1, APM2 and APM3
hold for M ′. This is clear in case S is not contained in its largest neighbor since none of the containment
relations among the squares change. If S is contained in its largest neighbor, since S is contained in every
square whose lower-left corner is southwest of l(S), APM1, APM2 and APM3 hold in that case as well.

Observation 4.34. If the normalization of M ′ has the same dimension as M , then it satisfies APM1, APM2 and
APM3. M ′ is not normalized when S(0) contains the smallest neighbor of S or S(0) shares a lower-left corner
with another square in M ′. Otherwise shrinking the red squares so that they are the spans of black squares
contained in them, turns M ′ to a normalized tableau. Hence, APM1, APM2 and APM3 are satisfied by the
previous observation. If S(0) contains the smallest neighbor N of S, we can assume that N does not coincide
with a red square, S(0) coincides with a red square R(0) and that the normalization of the lower-left corner
of S(0) remains strictly southwest of l(N). Otherwise by Lemma 4.30 the dimension of the normalization of
M ′ is strictly less than the dimension of M . In that case, after shrinking the lower-left corner of S(0) and the
upper-right corner of lch(S(0)′), we obtain a black square which is contained in every square whose lower-left
corner is southwest of it. The shrinking of the red square R(0) is not contained in the squares that were
contained in R(0), but is contained in every square whose lower-left corner is southwest of l(R(0)). Finally, N
is not contained in any new black squares unless it is contained in S(0) and S(0) does not share a lower-left
corner with any squares strictly contained in it. In that case N is contained in every square whose lower-left
corner is southwest of S(0). Hence APM1, APM2 and APM3 hold for the normalization of M ′. If S(0) shares
a lower-left corner with a square strictly contained in it, but does not contain its smallest neighbor, then when
we normalize the lower-left corners it is clear that APM1, APM2 and APM3 are preserved unless S(0)′ starts
sharing a lower-left corner with its largest neighbor N ′. By Lemma 4.30 and APM1, S can have only one
neighbor N1 since N1 has to be the lower-left corner of a red square. We then shrink the lower-left corner of
N1. If the shrinking of N1 shares a lower-left corner with a square then either that square is a square contained
in S(0) or is a neighbor of N1. As in Lemma 4.30 if N1 starts sharing the lower-left corner with its largest
neighbor, then either the dimension strictly decreases or N1 has a unique neighbor N2 whose lower-left corner
is the lower-left corner of a red square. Continuing we see that there are no new containment relations among
the black squares or among the red squares in the normalization that did not hold in M ′. If the shrinking of a
black square B starts being contained in a red square R, then B is either S(0) or it is also contained in a red

square whose lower-left corner is southwest of l(R). Note that any black square B̃ containing R must have its
lower-left corner strictly southwest of l(B). It is now easy to see that APM1, APM2 and APM3 are preserved
in this case as well.

Lemma 4.35. Whenever Algorithm 4.19 produces the tableau M0, M0 is a normalized, admissible painted
Mondrian tableau.

Proof. M0 is normalized by definition. Mon1a and Mon1b hold by the proof of Lemma 3.41 when normalizing
lower-left corners. As in the proof of Lemma 4.30, Condition 2 in Definition 4.6 fails only when S(0) contains its
smallest neighbor. In that case, S(0)′′ obtained by shrinking the upper-right corner of lch(S(0)′) is contained
in every square whose lower-left corner is southwest of it. Hence, Mon1a and Mon1b hold. PM2 holds by
construction. It now follows that PM1, PM2, PM4, PM5 hold. The proof of PM3a, b, c follow from the two
Observations 4.31 and 4.32 above. Finally APM1, APM2 and APM3 hold by Observations 4.31 and 4.32. �

Lemma 4.36. Whenever Algorithm 4.19 produces the tableau M1(NR), it is a normalized, admissible painted
Mondrian tableau of dimension equal to the dimension of M .

Proof. M1(NR) is already normalized. The lower-left corners of the squares in M1(NR) are the same as the
lower-left hand corners of the squares in M , hence the lower-left corners of any two squares of the same color in
M1(NR) are distinct. Condition 2 in the Definition 4.6 holds even when S(0) contains the smallest neighbor of
S. Next we claim that the squares Bi2 , . . . , Bij−1

are squares with lower-left corner between l(S) and l(R) and
the span replaces the lower-left chops of the consecutive ones by the spans of their lower-left chops. Furthermore,
that span becomes the lower-left chop of the squares Bih,ih+1

. Suppose Bih
has a gap between l(S) and ej+1,

then by Mon1b Bih
⊂ S. But then Bih

cannot contain ej+1, leading to a contradiction. The lower-left chops
of two consecutive squares necessarily intersect (since they all contain ej+1). In addition to the squares formed
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by the spans of S(1) and Bi2 and the spans Bih
and Bih+1

, M1(NR) contains the new squares IB = S(0)∩NR
in black and IR = R(0) ∩ NR and UR = R(1) ∪ NR in red. In particular, the gaps of the new squares are all
gaps of the squares in M ′, except possibly for the gaps of IB and IR.

We first check Mon1a. Suppose a black square is contained entirely to the southwest of a gap. This cannot
be any of the new spans, since S would be contained southwest of that gap in M . We need to verify Mon1a
for IB . Let g be a gap northeast of IB . Since in M , S cannot be contained southwest of g, S must contain
basis elements northeast of g. But then the black square B that has the same lower-left corner as NR must
also contain such basis elements by Mon1b for M . Since the gaps B are a subset of the gaps of S, IB cannot
be contained strictly southwest of g. The verification of Mon1b is similar to the proof of Lemma 3.43. The
arguments for the red squares UR and IR are also similar and are left to the reader. It is then easy to see that
PM1, PM2, PM3a,b,c, PM4 and PM5 hold for M1(NR).

It suffices to verify APM1, APM2 and APM3 with respect to the newly formed squares. The square IR

is contained in every square whose lower-left corner is southwest of UR since IR is contained in S(0) and UR

has the same lower-left corner as S(1). By the definition of a neighbor and APM1 for M , no red squares R′

with l(UR) < l(R′) < l(IR) can contain IR. Furthermore all such squares are contained in every square whose
lower-left corner is southwest of UR since in the tableau M they were contained in S. No red square that did
not contain both R(1) and NR contains the union UR. Hence if R′′ is a square containing UR and R̃ is a red

square with l(R̃) < l(R′′), then UR ⊂ R̃ since R̃ had to contain both R(1) and NR. It follows that APM1 holds
for M1(NR).

