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Abstract. This paper develops a new method for studying the cohomology of orthogonal flag varieties.

Restriction varieties are subvarieties of orthogonal flag varieties defined by rank conditions with respect
to (not necessarily isotropic) flags. They interpolate between Schubert varieties in orthogonal flag va-

rieties and the restrictions of general Schubert varieties in ordinary flag varieties. We give a positive,

geometric rule for calculating their cohomology classes, obtaining a branching rule for Schubert calculus
for the inclusion of the orthogonal flag varieties in Type-A flag varieties. Our rule, in addition to being

an essential step in finding a Littlewood-Richardson rule, has applications to computing the moment

polytopes of the inclusion of SO(n) in SU(n), the asymptotic of the restrictions of representations of
SL(n) to SO(n) and the classes of the moduli spaces of rank two vector bundles with fixed odd determi-

nant on hyperelliptic curves. Furthermore, for odd orthogonal flag varieties, we obtain an algorithm for
expressing a Schubert cycle in terms of restrictions of Schubert cycles of Type-A flag varieties, thereby

giving a geometric (though not positive) algorithm for multiplying any two Schubert cycles.
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1. Introduction

Let Q denote a non-degenerate, symmetric bilinear form on a vector space W of dimension n. Let
0 < k1 < · · · < kh be non-negative integers such that 2kh ≤ n. Let OF (k1, . . . , kh;n) denote the
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orthogonal partial flag variety parameterizing subspaces

W1 ⊂ · · · ⊂Wh

of W isotropic with respect to Q, where Wi has dimension ki. A restriction variety is the intersection of
OF (k1, . . . , kh;n) with a Schubert variety in the ordinary flag variety F (k1, . . . , kh;n) defined by a flag
satisfying certain tangency conditions with respect to Q. The main theorem of this paper is a positive,
geometric rule for computing the cohomology class of a restriction variety in terms of Schubert cycles.

Theorem 7.22. Algorithm 7.19 provides a positive, geometric rule for computing the cohomology class of
a restriction variety. In particular, the algorithm computes the image of the map induced in cohomology
by the natural inclusion

i : OF (k1, . . . , kh;n)→ F (k1, . . . , kh;n).

An important special case, which we will treat first, describes the geometry of restriction varieties in
orthogonal Grassmannians. Theorem 5.12 similarly gives a positive, geometric rule for computing the
cohomology classes of restriction varieties in orthogonal Grassmannians.

Theorem 7.22 has many applications, most notably to calculating the moment polytopes for the in-
clusion of SO(n) in SU(n), the asymptotic of the restrictions of representations of SL(n) to SO(n) and
the invariants of the moduli spaces of rank two vector bundles on hyperelliptic curves. Let i : G′ → G
be an inclusion of complex, reductive, connected Lie groups. Choose Borel subgroups B′ ⊂ G′ and
B ⊂ G such that i(B′) ⊂ B. Then the inclusion i : G′/B′ → G/B induces a map in cohomology
i∗ : H∗(G/B)→ H∗(G′/B′). The structure coefficients of this map in terms of Schubert bases are called
branching coefficients. Finding positive rules for calculating branching coefficients is a central problem
(see [P] for references, a beautiful exposition of the subject and fundamental results). In the case of SO(n)
and SL(n), the map i is given by sending an isotropic flag F• to the pair (F•, F⊥• ). Our theorem calculates
all the branching coefficients of i∗ : H∗(F (k1, . . . , kh, n− kh, . . . , n− k1;n))→ H∗(OF (k1, . . . , kh;n)) for
the classes that are pulled back from F (k1, . . . , kh;n) under the natural projection that sends (F•, F⊥• ) to
F•. These calculations have already found applications in the study of eigencones and the Belkale-Kumar
product [RR].

Knowing the set of non-zero branching coefficients has important applications in symplectic geometry
and representation theory. LetK andK ′ be the maximal compact subgroups ofG andG′, respectively. To
each non-vanishing branching coefficient, in [BS], Berenstein and Sjamaar associate an inequality satisfied
by the K ′-moment polytope of a K-coadjoint orbit. Moreover, the totality of these inequalities gives a
sufficient set of inequalities for the moment polytope. Similarly, non-vanishing branching coefficients
determine which irreducible representations of G′ occur in the restriction of an irreducible representation
of G asymptotically. More precisely, let Vλ be an irreducible representation of G with highest weight
λ and let V ′µ be an irreducible representation of G′ with highest weight µ. The answer to the question
‘Does there exist a positive integer N , such that when the G-module VNλ is decomposed as a G′-module,
the representation V ′Nµ occurs as a component?’ is characterized by non-vanishing branching coefficients
(see [BS], [GS], [H], [P]).

Theorem 7.22 also has many geometric applications. For instance, using a Theorem of Desale and
Ramanan [DR], we will compute the class of the moduli space of rank two vector bundles with fixed
odd-degree determinant on a hyperelliptic curve of genus g in OG(g − 1, 2g + 2). In fact, we discover
a recursion in g for the class. However, the main purpose of this paper is to introduce a new point
of view in calculating the cohomology classes of subvarieties of orthogonal Grassmannians and, more
generally, orthogonal flag varieties. Theorem 5.12 is a first step for finding a positive, geometric rule
for orthogonal flag varieties. We present it here separately in order to emphasize the simplicity of the
geometric ideas without any combinatorial complications. In future work, we will give positive, geometric
rules for calculating the class of the intersection of certain classes of Schubert varieties relying on the
geometric principles discussed in this paper ([C4] and [C5]).
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The study of the cohomology of isotropic flag varieties and geometric branching rules has a very
long history. We mention a few representative results and refer the reader to [YT] and [Ta] for a more
comprehensive set of references. Positive rules are known for multiplying arbitrary classes in maximal
orthogonal Grassmannians and certain special classes in general (see, for instance, [FP], [BKT1], [YT],
[CP] for references and results and [Dav] for a promising approach). Pragacz proved a positive combina-
torial branching rule for the Lagrangian Grassmannian and maximal orthogonal Grassmannians of Type
B [Pr1], [Pr2]. While this paper was in the refereeing process, Buch, Kresch and Tamvakis obtained
Pieri rules for arbitrary isotropic Grassmannians [BKT2] and Giambelli rules for expressing classes in
terms of their Pieri classes [BKT3]. The paper [Ta] discusses more general Giambelli rules and recent
developments. It should also be mentioned that it is possible to obtain non-positive branching rules by
first computing the pull-backs of the tautological bundles from the Type A flag manifold to the Type
B or D flag manifolds. One can then use localization or the theory of Schubert polynomials to obtain
branching rules. However, to the best of the author’s knowledge, the rule presented in this paper remains
the only known positive, geometric branching rule that applies to all partial flag varieties of Types B and
D. The Type C case is simpler and will be exposed elsewhere.

The geometric point of view we present here has many advantages. It unifies different types. It gives
a clear strategy for obtaining positive rules for calculations in the cohomology ring. It can be adapted to
fields other than C and geometric situations more general than the intersection of two Schubert varieties.
Most importantly, the calculation is at the level of cycles and not cycle classes. Hence, the information
provided by the positive, geometric rules is much more refined than purely combinatorial rules.

The geometry of orthogonal homogeneous varieties is significantly more complicated than the geom-
etry of Type-A homogeneous varieties. In this paper, we show that the computation of the branching
coefficients can be reduced to four basic facts about quadric hypersurfaces. We now explain the strategy
and recall these basic facts. For simplicity, we will discuss the case of orthogonal Grassmannians. The
orthogonal Grassmannian OG(k, n) parameterizes k-dimensional subspaces of W that are isotropic with
respect to Q. When n = 2k, the isotropic linear spaces form two isomorphic connected components. It is
customary to set OG(k, 2k) equal to one of these components. The cohomology of OG(k, n) is generated
by the classes of Schubert varieties.

The quadratic form Q defines a smooth degree two hypersurface Q in PW . We will interpret OG(k, n)
as the Fano variety of (k − 1)-dimensional projective linear subspaces on Q. We will also need to study
singular quadric hypersurfaces. Over the complex numbers, the projective equivalence class of a quadric
hypersurface is determined by its dimension and corank. Let Qridi denote a quadratic form of corank ri
obtained by restricting Q to a vector space of dimension di. Let Lnj denote an isotropic linear space of
(vector space) dimension nj . A restriction variety in OG(k, n) is defined in terms of a sequence

Ln1 ⊂ · · · ⊂ Lns ⊂ Q
rk−s
dk−s

⊂ · · · ⊂ Qr1d1

of isotropic linear spaces and quadrics. (In Definitions 4.2 and 4.9, we will specify the conditions that
these linear spaces and quadrics need to satisfy. For the purposes of the introduction we ignore these
subtleties.) The restriction variety parameterizes the isotropic linear spaces that intersect Lnj in a
subspace of dimension j and Qridi in a subspace dimension k− i+ 1 for every 1 ≤ j ≤ s and 1 ≤ i ≤ k− s.
Schubert varieties are examples of restriction varieties with the property that the quadrics in the sequence
are as singular as possible (i.e., di + ri = n). The strategy to calculate the class of a restriction variety is
to specialize the quadrics in the sequence one at a time to become more singular until they are maximally
singular. When we specialize the quadrics, the restriction variety breaks into a union of simpler restriction
varieties. The process is governed by the following basic facts about quadrics.

• The corank bound. Let Qr2d2 ⊂ Q
r1
d1

be two linear sections of Q such that the singular locus of Qr1d1 is
contained in the singular locus of Qr2d2 . Then r2− r1 ≤ d1−d2. In particular, the corank of a sub-quadric
in Q is bounded by its codimension.
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• The linear space bound. The largest dimensional isotropic linear space with respect to a quadratic
form Qrd has dimension bd+r2 c. A linear space of dimension j intersects the singular locus of Qrd in a
subspace of dimension at least max(0, j − bd−r2 c).

• Irreducibility. A sub-quadric Qd−2
d of Q is reducible and equal to the union of two linear spaces of

(vector space) dimension d−1 meeting along a linear space of dimension d−2. If n = 2k, then the linear
spaces constituting Qk−1

k+1 belong to two distinct connected components.

• The variation of tangent spaces. Let a quadric Qrd be singular along a codimension j linear subspace
M of a linear space L. Then the image of the Gauss map of Qrd restricted to the smooth points of L has
dimension at most j − 1. In other words, the tangent spaces to Qrd along the smooth points of L vary at
most in a (j − 1)-dimensional family.

The corank bound determines the order of the specialization. We increase the corank of the smallest
dimensional quadric Qridi that satisfies di + ri < di−1 + ri−1 by one, i.e., we replace Qridi in the sequence
with Qri+1

di
. The algorithm is obtained by describing the flat limit of this specialization. Suppose that

a general linear space parametrized by the restriction variety intersects the singular locus of Qridi in a
subspace of dimension xi. The linear spaces parametrized by the flat limit intersect the singular locus of
Qri+1
di

in a subspace of dimension xi or xi+1. The limit has more than one component when both cases are
possible. ‘The linear space bound’ and ‘the variance of tangent spaces’ dictate which of the possibilities
occur. In addition, if ri = di− 3, then by the ‘irreducibility’ property, the new quadric Qri+1

di
is reducible

forcing the limit to possibly have more components. Surprisingly, each of these components occur with
multiplicity one in the limit. The algorithm is obtained by inductively applying this specialization to
each irreducible component. We refer the reader to §5 for the precise statement of the algorithm and
detailed examples.

The organization of the paper is as follows. In §2, we recall general facts about the geometry of
quadrics and orthogonal flag varieties. In §3, we state the Grassmannian rule purely combinatorially.
In §4, we develop some of the basic properties of restriction varieties in orthogonal Grassmannians. In
§5, we give the algorithm for computing the classes of restriction varieties in orthogonal Grassmannians.
In §6, we give simple applications of the algorithm. In §7, we extend the algorithm to orthogonal flag
varieties.

Acknowledgements: It is a pleasure to thank David Lehavi for suggesting that I work out the algorithm
in this paper. I would like to thank Joe Harris for patiently listening to the early stages of this work
and for his invaluable suggestions. I am grateful to two anonymous referees for pointing out several
applications of Theorem 7.22.

2. Preliminaries

In this section, we recall the preliminaries about the geometry of quadric hypersurfaces and orthogonal
Grassmannians. For a more detailed treatment we refer the reader to Chapter 6 of [GH].

2.1. Preliminaries on quadrics. Let Q be a smooth quadric hypersurface in Pn−1. Set m = bn2 c. The
largest dimensional linear spaces contained in Q have projective dimension m− 1. If n is odd, then the
maximal dimensional linear spaces on Q form an irreducible family of dimension m(m+1)

2 . If n is even,
then the maximal dimensional linear spaces contained in Q form two isomorphic families of dimension
m(m−1)

2 . Two linear spaces belong to the same irreducible component if and only if their dimension of
intersection is equal to m− 1 modulo 2 (see [GH] p. 735).

More generally, we will be interested in linear spaces on quadric hypersurfaces with singularities. A
quadric hypersurface in Pn−1 of corank r (or, equivalently, with a singular locus of dimension r − 1) is
the cone over a smooth quadric hypersurface in Pn−1−r with vertex an (r − 1)-dimensional projective
linear space. If Q is a quadric hypersurface of corank r in Pn−1, then the largest dimensional linear space
on Q has dimension bn−r−2

2 c+ r. The space of linear spaces of maximal dimension on Q is irreducible if
4



n − r is odd and has two irreducible components if n − r is even. Setting l = n−r−3
2 in the former case

and l = n−r−2
2 in the latter case, the dimension of each irreducible component of the space of maximal

dimensional linear spaces is (l+1)(l+2)
2 and l(l+1)

2 , respectively. In the latter case, two linear spaces belong
to the same irreducible component if and only if their dimension of intersection is equal to l + r modulo
2. These claims follow from the previous paragraph since Q is a cone over a smooth quadric hypersurface
in Pn−1−r.

Notation 2.1. Denote the Fano variety of s-dimensional projective linear spaces contained in a quadric
hypersurface Q ∈ Pn−1 of corank r by F rs,n(Q).

Let Q ⊂ Pn−1 be a quadric hypersurface of corank r. Let s be a positive integer less than or equal
to bn−r−2

2 c + r. Consider the incidence correspondence of pairs of a point p of Q and an s-dimensional
linear space containing p:

I = { (x, [Λ]) | x ∈ Λ ⊂ Q } ⊂ Q× F rs,n(Q).

The automorphism group of Q acts transitively on the smooth points of Q. The s-planes that contain
a smooth point p lie in the tangent linear space H at p. Q ∩ H is a quadric hypersurface of corank
r+ 1. The intersection with a hyperplane complementary to p is a quadric hypersurface of corank r and
intersects all the s-planes containing p in an (s−1)-dimensional linear space. We conclude that the space
of s-dimensional linear spaces containing p has the same dimension as the space of (s − 1)-dimensional
linear spaces lying on a quadric hypersurface in Pn−3 of corank r. Therefore, by induction, we can
calculate the general fiber dimension of the projection of I to Q and determine the dimension of I. The
second projection maps I onto F rs,n(Q) with fiber dimension s. We thus obtain a recursion relation for
the dimension of F rs,n(Q).

A priori we need to check that the s-dimensional linear spaces that intersect the vertex in dimension
greater than s−1−bn−r−2

2 c do not form another irreducible component (potentially of different dimension)
of F rs,n(Q). It is easy to see that linear spaces that intersect the vertex in larger than the expected
dimension are limits of linear spaces that intersect the vertex in the expected dimension. Observe that
every linear space on a quadric is contained in a maximal dimensional linear space. Take a linear space Λ
that intersects the vertex in the linear space Ω. Assume that the dimension of Ω is larger than expected.
Take a linear space ∆ in Λ complementary to Ω. Take a linear space Γ of dimension bn−r−2

2 c which
contains ∆, but does not intersect the vertex of Q. Since the Grassmannian of s-planes in the span of Γ
and Ω is irreducible, the claim follows.

In case s < n−r−2
2 , the space of s-dimensional linear spaces on Q is irreducible. If s ≥ n−r−2

2 the
recursion stops when we obtain a quadric of rank r in Pr+1 or Pr with multiplicity 2. The former case
occurs if n−r is even and the latter case occurs if n−r is odd. This allows us to calculate the dimensions
of the spaces of s-dimensional linear spaces on Q recursively. It also proves that when s ≥ n−r−2

2 , the
spaces of s-dimensional linear spaces on Q is irreducible if n− r is odd and has two components if n− r
is even. We have thus proved the following:

Lemma 2.2. Let Q be a quadric hypersurface in Pn−1 of corank r. If s < n−r−2
2 , then F rs,n(Q) is

irreducible of dimension

(s+ 1)
2n− 3s− 4

2
.

If s ≥ n−r−2
2 and n− r is even, then F rs,n(Q) has two irreducible components each of dimension

(s+ 1)
n− 2s+ r − 2

2
+

(n− r − 2) (n− r)
8

.

If s ≥ n−r−2
2 and n− r is odd, then F rs,n(Q) is irreducible of dimension

(s+ 1)
n− 2s+ r − 3

2
+

(n− r − 1) (n− r + 1)
8

.
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2.2. Preliminaries on orthogonal Grassmannians. Let W be an n-dimensional vector space en-
dowed with a non-degenerate, symmetric, bilinear form Q. Set m = bn2 c. Let 0 < k ≤ m denote a
positive integer. Let OG(k, n) denote the k-dimensional subspaces of W isotropic with respect to the
form Q, unless n = 2k. In the latter case, the parameter space of k-dimensional isotropic subspaces of
W has two isomorphic irreducible components. OG(k, n) denotes one of these irreducible components.

The orthogonal Grassmannian OG(k, n) is isomorphic to one irreducible component of the Fano variety
F 0
k−1,n(Q) of (k − 1)-dimensional projective linear spaces on a smooth quadric hypersurface. The non-

degenerate quadratic form Q defines the smooth quadric hypersurface in Pn−1. A linear space is isotropic
with respect to Q if and only if its projectivization is contained in the quadric hypersurface defined by
Q. In particular, by the discussion in §2.1, the dimension of OG(k, n) is

k(2n− 3k − 1)
2

By Ehresmann’s Theorem [E], the cohomology of OG(k, n) is generated by the classes of Schubert
varieties. There are minor differences in the cohomology of OG(k, n) depending on the parity of n due to
the fact that when n is even, the half-dimensional isotropic subspaces form two connected components.
For even n, the notation has to distinguish between these two connected components. For simplicity, we
will first discuss the case of odd n, then describe the necessary modifications for even n.

We begin by describing the Schubert varieties in OG(k, 2m+ 1). Let λ denote a sequence

m ≥ λ1 > λ2 > · · · > λs > 0

of strictly decreasing integers, where s ≤ k. Given λ, there is an associated sequence

m− 1 ≥ λ̃s+1 > · · · > λ̃m ≥ 0

of strictly decreasing integers defined by requiring that there does not exist any parts λi for which λ̃j+λi =
m. In other words, the associated partition is obtained by removing the integers m−λ1, . . . ,m−λs from
the sequence m−1,m−2, . . . , 0. For example, if m = 6, then the partition associated to (6, 4) is (5, 4, 3, 1).
The Schubert varieties in OG(k, 2m+1) are parameterized by pairs (λ, µ), where λ is a strictly decreasing
partition of length s and µ

m− 1 ≥ µs+1 > µs+2 > · · · > µk ≥ 0

is a subpartition of λ̃ (i.e., the parts of µ are a subset of the parts of λ̃) of length k− s. We will call such
pairs of partitions allowed pairs. Observe that for maximal isotropic Grassmannians OG(m, 2m+ 1), the
partition µ = λ̃ is uniquely determined by the partition λ. Consequently, in the literature it is standard
to omit the sequence µ and parametrize Schubert varieties by strict partitions λ. We will find it useful
to record the dimensions of all the flag elements where a jump in dimension occurs, so we add µ to the
notation. For non-maximal Grassmannians there are several notations in use. The advantage of our
notation is that it minimizes the amount of calculation needed to determine the dimensions of the flag
elements where a jump in dimension occurs. Since µ is a subpartition of λ̃ we can assume that it occurs
as λ̃is+1 , · · · , λ̃ik . Given a pair (λ, µ), the discrepancy dis(λ, µ) of the pair is defined by

dis(λ, µ) = (m− k)s+
k∑

j=s+1

(m− k + j − ij).

Fix an isotropic flag F•

0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm ⊂ F⊥m−1 ⊂ · · · ⊂ F⊥1 ⊂W.

Here F⊥i denotes the orthogonal complement of Fi with respect to the bilinear form. In terms of the
geometry of the quadric hypersurface Q ⊂ Pn−1 we can describe F⊥j as follows. A one-dimensional
isotropic subspace corresponds to a point p ∈ Q ⊂ Pn−1. The annihilator of that subspace corresponds
to the tangent space to Q at the point p. We can take Q to be given by the equation

∑n
i=1X

2
i = 0.

We can assume the isotropic subspace is generated by v = (1, i, 0, . . . , 0). The annihilator of v is given
6



by vectors (v1, v2, . . . , vn) such that v1 + iv2 = 0. On the other hand, the tangent space to the quadric
hypersurface at p corresponding to v is given by X1 + iX2 = 0. So the annihilator of a vector consists
precisely of those vectors lying in the tangent hyperplane to the quadric at the point corresponding to
the vector. To find F⊥j we take the intersection of all the tangent hyperplanes at the points of Fj . The
intersection is the projective linear space Pn−1−j everywhere tangent to Q along the projectivization of
Fj .

The Schubert variety Ωµλ(F•) is defined as the closure of the locus

{[Λ] ∈ OG(k, 2m+ 1)|dim(Λ ∩ Fm+1−λi) = i for 1 ≤ i ≤ s,dim(Λ ∩ F⊥µj ) = j for s < j ≤ k}.

The codimension of a Schubert variety is given by
∑s
i=1 λi + dis(λ, µ). We will denote the cohomology

class of Ωµλ by σµλ .

The description of the Schubert varieties in OG(k, 2m) requires minor modifications to account for the
fact that the space of m-dimensional isotropic subspaces have two irreducible components. Let λ denote
a sequence

m− 1 ≥ λ1 > λ2 > · · · > λs ≥ 0

of strictly decreasing integers where s ≤ k. When k = m and m is even (respectively, odd), we will
assume that s is even (respectively, odd). Given λ, we can define an associated sequence λ̃ of strictly
decreasing integers

m− 1 ≥ λ̃s+1 > · · · > λ̃m ≥ 0

satisfying the condition that there does not exists λi such that λi+ λ̃j = m−1. In other words, to obtain
λ̃ remove from the sequence m− 1, . . . , 0 the integers m− 1− λ1, . . . ,m− 1− λs. The Schubert varieties
in OG(k, 2m) are parameterized by pairs (λ, µ), where λ is a strictly decreasing partition of length s and
µ

m− 1 ≥ µs+1 > µs+2 > · · · > µk ≥ 0

is a subpartition of λ̃ of length k − s. We will call such pairs of partitions allowed pairs. As above,
for maximal isotropic Grassmannians OG(m, 2m), the partition µ = λ̃ is uniquely determined by the
partition λ, so it is often omitted from the notation. The pair (λ, µ) is a subpartition of a pair (λ′, λ̃′) of
total length m defined as follows. If m and s have the same parity, then λ = λ′. If m and s have different
parities, λ′ has length s + 1 and differs from λ in that it includes the smallest number between 0 and
m− 1 not already occurring in λ and not adding to m− 1 with any of the parts in µ. The discrepancy
dis(λ, µ) of the pair (λ, µ) is defined as follows: Since (λ, µ) is a subpartition of (λ′, λ̃′), we can assume
that the parts occur as λ′i1 , . . . , λ

′
is
, λ̃′is+1

, · · · , λ̃′ik . The discrepancy is defined as

dis(λ, µ) =
k∑
j=1

(m− k + j − ij).

We will make the convention that Fm denotes an m-dimensional isotropic subspace in one of the
irreducible components. By abuse of notation, we will denote by F⊥m−1 an m-dimensional isotropic
subspace in the other irreducible component. Note that strictly speaking the intersection of the quadric
hypersurface with F⊥m−1 consists of the union of two m-dimensional isotropic subspaces one in each
irreducible component. Our slight abuse of notation will make notation more compact. We will use this
convention without further mention in the rest of the paper. The Schubert variety Ωµλ(F•) is defined as
the closure of the locus

{[Λ] ∈ OG(k, 2m)|dim(Λ ∩ Fm−λi) = i for 1 ≤ i ≤ s, dim(Λ ∩ F⊥µj ) = j for s < j ≤ k}.

