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1. Introduction

Many problems in algebraic geometry require different compactifications of the same moduli space.
Important invariants such as intersection numbers and volumes of divisors are easier to compute in certain
models. Moreover, the interplay between different models often leads to non-trivial relations among
invariants, such as wall-crossing formulae in Gromov-Witten theory. The Minimal Model Program gives
a unifying framework for constructing different birational models of a moduli space. Surprisingly many
of the models that occur in the program also have modular interpretations. In this article, we illustrate
this point by studying the Minimal Model Program for the Kontsevich moduli spaces of stable maps
M0,0(G(k, n), d) for d = 2 or 3. We determine the stable base locus decomposition of the effective
cone, describe the models corresponding to the chambers in the decomposition and provide a modular
interpretation for many of the models.

The effective cone of a projective variety can be decomposed into chambers depending on the stable
base locus of the corresponding linear series. This decomposition dictates the different birational models
of the variety that arise while running the Minimal Model Program and has been studied in detail in
[ELMNP1] and [ELMNP2]. In general, especially when the dimension of the Neron-Severi space is three
or more, it is very hard to compute the decomposition. In this paper, we completely determine the stable
base locus decomposition of the Kontsevich moduli spacesM0,0(G(k, n), d) for d = 2 or 3. We prove the
following.

Theorem 1.1. Let d ≤ k ≤ n − d. The stable base locus decomposition of the effective cone of
M0,0(G(k, n), d) for d = 2 or 3 is a finite, rational, polyhedral decomposition. For d = 2, the de-
composition has 8 chambers. For d = 3, the decomposition has 22 chambers.

Theorem 3.6 contains a detailed description of the decomposition for M0,0(G(k, n), 2) and Theorems
4.8 and 5.2 contain a detailed description for M0,0(G(k, n), 3). We also describe in detail the birational
models that correspond to each chamber in the decomposition and give modular interpretations for many
of the models. A corollary of our analysis is the following.

Corollary 1.2. For d = 2 or 3, M0,0(G(k, n), d) is a Mori dream space.
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This corollary, at least for small k and n, also follows from [BCHM] (see Remark 2.4).

Let X be a complex, projective, homogeneous variety. Throughout this paper we work over the field
of complex numbers C. Let β be the homology class of a curve on X. Recall that the Kontsevich moduli
space of m-pointed, genus-zero stable maps M0,m(X,β) is a compactification of the space of m-pointed
rational curves on X with class β, parameterizing isomorphism classes of maps (C, p1, . . . , pm, f) such
that the following three conditions hold.

(1) The domain curve C is a proper, connected, at-worst-nodal curve of arithmetic genus zero.
(2) The marked points p1, . . . , pm are smooth, distinct points on C.
(3) f∗[C] = β and any component of C contracted by f has at least three nodes or marked points.

M0,m(X,β) is a smooth stack and the corresponding coarse moduli space is Q-factorial with finite quotient
singularities. Furthermore, in Pic(M0,m(G(k, n), d))⊗Q linear and numerical equivalence coincide. We
can, therefore, construct Q-Cartier divisors by specifying codimension one conditions onM0,m(G(k, n), d)
and calculate their classes by the method of test curves.

The study of the stable cone decomposition ofM0,0(G(k, n), d) has two components. On the one hand,
we construct effective divisors in a given numerical equivalence class and thereby limit the stable base
locus. On the other hand, we construct moving curve classes on subvarieties of M0,0(G(k, n), d) that
have negative intersection with a divisor class, thereby showing that the stable base locus has to contain
those varieties. This analysis requires a good understanding of the cones of ample and effective divisors
on Kontsevich moduli spaces, which have been studied in [CHS1] and [CHS2] when the target is Pn and
in [CS] when the target is G(k, n).

When d = 2 or 3, one can run the Minimal Model Program forM0,0(Pd, d) giving a complete descrip-
tion of the birational models Proj(⊕m≥0H

0(O(mD))) for every integral effective divisor. M0,0(P2, 2) is
isomorphic to the space of complete conics, or equivalently, to the blow-up of P5 along a Veronese surface.
M0,0(P2, 2) admits two divisorial contractions to P5 and (P5)∗ obtained by projection from the space
of complete conics to the spaces of conics and dual conics, respectively. The resulting models can be
given functorial interpretations. P5 can be interpreted either as the Chow variety or the Hilbert scheme
Hilb2x+1(P2) of conics in P2. (P5)∗ can be interpreted as the moduli space of weighted stable maps
M0,0(P2, 1, 1) constructed by Anca Mustaţǎ and Andrei Mustaţǎ in [MM]. The reader can informally
think of the space of weighted k-stable maps as replacing degree e ≤ d− k tails of a stable map by base
points of multiplicity e.

The Mori theory of M0,0(P3, 3) has been studied in [C]. M0,0(P3, 3) admits a divisorial contraction
to the moduli space of weighted stable maps M0,0(P3, 2, 1) (see [MM]) and a flipping contraction to
the normalization of the Chow variety. The flip is the component of the Hilbert scheme Hilb3x+1(P3)
whose general point parameterizes a twisted cubic curve. This component of the Hilbert scheme admits
a further divisorial contraction to the compactification of the space of twisted cubics in G(3, 10) by nets
of quadrics vanishing on the curve.

The Mori theory of M0,0(G(2, 4), 2) can be similarly described in complete detail and gives rise to
some beautiful classical projective geometry. M0,0(G(2, 4), 2) admits a divisorial contraction to the
space of weighted stable maps M0,0(G(2, 4), 1, 1) (see [MM]) and two intermediate contractions over
M0,0(G(2, 4), 1, 1) which are flops of each other (see Theorem 3.8 for precise statements). M0,0(G(2, 4), 2)
admits a flipping contraction to the (normalization of) the Chow variety. The flip of M0,0(G(2, 4), 2)
over the Chow variety is the Hilbert scheme Hilb2x+1(G(2, 4)), which is isomorphic to the blow-up of the
Grassmannian G(3, 6) along (both components of) the orthogonal Grassmannian OG(3, 6). The Hilbert
scheme admits a divisorial contraction to G(3, 6) blowing-down the inverse image of OG(3, 6) and two
intermediate contractions blowing-down the inverse image of only one of the components of OG(3, 6).
The latter two spaces are flips of M0,0(G(2, 4), 2) over contractions of the (normalization of) the Chow
variety (see Theorem 3.10 for precise statements).

As d gets larger, both the dimension of the Neron-Severi space and the number of chambers in the
decomposition of the effective cone ofM0,0(G(k, n), d) grow. Already forM0,0(G(3, 6), 3) there are more
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than 20 chambers in the decomposition. In general, we do not know whether the decomposition is finite
polyhedral. Birkar, Cascini, Hacon and McKernan prove that a log-Fano variety is a Mori dream space, in
particular, the stable base locus decomposition is finite polyhedral [BCHM]. Although the anti-canonical
class of M0,0(G(k, n), d) lies in the big cone, we do not know whether M0,0(G(k, n), d) is log-Fano in
general. Nevertheless, the methods of this paper can be used to obtain a rough description of the stable
base locus decomposition even when d > 3. For a discussion of the higher degree case when the target is
projective space see [CC].

The organization of this paper is as follows: In §2, we set the notation and introduce divisor classes that
will play an important role in our discussion. In §3, we determine the stable base locus decomposition of
M0,0(G(k, n), 2) and describe the corresponding birational models. In §4, we carry out the same analysis
for M0,0(G(k, n), 3) with 3 ≤ k ≤ n − 3. The description of the stable base locus decomposition of
M0,0(G(2, n), 3) requires minor modifications. We carry out the analysis in §5.

Acknowledgements: It is a pleasure to thank Joe Harris and Jason Starr for many enlightening con-
versations over the years about the birational geometry of Kontsevich moduli spaces. We thank the
referee for many excellent suggestions. We thank MSRI, where part of this work was completed, for the
stimulating atmosphere and ideal working conditions.

2. Preliminary definitions and background

In this section, we introduce important ample and effective divisor classes on the Kontsevich moduli
space M0,0(G(k, n), d). We refer the reader to [CHS1], [CHS2] and [CS] for detailed information about
the ample and effective cones of Kontsevich moduli spaces.

Notation 2.1. Let G(k, n) denote the Grassmannian of k-dimensional subspaces of an n-dimensional
vector space V . Let λ denote a partition with k parts satisfying n − k ≥ λ1 ≥ · · · ≥ λk ≥ 0. Let λ∗

denote the partition dual to λ with parts λ∗i = n − k − λk−i+1. Let F• : F1 ⊂ · · · ⊂ Fn denote a flag in
V . The Schubert cycle σλ is the Poincaré dual of the class of the Schubert variety Σλ defined by

Σλ(F•) = {[W ] ∈ G(k, n) | dim(W ∩ Fn−k+i−λi) ≥ i}.

Schubert cycles form a Z-basis for the cohomology of G(k, n).

Let M0,0(G(k, n), d) denote the Kontsevich moduli space of stable maps to G(k, n) of Plücker degree
d. Let

π :M0,1(G(k, n), d)→M0,0(G(k, n), d)

be the forgetful morphism and let

e :M0,1(G(k, n), d)→ G(k, n)

be the evaluation morphism. We introduce the divisor classes that will be crucial for our discussion.
• Let Hσ1,1 = π∗e

∗(σ1,1) and Hσ2 = π∗e
∗(σ2). Geometrically, Hσ1,1 (resp., Hσ2) is the class of the divisor

of maps f in M0,0(G(k, n), d) whose image intersects a fixed Schubert cycle Σ1,1 (resp., Σ2).

• Let T denote the class of the divisor of maps that are tangent to a fixed hyperplane section of G(k, n).

• Let Ddeg denote the class of the divisor Ddeg of maps inM0,0(G(k, k+d), d) whose image is contained in
a sub-Grassmannian G(k, k+d−1) embedded in G(k, k+d) by an inclusion of the ambient vector spaces.
More generally, for n ≥ k+ d, let Ddeg denote the class of the divisor of maps f inM0,0(G(k, n), d) such
that the projection of the span of the linear spaces parameterized by the image of f from a fixed linear
space of dimension n− k − d has dimension less than k + d.

• If k divides d, then let Dunb be the closure Dunb of the locus of maps f with irreducible domains for which
the pull-back of the tautological bundle f∗(S) has unbalanced splitting (i.e., f∗(S) 6= ⊕ki=1OP1(−d/k)).

• If k does not divide d, let d = kq + r, where r is the smallest non-negative integer that satisfies the
equality. The subbundle of the pull-back of the tautological bundle of rank k − r and degree −q(k − r)
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induces a rational map

φ :M0,0(G(k, k + d), d) 99KM0,0(F (k − r, k; k + d), q(k − r), d).

The natural projection πk−r : F (k − r, k; k + d) → G(k − r, k + d) from the two-step flag variety to the
Grassmannian induces a morphism

ψ :M0,0(F (k − r, k, k + d), q(k − r), d)→M0,0(G(k − r, k + d), q(k − r)).
The maps whose linear spans intersect a linear space of codimension (q + 1)(k − r) is a divisor D in
M0,0(G(k − r, k + d), q(k − r)). Let Dunb = φ∗ψ∗([D]).

We summarize the basic facts about the Picard group, and the cones of NEF and effective divisors in
the following theorem.

Theorem 2.2. Let M0,0(G(k, n), d) denote the Kontsevich moduli space of stable maps to G(k, n) of
Plücker degree d. Then:

(1) [Theorem 1, [Opr]] The Picard group Pic(M0,0(G(k, n), d)) ⊗ Q is generated by the divisor classes
Hσ1,1 , Hσ2 , and the classes of the boundary divisors ∆k,d−k, 1 ≤ k ≤ bd/2c.
(2) [Theorem 1.1, [CS]] There is an explicit, injective linear map

v : Pic(M0,d/Sd)⊗Q→ Pic(M0,0(G(k, n), d))⊗Q

that maps base-point-free divisors and NEF divisors to base-point-free divisors and NEF divisors, respec-
tively. A divisor class D in M0,0(G(k, n), d) is NEF if and only if D can be expressed as a non-negative
linear combination of Hσ1,1 , Hσ2 , T and v(D′), where D′ is a NEF divisor in M0,d/Sd.

