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Abstract. In this paper we prove that the cone of effective divisors on the
Kontsevich moduli spaces of stable maps M0,0(Pr , d) stabilize when r ≥ d. We

give a complete characterization of the effective divisors on M0,0(Pd, d): They
are non-negative linear combinations of boundary divisors and the divisor of
maps with degenerate image.
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1. Introduction

The ample and effective cones of divisors play a crucial role in the birational
geometry of a variety. The study of these cones for the moduli spaces of stable
curves has been especially fruitful, leading to the proof that the moduli space of
stable curves Mg is of general type when g > 23 (see [HM], [H], [EH]). Recently,
inspired by the work of G. Farkas, D. Khosla and M. Popa, there has been renewed
interest in constructing divisors of small slope on Mg in order to understand the

effective cone of M g and to determine the Kodaira dimension of M g in the remaining
cases (see [FaP], [Far3], [Far2], [Kh]). For instance, Farkas, using his construction
of new divisors, announced a proof that M 22 is of general type [Far1].

The aim of this paper is to describe the classes of effective divisors on a related
moduli space, the Kontsevich moduli space of stable maps M0,0(P

r, d). For d > 1,
the scheme parameterizing smooth, degree d, rational curves in Pr is not proper.
The Kontsevich moduli space gives a useful compactification. For integers n, d ≥ 0,
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the Kontsevich moduli space M0,n(Pr, d) is a smooth, proper, Deligne-Mumford
stack parameterizing the data (C, (p1, ..., pn), f) of,

(i) C, a proper, connected, at-worst-nodal curve of arithmetic genus 0,
(ii) p1, . . . , pn, an ordered sequence of distinct, smooth points of C,
(iii) and f : C → Pr, a morphism with deg(f∗OPr(1)) = d satisfying the fol-

lowing stability condition: every irreducible component of C mapped to a
point under f contains at least 3 special points, i.e., marked points pi and
nodes of C.

In this paper we will determine the classes of all effective divisor on M0,0(P
r, d)

when r ≥ d.

In [Pa], R. Pandharipande proves that when r ≥ 2, the divisor class H, and the
classes of the boundary divisors ∆k,d−k for 1 ≤ k ≤ bd/2c generate the group of

Q-Cartier divisors of M0,0(P
r, d). We recall that

(1) H is the class of the divisor of maps whose images intersect a fixed codi-
mension two linear space in Pr (provided r > 1 and d > 0).

(2) ∆k,d−k, 1 ≤ k ≤ bd/2c, is the class of the boundary divisor consisting of
maps with reducible domains, where the map has degree k on one compo-
nent and degree d − k on the other component.

The main problem we would like to address is the following:

Problem 1.1. Describe the cone of effective divisor classes on M0,0(P
r, d) in terms

of these generators of the Picard group.

Denote by Pd the Q-vector space of dimension bd/2c+ 1 with basis labeled H and
∆k,d−k for k = 1, . . . , bd/2c. For each r ≥ 2, there is a Q-linear map

ud,r : Pd → Pic(M0,0(P
r, d)) ⊗ Q

that is an isomorphism of Q-vector spaces.

Definition 1.2. For every integer r ≥ 2, denote by Effd,r ⊂ Pd the inverse image

under ud,r of the effective cone of M0,0(P
r, d).

A more precise version of Problem 1.1 is to describe Effd,r. A first result is that for a
fixed degree d, there is an inclusion between these cones as r increases. Furthermore,
the cones stabilize for r ≥ d.

Proposition 1.3. For every integer r ≥ 2, Effd,r is contained in Effd,r+1. For

every integer r ≥ d, Effd,r equals Effd,d.

In view of Proposition 1.3 it is especially interesting to understand Effd,d. Most
of our paper will concentrate on this case.

The crudest invariant one can associate to the effective cone is the slope of
distinguished rays. For example, Harris and Morrison in [HMo1] define the slope of
Mg as the slope of the ray that bounds the effective cone in the subspace spanned
by the Hodge class λ and the total boundary class δ. Determining the slope of
Mg is a major open problem. In analogy with the case of M g, we define the slope

s(r, d) of the effective cone of M0,0(P
r, d) as follows.
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s(r, d) := sup
α

{ α : H− α

bd/2c
∑

k=1

k(d − k) ∆k,d−k is on the effective cone }.

It is possible to determine the slope for the Kontsevich moduli spaces in the stable
range.

Theorem 1.4. If r ≥ d, then the slope s(r, d) of the effective cone of M0,0(P
r, d)

is equal to

s(r, d) =
1

d + 1
.

When r = d, the effective divisor that achieves the extremal slope has a simple
description. Let Ddeg denote the class of the locus parameterizing stable maps
f : C → Pd of degree d whose set theoretic image does not span Pd. Ddeg is a

divisor class in M0,0(P
d, d) which gives the desired slope.

Ddeg plays a crucial role in describing the effective cone of M0,0(P
d, d). The

following theorem, which describes the effective cone of M0,0(P
d, d) completely, is

the main theorem of our paper.

Theorem 1.5. The class of a divisor lies in the effective cone of M0,0(P
d, d) if

and only if it is a non-negative linear combination of the class of degenerate maps

Ddeg and the classes of the boundary divisors ∆k,d−k for 1 ≤ k ≤ bd/2c.

