
A LITTLEWOOD-RICHARDSON RULE FOR TWO-STEP FLAG VARIETIES

IZZET COSKUN

Abstract. We establish a positive geometric rule for computing the structure constants of the cohomology of
two-step flag varieties with respect to their Schubert basis. As a corollary we obtain a quantum Littlewood-
Richardson rule for Grassmannians. These rules have numerous applications to geometry, representation theory
and the theory of symmetric functions.
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1. Introduction

This paper describes a positive geometric rule for determining the structure constants of the cohomology ring
of two-step flag varieties with respect to their Schubert basis. Such combinatorial rules are known as Littlewood-
Richardson rules. Since the three-pointed Gromov-Witten invariants of a Grassmannian can be calculated as
ordinary intersections of Schubert cycles in two-step flag varieties [BKT], we also obtain a quantum Littlewood-
Richardson rule for Grassmannians.

The partial flag variety F (k1, . . . , kr; n) parameterizes nested sequences of r linear subspaces V k1

1 ⊂ · · · ⊂ V kr
r

of dimensions ki of a fixed n-dimensional vector space V . Partial flag varieties are fundamental objects in
algebraic geometry, combinatorics and representation theory. Consequently their cohomology rings have been
studied extensively (see [BGG], [FPi] or [Ful2]). Although there are many presentations for their cohomology
rings, there were no proven Littlewood-Richardson rules for flag varieties except in the case of Grassmannians.
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Littlewood-Richardson coefficients exhibit a very rich structure which is best revealed by positive geometric
rules. For instance, in recent years, new Littlewood-Richardson rules for the Grassmannians have enabled Kly-
achko, Knutson, Tao, Woodward and their collaborators to resolve long standing problems such as Horn’s Con-
jecture and the Saturation Conjecture (see [KT] and [KTW]). Vakil using a geometric Littlewood-Richardson
rule was able to establish the reality of Schubert calculus [V2].

In the case of Grassmannians there are many Littlewood-Richardson rules in terms of Young tableaux [Ful1],
puzzles [KT], and checkers [V1]. A. Knutson conjectured a rule in terms of puzzles (see ([BKT])) for two-step
flag varieties and A. Buch extended the conjecture to three-step flag varieties. However, for arbitrary flag
varieties, except for multiplying very special classes (e.g. Monk’s formula [Ful1]), there is not even a conjectural
rule. Even in the case of Grassmannians, the known rules are insufficient and unsatisfactory for answering many
natural geometric questions.

In this paper we will first provide a new Littlewood-Richardson rule for Grassmannians (§3, Theorem 3.6).
Geometrically, a Littlewood-Richardson rule for G(k, n) can be interpreted as an algorithm for expressing the
class of the closure of the locus of k-planes that are spanned by their one-dimensional intersections with k vector
spaces W1, . . . , Wk, where Wi are the spans of consecutive basis elements of a fixed ordered basis and Wi 6⊆ Wj

for i 6= j. Viewed from this perspective, it is much more natural to study the following generalization.

Problem 1.1. Find an algorithm for expressing the class of the closure of the locus of k-planes in G(k, n) that
intersect k vector spaces, which are expressed as the spans of consecutive basis elements of a given ordered basis,
in given dimensions.

Corollary 3.9 resolves this problem completely. Aside from being a geometrically more natural problem,
Problem 1.1 is an essential step for understanding the geometry of partial flag varieties. There are natural
projections from the partial flag variety F (k1, . . . , kr; n) to the Grassmannians G(ki, n). The projection of the
intersection of two Schubert varieties in F (k1, . . . , kr; n) to G(ki, n) is a variety whose class is computed by
Corollary 3.9.

The main result of this paper is a Littlewood-Richardson rule for two-step flag varieties (§4, Theorem 4.6).
The strategy that leads to the rule works to compute the classes of subvarieties of other partial flag varieties.
However, to keep this paper at a reasonable length, we restrict our discussion to two-step flag varieties. The
reader may consult [CV] for an example for three-step flag varieties. In addition to being a step in understanding
the geometry of arbitrary partial flag varieties, the study of two-step flag varieties is interesting in its own right.
For instance, the work of Buch, Kresch and Tamvakis ([BKT]) has highlighted a beautiful relation between the
small quantum cohomology of Grassmannians and the cohomology of two-step flag varieties.

The final result of this paper is a quantum Littlewood-Richardson rule for Grassmannians (Theorem 5.1).
The small quantum cohomology rings of Grassmannians have been studied extensively (see [B], [Bu] or [BKT] for
references). However, as in the case of flag varieties, there was not a positive combinatorial procedure for finding
the quantum Littlewood-Richardson coefficients of Grassmannians. Using the results in [BKT], the problem of
computing three-pointed Gromov-Witten invariants turns to a problem of intersecting three Schubert cycles in
a two-step flag variety. Hence, our algorithm also solves the quantum Littlewood-Richardson problem.

Our Littlewood-Richardson rules will be in terms of combinatorial objects called Mondrian tableaux. Mon-
drian tableaux supply a convenient tool for recording the rank table for the intersections of two flags. We start
with the intersection of two Schubert varieties defined with respect to two transverse flags. We specialize the
flags via codimension one degenerations. In the process we force the intersection of the two Schubert cycles
defined with respect to the two flags to break into a union of Schubert cycles. The limits that occur during this
process are recorded by Mondrian tableaux.

The principle behind the rule can be stated very succinctly. If a k-dimensional vector space V k intersects two
vector spaces W1 and W2 in subspaces of dimension i and k− i, respectively, and it does not intersect W1 ∩W2,
then V k must be contained in the span of W1 and W2. Our rule uses this principle repeatedly to resolve the
intersection of two Schubert cycles into a union of Schubert cycles.

The idea to study the geometry of flag varieties via degenerations dates back at least to Pieri. Recently R.
Vakil proved a geometric Littlewood-Richardson rule for Grassmannians using degenerations [V1]. Our approach
is similar to Vakil’s. However, even in the case of Grassmannians, by choosing a more natural and canonical
degeneration order, we are able to clarify the geometry significantly. The result is a simpler and more efficient
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rule. In fact, as already mentioned, our methods apply in a much more general setting and give an algorithm
to express the classes of a large collection of subvarieties of Grassmannians in terms of Schubert cycles.

Finally, it should be stressed that the algorithms described in this paper do not only compute classes of sub-
varieties of Grassmannians or two-step flag varieties. They describe the limits of subvarieties of Grassmannians
and two-step flag varieties under specializations of the defining flags. The end result of the algorithm is not a
collection of cohomology classes, but actual subvarieties.

Acknowledgments: I would like to thank A.S. Buch, C. Desjardins, S. Grushevsky, J. Harris, A. Knutson,
A. Kresch, B. Osserman and H. Tamvakis for fruitful conversations. I am greatly indebted to R. Vakil for his
constant help and unfailing support. His suggestions greatly improved the content and presentation of this
paper.

2. Preliminaries

In this section we collect well-known facts about flag varieties and the quantum cohomology of Grassmannians.
For more detailed discussions the reader can consult [GH] Ch.1 §5, [FPi] and [BKT].

Notation 2.1. Let ki be an increasing sequence of positive integers. We denote the Grassmannian of k-
dimensional subspaces of an n-dimensional vector space by G(k, n). When we interpret this Grassmannian
as the parameter space of (k−1)-dimensional linear subspaces of Pn−1, we will use the notation G(k−1, n−1).

Let F (k1, . . . , kr; n) denote the r-step flag variety of r-tuples of linear subspaces (V1, · · · , Vr) of an n-
dimensional fixed vector space, where Vi are ki-dimensional linear spaces and Vi ⊂ Vi+1 for all 1 ≤ i ≤ r − 1.
When we would like to consider the flag variety as a parameter space for nested sequences of linear subspaces
of projective space, we will use the notation F(k1 − 1, . . . , kr − 1; n − 1).

2.1. The cohomology of flag varieties. Let F• : 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = V be a fixed complete flag in
the n-dimensional vector space V . Given a partition λ : n−k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0, we define the Schubert
variety Σλ in G(k, n) with respect to the flag F• to be

Σλ(F•) := {[W ] ∈ G(k, n) | dim(W ∩ Fn−k+i−λi
) ≥ i, ∀ 1 ≤ i ≤ k}.

We denote the Poincaré dual of the class of Σλ by σλ. The codimension of Σλ in G(k, n) is equal to the
weight of the partition |λ| =

∑
i λi. The classes of Schubert varieties form an additive basis of the homology of

G(k, n). The structure constants cν
λ,µ in the product σλ · σµ =

∑
ν cν

λ,µσν are called the Littlewood-Richardson
coefficients.

Similarly, the cohomology of the r-step flag variety F (k1, . . . , kr; n) is generated by Poincaré duals of the
classes of Schubert varieties. Schubert varieties are parameterized by permutations ω of length n for which
ω(i) < ω(i + 1) whenever i /∈ {k1, . . . , kr}. More explicitly, the Schubert variety Xω(F•) is defined by

Xω(F•) := { (V1, . . . , Vr) ∈ F (k1, . . . , kr; n) | dim(Vi ∩ Fj) ≥ #{α ≤ i : ω(α) > n − j} ∀ i, j }

The Poincaré duals of the classes of all the Schubert varieties form an additive basis for the cohomology of
the flag variety. The structure constants with respect to this basis are known as the Littlewood-Richardson
coefficients for flag varieties.

For future reference we note that given a Schubert cycle σλ in G(k, n), there is a special Schubert cycle

X
(d)
λ (F•) in F (k − d, k + d; n) defined by

X
(d)
λ (F•) := { (V1, V2) | dim(V1 ∩ Fn−i−λk−i

) ≥ k − d − i, dim(V2 ∩ Fn−k+j−λj
) ≥ j }

where 1 ≤ i ≤ k − d and 1 ≤ j ≤ k.

We need a convenient notation for Schubert varieties of r-step flag varieties. In analogy with the notation

for the Grassmannians we will use the notation σ
δ1,··· ,δkr

λ1,··· ,λkr
. The bottom row denotes the usual partition corre-

sponding to the kr-plane Vr in V treated as a Schubert cycle in G(kr , n). The numbers δi are integers between
1 and r. For a Schubert cycle in F (k1, . . . , kr; n), k1 of the upper indices will be 1 and ki − ki−1 of them will
be i. The flag F• induces a complete flag G• on the largest vector space Vr. For each j, there exists a smallest
i such that

dim(Vi ∩ Gj) = dim(Vi ∩ Gj−1) + 1.
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For a Zariski-open subset of the Schubert variety this index will be constant. In that case we write i on top of
λj . In the case of Grassmannians this notation reduces to the ordinary notation with a sequence of 1s on the
top row. For the complete flag variety the top row becomes the permutation defining the Schubert cycle.

Example. Fix a flag F1 ⊂ · · · ⊂ F6 in V 6. The Schubert cycle σ3,2 in G(2, 6) denotes the two-dimensional
subspaces of V 6 that meet F2 in a line and are contained in F4. The corresponding special Schubert cycle X1

σ3,2

has class σ2,1,2
2,1,0 in F (1, 3; 6). The Schubert cycle σ2,1,2

2,1,0 denotes the pairs of subspaces V1 ⊂ V2 where V1 has
dimension one and V2 has dimension 3. V2 is required to meet F2 in dimension one, F4 in dimension 2 and be
contained in F6. V1 lies in the intersection of V2 with F4.

2.2. Gromov-Witten invariants. Let M0,m(G(k, n), d) denote the Kontsevich space of genus zero stable
maps to G(k, n) of Plücker degree d. The Kontsevich space is equipped with m evaluation morphisms,

ρ1, . . . , ρm : M0,m(G(k, n), d) → G(k, n),

where the i-th evaluation morphism maps a stable map to the image of the i-th marked point.

Given m Schubert classes σλ1
, · · · , σλm

in G(k, n), the Gromov-Witten invariant Id(σλ1
, . . . , σλm

) is defined
by the formula

Id(σλ1
, . . . , σλm

) =

∫
M0,m(G(k,n),d)

ρ∗1(σλ1
) ∪ · · · ∪ ρ∗m(σλm

).

Since the three-pointed Gromov-Witten invariants (m = 3) give the structure constants of the small quantum
cohomology ring, they are called the quantum Littlewood-Richardson coefficients.

Let Σ1, · · · , Σm be general (with respect to the PGL(n+1) action) Schubert cycles representing the Poincaré
duals of the classes σλ1

, . . . , σλm
, respectively. The following lemma asserts that the Gromov-Witten invariant

is equal to the number of rational curves that intersect Σi.

Lemma 2.2. ([FP] Lemma 14) The scheme theoretic intersection

ρ−1
1 (Σ1) ∩ · · · ∩ ρ−1

m (Σm)

is a finite number of reduced points in M0,m(G(k, n), d). Moreover,

Id(σλ1
, . . . , σλm

) = # ρ−1
1 (Σ1) ∩ · · · ∩ ρ−1

m (Σm).

Remark 2.3. Furthermore, by Kleiman’s Transversality Theorem [Kl] one can conclude that the curves contribut-
ing to the Gromov-Witten invariants are non-degenerate curves and the restriction of the tautological bundle
of G(k, n) to the curves have balanced splitting (i.e. the degree of any two summands in the Grothendieck
decomposition differ by at most one).

2.3. Scrolls. Let r1 ≤ · · · ≤ rk be non-negative integers, not all equal to zero. We let r be the sum
∑k

i=1 ri.

Let Sr1,··· ,rk
denote the k-dimensional rational normal scroll in P

r+k−1.

To construct it take k rational normal curves of degree r1, . . . , rk in Pr+k−1 such that the span of any k − 1
of them is disjoint from the span of the remaining one. Fix an isomorphism between each of these curves
and an abstract P

1. Sr1,··· ,rk
is the union of the k − 1 planes spanned by the points corresponding under the

isomorphism. We allow some of the integers ri to be zero. In that case we obtain cones over smaller dimensional
scrolls. A scroll is balanced if |ri − rj | ≤ 1 for 1 ≤ i, j ≤ k. It is perfectly balanced if all ri are equal.

Abstractly a scroll is the projectivization of a vector bundle of rank k on P1. Since any vector bundle E over
P1 is a sum of line bundles, we can express the projectivization as

PE = P(OP1(−r1) ⊕ · · · ⊕ OP1(−rk)).

The scroll Sr1,··· ,rk
is the image of PE under the linear series OPE(1).

Scrolls as rational curves in the Grassmannian. Since a scroll Sr1,··· ,rk
is a family of k − 1 planes

parameterized by a rational curve, it gives rise to a rational curve C in G(k − 1, r + k − 1). The curve C is
non-degenerate (i.e., does not lie in a subgrassmannian of the form G(k− 1, s) for s < r + k − 1) and of Plücker
degree r =

∑
ri.

Conversely, any irreducible, non-degenerate curve C in the Grassmannian G(k−1, r+k−1) of degree r gives
rise to a scroll of degree r in Pr+k−1. There are non-isomorphic scrolls of degree r in Pr+k−1. The splitting
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type of the restriction of the tautological bundle of G(k − 1, r + k − 1) to C determines the isomorphism type
of the scroll (see [C]). We, therefore, obtain the following corollary of Lemma 2.2 and Remark 2.3.

Corollary 2.4. The Gromov-Witten invariant Id(σλ1
, . . . , σλm

), where σλ1
, . . . , σλm

are Schubert cycles in
G(k, n), is equal to the number of balanced scrolls of degree d and dimension d + k − 1 in Pn−1 containing m
fibers satisfying the specified Schubert conditions.

In [BKT] the authors relate the quantum three-point invariants of degree d for G(k, n) to ordinary intersec-
tions in F (k − d, k + d; n). Since we will use their Proposition 1 and Corollary 1, we summarize their results in
terms of the geometric point of view offered by Corollary 2.4.

Lemma 2.5. ([BKT] Prop.1) The only non-zero three-point quantum invariant of G(d, 2d) of degree d is

Id(σd,··· ,d, σd,··· ,d, σd,··· ,d) = 1.