The codimension of a Schubert variety is given by
∑
λ′i + dis(λ, µ). We will denote the cohomology class

of Ωµλ by σµλ .
7



The cohomology classes σµλ , as (λ, µ) varies over all allowed pairs, form an additive basis of the
cohomology ring of OG(k, n). Given an allowed pair (λ, µ) for OG(k, 2m + 1), there is a dual allowed
pair (λc, µc) defined by

λc1 = m− µk, . . . , λck−s = m− µs+1, µ
c
k−s+1 = m− λs, . . . , µck = m− λ1.

Similarly, if (λ, µ) is an allowed pair for OG(k, 2m), define the dual pair (λc, µc) by setting

λc1 = m− 1− µk, . . . , λck−s = m− 1− µs+1, µ
c
k−s+1 = m− 1− λs, . . . , µck = m− 1− λ1.

If (λ, µ) and (λc, µc) are dual allowed pairs, then σµλ · σ
µc

λc is equal to the Poincaré dual of the point class.

2.3. Orthogonal flag varieties. We now extend the discussion in the previous section to orthogonal
flag varieties. We preserve the notation from the previous section. Let 0 < k1 < · · · < kh ≤ m be
an increasing sequence of positive integers. The orthogonal flag variety OF (k1, . . . , kh;n) parameterizes
h-tuples

W1 ⊂ · · · ⊂Wkh

of isotropic subspaces of W , where Wi has dimension ki. When 2kh = n, this space has two isomor-
phic components and it is customary to let the orthogonal flag variety to be one of the components.
OF (k1, . . . , kh;n) admits a projection morphism to OG(kh, n) by forgetting the first h− 1 linear spaces.
The fibers of this projection are ordinary partial flag varieties F (k1, . . . , kh−1; kh). The geometry of
orthogonal partial flag varieties can be studied using this projection. For example, the dimension of
OF (k1, . . . , kh;n) is easily seen to be

dim(OF (k1, . . . , kh;n)) = dim(OG(kh, n)) +
h−1∑
i=1

ki(ki+1 − ki).

The cohomology of OF (k1, . . . , kh;n) is also generated by Schubert cycles. In order to parameterize
Schubert cycles we need to enrich the partition notation from the previous section with the data of a
color. Let 1 < · · · < h be h ordered colors. A colored partition (λ, µ, c•) for OF (k1, . . . , kh;n) is an
allowable pair (λ, µ) for OG(kh, n) where the parts λc11 > · · · > λcss and µ

cs+1
s+1 > · · · > µ

ckh
kh

have been
enriched by the data of a color such that k1 of the parts are assigned the color 1, and ki−ki−1 of the parts
are assigned the color i for 1 < i ≤ h. The isotropic flag induces a complete flag F1 ⊂ · · · ⊂ Fkh = Wkh

on the kh-dimensional isotropic linear space. On a Zariski open subset of a Schubert variety, for each flag
element Fi, there exists a least index ci such that

dim(Fi ∩Wci) = dim(Fi−1 ∩Wci) + 1.

We assign the index ci to the i-th part in the partition.

When n is even (respectively, odd), the Schubert variety Ωµλ(F•, c•) is defined as the closure of the
locus

{ [(W1, . . . ,Wkh)] ∈ OF (k1, . . . , kh;n) | dim(Wu ∩ Fm−λcii (resp.,+1)) = #{v ≤ i | cv ≤ u},

dim(Wu ∩ F⊥µcjj
) = #{v ≤ j | cv ≤ u} }.

More generally, we will call a sequence c1, . . . , ckh of integers between 1 and h such that k1 of the terms
are 1 and ki − ki−1 of the terms are i a coloring scheme for the sequence k1, . . . , kh. For such a coloring
scheme and a color 1 ≤ u ≤ h− 1 define codim(u), the codimension for the color u, to be the sum

codim(u) =
∑

1≤i≤kh, ci≤u

#{j > i | cj = u+ 1}.

Define the color discrepancy cdis(c•) of a coloring scheme to be the sum

cdis(c•) =
h−1∑
u=1

codim(u)
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Then the codimension of the Schubert variety corresponding to the colored partition (λ, µ, c•) is given by

codim(λ, µ) + cdis(c),

where codim(λ, µ) denotes the codimension of the Schubert variety Ωµλ in OG(kh, n). This is easily seen
by considering the projection from OF (k1, . . . , kh;n) to OG(kh, n).

3. Combinatorics

In this section, we present the rule for OG(k, n) combinatorially without any explanations or motiva-
tion. The purpose of this subsection is to teach the reader the mechanics of the rule. The geometrically
minded reader might prefer to read this section after reading §4 and §5.

Notation 3.1. A sequence of n natural numbers with gaps is a sequence of n natural numbers written
from left to right with a gap to the right of each number in the sequence. We will refer to the gap after
the i-th number as the i-th position. For example, 1 1 2 3 0 0 0 0 is a sequence of 8 numbers with gaps.

Definition 3.2. Let 0 ≤ s ≤ k < n be integers. A sequence of brackets and braces of type (k, n) is a
sequence of n natural numbers with gaps, s right brackets ] and k − s right braces } such that:

• Every bracket or brace occupies a position and each position is occupied by at most one bracket
or brace.

• Every number i in the sequence satisfies 0 ≤ i ≤ k − s. The positive integers in the sequence are
non-decreasing from left to right and are to the left of every zero in the sequence.

• Every bracket is to the left of every brace.
• If 2k = n, a bracket in the k-th position may either be a bracket ] or a bracket decorated with a

prime ]′.

For example, 1]1]122]33]0000}00}00}000 is a sequence of brackets and braces of type (7, 18) with s = 4.
When we write our sequences, we often omit the gaps that are not occupied by a bracket or brace. To
be concrete, the first rule forbids 0]]0, 0}}0 (two brackets or two braces in the same position), 00]}00 (a
bracket and a brace in the same position), ]100 (a bracket that is not in a position). The second rule
forbids the sequences of numbers that look like 1132 (3 is not allowed to be to the left of 2) or 11200300
(3 should be to the left of any zero). The third rule forbids 000}00]0 (a brace cannot be to the left of a
bracket).

Notation 3.3. We order the brackets in the sequence from left to right and the braces in the sequence from
right to left. In our example, 1]11]2122]333]40000}300}200}1000 the small numbers above the brackets
and braces indicate their order. Let ρ(i, j) denote the number of integers to the right of the i-th brace and
to the left of the j-th brace. Let ρ(i, 0) denote the number of integers to the right of the i-th brace. In
our example, ρ(3, 2) = 2, ρ(2, 1) = 2, ρ(1, 0) = 3. Let p(]i) and p(}i) denote the number of integers to the
left of the i-th bracket and i-th brace, respectively. These record the positions of the brackets and braces.
In our running example, p(]1) = 1, p(]2) = 2, p(]3) = 5, p(]4) = 7 and p(}3) = 11, p(}2) = 13, p(}1) = 15.
Let l(i) denote the number of integers in the sequence that are equal to i. Let l(≤ i) denote the
number of positive integers in the sequence that are less than or equal to i. In our running example,
l(1) = 3, l(2) = 2, l(3) = 2, l(≤ 2) = 5, l(≤ 3) = 7. When we are discussing more than one sequence, we
will write ρD, pD and lD for the invariants of the sequence D.

We are now ready to define quadric diagrams, which are the main combinatorial objects of this paper.
The first three conditions in the definition do not play a role in the algorithm. They are included for
precision and the reader may ignore them in a first reading. The last three conditions are crucial and the
reader should remember them.

Definition 3.4. A quadric diagram for OG(k, n) is a sequence of brackets and braces of type (k, n) with
s brackets such that the following conditions hold.

(D1) l(i) ≤ ρ(i, i− 1) for 1 ≤ i ≤ k − s.
(D2) 2p(]s) ≤ p(}k−s) + l(≤ k − s).
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(D3) Suppose that the integer 0 < i < k − s occurs in the sequence. If i + 1 does not occur in the
sequence, either i = 1 and every position after a 1 is occupied by a bracket, or l(j) = ρ(j, j − 1)
for every j > i+ 1 and ρ(i+ 1, i) = 1.

(D4) There are at least three zeros to the left of }k−s.
(D5) Let xi be the number of brackets such that p(]j) ≤ l(≤ i). Then

xi ≥ k − i+ 1− p(}i)− l(≤ i)
2

.

(D6) The two integers immediately to the left of a bracket are equal. If there is only one integer to the
left of a bracket and s < k, then the integer is 1.

Remark 3.5. Quadric diagrams index restriction varieties, which will be introduced in the next section
and are the main geometric objects of study in this paper.

Example 3.6. Let us give a few examples to clarify the meaning of these conditions. The first condition
says that the number of times i appears in the sequence is less than or equal to the number of integers
between the i-th and (i− 1)-st braces. In particular, the following are forbidden 2220000}00}0 (l(2) = 3,
but ρ(2, 1) = 2), 11000}0 (l(1) = 2, but ρ(1, 0) = 1). Let the right most bracket be at position p(]s)
and the left most brace be at position p(}k−s). The second condition says that twice p(]s) is less than or
equal to the sum of p(}k−s) and the number of positive integers in the sequence. For example, 00]00}0,
100]00}0 are allowed, but 000]00}0 is not (2p(]1) = 6 > p(}1) = 5). The third condition is a consequence
of the order in the algorithm. The reader does not have to pay attention to it except in a few places
in the proof of the algorithm, where it simplifies the dimension counts. The rule says that if a positive
integer occurs in the sequence, then all the larger integers (less than or equal to k − s) also occur in the
sequence except in two very special cases. For example, 1]1]330000}00}0}00 (all the 1s are followed by
brackets) and 1]1330000}00}0}00 (2 is missing, but l(3) = ρ(3, 2) = 2 and l(2) = ρ(2, 1) − 1 = 0) are
allowed, but 1]130000}00}0}00 is not (2 is missing, but l(3) = 1 6= ρ(3, 2) = 2). These conditions are
preserved during the algorithm. The reader may ignore them in a first reading.

The last three conditions are the important conditions that the reader has to remember. The fourth
condition is self-evident. It allows 11]00]00}00 or 33000}00}00}0, but does not allow 1100}00. The sixth
condition is also self-evident. It allows for 1]22]33]0000}00}0}0 or 22]22]2000}00000}0, but disallows
2]22]000}000}0 (there is only one integer to the left of ]1, but it is not 1) or 1234]0000}0}0}0}0 (the two
numbers preceding the bracket are not equal). The fifth condition is the one that is hardest to visually
verify without resorting to some counting. In words, it says that the number of integers that are to the
right of the right-most i and to the left of the i-th brace has to be at least twice the total number of
brackets and braces that are at positions greater than l(≤ i) and less than or equal to p(}i). For example,
it disallows 10]00}0 (There are three zeros to the right of the 1 that are to the left of }. There is one
bracket and one brace in positions greater than 1 and less than or equal to 4. However, 3 6≥ 4).

We are now ready to state the algorithm. We begin by defining a new set of sequences of brackets and
braces associated to D. The new sequences Da and Db defined below may fail to be quadric diagrams,
but we address such instances below.

Definition 3.7. If there exists an index i in D such that l(i) < ρ(i, i−1), let κ = max(i | l(i) < ρ(i, i−1)).
Let Da be the sequence of brackets and braces obtained by changing the (l(≤ κ) + 1)-st integer in the
sequence D to κ.

If pDa(]s) > lDa(≤ κ), let η = min(i | pDa(]i) > lDa(≤ κ)). Let Db be the sequence of brackets and
braces obtained from Da by moving the bracket ]η to the position lDa(≤ κ).

To clarify, let us give some examples. Let D = 233]0000}00}0}0. Then κ = 1. We change the
integer in the position l(≤ 1) + 1 (in this case the left most 2) to 1 to obtain Da = 133]0000}00}0}0.
We slide the first bracket in Da to the right of the 1 we added to the immediate right of it to obtain
Db = 1]330000}00}0}0. Note that in this case both Da and Db are quadric diagrams.

Next let D = 00]0]0000}0. Here κ = 1, so we turn the left most 0 into 1 to obtain Da = 10]0]0000}0.
We slide the first bracket to the right of the 1 to its immediate right to obtain Db = 1]00]0000}0. Here
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note that Db is a quadric diagram, but Da fails condition (D6). We have to turn Da into a quadric
diagram. Here is the algorithm that turns Da into a quadric diagram.

Algorithm 3.8. • If Da fails condition (D5), discard it. Da does not lead to any quadric diagrams.
• If Da satisfies condition (D5) but not condition (D6), change the (l(≤ κ) + 1)-st integer in the sequence
to κ and move }κ one position to the left. Repeat until you reach a sequence of brackets and braces that
satisfies condition (D6). Label the resulting sequence Dc. If Dc is a quadric diagram, we refer to it as a
quadric diagram derived from Da. Otherwise, proceed to the next step.
• IfDa orDc satisfy conditions (D5) and (D6), but fail condition (D4), replaceDa orDc with two identical
diagrams Da1 and Da2 obtained by replacing }k−s (in Da or Dc) with ]s+1 in position p(}k−s) − 1 and
turning the digits equal to k − s to 0. If 2p(]s+1) = n, then we use (]′)s+1 instead of ]s+1 in Da2 . We
refer to Da1 and Da2 as quadric diagrams derived from Da. Furthermore, if 2k = n and 2p(]s+1) = n,
then discard the diagram with ]s+1 (respectively, (]′)s+1) if s+ 1 6= k mod (2) (respectively, if s+ 1 = k
mod (2)).

In our example, we first turn Da = 10]0]0000}0 to 11]0]000}00. This diagram still fails condition
(6), so we repeat to obtain 11]1]00}000. Now condition (D6) is satisfied, but condition (D4) fails. Since
n = 8 = 2 · 4, we obtain the two diagrams 00]0]0]0000 and 00]0]0]′0000. These are the two diagrams
derived from Da.

Let D = 000}000}000}, then κ = 3. We turn the left most 0 into 3 to obtain Da = 300}000}000}. In
this case, there are no brackets to the left of the 3, so there is no Db. The sequence Da fails condition
(D4). Since n is odd, we replace Da with two identical quadric diagrams Da1 = 00]0000}000} and
Da2 = 00]0000}000}.

Let D = 00]0000}00}0. Then Da = 20]0000}00}0 and Db = 2]00000}00}0. Neither of these diagrams
satisfy condition (D6). We already know that we should replace Da with 22]000}000}0. Here is how to
modify Db.

Algorithm 3.9. • If Db does not satisfy condition (D6), let ]j be the bracket for which it fails. Let i be the
integer immediately to the left of ]j . Replace i with i− 1 and move }i−1 one position to the left. As long
as the resulting sequence does not satisfy condition (D6), repeat this process either until the resulting
sequence is a quadric diagram (in which case this is the quadric diagram derived from Db) or two braces
occupy the same position. In the latter case, no quadric diagrams are derived from Db.

In our example, we replace Db = 2]00000}00}0 with 1]00000}0}00, which is a quadric diagram. If our
example had been D = 00]0000}0}0, then Db = 2]00000}0}0. Replacing 2 with 1 and moving }1 to the
left would produce 1]00000}}00. Hence, in this case no quadric diagrams are derived from Db.

We need one final definition. Given a sequence of brackets and braces such that p(]s) > l(κ) , let
yxκ+1 = max(i | l(≤ i) ≤ p(]xκ+1)) or set yxκ+1 = k − s + 1 if l(≤ i) < p(]xκ+1) for all i. yxκ+1 is
the largest integer that occurs to the right of ]xκ+1, which is the first bracket occurring in a position
greater than l(≤ κ). The condition p(]xκ+1) − l(≤ κ) − 1 = yxκ+1 − κ will play an important role. In
words, this condition says that the number of integers larger than κ to the left of ]xκ+1 is one more
than the cardinality of the set of integers greater than κ occurring to the left of ]xκ+1. In view of
condition (D3), a sequence satisfying this equality looks like · · ·κ+ 1 κ+ 2 · · ·κ+ l− 1 κ+ l κ+ l] · · · or
· · ·κ+ 1 κ+ 2 · · ·κ+ l − 1 00] · · · , where we have drawn the part of the sequence starting with the left
most κ+ 1 and ending with ]xκ+1. We are now ready to state the algorithm.

Algorithm 3.10. Let D be a quadric diagram. If l(i) = ρ(i, i− 1) for every 1 ≤ i ≤ k − s, then return D
and stop. Otherwise, let Da and Db be as above.

(1) If p(]xκ+1)− l(≤ κ)− 1 > yxκ+1 − κ or p(]s) ≤ l(κ) in D, then return the quadric diagrams that
are derived from Da.

(2) If Da violates condition (D5), then return the quadric diagrams that are derived from Db.
(3) Otherwise, return the quadric diagrams that are derived from both Da and Db.

Remark 3.11. In the proof of Theorem 5.12, we will check in detail that Algorithm 3.10 always returns
at least one quadric diagram. Briefly, Da does not lead to a quadric diagram only if it violates condition
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(D5). In that case, by the definition of κ, there has to be equality in condition (D5) for all indices
κ ≤ i ≤ k − s in the diagram D. Then, condition (D4) implies that there has to be a bracket to the
right of κ in Da; and condition (D6) implies that p(]xκ+1)− l(≤ κ)− 1 = yxκ+1 − κ in D. Finally, while
running Algorithm 3.9, if two braces occupy the same position, then condition (D5) is violated for the
index κ− 1 in the diagram D. These considerations imply that there is a quadric diagram derived from
Db by Algorithm 3.10 (see paragraph 6 of the proof of Theorem 5.12 for more details).

The reader can turn to the beginning of §5 for examples. In the next two sections we will explain the
geometric meaning behind this algorithm.

4. Restriction varieties in the orthogonal Grassmannians

In this section, we introduce restriction varieties in orthogonal Grassmannians and discuss their basic
properties. Restriction varieties are subvarieties of OG(k, n) that parameterize isotropic k-planes that
intersect elements of a given flag in specified dimensions. We do not require the flag to be isotropic;
however, we need to impose some basic numerical restrictions in order to obtain geometrically meaningful
subvarieties.

Notation 4.1. Let W be a vector space of dimension n. Let Q be a non-degenerate, symmetric bilinear
form on W . We denote an isotropic linear space of (vector space) dimension nj by Lnj . In case 2nj = n,
Lnj and L′nj denote isotropic linear spaces in different connected components. Let Qridi denote a sub-
quadric of corank ri cut out by a di-dimensional linear section of Q. We denote the singular locus of Qridi
by Qri,singdi

. For convenience, we let r0 = 0 and d0 = n.

Definition 4.2. A sequence of linear spaces and quadrics (L•, Q•) associated to OG(k, n) is a totally
ordered set

Ln1 ( Ln2 ( · · · ( Lns ( Q
rk−s
dk−s

( · · · ( Qr1d1
of isotropic linear spaces Lnj (or possibly L′ns in case 2ns = n) and sub-quadrics Qridi of Q such that

(1) 2ns ≤ dk−s + rk−s.
(2) 2(k − i+ 1) ≤ ri + di for every 1 ≤ i ≤ k − s.
(3) ri+1 + di+1 ≤ ri + di ≤ n for every 1 ≤ i < k − s.
(4) Q

ri−1,sing
di−1

⊆ Qri,singdi
for every 1 < i ≤ k − s.

(5) dim(Lnj ∩Q
ri,sing
di

) = max(nj , ri).
(6) Let x1 denote the number of isotropic subspaces in the sequence contained in the singular locus

of Qr1d1 . For every 1 ≤ i ≤ k − s, either ri = r1 = x1, or rl − ri ≥ l − i − 1 for every l > i.
Furthermore, if rl = rl−1 > x1 for some l, then di−di+1 = ri+1−ri for all i ≥ l and dl−1−dl = 1.

Remark 4.3. Conditions (1), (2) and (3) express basic facts about quadrics. Conditions (1) and (2) express
the “Linear space bound” that the dimension of an isotropic linear space with respect to a quadratic form
of corank r in d variables is at most half of d+ r. Since Lns ⊂ Q

rk−s
dk−s

, Condition (1) needs to be satisfied.
Below, in defining restriction varieties, we will require the isotropic k-planes to intersect Qridi in a subspace
of dimension k − i+ 1. Hence, Condition (2) needs to be satisfied. Condition (3) expresses the “Corank
bound” that a hyperplane section of a quadric of corank r can have corank at most r+ 1. Conditions (4)
and (5) express that the singular loci of the quadrics Qridi are in the most special position. The singular
locus of the quadric Qridi contains the singular locus of all the larger dimensional quadrics in the sequence.
Furthermore, isotropic linear spaces in the sequence of dimension greater (resp., less) than ri contain
(resp., are contained in) the singular locus of Qridi . Finally, Condition (6) is a technical condition: If a
quadric Qridi is more singular than the linear spaces in the sequence force it to be, then each quadric
contained in Qridi is more singular than the one larger quadric containing it except in a very special case
detailed in Condition (6). These conditions will automatically hold for all the varieties in our algorithm,
hence the reader does not need to remember these conditions to implement the algorithm.
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We will use sequences of brackets and braces introduced in the previous section for representing the
geometric sequences.

Definition 4.4. Let (L•, Q•) be a sequence for OG(k, n). The sequence of brackets and braces associated
to (L•, Q•) is a sequence of non-negative integers of length n, s right brackets and k− s right braces such
that

(1) The sequence consists of ri − ri−1 integers equal to i for 1 ≤ i ≤ k − s placed in increasing order
followed by a sequence of n− rk−s zeros.

(2) The right square brackets are placed after the nj-th integer in the sequence for 1 ≤ j ≤ s and the
right braces are placed after the di-th integer in the sequence for 1 ≤ i ≤ k − s.

In case 2ns = n, we distinguish between Lns and L′ns by writing ] and ]′, respectively, for the right bracket
after the ns-th digit.

Example 4.5. The sequence of brackets and braces 1]22]000}00}0 represents the sequence L1 ⊂ L3 ⊂
Q3

6 ⊂ Q1
8. To determine the (vector space) dimension di of the span of the quadric Qridi , we count the

number of digits to the left of the i-th brace. For example, there are 8 digits to the left of the right most
brace, so d1 = 8. There are six digits to the right of the second brace, so d2 = 6. To determine ri, we
count the number of positive digits less than or equal to i. In this example, there are 3 positive digits less
than or equal to 2, so r2 = 3. There is a unique one, so r1 = 1. Finally, to determine nj , we count the
number of digits to the left of the j-th square bracket. In this example, n1 = 1, n2 = 3. The reader will
notice that the Zariski closure of the subvariety of OG(4, 9) parameterizing isotropic subspaces Λ that
satisfy

dim(Λ ∩ L1) = 1,dim(Λ ∩ L3) = 2,dim(Λ ∩Q3
6) = 3,dim(Λ ∩Q1

8) = 4

is the Schubert variety Ω3,1
4,2. Note that the sequence µ in our notation for Schubert varieties denotes the

codimensions (equivalently, coranks) of the quadrics defining the variety, so it is very easy to read from
the diagram.

The sequence of brackets and braces associated to (L•, Q•) is a sequence of brackets and braces in the
sense of the previous section. Since n1 < · · · < ns < dk−s < · · · < d1, the brackets and braces occupy
different positions. Since the quadrics contain the linear spaces, the brackets are to the left of all the
braces. The positive integers are increasing and less than or equal to the number of braces and they are
all to the left of the zeros by construction. The position of a bracket p(]j) is equal the dimension nj of
the linear space Lnj . The position of a brace p(}i) is equal to the dimension of the span di of the quadric
Qridi . The dimension ri of the singular locus of Qridi is the number of positive integers l(≤ i) less than or
equal to i. Finally, l(i) is ri − ri−1 and ρ(i, i− 1) = di−1 − di. Hence, these sequences satisfy conditions
(D1) (which is equivalent to Condition (3)), (D2) (which is equivalent to condition (2)) and (D3) (which
is equivalent to Condition (6)).

Definition 4.6. Given a sequence (L•, Q•), let xi denote the number of isotropic linear spaces Lnj of
the sequence contained in Qri,singdi

. Similarly, let yj be the integer such that ryj−1 < nj ≤ ryj . If ri < nj
for every 1 ≤ i ≤ k − s, set yj = k − s+ 1.

Remark 4.7. We will require the (k − i+ 1)-dimensional subspace contained in Qridi to intersect Qri,singdi
in a subspace of dimension xi. The index yj is the smallest index i such that Lnj is contained in the
singular locus of Qridi . By conditions (4) and (5), every quadric of index at least yj will be everywhere
singular along Lnj .

We need some further assumptions on the sequence (L•, Q•) before it reflects the properties of the
corresponding variety.
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Example 4.8. Consider the sequence L3 ⊂ Q1
5 ⊂ Q1

6 depicted by

100]00}0}0.