Theorem 1.4 follows immediately from Theorem 1.5. However, since it is easy to
give an independent proof and since the curves that span the null-space of the
divisor Ddeg are interesting in their own right, we will give a simple proof of it in
§2. Combining Theorem 1.5 with Proposition 1.3 and Lemma 2.1, we obtain the
following corollary.

Corollary 1.6. When r ≥ d, the class of a divisor lies in the effective cone of

M0,0(P
r, d) if and only if it is a non-negative linear combination of the class

H−
1

d + 1

bd/2c
∑

k=1

k(d − k)∆k,d−k

and the classes of the boundary divisors ∆k,d−k for 1 ≤ k ≤ bd/2c.

The space of curves of a given degree and genus has many distinguished subva-
rieties defined by imposing geometric conditions on the curves. Examples of such
subvarieties are given by curves that have an unexpected secant linear space or
curves with an unexpected osculating linear space or curves with a point of un-
expected ramification. An informal way of restating Theorem 1.5 is to say that
“geometric conditions” do not give new divisors on the space of rational curves of
degree d in Pd. Rational normal curves are too predictable.

We now briefly outline the proof of Theorem 1.5. Since Ddeg and the classes of
the boundary divisors are effective, their non-negative linear combinations also lie
in the effective cone. The main content of the theorem is to show that there are no
other effective divisor classes.
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Definition 1.7. A reduced, irreducible curve C on a scheme X is a moving curve

if the deformations of C cover a Zariski open subset of X . More precisely, a curve
C is a moving curve if there exists a flat family of curves π : C → T on X such that
π−1(t0) = C for t0 ∈ T and for a Zariski open subset U ⊂ X every point x ∈ U is
contained in π−1(t) for some t ∈ T . We call the class of a moving curve a moving

curve class.

An obvious observation is that the intersection pairing between the class of an
effective divisor and a moving curve class is always non-negative. Intersecting
divisors with a moving curve class gives an inequality for the coefficients of an
effective divisor class. The strategy for the proof of Theorem 1.5 is to produce
enough moving curves to force the effective divisor classes to be a non-negative
linear combination of Ddeg and the boundary classes.

Moving curves in M0,0(P
d, d) are easy to recognize by the following lemma.

Lemma 1.8. If C ⊂ M0,0(P
d, d) is a reduced, irreducible curve that intersects the

complement in M0,0(P
d, d) of the union of the boundary divisors and Ddeg, then C

is a moving curve.

Proof. The automorphism group of Pd acts transitively on rational normal curves.
An irreducible curve of degree d that spans Pd is a rational normal curve. Hence,
a curve C ⊂ M0,0(P

d, d) that intersects the complement in M0,0(P
d, d) of the

boundary divisors and the divisor of maps whose image is degenerate, contains a
point that represents a map that is an embedding of P1 as a rational normal curve.
The translations of C by PGL(d + 1) cover a Zariski open set of M0,0(P

d, d). �

In §3, using certain linear systems on blow-ups of P1×P1, we will construct one-
parameter families of rational curves whose general member is a rational normal
curve. By Lemma 1.8, these will be moving curves in M0,0(P

d, d). These moving
curves will give us enough inequalities on the effective cone to deduce Theorem 1.5.

Remark 1.9. After we posted our article, S. Keel provided a different proof of
Theorem 1.5. Keel’s argument, although beautiful, does not construct moving
curves dual to effective divisors. Most applications of Theorem 1.5 we have in mind
rely on the existence of the moving curves we construct. For instance, using the
moving curves one can characterize the effective cones of the space of stable maps to
other homogeneous varieties (see [CS] for a discussion of the case of Grassmannians).

Acknowledgments: We would like to thank A. J. de Jong, B. Hassett, R. Miranda
and the referee for useful comments and discussions.

2. Preliminaries

In this section we prove Proposition 1.3 and collect basic facts about the divisor
class Ddeg.

2.1. The stability of the effective cone. In this subsection we prove that Effd,r

is contained in Effd,r+1 and that Effd,r = Effd,d for r ≥ d. Recall that Effd,r is the

image of the effective cone of M0,0(P
r, d) when Pic(M0,0(P

r, d)) ⊗ Q is identified
with the vector space that has a basis labeled by H and ∆k,d−k for 1 ≤ k ≤ bd/2c.
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Proof of Proposition 1.3. Let p ∈ Pr+1 be a point, denote U = Pr+1 − {p}, and let
π : U → Pr be a linear projection from p. This induces a smooth 1-morphism

M0,0(π, d) : M0,0(U, d) → M0,0(P
r, d).

Let i : U → Pr+1 be the open immersion. This induces a 1-morphism

M0,0(i, d) : M0,0(U, d) → M0,0(P
r+1, d)

relatively representable by open immersions. The complement of the image of
M0,0(i, d) has codimension r, which is greater than 2. Therefore, the pull-back
morphism

M0,0(i, d)∗ : Pic(M0,0(P
r+1, d)) → Pic(M0,0(U, d))

is an isomorphism. So there is a unique homomorphism

h : Pic(M0,0(P
r, d)) → Pic(M0,0(P

r+1, d))

such that

M0,0(π, d)∗ = M0,0(i, d)∗ ◦ h.