IB coincides with a red square. Note that if a black square B contains one of the spans of the squares Bih,ih+1

for 1 ≤ h < j, then B must contain both Bih
and Bih+1

. Hence, B must strictly contain a red square containing
Bih

and Bih+1
by APM2 for M ′. This red square cannot have its lower-left corner between l(R(1)) and l(NR)

by the definition of a neighbor and APM1 for M ′. Hence the same red square strictly contained in B contains
the union. When h > 1, the second condition for APM2 follows for this red square by the same condition for
the red square in M ′ and the square Bih

. Since S coincides with a red square by Lemma 4.23 it is not a filler.
Hence by Lemma 4.28 every square whose lower-left corner is southwest of l(S) contains Bi2 since this is the
smallest neighbor of S. Hence the second condition in APM2 holds as well. APM3 holds for UR since if there is
a black square strictly containing UR, that black square must contain all Bih

. Hence, by APM2 it must strictly
contain a red square containing them. Since the lower-left corner of this red square must be southwest of l(S),
APM3 holds for UR by APM3 for M . If there is a black strictly contained in IB or IR, then it is contained
in every square with lower-left corner southwest of IB . Similarly, for any black squares strictly contained in
Bh,h+1 except for IB . For all other squares APM2 and APM3 follow from APM2 and APM3 for M ′.

Finally, we compute the dimension. Applying the construction of M1(NR) increases the total side-length of
the black squares by one. The number of containment relations among the black squares increases by j−1. The
number of black squares contained in red squares increases by j − 1 and the number of containment relations
among red squares increases by 1. Hence M1 and M have the same dimension. �

Lemma 4.37. Whenever Algorithm 4.19 produces the tableau M2(Ni), it is normalized and admissible.

Proof. By the analysis for Corollary 3.44, the total side-length of the black squares and the number of con-
tainment relations among the black squares each increase by one unless S(0) contains the smallest neighbor
N1 of S in M2(N2). In the latter case the number of containment relations among black squares increases by
two. The number of black squares contained in each red square remains constant. The number of containment
relations among red squares is either constant or increases. Hence if S has two black neighbors N1 ⊂ N2 and
S(0) contains N1, then M2(N2) has strictly smaller dimension. If both S and N1 coincide with red squares,
then the number of containment relations among red squares increases by at least one. Hence the dimension
of M2(N1) is strictly smaller than that of M . Similarly, suppose S coincides with a red square and has only
one black neighbor N1 with the property that l(N1) = l(R) for some red square containing N1. If S does not
contain any black squares that are not contained in N1 and do not coincide with a red square, then M2(N1)
has strictly smaller dimension. In all other cases the dimension of M2(Ni) is at most the dimension of M .

The generalized Mondrian tableau formed by the black squares is normalized and satisfies Mon1a and Mon1b
by Lemma 3.41. If the lower-left chop of a red square R coincided with the lower-left chop of the square S, we
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might need to shrink the lower-left corner of R(0). As a result of this the lower-left corner of R(0) might coincide
with the lower-left corner of a red square. Hence, the red squares may need to be normalized. Similarly if the
neighbor Ni has the same lower-left corner as a red square R′, we might need to shrink R′. This might introduce
a hole in R′. Normalizing the red squares does not change Mon1a and Mon1b. To preserve the dimension,
when normalizing red squares, the shrinking R(0)′ of R(0) cannot start sharing a lower-left corner with a red
square not contained in it. Since the red squares contained in R(0) are nested and contained in S(0), they are
contained in every square whose lower-left corner is southwest of their lower-left corners. The tableaux M2(Ni)
satisfy PM2 by construction. The proof of the properties PM3a, b, c are as in Observation 4.32. Finally since
M2(Ni) is normalized PM4 and PM5 hold.

The proofs of APM1, APM2 and APM3 are similar to the previous cases. Note that in these tableaux
whenever they have the same dimension as M , there are no new containment relations among the red squares.
As observed any containment relations among squares that no longer hold happens because the shrinking R(0)′

does not contain some of the red squares originally contained in it. But these squares are contained in every
square whose lower-left corner is southwest of their lower-left corner. Hence APM1 for M implies APM1 for
M2(Ni).

It suffices to check APM2 with respect to IB = S(0) ∩ Ni and UB = S(1) ∪ Ni. Since IB ⊂ S(0) if IB ⊂ B′,
then every square B′′ with l(B′′) < l(B′), then IB ⊂ B′′. Since the squares contained in S are totally ordered,
and IB ⊂ S(0), any square strictly contained in IB is contained in every square whose lower-left corner is
southwest of l(IB). If UB ⊂ B′, then B′ in M ′ contains both S(0) and Ni. If S has a black neighbor Ni that
coincides with a red square, then both S and Ni are contained in Tj−1, hence in every square whose lower-left
corner is southwest of l(S). We can assume that Ni does not coincide with a red square. The same argument
applies if there are no squares strictly contained in Ni that are not contained in S and S is not a filler. We can
assume that either S is a filler in Tj−1 and Tj−1 does not contain Ni; or N contains a red square not contained
in S and Tj−1 does not contain Ni. In the first case, there has to be a red square strictly contained in B′ that
contains Ni. It follows that B′ must contain the red square R with l(R) = l(S). Note that R also contains
UB. In the second case by APM1 for M , there cannot be a red square with lower-left corner between l(S) and
l(Ni) containing Ni, hence the red square containing Ni and contained in B′ must also contain S and hence
UB. Either Ni coincides with the red square northeast of l(Ni) in which case so does UB. Else both Ni and S
need to be contained in a red square with lower-left corner southwest of l(S). Hence so does UB. APM2 and
APM3 follow from these observations. �

Lemma 4.38. Whenever Algorithm 4.19 produces the tableau M3(NR), it is normalized and admissible.

Proof. Note that the tableau consisting of the black squares is already normalized. If S coincides with a red
square, however, we might need to normalize the red squares of the tableau. Prior to the normalization it
is easy to calculate the virtual dimension of the tableau. Assuming S(0) does not contain its neighbor, the
total side-length of the black squares (if the tableau is non-empty) increases by one. The total containment
relations among them increases by l + 1. On the other hand, the total number of black squares contained
in red squares increases by l. In case S coincides with a red square R, then we need to shrink R so that it
is the span of the black squares contained in it. As in the previous cases this process decreases the number
of containment relations among red squares by an amount equal to the number of black squares contained in
the shrinking of R(0). Unless R(0) is contained in the neighbor B1 which coincides with R1. In that case
normalizing strictly decreases the dimension. Hence in case S coincides with a red square, for this tableau to
have the same dimension as M there must exist a black square contained in R(0) but not in R1 and which does
not coincide with a red square. Similarly it is easy to see that if S(0) contains the smallest neighbor N1 of S,
the dimension of Tableau M3(NR) is strictly smaller than the dimension of M .