(3) [Theorem 1.2, [CS]] A divisor class D in M0,0(G(k, k + d), d) is effective if and only if it can be
expressed as a non-negative linear combination of Ddeg, Dunb and the boundary divisors ∆k,d−k, 1 ≤
k ≤ bd/2c.

Remark 2.3. In Part (2) of Theorem 2.2, M0,d denotes the Deligne-Mumford moduli space of d-pointed,
genus-zero stable curves. The symmetric group Sd on d-letters acts on the labeling of the marked points.

If we identify the Neron-Severi space ofM0,0(G(k, n), d) with the vector space spanned by the divisor
classes Hσ1,1 , Hσ2 , and the classes of the boundary divisors ∆k,d−k, 1 ≤ k ≤ bd/2c, then the effective cone
of M0,0(G(k, n), d) is contained in the effective cone of M0,0(G(k, n+ 1), d), with equality if n ≥ k + d.
Hence, Part (3) of Theorem 2.2 determines the effective cone of M0,0(G(k, n), d) for every n ≥ k + d.

Remark 2.4. The canonical class of M0,0(G(k, n), d) can be easily derived from Theorem 1.1 of [dJS]:

K =
(n

2
− k − 1− n

2d

)
Hσ1,1 +

(
k − n

2
− 1− n

2d

)
Hσ2 +

bd/2c∑
i=1

(
ni(d− i)

2d
− 2
)

∆i,d−i.

For most of the cases we consider below, −K will not lie in the ample cone.

3. Degree two maps to Grassmannians

In this section, we let 2 ≤ k ≤ n−2 and discuss the stable base locus decomposition ofM0,0(G(k, n), 2).
The divisor classes introduced in Section 2 have the following expressions (see [CS] §4 and §5) in terms
of the basis Hσ1,1 , Hσ2 and the boundary divisor ∆ = ∆1,1.

T =
1
2
(
Hσ1,1 +Hσ2 + ∆

)
Ddeg =

1
4

(−Hσ1,1 + 3Hσ2 −∆)

Dunb =
1
4

(3Hσ1,1 −Hσ2 −∆)
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Most questions about the divisor theory of M0,0(G(k, n), 2) can be reduced to studying the divisor
theory of M0,0(G(2, 4), 2). Let W be a four-dimensional subspace of V . Let U be a (k − 2)-dimensional
subspace of V such that U ∩W = 0. Given a two-dimensional subspace Λ of W , the span of Λ and U
is a k-dimensional subspace of V . Hence, there is an inclusion i : G(2, 4) → G(k, n), which induces a
morphism

φ :M0,0(G(2, 4), 2)→M0,0(G(k, n), 2).

It is easy to see that

φ∗(Hσ1,1) = Hσ1,1 , φ
∗(Hσ2) = Hσ2 , φ

∗(∆) = ∆.

We will see that, under this correspondence, the stable base-locus-decomposition ofM0,0(G(k, n), 2) and
M0,0(G(2, 4), 2) coincide. Many of our constructions will be extended from G(2, 4) to G(k, n) via the
morphism φ. The reader who wishes to specialize G(k, n) to G(2, 4) in this section will not lose much
generality.

Remark 3.1. The geometry ofM0,0(G(2, 4), 2) is closely related to the geometry of quadric surfaces in
P3. The lines parameterized by a point in M0,0(G(2, 4), 2) sweep out a degree two surface in P3. The
maps parameterized by Ddeg correspond to those that span a plane two-to-one. The maps parameterized
by Dunb correspond to those that sweep out a quadric cone.

Notation 3.2. Let Q[λ] denote the closure of the locus of maps f in M0,0(G(k, n), 2) with irreducible
domain such that the map f factors through the inclusion of some Schubert variety Σλ in G(k, n).

Example 3.3. For example, Q[(1)∗] denotes the locus of maps two-to-one onto a line in the Plücker
embedding of G(k, n). The union of Q[(1, 1)∗] and Q[(2)∗] in M0,0(G(k, n), 2) is the locus of maps f
such that the span of f is contained in G(k, n). The linear spaces parameterized by a general map in
Q[(1, 1)∗] sweep out a Pk two-to-one. The linear spaces parameterized by a general map in Q[(2)∗] sweep
out a k-dimensional cone over a conic curve.

For our calculations of the stable base locus, we will introduce many curve classes and compute their
intersections with divisor classes. For the convenience of the reader, we summarize this information in
the following table. The first column contains the curve classes in the order that they will be introduced
below. The next three columns contain the intersection numbers of these curve classes with the divisors
Hσ1,1 , Hσ2 and ∆, respectively. Finally, the last column describes the subvariety of M0,0(G(k, n), 2)
covered by effective curves in that class. The reader may wish to verify Theorem 3.6 for themselves using
this table.

Curve class C C ·Hσ1,1 C ·Hσ2 C ·∆ Deformations cover
C1 1 0 3 Q[(1, 1)∗]
C2 0 1 3 Q[(2)∗]
C3 1 1 2 M0,0(G(k, n), 2)
C4 2 0 0 Q[(1, 1)∗]
C5 0 2 0 Q[(2)∗]
C6 1 0 -1 ∆
C7 0 1 -1 ∆
C8 0 0 > 0 Q[(1)∗]

In order to understand the stable base locus decomposition of M0,0(G(k, n), 2), we need to introduce
one more divisor class. Set N =

(
n
k

)
. Let p : M0,0(G(k, n), 2) 99K G(3, N) denote the rational map,

defined away from the locus of double covers of a line in G(k, n), sending a stable map to the P2 spanned
by its image in the Plücker embedding of G(k, n). This map gives rise to a well-defined map p∗ on Picard
groups. Let P = p∗(OG(3,N)(1)). Geometrically, P is the class of the closure of the locus of maps f such
that the linear span of the image of f (viewed in the Plücker embedding of G(k, n)) intersects a fixed
codimension three linear space in PN−1.
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Lemma 3.4. The divisor class P is equal to

P =
1
4

(3Hσ1,1 + 3Hσ2 −∆).

Proof. The formula for the class P follows from Lemma 2.1 of [CHS2]. However, since we will later
need the curve classes introduced here, we recall the proof. The divisor class P can be computed by
intersecting with test families. Let λ = (1, 1)∗ and µ = (2)∗ be the partitions dual to (1, 1) and (2),
respectively. In the Plücker embedding of G(k, n), both Σλ and Σµ are linear spaces of dimension two.
Let C1 and C2, respectively, be the curves in M0,0(G(k, n), 2) induced by a general pencil of conics in a
fixed Σλ, respectively, Σµ. Let C̃3 be the curve in M0,0(G(2, 4), 2) induced by a general pencil of conics
in a general codimension two linear section of G(2, 4) in its Plücker embedding. Let C3 = φ(C̃3). The
following intersection numbers are easy to compute.

C1 ·Hσ1,1 = 1, C1 ·Hσ2 = 0, C1 ·∆ = 3, C1 · P = 0

C2 ·Hσ1,1 = 0, C2 ·Hσ2 = 1, C2 ·∆ = 3, C2 · P = 0

C3 ·Hσ1,1 = 1, C3 ·Hσ2 = 1, C3 ·∆ = 2, C3 · P = 1

Let aσλ+ bσµ be the cohomology class of the surface swept out by the images of the maps parameterized
by a curve C inM0,0(G(k, n), 2). Then the intersection number of C with Hσ1,1 (resp., Hσ2) is equal to a
(resp., b). Since C1, C2 and C3 sweep out surfaces with cohomology class σλ, σµ and σλ+σµ, respectively,
the intersection numbers of these curves with Hσ1,1 and Hσ2 are as claimed. A general pencil of conics in
the plane has three reducible elements. A general pencil of conics in a quadric surface has two reducible
elements. Since the total space of the surfaces are smooth at the nodes, the intersections with the
boundary divisor are transverse. Therefore, the intersection numbers of the curves Ci with ∆ are as
claimed. Finally, the intersection numbers of the curves Ci with P are clear. The class P is determined
by these intersection numbers. �

Notation 3.5. Given two divisor classes D1, D2, let c(D1D2) (respectively, c(D1D2)) denote the open
(resp., closed) cone in the Neron-Severi space spanned by positive (resp., non-negative) linear combina-
tions of D1 and D2. Let c(D1D2) denote the cone spanned by linear combinations

c(D1D2) = {aD1 + bD2|a ≥ 0, b > 0}.

The domain in R3 bounded by the divisor classes D1, D2, . . . , Dr is the open domain bounded by
c(D1D2), c(D2D3), . . . , c(DrD1).

Theorem 3.6 and Figure 1 describe the eight chambers in the stable base locus decomposition of
M0,0(G(k, n), 2). In the figure, we draw a cross-section of the three-dimensional cone and mark each
chamber with the corresponding number that describes the chamber in the theorem.

Theorem 3.6. The stable base locus decomposition partitions the effective cone of M0,0(G(k, n), 2) into
the following chambers:

(1) In the closed cone spanned by non-negative linear combinations of Hσ1,1 , Hσ2 and T , the stable
base locus is empty.

(2) In the domain bounded by Hσ1,1 , Hσ2 and P union c(Hσ1,1P ) ∪ c(Hσ2P ), the stable base locus
consists of the locus Q[(1)∗] of maps two-to-one onto a line in G(k, n).

(3) In the domain bounded by Hσ2 , Ddeg and P union c(Hσ2Ddeg) ∪ c(PDdeg), the stable base locus
consists of the locus Q[(1, 1)∗].

(4) In the domain bounded by Hσ1,1 , Dunb and P union c(Hσ1,1Dunb) ∪ c(PDunb), the stable base
locus consists of the locus Q[(2)∗].

(5) In the domain bounded by P,Ddeg and Dunb union c(DdegDunb), the stable base locus consists of
the union Q[(1, 1)∗] ∪Q[(2)∗].
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(8)

1,1
Η σ2

Η

Τ

P

∆

Dunb Ddeg

(1)

(2)
(3)(4)

(5)

(6)(7)
σ

Figure 1. The stable base locus decomposition of M0,0(G(k, n), 2).

(6) In the domain bounded by Hσ2 , Ddeg and ∆ union c(Ddeg∆), the stable base locus consists of the
union of the boundary divisor and Q[(1, 1)∗].

(7) In the domain bounded by Hσ1,1 , Dunb and ∆ union c(Dunb∆), the stable base locus consists of
the union of the boundary divisor and Q[(2)∗].

(8) Finally, in the domain bounded by Hσ1,1 , T,Hσ2 and ∆ union c(Hσ2∆) ∪ c(Hσ1,1∆) the stable
base locus consists of the boundary divisor.

Proof. The reader should notice the symmetry across the vertical axis in Figure 1. The Grassmannians
G(k, n) and G(n− k, n) are isomorphic. This isomorphism induces an isomorphism

ψ :M0,0(G(k, n), 2)→M0,0(G(n− k, n), 2)

which interchanges Hσ1,1 , Dunb with Hσ2 and Ddeg, respectively, and gives rise to the symmetry in the
figure. The stable base locus of a divisor ψ∗(D) is equal to the inverse image under ψ of the stable
base locus of D. We will often group the divisors that are symmetric under ψ and use the symmetry to
simplify our calculations.

Since the effective cone of M0,0(G(k, n), 2) is generated by non-negative linear combinations of Ddeg,
Dunb and ∆, the stable base locus of any divisor has to be contained in the union of the stable base loci
of Ddeg, Dunb and the boundary divisor. We first check that the loci described in the theorem are in the
stable base locus of the claimed divisors. To show that a variety X is in the base locus of a linear system
|D|, it suffices to cover X by curves C that have negative intersection with D.