Recalling from the introduction that u(r, d) is the map that identifies the Picard
group of M0,0(P

r, d) with the vector space spanned by H and the boundary divisors
∆k,d−k, we see that h◦ud,r equals ud,r+1. So to prove Effd,r is contained in Effd,r+1,

it suffices to prove that M0,0(π, d) pulls back effective divisors to effective divisors

classes, which follows since M0,0(π, d) is smooth.

Next assume r ≥ d. Let D be any effective divisor in M0,0(P
r, d). A general point

in the complement of D parameterizes a stable map f : C → Pr such that f(C)
spans a d-plane. Denote by j : Pd → Pr a linear embedding whose image is this
d-plane. There is an induced 1-morphism

M0,0(j, d) : M0,0(P
d, d) → M0,0(P

r, d).

The map M0,0(j, d)∗◦ud,r equals ud,d. By construction, M0,0(j, d)∗([D]) is the class

of the effective divisor M0,0(j, d)−1(D), i.e., [D] is in Effd,d. Thus Effd,d contains
Effd,r, which in turn contains Effd,d by the last paragraph. Therefore Effd,r equals
Effd,d. �

2.2. The divisor class Ddeg. In this subsection we determine the class of the

divisor of degenerate maps in M0,0(P
d, d). We then give a basis of moving curves

that span the null-space of Ddeg in the cone of curves. This completes the proof of
Theorem 1.4.

Lemma 2.1. The class Ddeg equals

Ddeg =
1

2d



(d + 1)H−

bd/2c
∑

k=1

k(d − k)∆k,d−k



 . (1)

Proof. We will prove the equality (1) by intersecting Ddeg by test curves. This well-
developed method was first applied to Kontsevich moduli spaces by Pandharipande
in [Pa]. Fix a general rational normal surface scroll S of degree i and a general
rational normal curve R of degree d− i− 1 intersecting S in one point p. A general
rational normal surface scroll is the image of P1 × P1 (resp., the blow-up of P2 at
one point) if the degree i is even (resp., odd). Let f denote the class of a fiber of
the scroll. Let e denote the class of the other fiber (resp., of the exceptional curve)
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when S is P1 × P1 (resp., the blow-up of P2 at one point). Choose a general pencil
of degree i + 1 rational curves in the class OS(e + b i+3

2 cf) on S having p as a base
point. Consider the one-parameter family Ci of degree d rational curves consisting
of the union of the fixed curve R with the elements of the pencil.

The intersection number Ci ·H is the degree of the surface component swept out
by the rational curves parameterized by Ci. By construction, these curves sweep
out the degree i scroll S. Hence, Ci · H = i.

On a rational surface scroll of degree i 6= 1, a pencil of degree i + 1 rational
curves is determined by i + 2 general points (see Lemma 2.5 in [C]). When i = 1, a
pencil of conics is determined by 4 base points. One of these points (p) lies on R.
The other i+1 base points together with the fixed curve R span Pd. Hence, all the
curves parameterized by Ci are non-degenerate. We conclude that Ci · Ddeg = 0.

A general pencil of degree i + 1 curves on S becomes reducible i + 2 times,
breaking to the union of a curve of degree i and a fiber passing through one of the
i + 2 base points. Suppose that 2 ≤ i ≤ bd/2c − 1. When the fiber passes through
p, then Ci intersects ∆i,d−i. When the fiber passes through one of the other base
points, then Ci intersects ∆1,d−1. Since the total space of the family is smooth
at the corresponding nodes, it is standard that both intersections are transverse.
Therefore,

Ci · ∆i,d−i = 1, Ci · ∆1,d−1 = i + 1.

The curve Ci is contained in the boundary divisor ∆i+1,d−i−1. The intersection
is given by the sum of the self-intersections of the sections given by the attaching
points. On R the section is trivial. On the blow-up of the scroll at p, the section
obtained by p has self-intersection −1. Hence,

Ci · ∆i+1,d−i−1 = −1.

Finally, the intersection number of Ci with all the other boundary divisors is zero
since Ci misses them. When i = 1, we have to modify the intersection number
of C1 with ∆1,d−1 to read C1 · ∆1,d−1 = 3 since a general pencil of plane conics
contains 3 reducible members.

Next consider the one-parameter family B1 of rational curves of degree d that
contain d + 2 general points and intersect a general line l. Since the points always
span Pd, the curves never become degenerate. Hence, B1·Ddeg = 0. The intersection
number of B1 with all the boundary divisors but ∆1,d−1 is zero. Suppose there were
reducible curves of degree i > 1 and d − i > 1. A rational curve of degree i spans
at most Pi. Therefore, at most i + 1 (respectively, d − i + 1) of the points could
be contained in the curve of degree i (respectively, d − i). Hence, exactly i + 1
(respectively, d − i + 1) of the points are contained in them and the components
of the curves lie in the linear spaces spanned by these points. However, if the line
l is general, it cannot meet either of these linear spaces. This is a contradiction.
Similar reasoning yields that the reducible curves that contain d + 2 points and
intersect l consist of a line l̃ containing 2 of the points and a degree d−1 curve that
contains the other d points and intersects l and l̃. Using the fact that d+2 linearly
general points in Pd−1 determine a unique rational normal curve, we conclude that

B1 · ∆1,d−1 =
(d + 2)(d + 1)

2
.
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Finally, to determine B1 · H, we need to count the number of rational curves of
degree d that contain d + 2 general points, intersect a general line and intersect a
general Pd−2. This number may be easily determined to be

B1 · H =
d2 + d − 2

2

by the algorithm proved in [V] Theorem 6.1.

