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Abstract. This paper investigates low-codimension degenerations of Del Pezzo surfaces. As an applica-
tion we determine certain characteristic numbers of Del Pezzo surfaces. Finally, we analyze the relation
between the enumerative geometry of Del Pezzo surfaces and the Gromov-Witten invariants of the Hilbert
scheme of conics in P

N .
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1. Introduction:

This paper investigates the degenerations of Del Pezzo surfaces Dn embedded in PN by their anti-
canonical bundle. Due to the vast number of possibilities, we restrict our attention to describing simple
specializations of Dn. As an application we determine some characteristic numbers of Del Pezzo surfaces.
Finally, we discuss the relation between these numbers and the Gromov-Witten invariants of the Hilbert
scheme of conics. We work exclusively over the complex number field C.

This is a sequel to [C] where we studied the enumerative geometry of rational normal surface scrolls.
Already in that case, to obtain recursive formulae for the number of surfaces incident to general linear
spaces, we needed to impose strong non-degeneracy assumptions by requiring enough of the linear spaces
to be points. The case of Del Pezzo surfaces is more complicated, but instructive to consider. The new
features of this case can be summarized as follows:

(1) Reducible surfaces that are limits of one-parameter families of scrolls are again unions of scrolls.
Del Pezzo surfaces exhibit a much larger variety of degenerations (§3). For example, a Del Pezzo
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surface can degenerate to a union of scrolls, a union of a Veronese surface and a scroll, a union
of a Del Pezzo surface of lower degree and planes, a union of a rational cone and an elliptic cone.
This partial list indicates that we cannot hope for a reasonable recursive formula for characteristic
numbers of Del Pezzo surfaces via degeneration methods except in very special cases.

(2) The hyperplane sections of Del Pezzo surfaces are not rational, but elliptic curves. The case of genus
one curves in PN is the last case where we have a firm understanding of the enumerative geometry
of curves satisfying incidences with linear spaces ([V]). Consequently, the Del Pezzo surfaces lie at
the perimeter of surfaces whose enumerative geometry we can analyze via degenerations.

(3) Unlike scrolls Del Pezzo surfaces can have non-trivial moduli. This often makes it challenging to
recognize limits.

An interesting observation resulting from our investigations is that degenerations of higher dimensional
varieties exhibit qualitative behavior fundamentally different from that of curves. Degenerations of incidence
and tangency conditions on rational curves with respect to linear spaces result in a closed system of
enumerative problems. The limits of curves again satisfy similar conditions. The limits of surfaces, on
the other hand, can be subject to arbitrarily complicated conditions. Since degeneration arguments are
prevalent in algebraic geometry, this crucial difference is important to note.

We now sketch an outline of the paper.

Notation. Let S∗ be the dual of the tautological bundle over G(2, N), the Grassmannian of planes in P
N .

Let XN denote P(Sym2S∗). XN is a projective bundle over G(2, N). We can interpret it as the space of
pairs of a plane and a conic in the plane.

The limits. We produce a list of potential non-degenerate limits of Dn that can occur in one-parameter
families (§3) using a classical theorem of Del Pezzo and Nagata (§2.3), which classifies surfaces of degree n

in P
n. We then exhibit families realizing the degenerations of Dn relevant to our counting problems and

we describe the limiting positions of geometrically significant curves.

We use two techniques to construct families of Dn specializing to a given limit. We specialize the
base points of the linear system of cubics on P2 in various ways to obtain classical constructions. More
interestingly, since Del Pezzo surfaces Dn are ruled by conics, we can interpret them as curves in XN . Let
dn denote the cohomology class of a curve in XN arising from a one-parameter family of conics on Dn.
Given a potential limit surface, we can try to find a curve C of conics in the class dn that sweeps it. If we
can deform C to a curve of conics arising from a smooth Dn, then we can conclude that the surface arises
as a degeneration of Dn.

Example. For instance, it takes ingenuity to find a specialization of the base points in order to obtain a
family of Dn (n < 8) degenerating to the projection of the rational scroll S2,n−2 from a point on the plane
of a conic on S2,n−2. However, it is easy to see that the curve of reducible conics consisting of a fiber line
and the double line deforms to a curve of conics on Dn (see §3).

Characteristic numbers. By the characteristic number problem we mean the problem of computing
the number of varieties of a given type that meet the ‘appropriate’ number of linear spaces in general
position. Classically characteristic numbers also allow tangency conditions; however, in this paper we
will consider only incidence conditions. Using our description of the degenerations of Dn we determine
some characteristic numbers of D3 and D4. Although most of these numbers can also be obtained by
classical methods, our method has the advantage of circumventing tedious cohomology calculations and
yields numbers of surfaces satisfying divisorial conditions, which are hard to obtain classically. We can
also determine a few of the characteristic numbers of D5. However, for n ≥ 6 and essentially for n = 5,
the degenerations get too complicated for the method to terminate and give actual numbers. If instead we
ask for the number of Dn containing a fixed degree n elliptic normal curve and satisfying incidences with
linear spaces, then the degeneration method gives a few more answers for n = 5 and 6. I do not know of a
classical method to compute these numbers when n > 4.

The method. In order to count surfaces incident to various linear spaces, we degenerate the linear spaces
one by one to a hyperplane H until we force any surface meeting them to become reducible. If we have
enough point conditions to satisfy our non-degeneracy assumptions, we know the possible reducible surfaces
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that occur in the limit. We can hope to count surfaces by further breaking each of the pieces of the limit
surface to obtain simpler surfaces. This hope is in general upset by the appearance of singular surfaces and
more and more complicated conditions on hyperplane sections of the surfaces. However, the method still
works in many cases (see examples in §4) and with some effort should extend to more cases.

Gromov-Witten invariants of XN . It is natural to ask for the relation between the enumerative
numbers for Dn and the Gromov-Witten invariants of XN . XN is not a convex variety (§2.2). There are
maps f : P1 → XN for which h1(P1, f∗TXN ) 6= 0. Its Kontsevich spaces of genus zero stable maps often
have components of more than the expected dimension.

When a variety V is homogeneous (in particular convex), then the Gromov-Witten invariants count the
number of curves that meet general subvarieties of V . However, when the variety is not convex, there can
be virtual contributions to the Gromov-Witten invariants. It is usually a hard problem to decide when
the Gromov-Witten invariants of a non-convex space are enumerative. Gathmann [Ga] and Göttsche and
Pandharipande [GP] discuss this problem for the blow-ups of PN and P2, respectively.

In general the Gromov-Witten invariants of XN for the class dn are not enumerative (§6). However, we
prove that the Gromov-Witten invariants involving incidences to linear spaces are enumerative when n = 3
and when n = 4 provided that there are not any P3s incident to all the linear spaces. As a corollary we
compute some Gromov-Witten invariants of XN .

Acknowledgments. It is a pleasure to thank B. Hassett, C. Ciliberto, M. Popa, J. Starr, D. Avritzer and
M. Mirzakhani for fruitful discussions. I am especially grateful to R. Vakil and my advisor Joe Harris for
their ideas and invaluable suggestions during the course of this project. I would also like to thank J. Li,
the Stanford Mathematics Department and especially R. Vakil for their hospitality.

2. Preliminaries

2.1. Del Pezzo surfaces. In this subsection we discuss the basic geometry of Del Pezzo surfaces. For
more details consult [Bv] Ch. 4, [GH] §1 Ch. 4 or [Fr] Ch. 5.

Del Pezzo surfaces are smooth complex surfaces with ample anti-canonical bundle −K. Except for
P1×P1, they can be realized as the blow-up of P2 in fewer than 9 points such that no three lie on a line, no
six lie on a conic and no 8 lie on a cubic singular at one of the points. To have a more uniform discussion
we exclude P

1 × P
1. We denote Del Pezzo surfaces by Dn where n is the degree K2 of the anti-canonical

bundle. Equivalently, Dn is the blow-up of P2 in 9−n general points pi. The anti-canonical series |−K| on
a Del Pezzo surface can be interpreted as the linear series of cubics on P2 having pi as base points, therefore

h0(Dn,−K) = 10 − n.

We limit our discussion to Del Pezzo surfaces Dn embedded in P
n by their anti-canonical bundle, i.e. to

Dn with n ≥ 3.

Geometric description. These surfaces display a rich geometry and often have nice determinantal
descriptions. D3 is a cubic surface in P3. D4 is the complete intersection of two quadric threefolds in P4.
D5 is a fourfold hyperplane section of the Grassmannian G(1, 4) under its Plücker embedding. D6 is a
two fold hyperplane section of the Segre embedding of P2 × P2 or it is the hyperplane section of the Segre
embedding of P

1 × P
1 × P

1. Finally, D9 is the cubic Veronese embedding of P
2 in P

9.

The Picard group of Dn is isomorphic to Z10−n generated by the classes H, the pull back of the
hyperplane class from P

2, and Ei, 1 ≤ i ≤ 9 − n, the exceptional divisors of the blow-up. The intersection
pairing is

H2 = 1, H · Ei = 0, Ei · Ej = −δi,j .

In terms of these classes the anti-canonical class is −K = 3H −
∑9−n

i=1 Ei.

By Bertini’s theorem a general hyperplane section of Dn is a smooth elliptic curve of degree n. These
curves are projectively normal.



4 IZZET COSKUN

Curves on Dn. During the degenerations it is important to know the limits of lines, conics and hyperplane
sections on Dn. On Dn the effective curve classes containing an irreducible curve of a given arithmetic
genus g and degree d are easy to determine. We can express the class of any curve as aH −

∑9−n
i=1 biEi.

Since the surface is embedded by |−K|, the degree condition implies that

3a −

9−n
∑

i=1

bi = d.

The genus formula translates to

a2 −

9−n
∑

i=1

b2
i = 2g − 2 + d.

Using the Cauchy-Schwarz inequality
(

9−n
∑

i=1

bi

)2

≤ (9 − n)

9−n
∑

i=1

b2
i ,

we find the choices for a and then solve for the bi satisfying the two equations. In the rest of the paper we
will use this scheme to determine curve classes without further mention. For the convenience of the reader
we enumerate the classes of lines and conics on Dn.

Lemma 2.1. On the Del Pezzo surfaces Dn (n ≥ 3) the classes of lines are Ei, 1 ≤ i ≤ 9−n, H−Ei−Ej,
i 6= j and 2H − Ea − Eb − Ec − Ed − Ee where a, b, c, d, e are distinct, whenever these classes exist.

Lemma 2.2. On the Del Pezzo surfaces Dn (n ≥ 3) the classes of conics are H−Ei, 2H−Ea−Eb−Ec−Ed,
3H − 2Ea − Eb − Ec − Ed − Ee − Ef where a, b, c, d, e, f are distinct, whenever these classes exist.