Express a general divisor D = aHσ1,1 + bHσ2 + c∆. Recall from the proof of Lemma 3.4 that C1 and
C2 are the curves induced by pencils of conics in Σλ and Σµ, respectively, where λ = (1, 1)∗ and µ = (2)∗.
The intersection numbers of C1 and C2 with D are

C1 ·D = a+ 3c, C2 ·D = b+ 3c.

Since curves in the class C1 (resp., C2) cover Q[(1, 1)∗] (resp., Q[(2)∗]), we conclude that Q[(1, 1)∗] (resp.,
Q[(2)∗]) is in the base locus of the linear system |D| if a + 3c < 0 (resp., b + 3c < 0). In other words,
Q[(1, 1)∗] is in the restricted base locus of the divisors contained in the interior of the cone generated by
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Ddeg, Dunb and Ddeg + ∆/3 and in c(DunbDdeg). Similarly, Q[(2)∗] is in the restricted base locus of a
divisor contained in the interior of the cone generated by Ddeg, Dunb and Dunb+∆/3 and in c(DdegDunb).

Let C4 and C5 be the curves induced inM0,0(G(k, n), 2) by the one parameter family of conics tangent
to four general lines in a fixed Σλ and Σµ, respectively. It is straightforward to see that

C4 ·D = 2a, C5 ·D = 2b.

Curves of type C4 and C5 cover Q[(1, 1)∗] and Q[(2)∗], respectively. Consequently, if a < 0 (resp., b < 0)
Q[(1, 1)∗] (resp., Q[(2)∗]) is in the restricted base locus of |D|. We conclude that Q[(1, 1)∗] is in the
restricted base locus of any divisor contained in the region bounded by Ddeg,∆, Hσ2 and Dunb and in
c(∆Ddeg)∪ c(DunbDdeg). Similarly, Q[(2)∗] is in the restricted base locus of any divisor contained in the
region bounded by Dunb,∆, Hσ1,1 and Ddeg and in c(∆Dunb) ∪ c(DdegDunb).

Next let C6 and C7 be the curves induced by attaching a line at the base point of a pencil of lines in
Σλ and Σµ, respectively. These curves have the following intersection numbers with D:

C6 ·D = a− c, C7 ·D = b− c.
Since deformations of the curves in the same class as C6 and C7 cover the boundary divisor, we conclude
that the boundary divisor is in the base locus of |D| if a − c < 0 or if b − c < 0. Hence, the boundary
divisor is in the base locus of the divisors contained in the region bounded by Dunb, T,Ddeg and ∆ and
in c(Dunb∆) ∪ c(Ddeg∆).

Finally, consider the one-parameter family C8 of two-to-one covers of a line l in G(k, n) branched along
a fixed point p ∈ l and a varying point q ∈ l. Then

C8 ·D = c.

Curves in the class C8 cover the locus of double covers of a line. Hence, if c < 0, then the locus of double
covers of a line have to be contained in the restricted base locus. Note that since the locus of double
covers of a line is contained in both Q[(1, 1)∗] and Q[(2)∗], any divisor containing the latter in the base
locus also contains the locus of double covers. Hence, the locus of double covers is contained in the base
locus of every effective divisor contained in the complement of the closed cone generated by Hσ1,1 , Hσ2

and ∆. In particular, this locus is contained in the base locus of divisors contained in the region bounded
by Hσ1,1 , Hσ2 and P and in c(Hσ1,1P ) ∪ c(Hσ2P ).

We have verified that the loci described in the theorem are in the base locus of the corresponding
divisors. We will next show that the divisors listed in the theorem contain only the listed loci in their
stable base locus. The divisors Hσ1,1 , Hσ2 and T are base-point-free ([CS] §5). Hence, for divisors
contained in the closed cone generated by Hσ1,1 , Hσ2 and T the base locus is empty.

Next, note that the base locus of the linear system |P | is exactly the locus of double covers of a line.
The rational map p in the definition of P is a morphism in the complement of the locus of double covers
of a line. If the image of a map f is a degree two curve in G(k, n), then in the Plücker embedding of
G(k, n) the image spans a unique plane. In PN−1, we can always find a codimension three linear space
Γ not intersecting Λ. Hence, f is not in the indeterminacy locus of the map to G(3, N) and there is a
section of OG(3,N)(1) not containing the image of f . It follows that f is not in the base locus of |P |. By
the argument two paragraphs above, the locus of degree two maps onto a line is in the base locus of P .
We conclude that in the region bounded by P,Hσ1,1 and Hσ2 and in c(Hσ2P )∪ c(Hσ1,1P ) the stable base
locus consists of the locus of double covers of a line.

For a divisor contained in the region bounded by Dunb, P and Hσ1,1 and in c(PDunb)∪ c(Hσ1,1Dunb),
the stable base locus must be contained in the stable base locus of Dunb since every divisor in this
region is a non-negative linear combination of Dunb and base-point-free divisors. Similarly, for a divisor
contained in the region bounded by Ddeg, P and Hσ2 and in c(PDdeg) ∪ c(Hσ2Ddeg), the base locus
must be contained in the stable base locus Ddeg. In the region bounded by Ddeg, Dunb and P and in
c(DunbDdeg), the base locus must be contained in the union of the stable base loci of Ddeg and Dunb.
The (stable) base locus of Ddeg is Q[(1, 1)∗] and the (stable) base locus of Dunb is Q[(2)∗]. The linear
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spaces parameterized by a degree two map to G(k, n) span a linear space of dimension at most k+ 2. As
long as they span a linear space of dimension k + 2, then the projection from a general linear space of
codimension k+ 2 still spans a linear space of dimension k+ 2, hence the corresponding map is not in the
base locus of Ddeg. By symmetry, as long as the intersection of all the linear spaces parameterized by the
degree two map does not contain a k − 1 dimensional linear space, then the map is not contained in the
base locus of Dunb. Hence, the claims in parts (3), (4) and (5) of the theorem follow. Similarly, in the
region bounded by Dunb,∆ and Hσ1,1 and in c(Dunb∆), the base locus must be contained in the union of
Q[(2)∗] and the boundary divisor. In the region bounded by Ddeg, ∆ and Hσ2 and in c(Ddeg∆), the base
locus must be contained in the union of Q[(1, 1)∗] and the boundary divisor. We conclude the equality
in these two cases as well. Finally, in the region bounded by ∆, Hσ1,1 and Hσ2 the base locus has to be
contained in the boundary divisor. Hence in the complement of the closed cone spanned by Hσ1,1 , T and
Hσ2 the base locus must equal the boundary divisor by the calculations above. This completes the proof
of the theorem. �

Next, we describe the birational models of M0,0(G(k, n), 2) that correspond to the chambers in the
decomposition. For a big rational divisor class D whose section ring is finitely generated, let φD denote
the birational map

φD :M0,0(G(k, n), 2) 99K Proj(⊕m≥0(H0(O(bmDc)))).

Proposition 3.7. The Kontsevich moduli space M0,0(G(k, n), 2) admits the following morphisms:

(1) φtHσ1,1+(1−t)Hσ2 , for 0 < t < 1, is a morphism from M0,0(G(k, n), 2) to the normalization of the
Chow variety, which is an isomorphism in the complement of Q[(1)∗], the locus of double covers
of a line in G(k, n), and contracts Q[(1)∗] so that the locus of double covers with the same image
line maps to a point.

(2) φHσ1,1 and φHσ2 give two morphisms from M0,0(G(k, n), 2) to two contractions of the normal-
ization of the Chow variety, where φHσ1,1 (resp., φHσ2 ), in addition to the double covers of a
line, also contracts the boundary divisor and Q[(2)∗] (resp., Q[(1, 1)∗]). Any two maps f, f ′ in
the boundary for which the image is contained in the union of the same Schubert varieties Σ(2)∗

(resp., Σ(1,1)∗) map to the same point under φHσ1,1 (resp., φHσ2 ). Similarly, the stable maps in
Q[(2)∗] (resp., Q[(1, 1)∗]) with image contained in a fixed Schubert variety Σ(2)∗ (resp., Σ(1,1)∗)
map to the same point under φHσ1,1 (resp., φHσ2 ).

(3) If D is in the domain bounded by Hσ1,1 , Hσ2 and T , then D is ample and gives rise to an embedding
of M0,0(G(k, n), 2).

Proof. By [CS], the NEF cone of M0,0(G(k, n), 2), which coincides with the base-point-free cone, is the
closed cone spanned by Hσ1,1 , Hσ2 and T . We, therefore, obtain morphisms for sufficiently high and
divisible multiples of each of the rational divisors in this cone. The last part of the proposition follows
by Kleiman’s Theorem which asserts that the interior of the NEF cone is the ample cone.

The curves in the class C8 have intersection number zero with any divisor of the form tHσ1,1+(1−t)Hσ2 .
Since these curves cover the locus of double covers of a fixed line, we conclude that the maps obtained
from these divisors contract the locus of double covers of a fixed line to a point. The class H of the
divisor of maps whose image intersects a codimension two linear space in projective space gives rise
to the Hilbert-Chow morphism on M0,0(PN−1, 2). This morphism has image the normalization of the
Chow variety and is an isomorphism away from the locus of maps two-to-one onto their image. The
Plücker embedding of G(k, n) induces an inclusion of M0,0(G(k, n), 2) in M0,0(PN−1, 2). The pull-back
of H under this inclusion is Hσ1,1 + Hσ2 . By symmetry, there is no loss of generality in assuming that
0 < t ≤ 1/2. We can write

tHσ1,1 + (1− t)Hσ2 = t(Hσ1,1 +Hσ2) + (1− 2t)Hσ2 .

Since Hσ2 is base-point-free, the first part of the proposition follows.
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The cases of φHσ1,1 and φHσ2 are almost identical, so we concentrate on φHσ1,1 . Hσ1,1 has intersection
number zero with the curve classes C5, C7 and C8. Curves in the class C5 cover the locus Q[(2)∗]. Curves
in the class C7 cover the boundary divisor and curves in the class C8 cover Q[(1)∗]. We conclude that
these loci are contracted by φHσ1,1 . Part (2) of the proposition follows from these considerations. We
observe that the locus of degree two curves whose span does not lie in G(k, n) admit three distinct Chow
compactifications depending on whether one uses the codimension two class σ1,1, σ2 or aσ1,1 + bσ2 with
a, b > 0. The three models are the normalization of these Chow compactifications. �

Theorem 3.8. (1) The birational model corresponding to the divisor T is the space of weighted stable
maps M0,0(G(k, n), 1, 1). φT is an isomorphism away from the boundary divisor and contracts
the locus of maps with reducible domain f : C1∪C2 → G(k, n) that have f(C1∩C2) = p for some
fixed p ∈ G(k, n) to a point.

(2) For D ∈ c(Hσ1,1T ) or D ∈ c(Hσ2T ) the morphism φD is an isomorphism away from the boundary
divisor. On the boundary divisor, for D ∈ c(Hσ1,1T ) (resp., in c(Hσ2T )) the morphism contracts
the locus of line pairs that are contained in the same pair of intersecting linear spaces with class
Σn−k−1,...,n−k−1 (resp., Σn−k,...,n−k) to a point. These morphisms are flops of each other over
φT .

Proof. The curves in the class C6 (respectively, C7) have intersection number zero with a divisor class D in
c(Hσ1,1T ) (respectively, with D in c(Hσ2T )). The descriptions of the morphisms follow easily noting that
φD contracts these curves. Note that the further contractions to the image of φT are small contractions.
It is easy to check that they are flopping contractions. �

For the next lemma and theorem, we assume that the target is G(2, 4). Recall that the Plücker
map embeds G(2, 4) as a smooth quadric hypersurface in P5. The orthogonal Grassmannian OG(3, 6)
parameterizes planes contained in a smooth quadric hypersurface in P5, hence can be interpreted as
parameterizing planes contained in G(2, 4). OG(3, 6) has two isomorphic connected components (distin-
guished depending on whether the plane has cohomology class σ1,1 or σ2).