By ‘the linear space bound’, any isotropic 3-plane in OG(3, 7) which is contained in Q1
6 necessarily must

contain the singular point of Q1
6. (Geometrically, any plane in a five dimensional quadric cone contains

the vertex.) Hence the sequence L1 ⊂ Q1
5 ⊂ Q1

6

1]0000}0}0

better reflects the geometric properties of isotropic 3-planes contained in Q1
6. Similarly, consider the

sequence Q2
4 ⊂ Q0

6 depicted by
2200}00}0.

The quadric Q2
4 is reducible. (Geometrically, a quadric surface which is singular along a line is the union

of two planes.) Hence, two sequences of the form L3 ⊂ Q0
6

000]000}0

better reflect the geometry of the corresponding variety.

These examples motivate the following definition.

Definition 4.9. A sequence (L•, Q•) associated to OG(k, n) is admissible if the linear spaces and quadrics
satisfy the following additional conditions:

(7) rk−s ≤ dk−s − 3.
(8) For every 1 ≤ i ≤ k − s,

xi ≥ k − i+ 1− di − ri
2

.

(9) For any 1 ≤ j ≤ s, there does not exist 1 ≤ i ≤ k − s such that nj − ri = 1.

Remark 4.10. If Condition (7) is violated, thenQrk−sdk−s
would either be reducible or non-reduced. Condition

(8) expresses the fact that in a quadric Qridi , a linear space of dimension k − i + 1 has to intersect the
singular locus in dimension at least k − i+ 1− di−ri

2 (see Remark 4.7). Condition (9) expresses the fact
that if nj − ri = 1 for some pair, then the tangent spaces to Qridi would be constant along Lnj . Hence the
(k − i + 1)-dimensional subspace contained in Qridi would actually be contained in Qri+1

di−1 with singular
locus Lnj . The reader should remember these three conditions in order to implement the algorithm.

Lemma 4.11. The sequence of brackets and braces associated to an admissible sequence is a quadric
diagram. Conversely, every quadric diagram corresponds to an admissible sequence (L•, Q•).

Proof. We already saw that the sequence associated to (L•, Q•) is a sequence of brackets and braces
that satisfies the conditions (D1), (D2) and (D3). Conditions (7), (8) and (9) translate to the conditions
(D4), (D5) and (D6). If rk−s ≤ dk−s − 3, then there are at least three zeros to the left of }k−s since the
total number of positive integers in the sequence (rk−s) is three less than the position of }k−s. Using
the facts that di = p(}i) and ri = l(≤ i), Conditions (8) and (D5) are direct translations of each other.
Finally, if the two digits preceding a bracket ]j are a < b, then nj − ra = 1 contradicting Condition (9).
If a bracket is at the first position, then n1 = 1. If r1 = 0, then n1 − r1 = 1 contradicting Condition
(9). Hence, the digit preceding ]1 must be 1. We conclude that conditions (D6) and (9) are equivalent.
Finally, observe that Condition (8) implies Condition (2). We have included Condition (2) to simplify
certain statements in the proof of the algorithm. We conclude that the data defining quadric diagrams
and admissible sequences are equivalent. �

14



Definition 4.12. Let (L•, Q•) be an admissible sequence for OG(k, n). A restriction variety V (L•, Q•)
is the subvariety of OG(k, n) defined as the Zariski closure of the following quasi-projective variety

V (L•, Q•)0 := { [W ] ∈ OG(k, n) | dim(W ∩Lnj ) = j,dim(W ∩Qridi) = k− i+1,dim(W ∩Qri,singdi
) = xi }.

Example 4.13. Schubert varieties in OG(k, n) are restriction varieties defined with respect to sequences
satisfying di+ri = n for all 1 ≤ i ≤ k−s (see Lemma 4.18). The intersection of a general Schubert variety
in G(k, n) with OG(k, n) (when non-empty) is a restriction variety associated to a sequence where s = 0
and ri = 0 for 1 ≤ i ≤ k (see Proposition 6.2 for the precise statement). Hence, restriction varieties are
a class of varieties that interpolate between the restriction of Schubert varieties in G(k, n) and Schubert
varieties in OG(k, n).

Remark 4.14. A restriction variety does not have to be irreducible. For example,

000}0}0
in OG(2, 5) consists of two irreducible components. (Geometrically, the corresponding restriction variety
parametrizes lines on a smooth quadric surface in P3.) When the inequality in Condition (8) is an equality
for an index i, then the (di+ri)/2-dimensional linear spaces in Qridi form two irreducible components. The
(k− i+ 1)-dimensional subspaces contained in Qridi may be distinguished by their parity of the dimension
of their intersection with linear spaces in each of these components.

Definition 4.15. Let (L•, Q•) be an admissible sequence. An index 1 ≤ i ≤ k − s such that

xi = k − i+ 1− di − ri
2

is called a special index. For each special index, a marking m• of (L•, Q•) designates one of the irreducible
components of di+ri

2 -dimensional linear spaces of Qridi as even and the other one as odd, such that

• If di1 + ri1 = di2 + ri2 , for two special indices i1 < i2, and the component containing a linear
space V is designated even for i2, then the component containing V is designated even for i1 as
well; and

• If 2ns = di + ri for a special index i, then the component to which Lns belongs is assigned the
parity of s; and

• If n = 2k, m• assigns the component containing Lk the parity that characterizes the component
OG(k, 2k).

A marked restriction variety V (L•, Q•,m•) is the Zariski closure of the subvariety of V (L•, Q•)0 param-
eterizing k-dimensional isotropic subspaces W , where, for each special index i, W intersects subspaces
of dimension di+ri

2 of Qridi designated even (respectively, odd) by m• in a subspace of even (respectively,
odd) dimension.

Proposition 4.16. The marked restriction variety V (L•, Q•,m•) associated to a marked admissible
sequence is an irreducible variety of dimension

(1) dim(V (L•, Q•,m•)) =
s∑
j=1

(nj − j) +
k−s∑
i=1

(di + xi − 2s− 2i)

Proof. We prove this proposition by induction on k. Suppose k = 1. If s = 1, then clearly the variety is
isomorphic to projective space of dimension n1 − 1 and the proposition holds. If s = 0, then the variety
is isomorphic to a quadric hypersurface in Pd1−1 singular along a linear space of codimension at least
three (by Condition (7) in Definition 4.9). Since such a quadric is irreducible of dimension d1 − 2, the
base case of the induction follows.

Now suppose that the proposition holds up to k − 1. If k − s = 0, then the proposition is immediate.
In that case, the isotropic subspaces are contained in the Grassmannian G(k, nk) and the restriction
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variety is an ordinary Schubert variety (Σnk−n1−k+1,...,nk−nk−1−1) in G(k, nk). The irreducibility and the
dimension follow from these considerations. We may assume that k−s > 0. Let (L•, Q′•) be the sequence
for OG(k − 1, n) obtained from (L•, Q•) by omitting Qr1d1 from the sequence (and subtracting one from
the indices of the quadrics). Observe that (L•, Q′•) is also an admissible sequence: Conditions (1)-(9)
remain valid when we omit the largest quadric. Let m′• be the restriction of the marking m• to this new
sequence, where m′ designates the same components of linear spaces as even if ri+di < r1 +d1 and swaps
the designation for linear spaces with ri + di = r1 + d1. Let V (L•, Q•,m•)0 denote the intersection of
V (L•, Q•,m•) with V (L•, Q•)0, the Zariski open set used to define V (L•, Q•). We then have a morphism
f : V (L•, Q•,m•)0 → V (L•, Q′•,m

′
•)

0 by taking the intersection of the linear spaces of dimension k in
V (L•, Q•,m•)0 with Qr2d2 . By induction, we can assume that the the image is an irreducible variety of
dimension predicted by the proposition. We now study the fibers of this morphism. Fix a point [W ] in
the image. By assumption, the dimension of intersection of W with the singular locus of Qr1d1 is x1. Then
any k-dimensional linear space containing W has to be contained in the quadric Q′ cut out on Q1 by the
linear space everywhere tangent to W . This is a quadric of corank r1 + k − 1 − x1 in a linear space of
dimension d1 − (k − 1− x1). We have to choose a k-plane containing W . We can choose a linear section
Q′′ of Q′ complementary to W . Choosing a k-plane is equivalent is to choosing a point on Q′′. Hence,
the dimension of the fiber is d1 − k + 1 + x1 − 2− k + 1. Furthermore, by Condition (8)

x1 ≥ k −
d1 − r1

2
.

If the inequality is strict, it follows that

r1 + k − 1− x1 < (d1 − k + 1 + x1)− 2,

hence Q′′ and consequently the fiber is irreducible. If equality holds, then Q′′ is a union of two linear
spaces. The marking m• selects one of these components by specifying the parity of the dimension of
intersection with the k-dimensional linear space. Hence, the fiber is irreducible. This concludes the
proof. �

Remark 4.17. Since Equation 1 does not depend on the marking m•, every irreducible component of the
restriction variety V (L•, Q•) has dimension

s∑
j=1

(nj − j) +
k−s∑
i=1

(di + xi − 2s− 2i).

Observe that V (L•, Q•) has an irreducible component for every marking m•. The markings m• param-
eterize the irreducible components of V (L•, Q•). Correspondingly, given a sequence D of brackets and
braces, we define dim(D) by the expression

s∑
j=1

(p(]j)− j) +
k−s∑
i=1

(p(}i) + xi − 2s− 2i).

Lemma 4.18. Schubert varieties in OG(k, n) are the restriction varieties where the admissible sequence
defining the restriction variety satisfies ri+di = n for every 1 ≤ i ≤ k− s. When n = 2k, we also require
that the k-dimensional linear spaces to intersect the k-dimensional linear space Lk in the sequence in a
subspace of the correct parity.

Proof. Set α = b(n−1)/2c. Let the sequence λ be defined by setting λj = α+ 1−nj . Let the sequence µ
be given by setting µk−i+1 = ri. We claim that the restriction variety V (L•, Q•) is the Schubert variety
Ωµλ. Since the sequence satisfies Conditions (4) and (5), it suffices to show that there does not exist nj and
ri such that nj−ri = 1 for any i and j. This is guaranteed by Condition (9) defining admissible sequences.
When 2k = n, we require that the length of λ have the same parity as k (alternatively, we could interpret
a restriction variety with the wrong parity as a Schubert variety for the other connected component
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of OG(k, 2k)). Note that under the assumptions of the lemma, the restriction variety is automatically
irreducible. Suppose equality holds in Condition (8) for some i0. Then n is even. Condition (9) and the
assumption on the sequence imply that equality holds for every i ≥ i0. In particular, equality must hold
for the index k − s. Combining Conditions (9) and equality in Condition (8), we have

ns ≥ rk−s + 1 + s−
(
s+ 1− dk−s − rk−s

2

)
=
dk−s + rk−s

2
=
n

2
.

Using Condition (1), we deduce that ns = n/2. Hence, the marking is uniquely determined by the
sequence. �

5. The Algorithm for computing the classes of restriction varieties in Grassmannians

5.1. The strategy and examples. The strategy to calculate the class of a restriction variety V (L•, Q•)
is to specialize it into a union of Schubert varieties by successively making the quadrics in the sequence
more singular. By the corank bound (Condition (3)), if ri + di = ri−1 + di−1, then Qridi is as singular
as it can be given that it is contained in Q

ri−1
di−1

, so its corank cannot be increased. If ri + di = n for
all 1 ≤ i ≤ k − s, then V (L•, Q•) is a Schubert variety and there is nothing further to do. Otherwise,
there is a smallest dimensional quadric whose corank can be increased. We increase the corank of this
quadric (fixing all the other linear spaces and quadrics) by one by specializing the quadric in a pencil. As
a result of this specialization, the restriction variety breaks into a union of restriction varieties each with
multiplicity one. In the rest of this section, we will describe the components and show that they occur
with multiplicity one. We first discuss several fundamental examples that illustrate the possibilities.

Example 5.1. We first compute the class of V (Q0
4) depicted by

0000}0

in OG(1, 5). Projectively, V (Q0
4) parametrizes points on a smooth quadric hypersurface Q in P4 that

are contained in a smooth hyperplane section Q0
4. We specialize the hyperplane section until it becomes

tangent to Q. This specialization replaces Q0
4 with Q1

4 (singular at the point of tangency). In the process,
the restriction variety is transformed to

1000}0.
This is the quadric diagram Da described in §3. Observe that if the linear spaces had to intersect the
singular locus, then they would just be the singular point of Q1

4. The singular point has smaller dimension
than the quadric Q1

4. That’s why in these cases the quadric diagrams derived from Db do not occur. The
cohomology class of a smooth hyperplane section is the same as that of a singular hyperplane section,
hence V (Q0

4) and V (Q1
4) have the same cohomology class. Since V (Q1

4) is a Schubert variety with class
σ1 in OG(1, 5), this concludes the calculation.

During this process, a quadric may become reducible. As a slight variation, we compute the class of
V (Q0

3) depicted by
000}0

in OG(1, 4). Projectively, V (Q0
3) parametrizes points contained in a smooth conic in a smooth quadric

surface Q in P3. We specialize the plane of the conic until it becomes tangent to Q, replacing Q0
3 with Q1

3.
Note that Q1

3 violates Condition (7) (its corank is two less than its ambient dimension). Geometrically, a
singular conic is a union of two lines which belong to two different rulings on the quadric surface Q. The
sequence of brackets and braces 100}0 fails condition (D4). We replace it by the two quadric diagrams
00]00 and 00]′00 according to §3. Hence, the restriction variety corresponding to the diagram 000}0 is
replaced by the two restriction varieties corresdponding to

00]00 and 00]′00.

Geometrically, the class of a conic is the sum of the classes of two lines on the quadric one in each ruling.
This concludes the calculation since the latter two varieties are Schubert varieties with classes σ0 and
σ2, respectively. Hence, the class of V (Q0

3) in OG(1, 4) is σ0 + σ2. This example shows that in the
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algorithm, we have to replace a quadric by two linear spaces if the specialization forces the quadric to
become reducible (or, equivalently, violate Condition (7)).

Example 5.2. Next we calculate the class of the restriction variety V (L2 ⊂ Q0
4) in OG(2, 5) depicted by

00]00}0.

Geometrically, this example corresponds to calculating the class of the inclusion of OG(2, 4) in OG(2, 5).
More concretely, we calculate the class of the space of lines contained in the smooth quadric surface
Q0

4 and intersect the line L2 (in a point). Note that Q0
4 is a smooth hyperplane section of the ambient

quadric Q in P4. We specialize it until it becomes tangent to Q at a point on L2. This replaces Q0
4 with

Q1
4, the quadric cone singular at the point of tangency. This is depicted by Da = 10]00}0, which violates

condition (D5). By the linear space bound (Condition (8)), lines contained in a quadric cone in P3 all
pass through the vertex of the cone. Hence, the degeneration replaces V (L2 ⊂ Q0

4) with the restriction
variety V (L1 ⊂ Q1

4)
1]000}0.

This is the quadric diagram Db defined in §3. This restriction variety is the Schubert variety with class
σ1

2 . Note that in this case, this is the diagram derived from Db and Da does not lead to any diagrams
since it violates condition (D5). Geometrically, this corresponds to the fact that the lines are required to
pass through the singular point.

Example 5.3. Finally, consider the variety V (L2 ⊂ Q0
6) in OG(2, 7).

00]0000}0→ 1]00000}0
↓

11]000}00

Geometrically, this variety parametrizes lines on a smooth quadric Q in P6 that intersect a line L2 and are
contained in a smooth hyperplane section Q0

6 of Q. As before, we specialize the linear space defining Q0
6 to

be tangent to Q along a point of the line L2, replacing Q0
6 with Q1

6. In the limit, there are two possibilities.
In the first case, the lines may all pass through the singular point of Q1

6. This case (V (L1 ⊂ Q1
6)) is

depicted by the quadric diagram Db = 1]00000}0. In the second, case the lines intersect L2 in a point
other than the vertex. This is denoted by the sequence of brackets and braces Da = 10]0000}0. Note
that this sequence fails condition (D6). By “the variation of tangent spaces”, the tangent spaces to Q1

6

are constant along the line L2. Therefore, the lines in Q1
6 that intersect L2 in a point other than the

singular point have to be contained in the quadric Q2
5 given by the intersection of Q with the linear space

everywhere tangent to Q along L2. This possibility (V (L2 ⊂ Q2
5)) is depicted by 11]000}00, which is the

quadric diagram derived from Da as in §3. Both of these varieties are Schubert varieties and occur with
multiplicity one in the limit. Hence, the class of V (L2 ⊂ Q0

6) is σ1
3 + σ2

2 .

Example 5.3 shows the basic branching. When we increase the corank of the quadric, the linear spaces
intersect the new singular locus either in a larger dimensional vector space (unless this possibility leads
to a smaller dimensional variety as in Example 5.1) or in the same dimensional vector space (unless this
possibility is excluded by the linear space bound (Condition (8)) as in Example 5.2). Additional branching
occurs when one of the quadrics become reducible (as in Example 5.1). The general rule is obtained by
repeating these three fundamental examples. In fact, these examples capture all the geometric complexity
of restriction varieties in orthogonal Grassmannians. Next we give a complicated example that illustrates
the inductive structure of the Algorithm.

Example 5.4. Consider the restriction variety V = V (Q0
4 ⊂ Q0

6 ⊂ Q0
8) in OG(3, 9). Concretely, V is the

intersection of OG(3, 9) with a general Schubert variety Σ3,2,1(F•) in G(3, 9). We calculate the class of
V in terms of Schubert classes in OG(3, 9) as follows.
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0000}00}00}0→ 3000}00}00}0 ×2→ 000]000}00}0→200]000}00}0 ×2→ 000]0]0000}0→ 100]0]0000}0
↓
22]0000}00}0→ 1]20000}00}0→ 1]22000}00}0
↓
11]0000}0}00→ 11]2000}0}00

We explain the salient features of this example. In the first two steps, we increase the corank of the
smallest dimensional quadric Q0

4 by one. After the second step, we obtain Q2
4, which is a reducible quadric

equal to the union of two linear spaces of dimension three. (in terms of the combinatorics of quadric
diagrams 3300}00}00}0 violates condition (D4), so has to be replaced by two copies of 000]000}00}0.)
Correspondingly, the restriction varieties breaks into two irreducible components both isomorphic to the
restriction variety V (L3 ⊂ Q0

6 ⊂ Q0
8). The symbol ×2 above the right arrow indicates that there are

two components of the limit with the same class (though they are distinct varieties, each occurring with
multiplicity one). In the next two steps, we increase the corank of the quadric Q0

6 by one. After the
second step, either the linear spaces intersect the singular locus of Q2

6 and we get the restriction variety
indicated by the down arrow or the linear spaces do not intersect the singular locus of Q2

6. In the latter
case, the tangent spaces to Q2

6 are constant along L3. Hence, these linear spaces must intersect the
quadric Q3

5 everywhere tangent along the three dimensional linear space in a two-dimensional subspace.
Note that the latter quadric Q3

5 is reducible, the union of two linear spaces. Hence, in this case there
are two components which are indicated after the right arrow. (In terms of the combinatorics of quadric
diagrams we have Da = 220]000}00}0 and Db = 22]0000}00}0. Db is a quadric diagram, but Da fails
condition (D6), so we replace it with Dc = 222]00}000}0, which fails condition (D4). We have to replace
Dc by two copies of 000]0]0000}0). The rest of the calculation is similar to the previous examples. We
conclude that the class of the variety is equal to

4σ1
2,1 + 2σ3,1

4 + 2σ3,2
3 .

5.2. The algorithm. We now give the algorithm for computing the class of the variety V (L•, Q•) in
terms of Schubert classes in OG(k, n). First, we begin with a slogan that can help guide the reader
through the combinatorics.

The Rule in Slogan Form: Increase the dimension of the singular locus of the smallest dimensional
quadric allowed by the corank bound (Condition (3)) by one. The linear spaces intersect the new singular
locus either in a subspace of the same dimension as before or in one larger dimension, unless one of these
possibilities leads to a smaller dimensional variety or is precluded by the linear space bound (Condition
(8)).

This section and §3 make this slogan precise.

Definition 5.5. Let (L•, Q•) be an admissible sequence. We say that the quadric Qridi is saturated if
ri = n − di. V (L•, Q•) is saturated if every quadric Qridi , 1 ≤ i ≤ k − s, in its definition is saturated.
If the admissible sequence contains a quadric which is not saturated, define the active index κ to be the
largest index i for which ri − ri−1 < di−1 − di (where, by convention, we set r0 = 0 and d0 = n).

Remark 5.6. By Lemma 4.18, a saturated restriction variety is a Schubert variety. If a quadric Qridi in the
definition of a restriction variety is not saturated, then Q

rj
dj

is not saturated for any j ≥ i. In particular,
the smallest dimensional quadric Qrk−sdk−s

is not saturated. The quadric Qrκdκ is the smallest dimensional
quadric in the sequence (L•, Q•) which is not maximally singular given the larger quadrics containing it.

We will compute the class of V (L•, Q•) by successively increasing rκ by one, where κ is the active
index. This corresponds to a specialization of the flag defining the restriction variety. In the process,
V (L•, Q•) will specialize into a union of restriction varieties. Applying the degeneration to each of the
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resulting varieties, we will be able to decompose any restriction variety into a union of Schubert varieties.

Degeneration 5.7. Let Sing(Q) denote the singular locus of a quadric Q. To avoid multiple indices set L =
Lnxκ+1 . Let p ∈ L∩Sing(Qrκ+1

dκ+1
). Suppose that p 6∈ Sing(Qrκdκ). Recall that L is the smallest dimensional

isotropic linear space in (L•, Q•) that is not entirely contained in Sing(Qrκdκ). It is understood that if
κ = k−s, the condition that p ∈ Sing(Qrκ+1

dκ+1
) is vacuous. Similarly, if xκ = s, then p ∈ Qrκdκ∩Sing(Qrκ+1

dκ+1
),

but p 6∈ Sing(Qrκdκ).

Let S = Span(Qrκdκ) and let U = Sing(Qrκdκ). Let T = TpQ
rκ−1
dκ−1

be the tangent space to Qrκ−1
dκ−1

at p. By
Condition (5), Qrκ−1

dκ−1
is smooth at p so the tangent hyperplane exists. Moreover, since p is not a singular

point of Qrκdκ , T cannot contain Qrκdκ . We conclude that T ∩ S := M is a codimension one linear space.
On the other hand, since Qrκ+1

dκ+1
is singular at p, M automatically contains Qrκ+1

dκ+1
. Let N = Span(M,U).

Note that N has dimension dκ. Consider the pencil of linear spaces determined by N and S. Since N
and S have M in common, they span a linear space of dimension dκ + 1. In this linear space and in
appropriate coordinates, this pencil can be expressed as tx+ (1− t)y, where y = 0 defines N and x = 0
defines S. This pencil of linear spaces cut out a pencil Qrκ(t)

dκ
(t) of sub-quadrics on Q. When t = 1, this

is the original quadric Qrκdκ . When t = 0, it is a quadric of corank rκ + 1. Note that all of these quadrics
contain Qrκ+1

dκ+1
and are contained in Qrκ−1

dκ−1
. Consequently, there exists a one-parameter family of sequences

(L•(t), Q•(t)), where only the quadric Qrκ(t)
dκ

(t) varies in the pencil just constructed. At a general t, the
sequence is projectively equivalent to the original sequence. At the special point t = 0, the sequence
(L•(0), Q•(0)) is equivalent to a sequence where rκ has been replaced by rκ + 1. Correspondingly, there
is a one-parameter family of restriction varieties V (t) defined with respect to the flags (L•(t), Q•(t)). As
long as t 6= 0, these varieties are isomorphic. Hence, they form a flat family. By the properness of the
Hilbert scheme, there exists a flat limit V (0). Our algorithm is obtained by describing V (0).

Notation 5.8. For the rest of the paper, we will always use Degeneration 5.7. Given an admissible sequence
(L•, Q•), (L•(t), Q•(t)) will denote the position of the flag at time t under this degeneration. To simplify
notation, we will use (La•, Q

a
•) to denote the special position of the flag at t = 0. The dimension of the

linear spaces and the dimension and corank of the quadrics in (La•, Q
a
•) will be denoted by n′j , d

′
i and r′i,

respectively. Note that except for r′κ, these invariants equal to those of (L•, Q•) and r′κ = rκ + 1.

Observe that the sequence of brackets and braces associated to (La•, Q
a
•) is Da defined in §3. The

degeneration increases rκ by one. This is represented by changing the integer in the (rκ + 1)-st place in
the quadric diagram corresponding to (L•, Q•) to κ.