By dimension restrictions, the stated invariant is the only non-zero degree d invariant. The invariant is
equal to one because there is a unique scroll of degree and dimension d in P2d−1 containing three general d − 1
dimensional linear spaces A, B, C as fibers. In such a scroll, through every point p of A there is a unique line
meeting B and C. This line is pB ∩ pC, the intersections of the span of p and B and the span of p and C. This
uniquely constructs the scroll.

Lemma 2.6. ([BKT] Cor.1) Let λ, µ, ν be partitions and d ≥ 0 be an integer satisfying

(1) |λ| + |µ| + |ν| = k(n − k) + dn.

Then the degree d three-point Gromov-Witten invariants of G(k, n) equal the ordinary three-point intersections
of special Schubert varieties (see §2.1) in the flag variety F (k − d, k + d; n):

Id(σλ, σµ, σν) =

∫
F (k−d,k+d;n)

[X
(d)
λ ] ∪ [X(d)

µ ] ∪ [X(d)
ν ].

By Corollary 2.4 the Gromov-Witten invariant is equal to the number of balanced scrolls of degree d and
dimension k in Pn−1. Such a scroll is a cone over a perfectly balanced scroll with vertex a linear space of
dimension k − d − 1. It spans a Pk+d−1. To each scroll contributing to the Gromov-Witten invariant one
associates the pair of linear spaces consisting of the vertex and the span of the cone. This gives the required
bijection.

3. Mondrian tableaux and a Littlewood-Richardson rule for Grassmannians

In this section we describe a way to compute the Littlewood-Richardson coefficients of Grassmannians in
terms of combinatorial objects called Mondrian tableaux.

Mondrian tableaux. A Mondrian tableau associated to a Schubert class σλ1,··· ,λk
in G(k, n) is a collection of

k nested squares centered along the anti-diagonal of an n × n square such that

• The squares are labeled by integers 1, . . . , k, where a square with larger index contains all the squares
with smaller index.

• The side-length of the j-th square is n − k + j − λj .

Figure 1 depicts two Mondrian tableaux for σ2,1 in G(3, 6).

A2

A3

A1

unit size

Figure 1. Two Mondrian tableaux associated to σ2,1 in G(3, 6).

Notation 3.1. For the rest of this paper, we will denote combinatorial objects, such as squares in a Mondrian
tableau, by capital letters in the math font (e.g., Ai). We will denote the geometric objects represented by the
combinatorial objects by the corresponding letter in Roman font (e.g., Ai).



6 IZZET COSKUN

In a Mondrian tableau, a square of side length s represents a vector space of dimension s. The unit squares
along the anti-diagonal of an n × n square represent a basis of the underlying vector space. The vector space
represented by a square S is the span of the basis elements corresponding to the unit squares in S. If a square
S1 is contained in another square S2, then the corresponding linear space S1 is a subspace of the linear space
S2. A Mondrian tableau depicts the subvariety of G(k, n) where the k-planes are required to intersect the linear
spaces S depicted by the squares S in the tableau in dimension at least the number of squares contained in S.

For example, in Figure 1, the Mondrian tableau in the left panel has three squares labeled A1, A2, A3. The
corresponding vector spaces A1, A2, A3 have dimensions 2, 4, and 6, respectively. The 3-planes parameterized
by the variety represented by this tableau are required to intersect Ai in dimension i. Note that the Mondrian
tableau in the second panel of Figure 1 also depicts σ2,1. However, the defining flag in this panel differs from
the first.

3.1. The game informally. To multiply two Schubert classes σλ and σµ in G(k, n) we place the tableau
associated to σλ (respectively, σµ) lower left (respectively, upper right) justified with the n× n square. We will
denote the squares corresponding to λ and µ by Ai and Bj , respectively. Figure 2 shows the initial tableau for
the multiplication σ2,1,1 · σ1,1,1 in G(3, 6).

A1

A2

A3

Unit size

B1B2B3

Figure 2. The initial tableau for σ2,1,1 · σ1,1,1 in G(3, 6).

Initially the two Schubert cycles are defined with respect to two transverse flags. GL(n) acts with a dense
orbit on the product of two complete flag varieties. For every pair of flags (F•, G•) in the dense orbit there
is a basis e1, . . . , en of the vector space V such that Fi =< e1, . . . , ei > and Gi =< en, en−1, . . . , en−i+1 >.
The initial tableau depicts the two Schubert varieties defined in terms of such a pair of opposite flags. If the
intersection of the two Schubert cycles is non-empty, then the Schubert cycles have to satisfy certain conditions.
Once we check that these conditions are satisfied, we will make the flags less transverse via codimension one
degenerations and trace the limit of the intersection of the Schubert cycles.

• The MM (must meet) rule. We check that Ai intersects Bk−i+1 in a square of side length at least one
for every i between 1 and k. If not, we stop. The Schubert cycles have empty intersection.

In a k-dimensional vector space V k every i-dimensional subspace (such as V k∩Ai) Must Meet every (k−i+1)-
dimensional subspace (such as V k ∩ Bk−i+1) in at least a one-dimensional subspace. The intersection of two
Schubert cycles is zero if and only if the initial tableau formed by the two cycles does not satisfy the MM rule.

• The OS (outer square) rule. We call the intersection of Ak and Bk the Outer Square of the tableau.
We replace every square with its intersection with the outer square and keep their labels the same. See Figure
3

A1

A2

A3

B1B2B3

The Outer Square

Figure 3. The OS rule applied to σ2,1,1 · σ1,1,1 in G(3, 6).

Since the k-planes are contained in both Ak and Bk, they must be contained in their intersection. Figure 2
shows an example in G(3, 6).
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• The S (span) rule. We check that Ai and Bk−i touch or have a common square. If not, we remove the
rows and columns between these squares as shown in Figure 4.

A2

B1

Figure 4. The S rule.

This rule corresponds to the fact that a k-dimensional vector space lies in the Span of any two of its subspaces
of complimentary dimension whose only intersection is the origin. This rule removes any basis element of V
that is not needed in expressing the k-planes parameterized by the intersection of the two Schubert varieties.

Once we have performed these preliminary steps, we will inductively build a new flag (the D flag) by degenerating
the two flags (the A and B flags). At each stage of the game we will have a partially built new flag (depicted by
D squares that arise as intersections of A and B squares) and partially remaining A and B flags (depicted by
squares Ai, . . . , Ak and Bk, Bk−i, . . . , B1). After nesting the D squares, we will increase the dimension of the
intersection of Ai with Bk−i by one in order of increasing i. We will depict this move in the Mondrian tableau
by sliding Ai anti-diagonally up by one unit. Assuming that there are no squares left justified with Ai, the
corresponding degeneration can be described as follows:

Let s be the side-length of Ai and suppose that initially Ai and Bk−i intersect in a square of side-length r.
There is a family of s-dimensional linear spaces Ai(t) parameterized by an open subset 0 ∈ U ⊂ P1 such that
over the points t ∈ U with t 6= 0, the dimension of intersection Ai(t) ∩ Bk−i is equal to r and when t = 0, the
dimension of intersection Ai(0)∩Bk−i is r+1. Denoting the basis vectors represented by the unit squares along
the diagonal by e1, . . . , en, we explicitly take the family to be

Ai(t) = the span of {(te1 + (1 − t)es+1, e2, . . . , es}.

When t = 1, we have our original vector space Ai represented by the old position of the square Ai. When
t = 0, we have the new vector space Ai(0) represented by the new position of the square Ai. When t = 0,
the intersection of Schubert varieties defined with respect to the A and B flags either remains irreducible or
breaks into two irreducible components. The Littlewood-Richardson rule records these possibilities and can be
informally phrased as:

If the k-planes in the limit do not intersect Ai(0) ∩ Bk−i, then they must be contained in their new span.

Before explaining how to use Mondrian tableaux to give a systematic algorithm for computing Littlewood-
Richardson coefficients, we give the example of σ2

1 in G(2, 4). Recall that geometrically σ2
1 describes the cycle

of projective lines in P3 that intersect two general projective lines. See Figure 5 where we draw the geometric
pictures projectively and place the corresponding Mondrian tableau underneath. Briefly, we start by specializing
the two skew lines l1, l2 to two intersecting lines l′1, l2. (In the Mondrian tableau this degeneration is depicted
by sliding the lower left square corresponding to l1 up by one unit.) In the limit, lines that intersect both l′1
and l2 either contain the point of intersection l′1 ∩ l2 or are contained in the plane spanned by l′1 and l2. (These
possibilities are depicted by drawing the square corresponding to the point l′1 ∩ l2 and restricting the tableau to
the square representing the span of l′1 and l2, respectively.) An easy tangent space calculation shows that each
of these limits occur with multiplicity one. Hence we conclude σ2

1 = σ1,1 + σ2.

3.2. The game. To multiply two Schubert classes σλ and σµ in G(k, n) we place the tableau associated to σλ

(respectively, σµ) lower left (respectively, upper right) justified with the n × n square. We apply the MM, OS
and S rules. We need to know the tableaux that correspond to varieties that occur during the degenerations.
The admissible Mondrian tableaux characterize the tableaux that occur (see Figure 8 for examples).

Mondrian tableaux. A Mondrian tableau for G(k, n) is a diagram contained in an n×n square consisting of
a collection of squares whose anti-diagonal lies on the anti-diagonal of the n × n square.
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*

Figure 5. Computing σ2
1 = σ1,1 + σ2 in G(2, 4) = G(1, 3).

The admissible Mondrian tableaux. A Mondrian tableau is admissible for G(k, n) if the squares that
constitute the tableau are labeled as indexed A, B or D square such that

(1) The squares Ak = Bk form the outer square. They have side length m ≤ n and contain the entire
tableau.

(2) The A squares are all nested, distinct, left aligned and strictly contain all the D squares. If the number
of D squares is i− 1 < k, then the A squares are Ai, Ai+1, . . . , Ak with the smaller index corresponding
to the smaller square. (In particular, the total number of A and D squares is k.)

(3) The B squares are all nested, distinct and right aligned. They are labeled Bk, Bk−i, Bk−i−1, . . . , B1,
where a smaller square has the smaller index. (In particular, the number of B squares equals the number
of A squares.) The A and B squares satisfy the MM and S rules. The D squares may intersect Bk−i,
but none are contained in Bk−i.

(4) The D squares are labeled D1, . . . , Di−1. They do not need to be nested; however, there can be at most
one unnested D square. An unnested D square is a D square that does not contain every D square of
smaller index. More precisely, if Dj does not contain all the D squares of smaller index, then it does
not contain any of the D squares of smaller index; it is contained in every D square of larger index; and
Dr ⊂ Ds for every r < s as long as r and s are different from j. All the D squares of index lower than
j are to the lower left of Dj . Dj−1 and Dj share a common square or corner. Figure 6 shows a typical
configuration of D squares.

unnested D square

Figure 6. A typical configuration of D squares.

(5) Let S1 and S2 be any two squares of the tableau. If the number of squares contained in their span but
not contained in S1 is r, then the side-length of S1 is at least r less than the side-length of their span.

The moves. Let M be an admissible Mondrian tableau with an outer square of side length m.

• If M consists of k nested squares, then M corresponds to a Schubert cycle. The algorithm terminates.
• Otherwise, simplify M as follows. If all the D squares in M are nested, define the active square to be

the smallest A square Ai. If Dj is the unique unnested D square in M , define the active square to be
Dj−1. Move the active square anti-diagonally up by one unit. Move the D squares that touch the lower
left hand corner of the active square also up by one unit. Keep all the remaining squares fixed. Replace
M by the following two tableaux unless Tableau 2 is not admissible or if the active square Dj−1 starts
being contained in the unnested square Dj . In the latter two cases, replace M with Tableau 1 only.
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There is an unnested D square

Active square

Unnested D square

The D squares are nested

Active square

Figure 7. Two typical admissible Mondrian tableaux.

Tableau 1. If the active square is Ai, delete Ai and Bk−i. Draw their new intersection and label it Di.
Keep their old span as the outer square. If Di does not intersect or touch Bk−i−1, slide all the D squares
anti-diagonally up until Di touches Bk−i−1. If the active square is Dj−1, delete Dj−1 and Dj . Draw their new
intersection and label it Dj−1. Draw their old span and label it Dj . If Dj−2 does not intersect or touch the
new Dj−1, slide all the D squares of index j − 2 anti-diagonally until Dj−2 touches Dj−1. All the remaining
squares stay as in M .

Tableau 2. If the active square is Ai, we shrink the outer square by one unit so that it passes along the new
boundary of Ai and Bk−i and we delete the column and row that lies outside this square. The rest of the
squares stay as in M . If the active square is Dj−1, we place the squares we move in their new positions and
keep the rest of the squares as in M .

Figure 8. Simplifying the Mondrian tableaux in Figure 7.

The two tableaux obtained from M are depicted in Figure 8. Geometrically in the first tableau the k-plane
intersects the new intersection Ai ∩ Bk−i. In the second tableau, the k-plane lies in the new span of Ai and
Bk−i.

Remark 3.2. Note that if the active square is Ai, Tableau 2 is not admissible if either Ai+1 has side-length one
larger than Ai or if Bk−i has side-length m− i (informally, if Ai or Bk−i are as large as possible given Ai+1 and
Bk). If the active square is Dj−1, then Tableau 2 is not admissible either if the side-length of Dj is not at least
j − 1 units smaller than the side-length of the span of Dj and Dj−1 or if Dj−1 contains Dj as a result of the
move (informally, if Dj−1 and Dj are as large as possible). In these cases we replace M with only Tableau 1.

When to stop. After applying the MM, OS and S rules, the initial tableau is an admissible Mondrian tableau.
Similarly, given an admissible tableau the moves clearly give rise to one or two new admissible tableaux. Hence
we can apply the moves to each of the tableaux that result from the moves. As we apply the moves, we decrease
the number of A and B squares and increase the number of nested D squares in each tableau. We stop applying
the algorithm to a tableau when the tableau first consists of k nested squares. A collection of k nested squares
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corresponds to a Schubert cycle (we read these Schubert cycles as cycles in G(k, n)). The algorithm terminates
when all the tableaux consist of k nested squares.

Remark 3.3. To facilitate the translation between the final Mondrian tableaux and Schubert cycles, the reader
may wish to slide all the squares to the lower left of the outer square until they are all left aligned. However,
this loses important information. The final tableau carries more information than just the class of the variety.
It records the vector spaces with respect to which the limit Schubert cycle is defined.

Remark 3.4. In a Mondrian tableau the only relevant information is encoded along the anti-diagonal. The
particular representation is chosen for notational convenience.

Remark 3.5. The labels of an admissible tableau can be recovered from the diagram alone, hence in the sequel
we will not label the tableaux. Starting from the upper right one labels the right justified squares other than
the outer square as B squares with increasing index starting with B1. Starting from the upper left one labels
the right justified squares as A squares of decreasing index starting with Ak and taking care that the number
of A and B squares are equal. The remaining squares are D squares and are indexed in the obvious manner.

The intersection of two Schubert cycles equals the totality of all possible outcomes of a game of Mondrian
tableaux starting with the two cycles in an n × n square. To illustrate how the algorithm works we compute
σ2

2,1 in G(3, 6) (see Figure 9).

Figure 9. The product σ2
2,1 = σ3,3 + 2σ3,2,1 + σ2,2,2 in G(3, 6).

Theorem 3.6. The Littlewood-Richardson coefficient cν
λ,µ of G(k, n) equals the number of times σν results in

a game of Mondrian tableaux starting with σλ and σµ in an n × n square.

Proof. The proof is geometric and has two components. We interpret the moves in the Mondrian tableaux as
degenerations of the flags defining the two Schubert varieties. First, by a dimension count we argue that the
two limits corresponding to the tableaux in the game are the only set-theoretic limits of our degeneration. Next,
we argue that each limit occurs with multiplicity one.

Definition of the relevant subvarieties of the Grassmannian. To every admissible Mondrian tableau M
we can associate an irreducible subvariety ΣM of the Grassmannian. Suppose the smallest A square in M is
Ai. Let ABr = Ar ∩ Bk−r+1 for i < r ≤ k. We will denote the corresponding vector space by ABr. If the D
squares are not nested, assume that Dj is the D square not containing the squares of smaller index. We will
denote the side-length of a square S by |S|.