The verification of the properties Mon1a, Mon1b, PM2, PM3a,b,c, PM4 and PM5 is analogous to the previous
cases. We leave this to the reader. Here we verify APM1, APM2 and APM3. APM1 is clear from APM1 for
M ′ since the containment relations among the red squares do not change unless S coincides with a red square
R. By the dimension discussion, the red squares that R(0) coincides with during the shrinking have to be all
contained in S. These squares do not contain the shrinking R(0)′ of R(0). R(0)′ is contained in every square
whose lower-left corner is southwest of l(S). Finally any red square contained in R(0)′ is contained in every
square whose lower-left corner is southwest of R(0)′ since these squares were contained in S and the squares
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in S were nested. The squares Ri are not contained in any red squares that they were not contained in (even
if they acquire holes). From these observations APM1 for M implies APM1 for M3(NR). APM2 is clear with
respect to the squares formed by the intersections S(0) ∩ B1 and Bh ∩ Bh+1 since any black square containing
one of the intersections either contains the other one as well, hence contains the red square Rh. If a square B
contains Bh ∩ Bh+1 and a square B′ with l(B′) < l(B) does not contain it, then B′ must still contain a square
since B′ by construction cannot have lower-left corner northeast of l(S(0)). Hence B′ must contain at least
S(0)∩B1. Suppose Rp is the first red square among R1, . . . , Rl that B′ does not contain. Then Bp−1 ∩Bp is a
filler in B′. We need to verify APM2 also with respect to the square U formed by the span of S(1), B(1), . . . , Bl.
The black squares contained in U are either of the form Bh ∩Bh+1 or they are squares contained in S(0). The
latter squares are contained in every square whose lower-left corner is southwest of l(U) = l(S(1)). The squares
Bh ∩ Bh+1 are contained in the squares Rh contained in U . Suppose a black square B contains U . Then B
contains Bl+1. Hence Bl+1 has to be contained in a red square strictly contained in B. This red square either
has southwest corner northeast of l(Bl+1) or southwest of S(0). In the former case by APM3 for M , every
square whose lower-left corner is southwest of l(B) must contain Bl+1, hence by Mon1b also U . In the latter
case, there exists a red square strictly contained in B that contains U . Hence APM2 holds for the tableau
M3(NR). It suffices to verify APM3 for the squares R1, . . . , Rl. In R1, S(0)∩B(1) is contained in every square
whose lower-left corner is southwest of any black square that contains R1. For Rh with h > 1, the black squares
that do not coincide with Rh northeast of their lower-left corner are either contained in S(0) (by APM1 and
APM2 for M) or are of the form Bh−1 ∩ Bh. The former are contained in every square whose lower-left corner
is northeast of U . The latter are contained in Rh−1. From these observations it is easy to verify APM3. �

Remark 4.39. We can summarize the dimension discussion above as follows:

First suppose that the square S coincides with a red square R. Then:

• If either R(0) contains the red neighbor NR of R or |R−NR| = #R(R ∪NR)(M)−#RNR(M), then
only M1(NR) will have the same dimension as M .

• If S has two black neighbors N1 ⊂ N2 where the smaller N1 coincides with a red square, then M2(N1)
has strictly smaller dimension than M . Suppose S has only one black neighbor N1 and there exists a
red square R′ such that l(N1) = l(R′). If S does not contain a black square B such that B does not
coincide with a red square and is not contained in N1, then M2(N1) has smaller dimension than M .

• M3(NR) will have strictly smaller dimension than M if there does not exist a black square that does
not coincide with a red square and whose lower left corner is strictly between that of R and NR.

Next suppose that the square S does not coincide with a red square. Then if the smallest black neighbor N1 of
S is contained in S(0), then only M2(N1) has the same dimension as M .

Next suppose S(0) contains the smallest neighbor N1 of S. If M0 has the same dimension as M , then S(0) must
coincide with a red square R, N1 cannot coincide with a red square and the largest black square B contained
in R and not coinciding with a red square has the property |R| − |B| > #BR(M) − #BB(M).

Finally, suppose the largest black neighbor N of S has the property that |S−N | = #B(S∪N)(M)−#BN(M).
Consider the longest interval of uninterrupted set of basis elements that are lower-left corners of black squares,
starting with l(N) and proceeding northeast. Let l(N), eip

, . . . , eiq
be the basis elements among these that are

those which are not the lower-left corners of black squares strictly contained in N . Then M0 has strictly smaller
dimension than M unless l(N), eip

, . . . , eiq
are also the lower-left corners of red squares.

Remark 4.40. Note that it follows from the previous remark that at each stage an admissible painted Mondrian
tableau occurring while running Algorithm 4.19 is replaced by at most three new tableaux. First suppose S
coincides with a red square. Then either the largest (and only) neighbor of S coincides with a red square. In
this case M may be replaced by M0, M1(NR) and M3(NR). If the largest neighbor N of S does not coincide
with a red square, then M may be replaced by M0, M1(NR) and M2(N). Now assume that S does not coincide
with a red square. If the largest (and only) neighbor N of S coincides with a red square, then M may be
replaced by M0, M2(N) and M3(NR). If the largest neighbor does not coincide with a red square, then M may
be replaced by M0, M2(N1) and M2(N2). In each case we see that there are at most three tableaux.
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Proposition 4.41. The Algorithm 4.18 at each step replaces normalized, admissible painted Mondrian tableaux
by normalized, admissible painted Mondrian tableaux and terminates with a collection of tableaux associate to
Schubert varieties.

Proof. The proposition follows from Lemmas 4.35, 4.36, 4.37, 4.38. The fact that the algorithm terminates is
clear. In each tableau that we replace M with, the lower-left hand corners either stay the same or move strictly
northeast. In Tableau M0 there is at least one square whose lower-left corner moves strictly northeast. In the
others, the total side-length of the black squares increases. Since these tableaux are contained in an n× n grid,
these operations cannot go on indefinitely. �

4.3. The geometry of painted Mondrian tableau. In this subsection we associate an irreducible subvariety
of F (k1, k2; n) to every painted Mondrian tableau M . Then interpreting the moves on painted Mondrian tableau
as a degeneration, we prove Theorem 4.21.

4.3.1. Geometric preliminaries. We remind the reader our convention that we denote the squares in a Mondrian
tableau in the math font (such as S) and the corresponding vector spaces in the Roman font (such as S). In a
painted Mondrian tableau a square of side-length s represents a vector space of dimension s. The red squares
denote the constraints on the subspaces V1 and the black squares denote the constraints on the vector spaces
V2.