The reader should note that the sequence (La•, Q
a
•) does not have to be admissible. The algorithm will

consist of decomposing (La•, Q
a
•) into a collection of admissible sequences (Lj•, Q

j
•). The flat limit will

be supported along the union of the restriction varieties corresponding to these sequences. We replace
V (L•, Q•) by a collection of restriction varieties V (Lj•, Q

j
•) each occurring with multiplicity one. Hence,

the cohomology class of V (L•, Q•) is the sum of the cohomology classes of V (Lj•, Q
j
•). The varieties

V (Lj•, Q
j
•) will be “closer” to Schubert varieties. By “closer” we mean that the admissible sequence

(Lj•, Q
j
•) will have either sj = s + 1 (one more linear space and one fewer quadric); or rji ≥ ri with

strict inequality for at least one i (one of the quadrics will have a higher dimensional singularity). If we
keep applying the algorithm to each of the varieties that are output, the varieties will eventually become
saturated. Hence, we will express the class of V (L•, Q•) as a sum of Schubert cycles.

A reminder about our notation: Recall that κ denotes the active index of (L•, Q•). xi denotes the number
of isotropic subspaces of the sequence contained in the singular locus of Qridi . In particular, if xi < s, then
Lnxi+1 denotes the smallest dimensional isotropic space in the sequence strictly containing Qri,singdi

(in
the quadric diagram notation, Lnxi+1 is depicted by the left most bracket such that one of the digits to
its left is zero or greater than i). yj denotes the index of the largest dimensional quadric containing Lnj
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in its singular locus or yj = k − s + 1 if there are none (in terms of quadric diagrams, yj is the positive
digit to the immediate left of the j-th bracket or yj = k − s + 1 if this digit is zero.) The condition
nxκ+1 − rκ − 1 = yxκ+1 − κ means that the codimension of Qrκ,singdκ

in Lnxκ+1 is one more than the
number of quadrics in the sequence that contain Qrκdκ but do not contain Lnxκ+1 in their singular locus.

Algorithm 5.9. We now give the algorithm that describes the maximal dimensional components of the
flat limit of Degeneration 5.7.

Step 1. If V (L•, Q•) is saturated (i.e., a Schubert variety), output V (L•, Q•) and stop. The algorithm
terminates. Otherwise,

• Let (La•, Q
a
•) be the sequence obtained by replacing Qrκdκ in (L•, Q•) with Qrκ+1

dκ
= Q

r′κ
d′κ

.

• If xκ < s, then let (Lb•, Q
b
•) be the sequence obtained by replacing Lnx′κ+1

in (La•, Q
a
•) with Lr′κ

(the singular locus of Qr
′
κ

d′κ
).

and proceed to Step 2.
Step 2. Depending on the case, replace V (L•, Q•) by the following union of restriction varieties and
stop.
• If xκ = s or if nxκ+1−rκ−1 > yxκ+1−κ in the sequence (L•, Q•), replace V (L•, Q•) with the restriction
varieties obtained by running Algorithm 5.10 on (La•, Q

a
•).

• If (La•, Q
a
•) violates Condition (8) (i.e., x′κ < k − κ + 1 − d′κ−r

′
κ

2 ), then replace V (L•, Q•) with the
restriction varieties obtained by running Algorithm 5.10 on (Lb•, Q

b
•).

• If xκ < s, nxκ+1−rκ−1 = yxκ+1−κ in the sequence (L•, Q•) and Condition (8) is satisfied for (La•, Q
a
•)

(i.e., x′κ ≥ k − κ+ 1− d′κ−r
′
κ

2 ), then replace V (L•, Q•) with the restriction varieties obtained by running
Algorithm 5.10 on both sequences (La•, Q

a
•) and (Lb•, Q

b
•).

Algorithm 5.10 (Normalizing the sequence). Given a sequence (Lα• , Q
α
• ) equal to (La•, Q

a
•) or (Lb•, Q

b
•)

defined in Algorithm 5.9, run the following loop on the sequence. We will call the process of replacing
the sequence (L•, Q•) by the sequences produced by this algorithm normalizing the sequence.

i. If the sequence (Lα• , Q
α
• ) is admissible, output the sequence (Lα• , Q

α
• ) and stop. Otherwise, proceed

to [ii].
ii. If rk−s+2 ≥ dk−s (i.e., Condition (7) is violated) in (Lα• , Q

α
• ), replace (Lα• , Q

α
• ) by two sequences

(Li•, Q
i
•) for i = 1, 2, where (Li•, Q

i
•) is the sequence obtained from (Lα• , Q

α
• ) by replacing Qrk−sdk−s

with Ldk−s−1 unless 2(dk−s − 1) = n. If 2(dk−s − 1) = n, then in one of the sequences replace
Q
rk−s
dk−s

with Ldk−s−1 and in the other with L′dk−s−1. If in addition 2k = n, discard the sequence
that parameterizes linear spaces that has the wrong parity for the dimension of intersection
with Lk. For each of the sequences (Li•, Q

i
•), return to Step [i] and run the loop again setting

(Lα• , Q
α
• ) = (Li•, Q

i
•). If rk−s + 2 < dk−s (i.e., Condition (7) holds), proceed to [iii].

iii. If Condition (9) is violated for (Lα• , Q
α
• ), while Condition (9) is violated, let µ be the largest index

for which it is violated. Form a new sequence (Lβ• , Q
β
• ) by replacing Qrµdµ in (Lα• , Q

α
• ) with Qrµ+1

dµ−1.

Discard the sequence (Lβ• , Q
β
• ) if dµ+1 = dµ− 1 in (Lα• , Q

α
• ). If there are no remaining sequences,

the algorithm terminates and does not our put any sequences. If (Lβ• , Q
β
• ) satisfies Condition (9),

proceed to Step [i] and run the loop again setting (Lα• , Q
α
• ) = (Lβ• , Q

β
• ).

We already observed that the sequence (La•, Q
a
•) is represented by the sequence of brackets and braces

Da defined in §3. Next observe that (Lb•, Q
b
•) is represented by Db defined in §3. (Lb•, Q

b
•) is obtained

from (La•, Q
a
•) by replacing the smallest dimensional linear space containing the singular locus of Qr

′
κ

dκ
with

the singular locus of Qr
′
κ

dκ
. This corresponds to shifting the left most bracket whose position is greater

than lDa(≤ κ) to the position lDa(≤ κ).
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The problem, as observed in §3, is that Da and Db need not be quadric diagrams. Equivalently,
(La•, Q

a
•) and (Lb•, Q

b
•) may fail to be admissible. Algorithm 5.10 replaces them by admissible sequences.

The sequence (La•, Q
a
•) may fail to satisfy Conditions (7), (8), or (9). If it fails to satisfy Condition (8),

this sequence does not lead to a variety supported on the flat limit. If it fails to satisfy Condition (7),
then Algorithm 5.10 in Step (ii) replaces the sequence by two sequences. The geometric meaning of this
step is that the quadric Qr

′
κ

dκ
is reducible consisting of a union of two linear spaces. When n is even and

the linear spaces have dimension n/2, they belong to two different connected components. These are
distinguished in the algorithm.

When (La•, Q
a
•) fails to satisfy Condition (9) such as in the sequence represented by 10]0]0]00000}0,

the loop in Step iii of Algorithm 5.10 increases the dimension of the singular locus of the quadric failing
Condition (9) by one and decreases its dimension by one until Condition (9) is satisfied. In this case,
the loop would produce the sequences represented by 11]0]0]0000}00, 11]1]0]000}000 and 11]1]1]00}0000,
which satisfies Condition (9). Note however that Condition (7) may now fail to be satisfied, hence needs
to be checked again. In Algorithm 5.10, it would have made more sense to swap Steps ii and iii. We write
it this way for consistency with the case of flag varieties.

The sequence (Lb•, Q
b
•) may also fail to satisfy Condition (9). For example, the sequence represented

by 3]0000}00}0} fails Condition (9). The loop in Step iii of Algorithm 5.10 increases the dimension of
the singular loci and decreases the dimension of the quadrics containing the quadric failing Condition
(9) successively. In this case, the loop would produce the sequences represented by 2]0000}0}00} and
1]0000}0}0}0, successively.

The geometric meaning of Step iii in Algorithm 5.10 is as follows. When ri = nj −1, by “the variation
of tangent spaces”, the tangent space to Qridi is constant along Lnj . Hence, if a linear space intersects
Lnj , then it must be contained in this fixed tangent space. Therefore, the subspaces that are contained in
Qridi are already contained in the codimension one quadric cut out on Qridi by the linear space everywhere
tangent to Qridi along Lnj . The dimension of this quadric is one smaller and its singular locus contains
Lnj . Step iii of the Algorithm 5.10 replaces Qridi with this quadric.

The geometric meaning of Algorithm 5.9 is apparent. Step 1 checks whether a given restriction variety
is a Schubert variety. If so, the algorithm stops. Otherwise, we increase the corank of Qrκdκ by one using
Degeneration 5.7. There are two possibilities. Either the linear spaces intersect the new singular locus
of Qrκ+1

dκ
in a vector space of dimension xκ (this possibility corresponds to the sequence (La•, Q

a
•) and is

depicted by Da) or they intersect the singular locus in a subspace of dimension xκ + 1 (this possibility is
depicted by the sequence (Lb•, Q

b
•) and is depicted by Db). Under the first condition in Step 2, the variety

corresponding to (Lb•, Q
b
•) has smaller dimension than the original variety V (L•, Q•). Therefore, the

sequence (Lb•, Q
b
•) does not lead to a component of the flat limit of the Degeneration 5.7. We replace the

original sequence by sequences obtained from (La•, Q
a
•). In the second case, (La•, Q

a
•) violates Condition

(8), hence the dimension of intersection of the linear spaces with the singular locus Qr
′
κ

dκ
has to increase.

Therefore, the only possibilities are derived from the sequence (Lb•, Q
b
•). In the final case, sequences

derived from both sequences (La•, Q
a
•) and (Lb•, Q

b
•) give components of the flat limit of the Degeneration

5.7. This is the geometric branching.

From our description of the two algorithms, it is clear that Algorithm 5.9 and Algorithm 3.10 are
the same algorithm, one phrased in terms of admissible sequences and the other in terms of the quadric
diagrams representing them. In the rest of the section, we will work with the geometric algorithm.

We will check shortly that Algorithm 5.9 replaces a restriction variety with restriction varieties. Hence,
we can apply the algorithm to each of the resulting varieties until the end result is a collection of Schubert
varieties. Before proceeding, we urge the reader to work through the examples in the beginning of this
section.

Definition 5.11. A degeneration path for V1 is a sequence of restriction varieties V1 → V2 → · · · → Vm
starting with V1 and ending with a Schubert variety Vm such that Vi+1 is one of the varieties assigned to
Vi by Algorithm 5.9.
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Theorem 5.12. The class of a restriction variety V is equal

[V ] =
∑

[Vi]

where Vi are the restriction varieties produced by Algorithm 5.9. In particular, the coefficient cµλ in

[V ] =
∑

cµλσ
µ
λ

is the number of degeneration paths starting with V and ending in a variety with cohomology class σµλ .
Furthermore, the algorithm respects the marking of restriction varieties.

Proof. We prove the theorem in three steps. We first check that Algorithm 5.9 transforms restriction
varieties into a collection of restriction varieties of the same dimension. Then we interpret replacing Qrκdκ
by Qrκ+1

dκ
in Step 1 of Algorithm 5.9 as applying Degeneration 5.7. Using a dimension count, we show

that the flat limit is supported along the varieties produced by the algorithm. Finally, we check that the
flat limit is reduced at the generic point of each of these varieties. Theorem 5.12 follows. We begin by
analyzing each case in the algorithm separately.

• If the sequence (L•, Q•) is saturated, then Lemma 4.18 implies that V (L•, Q•) is a Schubert variety.
In this case, there is nothing further to do. Accordingly, Algorithm 5.9 terminates. From now on we may
assume that (L•, Q•) is not saturated.

The new sequences (La•, Q
a
•), (L

b
•, Q

b
•) formed in Step 1 may fail to be admissible. However, Conditions

(1)-(6) are satisfied for them and for any of the sequences output by Algorithm 5.9. We begin by verifying
this for (La•, Q

a
•). Conditions (4) and (5) hold by construction. Since Conditions (1) and (2) hold for

(L•, Q•) and replacing rκ by rκ + 1 can only increase the left-hand-side of the inequalities, Conditions
(1) and (2) also hold for (La•, Q

a
•). The active index κ is chosen so that Qrκdκ satisfies the strict inequality

dκ + rκ < dκ−1 + rκ−1 ≤ n in Condition (3). Increasing rκ by one can at worst turn these inequalities
into equalities and improves the corresponding inequality for the index κ. Therefore, Condition (3) holds
for (La•, Q

a
•). The sequence (La•, Q

a
•) satisfies Condition (6) by the choice of κ. The ranks of the quadrics

ri remain unchanged for indices i 6= κ. The choice of κ implies that j − i ≤ di − dj = rj − ri for every
j > i ≥ κ in (L•, Q•). Hence, replacing rκ with rκ + 1 ensures the inequality r′i− r′κ ≥ i−κ− 1 for i > κ.
The inequalities for r′κ − r′i improve by one for κ > i. Finally, the second half of Condition (6) is also
immediate from the choice of κ. We conclude that Conditions (1)-(6) hold for (La•, Q

a
•).

Next we note that the sequence (Lb•, Q
b
•) is obtained from (La•, Q

a
•) by replacing the linear space Lnx′κ+1

with the smaller dimensional linear space Lr′κ . Replacing a linear space by a smaller dimensional one
clearly preserves Conditions (1)-(4) and (6). Since all the quadrics with corank ri ≤ r′κ are singular along
Lr′κ , Condition (5) also holds. Hence, the sequence (Lb•, Q

b
•) satisfies Conditions (1)-(6).

Finally, we analyze how Algorithm 5.10 affects Conditions (1)-(6). We make the observation that if
Condition (9) fails for (La•, Q

a
•), then it fails only for the index κ. If Condition (9) fails for (Lb•, Q

b
•), then

it can only fail for indices i < κ.

• In Step ii of Algorithm 5.10, the quadric Qrk−sdk−s
is replaced by a linear space Ldk−s−1 of dimension

dk−s − 1. Conditions (2)-(6) are unaffected by this change. By assumption, we have dk−s ≤
rk−s + 2. Hence 2ns+1 = 2(dk−s − 1) ≤ dk−s + rk−s ≤ dk−s−1 + rk−s−1. This verifies Condition
(1).

• In Step iii of Algorithm 5.10, a quadric Qridi is replaced by a quadric of corank ri + 1 and ambient
dimension di−1. Note that all the inequalities in (1)-(3) are invariant under this transformation.
Conditions (4) and (5) hold by construction. Condition (9) may fail to be satisfied for the index
κ in (La•, Q

a
•) or for some indices i < κ in (Lb•, Q

b
•). In the former case the loop increases the

rank rκ to that of at most rκ+1 and it is clear that the resulting sequence satisfies Condition (6).
If (Lb•, Q

b
•) violates Condition (9), it either violates it for all 1 ≤ i ≤ κ or only for κ − 1. In the

first case, in (L•, Q•) we must have r1 = rκ = xκ in (L•, Q•) and the loop produces a sequence
that satisfies the same equalities. Else rκ−1 = rκ in (L•, Q•) and by Condition (6) for (L•, Q•),
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dκ−1 − 1 = dκ and the loop in Step iii, does not produce any sequences. Hence, the sequences
produced in Step iii satisfy Conditions (1)-(6).

We conclude that all the sequences occurring in the algorithm satisfy Conditions (1)-(6).

If Conditions (7)-(9) hold in a sequence for all the indices i ≥ α, then Algorithm 5.10 does not modify
the quadrics with these indices. Hence, every intermediate sequence formed during Algorithm 5.10 also
satisfies Conditions (7)-(9) for indices i ≥ α.

Condition (8) may fail to hold for (La•, Q
a
•). However, since (L•, Q•) is admissible, Condition (8) can

only fail in (La•, Q
a
•) for the index κ and the right hand side of the inequality can exceed the left hand

side by at most 1/2. Moreover, in (L•, Q•), we must have the equality

xκ = k − κ+ 1− dκ − rκ
2

.

The choice of κ implies that equality holds in Condition (8) for all the indices i > κ in the sequence
(L•, Q•). Since ri + di = rκ + dκ for all i > κ, we can rewrite the inequality in Condition (8) for the
index i as

xi ≥ xκ + ri − rκ + κ− i.
By Condition (9), rκ+1 − rκ − 1 ≥ xκ+1 − xκ. Hence, we see that equality holds for the index κ+ 1. By
induction, it follows that equality holds for all the indices κ ≤ i ≤ k − s. Furthermore, nxκ+1 − rκ − 1 =
yxκ+1 − κ in (L•, Q•). Finally, note that if xκ = s, then equality for the index k − s implies that
dk−s = rk−s + 2 contradicting Condition (7) for (L•, Q•). We conclude that if Condition (8) fails for
(La•, Q

a
•), then xκ < s and nxκ+1 − rκ − 1 = yxκ+1 − κ. Therefore, the cases in Algorithm 5.9 are

exhaustive and mutually exclusive. We may assume from now on that the sequence (La•, Q
a
•) satisfies

Condition (8). We also conclude that the sequence (Lb•, Q
b
•) satisfies both Conditions (7) and (8). Since

xκ < s, Condition (7) has to hold for (La•, Q
a
•). Replacing a linear space with a smaller linear space

does not affect Condition (7). Replacing Lx′κ+1 with Lr′κ increases the left hand side of the inequality in
Condition (8) by one without affecting the right hand side.

Therefore, (Lb•, Q
b
•) is either admissible or fails Condition (9). As we observed while verifying Step iii

of Algorithm 5.10 preserves Conditions (1)-(6), no new sequences are formed unless Condition (9) fails
for all the indices 1 ≤ i ≤ κ − 1. In this case, any sequence formed in Step iii of Algorithm 5.10 clearly
satisfies Condition (9), hence is admissible. Hence, every sequence formed in Step 4 of Algorithm 5.9 is
admissible.

Condition (7) may fail to hold for (La•, Q
a
•) or while running Step iii of Algorithm 5.10 on (La•, Q

a
•). This

may happen in only one of two ways. The sequence (L•, Q•) either has dk−s = rk−s + 3 and κ = k − s;
or dk−s = rk−s + 3 + 2α, κ = k − s and (L•, Q•) has α linear spaces of dimensions rk−s + 2, rk−s +
3, . . . , rk−s +α+ 1 = ns. By the observation three paragraphs above, κ = k− s. Hence, either Condition
(7) is directly violated for (La•, Q

a
•) or Condition (7) is violated after applying Step iii of Algorithm 5.10

for the index κ α times. The equality dk−s = rk−s + 3 + 2α follows by combining Condition (8)

s− α > s+ 1− dk−s − rk−s
2

for (L•, Q•) with the inequality dk−s − rk−s − 2α ≤ 3 that expresses that Condition (7) is violated after
α-steps. In either of the two cases, Step ii of Algorithm 5.10 outputs admissible sequences.

Finally, if Condition (9) fails for the sequence (La•, Q
a
•), then, as observed above, it fails only for the

index κ. Applying Step iii of Algorithm 5.10 either produces a sequence which is admissible or which
violates Condition (7). In the latter case, running Step ii of Algorithm 5.10 outputs an admissible
sequence. We conclude that all the sequences output by Algorithm 5.9 are admissible. We now analyze
the dimensions of the corresponding varieties.

• The expression in Equation (1) for the dimension of a restriction variety remains unchanged when
we replace Qrκdκ with Qrκ+1

dκ
.
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• In Cases 2 and of the Algorithm, we have the equality nx′κ+1 − r′κ = yx′κ+1 − κ. Hence, when we
replace Lnx′κ+1

with Lr′κ to form (Lb•, Q
b
•), xi increases by one for the indices κ ≤ i < yxκ+1. The

dimension of the linear space with index x′κ + 1 decreases by n′xκ+1 − r′κ. All other terms in the
expression in Equation (1) remain unchanged.

• Step iii of Algorithm 5.10 increases xµ by one and decreases dµ by one, hence preserves the
expression in Equation (1).

• Finally, replacing Q
dk−s−2
dk−s

with Ldk−s−1 in Step ii of Algorithm 5.10 increases the first sum in
Equation (1) by dk−s − s− 2. It changes the second sum by −xs − dk−s + 2s+ 2. Since we must
have xs = s, we conclude that this step also preserves the expression in Equation (1).

Combining these observations, we conclude that every sequence produced by Algorithm 5.9 is ad-
missible and gives rise to a restriction variety of the same dimension as V (L•, Q•). The algorithm can
be recursively applied to each of the resulting restriction varieties. It is clear that the algorithm must
terminate in a collection of Schubert varieties. At each stage of the algorithm, either the corank of a
quadric in the sequence increases by at least one or the number of quadrics in the sequence decreases.
Since there are finitely many quadrics in the sequence and the corank of the quadrics are bounded above,
eventually the sequence must become saturated. Then the resulting varieties are Schubert varieties.

We now analyze Degeneration 5.7 to conclude that the support of the flat limit is the union of restriction
varieties replacing V (L•, Q•) in Algorithm 5.9. In order to restrict the possible irreducible components of
the support of the flat limit, we write down conditions that the linear spaces in the limit have to satisfy.
We then observe that these conditions already cut out varieties of dimension equal to the dimension of
V (L•, Q•). The following observation puts strong restrictions on the support of the flat limit.

Observation 5.13. The linear spaces parameterized by the restriction varieties V (L•(t), Q•(t)) intersect
the linear spaces Lnj (t) in a subspace of dimension at least j and the quadrics Qridi(t) in a linear space
of dimension at least k − i + 1. Similarly, they intersect Qri,singdi

(t) in a linear space of dimension at
least xi. Since intersecting a proper variety in at least a given dimension is a closed condition, the linear
spaces parameterized by the flat limit V (0) have to intersect the linear spaces Lnj (0) in a subspace of
dimension at least j and the quadrics Qridi(0) in a subspace of dimension at least k− i+ 1. Furthermore,
they intersect Qri,singdi

(0) in a subspace of dimension at least xi.

A quick inspection of the algorithm will reveal that in each of the limits either the linear spaces
intersect the vertex of Qrκ+1

dκ
(0) in a subspace of dimension xκ+1 and otherwise remain as unconstrained

as possible given Observation 5.13; or the linear spaces continue to intersect Qrκ+1
dκ

(0) in a subspace of
dimension xκ and only satisfy the constraints imposed by Observation 5.13. A priori in the limit the linear
spaces could become more special. However, we claim that these loci have strictly smaller dimension and
do not form an irreducible component of the support of the flat limit. We now verify this claim.

Let Y be an irreducible component of the support of the flat limit of Degeneration 5.7. Then we can
build a sequence of consisting of k linear spaces and quadrics such that the closure of the locus of linear
spaces intersecting the i-th element in the sequence (counting in increasing dimension) in dimension i
contains Y . We complete the linear spaces and quadrics in the sequence (La•, Q

a
•) to a set of linear spaces

and quadrics whose dimensions increase by one at each stage making sure that Conditions (4) and (5)
of Definition 4.2 are satisfied. We then select those linear spaces and quadrics that have a jump in the
dimension of intersection with a general linear space parameterized by Y . We thus obtain a set of k
linear spaces and quadrics. By construction the closure of the locus X of linear spaces that intersect the
i-th one in dimension i contains Y . Observation 5.13 implies that the i-th linear space or quadric in the
sequence thus obtained has dimension less than or equal to the i-th linear space or quadric (counting in
increasing dimension) in the sequence (La•, Q

a
•). By Proposition 4.16, Equation (1) gives an upper bound

on the dimension of X (note that we used the fact that the sequence is admissible in the proof only to
deduce the equality).
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We now estimate the dimension of X. We obtain the sequence defining X by replacing linear spaces
and quadrics in (La•Q

a
•) by smaller dimensional ones in increasing order. We will do this in greater

generality in preparation for the discussion of orthogonal flag varieties.

• If we replace a linear space of dimension n′i+j in the (i + j)-th position with a linear space of
dimension n∗i in the i-th position not contained in (La•, Q

a
•), then according to Equation (1) the

dimension changes as follows. Let y′i+j and y∗i be the smallest index quadrics containing the
corresponding linear spaces in their singular locus. The dimension decreases by n′i+j − n∗i + j +
y′i+j − y∗i . Since Conditions (6) and (9) hold for (L•, Q•), we have that n′i+j −n∗i + y′i+j − y∗i ≥ 0.
Consequently the decrease in the dimension is at least j with equality when n′i+j−n∗i +y′i+j−y∗i =
0.