If all the D squares are nested, then consider the k-dimensional subspaces Λ of V that satisfy

(1) dim(Λ ∩ Ds) = s for 1 ≤ s < i,
(2) dim(Λ ∩ Ai) = i,
(3) dim(Λ ∩ ABr) = 1 for i + 1 ≤ r ≤ k, and
(4) Λ is spanned by its intersections with Ai and ABr for i + 1 ≤ r ≤ k.
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This locus is an irreducible quasi-projective variety in G(k, n). We will denote its closure by ΣM (see Figure
10).

If there is an unnested square Dj , then consider the k-dimensional subspaces Λ of V that satisfy

(1) dim(Λ ∩ Ds) = s for 1 ≤ s < i, s 6= j,
(2) dim(Λ ∩ Dj) = 1,
(3) dim(Λ ∩ Ai) = i,
(4) dim(Λ ∩ ABr) = 1 for i + 1 ≤ r ≤ k,
(5) Λ has a j-dimensional subspace spanned by its intersection with Dj−1 and Dj . Λ is spanned by its

intersections with Ai and ABr for i + 1 ≤ r ≤ k.

This locus is also an irreducible quasi-projective subvariety of G(k, n). We will denote its closure by ΣM .

P
3

P
2

σ2,1 in G(3, 5)

A3

A4

B2 B1

AB4

AB5

Figure 10. The variety associated to a Mondrian tableau.

Note that in both cases it is clear that the varieties defined are irreducible. If there are no unnested D
squares, then the variety is described as an open set of a tower of projective bundles over an open set in a
Schubert variety in G(i, |Ai|). If Dj is an unnested square, then the variety is realized as an open set in a
projective bundle over a subvariety in G(i, |Ai|). The subvariety is irreducible because it maps to an open set in
a projective bundle over G(j − 1, |Dj−1|) with irreducible equi-dimensional fibers. The same description allows
us to compute the dimension of these varieties.

Lemma 3.7. The dimension of the variety associated to a Mondrian tableau is

i−1∑
l=1

|Dl| + |Ai| +

r∑
r=i+1

|ABr| −
(i − 1)i

2
− k

if all the D squares are nested and

i−1∑
l=1

|Dl| + |Ai| +
k∑

r=i+1

|ABk | + j − 1 −
(i − 1)i

2
− k

if Dj is unnested.

One can rephrase Lemma 3.7 more geometrically by saying that the dimension of a variety corresponding to
a Mondrian tableau is the sum of the side-lengths of the squares Dl, Ai and ABr for i + 1 ≤ r ≤ k minus the
number of containment relations these squares satisfy. When we count the number of containment relations,
we always include a square itself among the squares contained in it.

Generalized Mondrian tableaux. We will need a generalization of this dimension estimate both for the proof
and the Littlewood-Richardson rule in the case of two-step flag varieties. Let a generalized Mondrian tableau
for G(k, n) be any Mondrian tableau made up of exactly k squares satisfying the following two properties:

(1) None of the squares are equal to the span of the squares contained in them.
(2) Let S1 and S2 be any two squares in the tableau. If the number of squares contained in their span but

not contained in S1 is r, then the side-length of S1 is at least r less than the side-length of their span.

We can associate an irreducible subvariety of the Grassmannian G(k, n) to a generalized Mondrian tableau. We
first define an open subset of the variety by requiring the k-planes to meet the vector spaces represented by
each square in dimension equal to the number of squares contained in that square (including itself). We further
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require the vector subspaces of the k-planes contained in the vector spaces represented by any two squares
to only meet along the subspaces represented by squares common to both of the squares and otherwise to be
independent. The variety associated to the generalized Mondrian tableau is the closure of the quasi-projective
variety parameterizing such k-planes.

To see that the variety associated to a generalized Mondrian tableau MVk in G(k, n) is irreducible we
inductively construct it. If there exists a square containing all the other squares, we can delete this square and
we get a generalized Mondrian tableau in G(k − 1, n − 1) and a variety MVk−1 associated to it. The variety
MVk is an open set in a projective bundle over MVk−1, hence by induction it is irreducible. If there does not
exist a square containing all the other squares, we take the upper right most square not contained in any other
square. If we delete this square, we get a generalized Mondrian tableau in G(k − 1, n). The variety MVk over
MVk−1 is an open set in a projective bundle. By induction we conclude that these varieties are irreducible.
This construction also allows us to compute the dimension of these varieties. The following basic lemma is
elementary.

Lemma 3.8. The dimension of the variety associated to a generalized Mondrian tableau is equal to the sum of
the side-lengths of all the squares minus one for every containment relation among the squares where we count
a square itself among the squares contained in it.

We can now proceed with the proof. The algorithm tells us to move Ai if all the D squares are nested or to
move Dj−1 if Dj is unnested. Lemma 3.7 implies that the varieties associated to the Mondrian tableaux that
arise as a result of the moves have the same dimension as the variety associated to the Mondrian tableau prior
to the move. In Tableau 1 the sum of the side-lengths of the squares increases by one and there is one more
containment among the squares compared to the original tableau. In Tableau 2 both the sum of the side-lengths
of the squares and the containment relations remain constant.

We need to argue that there are no other possibilities. Here we will treat the case when we move Ai. We need
to argue that after the degeneration the limit cycle is supported on the union of the two loci described in the
game. The strategy is very simple. The condition of intersecting a linear space in at least a given dimension is a
closed condition. Hence, the limiting k-planes continue to satisfy such conditions. A priori there may be other
irreducible components of the limit cycle that are supported along loci where the k-plane intersects the vector
spaces in the A, B and D flags in special configurations. We will construct varieties associated to generalized
Mondrian tableau that have to contain such loci. We will then show that the conditions on these generalized
Mondrian tableaux force the dimensions of the associated varieties to be less than the dimension of the original
variety. Hence these loci cannot support an irreducible component of the flat limit.

Reduction: We can assume that the only square that moves is Ai. In the rule if the D squares are left justified
with Ai, they are forced to move with Ai. However, we can carry out the same degeneration in stages moving
first the smallest D square left justified with Ai. If there are D squares that are left justified with Ai, the
Mondrian tableau looks like the tableau in Figure 11.

Using

=Ai
Di−1
Di−2

Move Di−2

=

Move Di−1 Then move Ai

Figure 11. Reduction to the case when we move one square at a time.

Suppose Dj is the smallest D square that abuts the lower left of Ai. The variety defined by such a tableau
is equivalent to the variety defined by the tableau where Dj+1 is one smaller and unnested with respect to Dj .
By considering this equivalent generalized Mondrian tableau, what we prove below shows that when we move
Dj by one unit, the only limit corresponds to sliding Dj up by one unit in the original tableau. We can thus
carry out the step of moving Ai in many steps but where at each stage we move one square. The outcome, of
course, is the same as moving Ai and sliding the D squares that touch its lower left up. By this reduction we
can assume that at each stage we move only one square. We can further assume that this square is Ai.
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Suppose at a general point [Λ] of a component of the limit cycle, the linear space Λ does not intersect the
intersection Ai and Bk−i except for the origin, then Λ must lie in the new span of Ai and Bk−i. The intersection
of Λ with Ai and Bk−i have complementary dimension and since they have trivial intersection, they must span
Λ. Since the intersection conditions are closed conditions, Λ must continue to satisfy the incidence conditions
required in Tableau 2 with respect to the D squares.

If at a general point on a component of the limit cycle the one-dimensional subspace of the k-plane contained
in ABr remains independent from the r − 1-dimensional subspace contained in the span of Ai and ABt for
i + 1 ≤ t < r and all i + 1 ≤ r ≤ k, then that component must be contained in the variety represented by the
Mondrian tableau described in Tableau 2. Since the variety represented by Tableau 2 is irreducible and of the
correct dimension, such a component must be supported on the variety represented by Tableau 2.

If the one-dimensional subspaces contained in ABr do not remain independent at a general point of a com-
ponent of a limit cycle, we can build a generalized Mondrian tableau that contains this component. Suppose r
is the smallest index for which the one-dimensional subspace contained in ABr lies in the span of Ai and ABj

for i + 1 ≤ j ≤ t1. We then replace ABr with its intersection with At1 . We keep all the AB squares of index
smaller than t1 and larger than r unchanged. We draw the intersection of ABr and At1 . We delete the ABj

squares for t1 ≤ j ≤ r and draw the squares Aj+2 ∩ Bk−j for t1 ≤ j ≤ r.

If all the remaining one-dimensional linear spaces of the k-plane contained in ABl for l > r remain independent
from the span of the previous ones, then this generalized Mondrian tableau must contain the limit cycle.
Otherwise, we repeat the procedure for ABl. Namely, we replace ABl with its intersection with the smallest
square At2 that contains the one-dimensional subspace contained in ABl. We adjust the squares contained
between At2 and Al by replacing them with the intersection of the same B square passing through the lower
left of the square with the A square of one larger index.

We can thus build a generalized Mondrian tableau that contains the hypothetical limit component. The
dimension of such a generalized Mondrian tableau is easy to compare to the dimension of Tableau 2. Each
time we repeat the procedure we do not change the sum of the side lengths of the squares defining the tableau.
On the other hand, if we take the intersection of ABr and At1 , we increase the containment relations between
the squares by r − t1. By Lemma 3.8 the loci where the linear subspaces of the k-plane contained in ABr do
not remain independent from the span of the previous ones cannot form a component of the limit cycle since
they have strictly smaller dimension (see Figure 12). We conclude that if the linear subspaces of the k-plane
contained in Ai and Bk−i remain independent at a general point of a limit cycle, then this cycle must be
supported along the variety associated to Tableau 2.

If these become

dependent

dimension
decreases by 2

Move Ai Tableau 1 ABi+2 ABi+1

dim 1 smaller dim 2 smaller

Ai intersects Di−1 intersects

Figure 12. The dimension decreases when the subspaces in the AB squares do not remain independent.

We observe that if dim Ai+1 = dim Ai +1, then the move forces Ai to contain ABi+1, hence it is not possible
for Λ not to meet Ai ∩Bki

. Similarly when dim Bk−i = m− i, then when we move Ai, Λ must meet Ai ∩Bk−i.
In these two cases it is not possible for the linear spaces contained in Ai and Bk−i to remain independent. The
assumption that the k-plane is still contained in the new span gives smaller dimensional loci. This is the reason
for discarding Tableau 2 in the game.

Now we can assume that a general point [Λ] of a component of the limit cycle corresponds to an k-plane that
intersects Ai ∩Bk−i. A priori there can be many such components. We need to show that any locus of k-planes
that meet Ai ∩ Bk−i and satisfy the remaining constraints have dimension at most the dimension of the locus
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associated to Tableau 1 with equality if and only if the locus coincides with the locus corresponding to Tableau
1.

Note that in the limit any k-plane must still meet the linear spaces that are limits of the linear spaces Dj in
dimension at least j. They must meet the limit of Ai in dimension at least i. They must continue to meet ABr

in at least a one-dimensional subspace. Finally, the k-planes must continue to meet the spans of the AB and D
in dimension at least equal to the number of AB and D squares contained in each square they span.

Suppose at a general point of a component of the limit cycle the subspaces of the limiting k-planes in Di−1

remain independent from the subspace of the k-planes contained in Bk−i and the intersection of the k-plane
with Ai ∩ Bk−i remains independent from the subspace contained in Bk−i−1. Then under our assumptions the
limit cycle must be contained in the variety defined by Tableau 1. (By the argument given above we can assume
that the linear spaces contained in the AB squares remain independent.) Since the variety defined in Tableau
1 is irreducible of the correct dimension, this component of the limit must be supported on the variety defined
by Tableau 1.

We can now assume that at a general point [Λ] of a component of the limiting cycle the subspace of the
k-plane Λ contained in Dhs

becomes dependent with the linear subspaces of Λ contained in Bts
or the k-plane

meets the limit subspace contained in Ai along Bj for some j < k− i. We can now describe a variety associated
to a generalized Mondrian tableau that must contain such a limit. Let h1 be the smallest index for which
Λ∩Dh1

becomes dependent with a linear subspace of Λ contained in a vector space represented by a B square.
Then Λ must intersect the intersection of Dh1

with this linear space. Let t1 be the smallest index such that Λ
intersects Dh1

∩ Bt1 . We then delete Dh1
and Bt1 . We draw their intersection. We then take the generalized

tableau that contains the same D squares other than Dh1
, the intersection Dh1

∩ Bt1 , the square Ai and the
squares Aj ∩ Bk−j+2 for k − j + 2 > t1 and j > i and Aj ∩ Bk−j+1 for k − j + 1 < t1.

We then proceed to the next D vector space Dh2
that contains a linear subspace that meets the vector spaces

represented by the B squares in a more specialized way and repeat the construction. If t2 is the smallest index
B square such that Λ meets Dh2

∩ Bt2 in a 2 dimensional subspace for t2 > t1 or Λ meets Bt2 ∩ Dh2
in a

one-dimensional subspace for t2 < t1, we draw the intersection of Dh2
and Bt2 and take the intersections of the

remaining A and B squares so that the smallest A square meets the largest B square, the next largest A square
the next smallest B square, etc. We continue the construction for all the indices. Any k-dimensional linear
space that lies in a limit cycle and satisfies the rank conditions must be contained in the generalized Mondrian
tableau we constructed. See Figure 12.

The dimension of such a tableau is easy to compare to the dimension of the original tableau. Each time
we repeat the procedure we do not change the sum of the side-lengths of the squares except when we take
the intersection of Ai with one of the B squares in which case we increase the sum of the side-lengths by one.
However, when we take the intersection of Ds and Bk−i−l we increase the number of containment relations
among the squares by l + 1. Hence the variety associated to the resulting generalized Mondrian tableau has
strictly smaller dimension unless the only intersection occurs between Ai and Bk−i and the remaining linear
spaces remain independent. In fact, we obtain a precise estimate for the dimension of the loci of k-planes that
meet the D and B squares in more specialized ways.

From this description it follows that except for the locus associated to Tableau 1, the k-planes that meet
Ai ∩Bk−i along a more specialized locus cannot form a component of the limit cycle because they have strictly
smaller dimension. We conclude that the limit cycle is supported along the union of the varieties described by
Tableaux 1 and 2.

There remains to show that each of the limits occur with multiplicity one. This easily follows from a local
calculation. As a first step we can reduce the calculation to the case when there is only one AB square and
the rest of the squares are D squares or Ai. We achieve this reduction by considering the map that sends a
k-plane Λ to its intersection to Ai+1. At a general point of both limits this is a smooth morphism since it is
the projection map of a tower of projective bundles. It suffices to prove that the multiplicity is one in that case
since the general case follows by pulling back the multiplicity by the smooth morphism. We can further restrict
to the case of two dimensional linear spaces by taking the quotient of Λ ∩Ai+1 with Λ ∩ Di−1. This morphism
is also smooth at general points of the loci we are interested in. Now the calculation reduces to a product of
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two Pieri classes in a Grassmannian of two planes, where we know by Pieri’s formula for that case that the
multiplicities are one. It follows that both limits occur with multiplicity one.

The case when we move Dj−1 is almost identical. The reader can think of that case as a special case of the
previous case where the degeneration is taking place in a Grassmannian of j planes and there is only one A
and one B square. An argument similar to the argument just given shows that at a general point of a limit
component the linear subspace of Λ contained in Dj−1 remains independent from the subspaces contained in
the B square. Consequently, we are reduced to the previous case. We leave the details to the reader. This
completes the proof. �

3.3. A generalized Littlewood-Richardson rule for Grassmannians. A closer examination of the proof of
Theorem 3.6 reveals that we obtained a Littlewood-Richardson rule for expressing the class of any variety defined
by a generalized Mondrian tableau as a sum of Schubert cycles. The previously known Littlewood-Richardson
rules do not apply in this generality. In many geometric situations varieties do not occur as intersection of
Schubert varieties, but as varieties of k-planes satisfying certain intersection conditions with respect to vector
spaces expressible as the span of elements of a fixed basis. This flexibility that Mondrian tableaux offer is the
main advantage of this rule over previously known rules.