Lemma 3.9. Let OGσ1,1(G(2, 4)) and OGσ2(G(2, 4)) denote the two connected components of the or-
thogonal Grassmannian OG(3, 6) parametrizing projective planes contained in the Plücker embedding of
G(2, 4). Then the Hilbert scheme Hilb2x+1(G(2, 4)) corresponding to the Hilbert polynomial 2x + 1 is
isomorphic to the blow-up of G(3, 6) along OG(3, 6). The blow-down morphism

π : Hilb2x+1(G(2, 4))→ G(3, 6)

factors through
π1,1 : Hilb2x+1(G(2, 4))→ BlOGσ1,1G(3, 6)

and
π2 : Hilb2x+1(G(2, 4))→ BlOGσ2G(3, 6).

Proof. Consider the universal family I ⊂ G(3, 6) × P5 over the Grassmannian admitting two natural
projections φ1 and φ2 to G(3, 6) and P5, respectively. The bundle φ1∗φ

∗
2OP5(2) is naturally identified

with Sym2S∗. Since OG(3, 6) is defined by the vanishing of a general section of φ1∗φ
∗
2OP5(2) , we can

identify the normal bundle of OG(3, 6) at a point Λ of OG(3, 6) with Sym2S∗|Λ. Hilb2x+1(P5) is naturally
identified with P(Sym2(S∗))→ G(3, 6). Then Hilb2x+1(G(2, 4)) is given by

{([C], [Λ]) | [Λ] ∈ G(3, 6), C ⊂ Λ ∩G(2, 4), [C] ∈ Hilb2x+1(Λ)}.
The projection to G(3, 6) is clearly an isomorphism away from OG(3, 6). Over OG(3, 6) the fiber of the
Hilbert scheme is identified with the projectivization of Sym2S∗. It follows that Hilb2x+1(G(2, 4)) is
isomorphic to the blow-up of G(3, 6) along OG(3, 6). Since OG(3, 6) has two connected components, this
leads to two exceptional divisors that can be blown-down independently. The Lemma follows from these
considerations. �
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Theorem 3.10. The rational maps corresponding to the divisors D in the cone generated by Hσ1,1 , Hσ2

and P are as follows.

(1) Let 0 < t < 1. The Hilbert scheme Hilb2x+1(G(2, 4)) is the flip ofM0,0(G(2, 4), 2) over the Chow
variety ChowtHσ1,1+(1−t)Hσ2 . For D in the domain bounded by Hσ1,1 , Hσ2 and P , the rational
transformation φD equals M0,0(G(2, 4), 2) 99K Hilb2x+1(G(2, 4)).

(2) For D ∈ c(Hσ1,1P ), the rational transformation φD equals M0,0(G(2, 4), 2) 99K BlOGσ1,1G(3, 6).

(3) For D ∈ c(Hσ2P ), the rational transformation φD equals M0,0(G(2, 4), 2) 99K BlOGσ2G(3, 6).

(4) The rational transformation φP equals M0,0(G(2, 4), 2) 99K G(3, 6).

Proof. Consider the incidence correspondence consisting of triples (C,C∗,Λ), where Λ is a plane in P5, C
is a connected, arithmetic genus zero, degree two curve in G(2, 4)∩Λ and C∗ is a dual conic of C in Λ. This
incidence correspondence admits a map both to M0,0(G(2, 4), 2) and to Hilb2x+1(G(2, 4)) by projection
to the first two and by projection to the first and third factors, respectively. The projection to the first
factor gives a morphism to the Chow variety. Note that this projection is an isomorphism away from the
locus where C is supported on a line. The morphism to the Chow variety is a small contraction in the
case of both the Hilbert scheme and the Kontsevich moduli space. The fiber over a point corresponding
to a double line in the morphism from the Hilbert scheme to the Chow variety is isomorphic to P1

corresponding to the choice of plane Λ everywhere tangent to the Plücker embedding of G(2, 4) in P5.
The fiber over a point corresponding to a double line in the morphism fromM0,0(G(2, 4), 2) to the Chow
variety is isomorphic to P2 = Sym2(P1) corresponding to double covers of P1. Note in both the Hilbert
scheme and the Kontsevich moduli space the morphisms to the Chow variety are small contractions.
The locus of double lines in the Hilbert scheme (respectively, in M0,0(G(2, 4), 2)) has codimension 3
(respectively, 2). Finally, note that for D in the domain bounded by Hσ1,1 , Hσ2 and P , −D is ample on
the fibers of the projection of M0,0(G(2, 4), 2) to the Chow variety and D is ample on the fibers of the
projection of the Hilbert scheme to the Chow variety. We conclude that Hilb2x+1(G(2, 4)) is the flip of
M0,0(G(2, 4), 2) over the Chow variety. The rest of the Theorem follows from the previous lemma and
the definition of P . �

4. Degree three maps to Grassmannians

Let 3 ≤ k ≤ n− 3. In this section, we study the stable base locus decomposition of M0,0(G(k, n), 3).
We begin by introducing the divisor classes that will play an important role in our discussion. The Neron-
Severi space is spanned by the divisors Hσ1,1 , Hσ2 and ∆ = ∆1,2. In this basis, the divisors Ddeg, Dunb

and T have the following expressions (see §4 and §5 of [CS]):

T =
2
3

(Hσ1,1 +Hσ2 + ∆)

Ddeg =
1
3

(−Hσ1,1 + 2Hσ2 −∆)

Dunb =
1
3

(2Hσ1,1 −Hσ2 −∆)

Notation 4.1. Let N =
(
n
k

)
− 1. The Plücker map embeds G(k, n) in PN . Let C[λ] denote the closure

of the locus of maps f in M0,0(G(k, n), 3) with irreducible domain such that the map f factors through
the inclusion of some Schubert variety Σλ in G(k, n). Let Q(λ)L[µ] denote the closure of the locus of
maps with reducible domains C1 ∪C2 such that f restricts to a degree one map on C1 and a degree two
map on C2 such that the image of f |C2 is contained in some Schubert variety Σλ and the entire image
of f is contained in some Schubert variety Σµ. Observe that in the notation C,Q and L stand for cubic,
quadratic and linear, respectively.
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Example 4.2. Let f ∈M0,0(G(k, n), 3) be a general stable map. Then the linear spaces parameterized
by the image of f sweep out a cubic scroll S0,...,0,1,1,1. Such a scroll is a cone over the Segre embedding
of P1 × P2. In particular, every stable map in M0,0(G(k, n), 3) lies in a Schubert variety of the form
Σ(3,2,1)∗ . Hence, C[(3, 2, 1)∗] =M0,0(G(k, n), 3). C[(1)∗] is the locus of maps inM0,0(G(k, n), 3) that are
triple covers of a line in G(k, n). QL[(3, 2, 1)∗] is the boundary divisor.

In order to understand the stable base locus decomposition of M0,0(G(k, n), 3), we will introduce
many curve classes and divisor classes. Before we begin we summarize the curve classes in a table. The
first column lists the curve classes in the order that we introduce them below. The next three columns
contain the intersection numbers of these curve classes with the divisor classes Hσ1,1 , Hσ2 and ∆. In the
last column, we describe the locus covered by effective curves in that class.

Curve class B ·Hσ1,1 B ·Hσ2 B ·∆ Covers subvariety
B1 2 0 4 C[(1, 1, 1)∗]
B2 0 2 4 C[(3)∗]
B3 1 0 -1 ∆
B4 1 0 5 C[(1, 1)∗]
B5 0 1 5 C[(2)∗]
B6 0 0 > 0 Q((1)∗)L
B7 0 0 > 0 C[(1)∗]
B8 0 1 -1 ∆
B9 1 0 2 Q((1, 1)∗)L
B10 5 1 0 C[(2, 2, 1)∗]
B11 1 2 3 C[(3, 2)∗]
B12 1 5 0 C[(3, 2)∗]
B13 1 1 4 C[(2, 2)∗]
B14 9 0 0 C[(1, 1, 1)∗]
B15 0 9 0 C[(3)∗]
B16 2 0 0 C[(1)∗]
B17 0 2 0 C[(1)∗]

In a second table, we summarize all the divisor classes that we will introduce and express them in
terms of the classes Hσ1,1 , Hσ2 and ∆. These two tables should help the reader verify Theorem 4.8.

T = 2
3 (Hσ1,1 +Hσ2 + ∆)

Ddeg = 1
3 (−Hσ1,1 + 2Hσ2 −∆)

Dunb = 1
3 (2Hσ1,1 −Hσ2 −∆)

P = 1
3 (2Hσ1,1 + 2Hσ2 −∆)

F = 1
3 (5Hσ1,1 + 5Hσ2 −∆)

S = 1
3 (−Hσ1,1 + 5Hσ2 −∆)

S′ = 1
3 ( 5Hσ1,1 −Hσ2 −∆)

U = 2Hσ1,1 + 5Hσ2 −∆
U ′ = 5Hσ1,1 + 2Hσ2 −∆
R = Hσ1,1 +Hσ2 −∆
V = Hσ1,1 + 4Hσ2 − 2∆
V ′ = 4Hσ1,1 +Hσ2 − 2∆

We begin by introducing two divisor classes P and F . P (respectively, F ) is the pull-back of Ddeg

introduced in [CHS2] (respectively, F introduced in [C]) by the natural morphism

i :M0,0(G(k, n), 3)→M0,0(PN , 3).

The expressions for the classes follow from Theorem 1.1 parts v and vi of [C]. In order to make this
article self-contained, we will sketch these calculations below.
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The class P . The image of a map of degree three spans a linear space of dimension three or less in
the Plücker embedding of G(k, n). Consider the Zariski open set U in M0,0(G(k, n), 3) where the linear
span of the image of f is P3. Let P denote the class of the closure (in M0,0(G(k, n), 3)) of the locus in
U where the span of f intersects a fixed PN−4.

Lemma 4.3. The class P is given by

P =
1
3

(2Hσ1,1 + 2Hσ2 −∆).

The stable base locus of P consists of C[(1, 1)∗] ∪ C[(2)∗] ∪Q((1)∗)L.

Proof. Let B1 (respectively, B2) denote the curve inM0,0(G(k, n), 3) induced by a pencil of twisted cubic
curves on a quadric surface contained in a fixed Σ(1,1,1)∗ (respectively, Σ(3)∗). These pencils sweep out
a surface with cohomology class 2σ(1,1)∗ (respectively, 2σ(2)∗) and have four reducible members. Let B3

denote the curve in M0,0(G(k, n), 3) induced by a pencil of lines in Σ(1,1)∗ union a fixed conic attached
at the base-point of the pencil. The class P is determined by the following intersection numbers.