• If we replace the i-th largest quadric in a vector space of dimension d′i by the (i + j)-th largest
quadric in a vector space of dimension d∗i+j , then according to Equation (1) the dimension
decreases by d′i − d∗i+j + x′i − x∗i+j . This decrease is at least j with strict inequality unless
Condition (9) fails for r′i.

• Finally, if we replace the quadric Qr
′
i

d′i
with the linear space Ln∗j , then the first sum in Equation

(1) changes by n′j − s− 1. The second sum changes by −d′i + (k− s− y∗j − x′i) + (2s+ 2). Hence,
the total change is

−d′i + n∗j + k + 1− x′i − y∗j ,
where y∗nj denotes the index of the largest dimensional quadric containing L∗nj in its singular
locus. We rewrite this expression as follows:

(k − i+ 1− bd
′
i − r′i

2
c − x′i) + (n∗j − d

d′i + r′i
2
e+ k − s− y∗j ) + (−k + s+ i).

The sum in the first parentheses is strictly negative unless Condition (8) is violated or there is
equality in Condition (8); otherwise it is zero. The sum in the second parentheses is strictly
negative unless j = s+ 1 and d′i + r′i = dk−s + rk−s; otherwise it is zero. Finally, the third sum
is strictly negative unless i = k − s; otherwise it is zero.

Since our degeneration is flat, Y has to have the same dimension as V (L•, Q•). Since X contains Y ,
our dimension calculation puts strong restrictions on X.

First, suppose xκ = s in (L•, Q•). Then by Conditions (6) and (9) for (L•, Q•), n′l− r′i + y′l− i > 0 for
every l with n′l > r′i in (La•, Q

a
•). Furthermore, Condition (9) holds for (La•, Q

a
•). If d′k−s− r′k−s > 2, then

replacing any linear space or quadric with a smaller dimensional one strictly decreases the dimension. Note
also that (La•, Q

a
•) is admissible. In this case, we conclude that X has to be V (La•, Q

a
•). Since V (La•, Q

a
•)

and V (L•, Q•) have the same dimension, we conclude that Y has to be a component of V (La•, Q
a
•). If

d′k−s−r′k−s = 2, then Q
r′k−s
d′k−s

is necessarily reducible consisting of two linear spaces of dimension d′k−s−1.
If 2(d′k−s − 1) = n, then these linear spaces belong to two different connected components. We can

therefore replace Q
r′k−s
d′k−s

with either of these linear spaces to obtain two sequences. Note that replacing
any other linear space or quadric with a smaller dimensional one strictly decreases the dimension. Hence
X has to be the variety corresponding to one of these sequences. Since X has the same dimension as
V (L•, Q•), we conclude that Y has to be an irreducible component of X. Observe that Algorithm 5.9
selects the sequences corresponding to X.

Next, suppose that xκ < s and nxκ+1− rκ− 1 > yxκ+1− κ in (L•, Q•). Then the sequence (La•, Q
a
•) is

admissible. Furthermore, by our dimension calculation, replacing any linear space or quadric in (La•, Q
a
•)

leads to a strictly smaller dimensional locus. We conclude that X = V (La•, Q
a
•) and Y has to be an

irreducible component of V (La•, Q
a
•).

Next, suppose that xκ < s and Condition (8) is violated for (La•, Q
a
•) for κ. Note that in that case,

there must be an equality in Condition (8) in (L•, Q•) for the index κ. Hence, by Conditions (6) and (8),
rκ−1 < rκ in (L•, Q•). By the “linear space bound”, every linear space of dimension k−κ+1 contained in
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Q
r′κ
d′κ

must intersect the singular locus of this quadric in dimension at least xκ + 1. Hence, we can replace
the sequence (La•, Q

a
•) with the sequence (Lb•, Q

b
•). By our dimension calculation, replacing any linear

space or quadric by a smaller dimensional one results in a variety of strictly smaller dimension. Hence,
we conclude that Y has to be an irreducible component of V (Lb•, Q

b
•). As we observed above, (Lb•, Q

b
•)

may fail Condition (9) for i < κ. In that case, by the “variation of tangent spaces”, any linear space of
dimension k − i + 1 intersecting Lr′κ in dimension xi is necessarily contained in the quadric everywhere
tangent to Q along Lr′κ . Hence, we can replace the sequence (Lb•, Q

b
•) as in Step iii of Algorithm 5.10 to

obtain an equivalent definition of the same variety (Note that since rκ−1 < rκ in (L•, Q•), the definition
of κ ensures that dµ − 1 < dµ−1 while running Step iii of Algorithm 5.10).

Finally, suppose that xκ < s and nxκ+1 − rκ − 1 = yxκ+1 − κ in (L•, Q•) and (La•, Q
a
•) satisfies

Condition (8). Let i ≤ κ be the smallest index such that nx′i+1 − r′i = yx′i+1 − i in (La•, Q
a
•). Note that

by Conditions (6) and (9) for (L•, Q•), there may be such indices precisely when rκ−1 = rκ, ri ≥ xκ
and ri = rκ − κ + i + 1 in (L•, Q•). By our dimension counts, replacing Lx′κ+1 with Lr′j for an index
i ≤ j ≤ κ can result in a sequence that has the same dimension as V (L•, Q•). Replacing any other linear
space or quadric with a smaller dimensional one, gives a smaller dimensional variety. The rest of the
analysis of this case is more subtle. We need to argue that unless j = κ, these loci do not occur in the
limit. For a general linear space Wt ∈ V (L•(t), Q•(t)), let Wt,j = Q

rj
dj

(t)∩Wt for i ≤ j < κ. The tangent
space to Q

rj
dj

along Wt,j intersects Lnxκ+1 in a subspace of dimension rj + 1. By semi-continuity, this
must be true for every linear space contained in V (L•(t), Q•(t)) and also in the limit V (L•(0), Q•(0)).
However, the tangent space to Qrjdj at a general linear space parameterized by the variety associated to
the sequence obtained from (La•, Q

a
•) by replacing Lx′κ+1 with Lr′j intersects Lnxκ+1 in dimension rj = r′j .

We conclude that the support of Y cannot equal such a locus. Hence X is the locus associated to one of
the sequences (La•, Q

a
•) or (Lb•, Q

b
•). These sequences may fail to satisfy Condition (9). In that case, Step

iii of Algorithm 5.10 replaces them by equivalent varieties unless for (Lb•, Q
b
•) we have dκ−1 − 1 = dκ. In

the latter case, by “the variation of tangent spaces”, the (k − κ+ 2)-dimensional subspaces of the linear

spaces W parameterized by X have to be contained in Qr
′
κ

d′κ
. In other words, we have to replace Q

r′κ−1

d′κ−1
by

a smaller quadric. By our dimension counts, such a locus has strictly smaller dimension, hence cannot
support Y .

In order to conclude the proof, we need to verify that the limits all occur and are reduced at the generic
point of each of these loci. This is a straightforward local calculation. Let U be the Zariski open set of our
family of restriction varieties parameterizing linear spacesW (t) such that dim(W (t)∩Qrκ(t)

dκ
(t)) = k−κ+1.

Let Z be the family of restriction varieties obtained by applying Degeneration 5.7 to the admissible
sequence obtained from (L•, Q•) by omitting the quadrics Qr1d1 , . . . , Q

rκ−1
dκ−1

. Then there exists a natural

morphism f : U → Z sending W (t) to W (t) ∩ Qrκ(t)
dκ

(t), which is smooth at the generic point of each
of the irreducible components of the fiber of Z at t = 0. We may, therefore, assume that κ = 1.
Furthermore, without loss of generality, we may assume that n = dκ + rκ + 1 and xκ = 0. We will check
that the multiplicity is one by exhibiting cycles that intersect V (L•, Q•) in one point and exactly one
of the potential limits in one point. This will allow us to conclude that each of the limits occur with
multiplicity one. There is a Schubert cycle in the class of the variety V (La•, Q

a
•) (respectively, V (Lb•, Q

b
•))

that occurs with coefficient one and does not occur in the class of V (Lb•, Q
b
•) (respectively, V (La•, Q

a
•)).

We use the dual of these Schubert cycles for our computation. Note that by our assumptions on κ and n,
di+ri = dκ+rκ = n−1 for every i ≥ κ. Hence, n−dk−s+1 = rk−s+2 and 2(rk−s+2) ≤ rk−s+dk−s+1 = n.

First, suppose xκ = s(= 0) and dκ = rκ + 3 in (L•, Q•). In this case, this is the standard family of a
quadric breaking into a union of two linear spaces. Both occur in the limit with multiplicity one. In this
case there is nothing to check. Next suppose xκ = s(= 0) and dκ > rκ+3 in (L•, Q•). Let βi = n−di+1.
Let S be the Schubert variety defined with respect to a general isotropic flag

Lβ1 ⊂ · · · ⊂ Lβk−s .
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In case 2βk−s = n, we will always define a second Schubert variety S′ by replacing Lβk−s with L′βk−s .
Note that under our assumptions V (Q•) is irreducible. Both V (Q•) and V (Qα• ) intersect S (and S′ when
appropriate) in a reduced point. The spans Span(Qridi) and Span(Qr

′
i

di
) intersect the linear space Lβi in

a one dimensional subspace for every 1 ≤ i ≤ k. Any k-dimensional linear space contained in V (Q•) ∩ S
or V (Qα• ) ∩ S must contain these one-dimensional subspaces. Hence, the k-dimensional linear space is
uniquely determined as the Span((Qridi ∩ Li), 1 ≤ i ≤ k) or Span((Qr

′
i

di
∩ Li), 1 ≤ i ≤ k), respectively.

By Kleiman’s Transversality Theorem [K], we conclude that the intersection of the two varieties consists
of a single reduced point. When 2βk−s = n, two general linear spaces in the class L = Lβk−s intersect
in a unique point if n = 0 modulo 4 and are otherwise disjoint. A general linear space in the class L
and a general linear space in the class L′ = L′βk−s intersect in a unique point if n = 2 modulo 4 and are
otherwise disjoint. When V (Q′•) has two components, repeating the argument with S′, we conclude that
both components occur with multiplicity one.

Next, suppose that xκ(= 0) < s and (La•, Q
a
•) fails to satisfy Condition (8). Let αxκ+1 = α1 = n− rκ.

Let αj = n− nj−1 for j > xκ+1. Let βi = n− di + 1. Let S be the Schubert variety defined with respect
to the linear spaces and quadrics

Lβ1 ⊂ · · · ⊂ Lβk−s ⊂ Qn−αsαs ⊂ · · · ⊂ Qn−α1
α1

.

Proposition 4.18 implies that S is a Schubert variety. We claim that S intersects both V (L•, Q•) and

V (Lb•, Q
b
•) in a unique, reduced point. The linear spaces Lβi intersect the quadrics Qridi and Qr

b
i

dbi
in unique

points. Any k-dimensional linear space in the intersection of S and V (L•, Q•) or S and V (Lb•, Q
b
•) must

contain the (k − s)-dimensional linear space Λ spanned by these points. In S ∩ V (L•, Q•), the quadrics
everywhere tangent to Λ determine unique points in Qn−αjαj ∩Lnj for j > 0. In S∩V (Lb•, Q

b
•), the quadrics

everywhere tangent to Λ determine unique points in Qn−αjαj ∩ Lnj for j > 1 and furthermore the k-plane
has to contain the point Lrbκ ∩Q

n−α1
α1

(which is contained in the singular locus of all the quadrics). Hence,
in both cases, the k-dimensional linear space in the intersection is uniquely determined. We proved above
that ns = n/2 in this case. Hence, both V (L•, Q•) and V (Lb•, Q

b
•) are irreducible. Therefore, V (Lb•, Q

b
•)

occurs in the limit with multiplicity one.

Next, suppose xκ(= 0) < s and nxκ+1 − rκ − 1 > yxκ+1 − κ. In this case, let i0 denote the smallest
index for which equality holds in Condition (8) in (L•, Q•). If there is no such index, set i0 = 0 and
ri0 = 0. For nj ≤ ri0 , let αj = n− nj + 1. For nj > ri0 , set αj = n− nj−1. Next, for each index i < i0,
let li be the largest positive integer such that ri + li + 1 = nxi+li . If there does not exist such li, set
li = 0. Let βi = n− di + li + 1 for i < i0 and let βi = n− di + 1 for i ≥ i0. Let S be the Schubert variety
defined by the sequence

Lβ1 ⊂ · · · ⊂ Lβk−s ⊂ Qn−αsαs ⊂ · · · ⊂ Qn−α1
α1

.

When 2βk−s = n, define S′ by replacing Lβk−s with L′βk−s . Note that Proposition 4.18 implies S is a
Schubert variety. As in the previous cases, it is straightforward to see that S intersects both V (L•, Q•)
and V (La•, Q

a
•) in a unique, reduced point. When appropriate, the same holds for S′. We conclude that

V (La•, Q
a
•) occurs in the limit with multiplicity one.

Finally, suppose xκ(= 0) < s, nxκ+1 − rκ − 1 = yxκ+1 − κ and Condition (8) is satisfied for (La•, Q
a
•).

Then duals for V (La•, Q
a
•) and V (Lb•, Q

b
•) are obtained as in the previous cases. Let S be the Schubert

variety defined exactly as in the previous paragraph. Let T be the Schubert variety defined by replacing
αxκ+1 = n − nxκ+1 + 1 in the definition of S with αxκ+1 = n − rκ. Then it is straightforward to
see that both S and T intersect V (L•, Q•) in a unique reduced point. S (respectively, T ) intersects
V (La•, Q

a
•) (respectively, V (Lb•, Q

b
•)) in a unique, reduced point and has empty intersection with V (Lb•, Q

b
•)

(respectively, V (La•, Q
a
•)). It follows that both limits occur with multiplicity one. Finally, by replacing S

with S′ and T with T ′ when appropriate, it is easy to see that in case these varieties are reducible, both
components occur with multiplicity one and that the algorithm preserves marking. This concludes the
proof of the theorem. �
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Remark 5.14. From the analysis in the proof of Theorem 5.12, it follows that at each stage of the
degeneration a restriction variety breaks into at most three irreducible components.

6. Applications of Algorithm 5.9

In this section we discuss a couple of immediate applications of Algorithm 5.9. The Introduction
discusses other applications.

6.1. The moduli space of vector bundles on hyperelliptic curves. There is a beautiful, classical
construction that associates to a general pencil of quadric hypersurfaces in P2g+1 a hyperelliptic curve C
of genus g. In fact, every smooth hyperelliptic curve of genus g arises this way [GH, §6], [DR]. We recall
the construction for the reader’s convenience.

Let Q1 and Q2 be general quadric hypersurfaces in P2g+1. Let tQ1 + uQ2 be the pencil generated by
Q1 and Q2. Consider the incidence correspondence I parameterizing pairs (Q,C), where Q is a quadric
hypersurface contained in the pencil and C is a connected component of the space of g-dimensional
projective linear spaces on Q. The incidence correspondence I is irreducible and maps to P1 by the first
projection π1. When Q is a smooth quadric, the space of g-dimensional projective linear spaces on Q has
two connected components. Hence, I is a double cover of P1. When Q has corank one, then the space
of g-dimensional projective spaces has only one component. Hence, π1 is ramified at the 2g + 2 points
in the pencil that are quadrics of corank one. By the Riemann-Hurwitz formula, we conclude that I is a
hyperelliptic curve of genus g.

To see that there are 2g + 2 corank one quadrics in a general pencil, observe that the pencil can be
identified with a (2g+2)×(2g+2) symmetric matrix whose entries are linear homogeneous polynomials in
t and u. The quadrics of corank one correspond to matrices with zero determinant. Since the determinant
is a homogeneous polynomial of degree 2g + 2 in t and u, it will have 2g + 2 roots in P1. If the pencil
is general, these roots will be distinct and the corresponding symmetric matrix will have corank exactly
one. Furthermore, it is clear from this description that one can construct a pencil with any 2g+2 distinct
roots. Hence, every smooth hyperelliptic curve of genus g arises via this construction.

Let C be a smooth hyperelliptic curve of genus g ≥ 2. Let MV2,o(Cg) denote the moduli space of rank
two vector bundles with a fixed determinant of odd-degree on C. Realize C as a double cover of a pencil
of quadric hypersurfaces in P2g+1. By a celebrated theorem of Desale and Ramanan [DR], MV2,o(Cg) is
isomorphic to the space of (g− 2)-dimensional projective linear spaces contained in this pencil of quadric
hypersurfaces in P2g+1. Equivalently, if Q1 and Q2 are two smooth quadric hypersurfaces that generate
the pencil, MV2,o(Cg) is isomorphic to the space of (g−2)-dimensional projective linear spaces contained
in both Q1 and Q2.

We can view the space X parameterizing (g− 2)-dimensional projective linear spaces contained in Q1

as the orthogonal Grassmannian OG(g − 1, 2g + 2), which naturally includes in G(g − 1, 2g + 2). We
can also view the space of (g − 2)-dimensional projective linear spaces contained in Q2 as a subvariety
Y of G(g − 1, 2g + 2). Of course, Y is isomorphic to X; however, its embedding in G(g − 1, 2g + 2)
differs from that of X by translation with an element of PGL(2g + 2). By Kleiman’s Transversality
Theorem, X and Y intersect transversally. Therefore, the class of the intersection Y ∩OG(g− 1, 2g+ 2)
in H∗(OG(g − 1, 2g + 2),Z) is the pull-back of the class of Y in H∗(G(g − 1, 2g + 2),Z) under the map
induced by inclusion.

The class of Y in G(g − 1, 2g + 2) is well-known to be 2g−1σg−1,g−2,...,2,1. There are several ways of
calculating this class. First, it is the top Chern class of the vector bundle Sym2(S∗) on G(g− 1, 2g+ 2),
where S∗ denotes the dual of the tautological bundle of G(g−1, 2g+2). Calculating the top Chern class of
Sym2(S∗) is a standard exercise in using the splitting principle. Alternatively, one can use degenerations
for a more pleasant calculation. Very briefly, break the quadric into a union of two linear spaces using
a general pencil Q + tL1L2. The flat limit of the space of (g − 2)-dimensional projective linear spaces
contained in Q is the space of (g − 2)-dimensional projective linear spaces contained in L1 or L2 that
intersect Q ∩ L1 ∩ L2 in (g − 3)-dimensional projective linear spaces (see [C1] or [C2]). Now inductively
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break Q∩L1 ∩L2 into a union of linear spaces using a general pencil. Continuing this process for (g− 1)
steps, we obtain 2g−1 flags of the form

P2g ⊃ P2g−2 ⊃ P2g−4 ⊃ · · · ⊃ P4,

where P2g−2i is one of the two linear spaces obtained by degenerating the (2g− 2i)-dimensional quadric.
Inductively, the flat limit of Y is the space of (g − 2)-dimensional projective linear spaces that intersect
P2g−2i in a projective space of dimension g−2−i. We conclude that the class of Y is is 2g−1σg−1,g−2,...,2,1

in the cohomology of G(g − 1, 2g + 2).

In conclusion, the class of MV2,o(Cg) is 2g−1 times the class of the restriction variety associated to the
Schubert class σg−1,g−2,...,1 in G(g−1, 2g+2). More explicitly, the class of MV2,o(Cg) in OG(g−1, 2g+2)
is equal to 2g−1 times the class of the restriction variety associated to the admissible sequence

Q0
5 ⊂ Q0

7 ⊂ · · · ⊂ Q0
2g−1 ⊂ Q0

2g+1.

Using Algorithm 5.9 the class can be easily computed. Here we give the class for the first few genera.

(1) [MV2,o(C2)] = 2σ1

(2) [MV2,o(C3)] = 4σ1
0 + 4σ3,1

(3) [MV2,o(C4)] = 16σ3,1
2 + 16σ1

1,0 + 16σ4,1
1

(4) [MV2,o(C5)] = 64σ3,1
3,1 + 64σ1

2,1,0 + 64σ5,1
2,1 + 32σ4,1

3,0 + 32σ5,4,1
3 + 32σ3,1

5,0 + 32σ5,3,1
5 + 32σ3,2

4,0 + 32σ5,3,2
4

More generally, one obtains a recursion in the genus for the class. Suppose that the class ofMV2,o(Cg−1)
in OG(g − 3, 2g) is given by

[MV2,o(Cg−1)] =
∑

cλ,µ[Ωµλ],

where Ωµλ is defined with respect to a sequence (Lλ• , Q
µ
• ). Let t be the largest index of a linear space in

the sequence such that nt = t. Define a new sequence (L̃λ• , Q̃
µ
• ) by setting L̃λnj = Lλnj for all 1 ≤ j ≤ s

and Q̃
µ,ri+1
di+1

= Qµ,ridi
for 1 ≤ i ≤ g − 3− s. Set Q̃µ,r1d1

= Qt2g+1−t. Then we have that

[MV2,o(Cg)] = 2
∑

cλ,µ[V (L̃λ• , Q̃
µ
• )].

Remark 6.1. When g = 2, MV2,o(C2) is a complete intersection of two quadric hypersurfaces in P5

[GH, §6]. Ciprian Manolescu (in private correspondence) posed the question whether MV2,o(Cg) can be
a complete intersection for g > 2. In fact, one can ask for a much weaker property. Can MV2,o(Cg)
be a complete intersection of ample divisors in OG(g − 1, 2g + 2)? The codimension of MV2,o(Cg) in
OG(g − 1, 2g + 2) is g(g−1)

2 . The codimension of the Schubert variety σg−2,g−3,...,2,1
g is g + 1. Hence, the

sum of the codimensions of these two varieties is g2+g
2 + 1. If g > 2, this is less than the dimension of

OG(g − 1, 2g + 2). Hence, if MV2,o(Cg) were a complete intersection of ample divisors, σg−2,g−3,...,2,1
g ·

[MV2,o(Cg)] 6= 0. However, the cup product of these classes is clearly zero since the one-dimensional vector
space defining the Schubert variety can be chosen to not be contained in Q0

2g+1 defining the restriction
variety. Hence, we conclude that for g > 2, MV2,o(Cg) cannot be a complete intersection of ample divisors
even in OG(g − 1, 2g + 2), let alone in G(g − 1, 2g + 2) or P(2g+2

g−1 )−1.

6.2. A geometric algorithm for computing the product of arbitrary Schubert cycles. The
pull-back of a Schubert class under the inclusion j : OG(k, n) → G(k, n) can be expressed as a sum
of classes of restriction varieties. Consider a Schubert cycle Σλ1,...,λk defined with respect to a general
partial flag

Fn−k+1−λ1 ⊂ Fn−k+2−λ2 ⊂ · · · ⊂ Fn−λk .
The intersection of this flag with the quadric hypersurface Q leads to the sequence of quadrics

Q0
n−k+1−λ1

⊂ Q0
n−k+2−λ2

⊂ · · · ⊂ Q0
n−λk .

Note that since none of the quadrics are singular, the Conditions (3)-(6) of Definition 4.2 are automatically
satisfied. Similarly, since there are no linear spaces in the sequence, Condition (1) is automatically
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satisfied. However, Condition (2) may be violated. In that case, the corresponding variety is empty and
the pull-back is zero. From now on we assume that the sequence satisfies all the conditions in Definition
4.2. If the sequence is admissible, then the pull-back of the Schubert cycle is the class of the corresponding
restriction variety. However, the sequence may fail to be admissible and thus the pull-back maybe the
sum of classes of restriction varieties. We now describe how to express the pull-back as a sum of these.
Since Condition (2) in Definition 4.2 is satisfied, n − k + i − λi ≥ 2i for all i. Suppose that equality
holds for i ≤ α and the inequality is strict for i = α + 1. Then the quadric Qn−k+1−λ1 consists of two
points p1, p2. The linear spaces have to contain one of the pi and be contained in the tangent space to Q
along pi. Then Q1

n−k+2−λ2
consists of two lines intersecting at pi. The linear spaces containing pi have

to contain one of these lines. Continuing we deduce the following proposition.

Proposition 6.2. Let σλ1,...,λk be a Schubert cycle in G(k, n). Let j : OG(k, n)→ G(k, n) be the natural
inclusion. Then

(1) j∗σλ1,...,λk = 0 unless n− k − i ≥ λi for every 1 ≤ i ≤ k.
(2) Suppose that n − k − i = λi for i = 1, . . . , α and n − k − i > λi for i = α + 1. Further suppose

that if 2k = n, then α 6= k. Let (L•, Q•) be the admissible sequence

L1 ⊂ L2 ⊂ · · · ⊂ Lα−1 ⊂ Lα ⊂ Qαn−k+α+1−λα+1
⊂ · · · ⊂ Qαn−1−λk−1

⊂ Qαn−λk .
Then j∗σλ1,...,λk = 2α[V (L•, Q•)], where [V (L•, Q•)] denotes the cohomology class of the restric-
tion variety V (L•, Q•). If 2α = 2k = n, then the class is 2α−1 times the Poincaré dual of a
point.