Moduli of Del Pezzo surfaces. The surfaces D3 and D4 have a four and two dimensional moduli space,
respectively. We will not be concerned with the construction or properties of these moduli spaces.

Singular Del Pezzo surfaces. A singular Del Pezzo surface D
(s)
n is an irreducible surface of degree n

in Pn which has isolated double points. D
(s)
n is also the image of the blow-up of P2 in 9 − n points. D

(s)
n

arises when the points we blow up to obtain Dn become infinitely near, fail to be in general linear position
or lie on a conic (when n = 3).

The list of the combinations of double points that occur on D
(s)
n is long. When n = 3, Bruce and

Wall give a very nice description [BW]. The type and combination of the double points that occur on a
cubic surface are all obtained by deleting vertices (and the edges adjacent to them) from the extended E6

diagram.

Figure 1. The extended E6 diagram

Conversely, every combination of Du Val singularities that arises by deleting vertices from the extended E6

diagram occurs on some cubic surface.

Tangent planes to Dn along curves. When studying limiting positions of hyperplane sections in one-
parameter families of surfaces, it is essential to have estimates on the dimension of the space of hyperplanes
tangent to the components of the limit surface along common curves. The dimension of the space of
hyperplanes tangent to a smooth Dn ⊂ Pn along a line is max(−1, n − 5). However, if the surface has a
double point this estimate can change. For example, on a smooth D4 ⊂ P4 there are not any hyperplanes
tangent to the surface everywhere along a line; however, when the surface acquires an ordinary double
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point, there can be one. Consequently, one has to exercise caution to consider all possible singularities
when giving estimates. For simplicity, we will often exclude singular surfaces from the discussion.

The dimension of the space of Del Pezzo surfaces in PN . If we fix linear spaces Λai of dimension
ai < N − 2 in general position such that

∑

i

(N − 2 − ai) = N(n + 1) − n + 10,

then there will be finitely many smooth Dn meeting all the linear spaces by the following dimension count.

Lemma 2.3. The dimension of the locus in the Hilbert scheme whose general point corresponds to a smooth
Dn in PN is

N(n + 1) − n + 10.

Proof: Realize Dn as the image of a map from the blow-up of P2 at 9−n points by choosing N +1 sections
in |−K| and projectivizing. We need to add the dimension of the moduli space or subtract the dimension
of the automorphism group which amounts to adding 10 − 2n. �

We will determine the number of Dn in some cases using degenerations. For future reference we recall
the following well-known fact (see [V] §5).

Lemma 2.4. The dimension of the component of the Hilbert scheme whose general point corresponds to a
smooth elliptic curve of degree n + 1 spanning a Pn in PN is

(N − n)(n + 1) + (n + 1)2 = (N + 1)(n + 1).

Rational Scrolls. During the degenerations of Dn we will encounter rational surface scrolls. We refer the
reader to [C] for a detailed discussion of their geometry.

A rational normal scroll Sk,l is abstractly the Hirzebruch surface Fl−k embedded in Pk+l+1 by the
complete linear series e + lf , where e, f are the usual generators of the Picard group of Fl−k satisfying
e2 = k − l, f2 = 0, e · f = 1. The classes e, f are the classes of the exceptional curve E and of a fiber F ,
respectively. These surfaces can be explicitly constructed by taking two rational normal curves of degrees
k and l with disjoint linear spans; choosing an isomorphism between the curves; and taking the union of
lines joining the points corresponding under the isomorphism.

We will refer to a curve class e + mf as a section class and to a curve class 2e + mf as a bisection

class. Irreducible curves in section and bisection classes are sections and bisections of the projective bundle
over P1, respectively. In addition to the cohomology calculations in §2 of [C], we will use

h0(Fr,OFr
(2e + (r + 2)f)) =

{

9 : r ≤ 2
h0(Fr,OFr

(e + (r + 2)f)) : r ≥ 3

which follows by considering the exact sequences

0 → OFr
(2e + mf) → OFr

(2e + (m + 1)f) → OF (2) → 0

0 → OFr
(e + mf) → OFr

(2e + mf) → OE(m − 2r) → 0.

The Veronese surface. During the degenerations we will also encounter the Veronese surface, the image
of P

2 in P
5 given by the complete linear system of conics. A central fact is that the Veronese surface

together with the rational normal scrolls are the only non-degenerate irreducible surfaces of degree n − 1
in Pn ([GH] p. 525).

2.2. The Geometry of the Space of Conics. Since we will rely on the description of Dn as a curve of
conics, we recall the basic facts about the Hilbert scheme of conics in P

N .

Let S∗ denote the dual of the tautological bundle on the Grassmannian G(2, N) of planes in P
N . Recall

that XN was defined to be P(Sym2S∗). Let

π : XN → G(2, N)

be the natural projection map.
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The Chow ring of XN is generated by the pull-back of the classes on G(2, N) and the first chern class
of the tautological bundle on XN ([Ful] 8.3.4). The Picard group has 2 generators which we can express
in terms of geometric cycles. Let ω be the class of conics which meet a fixed PN−2 (i.e. the pull-back of
the hyperplane class of P

N by the natural morphism) and η the class of conics whose planes meet a fixed
PN−3 (more precisely, the first chern class of the tautological bundle on XN ). The locus of reducible conics
∆, whose class we denote by δ, is also a divisor. The intersection products below (see Table 1) imply that
δ = 3ω − 4η.

Similarly, there are two natural curve classes on XN . Let a be the class of conics that lie in a fixed plane
and pass through 4 general points on the plane. Let b be the class of conics that are cut out on a fixed
quadric surface by a pencil of hyperplanes. Each conic class contains a one-parameter family of disjoint
conics on Dn, n 6= 9, so gives rise to a curve in XN . For example, D3 gives rise to 27 rational curves in
X3. Let dn denote the class in XN of the curve of conics on Dn in a fixed cohomology class. Table 1 below
implies that

dn = (4 − n)a + (n − 2)b.

· ω η δ

a 1 0 3
b 2 1 2
dn n n − 2 8 − n

Table 1: Intersection Products

For β ∈ H2(XN , Z) let M0,m(XN , β) denote the Kontsevich space of stable maps in the class β. In
general the Kontsevich spaces of XN can have components of larger than expected dimension. One of the
simplest examples is M0,0(X

N ,−da+db) for d > 1. Using the Euler sequence for the tangent bundle ([Ful]
3.2.11) one can check that the canonical bundle of XN is given by

KXN = −6ω + (7 − N)η.

Hence, the expected dimension of M0,0(X
N ,−da + db) is

dim XN + c1(X)(−da + db) − 3 = Nd − d + 3N − 4.

Take a cone C over a rational curve of degree d and a line l not necessarily contained in C, but meeting
it at the vertex. The curve in XN whose points correspond to the union of l with a line of C has class
−da + db. The dimension of cone and line pairs is Nd + 3N − 5. So when d > 1, this provides us with
a Kontsevich space of the “wrong” dimension. We will see more examples in §6. For future reference we
note that the expected dimension of M0,m(XN , dn) is

N(n + 1) − n + 10 + m.

When m = 0, this agrees with the dimension in Lemma 2.3.

2.3. The Classification of degree n surfaces in Pn. In this subsection we state the classification
theorem for reduced, irreducible, non-degenerate surfaces of degree n in Pn. This is a classical theorem of
Del Pezzo and Nagata whose proof can be found in [Na].

Theorem 2.5. An irreducible, reduced, non-degenerate surface of degree n in Pn is one of the following:

1. A projection to P
n of a scroll of degree n in P

n+1,

2. A projection to P
4 of the Veronese surface in P

5,

3. A Del Pezzo surface, possibly with finitely many isolated double points,

4. The image of F0 or F2 in P8 given by their anti-canonical map,

5. A cone over an elliptic curve of degree n in Pn−1.
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3. The limits of Del Pezzo surfaces

In this section we describe the non-degenerate surfaces in Pn that can arise as limits of Dn. We appeal
to the description of Dn as a curve in Xn. Since D9 does not contain any conics, we restrict the values of
n to 3 ≤ n ≤ 8.

3.1. Constraints on the Degenerations. Notation. Let f : Y → B be a flat family of surfaces in PN

over a smooth, connected curve. Let b0 ∈ B be a marked point and let Y0 denote the fiber of f over b0.
We assume that Yb for points b 6= b0 is a Del Pezzo surface Dn. We also assume that Y0 spans a Pn and
its components are reduced. We preserve the notation we used in §2 for XN .

Adjacent components. Let Y be a reducible surface connected in codimension 1. We refer to two
components that share a common curve as adjacent components. The dual graph of the surface consists of
a vertex for each irreducible component and an edge between adjacent ones.

Lemma 3.1. Y0 is a surface of degree n whose components are ruled by lines or conics. There exists
a connected subgraph containing all the vertices of its dual graph such that adjacent components share a
common line or conic.

Proof: Each Dn in the family gives rise to a collection of rational curves in XN . After a finite base change
totally ramified over b0, we can select a conic class on each surface away from b0. We denote the new
family by Y ′ → B′. This family induces a curve in the Kontsevich space of stable maps M0,0(X

N , dn).

The limit of the family in M0,0(X
N , dn) is a map from a tree of rational curves to XN . The restriction of

the universal curve over XN to the family of curves maps to P
N giving rise to a family of surfaces which

agrees with Y ′ except possibly over b′0. There is a scheme structure on the limit surface which makes the
family flat. Since over a smooth curve there is a unique way to complete a family to a flat family, this
family agrees with our original family. We conclude that the components of Y0 are ruled by conics or lines.
The last assertion follows from this description and the non-degeneracy of Y0. �

Proposition 3.2. Each component of Y0 is one of the following:

1. A Veronese surface in P5 or a non-degenerate scroll of degree k in Pk+1,

2. A projection of one of the surfaces in 1 to a surface with a double line in a one dimensional lower
projective space,

3. A cone over an elliptic curve of degree k in Pk−1, or

4. A Del Pezzo surface Dn, possibly with isolated double points.

Proof: If Y0 is irreducible, then it is a non-degenerate surface of degree n in Pn. Y0 cannot be the anti-
canonical image of F0 or F2 since these surfaces do not contain any lines. The flat limit of the lines in the
family of D8 would be a line. Similarly, Y0 cannot be the projection of a rational scroll or Veronese surface
with isolated singularities. The hyperplane section of such a surface has arithmetic genus 0 instead of 1.
By Theorem 2.5 we conclude that Y0 is one of the surfaces in cases 2, 3 or 4.

Two components. Suppose Y0 has two irreducible components W and Z of degrees dW and dZ . By
Lemma 3.1 they share a line or a conic.

Suppose W and Z meet in a conic (possibly reducible or non-reduced). Then the linear spaces they
span contain a common plane, so their total span is at most PdY +dZ . We conclude that the surfaces must
be minimal degree surfaces, so they are one of the surfaces in case 1. Since the Veronese surface does not
contain any lines, at most one of the surfaces can be a Veronese surface. Therefore, the surfaces are either
two scrolls meeting along a conic or a Veronese and a scroll meeting along a conic.