The algorithm. Step 1. Given any generalized Mondrian tableau replace it with a tableau where no two
squares are left justified (as in the reduction step in the proof of Theorem 3.6). More precisely, among any two
left-justified squares replace the larger by a square one unit smaller and no longer left justified with the smaller
square. Repeat until no two squares are left justified.

active square

neighbors

Figure 13. An example of the algorithm for generalized Mondrian tableaux.

Step 2. If all the squares are nested, the algorithm terminates. The tableau corresponds to the class of a
Schubert variety. Otherwise, consider the lower left most square S. If S contains every square which does
not contain S, proceed to the next lower left most square. Designate the lower left most square that fails this
property the active square.

Step 3. Replace the tableau with a tableau where, among the squares not containing the active square, no two
squares to the northeast of the active square are right justified by shrinking the larger square by one unit.

Let S be the active square. After Step 3, a square N is a neighbor of S if the following hold:

(1) N intersects or touches S, but is not contained in S and does not contain S.
(2) If the southwest corner of a square S ′ is between the southwest corners of N and S, then either S ′

contains N or is contained in S.

Step 4. Move the active square anti-diagonally up by one unit and replace the tableau by the following tableaux.
If after the move the active square contains its smallest neighbor, replace the active square with its old span
with its smallest neighbor. Otherwise, for each neighbor of the active square, draw a tableau where we delete
the neighbor and the active square, draw the old span and the new intersection of these two squares and
keep everything else the same. Finally, as long as the largest neighbor does not contain the active square and
condition 2 defining generalized Mondrian tableaux hold, we place the active square in its new position.
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We apply the algorithm to every tableau we obtain until all the squares in each are nested. Figure 13 gives
an example. A corollary of the dimension counts in the proof of Theorem 3.6 is the following.

Corollary 3.9. The coefficient of a Schubert cycle σλ in the class of a generalized Schubert variety is the
number of times a Mondrian tableau corresponding to σλ occurs as a result of running the algorithm described
above.

Remark 3.10. The Littlewood-Richardson rule given by Corollary 3.9 differs from the one given by Theorem
3.6. The Littlewood-Richardson rule for the two-step flag varieties will follow the rule given in Theorem 3.6
more closely.

4. Painted Mondrian Tableaux and a Littlewood-Richardson rule for two-step flag

varieties

In this section we obtain a Littlewood-Richardson rule for two-step flag varieties. Recall that F (k1, k2; n)
denotes the two-step flag variety that parameterizes pairs of vector spaces V1 ⊂ V2 of dimensions k1 and k2,
respectively, of a fixed n-dimensional vector space V . We preserve the notation from §2.1 and §3.

Painted Mondrian tableaux associated to Schubert cycles. Let C1 and C2 be two colors ordered by

their indices. A painted Mondrian tableau associated to the Schubert cycle σ
δ1,...,δk2

λ1 ,...,λk2

in F (k1, k2; n) is a nested

sequence of k2 squares centered along the anti-diagonal such that

• The squares are indexed by a pair of integers (i, j), where i and j are the number of squares (inclusive)
of color C1 and the total number of squares (inclusive), respectively, contained in the square.

• The square with second index j has side-length n − k2 + j − λj and color Cδj
.

See Figure 14 for an example. In illustrations we will set C1 = red and C2 = black.

A0,1

A1,2

A2,3

A2,4

Unit size

Figure 14. A painted Mondrian tableau associated to σ2,1,1,2
1,1,1,0 in F (2, 4; 6).

In the painted Mondrian tableau associated to σ
δ1,...,δk2

λ1 ,...,λk2

, k1 of the squares have color C1 and k2 − k1 of the

squares have color C2. If the (i, j)-th square is of color C1, then the preceding square has index (i − 1, j − 1).
If the (i, j)-th square has color C2, then the preceding square has index (i, j − 1). We will often refer to the
square of index (i, j) and color C1 as the i-th square of color C1. We will refer to the square of index (i, j),
irrespective of its color, as the j-th square. When we do not wish to specify one of the indices, we will place
a ∗ instead of that index. If we forget the colors, we obtain the Mondrian tableau associated to the Schubert
variety σλ1,...,λk2

in G(k2, n).

The translation between painted Mondrian tableaux and the geometry of the two-step flag variety is straight-
forward. A square of side-length s in a painted Mondrian tableau represents a vector space of dimension s.
The pairs of vector spaces (V1, V2) parameterized by the variety associated to a painted Mondrian tableau have
to satisfy certain intersection conditions with respect to the vector spaces represented by the squares in the
tableau. The vector space V2 is required to intersect a flag element in dimension equal to the number of squares
contained in the square representing that flag element. The vector space V1 is required to intersect a flag element
in dimension equal to the number of squares of color C1 contained in the square representing that flag element.

The game. To multiply two Schubert cycles σδ
λ and σν

µ in F (k1, k2; n) we place the painted Mondrian tableaux

corresponding to σδ
λ (respectively, σν

µ) lower left justified (respectively, upper right justified) with an n × n
square. We denote the squares at the lower left by Ai,j and the ones at the upper right by Bi,j . The initial
configuration corresponds to the intersection of Schubert varieties defined with respect to transverse flags.

There is a simple criterion (the MM rule) to check whether the intersection of two Schubert varieties is empty.
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• The MM (must meet) rule. For 1 ≤ i ≤ k1, we check whether the i-th A square of color C1 intersects
the (k1 − i + 1)-th B square of color C1 in a square of side-length at least one. If not, we stop. The intersection
of the two Schubert cycles is zero. We then check whether the j-th A square A∗,j intersects the (k2 − j + 1)-th
B square B∗,k2−j+1 in a square of side-length at least one for 1 ≤ j ≤ k2. If not, we stop. The intersection of
the Schubert cycles is zero.

Geometrically, the vector space V1 intersects the vector spaces represented by the first pair of squares in
dimensions i and k1 − i+1, respectively. Since the dimension of V1 is k1, these two vector spaces must intersect
in at least a one-dimensional subspace. Similarly, the vector space V2 intersects the vector spaces represented
by the second pair of squares in dimensions j and k2 − j +1, respectively. Since the dimension of V2 is k2, these
two vector spaces must meet in at least a one-dimensional subspace. Note that the intersection of two Schubert
varieties is empty if and only if the MM rule is not satisfied.

A0,1

B′

2,3

A2,3

B0,1

Floating square

Second outer square

First outer

square

Figure 15. An application of the OS and S rules.

• The OS (outer square) rule. We take the intersection of Ak1,k2
with Bk1,k2

and call their intersection
the second Outer Square. We replace every square with their intersection with the second outer square and
keep their labels the same. More generally, in a Mondrian tableau the second outer square will be the span of all
the squares in the tableau. We then replace every A square of color C1 with their intersection with the largest
B square of color C1 and every B square of color C1 with their intersection with the largest A square of color
C1. We will refer to the span of all the squares of color C1 in the tableau as the first outer square (see Figure
15). Note that the first and second outer squares do not need to be distinct.

Remark 4.1. If the largest B square of color C1 is not the second outer square, the A squares of color C1 are
replaced by smaller squares. We refer to such smaller squares as floating squares. However, by the A square
we will continue to refer to the square whose north and east sides are extended to the second outer square (see
Figure 15).

• The S (span) rule. Suppose A∗,j does not intersect or touch B∗,k2−j , then we remove the the rows and
columns that are between A∗,j and B∗,k2−j (see Figure 15).

The fact that two complementary dimensional linear subspaces of a vector space with trivial intersection
span the vector space justifies this rule.

The Littlewood-Richardson rule for the two-step flag variety will be similar to the Littlewood-Richardson
rule for the Grassmannian. We will move the A squares anti-diagonally up by one unit in a specified order.
These moves correspond to degenerations of the flags identical to the ones in §3. The varieties arising as the
limits of the degenerations will satisfy conditions with respect to a partially built flag (denoted by D squares)
and partially remaining flags (denoted by the remaining A and B squares). Since instead of one vector space
we are parameterizing a pair of vector spaces, the description of the limits will be slightly more complicated.
We will also have to be more careful with our degeneration order. However, the principle underlying the
Littlewood-Richardson rule can still be stated very simply as follows:

If V1 does not intersect the intersection of complementary dimensional constraints on V1, then V1 lies in their
span. If, in addition, V2 does not intersect the intersection of complementary dimensional constraints, then V2

lies in their span.
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Before delving into the technical details of the rule we give a few examples that highlight the new features of
the two-step rule. We strongly urge the reader to study these examples with paper and pencil in hand before
proceeding.

4.1. Examples. In this subsection we give some examples of the Littlewood-Richardson rule for two-step flag
varieties. These examples illustrate the novel geometric features of the two-step flag varieties. Once one
understands these examples well, the general rule is simply a matter of bookkeeping.

Figure 16. The calculation σ2,1,2
1,0,0 · σ2,1,2

1,1,0 = σ1,2,2
2,1,0 + σ2,1,2

2,2,0 + σ1,2,2
1,1,1 in F (1, 3; 5).

4.1.1. Example 1. In the first example we compute σ2,1,2
1,0,0 · σ2,1,2

1,1,0 in F (1, 3; 5). We first check that the Must
Meet rule is satisfied. Then we apply the Outer Square rule. The intersection of A1,3 and B1,3 already form the
second outer square. We replace the two squares A1,2 and B1,2 with their intersection to form the first outer
square.

We now start the degenerations. The order will be similar to the Grassmannian case. We will eliminate A
and B squares starting with the smallest A square and we will form nested D squares. There will be some new
features that we will demonstrate in these examples. We start by degenerating the A-flag starting with A0,1.
We depict this by sliding A0,1 anti-diagonally up by one unit. We replace the initial tableau with three new
tableaux.

• Tableau 1: We draw in C1 the new intersection of A0,1 with the first square in C1 to its northeast (here
A1,2 ∩B1,2). We delete A0,1 and the square in C1 and draw their old span in C2. We keep all the other
squares as in the original tableau. This tableau is depicted to the right of the initial tableau.

• Tableau 2: We draw in C2 the new intersection of A0,1 with the first square to its northeast. Here
whether we delete the two squares depends on their color. We keep those of color C1 and delete those
of color C2. In general (but not for this example), this case might require adjusting the tableau so that
MM and S rules are satisfied by the sub-tableau to the northeast of the new intersection. We keep all
other squares as in the original tableau. This tableau is depicted to the southeast of the initial tableau.

• Tableau 3: We remove from the initial tableau the row and column to the south and west of the new
position of A0,1. This tableau is depicted below the initial tableau.

Geometrically, the first tableau depicts the limit where V1 intersects the new A0,1 ∩B1,2. The second tableau
depicts the limit where V2 intersects the new intersection of A0,1 ∩ B1,2. The third tableau corresponds to the
limit where both V1 and V2 are contained in the new span of A0,1 and B1,2. This step already encapsulates the
rule. At each stage we will replace a given tableau with three new tableaux unless the variety corresponding
to one or more of the tableaux has strictly smaller dimension. Informally, the variety associated to a painted
Mondrian tableau is the closure of the quasi-projective variety parameterizing pairs of vector spaces V1, V2 where

• V2 intersects vector spaces represented by each square in dimension equal to the number of squares
(excluding those that are the spans of other squares) contained in that square; and

• V1 intersects the subspace of V2 contained in a vector space corresponding to a square of color C1 in
dimension equal to the number of squares of color C1 in that square.

We discard the tableaux corresponding to varieties of smaller dimension. As we will explain below, whether one
of the three tableaux will have smaller dimension is determined by the combinatorics of the original tableau.
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We continue simplifying each of the resulting tableaux. In the first tableau, the red square of side-length one
is D1,1. We simplify this tableau by moving A1,2. The move does not increase the length of intersection of A1,2

with any square of side-length C1. Hence, we do not get the possibility described by Tableau 1. The variety
corresponding to Tableau 3, has strictly smaller dimension. Hence we replace this tableau with only the option
described by Tableau 2.

The second tableau is the most interesting. The side-length one square of color C2 is a filler. We will define
and give more examples of fillers below. Fillers hold the key to understanding the geometry of flag varieties.
We will always move fillers before we move the next A square. In general when we move a filler, we replace the
tableau by the Tableaux 2 or 3. In this example, Tableau 3 would correspond to a variety of smaller dimension.
Hence, we only get one possibility.

The third tableau is simplified in a similar fashion. We conclude that σ2,1,2
1,0,0 · σ2,1,2

1,1,0 = σ1,2,2
2,1,0 + σ2,1,2

2,2,0 + σ1,2,2
1,1,1 .

Figure 17. The calculation σ2,1,2,1
1,0,0,0 · σ2,1,2,1

1,0,0,0 = σ1,2,2,1
1,1,0,0 + σ2,1,2,1

1,1,1,0 + σ2,1,1,2
1,1,0,0 + σ2,2,1,1

1,1,1,1 in F (2, 4; 5).

4.1.2. Example 2: Fillers. As a second example we compute σ2,1,2,1
1,0,0,0 · σ2,1,2,1

1,0,0,0 in F (2, 4; 5). In this example, the
MM, OS and S rules are satisfied for the initial tableau. We start by moving A0,1. In this case, A0,1 does not
intersect the square of color C1 to its northeast. The variety corresponding to Tableau 3 has strictly smaller
dimension. We thus replace the tableau by Tableau 2 only. We continue by moving the next A square A1,2.
We replace this tableau by three new tableaux similar to the Tableaux 1, 2 and 3 in the previous example.

The most interesting case is Tableau 2 depicted to the southeast. Since both A1,2 and B1,2 are of color C1,
we do not delete either of them. The old A1,2 square (now D1,2) is the span of two squares D0,1 (the side-length
one square at the southwest corner of D1,2) and D′

1,2 (the newly formed D square of color C2). We will call
squares like D1,2 which are squares in C1 spanned by the squares contained in them spanned D squares. We
first nest the D squares by moving D0,1. The new side-length one square D0,1 at the southwest corner of B1,2 is
a filler. Note that this step also forces us to adjust the span of B1,2. Fillers are squares of color C2 left aligned
with the lower left of a square of color C1 that arise when we take the intersection of two squares of color C1 or
a square of color C1 with one of color C2. Fillers signal that the square S of color C1 that are left aligned with
them are the span of the filler and squares to the northeast of the filler contained in S. Fillers are the main
new feature of two-step flag varieties. We have to modify the degeneration order to move fillers before moving
other A squares.

We move the filler. When we move a filler F , we also move the parts of the squares that contain F and are
upper right aligned with it. This may cause one or more of the squares containing F to become disconnected. In
this example, when we move the filler, the squares D1,2 and A1,3 become disconnected. We will call such squares
chopped squares and depict them by leaving blank the row and column corresponding to the unit square they do
not contain. Geometrically chopped squares correspond to vector spaces which are the spans of non-consecutive
basis elements. In the sequel we will have to take care that some of the squares may be chopped.
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After we move the filler, we replace both the filler and B0,1 with their new intersection D0,1. Now all the D
squares are nested and there are no fillers. We continue by moving the smallest A square A1,3. Note that A1,3

is now a chopped square. To say that we move A1,3 means that we move its lower left most piece and leave the
other pieces in place. The rest of the calculation is similar to the cases already discussed. We conclude that
σ2,1,2,1

1,0,0,0 · σ2,1,2,1
1,0,0,0 = σ1,2,2,1

1,1,0,0 + σ2,1,2,1
1,1,1,0 + σ2,1,1,2

1,1,0,0 + σ2,2,1,1
1,1,1,1 .

The attentive reader will have noticed the squares drawn in dotted lines. We will call these squares B ′

squares. B′ squares are distinct, right justified squares that record the dimensions of intersection of (V1, V2)
with the B-flag. Every B square is a B′ square of the same color (since B and D squares are solid and B ′

squares are dotted, B′ squares coinciding with B or D squares are not visible in the picture). Their purpose is
to allow us to recognize fillers without labeling them. We can recognize fillers by the property: The number of
B′ squares of color C2 between the lower left of the filler and the next B square Bi,j of color C2 to its northeast
is less than the number of squares of color C2 contained in the filler but not in Bi,j .

