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Abstract. In this paper, we introduce combinatorially defined subvarieties of symplectic flag varieties

called symplectic restriction varieties. We study their geometric properties and compute their cohomol-
ogy classes. In particular, we give a positive, combinatorial, geometric branching rule for computing

the map in cohomology induced by the inclusion i : SF (k1, . . . , kh;n) → F (k1, . . . , kh;n). These rules

have many applications in algebraic geometry, combinatorics, symplectic geometry and representation
theory.
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1. Introduction

Let n = 2m be an even integer. Let 0 < k1 < k2 < · · · < kh ≤ m be an increasing sequence
of positive integers. For ease of notation, set k0 = 0 and kh+1 = n. Let V be an n-dimensional
vector space over C and let Q be a non-degenerate skew-symetric form on V . The symplectic
isotropic partial flag variety SF (k1, . . . , kh;n) parameterizes partial flags

W1 ⊂W2 ⊂ · · · ⊂Wh,

where Wi is a ki-dimensional isotropic subspace of V with respect to Q.

The purpose of this paper is to give a positive, geometric rule for computing the restriction
coefficients of SF (k1, . . . , kh;n). Since every isotropic linear space is in particular a linear space,
there is a natural inclusion

i : SF (k1, . . . , kh;n)→ F (k1, . . . , kh;n)

of the isotropic partial flag variety into the flag variety. This inclusion induces a map in coho-
mology

i∗ : H∗(F (k1, . . . , kh;n),Z)→ H∗(SF (k1, . . . , kh;n),Z).
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The cohomology groups of both SF (k1, . . . , kh;n) and F (k1, . . . , kh;n) have integral bases con-
sisting of Schubert classes. Hence, the image

i∗σa,c =
∑

ca,cλi;µi;ciσλi;µi;ci

of a Schubert class σa,c in the cohomology of F (k1, . . . , kh;n) is a linear combination of Schubert
classes in the cohomology of SF (k1, . . . , kh;n) with positive integer coefficients. The coefficients
ca,cλi;µi;ci are called symplectic restriction coefficients. In [C2], we computed the orthogonal re-
striction coefficients. In [C4], we gave a positive, geometric rule for computing the restriction
coefficients for the symplectic isotropic Grassmannian SG(k, n). In this paper, we extend the
rule to the setting of partial flag varieties, thereby completing the program of finding positive,
geometric rules for the restriction coefficients of all classical flag varieties. The reader is advised
to consult [C4] prior to reading this paper. The following theorem is the main theorem of the
paper.

Theorem 1.1. Algorithm 3.43 provides an explicit, geometric, combinatorial, positive rule for
computing the symplectic restriction coefficients for SF (k1, . . . , kh;n).

Theorem 1.1 has many applications, most notably to calculating the moment polytopes for
the inclusion of Sp(n) in SU(n) and the asymptotic of the restrictions of representations of
SL(n) to Sp(n). Let j : G′ → G be an inclusion of complex, reductive, connected Lie groups.
Choose Borel subgroups B′ ⊂ G′ and B ⊂ G such that j(B′) ⊂ B. Then the inclusion j :
G′/B′ → G/B induces a map in cohomology j∗ : H∗(G/B) → H∗(G′/B′). The structure
coefficients of this map in terms of Schubert bases are called branching coefficients. Finding
positive rules for calculating branching coefficients is a central problem (see [P] for references
and an exposition of the subject). In the case of Sp(n) and SL(n), the map j is given by sending
an isotropic flag F• to the pair (F•, F⊥• ). Our theorem calculates all the branching coefficients
of j∗ : H∗(F (k1, . . . , kh, n− kh, . . . , n− k1;n))→ H∗(SF (k1, . . . , kh;n)) for the classes that are
pulled back from F (k1, . . . , kh;n) under the natural projection that sends (F•, F⊥• ) to F•.

Knowing the set of non-zero branching coefficients has important applications in symplectic
geometry and representation theory. Let K and K ′ be the maximal compact subgroups of G and
G′, respectively. To each non-vanishing branching coefficient, in [BS], Berenstein and Sjamaar
associate an inequality satisfied by the K ′-moment polytope of a K-coadjoint orbit. Moreover,
the totality of these inequalities gives a sufficient set of inequalities for the moment polytope.
Similarly, non-vanishing branching coefficients determine which irreducible representations of
G′ occur in the restriction of an irreducible representation of G asymptotically (see [BS], [GS],
[He], [P]).

More importantly, we will introduce a new set of subvarieties of SF (k1, . . . , kh;n) called
symplectic restriction varieties and compute their cohomology classes in terms of the Schubert
basis of SF (k1, . . . , kh;n). The analogues of these varieties for orthogonal flag varieties were
introduced in [C2]. In many ways, these varieties are more fundamental than Schubert varieties
and have applications to many other geometric problems such as problems of smoothability
and rigidity (see [C1], [C4], [C5]). Symplectic restriction varieties are defined by imposing rank
conditions on a partial flag (W1, . . . ,Wh) with respect to a not-necessarily-isotropic flag. They
interpolate between the intersection of SF (k1, . . . , kh;n) with a general translate of a Schubert
variety in F (k1, . . . , kh;n) and a Schubert variety in SF (k1, . . . , kh;n). We will discuss their
geometric properties in detail in §4.