Suppose W and Z meet along a line. If both of the surfaces are minimal degree surfaces and meet
generically transversely along the line, then their union cannot be a limit of Del Pezzo surfaces since their
hyperplane sections have arithmetic genus 0 instead of 1. It is possible for two rational cones tangent along
a line to be a limit of Dn, but this is included in the previous case.

We can, therefore, assume that W spans only a PdW . Z must span a PdZ+1 and meet W along the line
generically transversely. Since a Veronese surface does not contain any lines, Z is a rational normal scroll.
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Theorem 2.5 implies that W is a Del Pezzo surface possibly with finitely many double points, a cone over
an elliptic curve or the projection of a scroll or a Veronese. Moreover, if W is the projection of a scroll
or the Veronese, it must have a double line because otherwise a general hyperplane section would have
arithmetic genus 0.

Further constraints. If W is a Del Pezzo surface and Z is not a plane, then both W and Z must be
singular. Suppose to the contrary that W is a smooth Dk and Z is a scroll of degree greater than 1 meeting
it in a line lC . The limit of a curve of conics on Dn is a connected curve of conics on Y0. Since W and Z

do not have a conic in common, W is not ruled by lines and the double of lC is not a conic class on W , the
conics on Y0 must consist of a curve of conics on W union a curve of lines on Z together with a fixed line
lF on W intersecting each line on Z. Hence, Z must be a cone. The fixed line lF cannot be lC , so the conic
class on W is the conic class [lF ] + [lC ]. The intersection of the variety of reducible conics with this curve
has more than 8 − n isolated points (see table in §2), hence the curve cannot be deformed to a smooth
curve in the class dn. We conclude that W is also singular. Furthermore, the same argument shows that
as the degree of the scroll increases, the residual Del Pezzo surface is forced to have worse singularities.
For example, if Dn breaks into a cubic cone union Dn−3, then Dn−3 must have a singularity worse than
an ordinary double point. Using the list of singularities and the number of lines on the singular surfaces it
is not too hard to make a list of possibilities.

Remark. In case W is not D3 or D4 the previous constraint follows by an elementary dimension count.
However, since D3 and D4 have moduli the dimension count only shows that W cannot be a general smooth
D3 or D4.

By a similar argument if W is a cone over an elliptic curve, then Z is a rational cone with matching
vertex. The limit curve of conics has to be reducible. One component of the curve must consist of line
pairs on W joining the points identified by the hyperelliptic involution on the elliptic curve. The other
component must consist of a fixed line in W union lines in Z. The claim follows.

More components. Now we allow Y0 to have more than two components.

Observation. If a subsurface S of Y0 of degree d spans exactly Pd, then all the remaining components are
minimal degree scrolls meeting the components adjacent to them in lines. The components adjacent to S

need to be attached to S along at least a line. To have the resulting surface be non-degenerate, the surface
we attach must have maximal possible span for its degree and meet at most one of the components of S in
a line. The observation follows by induction.

• Suppose Y0 contains three components Ui of degree di pairwise meeting in distinct curves. Ui spans at
most Pdi+1. The three components together span at most a linear space of dimension

∑

i di with equality
if and only if each of the surfaces have maximal span and their common curves are concurrent lines. By
the observation we conclude that each component is a scroll and the Ui each contain a pair of intersecting
lines.

• Suppose Y0 contains two components meeting in a conic, possibly reducible or non-reduced. Then the
two components are either two scrolls meeting along a conic or a Veronese surface and a scroll meeting
along a conic. By the observation all the other components must be scrolls.

• We can assume that all components of Y0 meet pairwise in lines and no three components meet pairwise in
distinct curves. Suppose one of the components U of degree d spans Pd. By Theorem 2.5 and the argument
given for the case when Y0 has two components, U is the projection of a Veronese surface or a rational
scroll with a double line, a cone over an elliptic normal curve or a Del Pezzo surface possibly with finitely
many singularities. By the observation all the other components are scrolls. By an argument similar to the
two component case we can deduce that if V is a smooth Del Pezzo surface then all the adjacent scrolls are
planes and they are joined to V along non-intersecting lines. In case V is a cone over an elliptic normal
curve, the adjacent components are rational cones whose vertices coincide with the vertex of V .

• Finally, we can assume that all the components are rational scrolls meeting pairwise in lines. The dual
graph must be such that the hyperplane sections of the surface have arithmetic genus 1. This concludes
the description of the components. �
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Corollary 3.3. 1. At most one component of Y0 is a Veronese surface. If a component is a Veronese
surface, all other components are rational normal scrolls.

2. If a component U of Y0 of degree d spans only Pd, then all the other components are rational normal
scrolls. If U is a smooth Del Pezzo surface or a cone over an elliptic normal curve, the scrolls have to
satisfy the constraints described in the proof of Proposition 3.2.

3.2. Explicit Families Realizing the Degenerations. One might hope that few of the surfaces de-
scribed in Proposition 3.2 actually occur as components of the limits of Dn. Unfortunately this is not so.
We now give examples of families realizing most of the irreducible or two-component possibilities listed in
Proposition 3.2. We assume n < 8 throughout.

Notation. Let A denote a disk in C. Let a0 ∈ A denote a marked point in the disk. We denote sections
of a family of varieties over A by si. Finally, let NX/Y denote the normal bundle of X in Y .

I. The Del Pezzo surfaces with isolated double points all arise by specializing the base points of the linear
system of cubics on P

2. From this description one can determine the limits of the lines and conics.

For example, to construct a family of cubic surfaces specializing to a cubic surface with four A1 singu-
larities, take A× P

2 and 6 general sections si which specialize to the intersection points of 4 lines li in the
P2 over a0. Blow up the sections si in A × P2. The dual of the relative dualizing sheaf restricted to each
fiber embeds the fiber away form a0 as a D3 in P3. The image of the fiber over a0 is a cubic surface with
the required singularities. There are 9 lines on the limit surface: the image of the 6 exceptional divisors
and the image of the three lines joining the pairs of points that do not lie on an li. The descriptions of
conics is similar.

Lemma 3.4. Suppose C is a smooth rational curve in Xn contained in the locus of reducible conics ∆.
Suppose C does not intersect the locus of non-reduced conics and [C] · δ ≥ 0. Then C can be deformed away
from ∆.

Proof: C is contained in the smooth locus of ∆. Away from the locus of non-reduced conics ∆ is a homo-
geneous variety and its tangent bundle is generated by global sections. Consequently, NC/∆ is generated
by global sections. Using the exact sequence

0 → NC/∆ → NC/Xn → OC(∆) → 0

and the assumption that [C] ·δ ≥ 0, we conclude h1(C, NC/Xn) = 0 and that H0(C, NC/∆) does not surject

onto H0(C, NC/Xn). Hence, the first order deformations of C are unobstructed and a general first order
deformation of C does not lie in ∆. The lemma follows. �

II. Degeneration of Dn to a scroll with a double line. The projection of a scroll S1,2 or S2,l, l ≤ 6,
from a general point on the plane of a conic in the surface has the same Hilbert polynomial as a Del Pezzo
surface. We will show that these surfaces are limits of Del Pezzo surfaces. These scrolls can be further
degenerated to more unbalanced scrolls.

The union of the double line with the fibers gives rise to a curve C of reducible conics in the Hilbert
scheme Xn contained in the smooth locus of ∆. Since δ · [C] = 8 − n, we conclude by Lemma 3.4 that
C can be deformed away from ∆. The resulting curve has the same class as a curve arising from a Del
Pezzo surface. The surface in Pn spanned by the conics is a non-degenerate, irreducible surface of degree
n ruled by reduced and generically irreducible conics. Since the dimension of scrolls with a choice of curve
of conics sweeping the surface once is smaller than the dimension of the deformations of C, by Theorem
2.5 we conclude that the surface is Dn (recall n < 8).

Alternative construction when n ≤ 5. For concreteness assume n = 5. Take A × P2 and specialize 4
general sections si to the same point p on the central fiber. Blow up the total space at p, then along the
proper transform of the sections si.

Denote the total space of the resulting threefold by X. The central fiber is the union of F1 with a P
2

blown up at 4 points. Denote these two components of the central fiber by F and P , respectively. Take the
linear system which restricts to |e + 3f | on F and to 2L −

∑4
i=1 Ei on P , where L is the line class on P2

and Ei are the exceptional divisors of the blow-ups. The linear series on the F1 component is not complete,
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but must match the linear series on P . The latter contracts the surface to a double line. This constructs
the desired degeneration of D5.

III. Degeneration of Dn to a cone over an elliptic curve. Every surface degenerates to a cone over a
hyperplane section (possibly with some embedded structure at the cone point) by taking the limit of a one
parameter family of projective transformations fixing the hyperplane. Since the cone over an elliptic curve
of degree n in Pn−1 has the same Hilbert polynomial as Dn there are no embedded components in this
case. By degenerating the elliptic curve which is the base of the cone into an elliptic curve with rational
tails, one obtains degenerations of Dn into an elliptic cone union rational cones.

IV. D4 degenerates to the projection of a Veronese surface with a double line. Both D4 and the
Veronese surface with a double line are complete intersections of two quadric threefolds. Since a general
complete intersection is a D4, to obtain such a degeneration it suffices to specialize the quadrics.

To see that a Veronese surface with a double line is a complete intersection of quadric threefolds it
suffices to observe that such a Veronese surface is given by the map

(x0, x1, x2) 7→ (x2
0, x

2
1, x

2
2, x0x1, x0x2)

in projective coordinates, hence two quadric threefolds contain it.

A degeneration of Dn into D4 union other surfaces meeting D4 along lines further degenerates to a
surface where a component is a Veronese with a double line.

V. Degeneration of Dn to Dn−1 union a plane. In A×P2 blow up 9−n disjoint sections pi(a) of A in
general position. In the fiber over a0 blow up a general point q. The fibers away from a0 are the blow-up
of P2 at 9−n points. The central fiber has two components: W, the blow-up of P2 at 10−n points and Z,
the exceptional divisor of the blow-up of q. Over the punctured disk A∗ = A − a0 the dual of the relative
dualizing sheaf is a line bundle. One of its flat limits restricts to the anti-canonical bundle on W and to
OP2(1) on Z. This provides us with the desired family.

The limit of the lines are the lines that do not intersect W ∩Z. The conics on the general fiber correspond
to lines going through pi, conics passing through 4 of the points pi or cubics double at one pi and passing
through 5 of the other pj . We describe the limits of conics corresponding to the lines passing through
p1. The others are analogous. In the limit this curve of conics has two components. One component
corresponds to lines passing through p1(0) on W . The other component consists of the union of the line l

joining p1(0) and q and a line in P
2 meeting l.