Briefly, if we specialize the linear space Pd−2 to the span Λ of d of the points,
then the degree d curves become reducible by Bezout’s Theorem. Vakil’s Theorem
6.1 in [V] describes the possible limits and their multiplicities. There is either a
component of degree d − 1 or of degree 1 contained in Λ. (We already proved that
the curves cannot break any other way.) If there is a line in Λ, it can join any of
the d(d − 1)/2 pairs of points in Λ. The complementary curve of degree d − 1 is
uniquely determined as before. If there is a curve of degree d − 1 in Λ, then the
complementary line l̃ is the line joining the two points that are not contained in
Λ. The curve of degree d − 1 is uniquely determined because it has to contain d
points in Λ and intersect l and l̃. It counts with multiplicity d − 1 for the choice
of intersection with the linear space Pd−2 that we specialized to Λ. We obtain the
claimed number.

This determines the class of Ddeg up to a constant multiple. In order to determine
the multiple, consider the curve C that consists of a fixed degree d− 1 curve and a
pencil of lines in a general plane intersecting the curve in one point. The curve C
has intersection number zero with all the boundary divisors but ∆1,d−1. Arguing
as above it is easy to see that C has the following intersection numbers:

C · H = 1, C · Ddeg = 1, C · ∆1,d−1 = −1.

The lemma follows from these intersection numbers. �

Consider the one-parameter family Bk of rational curves of degree d in Pd that
contain d + 2 general fixed points and intersect a general linear space Pk and a
general linear space Pd−k for 1 ≤ k ≤ bd/2c. When k = 1, we omit the linear
space Pd−1. A general member of Bk is a rational normal curve. This follows, for
example, from Lemma 14 of [FP]. By Lemma 1.8, it follows that Bk is a moving
curve for every k. The only reducible elements of B1 are unions of curves of degree
1 and d− 1. For k > 1, the only reducible members of Bk have degrees (1, d− 1) or
(k, d − k). Since the d + 2 points always span Pd, Bk · Ddeg = 0 for every k. Since
the curves Bk are independent, they must span the null-space of Ddeg in the cone
of curves. Observe that these curves give a proof of Theorem 1.4.

Proof of Theorem 1.4. By Lemma 2.1, the divisor class Ddeg lies in the plane

spanned by the divisor classes H and
∑bd/2c

k=1 k(d − k)∆k,d−k. Hence, it deter-
mines a ray in the intersection of this plane with the effective cone. By Lemma 2.1,
the slope of this ray is 1

d+1 . We conclude that the slope of Effd,d is at least 1
d+1 .

On the other hand, there are moving curves that have intersection number zero
with Ddeg. Hence, the ray determined by Ddeg is extremal in the intersection of the

effective cone with the plane spanned by H and
∑bd/2c

k=1 k(d− k)∆k,d−k. Therefore,
the slope of Effd,d is at most 1

d+1 . �
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2.3. A digression on the slope of M g. Recall that the slope s(g) of M g is
defined by

s(g) := inf
α
{ αλ − δ is on the effective cone },

where λ is the Hodge class and δ is the total boundary class. Harris and Morrison,
in [HMo1], have proved that the slope of the moduli space of curves M g is non-
negative. However, the lower bounds they obtain on the slope tend to zero as the
genus tends to infinity. On the other hand, none of the currently known effective
divisors on Mg produce a ray in the effective cone of slope less than 6. There are
families of effective divisors, such as the Brill-Noether divisors, whose slopes tend
to 6 from above as the genus tends to infinity. Determining the slope, even giving a
positive lower bound for it, is an important problem with applications to problems
such as the Schottky problem and the Kodaira dimension of M g . One method for

proving lower bounds on the slope is to produce moving curves on M g. As discussed
after Definition 1.7, each moving curve gives a lower bound on the slope. To the
best of our knowledge, currently known moving curves in M g give lower bounds on
the slope that tend to zero with the genus.

The proof of Theorem 1.4 suggests a family of moving curves that might improve
known bounds. Recall that the component of the Hilbert scheme parameterizing
canonically embedded curves of genus g in Pg−1 has dimension g2 +3g−4. We can
impose g2 + 3g − 5 conditions on canonical curves by requiring them to intersect
“the appropriate number” of general linear spaces in Pg−1. We thus obtain one-
parameter families of canonical curves depending on the numerical data of the linear
spaces. It is not hard to see that, by varying the linear spaces, we can arrange the
one-parameter families to contain a general canonical curve. Hence, each of these
one-parameter families induce moving curves in M g. These moving curves are
especially interesting when as many of the the linear spaces as possible are points.
(A dimension count shows that, when g ≥ 8, this amounts to considering the one-
parameter family of canonical curves that contain g+5 general points and intersect
a general Pg−7.)

In low genus, these moving curves provide the (previously known) sharp lower
bounds on the slope. We will describe this for 3 ≤ g ≤ 6. As in the proof of
Theorem 1.4, to check that the bound is sharp, it suffices to produce an effective
divisor proportional to aλ − δ that has intersection number zero with a moving
curve. In all our examples, the moving curves will have intersection number zero
with all the boundary divisors, but the divisor of irreducible nodal curves δ0. In
the expressions of the effective divisors all the coefficients of the boundary divisors
will be negative. Furthermore, the coefficient of δ0 will have the smallest absolute
value. In all cases, we can add positive multiples of the other boundary divisors to
obtain an effective divisor proportional to aλ− δ without changing the intersection
numbers with our moving curves. We will refer the reader to the literature for the
details about the divisors we invoke and leave most of the (easy) verifications to
the reader. The classical facts we use about canonical curves can be found in [Ha]
IV.5 and [ACGH] III and V.