Theorem 5.12 gives a geometric algorithm for computing the product of any two Schubert cycles in the
cohomology ring of the orthogonal Grassmannian OG(k, n) when n is odd. When n is even, the quadric
Q has an involution exchanging the half-dimensional isotropic linear spaces. The same method gives an
algorithm for computing the invariant part of the cohomology ring. For simplicity we assume that n
is odd. We can reverse the algorithm to express any Schubert variety in the orthogonal Grassmannian
as a linear combination of the restriction of general Schubert varieties in the ordinary Grassmannian.
This algorithm is of independent interest and may be interpreted as a Giambelli-like formula, which
expresses an arbitrary Schubert cycle as a linear combination of restrictions of Schubert cycles from the
ordinary Grassmannian. We can then multiply the Schubert varieties in the ordinary Grassmannian and
use Proposition 6.2 to restrict back the product to the orthogonal Grassmannian.

Example 6.3. For example, we can express the Schubert variety σ3,1
4,2 in OG(4, 9) as follows.

1]22]000}00}0← 1]00]0000}0}0← 1
2

1]000}000}0}0← 1
4

00}000}000}0}

The Schubert variety σ3,1
4,2 in OG(4, 9) is a quarter of the restriction of the Schubert cycle σ4,2 in the

ordinary Grassmannian G(4, 9). Similarly, we can express the Schubert variety σ2,0
3,1 in OG(4, 9) as

follows.

22]00]000}00} ← 00]00]0000}0} ← 1
2

33]000}000}0} ← 1
2

00]0000}00}0} − 1
2

1]00000}0}0}0

← 1
4

000}000}00}0} − 1
4

00}00000}0}0}

The Schubert variety σ2,0
3,1 in OG(4, 9) is a quarter of the difference of the restriction of the Schubert cycles

σ3,1 and σ4 in the ordinary Grassmannian G(4, 9). The reader might enjoy verifying that σ3,1
4,2 · σ

2,0
3,1 =

σ4,3,2,1 by multiplying the corresponding cycles in G(4, 9) and then restricting the product back to
OG(4, 9).

Algorithm 6.4 (Reversing Algorithm 5.9). Let V (L•, Q•) be a restriction variety in OG(k, n) with n odd.

(1) If the class of V (L•, Q•) is a fraction of a restriction of a Schubert cycle in G(k, n) (In Proposition
6.2, we determined that this happens precisely when ri = nx1 = x1 = s for all i), let (Q′•) be the
sequence consisting of the linear sections defining the corresponding Schubert variety in G(k, n).
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(2) If in the sequence (L•, Q•), ri = nx1 = x1 for every i, but s 6= x1, then let α be the largest
non-negative integer with ns−α = ns − α. Let (Lα• , Q

α
• ) be the sequence obtained from (L•, Q•)

by replacing Lns with Qns−α−2
ns+α+1.

(3) If in the sequence (L•, Q•), ri 6= x1 for some i, let i be the largest index for which ri > x1 and
there does not exist a smaller index l such rl = rl−1 > x1. If ri 6= nj for any j, let (Lα• , Q

α
• ) be

the sequence obtained from (L•, Q•) by replacing ri with ri − 1. If ri = nj for some j, let α be
the largest non-negative integer for which nj−α = nj −α. Let (Lα• , Q

α
• ) be the sequence obtained

from (L•, Q•) by replacing Qridi with Qri−α−2
di+α+1.

In Case (1), [V (L•, Q•)] is already a fraction of the restriction of a Schubert cycle in G(k, n). There
is nothing further to do.

In Case (2), by the Algorithm 5.9 we can express

[V (Lα• , Q
α
• )] = 2[V (L•, Q•)] + other terms.

In Case (3), by the Algorithm 5.9 we can express

[V (Lα• , Q
α
• )] = [V (L•, Q•)] + other terms.

In both Cases (2) and (3), the other terms have the property that the sum of the dimension of the
linear spaces is strictly smaller (as is the sum of the ranks of the quadrics) than those in (L•, Q•). On
the other hand, (Lα• , Q

α
• ) has the property that either it has fewer linear spaces than (L•, Q•) or the sum

of the ranks of the quadrics is smaller than those of (L•, Q•). We can solve for the class [V (L•, Q•)],
then apply the algorithm to each of the terms. It is clear that this eventually terminates expressing the
class as a linear combination of the classes of restriction of Schubert varieties in the Grassmannian. We
thus obtain a geometric (though non-positive) algorithm for multiplying arbitrary Schubert cycles in the
cohomology ring (see the beginning of the subsection for an example).

7. Restriction varieties in orthogonal flag varieties

In this subsection, we extend the discussion of restriction varieties from orthogonal Grassmannians
to orthogonal flag varieties. We first begin by describing the combinatorics, we then give the geometric
explanation. We preserve the notation from §3 and §4.

Definition 7.1. A coloring c• for OF (k1, . . . , kh;n) is a sequence of kh positive integers 1 ≤ ci ≤ h such
that k1 of the integers are equal to 1 and kj − kj−1 of them are equal to j for 2 ≤ j ≤ h. A colored
sequence of brackets and braces (D, c•) for OF (k1, . . . , kh;n) is a sequence of brackets and braces D of
type (kh, n) together with a coloring c• such that the i-th bracket or brace in the sequence counting from
left to right is assigned the color ci.

We denote the coloring in a colored sequence of brackets and braces by placing the color as a subscript
on the brackets and braces. For example, 11]122]2000}300}10 is a colored sequence for F (2, 3, 4; 10). The
coloring can be determined by reading the subscripts under the brackets and braces from left to right. In
this case, the coloring is (1, 2, 3, 1). Given a colored sequence of brackets and braces, there is an associated
sequence of brackets and braces obtained by forgetting the coloring.

Definition 7.2. A colored sequence for OF (k1, . . . , kh;n) is called a colored quadric diagram if the
underlying sequence is a quadric diagram for OG(kh, n).

Define the dimension of a coloring c• by the equation:

dim(c•) =
h−1∑
u=1

∑
i|ci≤u

#{j < i | cj = u+ 1}.

The dimension of a colored sequence of brackets and braces (D, c•) is defined by

dim(D, c•) = dim(D) + dim(c•).
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The algorithm is very similar to the algorithm in the Grassmannian case. In order to keep the exposition
brief, we will state the combinatorial and geometric versions simultaneously. We now start explaining
the geometric meaning behind colored quadric diagrams.

Definition 7.3. A sequence (L•, Q•, c•)

Ln1 [c1] ⊂ · · · ⊂ Lns [cs] ⊂ Q
rkh−s
dkh−s

[cs+1] ⊂ · · · ⊂ Qr1d1 [ckh ]

for the orthogonal flag variety OF (k1, . . . , kh, n) consists of a sequence (L•, Q•) for OG(kh, n) together
with the assignment of a color between 1 and h to each of these linear spaces and quadrics such that k1

of the colors are one, and ki − ki−1 of the colors are i for 2 ≤ i ≤ h. The sequence is called admissible if
the underlying sequence for OG(kh, n) is admissible.

Admissible sequences in OF (k1, . . . , kh;n) allow us to define restriction varieties in orthogonal flag
varieties.

Definition 7.4 (Restriction varieties). Let (L•, Q•, c•) be an admissible sequence for OF (k1, . . . , kh;n).
Then the restriction variety V (L•, Q•, c•) is defined as the Zariski closure of the locus in OF (k1, . . . , kh;n)
parameterizing

{(W1, . . . ,Wh) ∈ OF (k1, . . . , kh;n) | for every 1 ≤ u ≤ h, dim(Wu ∩ Lnj ) = #{l ≤ j | cl ≤ u},

dim(Wu ∩Qridi) = #{l ≤ kh − i+ 1 | cl ≤ u}, dim(Wu ∩Qri,singdi
) = #{l ≤ xi | cl ≤ u} }

We can depict restriction varieties in OF (k1, . . . , kh;n) by colored quadric diagrams.

Definition 7.5. The colored quadric diagram associated to the restriction variety V (L•, Q•, c•) in the
orthogonal flag variety OF (k1, . . . , kh;n) is the quadric diagram associated to V (L•, Q•) in OG(kh, n),
where the i-th right bracket or right brace counting from left to right is decorated by the integer ci.

Example 7.6. For example, the colored quadric diagram associated to L1[1] ⊂ L3[2] ⊂ Q3
6[1] ⊂ Q1

8[2] in
OF (2, 4; 9) is

1]122]2000}100}20.
If we ignore the subscripts under the brackets and the braces, we recover the quadric diagram in Example
4.5. The subscripts read from left to right is the sequence c• (in this case 1, 2, 1, 2). Geometrically, this
diagram records the flag elements for which the dimension of intersection with some Wi jumps. The flag
elements where the jump for Wi occurs are depicted by the brackets and braces that have a subscript
less than or equal to i. For instance, in this example, the brackets and braces that have a subscript of
1 correspond to L1 and Q3

6. These are the flag elements where a dimension jump occurs for W1. The
reader will have noticed that this restriction variety is the Schubert variety σ31,12

11,32 in OF (2, 4; 9).

In view of our discussion in §4, it is clear that colored quadric diagrams and colored admissible
sequences record exactly the same data.

Definition 7.7. A marking m• of a colored sequence is a marking of the underlying sequence (L•, Q•).
The marked restriction variety V (L•, Q•,m•, c•) is the component of the restriction variety V (L•, Q•, c•)
whose image under the natural projection

π : OF (k1, . . . , kh;n)→ OG(kh, n)

is the marked restriction variety V (L•, Q•,m•) in OG(kh, n).

The geometric properties of restriction varieties in flag varieties follow from the properties of the
restriction varieties in orthogonal Grassmannians by studying the natural projection morphism

π : OF (k1, . . . , kh;n)→ OG(kh, n).
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Proposition 7.8. Let (L•, Q•,m•, c•) be an admissible sequence for OF (k1, . . . , kh;n) with marking m•.
Then the marked restriction variety V (L•, Q•,m•, c•) is irreducible of dimension

(2) dim(V (L•, Q•, c•,m•)) =
s∑
j=1

(nj − j) +
k−s∑
i=1

(di + xi − 2s− 2i) + dim(c•).

In particular, every component of the restriction variety V (L•, Q•, c•) has the same dimension.

Proof. The restriction variety V (L•, Q•,m•, c•) on the Zariski open set used in its definition admits a
projection to V (L•, Q•,m•) inOG(kh, n). The fibers of the projection are Zariski open subsets of Schubert
varieties σc• in F (k1, . . . , kh−1; kh). The irreducibility and the dimension follow from the irreducibility
and dimension of restriction varieties in OG(kh, n) and standard facts about Schubert varieties in ordinary
flag varieties. �

Definition 7.9. Given a sequence (L•, Q•, c•) (whether admissible or not), we will refer to the expression
in Equation (2) as the dimension of the sequence.

The expression in Equation (2) not surprisingly is the same as the dimension of the colored sequence
of brackets and braces defined before.

Remark 7.10. As in the case of the orthogonal Grassmannians, the Schubert varieties are precisely
the restriction varieties associated to sequences where all the quadrics are saturated (i.e., they satisfy
di + ri = n). The proof is identical to the proof of Lemma 4.18.

Next, we would like to extend the results of §4 to orthogonal flag varieties. The algorithm for computing
the classes of restriction varieties in orthogonal flag varieties is very similar to the case of orthogonal
Grassmannians. We will increase the corank of the quadrics in the sequence using Degeneration 5.7. The
order will be the same as in the Grassmannian case. The limits will also have a very similar description.
However, there are a few new phenomena that one needs to take into account. In particular, some
geometric possibilities that we discarded because they led to smaller dimensional varieties now may have
the same dimension. We give some typical examples. The reader who prefers to know the rule before
seeing the examples should skip the next two examples and return to them after reading the rule.

Example 7.11. Consider the following three closely related examples.

00]00000}0}0→ 22]0000}00}0
The first example is the restriction variety V (L2 ⊂ Q0

7 ⊂ Q0
8) in the orthogonal Grassmannian OG(3, 9).

According to Algorithm 5.9, we increase the corank of Q0
7 by one. If the three dimensional linear spaces

do not intersect the singular locus of Q1
7, then according to the variation of tangent spaces, we get the

limit depicted. If the three dimensional linear spaces do intersect the singular locus, then we would get
1]00000}0}00. However, note that the dimension of this variety is less than the dimension of the original
variety, hence cannot be a component of the support of the flat limit (see Step iii of Algorithm 5.10). In
contrast, consider the restriction variety V (L2[2] ⊂ Q0

7[1] ⊂ Q0
8[2]) in OF (1, 3; 9).

00]200000}10}20→ 22]20000}100}20
↓
1]220000}20}100

In this case, when we increase the corank of Q0
7, the three dimensional linear spaces can intersect the

singular locus of Q1
7. Although the dimension of the image of the projection to OG(3, 9) decreases by

one, the fiber dimension increases by one as well. Geometrically, this flag variety parametrizes pointed
planes. Although the plane becomes special in this limit, the point has more room to vary. Hence, now
this limit has the same dimension as the original variety. In contrast, if we repeat the calculation for the
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restriction variety V (L2[2] ⊂ Q0
7[2] ⊂ Q0

8[1]), the fiber dimension does not increase and we again get only
one limit.

00]200000}20}10→ 22]20000}200}10

These examples illustrate the principle that in the algorithm when certain linear spaces or quadrics
coincide, the dimension of the image of the projection π to OG(kh, n) decreases. However, depending on
the ordering of the colors, the fiber dimension may increase. It is not hard to see that the increase in the
fiber dimension is at most the decrease in the dimension of the image of π. The limits of the degeneration
will consist of the limits of the image of π described in §5 together with the limits where the decrease
in the dimension of the image of π is exactly compensated by the increase in the fiber dimension. The
limits all occur with multiplicity one.

The next example demonstrates a few subtleties that occur when a quadric becomes reducible.

Example 7.12. Consider the restriction variety V (Q0
4[1], Q0

5[2], Q0
6[3]) in OF (1, 2, 3; 6). (Recall that by

convention OF (1, 2, 3; 6) is only one of the two irreducible components of the space of flags.) Before
explaining a few salient features, let us write out the entire calculation.

0000}10}20}3 →3000}10}20}3 → 1]3000}10}20→ 1]300]′100}20
↓ ↘
2000}10}20}3 → 200]100}20}3 0]30]20]1000
↓ ↘
0]30]20]1000 00]20]′1000}3

The class of this restriction variety is given by

2σ23,12,03 + σ21,12

23 + σ12,03

01 + σ21,03

12 .

In this example two points are worth noting. When we increase the corank of Q0
5 in the restriction

variety V (Q1
4[1] ⊂ Q0

5[2] ⊂ Q0
6[3]) depicted by 3000}10}20}3, one possible limit is the restriction variety

V (L1[3] ⊂ Q1
4[1] ⊂ Q1

5[2]) depicted by 1]3000}10}20. In the Grassmannian case, requiring a linear space
to intersect the singular locus of a quadric instead of a quadric always led to smaller dimensional varieties.
This is not necessarily the case for partial flag varieties. Geometrically, flags consisting of points, lines
and planes on a quadric Q in P5 can specialize to be contained in the singular hyperplane section Q1

5.
The family of planes contained in Q is three dimensional. As long as a plane intersects the quadrics Q1

4[1]
and Q1

5[2] properly, the smaller dimensional flag elements (i.e., the point and the line) are determined.
The family of planes contained in Q1

5 is one-dimensional. However, if the plane is contained in Q1
5[2], then

the smaller flag elements are no longer determined and are free to vary in a two-dimensional family. We
thus get a new type of limit that we did not see in the Grassmannian case. Similarly, for orthogonal flag
varieties, the limits that occur when a quadric becomes reducible are much more subtle. For instance,
when we increase the corank of Q1

4 by one in 2000}10}20}3, the quadric Q2
4 becomes reducible. However,

the planes parameterized by the limiting variety may intersect these linear spaces in a point, in a line or in
a plane. All three cases occur in this example. In the Grassmannian case, those that intersected the linear
space in a line or a plane would lead to smaller dimensional varieties. Also note that the Schubert variety
σ21,12

23 depicted by 1]300]′100}20 is not a limit of this degeneration, although it has the same dimension as
the original variety. The space of lines in Q1

5 has two irreducible components. The flag elements W2 (i.e.,
the lines) parametrized by 1]300]′100}20 and 2000}10}20}3 belong to two different irreducible components
on Q1

5. In fact, the coefficient of the Schubert variety σ21,12

23 in the class of 2000}10}20}3 is zero. This
example demonstrates that we will have to keep careful track of the irreducible components that contain
different flag elements.

We now give the algorithm for orthogonal flag varieties. We preserve the terminology from the previous
sections. We will say that a sequence (Lα• , Q

α
• ) is derived from a colored sequence (L•, Q•, c•) if, for every
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1 ≤ i ≤ kh, the i-th linear space or quadric (in increasing order by dimension) in the sequence (Lα• , Q
α
• )

has dimension less than or equal to the i-th linear space or quadric in (L•, Q•). Let j1 < · · · < jkh be
the positions of the brackets and braces in D. Let jα1 < · · · < jαkh be the positions of brackets and braces
in Dα. Equivalently, a sequence of brackets and braces Dα is derived from (D, c•) if the positions of the
brackets and braces satisfy jαi ≤ ji for all 1 ≤ i ≤ kh.

We begin with an algorithm for assigning a coloring to a sequence (Lα• , Q
α
• ) derived from a colored

sequence (L•, Q•, c•). It is convenient to introduce auxiliary notation. We will say that a quadric or a
linear space is smaller (respectively, larger) than another quadric or linear space if its dimension is smaller
(respectively, larger). We will denote by Xα,i the α-th largest linear space or quadric in the sequence
(L•, Q•) to which c• assigns the color i. For example, X1,i is the largest linear space or quadric with
color i. X1,1 ⊃ X2,1 ⊃ · · · are the linear spaces and quadrics of color 1 in decreasing order, etc.

Algorithm 7.13. [Algorithm for assigning a coloring] Let (Lα• , Q
α
• ) be a sequence derived from (L•, Q•, c•).

We assign the coloring cα• to this sequence as follows. Let cα• assign the color 1 to the largest linear space
or quadric in (Lα• , Q

α
• ) whose dimension does not exceed the dimension of X1,1 in (L•, Q•, c•). Proceed to

the index pair (2, 1) or (1, 2) depending on whether k1 > 1 or k1 = 1, respectively. Suppose the algorithm
has proceeded to assign a color up to the index pair (α, i). Let cα• assign the color i to the largest linear
space or quadric in (Lα• , Q

α
• ) whose dimension does not exceed that of Xα,i in (L•, Q•, c•) and to which

cα• does not yet assign a color. Proceed to the index pair (α + 1, i) or (1, i + 1) depending on whether
ki − ki−1 > α or ki − ki−1 = α, respectively. The algorithm terminates when all the linear spaces and
quadrics in (Lα• , Q

α
• ) are assigned a color by cα• (equivalently, after the index pair (kh − kh−1, h)). We

call cα• the induced coloring.

Let Dα be a sequence of brackets and braces derived from (D, c•). The algorithm translates to the
following. Let p be the position of the largest bracket or brace in D assigned the color 1. Assign the color
1 to the bracket or brace in the largest position less than or equal to p in Dα. Proceed to the bracket
or brace of color 1 in D in the next largest position. If there isn’t one, proceed to the largest bracket or
brace in D of color 2. Suppose we have assigned colors until the bracket or brace of color i in D at the
j-th largest position. Suppose this bracket or brace is at position p. Assign the color i to the bracket or
brace in Dα at the largest position less than or equal to p that is not already assigned a color. Proceed to
the bracket or brace of color i at the (j+ 1)-st largest position or if there are none of color i left, proceed
to the bracket or brace of color i + 1 in D with the largest position. The algorithm terminates when
all the brackets and braces in Dα are assigned a color. We will call the resulting coloring the induced
coloring.

Example 7.14. Take the sequence 1]1]0000}0}000 derived from 00]10]200000}10}20. Algorithm 7.13 as-
signs it the coloring 1]21]10000}20}1000. See Examples 7.11 and 7.12 for more illustrations of Algorithm
7.13. Geometrically, the reader should think of the sequence Dα as depicting a potential limit. By
semi-continuity, there is a lower bound on the dimension of the intersections of the flag elements Vi with
the linear spaces and quadrics depicted by the sequence. Algorithm 7.13 is the way of assigning colors
so that these constraints are satisfied. Furthermore, they are the minimal set of constraints implied by
semi-continuity.

A reminder about our notation: Recall that κ denotes the active index of (L•, Q•), i.e., the largest index i
such that ri−ri−1 < di−1−di. Equivalently, κ is the largest index in the sequence of brackets and braces
among {i | l(i) ≤ ρ(i, i − 1)}. xi denotes the number of isotropic subspaces of the sequence contained
in the singular locus of Qridi . In particular, if xi < s, then Lnxi+1 denotes the smallest dimensional
isotropic space in the sequence strictly containing Qri,singdi

. Equivalently, xi is the number of brackets in
the sequence whose positions are less than or equal to l(≤ i). Lnxi+1 , when it exists, is represented by
the left most bracket in a position greater than l(≤ i). yj denotes the index of the largest dimensional
quadric containing Lnj in its singular locus or yj = kh − s + 1 if there are none. Equivalently, yj is the
positive number immediately to the left of ]j or kh − s+ 1 if this number is zero.
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Notation 7.15. Given a sequence (L•, Q•, c•), let η(L•, Q•, c•) denote the index of the largest dimensional
(equivalently, smallest index) quadric in the sequence for which

xi ≤ k − i+ 1− di − ri
2

and di + ri = dkh−s + rkh−s.

Set η(L•, Q•, c•) = kh − s + 1 if there are no indices for which these conditions hold. Equivalently, let
η(D, c•) be the index of the brace at the largest position among those braces }i that satisfy

xi ≤ k − i+ 1− p(}i)− l(≤ i)
2

and l(≤ kh − s)− l(≤ i) = ρ(kh − s, i).

Set η(D, c•) = kh − s+ 1 if there are no braces with this property.
Let xκ < ν(L•, Q•, c•) be the largest index of a linear space Lnj in the sequence such that nj − rκ =

yj−κ+j−xκ−1. If there are no indices that satisfy this equality, set ν(L•, Q•, c•) = xκ−1. Equivalently,
let ν(D, c•) be the index of the bracket at the largest position among ]j that satisfy p(]j) − l(≤ κ) =
yj−κ+j−xκ−1. If the sequence does not contain any brackets with this property, set ν(D, c•) = xκ−1.
We preserve the notation from Section §4. With this preparation, we are ready to state the algorithm.

We will first state the algorithm in terms of quadric diagrams. We will then state the same algorithm
geometrically.

Definition 7.16. Given a colored quadric diagram (D, c•), define the following colored sequences of
brackets and braces.
• Let (Da, ca•) be the sequence obtained from D by changing (l(≤ κ) + 1)-st integer in the sequence D to
κ. ca• = c• is the induced coloring. (This is the same Da as in the Grassmannian case.
• For xκ < j ≤ ν(D, c•), let (Dj , cj•)b be the sequence obtained from (Da, ca•) by moving the j-th bracket
from position p(]j) = nj to position lDa(≤ κ). The coloring cj• is the coloring induced by ca•.
• For kh − s ≥ i ≥ max(κ, η(D, c•)), let (Di, ci•)

e be the sequence obtained from (Da, ca•) by moving the
i-th brace from position p(}i) = di to position lDa(≤ κ). Subtract 1 from the indices of the braces with
index greater than i and from all the integers in the sequence that are greater than i. If i = kh−s, change
the integers that are equal to kh − s to zero. The coloring ci• is the coloring induced by ca•.
• Finally, let (D#, c#• ) be the sequence obtained from (Da, ca•) by moving the brace }κ−1 from position
p(}κ−1) = dκ−1 to position lDa(≤ κ). Subtract one from all the indices of the braces that have index
greater than κ − 1. Subtract one from every integer in the sequence that is greater than κ − 1. The
coloring c#• is the coloring induced by ca•.