The limits of the hyperplane sections have three components. One component consists of elliptic curves
of degree n on W in the class 3H −

∑9−n
i=1 Epi

. One component consists of conics on Z and rational curves
of degree n−1 meeting the conics twice on W . The last component corresponds to sections by hyperplanes
that do not contain W or Z.

Similar constructions give examples of degenerations of Dn to Dn−k (with various singularities) union
a rational cone of degree k. For example, (as B. Hassett pointed out) to obtain a degeneration of Dn to
Dn−2 with an A1 singularity union a quadric cone with vertex at the singular point and having a common
line with Dn−2, blow up the central fiber of A × P2 at a general point, then blow up a general line in
the exceptional divisor. Call the exceptional divisors of the blow-ups E1 and E2, respectively. Pick 9 − n

general sections that specialize to the proper transform of the central fiber and blow them up. Denote the
resulting three-fold by X. The linear series |−KX − 2E1 − E2|, where KX is the canonical bundle of X,
gives the desired degeneration.

VI. Degenerations of Dn to a Veronese surface union a rational normal scroll meeting along

a conic. The scroll must have degree n − 4 < 4. These scrolls each have at least a one-parameter family
of conics (possibly reducible).

Consider a Veronese surface union a scroll S0,1, S1,1 or S1,2. meeting along a conic. Choose 5, 3, 2 points
on their common conics, respectively. Let C1 be the curve of conics that contain all but one of the points
on the scroll. Let C2 be the curve of conics that contain the remaining point on the Veronese. This gives
a reducible curve C = C1 ∪ C2 in Xn in the class dn. The normal bundle NCi/Xn is generated by global
sections. This is clear for C2 since it lies in a homogeneous locus and follows for C1 by Lemma 3.4 after a
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simple specialization. The curve can be smoothed to an irreducible curve C̃ in the same class. By Theorem
2.5 the surface S̃ corresponding to C̃ must be Dn. Note that the total space of the family is singular at
points that define Ci.

Alternative description when n = 5. Choose 4 general sections pi(a) in A × P
2 that specialize to lie

on a line l in the central fiber. Blow up A × P2 along l, then blow up the proper transforms of pi(a). The
general fiber is the blow up of P2 at 4 points. The central fiber is P2 union the blow-up of F1 at 4 points
where the two surfaces are joined along l. The dual of the relative dualizing sheaf is a line bundle away
from the central fiber. To obtain a map that extends to the central fiber we have to twist by the plane

in the central fiber. The limit restricts to OP2(2) on P2 and to OF1

(

e + f −
∑4

i=1 Ei

)

on the blow-up of

F1. The image is a Veronese surface union a plane. The total space of the image in A × P5 has 5 singular
points. They correspond to the intersection points of l with the fibers of F1 that are blown down and with
the curve in the class e + 2f passing through the pi which is also blown down. The limits of the lines and
conics are clear.

VII. Degenerations of Dn to the union of two scrolls sharing a conic. D3’s can specialize to the
union of a plane and a quadric surface. D4’s can specialize to the union of a plane and S1,2 or to the union
of 2 quadric surfaces. D5 can specialize to the union of a plane and S2,2 or the union of the quadric surface
and S1,2. D6 can specialize to the union of two S1,2, a quadric surface and an S2,2 or a plane and S2,5. D7

can specialize to S1,2 union S2,2, a quadric surface union S2,3, a plane and S2,4. Since further unbalanced
scrolls are limits of balanced scrolls those also arise as limits.

Take the curve in Xn whose points correspond to incident line pairs one in each surface. In case one
of the scrolls is P

2 take the lines on P
2 containing a fixed point on the common conic. This curve can

be deformed to a smooth curve. When each of the scrolls have a ki ≥ 1 parameter family of conics, the
conics on each scroll passing through ki − 1 points on the common conic give a different curve which can
be smoothed.

In a general family arising in one of these ways, the limit of hyperplane sections have three components.
Two of the components correspond to elliptic curves on Ski,li of degree ki + li +2 union kj + lj −2 fibers on
Skj ,lj meeting the elliptic curve. The third component corresponds to hyperplane sections by hyperplanes
not containing either of the two components. Since for any choice of points the curves can be smoothed in
Xn, we can also conclude that every elliptic curve of degree ki + li + 2 occurs as the limit of some family.

D8. The arguments for the degenerations in I, III and V apply to D8 verbatim. However, since the anti-
canonical embedding of P1 × P1 is also a smooth degree 8 surface in P8 that contains a curve of conics in
the class d8, the arguments in II, VI and VII only show that one of the two surfaces degenerates to the
potential limit. C. Ciliberto pointed out to us that it is possible to modify the alternative construction in
II using a Cremona transformation (3, 3, 3, 1) to obtain a degeneration of D8 to a scroll with a double line.
In VI when we smooth the Veronese union S2,2 we obtain D8 since the limit surface does not contain two
rulings by conics where a conic from one ruling meets every conic in the other ruling as a limit of P1 × P1

should. In VII we note that the union of two S2,2 does not smooth to D8 since it does not contain a line
meeting every conic as a limit of D8 should.

Degenerations of the Veronese surface. Since the Veronese surface appears as a component of the
limits of Dn, we mention the non-degenerate two component limits of it. They are the union of a plane and
a cubic scroll where the cubic scroll meets the plane along the directrix or the union of two quadric cones
that share a vertex and a common line. Both cases occur. The Veronese surface degenerates to a cone over
a rational normal quartic. The latter is a further specialization. To obtain the former limit carry out the
usual construction by blowing up A × P

2 at a point on the central fiber.

Since the surface spans P
5 the components must be scrolls meeting along a line. They can have degrees

2, 2 or 1, 3. Since a cone over a twisted cubic is a limit of S1,2, we can assume that the cubic surface
is smooth. The cubic plane pair cannot be joined along a fiber line and the quadrics have to be both
singular with a common vertex. The former cannot happen because any two such surfaces are projectively
equivalent. The dimension of the locus of pairs of a cubic surface union a plane meeting it along a fiber is
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too large. To show that the quadrics have to be as described we only need to show that the union of two
quadric cones that share a common line but have distinct vertices cannot be a limit of Veronese surfaces.

Each Veronese surface has a two-parameter family of conics, hence gives rise to a P2 in X5. The flat limit
of the conics has to be a surface in X5 connected in codimension 1. If a pair of quadric cones with distinct
vertices were a limit, then the two surfaces would need to share a curve of conics (possibly reducible). Since
this is not the case, we conclude that the vertices have to coincide.

A forthcoming paper of D. Avritzer should elucidate the enumerative geometry of the Veronese surface.
We are thankful to him for conversations on the degenerations of the Veronese surface.

4. Examples of Counting Del Pezzo Surfaces

In this section we illustrate with a few examples how to use our knowledge of the degenerations of Del
Pezzo surfaces to study their enumerative geometry.

Example 1: Counting cubic surfaces in P4. By Lemma 2.3 the dimension of the space of cubic surfaces
in P4 is 23. We can ask for the number of D3’s containing r points and meeting 23 − 2r lines.

* * * *

*

* *
* *

*  *

*

*

*

*

4
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3

I

II

III

IV
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VI

VII
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8

2

Q ⊂ H
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2
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Q ⊂ H

Q ⊂ H Q ⊂ H Q ⊂ H

4*
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cubic lies in H

3

10
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cubic lies in H

3

cubic lies in H

3

cubic lies in H

3

cubic lies in H

3

cubic lies in H

3

cubic lies in H

3 cubic breaks

10

15

13
5*

12
6*

11
7*

Figure 2. Cubic surfaces in P4 containing 3 points and meeting 17 lines (Example 1)
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The number of cubic surfaces containing 3 points and meeting 17 lines. We outline how to see
that there are 36 cubic surfaces satisfying the required incidences using degenerations. (See Figure 2.) Fix
a hyperplane H in P4.

Step I. Specialize the three points and a line l1 to H.

• Some cubic surfaces can lie in H. These surfaces must meet the 16 intersection points of H with the
lines not contained in H. They must also contain the original 3 points. There is a unique D3 containing
the 19 points. It counts with multiplicity 3 for the choice of intersection point of the surface with l1.

• If a cubic surface does not lie in H, then its hyperplane section must be contained in the plane P

spanned by the three points in H, so the surface must contain P ∩ l1.

Step II. Specialize a second line l2 to H. Some cubics can now lie in H. Such a cubic must meet 19
points—the 4 points in the plane P and the 15 points of intersection of H with the lines not contained
in H. These points impose independent conditions on cubics, so there is a unique solution counted with
multiplicity 3 for the choice of intersection with l2.

Step VI. This pattern continues until we specialize 6 lines to H. After we specialize 6 lines, if the cubic
does not lie in H, then the hyperplane section has to be the unique cubic curve in P passing through the
9 points in P . When we specialize the next line, either the cubic lies in H or it must break into P and a
quadric meeting the rest of the lines. By a dimension count this is the first stage where reducible solutions
occur.

Step VII. We are reduced to counting quadric surfaces meeting 10 lines and containing a conic in common
with P . Further degeneration shows that there are 15 such quadrics. Briefly, specialize a line l8 to H.
Either the quadric lies in H or it contains the point of intersection of l8 with P . If the quadric lies in H,
then it must contain the intersection points of the 9 remaining lines with H. This uniquely determines the
quadric. It counts with multiplicity two for the choice of intersection with l8.

The same pattern continues until we have 5 lines remaining that we have not specialized to H. Then the
hyperplane section of the quadric is the unique conic passing through the 5 points in P . Once we specialize
another line, the quadric has to either lie in H or break into a union of P and another plane having a
common line with P and meeting the remaining 4 lines. The latter number is 3 by elementary Schubert
calculus. We conclude that there are 36 cubic surfaces in P4 meeting 17 lines and containing 3 points. We
will later verify the multiplicities (see §5.2).

Example 2: Counting D4’s in P4. By Lemma 2.3 the dimension of the locus of D4’s in P4 is 26. We
can ask for the number of D4’s containing r general points and meeting 26 − 2r general lines.

1

D4 breaks

8*

1

5*

1

4*
*

Figure 3. One D4 containing 13 general points (Example 2A)

A. The number of D4’s in P4 containing 13 points. Specialize the points to a hyperplane H of P4. No
reducible surfaces satisfy all the incidences until we specialize 9 points to H. After we specialize 8 points to
H, the hyperplane section of a solution must be the unique elliptic quartic containing the 8 points. When
we specialize a ninth point to H, Bezout’s Theorem forces the surface to break into 2 quadric surfaces. The
quadric surface Q in H is determined. There is a unique quadric in the P3 spanned by the 4 points not in
H containing the intersection of Q with the P3 and the 4 points. After we verify the multiplicity claims,
we can conclude that there is a unique D4 containing 13 general points.