Let C3 be the one-parameter family of genus 3 canonical curves that contain
13 general points in P2. The canonical image of a non-hyperelliptic genus 3 curve
is a quartic plane curve. Hence, C3 is a general pencil of quartic plane curves.
Every member of such a pencil is a non-hyperelliptic stable curve. In M 3 the
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closure of the locus of hyperelliptic curves forms a divisor whose class is computed
in [HMo2] Chapter 3H. Hence, C3 has intersection number zero with the divisor of
hyperelliptic curves. By the argument outlined in the previous paragraph, C3 gives
the sharp lower bound 9 on the slope of M3.

Let C4 be the one-parameter family of genus 4 canonical curves that contain 9
general points and intersect 5 general lines in P3. A genus 4 canonical curve is a
(2, 3) complete intersection in P3. Since 9 general points determine a unique smooth
quadric, all of these curves lie on a unique smooth quadric surface. Consequently,
C4 has intersection number zero with the Petri divisor of curves whose canonical
image lies on a singular quadric (see [EH] for details about the Petri divisor). Hence,
C4 gives the sharp lower bound 17/2 on the slope of M4.

Let C5 be the one-parameter family of genus 5 canonical curves in P4 that contain
11 general points and intersect a general line. Canonical images of non-hyperelliptic
and non-trigonal curves are complete intersections of type (2, 2, 2) in P4. Canonical
images of trigonal genus 5 curves lie on a cubic scroll. Since the dimension of cubic
scrolls in P4 is 18, there cannot be any cubic scrolls in P4 that contain 11 general
points. Hence, C5 has intersection number zero with the Brill-Noether divisor of
trigonal genus 5 curves (see [HMo2] Chapter 6F for the class of the Brill-Noether
divisor). Thus, C5 gives the sharp lower bound 8 on the slope of M5.

Finally, let C6 be the one-parameter family of genus 6 canonical curves in P5

that contain 11 general points and intersect a general line and a general plane. The
canonical image of a non-hyperelliptic genus 6 curve lies on a Del Pezzo surface of
degree 5 in P5. An easy dimension count shows that there are only finitely many
such Del Pezzo surfaces that contain 11 general points and intersect a general line
and a general plane. Furthermore, these Del Pezzo surfaces will be smooth. Hence,
C6 has intersection number zero with the Petri divisor of curves that lie on a singular
quintic Del Pezzo surface (see [EH] for the class) leading to the sharp slope bound
47/6 .

The analogy with rational curves and these small-genus examples suggest that
the moving curves in Mg described above are well-worth studying. Unfortunately
we do not know the intersection numbers of these curves with the classes λ and δ
in general. We pose calculating these numbers as an interesting open problem.

3. The effective cone of M0,0(P
d, d)

In this section we prove Theorem 1.5: Every effective divisor class in M0,0(P
d, d)

is a positive linear combination of Ddeg and the boundary divisors.

Since Ddeg and the boundary divisors are effective, any positive linear combina-
tion also is a class in the effective cone. In order to prove Theorem 1.5 we have to
show that we can write the class of every effective divisor as

αDdeg +

bd/2c
∑

k=1

βk,d−k ∆k,d−k,

where α and βk,d−k are non-negative.
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First, we observe that if D is an effective divisor on M0,0(P
d, d) and D has the

class

aH +

bd/2c
∑

k=1

bk,d−k∆k,d−k,

then a ≥ 0. Furthermore, if a = 0, then bk,d−k ≥ 0. Consider a general projection
of the d-th Veronese embedding of P2 to Pd. Consider the image of a pencil of lines
in P2. By Lemma 1.8, this is a moving one-parameter family C of degree d rational
curves that has intersection number zero with the boundary divisors. It follows
from the inequality C · D ≥ 0 that a ≥ 0.

Furthermore, suppose that a = 0. Consider a general pencil of (1, 1) curves on
P1 ×P1. Take a general projection to Pd of the embedding of P1 ×P1 by the linear
system OP1×P1(i, d − i). By Lemma 1.8, the image of the pencil gives a moving
one-parameter family C of degree d curves whose intersection with ∆k,d−k is zero
unless k = i. The relation C · D ≥ 0 implies that if a = 0, then bi,d−i ≥ 0. We
conclude that Theorem 1.5 is true if a = 0. We can, therefore, assume that a > 0.

Suppose that for every 1 ≤ i ≤ bd/2c, we could construct a moving curve Ci in
M0,0(P

d, d) with the property that Ci · ∆k,d−k = 0 for k 6= i and that the ratio of
Ci · ∆i,d−i to Ci · H is given by

Ci · ∆i,d−i

Ci · H
=

d + 1

i(d − i)
. (2)

Observe that given these intersection numbers, Lemma 2.1 implies that Ci ·Ddeg =
0. Theorem 1.5 follows from the inequalities Ci · D ≥ 0.