Definition 4.42. Let M be a painted Mondrian tableau for F (k1, k2; n). Let ΣM be the subvariety of F (k1, k2; n)
defined as the closure of the locus of pairs (V1 ⊂ V2) that satisfy the following properties.

(1) For every black square Bi ∈ M , dim(V2 ∩ Bi) = #BBi(M). For any pair of black squares Bi, Bj ∈ M ,
dim(V2 ∩ Bi ∩ Bj) = #B(Bi ∩ Bj)(M).

(2) For any red square Ri ∈ M , dim(V1 ∩ Ri) = #RRi(M). For any pair of red squares Ri, Rj ∈ M ,
dim(V1 ∩Ri ∩Rj) = #R(Ri ∩Rj)(M). Furthermore, the subspace of V1 contained in Ri is contained in
the subspace of V2 spanned by (V2 ∩ Bj) for Bj ⊂ Ri.

ΣM is an irreducible subvariety of F (k1, k2; n) of dimension equal to the dimension of M .

Proposition 4.43. Let M be a painted Mondrian tableau for F (k1, k2; n). The variety ΣM associated to M is
an irreducible subvariety of F (k1, k2; n) of dimension

k2∑
i=1

|Bi| +

k1∑
i=1

#BRi(M) −

k2∑
i=1

#BBi(M) −

k1∑
i=1

#RRi(M).

Proof. In order to prove the proposition we construct an the open subset of ΣM used in the definition as a
sequence of open subsets of a Grassmannian bundle over an irreducible subvariety of G(k2, n). Consider the
natural projection

π2 : F (k1, k2; n) → G(k2, n)

that sends the pair (V1, V2) to V2. The image of ΣM under this projection is easy to describe. It is given by the
variety associated to the generalized Mondrian tableau consisting of the black squares of M . Since the black
squares of M form a generalized Mondrian tableau, the projection is an irreducible variety of dimension

k2∑
i=1

|Bi| −

k2∑
i=1

#BBi(M).

On the other hand, the fiber over a point in the image of π2 corresponds to choices of a k1-dimensional subspaces
that intersect any vector space S corresponding to a square S in dimension equal to #R(S) and is contained in
V2 ∩ S. This is an open subset in a tower of Grassmannian bundles of dimension

k1∑
i=1

#BRi(M) −

k1∑
i=1

#RRi(M).

The proposition follows. �
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Let M be a painted Mondrian tableau associated to a Schubert variety Σλ or to the initial tableau corre-
sponding to the intersection of two Schubert varieties Σλ ∩ Σµ. Then the variety associated to M is Σλ or
Σλ ∩ Σµ, respectively. These varieties (if non-empty) are all irreducible. Note that the intersection of two
Schubert varieties is empty if and only if the corresponding Mondrian tableau is empty. Hence, we can assume
that the intersection is non-empty. An open subset of ΣM is contained in Σλ or Σλ ∩ Σµ, respectively. Hence
it suffices to check that they have the same dimension. This is the content of Lemmas 4.13 and 4.14.

4.3.2. Degenerations. In this section let M be a normalized, admissible painted Mondrian tableau. Suppose
that M is not nested. Let S be the square of M determined by Rule 4.15. Suppose that the lower-left chop
of S is lch(S) = {ei, . . . , ej}. As usual, we interpret the move on Mondrian tableaux as the degeneration
tei + (1 − t)ej+1. Corresponding to this degeneration there is a flat family of varieties ΣM (t), where ΣM (1)
represents the variety associated to M . We would like to describe the geometry of the flat limit ΣM (0).

The support of the limit ΣM (0) is determined by requiring the pair (V1, V2) to satisfy the obvious rank
conditions that they need to satisfy in the limit. We now make this precise in the next observation.

Observation 4.44. Let Bi1,...,ij
(t) denote the span of the vector spaces Bi1(t), . . . , Bij

(t) for t 6= 0. Let Bi1,...,ij
(0)

denote the limit of the spans Bi1,...,ij
(t). Note that the limit of the spans need not equal the span of the limits.

As noted in Observation 3.31 it is equal to the span of the limits unless one of the squares contains ei, one of
the squares contains ej+1 and none of the squares contain both. In the latter case it is the span of the limit of
the spans and ei. Similarly, let Ri1,...,ij

(t) denote the span of Ri1(t), . . . , Rij
(t) for t 6= 0. Let Ri1,...,ij

(0) denote
the limit of the spans. The same considerations apply to these vector spaces.

We note that the vector space Bi1,...,ij
(t) intersects the vector spaces V2 parameterized by ΣM (t) in dimension

at least #B(Bi1,...,ij
(1))(M). Since intersecting a vector space in a given dimension is a closed condition, vector

spaces V2 parameterized by the flat limit ΣM (0) have to intersect Bi1,...,ij
(0) in at least the same dimension.

The same holds with V2 replaced by V1 and the black squares replaced by red squares. Furthermore, if the
subspace W of V2 spanned by the subspaces of V2 contained in Bi1(1), . . . , Bij

(1) intersects V1 in dimension at
least h, then the limit of W has to intersect the limit of V1 also in dimension at least h.

We can phrase this observation in terms of a slight generalization of painted Mondrian tableaux.

We will shortly see that this simple geometric observation is sufficient to determine the set theoretic limits
of the degeneration.

Theorem 4.45 (The geometric Littlewood-Richardson Rule). The support of the flat limit ΣM (0) is equal to
the union of the varieties associated to the painted Mondrian tableaux described in Algorithm 4.18. Furthermore,
ΣM (0) is generically reduced along each of these varieties.

We first show that Theorem 4.45 implies Theorem 4.21.

Proof of Theorem 4.21. The variety associated to the initial tableau M(σδ
λ, σκ

µ) is the intersection of the two

Schubert varieties Σδ
λ and Σκ

µ. By Lemma 4.11 the initial tableau is a normalized, admissible painted Mondrian
tableau. By Proposition 4.41 the Algorithm 4.19 transforms normalized, admissible, painted Mondrian tableaux
to normalized, admissible, painted Mondrian tableaux and terminates in a collection of tableaux associated to
Schubert varieties. By Theorem 4.45 the class of the variety associated to a tableau is the sum of the classes of
the varieties associated to the tableau at the end of the algorithm. Hence we obtain a Littlewood-Richardson
rule for two-step flag varieties. �

We will now prove Theorem 4.45. The proof will be very similar to the proof of 3.32. Using Observation 4.44
we will impose conditions on the supports of the irreducible components of ΣM (0) that can be the supports
of Weil divisors of the family ΣM (t). First, a dimension count will show that the loci that satisfy all the
constraints have dimension at most the dimension of ΣM (1). Among these loci we will determine the ones
that have the same dimension as ΣM (1). These are the only loci that can support an irreducible component
of ΣM (0) of dimension equal to ΣM (1). Once we know that ΣM (0) is supported along varieties associated to
tableaux described in Algorithm 4.18, a very simple tangent space calculation shows that ΣM (0) is generically
reduced along each irreducible component. In fact, this calculation reduces to the three examples described in
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the introduction and is simply the statement that when the cycles are in the specialized position the intersection
of the corresponding varieties in F (k1, k2; n) is still generically transverse.