B1 ·Hσ1,1 = 2, B1 ·Hσ2 = 0, B1 ·∆ = 4, B1 · P = 0

B2 ·Hσ1,1 = 0, B2 ·Hσ2 = 2, B2 ·∆ = 4, B2 · P = 0

B3 ·Hσ1,1 = 1, B3 ·Hσ2 = 0, B3 ·∆ = −1, B3 · P = 1
P is the pull-back of a very ample divisor class under the rational map

φP :M0,0(G(k, n), 3) 99K G(3, N)

mapping a stable map to the span of its image. Hence, the base locus of P is contained in the indeter-
minacy locus of the map φP . Namely, it is contained in either the locus of maps whose (reduced) image
is a curve of degree less than three or a curve of degree three that spans a P2. If a curve of degree three
in the Grassmannian spans a P2, then the P2 must be contained in the Grassmannian since the ideal of
the Grassmannian in its Plücker embedding is generated by quadrics. We conclude that the base locus
of P is contained in the locus C[(1, 1)∗] ∪ C[(2)∗] ∪ Q((1)∗)L (note that the locus of three-to-one maps
onto a line is contained in C[(1, 1)∗] ∩ C[(2)∗]). Conversely, let B4 (respectively, B5) be the curves in
M0,0(G(k, n), 3) induced by a pencil of nodal cubics in Σ(1,1)∗ (respectively, Σ(2)∗) containing a fixed
node and 5 base-points. Curves in the classes B4 and B5 cover the loci C[(1, 1)∗] and C[(2)∗], respectively.
We have the following intersection numbers

B4 ·Hσ1,1 = 1, B4 ·Hσ2 = 0, B4 ·∆ = 5, B4 · P = −1

B5 ·Hσ1,1 = 0, B5 ·Hσ2 = 1, B5 ·∆ = 5, B5 · P = −1
Therefore, C[(1, 1)∗] ∪ C[(2)∗] must be contained in the restricted base locus of P . Similarly, let B6

be a moving curve in Q((1)∗)L such that the (reduced) image of the maps parameterized by B6 is
a fixed pair of lines in G(k, n). Since the image lines do not vary, we have the intersection numbers
B6 ·Hσ1,1 = B6 ·Hσ2 = 0. The intersection number of B6 with ∆ can be taken to be positive. It follows
that the intersection number of B6 with P will be negative. We conclude that Q((1)∗)L is contained in
the restricted base locus of P . �

The class F . Fix two linear spaces Λ ∼= PN−3 ⊂ Γ ∼= PN−1 in PN . Let V denote the open subset of
M0,0(G(k, n), 3) parameterizing maps f such that f−1(Γ) is three distinct points. Let F denote the class
of the closure in M0,0(G(k, n), 3) of the locus of maps f such that the line l spanned by a pair of points
in Γ∩ Image(f) intersects Λ. Equivalently, the projection from Λ of the image of f has a node contained
in the image of the projection of Γ.

Lemma 4.4. The class F is equal to

F =
1
3

(5Hσ1,1 + 5Hσ2 −∆)

The stable base locus of F consists of C[(1)∗] ∪Q((1)∗)L.
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Proof. Let B4 and B5 be the curves introduced in the proof of Lemma 4.3. Then F is the class of
the pull-back under the natural inclusion of the corresponding divisor class from M0,0(PN , 3). By [C],
F · B4 = F · B5 = 0. On the other hand, B3 · F = 2. The formula for F follows from these intersection
numbers and the calculations in the proof of Lemma 4.3. Suppose the image of a map f is a curve of
degree three in G(k, n) ⊂ PN . Then we can always choose a hyperplane Γ in PN that intersects the image
of f in three distinct points p1, p2, p3. By taking Λ to be a codimension two linear subspace of Γ not
intersecting the lines joining any pair of points pi, pj with i 6= j, we obtain a divisor in the class F whose
support does not contain f . We conclude that the base locus of F is contained in C[(1)∗] ∪ Q((1)∗)L.
Since the curve B6 introduced in the proof of Lemma 4.3 has B6 · F < 0, Q((1)∗)L is in the restricted
base locus of P . Similarly, let B7 be a moving one-parameter family of maps in C[(1)∗] intersecting the
boundary divisor whose image is a fixed line in G(k, n). Since B7 ·Hσ1,1 = B7 ·Hσ2 = 0 and B7 ·∆ > 0,
we conclude that B7 · F < 0 and C[(1)∗] is in the restricted base locus of F . �

The Pk−1’s parameterized by a twisted cubic curve in G(k, n) sweep out a rational scroll of degree
three in Pn−1. We can define divisors in M0,0(G(k, n), 3) by imposing conditions on this scroll.

The classes S and S′. It is easiest to understand the class S in G(3, 6). The linear spaces parameterized
by a general rational cubic curve in G(3, 6) sweep out the Segre embedding of P1×P2 in P5. The projection
of the Segre threefold from a point to P4 is a cubic hypersurface in P4 with a double plane. We can define
a divisor by requiring this double plane to intersect a fixed line in P4. More generally, fix a linear space
Λ = Pn−k−3 ⊂ Γ = Pn−k−1 in Pn−1. Let U be the Zariski open subset of M0,0(G(k, n), 3) consisting of
maps f such that the linear spaces parameterized by the image of f sweep out a k-dimensional (possibly
reducible) cubic scroll. Recall that an irreducible cubic scroll is a cone over the Segre embedding of
P1 × P2, or a degeneration to a cone over a cubic surface scroll or a twisted cubic curve. Let S be
the class of the closure in M0,0(G(k, n), 3) of the locus of maps where the scroll contains a quadric
hypersurface of dimension k − 1 whose span contains Λ and intersects Γ in a linear space of dimension
n − 4. The projection of a cubic scroll of dimension k in Pn−1 from Λ is a cubic hypersurface in Pk+1

which is double along a Pk−1. Conversely, an irreducible cubic hypersurface in Pk+1 which is double along
a Pk−1 arises as a projection of a cubic scroll. S is the class of the divisor of maps where the singular
locus of the projection of the scrolls from Λ intersects a fixed line (the image of the projection of Γ). The
reader will notice that the class S is defined in M0,0(G(k, k + 2), 3) and pulled-back to M0,0(G(k, n), 3)
under the rational map induced by projection from Λ.

Given a divisor class D inM0,0(G(n−k, n), 3) we can define a dual divisor class D′ inM0,0(G(k, n), 3).
G(k, n) andG(n−k, n) are isomorphic. This isomorphism induces an isomorphism betweenM0,0(G(k, n), 3)
and M0,0(G(n− k, n), 3). Let D′ denote the pull-back of the divisor class D in M0,0(G(n− k, n), 3) un-
der the isomorphism. In particular, define S′ to be the divisor class obtained by starting with S in
M0,0(G(n− k, n), 3).

Lemma 4.5. The classes S and S′ are equal to the following:

S =
1
3

(−Hσ1,1 + 5Hσ2 −∆)

S′ =
1
3

( 5Hσ1,1 −Hσ2 −∆)

The stable base locus of S consists of C[(1, 1, 1)∗] ∪ Q((1, 1)∗)L. The stable base locus of S′ consists of
C[(3)∗] ∪Q((2)∗)L.

Proof. The assertions about S′ follow from the assertions about S by duality. To calculate the class of S,
we use test families. Consider a pencil of plane cubics with a fixed node. Take the cone over this pencil
with a vertex equal to a projective linear space Pk−2. This pencil of cubic scrolls induces a one-parameter
family of degree three curves in G(k, n), hence a curve in M0,0(G(k, n), 3). Note that the class of this
curve is B5 defined in Lemma 4.3. Since the singular locus in this family of scrolls does not vary, a general
line will be disjoint from the singular locus. Note that the singular loci of the five reducible members of
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the family are also disjoint from a general line. We have the intersection numbers

B5 ·Hσ1,1 = 0, B5 ·Hσ2 = 1, B5 ·∆ = 5, B5 · S = 0.

Recall from the proof of Lemma 4.3 that B3 is the curve induced in M0,0(G(k, n), 3) by attaching a
conic at the base point of a pencil of lines contained in Σ(1,1)∗ . Similarly, let B8 be the curve induced in
M0,0(G(k, n), 3) by attaching a conic at the base point of a pencil of lines contained in Σ(2)∗ . We can
interpret the corresponding scrolls as follows. The scrolls swept out by the linear spaces parameterized
by points in B3, are the union of a fixed quadric scroll with a fixed linear space L of projective dimension
k having a common Pk−1. The intersection of the Pk−1’s varying in a pencil in L is the only data that
varies. The scrolls swept out by the linear spaces parameterized by points in B8, are the unions of a fixed
quadric scroll with a pencil of linear spaces of projective dimension k having a common Pk−1 with the
quadric scroll. Using these geometric descriptions, the following intersection numbers are straightforward
to calculate:

B3 ·Hσ1,1 = 1, B3 ·Hσ2 = 0, B3 ·∆ = −1, B3 · S = 0

B8 ·Hσ1,1 = 0, B8 ·Hσ2 = 1, B8 ·∆ = −1, B8 · S = 2
The class of S (and by duality that of S′) follows from these calculations.

Let B9 be the curve induced in M0,0(G(k, n), 3) from a pencil of conics in Σ(1,1)∗ union a line at a
base point of the pencil. Curves in the same class as B9 cover the locus Q((1, 1)∗)L. Since

B9 ·Hσ1,1 = 1, B9 ·Hσ2 = 0, B9 ·∆ = 2,

we conclude that B9 · S = −1 < 0. Therefore, Q((1, 1)∗)L is in the restricted base locus of S. Recall
from the proof of Lemma 4.3 that B1 is a pencil of twisted cubics on a quadric contained in Σ(1,1,1)∗ .
Since curves in the class B1 cover C[(1, 1, 1)∗] and B1 ·S = −2 < 0, we conclude that C[(1, 1, 1)∗] is in the
restricted base locus of S.

Suppose X is an irreducible cubic scroll of dimension k that spans a projective linear space of dimension
k + 1 or more. Then the singular locus of X has dimension less than or equal to k − 1. We can always
choose a linear space Λ = Pn−k−2 so that the projection of X still spans a linear space of dimension k+1.
We can then find a line l disjoint from the singular locus of the projection X. If we take Γ to be the span
of Λ and l, we obtain a section of S not vanishing on the point in M0,0(G(k, n), 3) induced by the scroll
X. Similarly, as long as the linear spaces parameterized by a point in M0,0(G(k, n), 3) do not cover a
linear space of dimension k multiple-to-one, then the singular locus of the resulting (possibly reducible)
scroll has dimension less than or equal to k − 1 and the same argument shows that the point is not in
the base locus of S. We conclude that the base locus of S is contained in C[(1, 1, 1)∗]∪Q((1, 1)∗)L, hence
equality holds. This completes the proof of the proposition. �

Finally, the following lemma determines the stable base locus of Ddeg and Dunb.

Lemma 4.6. The stable base locus of Dunb is C[(3, 2)∗] ∪ Q((2)∗)L. The stable base locus of Ddeg is
C[(2, 2, 1)∗] ∪Q((1, 1)∗)L.

Proof. By duality, it suffices to consider the stable base locus of Ddeg. Note that C[(2, 2, 1)∗]∪Q((1, 1)∗)L
is the locus of maps whose images lie in a sub-Grassmannian G(k, k + 2) of G(k, n). The image of
every map in M0,0(G(k, n), 3) factors through some embedding of G(k, k + 3) in G(k, n). Suppose the
image of a map f does not lie in a sub-Grassmannian G(k, k + 2), then the image of f lies in a sub-
Grassmannian G(k, k + 3). Take a linear space Λ of dimension n − k − 3 that does not intersect the
(k + 3)-dimensional linear space spanned by the linear spaces parameterized by the image of f . The
locus of maps g ∈ M0,0(G(k, n), 3) such that the projection from Λ of the span of the linear spaces
parameterized by g has dimension less than or equal to k + 2 is an effective divisor D in the class Ddeg.
Since f 6∈ D, we conclude that the stable base locus of Ddeg is contained in C[(2, 2, 1)∗] ∪ Q((1, 1)∗)L.
By the argument in the previous lemma, Q((1, 1)∗)L is in the stable base locus of Ddeg. To see that
C[(2, 2, 1)∗] is contained in the stable base locus of Ddeg, take a pencil of cubic hypersurfaces in Pk+1

double along a fixed projective linear space Pk−1. (Note that a general projection of a cubic scroll of
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dimension k to Pk+1 is a cubic hypersurface double along a Pk−1.) This family of cubic hypersurfaces
induces a curve B10 in M0,0(G(k, n), 3). We have the following intersection numbers:

B10 ·Hσ1,1 = 5, B10 ·Hσ2 = 1, B10 ·∆ = 0.