Let us give a few examples of these diagrams. Let D = 22]133]2000}100}200}30 be a quadric diagram
for OF (2, 4, 5; 12). Here κ = 1, so Da = 12]133]2000}100}200}30. The diagrams of the form Db are
obtained by moving the brackets to position immediately to the left of the 1. The ones that can be
moved are the ones until which the integers are strictly increasing unless they have to repeat because of
Condition (D6), i.e. if the sequence looks like 12]12]23455]35]4 · · · , each of these brackets can be moved.
If the sequence looks like 12]122]2 · · · or 12]1333]2 · · · , then only the first bracket can be moved. In our
case, we get two diagrams of type Db: 1]1233]2000}100}200}30 and 1]22]133000}100}200}30. In this case,
there are no sequences of type De or D#. If D = 00]100}20 for OF (1, 2; 5), then κ = 1. Da = 10]100}20.
We get Db = 1]1000}20. Now, the inequality for De is satisfied and we also get De = 0]20]1000 by moving
the brace to a bracket immediately after the 1. Finally, if we consider D = 3000}10}20}30. Then κ = 2
and Da = 2000}10}20}3. In this case, D# = 1]3000}10}200 is the diagram obtained by moving }1=κ−1 to
the immediate left of the 2. Then the integers in the sequence are adjusted by subtracting 1 from all the
integers greater than 1. These are the basic sequences used in the algorithm. Note that some of these are
not quadric diagrams. We will have to give an algorithm first that turns them into quadric diagrams.

The equivalent definition in geometry is as follows.

Definition 7.17. Let (L•, Q•, c•) be an admissible colored sequence with active index κ. Let (La•, Q
a
•, c•)

be the sequence obtained by replacing Qrκdκ in (L•, Q•, c•) with Qrκ+1
dκ

.
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• For xκ < j ≤ ν(L•, Q•, c•), let (Lj•, Q
j
•, c

j
•)b be the sequence obtained from (La•, Q

a
•, c•) by replacing Lnj

with Lr′κ . The coloring cj• is the one induced from c•.
• For kh − s ≥ i ≥ max(κ, η(L•, Q•, c•)), let (Li•, Q

i
•, c

i
•)
e be the sequence obtained from (La•, Q

a
•, c•) by

replacing Qr
′
i

d′i
with Lr′κ . The coloring ci• is the one induced from c•.

• Let (L#
• , Q

#
• , c

#
• ) be the sequence obtained from (La•, Q

a
•, c•) by replacing Q

r′κ−1

d′κ−1
with Lr′κ . The coloring

c#• is the one induced from c•.

We first run these sequences through a normalization algorithm to turn them into admissible sequences.
This algorithm is slightly easier to express in geometric language, so we first say it in geometric language
and then repeat it in terms of sequences of brackets and braces.

Algorithm 7.18 (Normalizing a colored sequence). For this algorithm let (L•, Q•, c•) denote one of the
sequences (La•, Q

a
•, c•), (Lj•, Q

j
•, c

j
•)b, (Li•, Q

i
•, c

i
•)
e or (L#

• , Q
#
• , c

#
• ). We call the sequences produced by

this algorithm the sequences derived from (L•, Q•, c•). Run the following loop on (L•, Q•, c•).

i. If the sequence (L•, Q•, c•) is admissible, output the sequence (L•, Q•, c•). Otherwise, proceed
to [ii].

ii. If dkh−s = rkh−s + 2 (i.e., Condition (7) is violated) in (L•, Q•, c•), then let

η(L•, Q•, c•) ≤ l1 < · · · < lu < kh − s,

where 0 ≤ u ≤ kh − s − η(L•, Q•, c•), be a set of indices such that either lu = kh − s − 1; or
lu 6= kh − s− 1 and u is even. For each such set of indices, form a pair of sequences

(Ll1,...,lu,v• , Ql1,...,lu,v• , cl1,...,lu,v• )

for v = 1, 2 by replacing the quadrics

Q
rl1
dl1
, . . . , Q

rlu
dlu

and Q
rkh−s
dkh−s

in (L•, Q•, c•) with the linear spaces

Lrl1+1, . . . , Lrlu+1 and Ldkh−s−1,

respectively, unless 2(dkh−s − 1) = n. If 2(dkh−s − 1) = n, then in one of the sequences replace
Q
rkh−s
dkh−s

with Ldkh−s−1 and in the other with L′dkh−s−1 instead. If in addition 2kh = n, discard
the sequence that parameterizes linear spaces that have the wrong parity for the dimension of
intersection with Lkh . The coloring cl1,...,lu,v• is the one assigned by Algorithm 7.13. Replace
(L•, Q•, c•) with the sequences thus formed that have the same dimension as (L•, Q•, c•). For
each of the sequences, return to Step [i] and run the Algorithm again setting (L•, Q•, c•) =
(Ll1,...,lu,v• , Ql1,...,lu,v• , cl1,...,lu,v• ). If dkh−s 6= rkh−s + 2, proceed to [iii].

iii. As long as Condition (9) is violated for a sequence (L•, Q•, c•), let µ be the largest index for
which it is violated. Form a new sequence (L[•, Q

[
•, c

[
•) by replacing Qrµdµ in (L•, Q•) with Q

rµ+1
dµ−1

unless Qrµ+1
dµ−1 is already in the sequence (L•, Q•). In the latter case, let ε be the largest integer

less than dµ that is not the dimension of the ambient space of a quadric in the sequence. Set
α = dµ − ε− 1. Replace Qrµdµ by Qrµ+α+1

ε (i.e., a quadric of corank one more than the quadric in
the linear space of dimension ε+ 1 in the sequence), instead. The coloring c[• is the one assigned
by Algorithm 7.13. Discard the resulting sequence if its dimension is less than that of (L•, Q•, c•).
Repeat the process if Condition (9) is still violated. Otherwise, return to step [i] and run the
loop again with (L•, Q•, c•) = (L[•, Q

[
•, c

[
•). If at the end of this procedure no sequences remain,

the algorithm terminates.

Equivalently, we can state the algorithm for sequences of brackets and braces. If a sequence (D•, c•)
fails condition (D5), then discard the sequence. No new sequences are derived from such a sequence.
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Otherwise, if the sequence fails condition (D4), let

η(D, c•) ≤ λ1 < λ2 < · · · < λu < kh − s, with 0 ≤ u ≤ kh − s− η(D, c•)

be a set of indices such that either λu = kh − s − 1 or λu 6= kh − s − 1 and u is even. For any such set
of indices form two new identical sequences (Dλ1,...,λu,v, cλ1,...,λu,v

• ) with v = 1, 2, by replacing the braces
with indices λ1, λ2, . . . , λu and kh − s with brackets at positions l(≤ λ1) + 1, l(≤ λ2) + 1, . . . , l(≤ λu) + 1
and p(}kh−s) − 1. The coloring is the one induced by c•. Reindex the remaining braces so that they
are increasing sequentially from right to left. Replace the integer i with the integer j if }i remains in
the sequence but its new index is j. Replace the integer i with the integer j if }i has been replaced
by a bracket and j is the new index of the largest brace to the left of }i that remains in the sequence.
If there are no such braces, replace i with zero. The same caveats as in the Grassmannian case apply
when 2(p(}kh−s) − 1) = n. Namely, when 2(p(}kh−s) − 1) = n, in one of the sequences we have to use
]′ instead. If 2k = 2(p(}kh−s)− 1) = n, we discard the sequence with the wrong parity exactly as in the
Grassmannian case.

If the sequence (D•, c•) satisfies (D4) but fails (D6) as long as condition (D6) is not satisfied, let µ be
the largest integer for which there exists a bracket with position l(≤ µ) + 1. Replace the integer at the
(l(≤ µ) + 1)-st position in the sequence with µ and move }µ one position to the left unless that position
is already occupied by a brace. In the latter case, move }µ to the first position to the left that is not
occupied. The coloring is the one induced by c•. Reorder the indices of the braces so that they are
increasing sequentially from right to left. Suppose that the new index of the brace we moved is ε. Then
subtract one from every integer µ ≤ i < ε. Change the integer in the l(≤ ε) + 1 place in the sequence to
ε. Repeat the process until (D6) is satisfied. If (D4) is not satisfied for the resulting sequence, return to
the previous step and run the algorithm again. In all of these cases discard a sequence if its dimension is
less than the dimension of the original sequence.

To make this more concrete, consider the sequence 12]13455]20000}100}20}30}40}500 which fails condi-
tion (D6). We replace it with the sequence 11]12345]20000}10}50}20}30}4000. This sequence still fails con-
dition (D6), so we repeat the process to obtain 11]12344]2500}50}100}20}30}4000. Now the condition (D4)
is not satisfied, so we replace the sequence with two copies of the sequence 11]12344]200]500}100}20}30}4000.
Similarly, consider 200}10}2. This sequence does not satisfy condition (D4). We replace it by sequences
00]′100}2 and 0]20]100. The two other sequences 00]100}2 and 0]20]′100 parameterize linear spaces in the
other connected component, so they are the ones that are discarded. The reader should see Examples
7.11 and 7.12 and the examples below.

It is important to note that no calculation is necessary to decide whether a sequence has smaller
dimension while running these algorithms. When we move a bracket ]j or a brace }i from position p1 to
position p2 during the algorithm, we induce a permutation of the colors. We will prove that the resulting
sequence of brackets and braces always has strictly smaller dimension unless the color assigned to ]j

or }i is strictly larger than the color assigned to every bracket and brace between positions p1 and p2.
Equivalently, when a quadric or linear space is replaced by a smaller dimensional one, the quadrics and
linear spaces with dimension in between have to have color strictly smaller than the quadric or linear
space being replaced. Otherwise, the resulting restriction varieties have smaller dimension. We say that
the induced coloring preserves dimension if this property holds.

Note that in all the examples following the definition of the different diagrams, the induced coloring
preserved the dimension. If we consider D = 22]233]1000}100}200}30 instead (the colors of the first two
brackets are swapped from the previous example), then only Db = 1]2233]1000}100}200}30 can have the
same dimension. In Db = 1]22]133000}100}200}30, the coloring does not preserve the dimension (moving
the bracket from position 4 to 1, crosses a bracket with larger color). The corresponding variety has
smaller dimension and will not occur as a component of the support of the limit).

We can now state the main algorithm. We will use geometric language and leave it to the reader to
formulate the combinatorial statement by replacing every appearance of (L•, Q•) by D.

Algorithm 7.19. Let V (L•, Q•, c•) be a restriction variety in the orthogonal flag variety.
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Step 1. If V (L•, Q•) is saturated (i.e., a Schubert variety), then output V (L•, Q•, c•) and stop. The
algorithm terminates. Otherwise, proceed to Step 2.

Step 2. Replace V (L•, Q•, c•) by the following restriction varieties depending on the case and stop.
(1) If Condition (8) is not satisfied for (La•, Q

a
•, c•), replace V (L•, Q•, c•) by the restriction va-

rieties associated to admissible sequences derived from (Lj•, Q
j
•, c

j
•)b, for xκ < j ≤ ν(L•, Q•, c•)

and (Li•, Q
i
•, c

i
•)
e, for kh − s ≥ i ≥ max(κ, η(L•, Q•, c•)), that have the same dimension as

V (L•, Q•, c•).
(2) If Condition (8) is satisfied for (La•, Q

a
•, c•), replace V (L•, Q•, c•) by the restriction varieties

associated to admissible sequences derived from (La•, Q
a
•, c•), (L#

• , Q
#
• , c

#
• ), (Lj•, Q

j
•, c

j
•)b, for xκ <

j ≤ ν(L•, Q•, c•) and (Li•, Q
i
•, c

i
•)
e, for kh − s ≥ i ≥ max(κ, η(L•, Q•, c•)), that have the same

dimension as V (L•, Q•, c•).

One can say when a restriction variety produced by the algorithm will have the same dimension as
V (L•, Q•, c•) purely in terms of the properties of the sequence (L•, Q•, c•). We refrained from doing
this above to avoid further complicating the statement of the algorithm. Although this statement of the
algorithm sounds cleaner, in practice it is much harder to compute the dimension of these sequences than
to remember when they will have smaller dimension.

Despite initially sounding more complicated, it is simpler in practice to phrase Step 2 of Algorithm 7.22
as follows and be precise as to when the resulting sequences will have the same dimension as (L•, Q•, c•).

Step 2 Replace V (L•, Q•, c•) by the following restriction varieties depending on the case and stop.
(1) If xκ = s, κ < kh−s and 2(kh−s−κ)+3 = dκ−rκ in (L•, Q•, c•), then replace V (L•, Q•, c•)
by restriction varieties associated to sequences derived from (La•, Q

a
•, c•) and (L#

• , Q
#
• , c

#
• ) where

the induced colorings preserve dimension.
(2) If xκ = s and either κ = kh − s or 2(kh − s − κ) + 3 < dκ − rκ in (L•, Q•, c•), then replace
V (L•, Q•, c•) by restriction varieties associated to the sequences derived from (La•, Q

a
•, c•) where

the induced coloring preserves dimension.

(3) If xκ < s in (L•, Q•, c•) and x′κ ≥ kh − κ + 1 − d′κ−r
′
κ

2 (i.e., Condition (8) is satisfied) for
(La•, Q

a
•, c•), then replace V (L•, Q•, c•) by restriction varieties associated to the sequences derived

from (La•, Q
a
•, c•), (Lj•, Q

j
•, c

j
•)b, for xκ < j ≤ ν(L•, Q•, c•), and (Li•, Q

i
•, c

i
•)
e, for kh − s ≥ i ≥

max(κ, η(L•, Q•, c•)) and where the induced colorings preserve dimension.

(4) If xκ < s in (L•, Q•, c•) and x′κ < kh − κ + 1 − d′κ−r
′
κ

2 (i.e., Condition (8) fails) for
(La•, Q

a
•, c•), then replace V (L•, Q•, c•) by restriction varieties associated to the sequences de-

rived from (Lj•, Q
j
•, c

j
•)b, for xκ < j ≤ ν(L•, Q•, c•), and (Li•, Q

i
•, c

i
•)
e, for kh − s ≥ i ≥

max(κ, η(L•, Q•, c•)) where the colorings preserve dimension.

Remark 7.20. The geometric meaning of Algorithm 7.19 is clear. If the restriction variety V (L•, Q•, c•)
is not a Schubert variety, we apply Degeneration 5.7. The dimension of intersection of the new singular
locus of the quadric Qrκ+1

dκ
with the linear spaces Wi (for i ≥ a) in the flag may increase by one, provided

that the resulting locus has the same dimension as our original variety. Similarly, these dimensions may
remain unaltered unless disallowed by Condition (8). The algorithm checks which of these possibilities
give varieties of the same dimension as V (L•, Q•, c•).

Remark 7.21. The reader can check that in case h = 1, Algorithm 7.19 reduces to Algorithm 5.9.

We define degeneration paths for orthogonal flag varieties as in Definition 5.11 except we replace every
reference to Algorithm 5.9 with Algorithm 7.19.

Theorem 7.22. Let V be a restriction variety in OF (k1, . . . , kh;n). Then

[V ] =
∑

[Vi],
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where Vi are the restriction varieties obtained from V by applying Algorithm 7.19. In particular, the
coefficient cµλ in the expression

[V ] =
∑

cµλσ
µ
λ

is equal to the number of degeneration paths starting with V and ending with Poincaré dual of the class
of σµλ . Furthermore, the algorithm respects marking.

Before the proof, we give three examples of the algorithm. The reader will find it instructive to run
the algorithm on these examples. The examples also emphasize the difference between orthogonal Grass-
mannians and orthogonal flag varieties. The reader might want to run Algorithm 5.9 on the projection of
these restriction varieties to OG(kh, n) and compare the results. Note that the projection to OG(kh, n)
is obtained by simply forgetting the subscripts.

Example 7.23. We calculate the class of the restriction variety

V (L2[1] ⊂ L3[2] ⊂ Q0
8[1] ⊂ Q0

9[2])

in OF (2, 4; 9).

22]12]2000}1000}2 ← 00]10]200000}10}2 → 1]122]2000}200}10
↓

1]21]12000}20}100

We conclude that the class of the variety is

σ31,02

31,22 + σ32,11

41,32 + σ32,21

42,31

Example 7.24. We calculate the class of the restriction variety

V (Q2
5[1], Q2

6[2], Q1
7[3], Q0

8[4])

in OF (1, 2, 3, 4; 8). When we specialize Q2
5[1] to Q3

5[1],

23000}10}20}30}4

splits into
2300]′100}20}30}4, 200]20]1000}30}4, 00]30]20]′10000}4, 1]400]20]′1000}30, 1]41]300]′100}200,
and 0]40]30]20]10000. The class of the restriction variety is

σ31,22,13,04
+ σ13,04

12,01 + σ31,04

23,12 + σ31,13

34,12 + σ31,22

34,23 + σ34,23,12,01 .

It would also be instructive for the reader to calculate the class of the restriction variety

V (Q0
5[1], Q0

6[2], Q0
7[3], Q0

8[4])

in F (1, 2, 3, 4; 8). The answer is

σ31,22,13,04
+ σ13,04

12,01 + σ22,04

23,01 + σ22,13

34,01 + 2σ31,04

23,12 + 2σ31,13

34,12 + 2σ31,22

34,23 + 4σ34,23,12,01 .

Example 7.25. As a final example, we calculate the class of

V (L2[1] ⊂ L4[2] ⊂ Q0
8[1] ⊂ Q0

9[2])
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in F (2, 4; 11). Since this example is large, we will skip some intermediate steps.

00]100]20000}10}200→ 1]1200]2000}20}1000 ×2→ 1]1100]20]2000}1000→ 1]111]200]2000}1000
↓ ↓
22]100]2000}100}200 1]11]212000}20}1000
↓ ↘

1]1200]2000}100}200 11]100]2000}10}2000 ×2→ 11]11]200]200}10000→ 11]11]21]2000}10000
× 2 ↓ ↘ ×2↘
1]1100]20]10000}200 1]122]20000}100}200 11]100]20]1000}2000→ 11]11]200]1000}2000

↓ ↘
1]11]222000}100}200 1]111]22000}10}2000

We conclude that the class is

2σ31

51,32,12 + σ42,31

51,42 + 2σ41

41,32,22 + 2σ32

41,32,11 + 2σ22

51,22,11 + σ41,22

51,42 + σ41,32

51,32 .

Proof of Theorem 7.22. The proof of Theorem 7.22 is very similar to the proof of Theorem 5.12. We
first check that Algorithm 7.19 transforms admissible colored sequences to admissible colored sequences.
We then interpret replacing Qrκdκ with Qrκ+1

dκ
in Step 1 of Algorithm 7.19 as Degeneration 5.7. We show

that the flat limit is supported along the restriction varieties described in the algorithm. We conclude
the proof by showing that the flat limit is reduced along the generic point of each of these restriction
varieties.

If the sequence (L•, Q•, c•) is saturated, then the corresponding variety is a Schubert variety. In this
case, the algorithm has achieved its goal. We may, therefore, assume that (L•, Q•, c•) is not saturated.
Throughout the proof Step 2 of the Algorithm 7.19 will refer to the more precise formulation and the
cases will be the four cases that occur in that formulation.

The sequence (La•, Q
a
•, c•) may fail to satisfy Condition (8) for the index κ. During the proof of

Theorem 5.12, we showed that then equality must hold in Condition (8) for all indices i > κ and if
κ = kh − s, Condition (7) is satisfied by the sequence. Furthermore, adding an additional linear space
(not already contained in the sequence) to the singular locus of a quadric does not effect Condition (8) for
that quadric. Consequently, Condition (8) is satisfied for the sequences (L#

• , Q
#
• , c

#
• ) in case (1) of Step

2, (La•, Q
a
•, c•) in the cases (2),(3) and (4) of Step 2, and for the sequences (Lj•, Q

j
•, c

j
•)b and (Li•, Q

i
•, c

i
•)
e

in cases (3) and (4) of Step 2 of Algorithm 7.19. If the left-hand-side of the inequality is at most 1/2
larger than the right-hand-side in Condition (8) for an index µ, then either dµ−1 > dµ + 1 or rµ−1 < rµ
in (L•, Q•, c•). Using this observation, it is straightforward to see that both Steps ii and iii of Algorithm
7.18 preserve Condition (8). Hence, every sequence output by the algorithm satisfies Condition (8).

Next we observe that the sequences output by the algorithm preserve Conditions (1)-(6) in Definition
4.2. Conditions (4) and (5) hold by construction. In the proof of Theorem 5.12, we checked that the
sequence (La•, Q

a
•, c•) satisfies Conditions (1)-(6). Replacing a linear space by a smaller dimensional linear

space does not affect Conditions (1)-(3) and (6). Hence, Conditions (1)-(6) are satisfied for the sequences
(Lj•, Q

j
•, c

j
•)b. Replacing a quadric with the linear space Lr′κ clearly preserves Conditions (1), (3) and

(6). Since the sequence satisfies Condition (8), adding a linear space to the singular locus of a quadric
(whenever this linear space is not already in the sequence) does not violate Condition (2). We conclude
that the sequences (L#

• , Q
#
• , c

#
• ) in case (1) of Step 2 and (Li•, Q

i
•, c

i
•)
e in cases (3) and (4) of Step 2

of Algorithm 7.19 satisfy Conditions (1)-(6). Step ii of Algorithm 7.18 clearly preserves Conditions (3)
and (6). The proof of Condition (1) given during the proof of Theorem 5.12 remains valid. Finally,
Condition (2) holds since each time a quadric Qridi is replaced by a linear space, the linear space is not
already contained in the sequence and lies in the singular locus of the quadrics contained in Qridi . Hence
Condition (2) is preserved. Finally, it is straightforward to see that Step iii of Algorithm 7.18 preserves
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Conditions (1)-(6). We conclude that every sequence output by the algorithm satisfies Conditions (1)-(6).

In Step 2 of Algorithm 7.19 we have seen that the sequences V (La•, Q
a
•, c•) and (L#

• , Q
#
• , c

#
• ) satisfy

Conditions (1)-(6) and (8). Since κ < kh − s, Condition (7) is satisfied for both sequences. Condition
(9) is clearly satisfied for V (La•, Q

a
•, c•). Condition (9) is also satisfied for (L#

• , Q
#
• , c

#
• ). This needs to be

checked only for the new linear space. It holds since the quadric with index κ − 1 in (L•, Q•) has been

removed, the singular locus of Q
r#κ−1

d#κ−1
is at least codimension two in Lr#κ by Condition (6) for (L•, Q•, c•).

We conclude that both sequences are admissible.

In Step 2 of Algorithm 7.19, if κ > kh − s; or if κ = kh − s and dκ − rκ < 3 in (L•, Q•, c•), then
V (La•, Q

a
•, c•) is admissible. However, if κ = kh − s and dκ − rκ = 3, then Condition (7) fails for

V (La•, Q
a
•, c•). After applying Step ii of Algorithm 7.18, all the sequences output satisfy Condition (7).

However, they may fail to satisfy Condition (9) for some indices i < η(La•, Q
a
•, c•). Sequences output by

Step iii satisfy Condition (9) but may fail to satisfy Condition (7) again. Note that each time we apply
Condition (7) the number of quadrics in the sequence strictly decreases. Since there are finitely many
quadrics in the sequence, the process must stop leading to admissible sequences.

In cases (3) and (4) of Algorithm 7.19, the sequences (Li•, Q
i
•, c

i
•)
e and (Lj•, Q

j
•, c

j
•)b satisfy Conditions

(1)-(8), but may fail to satisfy Condition (9) for i ≤ κ. It is easy to see that after running Step iii,
Condition (9) is also satisfied and the sequences output are admissible. Finally, the sequence (La•, Q

a
•, c•)

in case (3) of Step 2 may fail Condition (9) for the index κ. If κ < kh−s, then running Step iii of Algorithm
7.18 outputs an admissible sequence. If κ = kh− s, then running Step iii of Algorithm 7.18 may output a
sequence that fails Condition (7). As in the discussion of case 2 of Step 2, repeated applications of Steps
ii and iii of Algorithm 7.18 result in admissible sequences. We conclude that Algorithm 7.19 replaces
admissible colored sequences with admissible colored sequences. We can, therefore, apply the algorithm
to each of the resulting sequences. Since at each stage either the number of quadrics decreases by at
least one or the corank of at least one quadric strictly increases, eventually the sequences must become
saturated. We conclude that repeated application of the algorithm results in sequences associated to
Schubert varieties.

We interpret replacing Qrκdκ with Qrκ+1
dκ

in Step 1 of Algorithm 7.19 as Degeneration 5.7 and show that
the algorithm describes the components of the support of the flat limit and that the flat limit is reduced
at the generic point of each of these components. We combine the analysis in the proof of Theorem 5.9
with a study of the fiber dimension of the morphism

π : OF (k1, . . . , kh;n)→ OG(kh, n).

Now Observation 5.13 has to hold for each vector space Vu, for 1 ≤ u ≤ h.