In the rest of this section we will first give a construction of one-parameter
families of Ci with these properties. However, our construction will depend on the
Harbourne-Hirschowitz conjecture. We will then modify the construction to get a
sequence of curves (not depending on any conjectures) that “approximate” these
intersection numbers. These curves will suffice to conclude Theorem 1.5.

3.1. Construction 1, depending on the Harbourne-Hirschowitz conjec-

ture. Let F1 and F2 denote the two fiber classes on P1 × P1. We will abuse
notation and denote the proper transform of the fibers in any blow-up of P1 × P1

also by F1 and F2. Let d, j and k be positive integers subject to the condition that
2k ≤ d. Consider S the blow-up of P1×P1 in j(d+1) general points p1, . . . , pj(d+1).
Let Ei denote the i-th exceptional divisor lying over pi. Let L(j) be the following
linear system on S:

L(j) = d F1 +
jk(k + 1)

2
F2 −

j(d+1)
∑

i=1

k Ei.

Suppose M is a linear system on S and that M − F2 is non-special, that is

h1(S,OS(M − F2)) = 0.

Consider the exact sequence

0 → OS(M − F2) → OS(M) → OF2(M) → 0.

The long exact sequence of cohomology implies that taking the one-parameter fam-
ily of proper transforms of the fiber class F2 under the image of the linear system

10



|M | gives a one-parameter family of rational curves of degree M ·F2 spanning PM ·F2 .

In particular, suppose that L(j)−F2 is non-special. Then by the discussion in the
previous paragraph, the linear system L(j) embeds the general curve in the linear
system |F2| on S as a rational normal curve of degree d in Pd. We thus obtain a
moving curve Ck(j) that has intersection number zero with all the boundary classes
except for ∆k,d−k. Clearly, Ck(j) · ∆k,d−k = j(d + 1). The degree of the surface
that these curves span is given by L(j)2 = jk(d− k). Hence, Ck(j) ·H = jk(d− k).
It follows from Lemma 2.1 that Ck(j) · Ddeg = 0. Hence, Theorem 1.5 would
immediately follow if L(j) − F2 were non-special for at least one value of j.

We recall that the celebrated conjecture due to Harbourne and Hirschowitz char-
acterizes the linear systems that are special on a general blow-up of P2 as those
linear systems that have a multiple (−1)-curve in their base locus. Here we will
need a weaker form of the conjecture (see [CM]).

Conjecture 3.1 (Harbourne-Hirschowitz). Let M be a complete linear system on

a general blow-up S of P2. If E · M is non-negative for every (−1)-curve E on S,

then M is non-special.

Since the blow-up of P1×P1 at a point is isomorphic to the blow-up of P2 at two
points, the Harbourne-Hirschowitz Conjecture applies to the linear systems L(j).
The class of any (−1)-curve on S may be expressed as

αF1 + βF2 −

j(d+1)
∑

i=1

γiEi,

where α and β are non-negative integers and γi ≥ −1 is an integer. Since for a
(−1)-curve E we have E · K = −1, it follows that

−

j(d+1)
∑

i=1

γi = 1 − 2α − 2β.

The intersection of the (−1)-curve with L(j) − F2 is

dβ + α

(

jk(k + 1)

2
− 1

)

− k

j(d+1)
∑

i=1

γi = (d − 2k)β + α

(

jk(k + 1)

2
− 2k − 1

)

+ k.

When k > 3 and j ≥ 1; or k = 2, 3 and j > 1; or k = 1 and j ≥ 3, the intersection
is non-negative. We conclude the following:

Proposition 3.2. Suppose Conjecture 3.1 holds for L(j) − F2 for some j ≥ 1.
Then the effective cone of M0,0(P

d, d) is spanned by the classes of Ddeg and the

boundary divisors. Furthermore, every codimension one face of the effective cone

is the null-locus of a moving curve.

Remark 3.3. It is easy to prove that L(j) − F2 is non-special for small values of
d and k and to deduce Proposition 3.2 without any conditions. However, we could
not see how to prove the non-specialty of L(j) − F2 in general.
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3.2. Construction 2, completing the proof. We modify the previous construc-

tion by imposing fewer k-fold points on the linear system d F1 + jk(k+1)
2 F2 on

P1 × P1. If we do not impose too many k-fold points on the linear system, we
can prove the non-specialty of the desired linear system. The following proposition
makes this precise.

Proposition 3.4. Let k, j and d be positive integers subject to the condition that

2k ≤ d. There exists an integer n(k, d) depending only on k and d such that the

linear system

L′(j) = d F1 +

(

jk(k + 1)

2
− 1

)

F2 −

j(d+1)−n(k,d)
∑

i=1

k Ei −

j(d+1)+n(k,d) (k−1)(k+2)
2

∑

i=j(d+1)−n(k,d)+1

Ei

on the blow-up of P1×P1 at j(d+1)+n(k, d) (k−1)(k+2)
2 general points is non-special

for every j >> 0. The integer n(k, d) may be taken to be

n(k, d) = d2(d + 1)/ke.