A simple dimension count shows that such a pencil does not have any reducible members. Hence, the
last two intersection numbers are clear. To calculate the first one, observe that the pencil induces a
pencil of cubic curves in a plane double at a fixed point. By Kleiman’s Transversality Theorem, the
first intersection number is the number of reducible curves in such a pencil. We have already seen
that this number is 5. Using the expression for the class of Ddeg, we conclude that B10 · Ddeg = −1.
Curves in the class B10 cover the locus C[(2, 2, 1)∗]. We conclude that the stable base locus of Ddeg is
C[(2, 2, 1)∗] ∪Q((1, 1)∗)L. �

Notation 4.7. Let U and U ′ be the divisor classes

U = 2Hσ1,1 + 5Hσ2 −∆, U ′ = 5Hσ1,1 + 2Hσ2 −∆.

Let R be the divisor class
R = Hσ1,1 +Hσ2 −∆.

Let V and V ′ be the divisor classes

V = Hσ1,1 + 4Hσ2 − 2∆, V ′ = 4Hσ1,1 +Hσ2 − 2∆.

The next theorem describes the stable base locus decomposition of M0,0(G(k, n), 3). Since there are
22 chambers in the decomposition, the statement of the theorem is necessarily long. The decomposition
is summarized in Figure 2, where we draw a cross-section of the three-dimensional cone.

(22)

F

P

U’ U

V’
R

∆

T

S’

H
σ 1,1

H
σ 2

V

S

Dunb Ddeg

(1)

(2)

(4)(3)
(5)(6)

(7)(8)

(9)

(10)(11)

(14)(15)

(18)(19)

(20)
(21)

Figure 2. The stable base locus decomposition of M0,0(G(k, n), 3).

Theorem 4.8. The stable base locus decomposition of the effective cone of M0,0(G(k, n), 3), with 3 ≤
k ≤ n− 3, is as follows:
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(1) In the closed cone spanned by Hσ1,1 , Hσ2 and T the stable base locus is empty.

(2) In the domain bounded by ∆, Hσ1,1 , T and Hσ2 union c(Hσ1,1∆) ∪ c(Hσ2∆) the stable base locus
is equal to the boundary divisor.

(3) In the domain bounded by Hσ2 ,∆ and S union c(∆S), the stable base locus is the union of
C[(1, 1, 1)∗] and the boundary divisor.

(4) In the domain bounded by Ddeg, S and ∆ union c(∆Ddeg), the stable base locus is the union of
C[(2, 2, 1)∗] and the boundary divisor.

(5) In the domain bounded by Hσ1,1 ,∆ and S′ union c(∆S′), the stable base locus is the union of
C[(3)∗] and the boundary divisor.

(6) In the domain bounded by Dunb, S
′ and ∆ union c(∆Dunb) the stable base locus is the union of

C[(3, 2)∗] and the boundary divisor.
(7) In the domain bounded by Ddeg, R and V union c(DdegR), the stable base locus is C[(2, 2, 1)∗] ∪
C[(3)∗] ∪Q((2)∗)L ∪Q((1, 1)∗)L.

(8) In the domain bounded by Dunb, R and V ′ union c(DunbR), the stable base locus is C[(3, 2)∗] ∪
C[(1, 1, 1)∗] ∪Q((1, 1)∗)L ∪Q((2)∗)L.

(9) In the domain bounded by Ddeg, Dunb and R union c(DdegDunb), the stable base locus is the union
C[(3, 2)∗] ∪ C[(2, 2, 1)∗] ∪Q((2)∗)L ∪Q((1, 1)∗)L.

(10) In the domain bounded by Ddeg, S and V union c(V Ddeg)∪ c(SDdeg), the stable base locus is the
locus C[(2, 2, 1)∗] ∪Q((1, 1)∗)L.

(11) In the domain bounded by Dunb, S
′ and V ′ union c(V ′Dunb)∪ c(S′Dunb), the stable base locus is

the locus C[(3, 2)∗] ∪Q((2)∗)L.
(12) In the domain bounded by F,Hσ1,1 and Hσ2 union c(Hσ1,1F ) ∪ c(Hσ2F ) the stable base locus is

C[(1)∗] ∪Q((1)∗)L.
(13) In the domain bounded by P,U, F and F ′ union c(UP )∪c(U ′P ), the stable base locus is C[(1, 1)∗]∪

C[(2)∗] ∪Q((1)∗)L.
(14) In the domain bounded by S,Hσ2 and U union c(US) ∪ c(Hσ2S), the stable base locus is

C[(1, 1, 1)∗] ∪Q((1)∗)L.

(15) In the domain bounded by S′, Hσ1,1 and U ′ union c(U ′S
′
) ∪ c(Hσ1,1S

′
), the stable base locus is

C[(3)∗] ∪Q((1)∗)L.
(16) In the domain bounded by F,Hσ2 and U union c(UF )∪c(UHσ2), the stable base locus is C[(1, 1)∗]∪

Q((1)∗)L.
(17) In the domain bounded by F,Hσ1,1 and U ′ union c(U ′F ) ∪ c(U ′Hσ1,1), the stable base locus is

C[(2)∗] ∪Q((1)∗)L.
(18) In the domain bounded by P, S and U union c(PS), the stable base locus is C[(1, 1, 1)∗]∪C[(2)∗]∪

Q((1, 1)∗)L.
(19) In the domain bounded by P, S′ and U ′ union c(PS′), the stable base locus is C[(1, 1)∗]∪C[(3)∗]∪

Q((2)∗)L.
(20) In the domain bounded by P, V,R and V ′, the stable base locus is C[(1, 1, 1)∗]∪C[(2, 2)∗]∪C[(3)∗]∪

Q((1, 1)∗)L ∪Q((2)∗)L.
(21) In the domain bounded by P, S and V the stable base locus is C[(1, 1, 1)∗]∪C[(2, 2)∗]∪Q((1, 1)∗)L.

(22) In the domain bounded by P, S′ and V ′, the stable base locus is C[(3)∗] ∪ C[(2, 2)∗] ∪Q((2)∗)L.

Proof. The divisors Hσ1,1 , Hσ2 and T are base-point-free (see [CS] §5). It follows that in the closed cone
generated by these divisors the stable base locus is empty. Let D = aHσ1,1 + bHσ2 + c∆ be an effective
divisor. If curves with class B cover a subvariety X ofM0,0(G(k, n), 3) and B ·D < 0, then X has to be
contained in the base locus of D. Conversely, if D can be expressed as a non-negative linear combination
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of D′ and base-point-free divisors, then the stable base locus of D is contained in the stable base locus
of D′. Using these two observations repeatedly we can determine the stable base locus decomposition.

• The boundary. Recall from the proof of Lemma 4.3 that B3 is the class of the curve inM0,0(G(k, n), 3)
induced by a pencil of lines in Σ(1,1)∗ union a fixed conic attached at the base point. B3 · D = a − c.
Similarly, recall from the proof of Lemma 4.5 that B8 is the class of the curve inM0,0(G(k, n), 3) induced
by a pencil of lines in Σ(2)∗ union a fixed conic. B8 · D = b − c. Since curves in the class B3 and B12

cover the boundary divisor, we conclude that the boundary divisor is in the restricted base locus of D
whenever a < c or b < c. Equivalently, the boundary divisor is in the stable base locus of D if D is in the
complement of the closed cone generated by Dunb, Ddeg and T . Conversely, since T is base-point-free,
the stable base locus of any divisor in the closed cone generated by Dunb, Ddeg and T must be contained
in the union of the stable base loci of Ddeg and Dunb. Therefore, the boundary divisor is contained in the
stable base locus of D if and only if D is in the complement of the closed cone generated by Dunb, Ddeg

and T .

• Q((1, 1)∗)L and Q((2)∗)L. Recall from the proof of Lemma 4.5 that B9 is the curve inM0,0(G(k, n), 3)
obtained by taking a pencil of conics in Σ(1,1)∗ union a fixed line at a base point of a pencil. Since curves
in the same class as B9 cover Q((1, 1)∗)L and B11 ·D = a + 2c, we conclude that Q((1, 1)∗)L is in the
restricted base locus of D if a < −2c. By replacing Σ(1,1)∗ with Σ(2)∗ in this discussion, we conclude that
Q((2)∗)L is in the restricted base locus of D if b < −2c. Conversely, Q((1, 1)∗)L (resp., Q((2)∗)L) is not
contained in the stable base locus of Dunb (resp., Ddeg). We conclude that Q((1, 1)∗)L is contained in
the stable base locus of D if and only if D is in the complement of the closed cone spanned by Dunb, Hσ2

and T . Similarly, Q((2)∗)L is in the stable base locus of D if and only if D is in the complement of
Ddeg, Hσ1,1 and T .

• Q((1)∗)L. During the proof of Lemma 4.3, we showed that Q((1)∗)L is in the stable base locus of D if
c < 0. It follows that Q((1)∗)L is in the stable base locus of D if and only if D is in the complement of
the closed cone generated by Hσ1,1 , Hσ2 and T .

• C[(3, 2)∗] and C[(2, 2, 1)∗]. We would like to show that if D is an effective divisor in the complement
of the closed cone generated by Dunb, S,∆ (respectively, in the complement of the closed cone generated
by Ddeg, S

′,∆), then C[(2, 2, 1)∗] (respectively, C[(3, 2)∗]) is in the stable base locus of D. We define two
families of cubic surface scrolls in P4. Fix a pencil of conics in P2 and a general line l in P4. Fix three
points p1, p2, p3 on the line and three of the base points q1, q2, q3 of the pencil of conics. For each member
Ct of the pencil of conics, there exists a unique cubic scroll containing Ct, l and the lines lpi,qi joining pi
to qi. Let F1 be the corresponding family of cubic scrolls. Note that F1 has three reducible members;
all of the scrolls in F1 are non-degenerate; and the directrix of the scrolls l does not vary in the family.
Take the cone with a fixed vertex Pk−3 to obtain a family of cubic scrolls of dimension k. This family
induces a curve with class B11 in M0,0(G(k, n), 3). We claim that

B11 ·Hσ1,1 = 1, B11 ·Hσ2 = 2, B11 ·∆ = 3

For the last equality, note that the family has three reducible members. Since the total space of the
family is smooth at the nodes of the three reducible members, the intersection with the boundary divisor
is transverse at these points. The family F1 induces a curve with class B′11 in M0,0(G(2, 5), 3). It is
straightforward to see that B11 ·Hσ1,1 = B′11 ·H ′σ1,1

and B11 ·Hσ2 = B′11 ·H ′σ2
, where the primes denote

that the intersection is taking place in M0,0(G(2, 5), 3). Since in the family F1 the members are non-
degenerate and the directrices are constant, we have the intersection numbers B′11 ·D′deg = B′11 ·D′unb = 0
inM0,0(G(2, 5), 3). The classes of these divisors are calculated in [CS] (see also the next section). Solving
for the coefficients we obtain the claimed equalities.

Next, take a general projection of the scroll S2,2 to P4. Recall that the scroll S2,2 is the embedding
of P1 × P1 in P5 under the complete linear system OP1×P1(1, 2). Take a general line l in P4 and fix
an isomorphism between l and the conics in S2,2 and let S1,2,2 be the scroll generated by taking the
spans of the points under this isomorphism. The scroll S1,2,2 gives rise to a one-parameter family F2

of cubic scrolls in P4. In the family F2 none of the members are reducible and the directrices of all the
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cubic scrolls are l. Taking the cone over F2 with a fixed vertex Pk−3 induces a curve with class B12 in
M0,0(G(k, n), 3). We have the following intersection numbers:

B12 ·Hσ1,1 = 1, B12 ·Hσ2 = 5, B12 ·∆ = 0

Since the degree of the cone over S1,2,2 is five and the family does not have any reducible elements, the
last two equalities are immediate. The first equality can be computed, as in the previous case, by noting
that F2 induces a curve B′12 in M0,0(G(2, 5), 3) satisfying the equalities B12 · Hσ1,1 = B′12 · Hσ1,1 and
B′12 ·D′unb = 0.