We indicate briefly what may go wrong in case we do not move fillers before moving other A squares. Consider
the following example.

Move filler

If not, one may

naively expect

Some relations

are lost

Figure 18. The reason to move fillers first.

After the first move the side-length one square is a filler. Suppose instead of moving it, we move the next A
square. One potential limit occurs if both V1 and V2 lie in B2,4. We might naively try to depict this possibility
by Tableau 3. The problem is that the variety associated to Tableau 3 has dimension greater than that of
the original variety. The limiting pairs (V1, V2) have to satisfy further conditions. For example, this tableau
does not record the non-trivial information that the subspace of V1 contained in A1,4 ∩ B2,4 is also contained
in the subspace of V2 spanned by its intersection with the filler, A0,3 ∩B1,3 and A1,4 ∩B0,2. Of course, one can
devise combinatorial objects that record these extra relations. However, we choose to eliminate fillers at the
expense of creating chopped squares and having a slightly more complicated degeneration order. In return in
the degenerations we never run into a situation where the apparent limit has dimension larger than the original
variety.

Remark 4.2. R. Vakil gave a geometric interpretation of A. Knutson’s conjectural Littlewood-Richardson rule
for two-step flag varieties. In this interpretation the degeneration order does not take into account fillers.
Consequently, the geometry becomes very complicated. Our treatment of fillers reflects the desire to keep the
geometry always as simple as possible. We want all the limits to have a uniform description. Our order of
degeneration will achieve this. V2 will always be required to intersect k2 vector spaces in given dimensions. V1

will intersect k1 subspaces of V2 spanned by these intersections in given dimensions. The painted Mondrian
tableaux record this information in a convenient manner.

4.1.3. Example 3. We give two more examples to describe a few remaining subtleties. In these examples we
calculate σ1,2,1

1,1,0 · σ1,1,2
1,0,0 in F (2, 3; 6) and σ1,1,2

1,1,0 · σ2,1,1
1,0,0 in F (2, 3; 5).

After we apply the Outer Square rule, we replace A1,1 with its intersection with B2,2. We call A squares that
no longer extend to the west and south edges of the tableau floating squares. When their turn comes, we do
not move these squares, but delete the B square passing through their south and west edges and label them D
squares.

We also need to take care that all our degenerations are codimension one degenerations. When the degener-
ations are not codimension one, then the limit may depend on the properties of the particular one-parameter
family. The only time this issue arises is when the square we move forces other squares (lower left aligned with
it) to move as well. As long as the complementary flag element in the B-flag does not impose any conditions on
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Y

X

Figure 19. The calculations σ1,2,1
1,1,0 · σ1,1,2

1,0,0 = σ1,1,2
2,2,0 + σ1,1,2

3,1,0 + σ1,2,1
3,1,1 + σ1,1,2

2,1,1 in F (2, 3; 6) and

σ1,1,2
1,1,0 · σ2,1,1

1,0,0 = σ1,1,2
2,1,0 + σ1,1,2

1,1,1 in F (2, 3; 5).

the vector spaces, this is a codimension one degeneration. When a square of color C1 is lower left aligned with
a square of color C2, it is necessary to move the square of color C1 first in case the complementary element in
the B-flag imposes non-trivial conditions on the vector spaces. This is the case in the Tableau indicated by X
in Figure 19. Hence, we first move the square D1,1 before we move A1,2. Whereas in the Tableau marked by Y
in Figure 19, we move A2,2.

The reader may find more examples in http://www-math.mit.edu/~coskun/gallery.html.

4.2. Preliminary definitions. We now describe the rule more precisely. After some terminology, we begin
with characterizing the painted Mondrian tableaux that can occur during the game. We will then describe how
to associate an irreducible subvariety of F (k1, k2; n) to a painted Mondrian tableau. We will then describe how
to simplify the tableaux.

Painted Mondrian tableau. A painted Mondrian tableau for F (k1, k2; n) is a diagram contained in a square
of side-length at most n consisting of squares (possibly chopped) of colors C1 or C2 such that the anti-diagonal
of each square is along the anti-diagonal of the outer square and the northeast and southwest corners of the
squares each give at most k2 distinct points on the anti-diagonal at most k1 of which have color C1.

Spanned D square Special unnested D squareChopped square

Figure 20. Examples of a chopped square, a spanned D square and a special unnested D square.

Chopped squares. In a Mondrian tableau a chopped square is a square that has gaps along the rows and
columns corresponding to a collection of unit squares along the anti-diagonal (see Figure 20). The side-length
of a chopped square is the number of unit squares contained in it excluding the gaps.

Since in a Mondrian tableau the unit squares along the anti-diagonal represent a basis for the ambient vector
space, a chopped square represents a vector space that is the span of non-adjacent basis elements. We will say
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that a chopped square S2 contains a square S1, if the unit squares along the anti-diagonal contained in S1 are
also contained in S2 (i.e., if there is an inclusion among the corresponding vector spaces).

D squares. An unnested D square is a D square that does not contain every D square of smaller second index.
We will refer to a D square of color C1 which is the span of an unnested D square and the largest nested D
square contained in it as a spanned D square (see Figure 20). An unnested D square will be called a special
unnested D square if there are not any squares of color C2 between (the lower left corner of ) this square and
the largest D square to the lower left of it that does not contain it (see Figure 20).

Fillers. Some of the D squares will be designated as fillers. These will be D squares of color C2 that arise as
the intersections of A or D squares with B or unnested D squares of color C1.

B′

0,1
B′

1,2

B′

0,1

B′

1,2

B′

2,5

B′

1,3

B′

1,4

Figure 21. Drawing the B′ squares.

B′ squares. Given a Mondrian tableau for F (k1, k2; n) we draw k2 distinct, nested, right aligned squares in
dotted lines such that exactly k1 of them have color C1 according to the following procedure. For every right
aligned square, we draw as many squares of each color as the number of B and D squares entirely contained
in that square omitting fillers and the largest nested square of color C2 in a spanned D square. If some of the
squares coincide, we order them S1, . . . , Sr listing the ones of color C2 after all the ones of color C1. We then
shrink the side-length of Si by i− 1. We call these squares B′ squares (see Figure 21.). We can associate a pair
of indices to a B′ square where the first index records the number of B′ squares of color C1 contained in that
square and the second index records the number of B′ squares in that square.

Geometrically the B′ squares record the generic intersection of the vector spaces (V1, V2) parameterized by
the variety corresponding to the Mondrian tableau with the B flag.

Filler NOT

a filler

Figure 22. Recognizing fillers.

Recognizing fillers. The B′ squares allow us to recognize fillers in painted Mondrian tableaux. A filler is a
D square of color C2 whose lower left most piece is left justified with either

• a B square of color C1 that is not the second outer square, or

• an unnested D square of color C1 that is not a spanned D square; and

satisfies the following property: The number of B′ squares of color C2 between the lower left of the filler and
the next B square Bi,j of color C2 is less than the number of squares of color C2 contained in the filler but not
in Bi,j (See Figure 22).

Restricting Mondrian tableau. We can restrict a Mondrian tableau to the B ′ square B′

i,j passing through

the lower left of a D square. The resulting tableau is a tableau for F (i, j; |B ′

i,j |). This tableau is obtained by

taking all the D and B squares entirely contained in B′

i,j . Suppose there are k′

2 B squares k′

1 of which have
color C1. Suppose there are f fillers. Then we take k′

1 of the largest A squares of color C1 and k′

2 − k′

1 − f
of the largest A squares of color C2 and restrict them to B′

i,j . If there are any fillers left justified with the B′

square to which we are restricting the tableau, we relabel that filler as an A square for the restricted tableau.
If this filler abuts an unnested D square of color C1 we declare that unnested D square an A square and the
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B′ square B′

i,j a B square of color C1. Geometrically, this tableau represents the intersection conditions on the

subspaces of V1 and V2 contained in B′

i,j .

The generalized MM and S rules. A priori, due to the presence of fillers, the MM and S rules may not
be satisfied for the restricted tableau (even if they are satisfied for the larger tableau). When the squares are
chopped, to say that the S rule is satisfied means that the lower left most piece of the A square Ah,l touches or
intersects the B′ square with the complementary second index. We will say that the A and B squares satisfy
the generalized MM and S rules if every restricted tableau satisfies the MM and S rules. More precisely, the
restricted tableau satisfies the MM rule if of the k′

1 A squares of color C1 and k′

2 − k′

1 − f A squares of color C2

that belong to the restricted tableau for F (i, j; |B′

i,j |) the h-th one (counting in increasing order) intersects the
(k′

2 − f − h + 1)-st B square among those that do not abut a filler (counting in increasing order) in a square
of side-length at least one. Similarly, the restricted tableau satisfies the S rule if the h-th square among these
A squares touches or intersects the (k′

2 − f − h)-th B square among those that do not abut a filler. From now
on when we say the MM and S rules we will refer to the generalized MM and S rules. If the S rule is not
satisfied, we remove the rows and columns from the restricted tableau by moving the A squares of the restricted
tableau anti-diagonally up. If any of the pieces of the squares in the original tableau that are not contained in
the restricted tableau become right justified with the squares we move, we slide those pieces as well (see Figure
23). In practice, we will only need to check the MM and S rules when a new filler forms and only for the whole
tableau and the tableau restricted to the B′ square passing through the lower left of the filler.

filler

satisfied

MM rule

satisfied

filler

S ruleMM rule NOT

Figure 23. An illustration of the generalized MM and S rules.

We now describe the tableaux that arise during the game. Although at first glance this description may
look long and complicated, each item describes a simple geometric requirement that pairs of vector spaces must
satisfy. The reader who is only interested in using the algorithm may skip this description at the expense of
not knowing what the most complicated possible painted Mondrian tableau that occurs during the game may
look like.

Admissible Mondrian tableau. A painted Mondrian tableau is admissible for F (k1, k2; n) if the squares that
constitute the tableau are labeled as indexed A, B or D squares such that:

(1) The tableau has side length at most m ≤ n and satisfies the generalized MM and S rules.
(2) The A squares: The A squares are nested, distinct and possibly chopped. They contain the D squares.

The lower left most pieces of the A squares are left justified with the second outer square. Suppose the
smallest A square is Ai,j . Then the number of A squares is k2 − j + 1. Among the squares that strictly
contain Ai,j , k1 − i have color C1. The first indices range between i and k1 increasing each time an A
square has color C1. The second indices range between j and k2.

(3) The B squares: The B squares are nested, distinct, right justified and not chopped. The number of
B squares is the sum of the number of A squares and the number of fillers. The number of B squares
of color C2 to the upper right of a filler F is at least the number of fillers contained in F . If there are
no fillers, then the number of A squares of color C1 (respectively, C2) equals the number of B squares
of color C1 (respectively, C2). Otherwise, the number of B squares of color C2 is equal to the sum of
the number of fillers and the number of A squares of color C2.

(4) The D squares: The number of D squares is j − 1 or j. If the number of D squares is j, then a D
square of color C1 is a spanned D square. Among the A and D squares k1 of them have color C1 and
k2 − k1 or k2 − k1 + 1 of them have color C2 depending on whether there exists a spanned D square.
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(5) Some of the D squares may be unnested. There is at most one unnested D square of color C2. There
may be many unnested D squares of color C1. If an unnested square Dh2,l2 contains a D square of lower
index Dh1,l1 , then every D square of second index between l1 and l2 contains Dh1,l1 . The unnested D
square of color C2 is either to the lower left of an unnested D square of color C1 or is contained in it.
Given two unnested D squares of color C1 either one of them contains a filler that contains the other
or one of them is a special unnested D square. An unnested D square has its lower left corner to the
upper right of (the lower left corner of) all the D squares of lower index that it does not contain. If a D
square Dk2,l2 contains Dk1,l1 , then l2 > l1 unless Dk2,l2 is a spanned D square (in which case equality
may hold).

(6) Fillers: Some of the D squares are designated as fillers. The lower left most pieces of fillers are left
justified with a B square of color C1 (other than the second outer square) or an unnested D square of
color C1 which is not a spanned D square. The fillers are nested. There exists a B square of color C2

between the lower left hand corners of any two fillers. (In particular, a B or D square has at most one
filler left justified with it.)

(7) Chopped squares: The A and D squares may be chopped. If an A or D square is chopped, then an
A or D square of lower second index cannot be entirely contained to the lower left of the chop. If S2 is
a chopped square and S1 is a square of lower second index that has pieces both to the lower left and to
the upper right of a chop of S2, then S1 and S2 coincide to the upper right of the chop. (In particular,
if S1 and S2 are nested and if S1 is not entirely contained to the upper right of a chop of S2, then S1

and S2 coincide to the upper right of that chop.)
(8) The relative position of B and D squares: B squares may contain D squares. However, if a D

square of color C2 is strictly to the upper right of a B square Bi,j , then every D square not containing
that D square is also to the upper right of Bi,j . If a D square is strictly to the upper right of a B square
Bi,j of color C1, then every D square not containing that D square is also to the upper right of Bi,j .

(9) Side-lengths: The side-length of an unnested D square Dk2,l2 of color C2 (resp., C1) is at least s
shorter than the side-length of its span with any other D square Dk1,l1 (resp., of color C1) if the number
of D squares (resp., D squares of color C1) contained in Dk1,l1 but not contained in Dk2,l2 is s. Similarly
the side-length of any B square of color C2 (resp., C1) is at least s shorter than the side-length of the
squares spanned by the B square and any collection of D squares (resp. D squares of color C1), if the
number of D squares (of color C1) not contained in the B square, but contained in the span is s. When
counting the D squares for the color C2, we omit spanned D squares. The side-length of a B square B∗,j

is at least one larger than the sum of the side-length of B∗,j−1 and the number of D squares contained
in B∗,j but not in B∗,j−1 omitting any fillers and spanned D squares.

Remark 4.3. As long as we draw the B′ squares in the diagram, we do not need to label the squares in an
admissible diagram. We can recover the information of which D squares are fillers from the B ′ squares as
described above. Once we know the number of fillers, we can recover the labels of the A, B and D squares as
in the case of the ordinary Grassmannians. Hence, in the examples we never label the squares.

Remark 4.4. Note that the restriction of an admissible painted Mondrian tableau to a B ′ square passing through
the lower left of a D square is also admissible.

The following definition will play a crucial role in telling which Mondrian tableaux have smaller than expected
dimension.

Units. A unit U in a square S of a Mondrian tableau is a square such that all the squares between S and U
are either contained in the Mondrian tableau or are B′ squares and all the squares containing U (including the
B′ squares) have color at most the color of U (See Figure 24).

For example, a B square is a unit in a B′ square if every right aligned square contained in the B ′ square and
containing the B square is a B or B′ square of the tableau and they all have color less than or equal to the
color of the B square. A nested D square Di,j is a unit in the smallest A square if all the squares containing
Di,j and contained in the A square are D squares of the tableau; and they and the smallest A square all have
color less than or equal to the color of Di,j . Geometrically, units represent vector spaces that do not impose
additional constraints on the pair (V1, V2)
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S

unit in S

not a unit in S

S

unit in S

S S

NOT a unit in S

Figure 24. Some examples of units.

4.3. The geometric interpretation of painted Mondrian tableaux. To each admissible painted Mondrian
tableau M , we associate an irreducible subvariety ΣM of the flag variety F (k1, k2; n). Suppose Ai,j is the smallest
A square. In an admissible Mondrian tableau each B square has two pairs of indices (i, j) and (i′, j′). In the
first pair (i, j), the index j denotes the number of B squares contained in that square and i denotes the number
that are red among them. The second pair of indices (i′, j′) are the indices of the B′ square that coincides with
the B square. In other words, j ′ denotes the number of B′ squares contained in that B square and i′ denotes

the number of those that are red. We will use the shorthand Bi′,j′

i,j to denote this B square.

AB1-squares. Define the squares AB1
s (lk1−s+1 − k1 + s) to be the intersection of the s-th A square of color C1

with the (k1 − s+ 1)-th B square B
lk1−s+1,∗

k1−s+1,∗ of color C1 (See Figure 25). Geometrically, V1 intersects the vector

space represented by AB1
s (lk1−s+1 − k1 + s) in dimension lk1−s+1 − k1 + s.