Proposition 3.4 implies Theorem 1.5. As in the previous subsection, we consider
the blow-up of P1 × P1 in

j(d + 1) +
n(k, d)(k − 1)(k + 2)

2

general points. The proper transform of the fibers F2 under the linear system

d F1 +
jk(k + 1)

2
F2 −

j(d+1)−n(k,d)
∑

i=1

k Ei −

j(d+1)+n(k,d) (k−1)(k+2)
2

∑

i=j(d+1)−n(k,d)+1

Ei

gives a one-parameter family Ck(j) of rational curves of degree d that has inter-
section number zero with Ddeg. Letting j tend to infinity we obtain a sequence of

moving curves Ck(j) in M0,0(P
d, d) that has intersection zero with all the bound-

ary divisors but ∆1,d−1 and ∆k,d−k. Unfortunately, the intersection of Ck(j) with
∆1,d−1 is not zero and the ratio of Ck(j) · H to Ck(j) · ∆k,d−k is not the one re-
quired by Equation (2). However, as j tends to infinity, the ratio of the intersection
numbers Ck(j) · ∆1,d−1 to Ck(j) · H tends to zero and the ratio of Ck(j) · ∆k,d−k

to Ck(j) · H tends to the desired ratio d+1
k(d−k) . Theorem 1.5 follows.

Proof of Proposition 3.4. The proof of this proposition is an application of the stan-
dard degeneration techniques used to study the Harbourne-Hirschowitz conjecture.
The global sections of a linear system

aF1 + bF2 −
∑

i

riEi

on a blow-up of P1 × P1 at points pi correspond to proper transforms of curves
of type (a, b) on P1 × P1 that have multiplicity ri at pi. In general, it is hard to
obtain an upper bound on the dimension of global sections directly. However, if the
points pi are in a special position, it might be possible to estimate the dimension of
global sections using the special geometry. By the upper-semi-continuity, the same
estimate holds also when the points are in general position.

A specialization that works well is to specialize the points pi one at a time to a
fixed point q. More precisely, for our linear system L(j)′ we specialize the k-fold
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points as follows: We begin with a k-fold point p in general position. We first
specialize p along a fiber f1 (in the class F1) onto the fiber f2 in (the fiber class
F2) containing the point q. We then specialize the point p onto q along f2. The
limiting linear systems that result from this specialization are well-known. For
example, they have been elegantly described by a checker game in [Ya] §2. We will
use Yang’s description to complete the proof. We note that Yang works on P2, but
since the blow-up of P1 ×P1 at one point is isomorphic to the blow-up of P2 at two
points, the description carries over to P1 × P1 with little modification.

We now recall Yang’s description (phrased for P1 × P1). The global sections of
the linear system OP1×P1(a, b) are bi-homogeneous polynomials of bi-degree a and
b in the variables x, y and z, w, respectively. A basis for the space of global sections
is given by the monomials xiya−izjwb−j , where 0 ≤ i ≤ a and 0 ≤ j ≤ b. We can
record the coefficients of these monomials in a rectangular (a+1)× (b+1) grid. In
this grid, the box in the i-th row and the j-th column corresponds to the coefficient
of the monomial xiya−izjwb−j .

Figure 1. Imposing a triple point on OP1×P1(4, 6).

A point p is a k-fold point of a curve if the first k − 1 derivatives of the defining
equation of the curve vanish at p. If we impose a k-fold point on the linear system
at the point ([x : y], [z : w]) = ([0 : 1], [0 : 1]), then the coefficients of the monomials

yawb, xya−1wb, . . . , xk−1ya−k+1zk−1wb−k+1

must vanish. We depict this condition by filling the k × k triangle of boxes corre-
sponding to the coefficients of these monomials by checkers. See Figure 1 for an
example. In general, an (a + 1)× (b + 1) checker diagram with checkers filled in at
some boxes will denote the subspace of H0(P1 × P1,OP1×P1(a, b)) spanned by the
monomials corresponding to the boxes that do not contain checkers.

Drop the checkers Slide the checkers to the right

Figure 2. Depicting the degenerations by checkers.
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Suppose we begin with a linear subseries of H0(P1 ×P1,OP1×P1(a, b)) defined by
a checker diagram. If initially all the boxes in the k×k upper left triangle are empty,
then the linear series obtained by imposing a new k-fold point at p corresponds to
the checker diagram where in addition the k × k upper left triangle is filled with
checkers. The first panel of Figure 2 depicts an example. We first slide the k-fold
point along the fiber f1 onto the point ([x : y], [z : w]) = ([1 : 0], [0 : 1]). This
corresponds to the degeneration

([x : y], [z : w]) 7→ ([x : ty], [z : w]).

The flat limit of the linear series under this degeneration is again a linear series
which corresponds to a checker diagram. The new checker diagram is obtained from
the old one by dropping the checkers vertically down until they reach a box that
already contains a checker. The second panel in Figure 2 depicts the result of such
a degeneration.

We then follow this degeneration with a degeneration that specializes the k-fold
point to q by sliding along the fiber f2. This degeneration is explicitly given by

([x : y], [z : w]) 7→ ([x : y], [z : tw]).

The flat limit of the linear system is another linear system that corresponds to
a checker diagram. The new checker diagram is obtained from the old one by
sliding all the checkers as far right as possible. The third panel in Figure 2 gives an
example. The proof consists of writing down a general member of the linear series,
factoring out the lowest power of t from the expression and setting t = 0. We refer
the reader to the proof of Lemma 2 in [Ya] for the computation.