Since curves in the class B11 and B12 cover the locus C[(3, 2)∗], we conclude that if the effective divisor
D satisfies a+ 5b < 0 or a+ 2b+ 3c < 0, then C[(3, 2)∗] is in the restricted base locus of D. By duality, if
5a+ b < 0 or 2a+ b+ 3c < 0, then the locus C[(2, 2, 1)∗] is in the restricted base locus of D. Conversely,
by Lemmas 4.5 and 4.6, C[(2, 2, 1)∗] is not contained in the union of the stable base loci of Dunb, S and
∆ and C[(3, 2)∗] is not contained in the union of the stable base loci of Ddeg, S

′ and ∆. We conclude
that C[(2, 2, 1)∗] (respectively, C[(3, 2)∗]) is in the stable base locus of D if and only if D is an effective
divisor in the complement of the closed cone generated by Dunb, S,∆ (respectively, in the complement of
the closed cone generated by Ddeg, S

′,∆).

• C[(2, 2)∗]. Fix a linear space Λ of dimension k − 2 disjoint from a four dimensional linear space Γ. Let
φ : G(2, 4)→ G(k, n) be the morphism obtained by taking the span of any two dimensional linear space
in Γ with Λ and considering the resulting subspaces as a subspace of the n-dimensional ambient vector
space. A codimension two linear section of G(2, 4) in its Plücker embedding maps to a quadric surface
in the Plücker embedding of G(k, n) of class σ(1,1)∗ + σ(2)∗ . Consider a pencil of twisted cubics on this
quadric surface and let B13 be its class. The following intersection numbers are easy to compute:

B13 ·Hσ1,1 = 1, B13 ·Hσ2 = 1, B13 ·∆ = 4
Since curves with class B13 cover the locus C[(2, 2)∗], we conclude that C[(2, 2)∗] is in the restricted base
locus of D if a + b + 4c < 0. On the other hand, C[(2, 2)∗] is not in the union of the stable base loci of
S, S′ and ∆. We conclude that C[(2, 2)∗] is in the base locus of D if and only if D is in the complement
of the closed cone generated by S, S′ and ∆.

• C[(1, 1, 1)∗] and C[(3)∗]. Recall from the proof of Lemma 4.3 that B1 (respectively, B2) are the classes
of the curves in M0,0(G(k, n), 3) induced by a pencil of twisted cubics on a quadric surface contained in
Σ(1,1,1)∗ (respectively, Σ(3)∗). Curves in the class B1 (respectively, B2) cover C[(1, 1, 1)∗] (respectively,
C[(3)∗]). Since B1 ·D = 2a+4c and B2 ·D = 2b+4c, we conclude that if a < −2c (respectively, b < −2c),
then C[(1, 1, 1)∗] (respectively, C[(3)∗]) is in the restricted base locus of D.

Next, consider a general projection of the third Veronese embedding of P2 in P9 to P3. The image of a
pencil of lines in P2 under this map gives rise to a one-parameter family F of rational cubics in P3. Let
B14 (respectively, B15) be the classes of the curves in M0,0(G(k, n), 3) that are induced by taking the
family F in Σ(1,1,1)∗ (respectively, Σ(3)∗). The following intersection numbers are easy to compute:

B14 ·Hσ1,1 = 9, B14 ·Hσ2 = 0, B14 ·∆ = 0

B15 ·Hσ1,1 = 0, B15 ·Hσ2 = 9, B15 ·∆ = 0
Since curves in the class B14 (respectively, B15) cover C[(1, 1, 1)∗] (respectively, C[(3)∗]), we conclude that
C[(1, 1, 1)∗] (respectively, C[(3)∗]) is in the restricted base locus of D if a < 0 (respectively, b < 0). In
summary, we conclude that C[(1, 1, 1)∗] is in the restricted base locus of the divisors contained in the
complement of the closed cone generated by Dunb, Hσ2 and ∆. Similarly, C[(3)∗] is in the restricted base
locus of the divisors contained in the complement of the closed cone generated by Ddeg, Hσ1,1 and ∆.

• C[(1, 1)∗] and C[(2)∗]. The proof of Lemma 4.3 shows that if a+ 5c < 0 (respectively, b+ 5c < 0), then
C[(1, 1)∗] (respectively, C[(2)∗]) is contained in the restricted base locus of D. C[(1, 1)∗] is not contained
in the union of the stable base loci of S′ and ∆. Similarly, C[(2)∗] is not contained in the union of the
stable base loci of S and ∆. We conclude that C[(1, 1)∗] (resp., C[(2)∗]) is in the stable base locus of D if
and only if D is in the complement of the closed cone spanned by S′, Hσ2 and ∆ (resp., S,Hσ1,1 and ∆).
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• C[(1)∗]. The proof of Lemma 4.4 shows that if c < 0, then the locus of maps that have a component
mapping multiple-to-one onto a line is in the restricted base locus of D. Take a smooth quadric surface in
Σ(1,1,1)∗ or Σ(3)∗ . Fix a three-to-one map from P1 to P1 and map P1 to each member of one of the rulings
of the quadric surface. The induced curves B16 and B17, respectively, have the following intersection
numbers:

B16 ·Hσ1,1 = 2, B16 ·Hσ2 = 0, B16 ·∆ = 0

B17 ·Hσ1,1 = 0, B17 ·Hσ2 = 2, B17 ·∆ = 0

We conclude that C[(1)∗] is in the stable base locus of D if and only if D is contained in the complement
of the closed cone spanned by Hσ1,1 , Hσ2 and ∆.

We now combine these observations to conclude the proof of the theorem. Let D be a divisor contained
in the closed cone spanned by ∆, Hσ1,1 andHσ2 but not contained in the closed cone spanned byHσ1,1 , Hσ2

and T . Since Hσ1,1 and Hσ2 are base-point-free, the stable base locus of D has to be contained in the
boundary divisor. By the discussion of the boundary divisor, the stable base locus of D contains the
boundary divisor. We conclude that the stable base locus of D is equal to the boundary divisor.

If D is a divisor in the domain bounded by S,∆ and Hσ2 union c(∆S), then the stable base locus of
D is contained in the union of the stable base loci of ∆ and S. We conclude that the stable base locus of
D is C[(1, 1, 1)∗] union the boundary divisor. Similarly, if D is a divisor in the domain bounded by S′,∆
and Hσ1,1 union c(∆S′), then the stable base locus of D is C[(3)∗] union the boundary divisor.

Suppose D is in the region bounded by Ddeg,∆ and S union c(∆Ddeg) (respectively, in the region
bounded by Dunb,∆ and S′ union c(∆Dunb)). Then the stable base locus of D has to be contained
in the union of the stable base loci of Ddeg and ∆ (respectively, Dunb and ∆). We deduce that in the
region bounded by Ddeg,∆ and S union c(∆Ddeg), the stable base locus is equal to C[(2, 2, 1)∗] union the
boundary divisor. In the region bounded by Dunb,∆ and S′ union c(∆Dunb), the stable base locus is the
union of C[(3, 2)∗] and the boundary divisor.

Similarly, if D is in the region bounded by Ddeg, S and V union c(DdegS) ∪ c(DdegV ) (respectively,
Dunb, S

′ and V ′ union c(DunbS
′) ∪ c(DunbV

′)), then the stable base locus of D has to be a subset of
the stable base locus of Ddeg (respectively, Dunb). This follows from the fact that D is a non-negative
linear combination of Ddeg (respectively, Dunb) and base-point-free divisors Hσ1,1 and Hσ2 . We conclude
that these stable base loci are C[(2, 2, 1)∗] ∪ Q((1, 1)∗)L (respectively, C[(3, 2)∗] ∪ Q((2)∗)L). An almost
identical argument shows that if D is in the region bounded by Ddeg, Dunb and R union c(DdegDunb),
then the stable base locus of D is C[(2, 2, 1)∗] ∪ C[(3, 2)∗] ∪Q((1, 1)∗)L ∪Q((2)∗)L.

If D is in the region bounded by Ddeg, R and V union c(RDdeg), then the stable base locus of D is
contained in the union of the stable base loci of Ddeg and S′ since every divisor in this region can be
expressed as a non-negative linear combination of Ddeg, S

′ and base-point-free divisors. Similarly, if D
is in the region generated by Dunb, R and V ′ union c(RDunb), then the stable base locus is contained in
the union of the stable base loci of S and Dunb. We conclude that in the region generated by Ddeg, R
and V union c(RDdeg), the stable base locus is C[(2, 2, 1)∗] ∪ C[(3)∗] ∪Q((2)∗)L. In the region generated
by Dunb, R and V ′ union c(RDunb), the stable base locus is C[(3, 2)∗] ∪ C[(1, 1, 1)∗] ∪Q((1, 1)∗)L.

In the region bounded by F,Hσ2 and Hσ1,1 union c(Hσ1,1F ) ∪ c(Hσ2F ), the stable base locus has to
be contained in the stable base locus of F . We conclude that the stable base locus is C[(1)∗]∪Q((1)∗)L.

In the domain bounded by S,U and Hσ2 union c(US) ∪ c(Hσ2S) the stable base locus has to be
contained in that of S. We conclude that the stable base locus is C[(1, 1, 1)∗] ∪ Q((1, 1)∗)L. Similar
considerations apply for S′, U ′ and Hσ1,1 union c(U ′S

′
)∪ c(Hσ1,1S

′
). The stable base locus in the domain

bounded by F,U and Hσ2 union c(UF ) ∪ c(UHσ2) is contained in the stable base locus of U that is
contained in the intersection of the stable base loci of P and S. We conclude that the stable base locus
is C[(1, 1)∗] ∪ Q((1)∗)L. Similar considerations apply to the domain bounded by F,U ′ and Hσ1,1 union
c(U ′F ) ∪ c(U ′Hσ1,1). �
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Remark 4.9. The proof of Theorem 4.8 also leads to a detailed description of some of the birational
models of M0,0(G(k, n), 3). The model corresponding to T is the moduli space of weighted stable maps
M0,0(G(k, n), 2, 1) defined in [MM] and is obtained as a divisorial contraction of M0,0(G(k, n), 3) that
contracts the boundary divisor. The morphism φT collapses the locus of maps with reducible domain that
have the same degree two component and the same node, remembering only the degree two component
and the point of attachment. For D ∈ c(Hσ1,1T ) or D ∈ c(Hσ2T ), the models give two other divisorial
contractions of the boundary divisor that further admit small contractions to M0,0(G(k, n), 2, 1). The
model corresponding to a divisor in D ∈ c(Hσ1,1Hσ2) is the normalization of the Chow variety. For
such D, φD is a small contraction that contracts the locus of maps that have a component multiple-to-
one onto their image remembering only the image and the multiplicity. The normalization of the Chow
variety admits two further contractions (corresponding to the divisors Hσ1,1 and Hσ2) that are themselves
Chow varieties formed with respect to the codimension two classes σ1,1 and σ2. The flip is a divisorial
contraction of the Hilbert scheme contracting the divisor of nodal cubics by forgetting the embedded
structure.

5. Degree three maps to Grassmannians of lines

The discussion in the previous section has to be slightly modified for Grassmannians G(2, n). In
this case, the divisors S′ and Dunb introduced in the previous section coincide and part of the effective
cone collapses. Consequently, the decomposition has fewer chambers. The description of the remaining
chambers is almost identical. The reader might wish to compare Figures 2 and 3 to see the differences.
In this section, we will briefly sketch the minor modifications necessary for understanding the stable base
locus decomposition for M0,0(G(2, n), 3), where n ≥ 5. The class of Dunb has a different expression and
the effective cone is no longer symmetric under interchanging σ1,1 and σ2. The description and base
loci of the divisor classes S, P and F remain unchanged. The divisors described in §2 have the following
expressions (see [CS]).

T =
2
3

(Hσ1,1 +Hσ2 + ∆).

Ddeg =
1
3

(−Hσ1,1 + 2Hσ2 −∆).

Dunb =
1
3

(5Hσ1,1 −Hσ2 −∆).