B. The number of D4’s in P4 containing 10 points and meeting 6 lines. (See Figure 4.) Fix a
hyperplane H of P

4.



14 IZZET COSKUN
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3

3
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Figure 4. Counting D4 surfaces containing 10 general points and meeting 6 general lines
(Example 2B)

Step I. Specialize 6 points and 3 lines l1, l2, l3 to H. This is the first stage where reducible solutions occur:
there can be the union of two quadric surfaces meeting along a conic. Of the three lines not contained in
H, 3, 2, 1 or 0 of them might meet the quadric in H. The remaining 0, 1, 2 or 3 lines need to meet the
quadric not contained in H. In each case there is a multiplicity of 8 for the choice of intersection points
of the lines in H with the quadric in H. In two cases there is a combinatorial choice of 3 for which of the
lines meet the quadric in H. The surfaces are uniquely determined.

Step II. If a solution is still irreducible, then its hyperplane section in H is an elliptic quartic curve C

meeting the 6 points and the lines l1, l2, l3. Specialize a line l4 to H. The new reducible solutions must
contain a curve C as described. We specialize three points and two lines l1, l2 to lie in a plane P in H. Either
C passes through the intersection point of l1 and l2 or it must have a component in H. This component
can either be a conic or a line. The residual component must be a conic or a twisted cubic, respectively.
The number of these can be determined using the algorithm in §7 of [V]. Finally, of the lines not contained
in H, 2, 1 or 0 of them might meet the quadric in H. Considering all the cases we see that there are 128
reducible surfaces at this stage.

Step III. If a solution is still irreducible, then its hyperplane section in H must be one of the 32 elliptic
quartic curves containing 6 points and meeting 4 lines ([V] §8.3). We specialize a fifth line l5 to lie in H.
The Del Pezzo surfaces now have to break into a union of two quadrics. The sixth line can either meet
the quadric in H or the quadric not lying in H. In each case there is a unique surface, appearing with
multiplicity 2 for the choice of intersection of l5 with the quadric in H. We conclude that there are 320
quartic Del Pezzo surfaces in P

4 containing 10 general points and meeting 6 lines.
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Example 3: Counting D5’s in P5 containing an elliptic quintic curve. As a final illustration of the
type of enumerative problems one can hope to answer using degenerations, we find the number of D5’s in
P5 containing an elliptic quintic curve, three points and meeting a plane. (See Figure 5.)

5

3*

5

4

3*

I II

D5 breaks

×4 1

4

D4 breaks

1

Figure 5. Counting D5’s containing a quintic elliptic curve, 3 points and meeting a plane
(Example 3)

Step I. Specialize the plane P to the hyperplane H spanned by the elliptic quintic. The surface breaks
into a union of D4 and a plane Π. (By a dimension count it cannot break into a cubic scroll union a
quadric surface. The other possibilities in Proposition 3.2 are either further degenerations of D4, hence are
excluded by a dimension count or do not contain any elliptic quintic curves—e.g. a Veronese surface or a
quartic scroll.) We reduce the problem to counting D4’s containing an elliptic quintic C and a disjoint line
l (l = H ∩ Π). We get a multiplicity of 4 for the choice of intersection of P with any limit D4.

Step II. Specialize the elliptic quintic to the union of an elliptic quartic and a general line. D4 must
become reducible by Bezout’s Theorem since the hyperplane spanned by the elliptic quartic meets l. The
surface must break into a union of quadrics and they are both uniquely determined. We conclude that
there are four quintic Del Pezzo surfaces containing an elliptic quintic, three points and meeting a plane.

5. The Enumerative Geometry of Dn

In this section we carry out the dimension and multiplicity calculations necessary to justify calculations
similar to ones in §4.

5.1. Dimension Counts. The building blocks. We calculate the dimension of relevant loci in the
Hilbert scheme of surfaces.

Lemma 5.1. The dimension D of the locus of surfaces S in PN containing an irreducible, reduced conic
in a fixed hyperplane H is as follows:

1. If S is a scroll S2,l, l ≥ 2, then D = N(l + 4) − 3.

2. If S is a scroll S1,l, 1 ≤ l ≤ 2, then D = N(l + 3) − 3.

3. If S is the Veronese surface, then D = 6N − 4.

Lemma 5.2. The dimension D of the locus of surfaces S in PN containing a line l in a fixed hyperplane
H is as follows:

1. If S is a rational cone S0,l, then D = N(l + 2) − 5.

2. If S is a smooth Del Pezzo surface Dn, then D = N(n + 1) − n + 8.

3. If S is a cone over an elliptic normal curve of degree k tangent to H everywhere along l, then
D = N(k + 1) − 2.

Lemma 5.3. The dimension D of the locus of pairs (S, C) in PN where S is a surface and C is a curve
on it is as follows:

1. When S is a Del Pezzo surface Dn and C is an elliptic curve of degree n (resp. n + 1) , then
D = N(n + 1) + 10 (resp. D = N(n + 1) + 11),

2. When S is a scroll Sk,l, l − k ≤ 2, and C is an elliptic curve in a bisection class 2e + (l − k + 2)f ,
then D = N(k + l + 2) + 2k + 4 − δk,l

3. When S is a Del Pezzo surface Dn and C is a rational curve of degree n− 1, then D = N(n + 1)+ 8.
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Proof: To prove the lemmas consider maps from P2, Fl−2, Fl−1 or the blow-up of P2 at 9−n points to PN ,
up to isomorphism, given by the linear series |OP2(2)|,

∣

∣OFl−2
(e + lf)

∣

∣,
∣

∣OFl−1
(e + lf)

∣

∣, |−K| respectively.
In the cases where the surface is required to contain a curve in a fixed hyperplane H, we assume that
the map is given by (s0, · · · , sN ), where s0 corresponds to H. The lemmas follow from the cohomology
calculations in §2 and §2 of [C]. �

Gluing. We now prove that gluing surfaces along projectively equivalent rational curves to form a tree
imposes the expected number of conditions.

Notation. For a variety X ∈ P
N , let HX denote the locus in the Hilbert scheme parameterizing varieties

projectively equivalent to X. Let Ratd(X) be an irreducible subscheme of the scheme of rational normal
curves of degree d on X. For a variety Z such that [Z] ∈ HX let Ratd(Z) denote the transform of Ratd(X)
under the projective linear transformation that takes Z to X. Let (pX

i )s
i=1, 0 ≤ s ≤ 3, denote distinct

points on a rational normal curve.

Lemma 5.4. Let X1 and X2 be two varieties in PN . In the incidence correspondence I :=

{(

Z1, CZ1
, (pZ1

i )s
i=1, Z2, CZ2

, (pZ2

i )s
i=1

)

: Zj ∈ HXj
, CZj

∈ Ratd(Xj), p
Zj

i ∈ CZj

}

the locus CZ1
= CZ2

and pZ1

i = pZ2

i for all 1 ≤ i ≤ s has codimension

N(d + 1) + d − 3 + s.

Proof. Without loss of generality we can assume that s = 0. I maps to Ratd(P
N )×Ratd(P

N ) by projection.
The fibers are equivalent under the diagonal action of PGL(N +1). Since the locus of interest is the inverse
image of the diagonal, the lemma follows. �

Notation. Let H and Π denote two hyperplanes in P
N . Let Σj

aj
and Ωi

bi
be collections of general linear

subspaces of H and PN of dimension aj and bi, respectively. Similarly, let Λj
aj

and Γj′

aj′
be collections of

general linear spaces of PN and Π, respectively. We will usually omit the dimension from the notation. We
denote connected curves of arithmetic genus 1 by E and connected curves of arithmetic genus 0 by R. To
denote their degree we append a number in parentheses.

Let H(PN , Dn) be the component of the Hilbert scheme whose general point corresponds to a smooth
Del Pezzo surface Dn. Let E(PN , m) denote the component of the Hilbert scheme whose general point
represents a smooth elliptic curve of degree m in PN . Let HE(PN , Dn, m) be the incidence correspondence
of pairs

{

([Dn], [E(m)]) ∈ H(PN , Dn) × E(PN , m) : E ⊂ Dn

}

where the elliptic curve E is a closed subscheme of the Del Pezzo surface Dn. Finally, let U(PN , Dn, m, I, J)
denote the (I, J) pointed universal surface curve pair over HE(PN , Dn, m) defined by

{(

Dn, E, (qi)
I
i=1, (pj)

J
j=1

)

: pj ∈ E ⊂ Dn, qi ∈ Dn, (Dn, E) ∈ HE(PN , Dn, m)
}

where pj and qi are points of the curve E and surface Dn, respectively.

The space of Del Pezzo surfaces. Let Dn(PN , I, J) denote the closure in U(PN , Dn, n, I, J) of

{(

Dn, E, (qi)
I
i=1, (pj)

J
j=1

)

: E = Dn ∩ H, qi ⊂ Ωi, pj ⊂ Σj ⊂ H
}

where Dn is a smooth Del Pezzo surface, E is its hyperplane section in H and the marked points are
required to lie in the designated linear spaces. This notation is ambiguous since many different possibilities
are denoted by the same symbol. Since in any given enumerative problem the dimensions of the linear
spaces Ωi and Σj will be fixed, this should not cause any confusion.

Let I1 ∪ I2 = I and J1 ∪ J2 = J be two partitions.
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The space of scroll pairs. Let S(PN , k1, l1, k2, l2, I1, I2, J1, J2) denote the closure in U(PN , Dn, n, I1 +
I2, J1 + J2) of the locus

{ (Sk1,l1 ∪ Sk2,l2 , E (k1 + l1 + 2) ∪ F1 ∪ · · · ∪ Fk2+l2−2, qi, pj) : Sk1,l1 ⊂ H

E (k1 + l1 + 2) ⊂ Sk1,l1 , F1 ∪ · · · ∪ Fk2+l2−2 ⊂ Sk2,l2 ∩ H, Sk1,l1 ∩ Sk2,l2 = R(2)

qi ∈ Ωi ∩ Skr,lr for i ∈ Ir, pj ∈ Σj ∩ E (k1 + l1 + 2) for j ∈ J1,

pj ∈ Σj ∩ (F1 ∪ · · · ∪ Fk2+l2−2) for j ∈ J2}

of pairs of scrolls meeting along a conic R(2), where the scroll Sk1,l1 is contained in H and contains an
elliptic curve E(k1 + l1 + 2). The other scroll Sk2,l2 is not contained in H and its intersection with H

consists of the conic R(2) and the fibers F1, · · · , Fk2+l2−2. The marked points lie in the designated linear
spaces. The elliptic curve E meets all the fibers Fi. We also assume that k2 + l2 > 1 to ensure that Sk2,l2

is not forced to lie in H.