AB1
1(1)

AB1
2(1)

AB1
3(1)

AB1
2(2)

AB1
3(2)

Figure 25. The definition of AB1
i (l) squares.

AB2-squares. Similarly, define the squares AB2
t (h′ − k2 + t) as follows.

• If the smallest A square Ar,t is of color C2, take its intersection with the largest B square B∗,h′

∗,∗ that
does not abut a filler and call the intersection AB2

t (h′ − k2 + t). Delete both the B and the A square.
• If the smallest A square Ar,t is red and the (k1 − r + 1)-th red B square is smaller than the largest

remaining B square, take the intersection of Ar,t with the largest B square B∗,h′

∗,∗ contained in the
(k1 − r + 1)-th red square B that does not abut a filler. Label the intersection AB2

t (h′ − k2 + t) and

delete both squares. Otherwise, take the intersection of Ar,t with the largest remaining B square B∗,h′

∗,∗

that does not abut a filler. Label the intersection AB2
t (h′ − k2 + t) and delete both squares.

Repeat the process until all the A and B squares are exhausted. This defines the AB2
t squares (see Figure 26).

AB2
1(1)

AB2
2(2)

AB2
1(1)

AB2
2(2)

AB2
4(2)

AB2
3(1) filler

AB2
2(2)

Figure 26. The definition of AB1
i (l) squares.
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We can now define the subvariety ΣM of F (k1, k2; n) associated to the painted Mondrian tableau M . As
always, we will denote the vector spaces represented by a square by the same symbols in Roman font. If the D
squares are nested, then we consider the pairs of linear spaces (V1, V2) that satisfy the following conditions:

(1) dim(V1 ∩ Dh,l) = h, and dim(V2 ∩ Dh,l) = l, for 1 ≤ k < i and 1 ≤ j < k.

(2) dim(V1 ∩AB1
s(lk1−s+1 − k1 + s)) = lk1−s+1 − k1 + s, and dim(V2 ∩AB2

t (h
′− k2 + t)) = h′− k2 + t, where

V1 meets the vector spaces AB1
s in the subspaces of V2 contained in them.

(3) We require the intersections of V2 with AB2
t1

and AB2
t2

or with AB2
t and Dh,l to only intersect along

vector spaces represented by squares common to both of the squares and otherwise to be independent.
Similarly, we require the intersection of V1 with AB2

s1
and AB2

s2
or with AB2

s and the vector space
represented by the h-th D square of color C1 to meet only along vector spaces represented by squares
of color C1 common to both squares and otherwise to be independent.

The locus of pairs (V1, V2) satisfying these properties defines an irreducible quasi-projective subvariety of
F (k1, k2; n). We will denote its closure by ΣM , the variety associated to the Mondrian tableau (see Figure
27).

in dimension 1

Dimension of variety is 11

V1 intersects each

Dimension of variety is 10

Spanned D square Filler

V1 intersects each

in dimension 1

V2 intersects

in dimension 3

AB2
3

V2 intersects each

in dimension 1

Figure 27. Two examples of varieties associated to painted Mondrian tableaux.

If the D squares are not nested, (1) in the definition needs to be accordingly modified. We require V2 to meet
each of the vector spaces represented by the D squares in dimension equal to the number of D squares contained
in that square, except when a D square is a spanned D square. In the latter case, we require V2 to meet the
vector space represented by the spanned D square in one fewer dimensions. We require V1 to meet each of the
vector subspaces of V2 contained in a vector space represented by a D square in dimension equal to the number
of D squares of color C1 contained in that square. Furthermore, we demand the intersections of V2 with any of
the two AB2

t1
and AB2

t2
or AB2

t and Dh,l to only intersect along vector spaces represented by squares common
to both of the squares and otherwise to be independent. Similarly, we require the intersection of V1 with the
linear spaces AB2

s1
and AB2

s2
or with AB2

s and the vector space represented by the h-th D square of color C1 to
meet only along vector spaces represented by squares of color C1 common to both squares and otherwise to be
independent. Otherwise, we keep the definition as above. The closure of the locus of pairs (V1, V2) satisfying
these properties defines an irreducible subvariety of F (k1, k2; n). We will denote this subvariety as ΣM , the
variety associated to the Mondrian tableau.

To see that the variety associated to a Mondrian tableau is irreducible we can construct it as an open set
in a tower of projective and Grassmannian bundles over an irreducible subvariety of G(k2, n). We consider the
projection π2 of F (k1, k2; n) to G(k2, n) that sends the pair (V1, V2) to V2. The image of the projection is given
by the variety associated to the Mondrian tableau given by the D squares (omitting any spanned D squares)
and the AB2

t squares. Note that this is a generalized Mondrian tableau in G(k2, n) except that the squares are
allowed to be chopped as indicated in the definition of an admissible painted Mondrian tableaux. It is easy to
see that allowing the squares to be chopped does not change the dimension estimates in Lemma 3.7. By the
argument given in the proof of Theorem 3.6, this variety is irreducible. In the open set in which we defined
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ΣM π2 has equi-dimensional and irreducible fibers. The fiber over a point in the image of π2 corresponds to
choices of a k1 dimensional subspace so that in each square of color C1 in the tableau we select a subspace of
V2 that has dimension equal to the number of squares of color C1 contained in that square. It follows that ΣM

is irreducible. This description also allows us to compute the dimension of the variety ΣM .

Let |S| the side-length of the square S. Let
∑

′

l |Dh,l| denote the sum of the side-lengths of the D squares
omitting any spanned D squares. Let R1 be the number of containment relations among the D and AB2

t squares
omitting any spanned D squares. When we count the number of containment relations between squares, we
always include a square itself among the squares contained in it. By Lemma 3.8 the dimension of the projection
of ΣM to G(k2, n) is given by the following:

′∑
l

|Dh,l| +
∑

t

|AB2
t | − R1.

The fiber dimension of the projection is also easy to determine. For a D or AB2
s square S of color C1, let

||S|| denote the number of D or AB2
t squares contained in that square, except when a D square is a spanned

D square. In the latter case we let ||S|| to be one less than the number of D squares contained in it. Let R2

denote the number of containment relations that the AB1
s and the D squares of color C1 satisfy. Finally, we

will write
∑

C1
to denote that a sum is taken over squares of color C1. The fiber dimension of the projection is

∑
C1

||Dh,l|| +
∑

s

||AB1
s || − R2.

We have thus determined the dimension of ΣM .

Lemma 4.5. The dimension of the variety associated to a painted Mondrian tableau is given by

′∑
l

|Dh,l| +
∑

t

|AB2
t | +

∑
C1

||Dh,l|| +
∑

s

||AB1
s || − R1 − R2.

4.4. The rule. We now describe how to simplify an admissible painted Mondrian tableau which does not
consist of k2 nested squares k1 of which have color C1.

The moves. If the order of degeneration dictates that we move a square S, we slide the left most piece of S
anti-diagonally up by one unit. If the square is not chopped, this means that we slide all of S up by one unit.
If S is chopped, we move its lower left most piece and keep the other pieces fixed. If there are any D squares
contained in S that abut its lower left, we slide the lower left most pieces of these D squares up by one unit.
The D squares that do not abut the lower left of S remain fixed. If the piece of S we move is right justified
with a piece of an A or D square that contains S, we also move that the portion of the A or D square that
coincides with the lower left most piece of S. See Figure 28.

slide lower
left piece

move

move filler

Figure 28. The moves.

The order of degeneration. We now specify the order in which we slide the squares. We follow the
following flow chart.

Step 1. If there are any fillers or unnested D squares, we proceed to Step 2. If there are not any unnested D
squares or fillers, we consider the smallest A square.

• If the smallest A square Ai,j has color C1, we check whether the first outer square is lower left justified
with the second outer square.
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– If not, we take the intersection of Ai,j and the largest B square of color C1 before deleting them.
We label the intersection Di,j . We apply the OS rule.

– If yes, we move the smallest A square anti-diagonally up by one unit.
• If the smallest A square Ai,j has color C2, we check whether there are any squares of color C1 lower left

justified with it. If not, we move Ai,j anti-diagonally up by one unit. If yes, we first run Step 5 before
moving Ai,j anti-diagonally up by one unit.

Step 2. If there are fillers and/or unnested D squares, we check whether there are any spanned D squares or
special unnested D squares. If not, we proceed to Step 3. If there is a spanned D square Di,j , we move the
largest D square contained in Di,j abutting the lower left of Di,j up by one unit. If there are not any spanned
D squares and there is a special unnested D square, then we move the largest D square to the lower left of the
lower left most special unnested D square not containing it.

Step 3. If there are no spanned or special unnested D squares, but there are fillers and/or unnested D squares,
we check whether there are fillers. If not, we proceed to Step 4. If there are fillers, we check whether the smallest
filler is contained in every D square not contained in it and whether the D squares contained in the D square
are nested. If yes, we move the smallest filler up by one unit. If not, we proceed to Step 4.

Step 4. If there is a filler and a D square not contained in the smallest filler F does not contain F , we move
the largest D square to the lower left of F that does not contain it. In case this square has color C2 we first run
Step 5. If all the D squares not contained in the smallest filler F contain it, we nest the D squares contained
in F starting with the lower left most D square not containing the others. In case this square has color C2 we
first run Step 5. Finally, if there are no fillers, we nest the D squares by moving the lower left most D square
not containing the lower left most unnested D square. In case this square has color C2 we first run Step 5.

Step 5. Before we slide a square S of color C2, we check whether there are any D squares of color C1 contained
in S that abut its lower left. If not, we slide S. If there are such D squares, we consider the largest one S ′

among them. If the number of B′ squares of color C1 between the B′ square passing through the lower left of
S′ and the next B square or unnested D square S ′′ of color C1 is greater than the number of squares of color
C1 contained in S′ but not in S′′, we still move S. Otherwise, we first move S ′ before we move S.

We now describe the outcomes of the moves. We will divide the discussion into two cases depending on
whether the square we move has color C1 or C2.

If the square S we move has color C1, we replace the tableau M by the following three tableaux. In case the
variety associated to one or more of the three tableaux have smaller dimension than the variety associated to
M , we discard that tableau. The instances when one or more of the tableaux need to be discarded is determined
by the combinatorics of M . We will make this explicit below.

Figure 29. Typical admissible painted Mondrian tableaux and the three tableaux that we
replace them with.
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Tableau 1: If the move increases the side-length of the intersection of S with the first square S ′ of color C1 to
its northeast, we draw the new intersection and the old span of S and S ′ in C1. We delete S and S′. If there
is a filler contained in S′, we extend the north and east sides of the filler to the old span. This square is still a
filler. If there are any D squares (necessarily of color C2) contained between S and S ′ but not in S, we extend
the north and east sides of it to its old span with S. If S ′ is a B square, this D square becomes a filler. We also
extend the south and west sides of it to its old span with S ′. We keep every other square as in M . We apply
the Span rule.

Tableau 2: We draw the new intersection of S with the first square S ′ to its northeast in C2. If S′ is of color
C2, we delete it. If S′ is of color C1, we do not delete it. In this case, the new intersection becomes a filler.
We shrink S so that it is the span of the largest square of color C2 contained in S, but not in S′ and the new
intersection. S becomes a spanned D square. We apply the MM and S rules. If the generalized MM rule is not
satisfied, we discard this tableau. If S does not contain any squares of color C2 not contained in S′ and S′ has
color C2, we draw the new intersection in color C1 instead. If S does not contain any squares of color C2 not
contained in S′ and S′ has color C1; or if there are no squares of color C2 to the northeast of S not contained
in S, we discard this tableau. We keep all the other squares as in M .

Tableau 3: We place S in its new position. If the second outer square passes through the south and west
corners of S before the move, we restrict the tableau to the northeast of the new position of S. We keep all
the other squares as in M . If S starts containing a square of color C2 as a result of the move and the largest
D square of color C2 is not a unit in S, we still draw this tableau. In this case we shrink the square of color
C2 until it is one unit smaller than (and left justified with) the smallest unit of color C1 in S. In case S is the
A square Ai,j , we relabel it Ai,j+1. If there are no units of color C1 in S, we label the new square of color C2

by Ai−1,j . If there are units of color C1, we slide them up by one unit and draw in C2 the intersection of the
largest B square in color C2 with largest unit of color C1 in S. The latter square becomes a spanned D square.

If the square S we move has color C2, we replace the tableau M with the following three tableaux. Again
we discard a tableau in case the variety corresponding to it has smaller dimension.

Figure 30. Typical admissible painted Mondrian tableaux and the tableaux that we replace
them with.

Tableau 1: If the move increases the side-length of the intersection of S with a square S ′ of color C1 to its
northeast and there are no squares between S and S ′ in the tableau restricted to the lower left of S, we delete
S and S′. We draw the new intersection in C1 and the old span in C2. We keep all the other squares as in M .
We apply the MM and S rules.

Tableau 2: We draw the intersection of S with the first square S ′ to the northeast of S in C2. We delete S.
If S′ has color C2, we delete S′. If S′ has color C1, we do not delete S′. The new intersection is then a filler.
We draw the old span in C2 unless the old span is a B or D square of color C1. In the latter case we keep the
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old span in C1. If every square to the northeast of S and not contained in S is red, we omit this tableau. We
apply the MM and S rules. We keep all the other squares as in M .

Tableau 3: We place S in its new position. We shrink the side-lengths of all the squares that contain S and
have the same lower-left corner as S. If a B square of color C2 is lower left justified with S and S becomes left
justified with a B or B′ square of color C1, we shrink the B square so that it is a unit but does not overlap
with any B or B′ square of color C1. We keep all other squares as in M .

We label the squares in these tableaux as follows. With this labeling each of the tableaux are again admissible
painted Mondrian tableaux. When we take the intersection between an A square Ai,j and a B square, we label
the new intersection Di,j and the old span as a B square. In case Ai,j becomes a spanned D square, we label
it as Di,j and the new intersection as D′

i,j . When an intersection occurs between two D squares, we label the
old span by the index of the unnested square and the new intersection by the indices of the square we move.
When we take the intersection between a D square and a B square, we label the old span as a B square and
the new intersection by a D square with the same indices as the D square. When drawing Tableau 3 if we need
to shrink a B square of color C2 so that it does not overlap with a B or B′ square of color C1, we adjust the
indices of the B squares so that they reflect the number of B squares of each color contained in them. Similarly,
when we need to add a unit to S in drawing Tableau 3, we add one to the second indices of all the D squares
containing this unit.

We now specify in detail the instances where we have to discard one or more of the tableaux because the
corresponding variety has smaller dimension. See Figures 31 and 32 for examples.

When we move a square S of color C1, then

• We omit Tableau 1 in case the length of the intersection of S with any square of color C1 does not
increase.

• We omit Tableau 1 when S is the largest nested D square contained in a spanned D square.
• We omit Tableau 2 if S ′ has color C1 and if either all the squares contained in S but not in S ′ have

color C1 or if all the squares to the northeast of S ′ (including S′) but not in S have color C1.
• We omit Tableaux 2 and 3 if either the next square in the A − D flag containing S is of color C1 and

of side-length one larger than S, or if the first square of color C1 to the northeast of S is a unit in its
span with S. In these cases Tableau 1 is the only possibility. (Informally, if S and S ′ of color C1 are as
large as they can be, Tableau 1 is the only possibility.)

• We omit Tableau 3 if either the next square in the restricted A − D flag containing S has side-length
one larger and the largest square of color C2 contained in S is a unit, or if the next square of color C2

to the northeast of S is a unit in its span with S. (Informally, if S and the largest square of color C2

contained in S are as large as they can be, or if the next square of color C2 to the northeast of S is as
large as it can be, then we omit Tableau 3.)

Figure 31. Examples where some of the tableaux are discarded because they correspond to
varieties of smaller dimension.

When we move a square S of color C2, then
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• We omit Tableau 1, if the move does not increase the length of the intersection of S with a square of
color C1 to its northeast, or if there is a square of color C2 in the restricted tableau between S and the
first square of color C1 to its northeast, or if in the restricted tableau S is lower left justified with a
square of color C1 containing it but not containing the square of color C1 to its northeast.