Observation 7.26. The linear spaces Vu parameterized by the flat limit V (L•, Q•, c•)(0) have to intersect
the linear spaces Lnj [cj ](0) in a subspace of dimension at least #{l ≤ j|cl ≤ u} and the quadrics
Qridi [ckh−i+1](0) in a subspace of dimension at least #{l ≤ kh− i+ 1|cl ≤ u}. Furthermore, they intersect
Qri,singdi

[ckh−i+1](0) in a subspace of dimension at least #{l ≤ xi|cl ≤ u}.

Let Y be an irreducible component of the support of the flat limit. As in the case of Grassmannians,
Observation 7.26 allows us to build a minimal sequence (L̃•, Q̃•, c̃•) such that the closure of the locus
of linear spaces satisfying the rank conditions imposed by this sequence contains Y . We complete the
sequence (La•, Q

a
•) to a sequence of isotropic linear spaces and quadrics of consecutive dimensions satisfying

Conditions (4) and (5) of Definition 4.2. We then select the linear spaces and quadrics in our sequence
where the dimension of intersection with the linear space Wh parameterized by a general point of Y
jumps. At each jump we specify the smallest linear space among W1, . . . ,Wh for which the jump occurs.
We thus obtain a colored sequence. Observation 7.26 translates to the statement that the j-th linear
space or quadric of color at most u (counting in increasing dimension) in the new sequence has dimension
at most that of the j-th linear space or quadric of color at most u in (La•, Q

a
•, c•) for every 1 ≤ u ≤ h.

The fiber dimension of the projection π restricted to the locus imposed by the sequence is governed by
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the coloring c̃•. The expression dim(c̃•) gives the generic fiber dimension of π on this locus. Accordingly,
if the colors in two consecutive positions are swapped, the dimension of the fiber increases by one when
a larger color is associated to the smaller member in the sequence. For example, the color sequence
1, 2, 3, 1, 2 has fiber dimension 2 less than the color sequence 1, 3, 2, 2, 1. By Observation 7.26, there can
only be a color swap between colors ci = u < ci+j = v if the dimension of the subspace of Wv intersecting
the i-th constraint in the sequence is at least one larger than before. Correspondingly, the (i+j)-th linear
space or quadric has to shrink to the position of that of at least one less than the position of the i-th
linear space or quadric. The fiber dimension increases by at most j and the increase is precisely j only
when every color ci, . . . , ci+j−1 is smaller than ci+j . Now we combine this observation with the dimension
counts in the proof of Theorem 5.12 for the image of the projection π. We use the same notation.

• When we replace the (i + j)-th linear space in (La•, Q
a
•) with a linear space in the i-th position,

we saw that the dimension of the image of π decreases by n′i+j − n∗i + j + y′i+j − y∗i . By
Conditions (6) and (9) for (L•, Q•) this is at least j, with equality when n∗i = rα for some α and
n′i+j − rα = y′i+j − α+ j in (La•, Q

a
•). On the other hand, the fiber dimension can increase by at

most j, with equality if the color of Lani+j is larger than the color of every linear space Lant for
i ≤ t < i + j. We conclude that replacing a linear space by a smaller dimensional linear space
either strictly decreases the dimension or may keep it the same in the case just described.

• When we replace the quadric with index i with a quadric in the (i+ j)-th position, the dimension
of the image of π changes by d′i − d∗i+j + x′i − x∗i+j . The decrease in the image of π is at least j
with equality only if every time the quadric is shrunk by one without coinciding with a quadric
already contained in the sequence, the number of linear spaces of the sequence contained in its
singular locus also increases by one. The fiber dimension can increase by at most j, with equality
precisely when all the quadrics of index i ≤ t < i+ j in (La•, Q

a
•) have color strictly less than the

color of Q
r′i+j
d′i+j

. Hence, replacing a quadric with a smaller dimensional one either strictly decreases
the dimension or may keep it the same in the case described.

• When we replace the quadric with index i with a linear space in the j-th position, the dimension
of the image of π changes by

(kh − i+ 1− bd
′
i − r′i

2
c − x′i) + (n∗j − d

d′i + r′i
2
e+ kh − s− y∗j ) + (−kh + s+ i).

The first sum is strictly negative unless Condition (8) is violated or there is equality in Condition
(8) for the index i, in which case it is zero. The second term is less than or equal to j − s − 1
with equality only if either d′i + r′i = d′kh−s + r′kh−s and equality holds in Condition (8) for the
index i; or d′i + r′i = d′kh−s + r′kh−s + 1, xi = s, nj∗ > ns and equality holds in Condition (8) for
the index i. Hence, the dimension of the image decreases by at least kh − i− j + 1 with equality
only if we have one of the cases described. The fiber dimension increases by at most kh− i− j+1
with equality when all the linear spaces and quadrics between Qr

′
i

d′i
and the new linear space have

color strictly less than the color of Qr
′
i

d′i
.

We conclude that the increase in the fiber dimension of π when restricted to one of the restriction varieties
we constructed can equal at most the decrease in the dimension of the image of π. Hence, the irreducible
component Y of the support of the flat limit has to be a component of one of these loci associated to a
sequence.

Note that we have limited the possible irreducible components of the support of the flat limit of
Degeneration 5.7 to a small list. However, not all these possibilities occur as limits. For instance, after
we apply the degeneration to 24000}10}20}30}4, according to Step 2, only the last two of the following
four cycles

1]41]3000}10}200, 1]42000}10}20}30, 22]3000}10}200}4, 23000}10}20}30}4
that have the same dimension occur in the limit. In Steps 4 and 5 of Algorithm 7.19, the same phenomenon
can occur. For example, consider the cycle 1344]2000}100}10}20}10. Applying the algorithm results in the
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cycle 1244]2000}100}10}20}10. Even though, the cycle 1]2244000}100}10}20}10 has the same dimension,
it does not occur in the limit. Hence, we require a more subtle analysis to further restrict the possible
limits. The argument is identical to the one given in the Grassmannian case.

Observation 7.27. At a general point of V (L•, Q•, c•), the linear space everywhere tangent to Qridi along
Wh ∩Qridi intersects the linear space Lnj with nj ≥ xi in a subspace of dimension j − xi + ri. By semi-
continuity, in the limit, the linear space everywhere tangent to Qridi(0) along Wh(0) ∩ Qridi(0) intersects
Lnj (0) in a subspace of dimension at least j − xi + ri.

Similarly, at a general point of V (L•, Q•, c•), the linear space tangent to Qridi along the linear space
Wh ∩Qridi intersects Qrldl for l > i in a subspace of dimension s+ kh − l+ 1 + ri − xi. By semi-continuity,
in the limit, the linear space tangent to Qridi(0) along Wh(0) ∩ Qridi(0) intersects Qrldl(0) in a subspace of
dimension at least s+ kh − l + 1 + ri − xi.

Observation 7.28. Suppose that xκ = s, κ < kh − s and 2(kh − s − κ) = dκ − rκ in (L•, Q•, c•). Let
i ≤ κ−1 be the index of a quadric for which equality holds in Condition (8) and di+ri = dkh−s+rkh−s+1.
Then each irreducible component of the space of (kh − i)-dimensional linear subspaces of Wh contained
in Q

ri+1
di+1

determines an irreducible component of the space of (kh − i + 1)-dimensional subspaces of Wh

contained in Qridi . The component parameterized by V (L•, Q•, c•) is characterized by the following: if

dim((Wh ∩Qri+1
di+1

) ∩Qri+1,sing
di+1

) = xi+1,

then dim((Wh ∩ Qridi) ∩ Q
ri+1,sing
di+1

) = xi+1. The other component has dim((Wh ∩ Qridi) ∩ Q
ri+1,sing
di+1

) =
xi+1 + 1.

Finally, in Step ii of Algorithm 7.18, the Condition that if lu 6= kh − s− 1, then u has to be even does
not yet follow from our dimension count (see Example 7.12). We need the following observation.

Observation 7.29. If κ = kh − s, xkh−s = and dkh−s−1 + rkh−s−1 = dkh−s + rkh−s in V (L•, Q•, c•), then
the linear subspaces of dimension kh− s+ 2 contained in Q

rkh−s−1

dkh−s−1
have two irreducible components (see

Proposition 2.2). These components are distinguished by their parity of intersection with linear spaces in
the half-dimensional components in Q

rkh−s−1

dkh−s−1
. In the flat limit, these linear spaces have to continue to lie

in the same irreducible component. We conclude that in Step ii of Algorithm 7.18, general linear spaces
parameterized by restriction varieties with lu 6= kh − s− 1 and u odd cannot occur in the flat limit.

The dimension counts together with Observations 7.27, 7.28 and 7.29 imply that Y has to be an
irreducible component of the restriction varieties that are output by Algorithm 7.19. We now check this
claim and show that each of the varieties in Algorithm 7.19 occur with multiplicity one in the limit. The
proof will be identical to the Grassmannian case. For each irreducible component of a potential limit, we
exhibit a cycle that intersects V (L•, Q•, c•) and that irreducible component in a reduced point and that
does not intersect any of the other irreducible components of the potential limits. The calculations are
almost identical to the Grassmannian case. This will conclude the proof.

Case 1: If xκ = s and 2(kh−s−κ)+3 < dκ−rκ in V (L•, Q•, c•), then by Condition (7) for V (L•, Q•, c•),
for all the quadrics in (La•, Q

a
•) there is strict inequality in Condition (8). Furthermore, by Conditions

(6) and (9) for V (L•, Q•, c•), nj − ri > yj − i + j − xi for every linear space nj > xi. Hence, by our
dimension calculations, replacing a linear space with a smaller dimensional linear space or a quadric by a
linear space or smaller dimensional quadric results in a strictly smaller dimensional variety. We conclude
that Y has to be a component of V (La•, Q

a
•, c•). To show that the multiplicity is one we may, without

loss of generality, assume that κ = 1 and xκ = 0 and n = dκ + rκ + 1. Let βi = n− di + 1. Consider the
Schubert variety S defined with respect to the sequence

Lβκ [cκ] ⊂ Lβκ+1 [cκ+1] ⊂ · · · ⊂ Lβkh−s [ckh−s].

Then it is immediate that S intersects both V (L•, Q•, c•) and V (La•, Q
a
•, c•) in a unique reduced point.

Hence, V (La•, Q
a
•, c•) occurs in the limit with multiplicity one.
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Case 2: If κ = kh − s, xkh−s = s and rkh−s + 3 = dkh−s in V (L•, Q•, c•), then the quadric Qr
′
κ

d′κ
in

(La•, Q
a
•) is necessarily reducible consisting of two linear spaces of dimension d′κ − 1. If 2(d′κ − 1) = n,

then the two linear spaces belong to distinct connected components of half-dimensional linear spaces. By
Conditions (6) and (9) for V (L•, Q•, c•), replacing a linear space with a smaller dimensional one leads
to a strictly smaller dimensional variety. By our dimension counts, replacing a quadric Qr

′
i

d′i
with a linear

space Lnj may lead to a variety of the same dimension provided nj ≥ ri + 1. However, if nj > ri+1, then
Condition (9) must be violated for one of the quadrics of index larger than i. “The variation of tangent
spaces” forces us to replace that quadric with a linear space of dimension smaller than nj , hence leading
to a smaller dimensional locus. Combining this discussion with Observation 7.29, we conclude that Y
has to be an irreducible component of a restriction variety described by Step ii of Algorithm 7.18. Now
we check that they each occur with multiplicity one. Suppose replacing the quadrics with indices

η(L•, Q•, c•) ≤ l1 < · · · < lu < kh − s

with linear spaces Lrl1+1, . . . , Lrlu+1, Ldkh−s−1 leads to a locus of the same dimension as V (L•, Q•, c•).
For the local calculation we may assume that η(L•, Q•, c•) = 1, xη(L•,Q•,c•) = 0 and n = dkh−s+rkh−s+1.
Then each of the restriction varieties

V (Ll1,...,lu,v• , Ql1,...,lu,v• , cl1,...,lu,v• )

are Schubert varieties. It is straightforward to see that their duals intersect V (L•, Q•, c•) in a unique,
reduced point. When we intersect the dual with V (L•, Q•, c•), the linear spaces and the quadrics with
index not equal to one of the l1, . . . , lu in the sequence V (L•, Q•, c•) determine unique points that need
to be contained in Wc if the color of the linear space or quadric is c. The other linear spaces are then
determined by “the variation of tangent spaces”. The assumption that if lu 6= kh − s− 1, then u is even
guarantees that the linear space thus determined lies in the correct connected component. It follows that
each of these varieties occur with multiplicity one in the limit.

Case 3: If κ < kh − s, xκ = s and 2(kh − s− κ) + 3 = dκ + rκ for (L•, Q•, c•), then by Conditions (6)
and (9) replacing a linear space by a smaller dimensional one leads to strictly smaller dimensional loci.
Replacing a quadric with index i for which equality holds in Condition (8) with Lri+1 may lead to the
same dimensional loci, but by Observation 7.28 except when i = κ, the loci that can occur as the flat
limit are proper subvarieties of every irreducible component. We conclude that Y has to be a component
of V (L#

• , Q
#
• , c

#
• ) or V (La•, Q

a
•, c•). For the local calculation to show that every component occurs with

multiplicity one, we may assume that κ − 1 = 1, n = dκ + rκ + 1 and xκ = s = 0. Let S (respectively,
S′) be defined exactly as in Case 1 (respectively, by replacing Lkh−s with L′kh−s). It is clear that S and
S′ intersect the two components of V (L•, Q•, c•) and V (La•, Q

a
•, c•) in a single, reduced point and do not

intersect V (L#
• , Q

#
• , c

#
• ). If V (L#

• , Q
#
• , c

#
• ) has the same dimension as V (L•, Q•, c•), let βi = n−di+1 +1

for i = 1, . . . , kh − 1. Let α1 = n − r′κ + 1. Let T be the Schubert variety defined with respect to the
following sequence

Lβ1 [ckh−1] ⊂ · · · ⊂ Lβkh−1 [c2] ⊂ Qn−α1
α1

[c1]

Note that the coloring is the reverse of the coloring c#• . If the largest dimensional linear space has
dimension n/2, let T ′ be the Schubert variety defined by replacing the half-dimensional linear space by
one from the other connected component. It is immediate that T (and when appropriate T ′) intersect
V (L•, Q•, c•) and V (L#

• , Q
#
• , c

#
• ) in a unique point and they do not intersect V (La•, Q

a
•, c•). It follows

that the restriction varieties listed in Step 2 of the algorithm occur with multiplicity one.

Case 4: If xκ < s, then the dimension counts and Observation 7.27 imply that Y has to be an irreducible
component of one of the loci defined by the sequences (La•, Q

a
•, c•), (L

j
•, Q

j
•, c

j
•)b or (Li•, Q

i
•, c

i
•)
e. In

addition, if the quadric with index κ fails to satisfy Condition (8) in (La•, Q
a
•, c•), then by the “linear

space bound”, every linear space of dimension kh − κ + 1 intersects the singular locus of the quadric
in dimension xκ + 1. Hence, in that case every sequence we construct must intersect the singular locus
in a larger dimensional subspace than allowed by (La•, Q

a
•, c•). Hence, we omit the sequence from the

list as in Step 5 of Algorithm 7.19. Now we show that when these varieties have the same dimension
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as V (L•, Q•, c•), then every component occurs in the limit with multiplicity one. We will assume that
if κ = kh − s, then Condition (7) is satisfied after running Step iii of Algorithm 7.18 on V (La•, Q

a
•, c•).

Otherwise, the argument for the multiplicity of the sequences derived from V (La•, Q
a
•, c•) is identical to

Case 2. We leave this case to the reader. We will also assume that Condition (8) holds for (La•, Q
a
•, c•).

Otherwise, the same argument works, but every reference to (La•, Q
a
•, c•) should be removed since that

sequence does not occur on our list. For the local calculation we may assume that κ = 1, xκ = 0 and
n = dκ+rκ+1. Let i0 denote the smallest index for which equality holds in Condition (8) in (L•, Q•, c•).
For nj ≤ ri0 , let αj = n− nj + 1. For nj > ri0 , set αj = n− nj−1. Next, for each index i < i0, let li be
the largest positive integer such that ri + li + 1 = nxi+li . If there does not exist such an integer li, set
li = 0. Let βi = n − di + li for i < i0 and let βi = n − di + 1 for i ≥ i0. Let S be the Schubert variety
defined by the sequence

Lβ1 [ckh ] ⊂ · · · ⊂ Lβkh−s [cs+1] ⊂ Qn−αsαs [cs] ⊂ · · · ⊂ Qn−α1
α1

[c1].

Note that S intersects both V (L•, Q•, c•) and V (La•, Q
a
•, c•) in a unique reduced point. Also note that

since Qn−α1
α1

∩Lr′κ = ∅, S has empty intersection with all the other V (Lj•, Q
j
•, c

j
•)b or V (Li•, Q

i
•, c

i
•)
e. For

each sequence (Lj•, Q
j
•, c

j
•)b, let α1 = n− r′κ + 1. Let αl = n− nl−1 + 1 for nl ≤ min(j, ri0) and l > 1 and

αl = n− nl + 1 for nl ≤ ri0 and l > j and αl = n− nl−1 for nl > ri0 . For each index i < i0, let li be the
largest positive integer such that ri + li + 1 = nxi+li+1 in the sequence (Lj•, Q

j
•). If there does not exist

such an integer li, set li = 0. Let βi = n− di + li for i < i0 and let βi = n− di + 1 for i ≥ i0. Let Tj be
the Schubert variety defined with respect to the following sequence

Lβ1 [ckh ] ⊂ · · · ⊂ Lβkh−s [cs+1] ⊂ · · · ⊂ Qn−αj+1
αj+1

[cj+1] ⊂ Qn−αjαj [cj−1] ⊂ · · · ⊂ Qn−α2
α2

[c1] ⊂ Qn−α1
α1

[cj ].

Note that the coloring is the reverse of cj•. Similarly, for each sequence V (Li•, Q
i
•, c

i
•)
e, let α1 = n−r′κ+1.

Let αl = n − nl−1 + 1 for nl ≤ ri0 and let αl = n − nl−2 for nl > ri0 . For each index m < i0, let lm be
the largest positive integer such that rm + lm + 1 = nxm+lm+1 in the sequence (Lj•, Q

j
•). If there does

not exist such an integer lm, set lm = 0. Let βm−1 = n − dm + lm for m < i, let βm = n − dm + lm for
i < m < i0, and let βm = n− dm + 1 for m ≥ i0. Let Ui be the Schubert variety defined with respect to
the following sequence

Lβ1 [ckh ] ⊂ · · · ⊂ Lβi−1 [ckh−i+2] ⊂ Lβi [ckh−i] ⊂ · · · ⊂ Lβkh−s−1 [cs+1] ⊂ · · · ⊂ Qn−α2
α2

[c1] ⊂ Qn−α1
α1

[ckh−i+1].

Note that the coloring is the reverse of that of ci•. For each of these Schubert varieties if the largest
linear space occurring in their definition has dimension n/2, then define a corresponding Schubert va-
riety (denoted by S′, T ′j and U ′i) by replacing the half-dimensional linear space with one in the other
connected component. The following observations are straightforward. Tj intersects V (L•, Q•, c•) and
V (Lj•, Q

j
•, c

j
•)b in a unique reduced point. Its intersection with V (La•, Q

a
•, c•), or V (Lj0• , Q

j0
• , c

j0
• )b for

j0 6= j, or V (Li•, Q
i
•, c

i
•)
e is empty. Similarly, Ui intersects V (L•, Q•, c•) and V (Li•, Q

i
•, c

i
•)
e in a unique

reduced point. Its intersection with V (La•, Q
a
•, c•), or V (Lj•, Q

j
•, c

j
•)b, or V (Li0• , Q

i0
• , c

i0
• )e for i0 6= i is

empty. Finally, repeating the calculation with S′, T ′j and U ′i when these varieties are reducible, we see
that each component occurs with multiplicity one and the algorithm preserves marking. This concludes
the proof of the theorem. �

8. Applications of Algorithm 7.19

In this section, we will give a geometric algorithm for multiplying two Schubert cycles in the cohomology
ring of orthogonal flag varieties when n is odd. When n is even, the same argument gives a method of
multiplying cycles in the subring invariant under the involution interchanging the half-dimensional linear
spaces on Q. The discussion for the orthogonal Grassmannians holds with little change. We will use the
notation in [C3] to denote Schubert varieties in flag varieties.

The pull-back of a Schubert class under the inclusion j : OF (k1, . . . , kh;n)→ F (k1, . . . , kh;n) can be
expressed as a sum of the classes of restriction varieties. Let Σ

c1,...,ckh
λ1,...,λkh

denote a Schubert cycle in the flag
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variety F (k1, . . . , kh;n) (see [C3] for detailed information about Schubert cycles in flag varieties). The
following proposition is almost identical to the Grassmannian case.

Proposition 8.1. Let σ
c1,...,ckh
λ1,...,λkh

be a Schubert cycle in F (k1, . . . , kh;n). Let j : OF (k1, . . . , kh;n) →
F (k1, . . . , kh;n) be the natural inclusion. Then

(1) j∗σ
c1,...,ckh
λ1,...,λkh

= 0 unless n− kh − i ≥ λi for every 1 ≤ i ≤ kh.
(2) Suppose that n− kh − i = λi for i = 1, . . . , α and n− k − i > λi for i = α + 1. Further suppose

that if 2kh = n, then α 6= kh. Let (L•, Q•, c•) be the admissible sequence

L1[c1] ⊂ · · · ⊂ Lα[cα] ⊂ Qαn−kh+α+1−λα+1
[cα+1] ⊂ · · · ⊂ Qαn−λkh [ckh ].

Then j∗σ
c1,··· ,ckh
λ1,...,λkh

= 2α[V (L•, Q•, c•)], where [V (L•, Q•, c•)] denotes the cohomology class of the
restriction variety V (L•, Q•, c•). If 2α = 2kh = n, then the class is 2α−1 times [V (L•, c•)], where
the sequence (L•) defines the point class in OG(kh;n).

Algorithm 8.2 (Reversing Algorithm 5.9). Let V (L•, Q•, c•) be a restriction variety in OF (k1, . . . , kh;n)
with n odd.

(1) If the class of V (L•, Q•, c•) is a fraction of a restriction of a Schubert cycle in F (k1, . . . , kh;n)
(In Proposition 8.1, we determined that this happens precisely when ri = nx1 = x1 = s for all
1 ≤ i ≤ kh−s), let (Q′α• be the sequence consisting of the linear sections defining the corresponding
Schubert variety in F (k1, . . . , kh;n) with the same coloring.

(2) If in the sequence (L•, Q•, c•), ri = nx1 = x1 for all i, but s 6= x1, then let α be the largest non-
negative integer with ns−α = ns−α. Let (Lα• , Q

α
• , c•) be the sequence obtained from (L•, Q•, c•)

by replacing Lns with Qns−α−2
ns+α+1.

(3) If in the sequence (L•, Q•, c•), ri 6= x1 for some i, let i be the largest index for which ri > x1

and there does not exist a smaller index l such that rl = rl−1 > x1. If ri 6= nj for any j, let
(Lα• , Q

α
• , c•) be the sequence obtained from (L•, Q•, c•) by replacing ri with ri− 1. If ri = nj for

some j, let α be the largest non-negative integer for which nj−α = nj − α. Let (Lα• , Q
α
• , c•) be

the sequence obtained from (L•, Q•, c•) by replacing Qridi with Qri−α−2
di+α+1.

In Case (1), [V (L•, Q•, c•)] is already a fraction of the restriction of a Schubert cycle in F (k1, . . . , kh;n).
There is nothing further to do.

In Case (2), by the Algorithm 7.19 we can express

[V (Lα• , Q
α
• , c•)] = 2[V (L•, Q•, c•)] + other terms.

In Case (3), by the Algorithm 7.19 we can express

[V (Lα• , Q
α
• , c•)] = [V (L•, Q•, c•)] + other terms.

In both Cases (2) and (3), the other terms have the property that either the sum of the dimension of the
linear spaces is strictly smaller (as is the sum of the ranks of the quadrics) than those in (L•, Q•, c•) or the
coloring has strictly larger dimension (and the projection to OG(kh, n) has strictly smaller dimension).
On the other hand, (Lα• , Q

α
• , c•) has the property that either it has fewer linear spaces than (L•, Q•, c•)

or the sum of the ranks of the quadrics is smaller than those of (L•, Q•, c•). We can solve for the class
[V (L•, Q•, c•)], then apply the algorithm to each of the terms. It is clear that this eventually terminates
expressing the class as a linear combination of the classes of restriction of Schubert varieties. We thus
obtain a geometric formula for expressing Schubert varieties in OF (k1, . . . , kh;n) in terms of restrictions
of Schubert varieties in F (k1, . . . , kh;n). We thus reduce any multiplication in the orthogonal flag variety
to a multiplication in the ordinary flag variety and Algorithm 7.19.
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