The space of Dn−1 union a plane. Let PDn−1(P
N , I1, I2, J) denote the closure in U(PN , Dn, n, I1+I2, J)

of the locus

{(Dn−1 ∪ P
2, E(n), qi, pj) : Dn−1 ∩ P

2 = R(1), E(n) ⊂ Dn−1 ⊂ H,

qi ∈ Ωi ∩ Dn−1 for i ∈ I1, qi ∈ Ωi ∩ P
2 for i ∈ I2, pj ∈ Σj ∩ E(n)}

where Dn−1 is a smooth Del Pezzo surface in H, E(n) is an elliptic curve on Dn−1 and the marked points
lie in the designated linear spaces.

Let Dn−1P(PN , I1, I2, J1, J2) be the variant where P2 is contained in H and Dn−1 is not contained in
H, the two meet in a line l and the marked curve is a conic in P2 meeting the hyperplane section of Dn−1

residual to l in two points.

To generalize the discussion below to more cases one has to formulate similar loci corresponding to other
reducible surfaces (possibly with more components) that occur in §3 like pairs of a Veronese and a scroll
or an elliptic cone and a rational cone. In addition one has to allow for the surfaces not contained in H

to have tangencies with H along their common curves with the surfaces in H and the “limit curve” in the
components in H to have correspondingly larger degree.

The space of marked Dn. Let Dn(PN , m, I, J, J ′) denote the closure in U(PN , Dn, m, I, J + J ′) of the
locus

{(

Dn, E, (qi)
I
i=1, (pj)

J
j=1, (oj′)J′

j′=1

)

: qi ∈ Dn ∩ Ωi, pj ∈ Λj ∩ E, oj′ ∈ Γj′

∩ E
}

where Dn is a smooth Del Pezzo surface, E is a degree m elliptic curve on it and the marked points lie
in the designated linear spaces. The indices i are reserved for points on the surface, the indices j indicate
points on E, but not in Π. Finally, the indices j′ designate points that lie both on E and in Π.

Let Dn(PN , m, I, J, J ′,O(1)) denote the analogous space, but where in addition the points oj′ satisfy
∑J′

j′=1 oj′ = OE(1) in the Picard group of the elliptic curve E.

Let Sk,l(P
N , k + l+2, I, J, J ′) and Sk,l(P

N , k + l+2, I, J, J ′,O(1)) denote the analogous space where Dn

is replaced by a scroll Sk,l and the elliptic curve has degree k + l + 2.

Let Dn(PN , r1 + r2 = m, I, J1, J2, J
′
1, J

′
2) denote the closure of the locus where E is a pair of rational

curves of degrees r1 and r2 meeting at two points in Dn(PN , m, I, J1 + J2, J
′
1 + J ′

2) and the conditions are
distributed between the rational curves according to a partition.

We define the analogous locus Sk,l(P
N ; r1 + r2 = k + l + 2; I, J1, J2, J

′
1, J

′
2) for scrolls.

The divisors. The space Dn(PN , I, J) has a natural Cartier divisor

DH(PN , I, J) := {(Dn, E, qi, pj) ∈ Dn(PN , I, J) : qI ∈ H}

defined by requiring the marked point qI to lie in H. Let DΠ(PN , Dn, I, J, J ′) on Dn(PN , n+1, I, J, J ′) and
DΠ(PN , Sk,l, I, J, J ′) on Sk,l(P

N , E(k + l + 2), I, J, J ′) defined by letting pJ lie in Π be analogous Cartier
divisors.
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There is a natural map φ from U(PN , Dn, m, I, J) to H(PN , Dn) given by forgetting the data of the
marked curve and marked points.

Definition 5.5. A divisor D of a subscheme A in U(PN , Dn, m, I, J) is called enumeratively relevant

if the image of D under φ has codimension 1 in the image of A.

One can list the components of DH(PN , I, J) that are enumeratively relevant Weil divisors whose general
point corresponds to a surface that has reduced components and spans Pn. Rather than give long lists, we
will demonstrate how one produces such lists in examples similar to the ones in §4 and indicate what other
type of behavior can occur when we require fewer point conditions.

The following lemma, which is a consequence of Kleiman’s Transversality Theorem [Kl] (see Proposition
6.1 in [C]) allows us to carry out the dimension calculations when I = 1, Ωj = H and Σ1 = P

N .

Lemma 5.6. Let A be a reduced, irreducible subscheme of Dn(PN , I, J) and let p be one of the labeled points.
Then there exists a Zariski open subset U of the dual projective space PN∗ such that for all hyperplanes
[H] ∈ U , the intersection A ∩ {p ∈ H} is either empty or reduced of dimension dimA − 1.

We describe the components of DH(PN , I, J) in Dn(PN , I, J) relevant to our examples.

1. Dn(PN , I − 1, J + 1)

where ΣJ+1 := ΩI and the rest of the data is identical. To check that this locus is a divisor we use the
above reduction. In that case the dimension for surfaces does not change; however, the moduli for the
points is one less. Since surfaces which are limits of Dn that do not contain a component in H lie in the
closure of 1, we can now assume that all other limit surfaces have a component in H.

2. Dn(PN−1, I, J ≥ n)

where qI ∈ ΩI and qi ∈ H ∩Ωi, i < I. Since the dimension of Dn in P
N−1 is n2 + 10 + (n + 1)(N − 1−n),

the choice for hyperplane section has dimension n and the points have the same moduli, this locus is a
divisor. It is enumeratively relevant when J ≥ n. When J < n, the hyperplane sections move in a positive
dimensional linear series. The image of φ has positive dimensional fibers. We can now assume that the
other components of DH consist of reducible surfaces with at least one component contained in H and at
least one component not contained in H.

3. S(PN , k1, l1, k2, l2, I1, I2, J1, J2), J1 + J2 ≥ 8 − (k2 + l2 − 2) + δ
(0,1)
(k1,l1), l1 − k1 ≤ 2

where
∑

i(ki + li) = n, qI ∈ Sk1,l1 and the rest of the marked points are distributed between the two
components according to some partition. By Lemmas 5.1, 5.3 and 5.4 and the constructions in §3 the locus
3 is a divisor. It is enumeratively relevant when J ≥ 8 − (k2 + l2 − 2) unless (k1, l1) = (0, 1) in which case
it is enumeratively relevant when J ≥ 9 − (k2 + l2 − 2) .

4. PDn−1(P
N , I1, I2, J ≥ n > 3)

where qI ∈ Dn−1 and the other points are distributed among the two components according to some
partition. By Lemmas 5.2, 5.3 and 5.4 it is a divisor. It is enumeratively relevant when J ≥ n.

5.2. The “Algorithm” for Counting D3 and D4. Now we outline the argument for counting D3 and
D4 in greater detail. We begin with some lemmas necessary for multiplicity calculations.

Lemma 5.7. Let NDn/PN denote the normal bundle of a smooth Dn ⊂ P
N . Then H1(Dn, NDn/PN ) = 0.

Proof: Suppose Hi(Dn, TPN ⊗ODn
) = 0 for i > 0. Then using the standard short exact sequence

0 → TDn
→ TPN ⊗ODn

→ NDn/P N → 0

we conclude that H1(Dn, NDn/PN ) ∼= H2(Dn, TDn
). Tensoring the Euler sequence

0 → OPN → (OPN (1))N+1 → TPN → 0
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by ODn
, we conclude that Hi(Dn, TPN ⊗ ODn

) = 0 for i > 0. The lemma follows from the equality
H2(Dn, TDn

) = 0. �

Lemma 5.8. Let D3 be a smooth cubic surface. Let E be a curve in the class −K on D3. Then
H1(D3, ND3,PN (−E)) = 0

Proof: ND3/PN
∼= OD3

(−3K)⊕ (OD3
(−K))N−3. We twist the normal bundle by K. Since D3 is a rational

surface, h1(OD3
) = 0; and h1(OD3

(−2K)) vanishes by the Kodaira Vanishing Theorem. �

Lemma 5.9. Let Q be a smooth quadric surface. Let E be a curve in the class OQ(2, 2) on Q. Then
H1(Q, NQ,PN (−E)) = 0

Proof: Since NQ/PN
∼= OQ(2, 2) ⊕ (OQ(1, 1))N−3 the lemma follows from the cohomology of Q ([Ha] Ex.

III.5.6). �

Counting D3. We now analyze the case of D3.

Proposition 5.10. Every enumeratively relevant component of DH(PN , I, J) in D3(P
N , I, J) is one of

1. D3(P
N , I − 1, J + 1) if

∑J
j=1(N − 2 − aj) + N − 2 − bI ≤ 3N + 3,

2. D3(P
N−1, I, J ≥ 3), or

3. S(PN , 0, 1, 1, 1, I1, I\I1, J ≥ 9).

Each of these occurs with multiplicity 1.

Proof: This is a complete list of enumeratively relevant components. If the surface represented by a
general point of a component is irreducible or contained in H, we already argued that cases 1 or 2 must
hold. If the surface is reducible with at least one component in H and one not in H, then the component
in H must be a plane. (A dimension count excludes the possibility that any component is a non-reduced
plane.) The component not in H is possibly a reducible quadric surface. Further specializing a smooth
quadric strictly decreases the dimension and there are no new contributions from the choice of the limit of
the hyperplane section in H. Finally, by Lemma 5.6 the surfaces do not intersect the intersection of two of
the linear spaces Ωi or Σj . We conclude that we have the complete list.

To prove that the components occur with multiplicity 1, we can assume that I = 1, ΩI = PN , and
Σj = H. Using Lemma 5.6 repeatedly we conclude the proposition in general. Next by taking a general
projection, we can assume that N = 3. Now the argument is a deformation argument. We will show that
as we move pI out of the plane there is a first order deformation of the limit cubic which contains the
deformation of the point. This suffices to conclude that the multiplicity is 1.

Let (X0, X1, X2, X3) be coordinates on P3. Suppose H is defined by X0 = 0. We will write the
deformation down for the case 3, as the others are easier. We can assume that the plane and quadric
pair is given by X0Q(X0, X1, X2, X3). Suppose the limit point is p = (0, 0, 0, 1). We take the deformation
pǫ = (ǫ, 0, 0, 1) of the point away from X0. There are already 9 points in H. Those define a unique cubic
on X0 given by C(X1, X2, X3). We can assume that p does not lie on C. We need to write a first order
deformation of the surface that vanishes on C and contains pǫ to first order:

X0Q(X0, X1, X2, X3) − ǫ

[

Q(0, 0, 0, 1)

C(0, 0, 1)
C(X1, X2, X3) + X0Q

′

]

where Q′ is any quadric. �

Proposition 5.10 reduces the problem of counting D3 to counting plane and quadric pairs meeting in a
conic or counting D3 in one lower dimensional projective space with incidence conditions on a hyperplane
section E.