• We omit Tableaux 2 and 3, if after the move a square S ′ of color C1 to the northeast of S is contained
in S.

• We omit Tableau 3, if the next square in the A−D flag has side-length one larger than S, or if the next
square of color C2 to the northeast of S is a unit in its span with S.

Figure 32. Examples where some of the tableaux are discarded because they correspond to
varieties of smaller dimension.

When to stop. After applying the MM, OS and S rules, the initial painted Mondrian tableau associated to
the product of two Schubert cycles is admissible. It is straightforward, if slightly tedious, to check that given an
admissible painted Mondrian tableau, the tableaux that result from the moves are again admissible. Therefore,
we can apply the rules to every tableau that arises from the initial tableau. At the end of each cycle of moving
an A square, nesting the resulting D squares and eliminating the fillers, we obtain a tableau with one fewer A
and B squares and one more nested D square. After a finite number of repetitions, all the squares (ignoring
the B′ squares) will be nested. We stop applying the algorithm to a tableau at the first instance when all the
squares (ignoring the B′ squares) in the tableau are nested. When all the squares in all the tableaux are nested,
we obtain a collection of tableaux with k2 nested squares exactly k1 of which have color C1. Such a tableau
corresponds to a Schubert cycle in F (k1, k2; n).

The main theorem of this section is that the coefficient of a Schubert cycle σν in the product of two Schubert
cycles σλ · σµ in F (k1, k2; n) is equal to the number of times the painted Mondrian tableau associated to σν

results in the game starting with the tableaux of σλ and σµ in an n × n square.

Theorem 4.6. Let σλ and σµ denote two Schubert cycles in the flag variety F (k1, k2; n). Let their product be
σλ · σµ =

∑
ν cν

λµσν . The coefficient cν
λµ is equal to the number of times the painted Mondrian tableau of σν

occurs in a game of Mondrian tableau played by starting with the Mondrian tableaux of σλ and σµ in an n × n
square.

Proof. The proof is similar to the proof of Theorem 3.6. We interpret the moves on painted Mondrian tableaux
as codimension one degenerations of the A and B flags. First, a dimension count allows us to identify the set
theoretic limits. Then an easy local calculation shows that the limits occur with multiplicity one.

Lemma 4.5 allows us to compute the dimension of the variety associated to a painted Mondrian tableau.
An inspection of the possible outcomes after each move allows us to conclude that the varieties corresponding
to Tableaux 1,2 and 3 have the same dimension as the original variety. We need to show that there are no
other loci in the limit of the degeneration of this or larger dimension. More generally, the same dimension
calculation as in Lemma 4.5 holds for a variety corresponding to a painted Mondrian tableau that is built by
taking a generalized Mondrian tableau in G(k2, n) (with possibly chopped squares) and choosing k1 squares to
be squares spanned by a collection of these k2 squares satisfying the following two properties:

(1) None of the squares of color C1 is equal to the span of the squares of color C1 contained in it.
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(2) Let S1 and S2 be any two squares of color C1. Assume that there are s squares of color C1 contained
in their span and not contained in S1. Then the dimension of the subspace of V2 contained in S1 is at
least s less than the dimension of the subspace of V2 contained in their span.

The dimension of such a variety is equal to the sum of the dimension of the variety corresponding to the
generalized Mondrian tableau in G(k2, n) and the fiber dimension of the projection to G(k2, n). The fiber
dimension is given by the total number of squares of the tableau for G(k2, n) contained in each square of color
C1 minus one for every containment relation between squares of color C1. Tableaux built this way correspond
to irreducible subvarieties of F (k1, k2; n). Every component of the limit cycle is contained in such a variety.

Now we run through the possibilities and see how the moves transform an admissible painted Mondrian
tableau to three or fewer admissible painted Mondrian tableaux. The most important case is when the D
squares are nested and there are no fillers. The other cases reduce to this case for the tableau restricted to the
B′ square passing through their lower left.

The D squares are nested and there are no fillers. Let Ai,j be the smallest A square. First, suppose
Ai,j has color C1. If Ai,j is a floating square (i.e., the largest B square of color C1 is not left justified with
the second outer square), Step 1 instructs us to delete Ai,j and the largest B square of color C1; draw their
intersection in C1 and label it Di,j ; and apply the OS rule. In this case there are no degenerations, we simply
rename the AB1

i square Di,j . It is clear that the resulting tableau is an admissible painted Mondrian tableau.
The number of A and B squares of color C1 both decrease by one. There is at most one unnested D square (of
color C1). There are no fillers; the relative positions of the chopped squares remains the same and the condition
about side-lengths is obviously satisfied. In this case, there is nothing to prove.

Next suppose we move the smallest A square Ai,j . When we move its lower left most piece, we do not cause
any new squares to be chopped. If Ai,j has color C1, then in Tableau 1 there is one fewer A and B squares of
color C1 and one new possibly unnested D square Di,j of color C1. There are no fillers. Some B squares of
color C2 may contain Di,j , but the only B square of color C1 that contains it is the second outer square. Hence,
Tableau 1 is an admissible painted Mondrian tableau. In Tableau 2, there are two newly formed D squares.
The old Ai,j is a spanned D square and it is the span of the largest D square of color C1 contained in Ai,j and
the new intersection with the largest B square (which is not the second outer square). Hence there are two
new D squares, one of color C1 and one of C2. If the B square is of color C2, then the number of A squares
of color C1 decreases by one and the number of B squares of color C2 decreases by one. If the B square is of
color C1, then the new D square of color C2 is a filler. The second outer square is an extra B square of color
C2. Applying the S rule may create new chopped squares. However, since no new chopped squares are created
until the filler becomes right justified with an A square containing it, the conditions about chopped squares are
satisfied. The conditions about the side-lengths hold since for this possibility to occur a B square of color C1

cannot be a unit. Hence, Tableau 2 is an admissible painted Mondrian tableau. In Tableau 3 the number of A,
B and D squares remain constant and there are no fillers. Since this tableau does not occur if any of the B
squares are a unit, the condition about side-lengths hold. Hence, Tableau 3 is admissible. If the move forces
Ai,j to contain the next A square of color C2, the Tableau 3 described above is admissible. If there are no
units of color C1 contained in Ai,j , the number of A, B and D squares remains constant. There are no fillers
or unnested D squares. If there is a unit of color C1, then the number of A squares decreases by one. Either
the number of B squares also decreases or there is a new filler. Hence, Tableau 3 is admissible in these cases as
well. A very similar analysis applies if in Step 5, we move the largest left justified D square of color C1.

Now suppose the smallest A square Ai,j we move has color C2. In Tableau 1, the number of A and B squares
of color C1 decrease by one. There is a new square Di,j of color C1. In this case there are no fillers. Hence,
Tableau 1 is an admissible tableau. In Tableau 2, if the largest B square (which is not the second outer square)
has color C2, then the number of A and B squares of color C2 decrease by one and Di,j is a new square of
color C2. In this case there are no fillers. Hence, the tableau is admissible. If the B square has color C1, then
the number of A squares of color C2 decreases by one. The new intersection Di,j is a filler. The number of B
squares does not change. Applying the S rule may create new chopped squares. However, since this does not
happen until the filler is right justified with a square containing it, the conditions about chopped squares are
satisfied. Hence, this tableau is admissible. Finally in Tableau 3, the number of A, B and D squares remains
the same. The conditions about side-lengths are satisfied because this tableau does not occur if any of the B
squares are units. Hence, Tableau 3 is also admissible.
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Now we argue that the varieties corresponding to these tableaux are the only possible limits. Using the same
reduction as in the proof of Theorem 3.6 we can assume that Ai,j is the only square that moves during the
degeneration. Otherwise we first move the D squares abutting the lower left of Ai,j up by one unit starting
with the smallest one. When we move such a D square, the argument we will now give applies to show that
there is a unique outcome given by simply sliding that D square up by one unit in the original tableau. We can
factor the move to many moves where we first move the D squares that abut the lower left of Ai,j in increasing
order and then move Ai,j . The outcome of carrying out the degeneration in a few steps is the same as moving
Ai,j and dragging any of the D squares that abut its lower left with it.

Recall that in order to obtain the image of the projection π2 of an admissible painted tableau to G(k2, n)
we take all the D squares and draw them in C2 omitting any spanned D squares and take all the squares AB2

t .
When we carry out a degeneration, any of the linear spaces (V1, V2) contained in the limit have to continue
to satisfy the rank conditions with respect to the vector spaces represented by the A, B and D squares that
they satisfied prior to the degeneration. The argument we gave in the proof of Theorem 3.6 determines the
possible limiting positions of the linear spaces V2 and estimates the dimension of each subloci corresponding to
a generalized Mondrian tableau. To obtain a characterization of the equi-dimensional loci we have to bound
the fiber dimension of the projection π2 over the various loci of V2. The fiber dimension of the projection can
increase if the total number of squares contained in the squares of color C1 increases. As long as the fiber
dimension is constant, the projection to G(k2, n) must be an equi-dimensional variety. We have determined
these varieties in §3.

Let (V1, V2) be a general point on a component of the limit cycle when we move Ai,j . If the subspace of V1

contained in Ai,j remains independent from the subspace of V1 contained in the vector spaces represented by
the B squares except along the vector spaces represented by the D squares common to both, then V1 must be
contained in the new span of Ai,j and the vector space represented by the largest interior B square of color
C1. If, in addition, the subspace of V2 contained in Ai,j also remains independent from the subspace of V2

contained in the vector spaces represented by the B squares except along vector spaces represented by the D
squares common to both, then V2 must be contained in the new span of Ai,j and the vector space represented
by the largest interior B square. Since the rank conditions are closed conditions, V1 and V2 must continue to
satisfy the intersection conditions required by the D squares. A priori the subspaces of V1 and V2 might meet
the AB1

s and AB2
t in more specialized ways.

If the dim of subsoace of V2

contained in these squares increases by 1

The fiber dimension of π2 increases by 3
The dim of image of π2 decreases by 6

If these subsoaces of V1 become dependent

The dimension of the image decreases by 3

The fiber dimension of π2 increases by 2

Figure 33. The dimension decreases if the subspaces contained in the AB squares become
more dependent.

However, it is easy to see that the dimension is maximized only when the subspaces of V1 and V2 contained
in AB1

s and AB2
t remain independent. By the discussion in §3 the dimension of the projection decreases unless

the subspaces of V2 contained in AB2
t remain independent. However, the fiber dimension may increase if the

dimension of V2 contained in AB1
s increases. This happens when V2 meets AB1

s in larger dimension.

If V2 meets the vector space represented by AB2
t along the intersection of the vector spaces represented by j

of the AB1
s squares of color C1 that do not contain AB2

t , then the dimension changes as follows. Suppose AB2
t

contains j0 of the AB1
s squares. Then the number of containment relations among squares in the projection

increases by j − j0. On the other hand, the side-length of the squares decreases by at least j0 + 1. The fiber
dimension increases by j. Hence such loci cannot form a component of the limit.
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If V1 meets the intersection of the vector spaces represented by two AB1
s squares, then we draw the intersection

in C1. We leave the squares that contain either of the two squares unchanged. We replace the squares between
the two AB1

s squares by the span of the consecutive squares. The change in dimension in this case can be
computed as follows. The dimension of the subspace of V2 contained in the vector spaces represented by the
squares of color C1 increases by the number of squares of color C2 contained between the two squares. The
number of containment relations between squares of color C1 increases by one more than the number of C1

squares contained between the two squares. The image of the projection π2 drops by the number of squares
between the two squares. Hence such loci cannot form a component of the limit (see Figure 33).

We conclude that any component where the subspaces of V1 and V2 contained in Ai,j remain independent from
the subspaces contained in the vector spaces represented by the B squares except along subspaces represented
by the D squares common to both, must be contained in the locus corresponding to Tableau 3. Since the locus
corresponding to Tableau 3 is irreducible and of the correct dimension, any such component must be supported
on this locus.

If A∗,j+1 is a square one unit larger or the largest interior B square is as large as it can be given the second
outer square, then V1 or V2 must meet the intersection of Ai,j and the vector space represented by the largest
interior B square. However, it is still possible that V2 lies in the new span of Ai,j and the vector space represented
by the largest interior B square. We will shortly see that when a square of color C2 specializes to lie in a square
of color C1, the corresponding dimension of the image of the projection π2 decreases by the number of squares
that are contained in the square of color C1 that are units for V2. On the other hand, the fiber dimension of the
projection increases by the number of squares of color C1 among these squares that are units for C2. It follows
that if Ai,j is of color C2, the second outer square is of color C2 and the largest interior B square of color C1

is not a unit, then V2 may lie in the new span. Reciprocally, if Ai,j is of color C1, Ai,j+1 is one larger and of
color C2 and the largest D square of color C2 is not a unit in Ai,j , V2 may lie in the new span. The cases where
Tableau 3 is discarded follow from this dimension computation.

We can now assume that at a general point of a component of the limit cycle, the subspace of V1 or V2

contained in Ai,j meets the subspace of V1 or V2 contained in the vector space represented by the largest
interior B square. We would like to prove that at a general point of any component of the limit cycle either V1

intersects Ai,j along the vector space represented by the largest B square of color C1 in dimension one larger

and the subspaces contained in the Dh,l and AB1
s remain otherwise independent; or V2 intersects Ai,j along

vector space represented by the largest B square in dimension one more than the number of D squares common
to both and the other subspaces remain independent. There will be exceptions when all the squares in Ai,j not
contained in the largest B square are of color C1 or all the B squares are of color C1.

A priori there may be components where V1 and V2 meet the vector spaces represented by the D and B
squares in more specialized ways. We would like to show that such loci have strictly smaller dimension, hence
cannot form components of the limit cycle. Given the hypothetical limit of the degeneration we can construct a
generalized painted Mondrian tableau that contains this locus. If V1 and V2 in the limit intersect the D and B
squares along their intersections, we draw these squares of color C1 for the intersections of V1 and of color C2 for
the intersections of V2. We then complete the tableau by drawing squares so that the number of squares of color
C1 in each square of color C1 is equal to the number before the degeneration and the number of squares in each
square is equal to the number of squares before the degeneration. This tableau must contain the hypothetical
limit because the rank conditions are closed conditions and hence must be satisfied by the limit cycles. Once
we make this construction we are reduced to comparing dimensions of generalized painted Mondrian tableaux.

Let (V1, V2) be a general point of a component of the limit cycle. Suppose the subspaces of V1 or V2 contained
in the vector spaces represented by some of the D squares meet AB1

s and AB2
t in dimensions larger than the

number of squares common to the squares.

If V1 meets the intersection of the vector spaces represented by two squares of color C1, then we draw
the intersection in C1. We leave any squares that contain either of the two squares or are contained in the
intersection unchanged. We also leave any squares that do not contain the intersection unchanged. We redraw
the squares in between the two squares so that they are the spans of the consecutive squares. Since the limit
variety has to satisfy the rank conditions with respect to all the A, B and D squares, if V1 meets the intersection
of a vector space represented by a D square of color C1 with AB1

s, the locus has to be contained in a variety
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constructed in this way. If this intersection happens between two squares of color C1 that we did not move,
then the change in the dimension of the tableau is given as follows:

The number of AB2
t squares in some of the newly formed squares of color C1 may increase. This increase in

the fiber dimension of the projection π2 is at most equal to the number of AB1
t squares of color C2 between the

two squares of color C1 not contained in either. On the other hand, the dimension of the image of the projection
drops by one more than the number of squares between these squares not contained in either of them of any
color. The increase in the fiber dimension is at least one less than the decrease in the dimension of the image
of π2.

If V1 intersects the intersection of vector spaces represented by a square of color C1 and a square of color C2,
then we draw the intersection in C1. We keep the AB2

t and D squares that contain either of the two squares or
do not contain the intersection unchanged. For the squares between the two squares we take the spans of the
consecutive squares.

If V1 meets the intersection of a square of color C1 and a square of color C2 that we did not move and no
other changes happen, then the fiber dimension of the projection π2 drops by an amount equal to the number
of squares of color C2 contained in the square of color C1 and not in the square of color C2. On the other
hand, the dimension of the image drops by one more than the number of squares between these two squares not
contained in either or not containing either.