Proof of Theorem 4.45. Let M ′ denote the tableau obtained by moving S according to Rule 4.16. Let ΣM (t) be
the flat family corresponding to the move. Let Y be a maximal irreducible component of the flat limit ΣM (0).
Suppose that for a general pair (V1, V2) of linear spaces parameterized by Y , the subspace of V2 contained in each
of Bi(0) has dimension #BBi(M) and dim(V2 ∩Bi(0) ∩Bj(0)) = #B(Bi ∩Bj). Furthermore, suppose that the
subspace of V1 contained in each of the Ri(0) has dimension #RRi(M) and dim(V1∩Ri(0)∩Rj(0)) = #R(Ri∩Rj).
Then by Observation 4.44, Y has to be contained in the variety associated to the tableau M ′′ obtained from
M ′ by shrinking the red squares of M ′ so that they are the spans of the black squares contained in them. The
proof of Lemma 3.28 carries over to show that the variety associated to M ′′ and to its normalization M0 are
equal. Hence, we conclude that Y has to be contained in ΣM0

. By Lemma 4.35, the dimension of ΣM0
is at

most equal to the dimension of ΣM . Hence, for there to be such a component, dimM0 = dimM . Since Y and
ΣM0

are both irreducible of the same dimension, we conclude that the support of Y equals ΣM0
.

Now suppose the largest black neighbor of S satisfies |Nr − S| = #B(Nr ∪ S)(M) − #BS(M). Then it
is not possible for the limiting vector space V2 to satisfy dim(V2 ∩ Bi(0)) = #BBi(M) and dim(V2 ∩ Bi(0) ∩
Bj(0)) = #B(Bi∩Bj)(M) for all black squares Bi, Bj . However, for a general point of an irreducible component
Y ⊂ ΣM (0), the limiting positions of the subspaces of V1 and V2 contained in Ri(t) and Rj(t) and Bi(t) and
Bj(t), respectively, may remain independent for all the squares in M . Similarly, if S(0) contains the smallest
neighbor N1 of S, then it is not possible for V2 to intersect S(0) in dimension equal to #BS(M) unless the
subspace of V2 contained in S(0) becomes dependent with the subspace of V2 contained in N1(0). However,
there may be components Y of ΣM (0), where the limits of the subspaces V1 and V2 contained in Ri(t) and
Rj(t) and Bi(t) and Bj(t) for every red and black square in M remain independent in the limit. In these cases
by Observation 4.44, the irreducible component Y of ΣM (0) has to be contained in the variety associated to
the normalization of the tableau M ′′ obtained by shrinking the red squares in M ′ to be the spans of the black
squares contained in them. By Lemma 4.35 this normalization has at most the dimension of M . Hence this case
can occur only when the dimension of M0 equals the dimension of M . Since both Y and ΣM0

are irreducible of
the same dimension, we conclude that the support of Y has to be ΣM0

.

Let Y be a maximal irreducible component of ΣM (0) whose support is not ΣM0
. Now we can assume that in

a general pair of linear spaces (V1, V2) parameterized by Y the limits of the subspaces of V1 or V2 contained in
at least one pair of vector spaces Ri(t) and Rj(t) or Bi(t) and Bj(t) become dependent. Using Observation 4.44
we can build a variety corresponding to a painted Mondrian tableau that contains the support of Y . Suppose
first that at a general point of Y , the subspaces of V1 contained in Ri(0) and Rj(0) remain independent. There
are two possible cases.

Case I: At a general point (V1, V2) parameterized by Y , the subspace of V2 intersects Ri(0) in an #BRi(M)-
dimensional subspace of V2 for every vector space Ri(0) represented by a red square Ri(0).

Case II: At a general point (V1, V2) parameterized by Y , the subspace of V2 intersects Ri(0) for some red square
in dimension larger than #BRi(M).

In Corollary 3.44 we have verified that any k2-plane parameterized by the limit ΣM (0) must be contained in
one of the three varieties described by Corollary 3.44. These have at most the dimension equal to the dimension
of the projection of ΣM to G(k2, n). If the generic fiber dimension of the projection of Y to G(k2, n) is less than
the dimension of the generic fiber dimension of the projection of ΣM to G(k2, n), then the dimension of Y is
strictly less than the dimension of ΣM . Consequently Y cannot support a component of the flat limit ΣM (0).

In Case I, the generic fiber dimension of the projection of Y to G(k2, n) is equal to the generic fiber dimension
of the projection of ΣM to G(k2, n). Consequently, the dimension of the projection of Y to G(k2, n) has to have
the same dimension as the projection of ΣM to G(k2, n). By Corollary 3.44 the projection of Y to G(k2, n) is the
variety associated to the tableau formed by the black squares of one of M2(Ni) where Ni is a black neighbor of
S (assuming S does have any black neighbors). Recall that we are assuming that Y is not supported along ΣM0

.
Hence the projection of Y is not supported along the variety associated to the black squares of ΣM0

. Otherwise,
by Observation 4.44 the support of Y would be ΣM0

. By Observation 4.44 each subspace of V1 contained in
Ri(0) is also contained in the span of V2 ∩ Ri(0). Hence Y has to be contained in the variety associated to the
tableau consisting of the black squares of M2(Ni) and the red squares Ri of M ′ that have been shrunk so that
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they are the spans of the black squares contained in them. Finally, normalizing this tableau does not change
the variety associated to it. Only the red squares need to be normalized. Suppose R1 ⊂ R2 have the same
lower-left corner. Let B1 ⊂ R2 be the black square whose lower-left corner is southwest most among the black
squares Bi with l(Bi) > l(R2). Shrinking R2 so that l(R2) = l(B1) does not change the variety by the argument
given for Lemma 3.28. We conclude that the support of Y has to be ΣM2(Ni).

In case II, let R0(0) be the square with lower-left most corner such that R0(0) has a larger dimensional
intersection with V2 than #BR0(M). Let W be the vector space spanned by the basis elements northeast of
(and including) l(R0(0)). This case splits to a few cases.