The techniques in [C] readily provide a solution of the first problem. The incidence conditions on E are
simply incidence conditions on the plane. By Schubert calculus we can express these conditions in terms
of multiples of Schubert cycles. The problem reduces to counting quadric surfaces whose span contains a
plane satisfying Schubert conditions.
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The second problem requires us to describe the enumeratively relevant components of DΠ(PN , 3, I, J, J ′)
in D3(P

N , 3, I, J, J ′), J ′ < 4.

1. The components where E and the surface remain outside Π are of the form D3(P
N , 3, I, J − 1, J ′ +1)

if J ′ < 2 and D3(P
N , 3, I, J − 1, J ′ + 1,O(1)) if J ′ = 2. The O(1) condition on an elliptic cubic simply

means that the intersection points of the curve with the linear spaces are collinear.

2. E may meet ΛJ ∩ Γj′

and otherwise both E and the surface remain irreducible.

3. If E lies in Π and the surface is irreducible and not in Π, then we get the component D3(P
N , I, J +J ′)

when J ′ = 2 or D3(P
N , I, J + J ′,O(1)) when J ′ = 3 where the linear spaces meeting E now are the

intersections of the linear spaces with Π.

4. If the curve breaks, but the surface does not break, then there is a line in Π and a conic not in
Π meeting it twice. D3(P

N , 1 + 2 = 3, I, J, J ′) is the divisor corresponding to this situation. This is an
enumeratively relevant divisor when J ′ = 3. The locus where the conic is more special is a sublocus of this
one and hence does not form a divisor.

There are two other possibilities: the surface can lie in Π or both the surface and E can break. Neither
of these loci give divisors. The first locus is a specialization of 3. A dimension count excludes the second
locus.

Claim: All these components (if non-empty) occur with multiplicity 1 in DΠ(PN , 3, I, J, J ′)

Proof: By repeatedly applying Lemma 5.6, we can assume I = 0. There is a smooth morphism from
D3(P

N , 3, 0, J, J ′) to M1,J+J′(PN , 3) given by sending the surface curve pair to the stable map which
embeds the curve into PN . This morphism extends to a general point of the divisors listed above. We note
that in case 2, the map has a contracted rational component. Both of the spaces are smooth of the expected
dimension at the general points of the listed components and at their images. To show that the morphism
is smooth, it suffices to check that the Zariski tangent space to the fibers have the expected dimension.
The Zariski tangent space is given by H0(D3, ND3/PN (−E)). By Lemma 5.8 since the latter bundle does

not have any h1, it follows that the morphism is smooth. The claim is a consequence of Theorem 6.3 [V]
since DΠ(PN , 3, I, J, J ′) here is the pull-back of DH in the notation there by the smooth morphism. �

Finally, observe that if the data Ĩ , J̃ differs from I, J by either including another N − 2 dimensional
linear space to I or by an N − 1 dimensional linear space to J , then the number of the new surfaces is the
degree of the surface in the case of I and the degree of the curve in the case of J times the number because
of the choice of the point. See Proposition 6.2 [V].

Counting D3 containing a conic or a line is similar, but easier. [V] (see §7.7-7.9) demonstrates how
to count curves with the O(1) condition. Consequently, we can always count D3 using the degeneration
method. As a corollary, we can count pairs D3 with an elliptic cubic curve which satisfies incidence
conditions with linear spaces and a divisorial condition. Counting D3 incident to linear spaces can be
solved by classical means, however, at each stage this requires working out the cohomology ring of a new
parameter space. In addition, it is considerably more difficult to count D3 with curve conditions which
satisfy incidences and divisorial conditions by classical methods.

Counting D4. For simplicity we discuss how to count D4 in P
N when at least 4 of the linear spaces are

points, one has dimension k ≤ N − 4 and at least 5 + k have dimension N − 4 or less. We first study the
case N = 4. The case N > 4 easily reduces to it.

Specialize 6 of the points to a hyperplane H keeping 4 of the remaining points outside H at all times.
Specialize the rest of the conditions to H in order of increasing dimension. The enumeratively relevant
components of DH(P4, I, J) are one of

1. D4(P
4, I − 1, J + 1) or

2. S(PN , 1, 1, 1, 1, I1, I\I1, J ≥ 8).

These occur with multiplicity 1.

Since the surface cannot lie in H, the first divisor covers all the possibilities where the surface is irre-
ducible. By Proposition 3.2 and a simple inspection DH does not contain any components whose general
member parameterizes surfaces with more than 2 components. The only component of DH where the
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components of the limit surface have degree 2 is the divisor 2. If the components have degrees 1 and 3,
then the cubic spans P4. If the cubic spanned P3, it could meet at most 6 of the points, but the remaining
4 do not lie on a plane. By Lemmas 5.1 and 5.4 there cannot be a plane and cubic scroll pair either.

To see that they occur with multiplicity 1 we argue as in the case of D3 by constructing a suitable first
order deformation. Since case 1 is easier, we just write the explicit deformation in case 2. Without loss of
generality we can take the the quadrics given by X0X1, X

2
0 + X2

1 + X2
2 + X2

3 + X2
4 . Let H be X0 = 0. The

limit hyperplane section is an elliptic quartic E, so it is the intersection in X0 = 0 of X2
1 + X2

2 + X2
3 + X2

4

with a quadric Q. We can assume I = 1 and that the limit point is (0, i, 0, 0, 1). We deform the point
away from X0 by considering (ǫ, i, 0, 0, 1). We need a deformation which vanishes on E and contains the
deformation of the point to first order:

X0X1 − ǫ

[

i

Q(i, 0, 0, 1)
Q(X1, X2, X3, X4) + X0L1(X0, X1, X2, X3, X4)

]

X2
0 + X2

1 + X2
2 + X2

3 + X2
4 + ǫX0L2(X0, X1, X2, X3, X4)

where Li are linear forms.

We thus, reduce the problem to counting pairs of quadric surfaces meeting in a conic where the one in H

contains an elliptic quartic E satisfying incidences. This problem requires us to describe the enumeratively
relevant components of DΠ(P3; 1, 1; I, J, J ′) in S(P3; 1, 1; I, J, J ′). We specialize the conditions on E onto
a plane by bringing 3 of the 6 points onto the plane keeping 3 of the points outside and then bringing the
rest in order of increasing dimension. There are at least 8 linear spaces meeting E and at least 6 of them
are points. When we specialize ΓJ

1. E can meet Π along ΓJ . We get S(P3; 1, 1; I, J − 1, J ′ + 1).

2. If one of the linear spaces in Π is already a line and the condition we specialize is a line, then E can
meet their intersection point. This gives rise to S(P3; 1, 1; I, J − 1, J ′).

3. E can break into a conic in Π and a conic outside meeting it twice. This gives rise to S1,1(P
3; 2 +2 =

4, I, J, J ′). In this case the enumerative problem becomes trivial because the conditions have to split
between Π and the plane spanned by the points outside Π. We are reduced to counting quadrics subject
to point conditions.

4. The curve can break into a line in Π and a twisted cubic meeting it twice. This gives rise to
S1,1(P

3; 1+3 = 4, I, J, J ′). There are a finite number of these since the curve has at least 2 more conditions
other than the 6 points ([V]). The curve imposes 8 linear conditions on quadric surfaces, so this case is
also easy to count.

This is a complete list because a dimension count shows that there are no components of DΠ where
the curve has more than two components and the point conditions imposed on the quadric preclude the
possibility of its breaking into two planes. In particular, the limit of E cannot be the union of a line with
an elliptic cubic.

Claim: The divisors above occur with multiplicity 1.

Proof: There is a rational morphism from S1,1(P
3, 4, I, J, J ′) to M1,J+J′(P3, 4) by sending the marked

elliptic curve to the stable map which embeds it in P
3. This map is well defined on an open set of each

of the divisors and it gives a smooth morphism. The proof is identical to the case of D3 except instead of
using Lemma 5.8, we use Lemma 5.9. �

Finally, to reduce the more general case to the case N = 4 specialize the conditions to a hyperplane
containing the 4 points. Suppose by induction that we can count D4 in PN−1 satisfying the analogous
conditions and all the degenerations of that case. If the surface lies in the hyperplane at any stage, then
we are reduced to a subcase of the case N − 1. If the surface breaks, the argument for N = 4 case shows
that it must be two quadrics and the same analysis applies to the quadric in H.

Remark: For concreteness let us assume N = 4. Almost the same argument holds if we required only 8
of the linear spaces to be points. In this case the surface can break into a cubic scroll union a plane in
H, but these numbers can be determined using [C]. When exactly 8 of the linear spaces are points, there
are cases when we have to count cubic scrolls meeting a line twice. Although this problem is not explicitly
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addressed in [C], a simple modification of the argument for counting twisted cubics meeting a line twice
([V] §7.5) works.

If only 7 of the linear spaces are points, provided we specialize all the point but one to H first, the only
new limit is D3 union a plane. These can be counted but requires studying the degenerations of D3 with
an elliptic quartic on it. This case is marginally harder than counting pairs D3 and an elliptic cubic.

If we relax the conditions a little further, we open Pandora’s box. Singular surfaces appear in the limit
and they can have tangencies with H. Identifying the divisors and their multiplicities becomes difficult.
Unlike the simple examples here the multiplicities are not in general 1.

6. Gromov-Witten Invariants of XN

In this section we study the relation between the Gromov-Witten invariants of XN and the enumerative
geometry of Dn. We prove that when n = 3 and in many cases when n = 4, the Gromov-Witten invariants
involving incidence to linear spaces are enumerative. However, when n ≥ 5, most are not enumerative.

Gromov-Witten Invariants. The Kontsevich spaces of stable maps possess a virtual fundamental class
[M0,m(X, β)]virt of the expected dimension

dim X − KX · β + m − 3.

They are equipped with m evaluation morphisms ρ1, · · · , ρm to X, where the i-th evaluation morphism
takes the point [C, p1, · · · , pm, µ] to the point µ(pi) of X. Given classes γ1, · · · , γm in the Chow ring A∗X

of X, we obtain a class

ρ∗1(γ1) ∪ · · · ∪ ρ∗m(γm)

in M0,m(X, β). We can evaluate its homogeneous component of top dimension on [M0,m(X, β)]virt to
obtain a number Iβ(γ1, · · · , γm) called the Gromov-Witten invariant. Explicitly,

Iβ(γ1, · · · , γm) =

∫

[M0,m(X,β)]virt

ρ∗1(γ1) ∪ · · · ∪ ρ∗m(γm).

Notation. Let ΓΛa ⊂ XN denote the variety of conics in PN incident to a linear space Λa of dimension a.
Let γa denote the cohomology class of ΓΛa .