If V2 meets the intersection of vector spaces represented by a square of color C1 and a square of color C2, then
there are two possibilities. Either the dimension of the subspace of V2 contained in the vector space represented
by the square of color C1 remains constant or it increases by one. If the dimension of the subspace of V2

contained in the vector space represented by the squares of color C1 remain constant, then the fiber dimension
of the projection π2 remains constant, but the dimension of the image of π2 decreases by the discussion in §3.
We can assume that we are in the case when the dimension of the subspace of V2 contained in the vector space
represented by the square of color C1 increases. In this case we delete the square of color C2 and draw the new
intersection in C2. We leave the other squares unchanged.

If V2 meets the intersection of vector spaces represented by a square of color C1 and a square of color C2

that we did not move, then the fiber dimension of the projection increases by the number of squares of color C1

that contain the intersection, but not the square of color C2. On the other hand, the dimension of the image
decreases by one more than the number of squares that do not contain the square of color C2 and are in between
the square of color C1 and the square of color C2. The increase in the fiber dimension is at least one less than
the drop in the dimension of the image of the projection.

Finally, V1 or V2 may meet the intersection of vector spaces represented by two squares of color C2 that we
did not move. In case V1 meets the intersection it is easy to see that the resulting variety has smaller dimension.
In case V2 meets the intersection, then the dimension of the fiber increases by the number of squares of color C2

not containing either of them. The image of the projection decreases by one more than the number of squares
between the two squares. Again the gain in the fiber dimension is less than the drop in the dimension of the
image.

Now suppose that when we move Ai,j the vector spaces V1 or V2 meet Ai,j along its intersection with one of
vector spaces represented by the B squares. The above calculation of the fiber dimensions of π2 do not change.
However, the dimension of the image of π2 increases by one since the sum of the side-lengths of the squares
increases by one.

Since we can build a generalized Mondrian tableau that contains any component of the limit cycle by repeat-
edly taking the intersections of various D and AB squares, our dimension count determines the possible limits
of the degenerations.

First, taking the intersections of any two squares that we do not move strictly decreases the dimension.
Taking the intersection of Ai,j with any of the squares either keeps the dimension equal or strictly decreases it.
We can only obtain an equi-dimensional locus if the only intersection occurs between Ai,j and a B square and
the subspaces of V1 and V2 contained in the remaining D and AB squares remain as independent as possible.

Suppose Ai,j has color C1. If V1 meets the intersection of Ai,j with a vector space represented by a B square
Bh.l of color C1, then the dimension of the fiber of the projection of π2 increases by the number of B squares



36 IZZET COSKUN

dimension drops by one
V2 intersects the new intersection

V1 intersects the new intersection
dimension drops by one

V2 intersects the new intersection
dimension drops by one

V1 intersects the new intersection
dimension drops by one

If after the move ...

dimension drops by one

dim = 9 dim = 8

V1 intersects the new intersection

Figure 34. Examples of the dimension counts. The dimension drops if subspaces of V1 and
V2 other than those described in the game become dependent.

of color C2 containing Bh,l. On the other hand, the dimension of the image of π2 decreases by the number of
B squares containing Bh,l. We can only have an equality if Bh,l is the largest B square of color C1.

If V1 meets the intersection of Ai,j with a vector space represented by a B square Bh,l of color C2, then Bh,l

must be the largest interior B square and there cannot be any squares of color C2 contained in Ai,j and not
Bh,l. Otherwise, the fiber dimension decreases. Note that if the largest interior B square of color C1 is a unit
or Ai+1,j+1 is a square of color C1 one unit larger than Ai,j , then this possibility must occur.

If V2 meets the intersection of Ai,j and Bh,l, then the B square has to be the largest interior B square. There
are two possibilities, either the dimension of V2 contained in Ai,j remains constant. This case corresponds to
Tableau 2. The dimension of V2 contained in Ai,j may increase by one. If the largest D square of color C2 is
a unit, then the gain in fiber dimension is less than the drop in the dimension of the image of π2. Similarly if
A∗,j+1 is a square at least two units larger, then the image of the projection drops by more than the gain in
the fiber dimension. We conclude that the latter case occurs when Ai,j+1 is a square of color C2 and one unit
larger than Ai,j provided the largest D square of color C2 in Ai,j is not a unit.

If Ai,j is of color C2, then V2 may meet the intersection of Ai,j and the vector space represented by the
largest interior B square. If the largest interior B square is of color C1, then there are two possibilities. These
cases are reciprocal to the cases above. Either V2 meets the vector space represented by the largest interior B
square in one larger dimension or in dimension equal to its previous dimension. The latter case corresponds to
Tableau 2. In the first case if we do not have Tableau 3, the second outer square cannot be of color C1 and the
largest square of color C2 contained in the largest interior B square cannot be a unit and finally the move must
force Ai,j to be contained in the largest interior B square.

Finally, V1 may meet the intersection of Ai,j and the vector space represented by the largest interior B square
of color C1. If Ai,j+1 is not of color C1, then the fiber dimension of π2 decreases by at least one and the image
of π2 can have at most the same dimension. If Ai+1,j+1 is a floating square, then this forms a neighbor of Ai,j

in the projection. By the proof of Theorem 3.6 that case has the same dimension. If Ai+1,j+1 is not a floating
square, even if the fiber dimension of the projection π2 remains constant, the dimension of the image of π2

decreases. We recover the description of Tableau 1. See schematic representations in Figure 34.

The case when we move a filler. We now assume that every D square not contained in the smallest filler
F contains it and the D squares contained in it are nested. In this case the algorithm instructs us to move F .
When we move F (which is always a square of color C2), the only possibilities are recorded by Tableaux 2 and
3. The filler can only interact with a B square to its northeast. If this square is of color C1, the new intersection
is again a filler. Note that any filler that contained F continues to contain F and since F was the smallest filler,
all the fillers are still nested. This case does not change any of the numbers of A, B or D squares. Hence it
is clear that the tableau is admissible. If F interacts with a B square of color C2, then the intersection is no
longer a filler. In this case we have one fewer B square of color C2 and one fewer filler. The number of A and
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D squares remain the same. It is again easy to see that the tableau is admissible. In Tableau 3 the number of
A, B, and D squares remains unchanged. No new fillers are created. It is clear that Tableau 3 is admissible.

The new twist in this case is that moving the filler might increase the dimension of intersection of some A
and D squares that contain the filler with the next B square. We can by the usual reduction assume that the D
squares that are contained in the filler do not move. Suppose the index of the B square that passes through the

lower left of the filler is Bh′,l′

h,l . If at a general point of a component of the limit the linear subspaces of V1 and V2

contained in A∗,k2−l remain independent from the linear subspaces of V1 and V2 contained in Bh,l except along
the vector spaces represented by D squares common to both, then we can take the projection of the variety to

the flag variety F (h′, l′, |Bh′,l′

h,l |) by sending (V1, V2) to their subspaces contained in Bh,l. By assumption the
fiber dimension of this map remains equal to the fiber dimension of the map prior to the degeneration. Note

that since Bh,l is of color C1, there cannot be any floating squares in tableau restricted to F (h′, l′, |Bh′,l′

h,l |). We

can think of moving the filler as moving the smallest A square in the restricted tableau for F (h′, l′, |Bh′,l′

h,l |).
Since there are no floating squares only Tableaux 2 and 3 occur.

To complete the argument in the case when we move F , we need to show that the loci where the linear
subspaces contained in the vector spaces represented by A or D squares that contains F intersect the linear
subspace contained in B∗,l−1 have strictly smaller dimension. Here we give the argument for V1. The case of V2

is easier. Suppose the linear subspace of V1 contained in A∗,k2−l has an intersection with the linear subspace
of V1 contained in Bh,l of dimension larger than the number of D squares of color C1 common to both. By the
usual argument, the dimension is maximized when V1 meets the intersection of the next B square of color C1

along one of the squares of color C1 whose intersection with that square increased as a result of the move. We
can draw this intersection and delete the two squares of color C1. Since the linear spaces V1 and V2 must still
satisfy the rank conditions with respect to the A and D squares.

When we compare this tableau to Tableau 2, we see that this tableau differs from Tableau 2 in that a D or
A square of color C1 and the filler have been swapped. Hence the dimension of such a tableau is at least one
smaller. We conclude that in any limit the subspace of V1 contained in A∗,k2−l does not intersect the subspaces
of V1 contained in any of the B squares in dimension larger than the number of D squares common to both (see
Figure 35).

Dimension = 9Dimension = 10

Figure 35. The dimension decreases if V1 meets an A or D square containing a filler with its
intersection with a B square.

Nesting the D squares. First, suppose there is a spanned D square. When we move the largest nested
D square abutting the lower left of the spanned D square, the only tableaux that occur are Tableaux 2 and 3.
Tableau 3 is clearly admissible. If S has color C1, in Tableau 2 the new intersection is still a filler. The new S
is (possibly) a spanned square. The old spanned square is now a special unnested D square. If S has color C2,
the new intersection is still a filler. There are no longer any spanned D squares. The old spanned D square is
(possibly) a special unnested D square.

Suppose there are no spanned D squares, but there are special unnested D squares. When we move the
squares to the lower left of the lower left most special unnested D square, the only tableaux that occur are
Tableaux 1 and 3. It is easy to check that these are admissible tableaux. In neither of these cases any fillers are
formed. In each case the number of A, B and D squares remains the same.

Suppose there are no spanned or special unnested D squares, but there is a D square which does not contain
the smallest filler. The next smallest filler (if it exists) contains both the square S we move and the smallest
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filler. If S has color C1, in Tableau 1 the new filler is contained in every D square not contained in it. The
number of A, B and D squares remain constant. It is clear that Tableaux 2 and 3 are admissible.

Suppose there are no spanned or special D squares and all the squares not contained in the smallest filler
contain it. In this case the analysis is easier. If any fillers form, then they will be automatically contained in
all the existing fillers. The conditions about the numbers of A, B and D squares are easy to check as in the
previous cases. Hence all the tableaux are admissible. Finally the analysis in the case when there are no special
or unnested D squares or any fillers is easy.

We observe that when nesting the D squares, the dimension counts reduce to the previous discussion. We
can restrict the painted Mondrian tableau to the B′ square passing through the lower left of the D square we
are moving. To obtain the restricted painted Mondrian tableau we take the sub-tableau consisting of the D,
AB1

s and AB2
t squares contained in the relevant B′ square. We relabel the D square we move as an A square

and keep the squares contained in it as D squares. We also relabel any D square contained in the restricted
tableau but not contained in the D square we are moving as AB squares. Once we do this the same dimension
count given above applies to this tableau. The dimension count given in the case of moving the fillers shows
that if the vector subspace of V1 or V2 contained in the vector space represented by a D square not contained
in the restricted tableau intersects the vector space represented by the next B or unnested D square, we get
a strictly smaller dimensional variety. We can, therefore, confine our attention to the restricted tableau. We
leave the details of specifying the possibilities in this case to the reader.

Now that we have identified the limits we need to know the multiplicities with which they occur. To conclude
the proof of the theorem it suffices to show that all the multiplicities are one. We will prove this theorem by
reducing it to Monk’s formula.

It suffices to carry out these calculations in the case the square we move is Ai,j . The cases when we move a
D square reduces to this case by restricting to the tableau contained in the B ′ square passing through the lower
left of the D square. Suppose the square we move has color C1 and V1 meets the intersection of Ai,j with the
vector space represented by the next B square of color C1. We can consider the projection to the Grassmannian
G(k1, n) by π1. At a general point of the relevant loci this morphism is smooth since it the fibers are open sets
in towers of flag variety bundles. Hence this case follows from Theorem 3.6

If V2 meets the intersection of Ai,j with the vector space represented by the largest B square or both V1 and
V2 lie in the new span of Ai,j and the vector space represented by the largest interior B square, then we can
consider the projection to G(k2, n). Again the multiplicity follows by pulling back the multiplicity where we
know it to be one by Theorem 3.6.

Now suppose Ai,j has color C2. Suppose V2 meets the intersection of Ai,j and the vector space represented
by the largest B square. We can take the projection to G(k2, n). This is smooth at a general point of the
relevant locus. The problem reduces to a question in the Grassmannian. That the multiplicity is 1 follows as
in the proof of Theorem 3.6 by Pieri’s formula for lines.

If V1 meets the intersection of Ai,j with Ai+1,j+1 which is a floating square, then we can reduce the local
picture to one in F (1, 2; n). In that case the multiplicity is one. We pull it back to deduce it for that possibility.
It is clear that Possibility 3 occurs with multiplicity one.

The multiplicity calculations for when we move the filler are identical. There is a projection from F (k1, k2; n)
to the smaller flag variety contained in the B square that passes through the lower left of the filler. This is
obtained by sending the pair (V1, V2) to their intersections in the B square. In this case the degeneration reduces
to the case when there are no fillers and we move an Ai,j square of color C2. The discussion of that case proves
that the multiplicity is one in this case as well. This completes the proof. �

5. A quantum Littlewood-Richardson rule for Grassmannians

In this section we obtain a quantum Littlewood-Richardson rule for Grassmannians G(k, n) as a corollary to
Theorem 4.6.

Given a Mondrian tableau for σλ in G(k, n) and an integer d ≤ k, we can associate to it a painted Mondrian
tableau in F (k − d, k + d; n) as follows: The Mondrian tableau associated to the Schubert variety σλ consists
of k nested squares. We take the largest k − d squares (those of index d + 1, . . . , k) and color them in C1.
We color the remaining squares in C2. Finally, we add d squares of color C2 at the largest available places in
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the flag defining the Mondrian tableau of σλ (see Figure 36 for two examples). We call the resulting painted
Mondrian tableau the quantum Mondrian tableau of degree d associated to σλ. This tableau is none other than

the painted Mondrian tableau associated to the special Schubert variety X
(d)
λ of F (k − d, k + d; n) defined in

§2.

degree 2 quantum cycle

σ3,2,1 ∈ G(3, 6) σ2,1,1,2
2,1,0,0 ∈ F (2, 4; 6) σ3,2 ∈ G(3, 6) σ2,2,2,2,1

1,0,0,0,0 ∈ F (1, 5; 6)

degree 1 quantum cycle

Figure 36. The quantum Mondrian tableaux associated to two Schubert varieties.

Let σλ, σµ and σν be three Schubert cycles in G(k, n) that satisfy the equality

|λ| + |µ| + |ν| = k(n − k) + dn.

Apply the algorithm described in the previous section to the quantum Mondrian tableau of degree d associated
to σλ and σµ to express their intersections as a sum of Schubert cycles in F (k − d, k + d; n). Then apply the
algorithm to the quantum Mondrian tableau of degree d associated to σν and each of the summands of the
previous product. Theorem 4.6 and Lemma 2.6 imply that the Gromov-Witten invariant Id(σλ, σµ, σν) is equal
to the number of times we obtain the class of a point as a result of these multiplications. We have obtained the
following theorem.

Theorem 5.1. The three-pointed Gromov-Witten invariant Id(σλ, σµ, σν) is equal to the number of times the
point class occurs as a result of applying the Littlewood-Richardson rule for the two-step flag varieties to the
quantum Mondrian tableau of degree d associated to σν and each outcome of the product of the quantum Mondrian
tableaux of degree d associated to σλ and σµ.

We illustrate the use of Theorem 5.1 by computing the Gromov-Witten invariant

IG(3,6),d=1(σ3,2,1, σ3,2,1, σ2,1) = 2.

Figure 37 demonstrates the computation. The quantum cycle of d = 1 associated to σ3,2,1 (respectively, σ2,1)

is σ2,1,1,2
2,1,0,0 (respectively, σ2,1,2,1

1,0,0,0). In order to calculate the Gromov-Witten invariant we have to find how many

times σ1,2,1,2
2,2,2,1 (the dual of σ2,1,2,1

1,0,0,0) occurs in the square of the class σ2,1,1,2
2,1,0,0 . An easy calculation with painted

Mondrian tableaux shows that the answer is 2.
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