Case A There exists a black square B′(0) /∈ R0(0) with lower-left corner southwest of R0(0) such that the
dimension of V2 ∩ B′(0) ∩ Ri(0) is greater than #B(B′(0) ∩ R0(0))(M). Suppose B′ is the minimal
square (with respect to inclusion) among such squares. This case splits to two cases.

i Either the dimension of V2 ∩ W = #BW (M); or

ii The dimension of V2 ∩ W > #BW (M).

Case B There does not exist a black square Bj(0) /∈ R0(0) with lower-left corner southwest of R0(0) such
that the dimension of V2 ∩ Bj(0) ∩ Ri(0) is greater than #B(Bj(0) ∩ R0(0))(M). In that case let
Bj(0) be the smallest square (with respect to inclusion) such that V2 ∩ Bj(0) ∩ Ri(0) is greater than
#B(Bj(0) ∩ R0(0))(M).

We will show that Case A ii and Case B are not possible unless Y is supported along ΣM0
. In that case B′(0)

is either S(0) or the smallest neighbor of S and R0(0) is the red neighbor of S or S(0), respectively. Before
giving the argument we illustrate the dimension changes in some examples in Figure 19.

dimension 10
dimension 9

dimension 8

dimension 11 dimension 10

Figure 19. Some sample varieties and how their dimensions change.

Let T be the square corresponding to the smallest vector space spanned by e1, . . . , en in the intersection of
B′(0) and R0(0) for which V2 intersects Ri(0) in dimension greater than #BT (M ′). In Case A ii and Case B
form a tableau of black squares M ′′ by replacing B′ among the black squares of M ′ with T . Normalize the
black squares. Form a tableau of red squares by taking the red squares of M ′. Declare that a black square B
is contained in a red square R if there exists a black square B′′ in M ′ containing B which is contained in R.
Denote the containment relations among black squares and red squares by I. Denote by #I

BR(M ′′) the number
of black squares in M ′′ contained in R according to I. Then in Definition 4.42 we can replace containment
relations among red and black squares by those that are in I and the symbol #BR by #I

BR to obtain an
irreducible subvariety of F (k1, k2; n) of dimension at most

k2∑
i=1

|Bi| +

k1∑
i=1

#I
BRi(M

′′) −

k2∑
i=1

#BBi(M
′′) −

k1∑
i=1

#RRi(M
′).

The proof of Proposition 4.43 remains unchanged.

We can estimate how the dimension changes when we apply this procedure. First, let us see the change in
dimension prior to normalizing the black squares. It is useful to consider the projection of Y to G(k2, n). The
fiber dimension of the projection increases by the number of red squares r that did not contain B′, but contain
T and have a black square containing T . On the other hand, the number of containment relations among
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black squares increases by at least r due to the fact that r of the black squares contained in the red squares
and not containing B(0) start containing the intersection. However, some of the black squares contained in
B′ may no longer be contained in B. Suppose there are m of those. The difference in side-length between B′

and T is at least r + m. Since M is normalized, it can only be r + m if B′ = S(0) and every vector ei with
l(S(0)) ≤ ei < R0(0) is the lower-left corner of a square strictly contained in S(0); or B′ is the smallest neighbor
of S and is contained in S(0). For every other instance, the dimension of the projection strictly decreases. Note
that normalizing the black squares cannot increase the dimension. We conclude that in this case we either obtain
the Tableau M0 in the cases described or the dimension of the variety strictly decreases by this procedure.

In Case A i, Using Observation 4.44, we can build a variety that must contain the support of Y . Replace
the square B′(0) with the square T corresponding to the smallest vector space spanned by e1, . . . , en in the
intersection of B′(0) and R0(0) for which V2 intersects Ri(0) in dimension greater than #BT (M ′). In this case
dim(V2 ∩ W) = #BW (M). Let B1 be the square in M ′ whose lower-left corner is southwest most among the
squares not contained in R0(0). If B1 coincides with a red square R1, let B2 be the square whose lower-left
corner is southwest most among the squares not contained in R1. Inductively if Bh coincides with a red square
Rh, let Bh+1 be the square whose lower-left corner is southwest most among the squares not contained in Rh.
Stop if Bl does not coincide with a red square. Let B1, . . . , Bl be these black squares. Let X be the smallest
black square contained in R0(0) with l(X) < l(B1) and which agrees with R0(0) northeast of l(X). If there
are any black squares that contain the squares R0, . . . , Rl−1, but not B′ or Bl, list the minimal ones with
respect to inclusion A1, . . . , Ar ordered by their lower-left corners. Form the collection of black squares M ′′ by
replacing the black squares B′, B1, . . . , Bl, A1, . . . , Ar in M ′ with T, B1∩X, B1∩B2, . . . , Bh∩Bh+1, . . . Bl−1∩Bl

and the span of B′ and A1, Ai and Ai+1 for i = 1, . . . , r − 1 and the span of Ar and Bl. Note that V2 has
to intersect Bh ∩ Bh+1 in dimension at least the number of squares contained in M ′′. We are assuming that
dim(V2 ∩ W) = #B(W ), hence the subspace of V2 contained in the span W1 of basis vectors northeast of B1

has to intersect the subspace of V2 contained in R0(0) in dimension larger than #B(W1 ∩ R0(0)), hence V2

must intersect B1 ∩ Ri(0). In particular, V2 must intersect X ∩ Ri(0). If B1 coincides with a red square, note
that by APM1 and APM2 for M ′ any square strictly contained in B1 is also contained in R0(0). Either V2

intersects the span of Ri(0) and B1 in dimension #BR0(0)(M ′) + 1, but since V2 already intersects Ri(0) in
dimension #BR0(0)(M ′) + 1, we would have V1 intersects R1 ∩ Ri(0) contrary to our assumption. Else V2

intersects B2 ∩ B1. Continuing by induction we see that V2 has to intersect Bh ∩ Bh+1 in dimension at least
the number of squares contained in M ′′. If any of the intersections are empty, then clearly this locus cannot
exist. Similarly, by Observation 3.31 V2 has to intersect the limits of the spans of the consecutive vector spaces
among B′, Ai and Bl as claimed. Next, form the collection of red squares consisting of the red squares in M ′.
Finally, specify inclusions I of black squares in M ′′ into red squares where a black square B′′ is included in a
red square R′ if in M ′ there exists a black square in M ′ containing B′′ and contained in R′. As in the previous
case, we can associate an irreducible subvariety of F (k1, k2; n) to this new set of data as in Definition 4.42.