As in the previous section, the divisor class P is defined as the pull-back of OG(4,N)(1) under the rational
map that sends f ∈M0,0(G(2, n), 3) to the span of the image of f in the Plücker embedding of G(2, n).
Intersecting P with the test families obtained by taking a pencil of conics in Σ(1,1)∗ (or Σ(2)∗) union a
fixed line containing a base point and a pencil of lines in Σ(1,1)∗ union a fixed conic attached at a base
point, we see that

P =
1
3

(2Hσ1,1 + 2Hσ2 −∆).

As long as the image of f spans a three-dimensional projective space in the Plücker embedding of G(2, n),
f is not contained in the base locus of P . Conversely, the argument given in the previous section shows
that if the image of f spans a linear space of dimension less than three, then f is in the stable base locus
of P . We conclude that the stable base locus of P is C[(1, 1)∗] ∪ C[(2)∗] ∪Q((1)∗)L.

Define the divisor class F as the pull-back of the corresponding divisor in M0,0(PN , 3) introduced in
[C]. Then, by the argument given in Lemma 4.4,

F =
1
3

(5Hσ1,1 + 5Hσ2 −∆)
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and the stable base locus of F is C[(1)∗]∪Q((1)∗)L. Define the divisor S as in the previous section. The
arguments in Lemma 4.5 show that the class S is given by

S =
1
3

(−Hσ1,1 + 5Hσ2 −∆)

and the stable base locus of S is equal to C[(1, 1)∗] ∪ Q((1, 1)∗)L. Finally, observe that the stable base
locus of Dunb is C[(3)∗] ∪ Q((2)∗)L and the stable base locus of Ddeg is C((2, 1)∗) ∪ Q((1, 1)∗)L. First,
suppose the domain of the stable map f is irreducible. As long as the pull-back of the tautological bundle
of G(2, n) has splitting type (1, 2), then f is not in the indeterminacy locus of the map φ defined in
Section 2. Similarly, if the domain of f has two components and the pull-back of the tautological bundle
to the component of degree two has splitting type (1, 1), then f is not in the indeterminacy locus of φ.
It follows that in both cases f is not in the base locus of Dunb. If the domain of f has three or four
components, then the image could either consist of three concurrent lines or three non-concurrent lines
where one line intersects the other two. It is easy to see that if the common point of intersection of the
lines parameterize by two of the lines coincide, then f is contained in Q((2)∗)L and otherwise f is not in
the base locus of Dunb. An argument similar to the one in Lemma 4.6 shows that C[(3)∗] ∪ Q((2)∗)L is
in the stable base locus of Dunb. The claim follows. The discussion of Ddeg is similar.

Notation 5.1. Set

U = 2Hσ1,1 + 5Hσ2 −∆ and U ′ = 5Hσ1,1 + 2Hσ2 −∆.

The stable base locus decomposition of the effective cone of M0,0(G(2, n), 3) has 15 chambers which
are described in the following theorem. Figure 3 depicts a cross-section of the effective cone.

(9)

U’

∆

T

H
σ 1,1

H
σ 2

S

Ddeg

Dunb

F

P

U

(2)

(1)

(4)

(3)

(5)(6)

(7)

(8) (12)

(11)

Figure 3. The stable base locus decomposition of M0,0(G(2, n), 3).
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Theorem 5.2. The stable base locus decomposition of the Neron-Severi space of M0,0(G(2, n), 3), with
n ≥ 5, is given as follows:

(1) In the closed cone spanned by Hσ1,1 , Hσ2 and T , the stable base locus is empty.

(2) In the domain bounded by ∆, Hσ1,1 , T and Hσ2 union c(Hσ1,1∆)∪ c(Hσ2∆), the stable base locus
is equal to the boundary divisor.

(3) In the domain bounded by Hσ2 ,∆ and S union c(∆S), the stable base locus is the union of
C[(1, 1)∗] and the boundary divisor.

(4) In the domain bounded by Ddeg, S and ∆ union c(∆Ddeg), the stable base locus is the union of
C[(2, 1)∗] and the boundary divisor.

(5) In the domain bounded by Ddeg, P and S union c(PDdeg)∪c(SDdeg), the stable base locus consists
of C[(2, 1)∗] ∪Q((1, 1)∗)L.

(6) In the domain bounded by Dunb, Ddeg and P union c(DdegDunb), the stable base locus consists of
the union C[(3)∗] ∪Q((2)∗)L ∪ C[(2, 1)∗] ∪Q((1, 1)∗)L.

(7) In the domain bounded by Dunb, Hσ1,1 and ∆ union c(Dunb∆), the stable base locus consists of
C[(3)∗] and the boundary divisor.

(8) In the domain bounded by Dunb, Hσ1,1 and U ′ union c(Hσ1,1Dunb) ∪ c(U ′Dunb), the stable base
locus is C[(3)∗] ∪Q((2)∗)L.

(9) In the domain bounded by Dunb, P and U ′ union c(PDunb), the stable base locus is C[(3)∗] ∪
Q((2)∗)L ∪ C[(1, 1)∗]

(10) In the domain bounded by P,U, F and U ′ union c(UP )∪ c(U ′P ), the stable base locus consists of
C[(1, 1)∗] ∪ C[(2)∗] ∪Q((1)∗)L.

(11) In the domain bounded by S, P and U union c(PS), the stable base locus consists of C[(1, 1)∗] ∪
C[(2)∗] ∪Q((1, 1)∗)L.

(12) In the domain bounded by S,U and Hσ2 union c(Hσ2S) ∪ c(U ′S), the stable base locus consists
of C[(1, 1)∗) ∪Q((1, 1)∗)L.

(13) In the domain bounded by U,F and Hσ2 union c(UHσ2) ∪ c(UF ), the stable base locus consists
of C[(1, 1)∗) ∪Q((1)∗)L.

(14) In the domain bounded by Hσ1,1 , F and U ′ union c(U ′F )∪c(U ′Hσ1,1), the stable base locus consists
of C[(2)∗] ∪Q((1)∗)L.

(15) In the domain bounded by Hσ1,1 , Hσ2 and F union c(Hσ1,1F ) ∪ c(Hσ2F ), the stable base locus
consists of C[(1)∗] ∪Q((1)∗)L.

Proof. The proof of this theorem is very similar but easier than the proof of Theorem 4.8. Hence, we
briefly sketch it and leave most of the details to the reader. The divisors Hσ1,1 , Hσ2 and T are base-
point-free, therefore, in the closed cone generated by these divisors the stable base locus is empty. Let
D = aHσ1,1 + bHσ2 + c∆. The curve classes B3 and B8 from the proof of Theorem 4.8 show that the
boundary divisor is in the restricted base locus of any effective divisor contained in the complement of
the closed cone generated by Dunb, Ddeg and T . Since Hσ1,1 and Hσ2 are base-point-free, in the domain
bounded by Hσ1,1 , T,Hσ2 and ∆ union c(Hσ1,1∆)∪c(Hσ2∆) the stable base locus consists of the boundary
divisor. The curve induced by taking the image of a general pencil of lines in the projection of the third
Veronese embedding of P2 to a plane Poincaré dual to the class σ(1,1)∗ shows that C[(1, 1)∗] is in the
restricted base locus of D if a < 0. Hence, in the domain bounded by S,∆ and Hσ2 union c(∆S), the
stable base locus is the union of C[(1, 1)∗] and the boundary divisor. Similarly, the curve induced by
taking the image of a pencil of lines in the projection of the third Veronese embedding of P2 to a P3

Poincaré dual to the class σ(3)∗ shows that C[(3)∗] is in the stable base locus of D if b < 0. We conclude
that in the region bounded by Dunb,∆ and Hσ1,1 union c(Dunb∆), the stable base locus is the union of
C[(3)∗] and the boundary divisor. Let A1 be the curve class induced in M0,0(G(2, n), 3) by a pencil of
cubic surfaces in P3 with a fixed double line and 8 general base points. Then

A1 ·Hσ1,1 = 5, A1 ·Hσ2 = 1, A1 ·∆ = 0.
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The last two of these equalities are clear. The first one may be computed using the identity A1 · S = 0.
Curves in the class A1 cover C[(2, 1)∗], so C[(2, 1)∗] is in the stable base locus of D if 5a+b < 0. Therefore,
in the domain bounded by Ddeg, S and ∆ union c(Ddeg∆), the stable base locus is C[(2, 1)∗] union the
boundary divisor.

The curve classes B6 and B7 introduced during the proof of Lemma 4.4 show that C[(1)∗] and Q((1)∗)L
are in the restricted base locus of D if c < 0. Since the stable base locus of F is equal to the union of
these two loci, in the region bounded by F,Hσ1,1 and Hσ2 union c(Hσ1,1F ) ∪ c(Hσ2F ), the stable base
locus equals C[(1)∗]∪Q((1)∗)L. Let A2 be the curve class induced inM0,0(G(2, n), 3) by taking the cone
over a pencil of twisted cubic curves in a fixed quadric surface in P3. Since

A2 ·Hσ1,1 = 0, A2 ·Hσ2 = 2, A2 ·∆ = 4,

C[(3)∗] is in the restricted base locus of D if b < −2c. The curve class B15 introduced in the proof of
Theorem 4.8 shows that C[(2, 1)∗] is in the restricted base locus of D if a+ b+ 4c < 0. Similarly, the loci
Q((1, 1)∗)L and Q((2)∗)L are in the restricted base locus of D if a < −2c and b < −2c, respectively. We
conclude that in the domain bounded by Dunb, U

′ and Hσ1,1 union c(U ′Dunb)∪ c(Hσ1,1Dunb), the stable
base locus is C[(3)∗] ∪ Q((2)∗)L. In the domain bounded by Dunb, P and Ddeg union c(DunbDdeg), the
stable base locus is C[(3)∗] ∪ C[(2, 1)∗] ∪Q((2)∗)L ∪Q((1, 1)∗)L. In the domain bounded by Ddeg, P and
S union c(PDdeg) ∪ c(SDdeg), the stable base locus is C[(2, 1)∗] ∪Q((1, 1)∗)L.

The curve classes B4 and B5 introduced in the proof of Lemma 4.3 show that C[(1, 1)∗] and C[(2)∗],
respectively, are in the stable base locus ofD if a+5c < 0 and b+5c < 0, respectively. Hence, in the domain
bounded by P,U ′, F and P union c(U ′P )∪ c(UP ), the stable base locus is C[(1, 1)∗]∪C[(2)∗]∪Q((1)∗)L.
The stable base locus of a divisor contained in the domain bounded by Dunb, P and U ′ union c(DunbP )
is a subset of the union of the stable base loci of Dunb and P . Therefore, in this region the stable base
locus is C[(3)∗]∪C[(1, 1)∗]∪Q((2)∗)L. Similarly, in the domain bounded by P, S and U union c(PS), the
stable base locus is C[(2)∗] ∪ C[(1, 1)∗] ∪Q((1, 1)∗)L.

The stable base locus of U (resp., U ′) is contained in the intersection of the stable base loci of S and P
(resp., Dunb and P ). Moreover, in the domain bounded by U,Hσ2 and F union c(FU)∪ c(Hσ2U) (resp.,
U ′, Hσ1,1 and F union c(FU

′
) ∪ c(Hσ1,1U

′
)) the stable base locus is contained in the stable base locus

of U (resp., U ′). It follows that the stable base loci are C[(1, 1)∗] ∪ Q((1)∗)L and C[(2)∗] ∪ Q((1)∗)L,
respectively. Finally, in the domain bounded by S,U and Hσ2 union c(US) ∪ c(Hσ2S), the stable base
locus is contained in that of S. Hence, in this region the stable base locus is C[(1, 1)∗]∪Q((1, 1)∗)L. This
concludes the proof of the theorem.

�

Remark 5.3. The description of the models is analogous to the case of M0,0(G(k, n), 3) with k ≥ 3
described in Remark 4.9. We leave the necessary modifications to the reader.
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[ELMNP2] L. Ein, R. Lazarsfeld, M. Mustaţǎ, M. Nakamaye and M. Popa, Restricted volumes and base loci of linear series,

to appear in Amer. J. Math.
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