If one can carry out the checker degeneration with all the multiple points that
one imposes on a linear system without any checkers falling off the grid, one can
conclude that the linear system is non-special. The dimension of a linear system
corresponding to a checker diagram is the number of empty boxes. If none of
the checkers fall off the grid, then each point of multiplicity m imposes m(m +
1)/2 conditions. Hence, the expected dimension is equal to the actual dimension.
Riemann-Roch then implies that the linear system is non-special. The obstruction
to proving the non-specialty is that there might not be enough empty boxes to
impose a k-fold point. Specifically, in the initial diagram some of the boxes in the
upper left k × k triangle may be full. In that case we cannot impose a k-fold point
at p without losing a checker. See [Ya] for examples.

In order to conclude the proposition we need to show that if we impose at most
j(d+1)−n(k, d) points of multiplicity k on the linear system OP1×P1(d, jk(k+1)/2)
where 2k ≤ d, we do not lose any checkers when we specialize all the k-fold points by
the degeneration just described. This suffices to conclude the proposition because
general simple points always impose independent conditions.

The main observation is that if there is a safety net of empty boxes at the top
of the rectangle, then the checkers will not fall out of the box. If we perform the
checker degeneration using k-fold points, then, after specializing each of the k-fold
points to q, the diagram clearly satisfies the following two properties:

(1) The upper most row that contains any checkers is at most k rows higher
than the upper most row completely filled with checkers.

(2) The left most checker of a row is to the lower left of the left most checker
of any row above it.
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If there are at least (k + 1)(d + 1) empty boxes in our rectangle, then by the
above two observations when we specialize a k-fold point we do not lose any of the
checkers. As long as n(k, d) ≥ d2(d + 1)/ke, there is always at least (k + 1)(d + 1)
boxes empty. Hence we can specialize without losing any conditions. �

Remark 3.5. While the asymptotic approach gives a proof of Theorem 1.5 inde-
pendent of the Harbourne-Hirschowitz conjecture, it does not construct a moving
curve that is dual to the codimension one faces of the effective cone of M0,0(P

d, d).
However, the moving curves we have constructed approximate the duals to the
codimension one faces arbitrarily well and suffice for the applications.

References

[ACGH] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris. Geometry of algebraic curves.
Vol. I. Springer-Verlag, New York, 1985.

[CM] C. Ciliberto and R. Miranda. Degenerations of planar linear systems. J. Reine Angew.
Math. 501(1998), 191–220.

[C] I. Coskun. Degenerations of surface scrolls and the Gromov-Witten invariants of Grass-
mannians. J. Algebraic Geom. 15(2006), 223–284.

[CS] I. Coskun and J. Starr. Effective divisors on the space of maps to Grassmannians.
preprint.

[EH] D. Eisenbud and J. Harris. The Kodaira dimension of the moduli space of curves of genus
≥ 23. Invent. Math. 90(1987), 359–387.

[Far1] G. Farkas. M22 is of general type. preprint.
[Far2] G. Farkas. Koszul divisors on moduli spaces of curves. preprint.
[Far3] G. Farkas. Syzygies of curves and the effective cone of Mg . preprint.

[FaP] G. Farkas and M. Popa. Effective divisors on Mg , curves on K3 surfaces, and the slope
conjecture. J. Algebraic Geom. 14(2005), 241–267.

[FP] W. Fulton and R. Pandharipande. Notes on stable maps and quantum cohomology. In
Algebraic geometry—Santa Cruz 1995, volume 62 Part 2 of Proc. Sympos. Pure Math.,
pages 45–96. Amer. Math. Soc., 1997.

[H] J. Harris. On the Kodaira dimension of the moduli space of curves. II. The even-genus
case. Invent. Math. 75(1984), 437–466.

[HMo1] J. Harris and I. Morrison. Slopes of effective divisors on the moduli space of stable curves.
Invent. Math. 99(1990), 321–355.

[HMo2] J. Harris and I. Morrison. Moduli of curves. Springer-Verlag, 1998.
[HM] J. Harris and D. Mumford. On the Kodaira dimension of the moduli space of curves.

Invent. Math. 67(1982), 23–88. With an appendix by William Fulton.
[Ha] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in

Mathematics, No. 52.
[Kh] D. Khosla. Moduli space of curves with linear series and the slope conjecture. preprint.

[Pa] R. Pandharipande. Intersections of Q-divisors on Kontsevich’s moduli space M 0,n(Pr , d)
and enumerative geometry. Trans. Amer. Math. Soc. 351(1999), 1481–1505.

[V] R. Vakil. The enumerative geometry of rational and elliptic curves in projective space.
J. Reine Angew. Math. 529(2000), 101–153.

[Ya] S. Yang. Linear systems in P 2 with base points of bounded multiplicity. preprint,
math.AG/0406591.

Department of Mathematics, M.I.T., Cambridge, MA 02139

E-mail address: coskun@math.mit.edu

Department of Mathematics, Harvard University, Cambridge, MA 02138

E-mail address: harris@math.harvard.edu

Department of Mathematics, M.I.T., Cambridge, MA 02139

E-mail address: jstarr@math.mit.edu

15


	1. Introduction
	2. Preliminaries
	2.1. The stability of the effective cone
	2.2. The divisor class Ddeg
	2.3. A digression on the slope of Mg

	3. The effective cone of M0,0(Pd,d)
	3.1. Construction 1, depending on the Harbourne-Hirschowitz conjecture
	3.2. Construction 2, completing the proof

	References