We can calculate how this procedure changes the dimension. Let r be the number of squares that start
containing a black square B, which they previously did not contain, in one of their black squares. The fiber
dimension of the projection to G(k2, n) increases by r. The dimension of the image changes as follows: By
Corollary 3.44 the dimension decreases by at least r + 1 if B′ is not S(0) and by at least r if B′ is S(0). Hence,
in order, to have a variety that can support Y , B′ must be S(0). Furthermore, R0(0) must be a red neighbor of
S(0). In all other instances the dimension decreases by at least one. Now we can explicitly describe the change
in dimension. The total side-lengths of the black squares increases by 1. Since there is no containment relations
among the red squares for which the construction takes place, the fiber dimension increases by at most j− i+1.
The containment relations among the black squares changes as follows: Suppose S has two black neighbors.
Then by APM2 the larger black neighbor contains R0(0) and the black square that forms the final intersection
with Rl(0) cannot be contained in the larger black neighbor of S since F does not contain any fillers and Bl does
not coincide with a red square. Hence the total containment relations among the black squares increases by at
least j − i+3. One for each of S(0), the last black square and the black squares coinciding with the red squares
and the larger black neighbor. Hence, this possibility cannot occur if S has more than one black neighbor.
Similarly, if the red neighbor of S does not contain the black neighbor of S, the procedure strictly decreases the
dimension by a similar argument. Finally, suppose that S has one black neighbor, but this neighbor does not
coincide with the red square. By the same reasoning this increases the number of containment relations among
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the black squares to at least j − i + 3. We conclude that the procedure strictly decreases the dimension unless
S has a unique black member that coincides with a red square.

We can by repeatedly applying the two procedures described above build an irreducible subvariety of
F (k1, k2; n) that contains the irreducible component Y . Applying the procedure potentially forces us to leave
the category of painted Mondrian tableaux. However, note that the procedures only involve the black squares.
Furthermore, each repetition of the procedure strictly decreases the dimension of the resulting variety unless the
total side-length of the black squares increase by at least one. Since this can happen at most once we conclude
that the only possibilities are as follows: Either we are in case A i; B′ is S(0); S has a unique black neighbor that
coincides with a red square. Or we are in case A ii; B′ is S(0); and every vector ei with l(S(0)) ≤ ei < R0(0) is
the lower-left corner of a square strictly contained in S(0). Or we are in case B; B′ is the smallest neighbor of
S(0); R0(0) coincides with S(0) and contains B′. We can also describe the corresponding tableaux. We already
saw that in cases A ii and B we obtain the Tableau M0. In Case A i, the procedure produces the tableau
M3(NR) (prior normalizing and shrinking the red squares to become the span of black squares contained in
them). A priori at a general point of Y the subspaces of V2 contained in the vector spaces corresponding to the
squares can become more dependent. However, by Corollary 3.44 this strictly decreases the dimension of the
image of the projection. Since we are assuming that the support of Y is not ΣM0

, we conclude that Y has to
be supported on ΣM3(NR).

Next, we can assume that at a general point of a maximal irreducible component Y of ΣM (0), the subspaces
of V1 intersect Ri(0)∩Rj(0) in dimension greater than #R(Ri ∩Rj)(M). Then using Observation 4.44, we can
build a subvariety of F (k1, k2; n) that has to contain Y . Consider the smallest subspace T such that V1 at a
general point of Y intersects T in dimension greater than the number of red squares contained in T . If T is not
contained in the span of black squares we add a black square coinciding with T . We then adjust the tableau
consisting of red squares as in Corollary 3.44 and the tableau consisting of black squares as in Corollary 3.44.
That is we list the minimal red squares R1, . . . , Rl and the minimal black squares B1, . . . , Bm containing T and
apply the procedure in Corollary 3.44

We continue until V1 intersects the vector spaces corresponding to the intersection of any two red squares in
dimension equal to the number of red squares contained in that intersection. Call the resulting tableau M̃ . If
for each red square R, the dimension of the subspace of V2 contained in R is equal to #BR(M̃) and for any two

B1, B2 in M̃ , V2 intersects B1 ∩B2 in dimension equal to #B(B1 ∩B2)(M̃), then the support of Y is contained

in ΣM̃ . Otherwise, we have to run the procedure described in Case II. Running the procedure on Tableau M̃
cannot increase the dimension of the resulting tableau by an argument analogous to the one given after Case II
above. Hence, we can estimate the dimension of ΣM̃ .

We can consider the first projection π1 : Y → G(k1, n). Let MR be the tableau consisting of the red squares
in M . By Corollary 3.44 the projection of Y has to be contained in the variety associated to one of the tableau
M0 or M1(N) obtained from MR by Algorithm 3.40. Next we observe that forming the tableau M̃ preserves or
decreases the fiber dimension of the projection to G(k1, n).

Let A be a painted Mondrian tableau. Then the projection of the variety ΣA to G(k1, n) is obtained by
taking the tableau consisting of the red squares of A. The fiber dimension of this projection is calculated by∑

Bi∈A

|Bi| −
∑

Bi∈A

#BBi(A) +
∑

Ri∈A

#BRi(A) −
∑

Ri∈A

|Ri|.

More generally, the fiber dimension of the projection is calculated by the dimension for the choice of V2 containing
V1 and satisfying the constraints imposed by the black squares of the tableau. This is calculated as in Corollary
3.44. Suppose there are m minimal black squares containing the intersection. If the one with southwest most
corner is not S(0), then the contribution to the fiber dimension from the choice of V2 decreases by at least m−1.
If the square with southwest most corner is S(0), then the contribution to the fiber dimension decreases by at
least m − 2. On the other hand, the containment relations among the subspaces of V2 and V1 can increase by
the number of black squares which were not contained in a red square, but are now contained in the consecutive
spans of the red squares. By APM1 and APM2 for M , if a black square B which was not contained in Rh or
Rh+1 is contained in the span Rh,h+1, then B must be among the minimal black squares in the construction.
Otherwise, B would contain a red square strictly contained in it containing a minimal black square. Hence,
the minimal red squares could not be R1, . . . , Rl. Hence by APM2 and APM3, the number of black squares



A LITTLEWOOD-RICHARDSON RULE FOR TWO-STEP FLAG VARIETIES 45

contained in red squares increases by at most m − 1. If the square with southwest most corner is S(0), the
dimension of V1 contained in the span also increases by 1. Hence, we conclude that under the construction the
generic fiber dimension of the projection to G(k1, n) does not increase.