Definition 6.1. We call a Gromov-Witten invariant Idn
(γa1

, · · · , γam
) of XN enumerative if for a

general set of linear spaces Λai the only stable maps (C, p1, · · · , pm; µ) in M0,m(XN , dn) with µ∗[C] = dn

and µ(pi) ∈ Γλai are injective maps from irreducible source curves whose images coincide with a curve of
conics on a smooth Dn. We call these maps enumerative maps.

Remark. Idn
(γa1

, · · · , γam
) is non-zero only when

m
∑

i=1

(N − 1 − ai) = N(n + 1) − n + 10 + m.

We always assume that this equality holds and that ai < N − 2.

We say a stable map µ to XN sweeps out a variety V ⊂ PN if the set-theoretic image of the projection
of the universal conic over the image of µ to PN is V . If µ restricted to an irreducible component Ci of the
domain curve C sweeps out an irreducible variety V ⊂ PN , we say that (Ci, µ|Ci

) sweeps out V k times if
the projection from the universal conic is a generically finite morphism of degree k.

If the obstructions for a stable map vanish, then the virtual fundamental class coincides with the usual
one. Lemma 1.1 in [Ga], which we reproduce for the reader’s convenience, states a local version.

Lemma 6.2. If h1(C, µ∗TX) = 0 for (C, p1, · · · , pm; µ) ∈ M0,m(X, β), then (C, p1, · · · , pm; µ) lies in a

unique component Z of M0,m(X, β) of dimension equal to the virtual dimension. Moreover,

[M0,m(X, β)]virt = [Z] + R

where R is a cycle supported on the union of the components other than Z.
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Since the normal bundle of a curve C in XN corresponding to a fixed conic class on a smooth Dn is
generated by global sections, the standard exact sequence

0 → TC → µ∗TXN → Nµ → 0

implies that for an enumerative map h1(C, µ∗TXN ) = 0. By Lemma 6.2 an enumerative Gromov-Witten
invariant of XN is equal to the ordinary scheme-theoretic intersection of the cycles ρ∗i ΓΛai on the component
of enumerative maps, where Λai are general linear spaces. An enumerative map has no automorphisms, so
the cycles intersect at smooth points of this component. Since by Kleiman’s Transversality Theorem they
intersect transversely, we conclude

Proposition 6.3. Let #Dn(γa1
, · · · , γam

) be the number of Del Pezzo surfaces incident to general linear
spaces of dimension ai. Let Rn denote the number of distinct conic classes on Dn. Then, for an enumerative
Gromov-Witten invariant of XN we have the equality

Idn
(γa1

, · · · , γam
) = Rn · #Dn(γa1

, · · · , γam
)

Remark. Lemma 2.2 implies that R3 = 27, R4 = 10, R5 = 5, R6 = 3, R7 = 2 and R8 = 1.

Non-enumerative Idn
The Gromov-Witten invariants Idn

(γa1
, · · · , γam

) are in general not enumerative.
The following proposition constructs non-enumerative examples for 5 ≤ n ≤ 7. When n = 8, the invariants
are not only non-enumerative, but the conics that sweep a D8 and the conics that sweep the anti-canonical
embedding of P1 × P1 both contribute to them. Hence, the invariants are not well-suited for enumerative
calculations.

Proposition 6.4. The Gromov-Witten invariants Idn
(γa1

, · · · , γam
) of Xn are not in general enumerative

when n ≥ 5.

Proof: We need to construct stable maps to XN that satisfy the incidences, but do not sweep out smooth
Dn. We already encountered the additional components of M0,m(XN , dn) in the proof of Proposition 3.2.
Take a smooth Del Pezzo surface Dn−k, n − k ≥ 3, and a rational cone of degree k containing a line l of
Dn−k and meeting a different line l′ of Dn−k incident to l at its vertex. Denote this surface by R(k, n) (see
Figure 6). The connected curve of conics corresponding to the conics in the class [l] + [l′] on Dn−k and
the union of l′ with the lines on the cone has class dn in XN . The dimension lemmas in §5 imply that the

S0,k

Dn−k

Figure 6. The surface R(k, n).

dimension of R(k, n) is N(n + 1) − n + 10 + k − 2. When k > 1, this is at least the dimension of Dn. For
example, when n = 5,

∑m
i=1(2− ai) ≤ 16 and at least 4 of ai = 0 or n = 6,

∑m
i=1(3− ai) ≤ 27 and at least

4 of ai = 0 or n = 7,
∑m

i=1(4 − ai) ≤ 40 and at least 5 of ai = 0, there are surfaces R(2, 5), R(2, 6) and
R(3, 7), respectively, meeting a general set of Λai in P5, P6 and P7. The same construction also provides
non-enumerative examples of Idn

when N > n. �

Theorem 6.5. The Gromov-Witten invariant Idn
(γa1

, · · · , γam
) of XN is enumerative when

(1) n = 3 or
(2) n = 4 and

∑m
i=1(N − 3 − ai) > 4(N − 3) .
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Proof: Let (C, p1, · · · , pm; µ) be a stable map to XN in the class dn such that µ(pi) ∈ ΓΛai for general
linear spaces Λai . Let V be the variety swept out by µ. Then V must meet the linear spaces Λai . The
strategy of the proof is to use Theorem 2.5 to prove that V is a smooth Dn under our hypotheses.

Claim 1: The variety swept out by a connected curve in the class dn spans at most Pn.

If the curve in XN is connected, then the threefold in PN swept by the planes of the conics is connected
in codimension 1. Since its degree is bounded by n − 2, its span (which contains V ) can be at most Pn.

Claim 2: V is a variety of pure dimension 2.

If C is an irreducible curve in XN , the variety it sweeps in PN does not have to be of pure dimension 2.
It can be of pure dimension 1 or it can have a component of dimension 1 and a component of dimension 2.

If a non-constant family in XN sweeps a curve, then the curve is a line l and the conics are non-reduced
conics whose set-theoretic support is l. Such a component sweeps a surface of degree 0. Since the degree
of the surface swept by the conics in the class dn is non-zero, V must contain a surface component. Since
the image of µ is connected if it contains a component of the type just described, the line l must lie on a
surface component.

If an irreducible curve of conics sweeps out a variety which has a dimension 1 and a dimension 2
component, then the conics consist of the lines on a cone union a line l meeting the cone at its vertex. We
refer to lines like l as needles. (See Figure 7).

needle

Figure 7. Needles.

If V does not have pure dimension 2, then it must contain a needle. Since the image of µ is connected,
if the needle is not contained in a surface component, then every component of the image of µ must have
the same line as a needle. A stable map onto such a curve cannot be in the class dn. The class of a stable
map which sweeps a rational cone of degree r with a needle k times is −kr a + kr b. Hence, V has pure
dimension 2.

Claim 3: If n = 3 (resp. 4), V is an irreducible surface of degree 3 (resp. 4).

Since meeting linear spaces in general position impose independent conditions, we can check this claim
by a naive dimension count. V has degree at most n and spans at most Pn.

When n = 3, the linear spaces impose 19 + 4(N − 3) conditions on V . If V has degree less than 3,
then it is either a plane or a quadric surface, hence V has dimension at most 9 + 4(N − 3). We conclude
that V has degree 3. This concludes the proof when n = 3 because any surface of degree 3 in P

3 is a
specialization of smooth D3 surfaces. The variety of singular cubic surfaces has codimension 1 in the space
of cubic surfaces. If the linear spaces are general, the only cubic surfaces that satisfy all the incidences will
be smooth surfaces. We conclude that the image of µ must contain a curve of conics on D3, but then the
image must coincide with it. Also observe that µ cannot have any contracted components, since otherwise
V would have to meet Λai and Λaj for some i, j along the same conic. Dimension considerations exclude
this possibility.

When n = 4, there are more cases to consider. It suffices to carry out the dimension counts when N = 4.
Since the dimension of cubic surfaces in P4 is bounded by 23, the degree of V must be 4.

A surface swept by a connected curve in XN is connected in codimension 1 by lines or conics except
when it contains cones meeting only along their vertices.

The dimension of four-tuples of planes in P4 or triples of a quadric surface and two planes in P4 is
bounded by 25. Hence, if V is reducible, then it is either the union of two quadrics or the union of a cubic
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surface and a plane. If the quadrics share a common line or conic or if one of them is a cone, then their
dimension is strictly less than 26. The choice of pairs of a plane and a cubic that spans P4 is bounded by
24. If the cubic spans only P3 and is ruled by lines, it is either the projection of a cubic scroll or a cone over
an elliptic curve. In either case the dimension of the choice of pairs of such a cubic and a plane is bounded
by 23 (§5.1). If the cubic is not ruled by lines, then it contains only a one parameter family of conics and
the plane must meet it along a line or a conic. By §5.1 the dimension of these pairs is also strictly less than
26. We conclude that V is irreducible.

Theorem 2.5 classifies irreducible quartic surfaces that span P4. The projection of a scroll of degree 4 in
P

5 and of a Veronese surface have dimensions bounded by 23 and 16, respectively. The other possibilities
are degenerations of D4, hence have dimension strictly smaller than 26. Finally by the assumption that
∑m

i=1(N − 3 − ai) > 4(N − 3), no P3 meets all the linear spaces Λai . We conclude that V must span P4.
This completes the proof that V is a smooth D4. The rest of the argument is identical to the previous case.
�

Remark: When n = 4, can we remove the assumption on ai? Any counterexample must arise from an
irreducible quartic surface in P

3. Suppose we take a quartic surface in P
3 with a double line. The dimension

of such surfaces is 25. The conics that are residual to the double line l in the pencil of planes containing it
give us a curve C in X3. The class of C is 2a + b, not d4. Suppose now we choose a more special quartic
surface S so that C contains a non-reduced conic whose set theoretic support is a line m. Take the curve
C ′ of non-reduced conics whose set theoretic supports are m, but whose planes rotate once about m in
P3. The union of C and C ′ now are in the class d4. The dimension of surfaces S in P3 with the required
property is 22. We conclude that Theorem 6.5 is the sharpest we can hope for when n = 4.

The table below gives examples of Gromov-Witten invariants of XN we can calculate using Theorem
6.5, Proposition 6.3 and the degeneration method in §5. We use the short-hand Idn

(ar1

1 , · · · , ark

k ) to denote
the Gromov-Witten invariant of XN in the class dn incident to ri cycles of conics meeting linear spaces of
dimension ai.

N = 3 Id3
(019) = 27 N = 4 Id4

(013) = 10
N = 4 Id3

(04, 115) = 27 ′′ Id4
(012, 12) = 40

′′ Id3
(03, 117) = 972 ′′ Id4

(011, 14) = 320
′′ Id3

(02, 119) = 21303 ′′ Id4
(010, 16) = 3200

N = 5 Id3
(02, 14, 213) = 54 ′′ Id4

(09, 18) = 33280
′′ Id3

(02, 13, 215) = 1863 N=5 Id4
(04, 19, 2) = 240
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