Since Y has the same dimension as ΣM , we conclude that the projection of ΣM̃ to G(k1, n) must equal the

dimension of the projection of ΣM to G(k1, n). Hence by Corollary 3.44, the red squares of M̃ must be one of
M0 or M1 associated to MR. Since we are assuming that we are not in the case M0, we must be in the case M1.
By the same argument as in Corollary 3.44, this projection has the same dimension only if the move increases
the dimension of intersection of R (or a chop of R) with a neighbor of R (respectively, of a chop of R, where we
define the neighbor of a chop of R as in definition 3.10 with every occurrence of R replaced by the chop of R).
By Proposition 4.29 this only happens when S coincides with a red square R since in every other case there
exists a red square to the lower-left of l(S) that R does not contain. By APM1 the move cannot increase the
length of intersection of a red square (or a chop of it) with a neighbor. We conclude that the dimension of the
projection of Y can have the same dimension only when S coincides with a red square. Since the generic fiber
dimension of the projection to G(k1, n) has to be maximal, we conclude that M̃ is equal to M1(NR). Now it
is clear that running the procedure after Case II or Case I, strictly decreases the dimension. We conclude that
Y has to be supported on ΣM1(NR).

Finally, suppose Bj does not coincide with a red square of M and Ri does not coincide with a black neighbor
of Bj . A priori there could exist a maximal irreducible component Y of ΣM (0), where at a general point V1

intersects Bj(0) ∩ Ri(0) in dimension greater than #R(Bj(0) ∩ Ri(0))(M). Such loci have dimension strictly
less than the dimension of ΣM . Hence, they cannot support maximal irreducible components of ΣM (0). The
argument is very similar to the previous cases, so we leave it to the reader.

This concludes the first step of the proof. In order to conclude the proof we have to check that ΣM (0) is
reduced along each irreducible component. Using the same reduction as in the proof of Theorem 3.32, we can
assume that M consists of S and the squares that whose intersections and spans are being taken. Namely
consider the subspace of ΣM(t) contained in the vector spaces coinciding with the squares whose intersections
and spans are formed. Over an Zariski-open dense subset intersecting every component of ΣM (0), the restriction
of V1 and V2 gives a smooth morphism to a smaller two-step flag variety. The statement about reducedness
follows from the smaller flag variety.

Suppose first that S does not coincide with a red square and the largest neighbor of S does not coincide with
a red square. In this case, the projection π2 : F (k1, k2; n) → G(k2, n) exhibits an open subset of the family
intersecting every component of ΣM (0) as an open set in a tower of projective bundles. In this case the fact that
ΣM2(Ni) and ΣM0

have multiplicity one follows from Theorem 3.32 by pulling back via this morphism. More
generally, the fact that the components ΣM2(Ni) have multiplicity one follows from Theorem 3.32 by pulling
back by the projection morphism. Now suppose S coincides with a red square, but the largest neighbor of S is
not red. Then consider the projection π1 : F (k1, k2; n) → G(k1, n). This projection exhibits an open subset of
the family intersecting ΣM1(NR) as a tower of projective bundles over an open subset in the variety associated
to the tableau consisting of the red squares. By Theorem 3.32, it follows that ΣM1(NR) occurs with multiplicity
one. More generally, by the same argument ΣM1(NR) occurs with multiplicity one. Next, we need to check that
in case the largest neighbor of S is red ΣM3(NR) occurs with multiplicity one. This case immediately reduces
to the case when M consists of a black square S a red neighbor R and a black neighbor N of R. That the
multiplicity is one in this case is an easy local calculation. Finally, observe that M0 has multiplicity one in the
remaining two cases: If S is black and the largest red neighbor contains S(0); or if S coincides with a red square
and it contains its only black neighbor. That ΣM0

has multiplicity one in these two cases is obvious either by
an easy local calculation or by Monk’s rule. This concludes the proof of the theorem. �

5. A quantum Littlewood-Richardson rule for Grassmannians

In this section we obtain a quantum Littlewood-Richardson rule for Grassmannians G(k, n) as a corollary to
Theorem 4.21.

Given a Mondrian tableau for σλ in G(k, n) and an integer d ≤ k, we can associate to it a painted Mondrian
tableau in F (k − d, k + d; n) as follows: The Mondrian tableau associated to the Schubert variety σλ consists
of k nested squares. We take the largest k − d squares (those of index d + 1, . . . , k) and color them in C1.
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We color the remaining squares in C2. Finally, we add d squares of color C2 at the largest available places in
the flag defining the Mondrian tableau of σλ (see Figure 20 for two examples). We call the resulting painted
Mondrian tableau the quantum Mondrian tableau of degree d associated to σλ. This tableau is none other than

the painted Mondrian tableau associated to the special Schubert variety X
(d)
λ of F (k − d, k + d; n) defined in

§2.

degree 2 quantum cycle

σ3,2,1 ∈ G(3, 6) σ2,1,1,2
2,1,0,0 ∈ F (2, 4; 6) σ3,2 ∈ G(3, 6) σ2,2,2,2,1

1,0,0,0,0 ∈ F (1, 5; 6)

degree 1 quantum cycle

Figure 20. The quantum Mondrian tableaux associated to two Schubert varieties.

Let σλ, σµ and σν be three Schubert cycles in G(k, n) that satisfy the equality

|λ| + |µ| + |ν| = k(n − k) + dn.

Apply the algorithm described in the previous section to the quantum Mondrian tableau of degree d associated
to σλ and σµ to express their intersections as a sum of Schubert cycles in F (k − d, k + d; n). Theorem 4.21 and
Lemma 2.7 imply that the Gromov-Witten invariant Id(σλ, σµ, σν) is equal to the number of times the Poincaré
dual of the quantum Mondrian tableau of degree d associated to σν occurs in this product. We have obtained
the following theorem.

Theorem 5.1. The three-pointed Gromov-Witten invariant Id(σλ, σµ, σν) of G(k, n) is equal to the number of
times the Poincaré dual of the quantum Mondrian tableau of degree d associated to σν occurs in the Algorithm
4.18 applied to the quantum Mondrian tableaux of degree d associated to σλ and σµ in an n × n square.

We illustrate the use of Theorem 5.1 by computing the Gromov-Witten invariant

IG(3,6),d=1(σ3,2,1, σ3,2,1, σ2,1) = 2.

Figure 21 demonstrates the computation. The quantum cycle of d = 1 associated to σ3,2,1 (respectively, σ2,1)

is σ2,1,1,2
2,1,0,0 (respectively, σ2,1,2,1

1,0,0,0). In order to calculate the Gromov-Witten invariant we have to find how many

times σ1,2,1,2
2,2,2,1 (the dual of σ2,1,2,1

1,0,0,0) occurs in the square of the class σ2,1,1,2
2,1,0,0 . An easy calculation with painted

Mondrian tableaux shows that the answer is 2.
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