The beauty of our approach is that, while the combinatorics of branching coefficients can
be very complicated (and this is inevitably reflected in the combinatorial formulation of the
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rule), four basic geometric principles explain all the complexity. Our strategy for calculating the
cohomology classes of symplectic restriction varieties is by specialization. We start with a general
Schubert variety defined with respect to a flag G•. Since the flag is general, the dimension of the
kernel of the restriction of Q to Gi is zero or one depending on whether i is even or odd. On the
other hand, a Schubert variety in SF (k1, . . . , kh;n) is defined with respect to an isotropic flag
F•. The dimension of the kernel of the restriction of Q to Fi is i (respectively, n − i) if i ≤ m
(respectively, if i > m). The strategy is to transform the flag G• to an isotropic flag by increasing
the dimension of the kernel of the restriction of Q one flag element at a time. As we specialize
the flag, the corresponding restriction variety specializes into a union of restriction varieties
defined with respect to the limiting flag, each occurring with multiplicity one. The rule records
the outcome of the specialization. We now explain the four basic facts about skew-symmetric
forms that govern the order of the specialization and the limits that occur.

Let Qrd denote a d-dimensional vector space such that the restriction of Q has corank r. Let
Ker(Qrd) denote the kernel of the restriction of Q to Qrd. Let Lj denote an isotropic subspace
of dimension j with respect to Q. Let L⊥j denote the set of w ∈ V such that wTQv = 0 for all
v ∈ Lj . The reader can easily verify the following four basic facts about skew-symmetric forms.

Evenness of rank. The rank of a non-degenerate skew-symmetric form is even. Hence, d− r
is even for Qrd. Furthermore, if d = r, then Qrd is isotropic.

The corank bound. Let Qr1d1 ⊂ Q
r2
d2

and let r′2 = dim(Ker(Qr2d2)∩Qr1d1). Then r1−r′2 ≤ d2−d1.
In particular, d+ r ≤ n for Qrd.

The linear space bound. The dimension of an isotropic subspace of Qrd is bounded above by
bd+r

2 c. Furthermore, an m-dimensional isotropic subspace L of Qrd satisfies dim(L∩Ker(Qrd)) ≥
m− bd−r2 c.

The kernel bound. Let L be an (s + 1)-dimensional isotropic space such that dim(L ∩
Ker(Qrd)) = s. If an isotropic linear subspace M of Qrd intersects L − Ker(Qrd), then M is
contained in L⊥.

Let us explain how these four principles dictate the order of the specialization and determine
the limits that occur. Given a flag, we will specialize the smallest dimensional non-isotropic
subspace Qrd, whose corank can be increased subject to the corank bound, keeping all other
flag elements unchanged. We will replace Qrd with Q̃r+2

d . The branching rule simply says
that under this specialization, the limit (W ′1, . . . ,W

′
h) of the one-parameter family of partial

flags (W1, . . . ,Wh)(t) satisfy the same rank conditions with the unchanged flag elements and
dim(W ′i ∩ Ker(Q̃r+2

d )) = dim(Wi ∩ Ker(Qrd)) for i < i0 and dim(W ′i ∩ Ker(Q̃r+2
d )) = dim(Wi ∩

Ker(Qrd)) + 1 for i ≥ i0. Furthermore, all of these cases occur with multiplicity one unless some
of these loci lead to smaller dimensional varieties or the linear space bound is violated. These
exceptions can be explicitly stated combinatorially (though sometimes resulting in cumbersome
statements). See Sections 3 and 5 for an explicit statement of the rule and for examples.

There are other potential methods for computing restriction coefficients. For example, Pragacz
gave a positive rule for computing restriction coefficients for Lagrangian Grassmannians [Pr1],
[Pr2]. It is also possible to compute restriction coefficients (in a non-positive way) by first
computing the pullbacks of the tautological bundles from F (k1, . . . , kh;n) to SF (k1, . . . , kh;n)
and then using localization or the theory of Schubert polynomials to express the Chern classes
of these bundles in terms of Schubert classes. To the best of the author’s knowledge, Algorithm
3.43 is the first positive, geometric rule for computing the restriction coefficients for all isotropic
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partial flag varieties SF (k1, . . . , kh;n). Moreover, these positive rules are computationally much
more efficient than their non-positive counterparts.

The organization of this paper is as follows. In §2, we will recall basic facts concerning the
geometry of SF (k1, . . . , kh;n). In §3, we will introduce symplectic diagrams, which are the
main combinatorial objects of this paper. We will then state the rule combinatorially without
reference to geometry. In §4, we will introduce symplectic restriction varieties and discuss their
basic geometric properties. In §5, we will interpret the combinatorial rule geometrically and
prove that it computes the symplectic restriction coefficients.

Acknowledgements: I would like to thank Joe Harris for stimulating discussions throughout
the years and Donghoon David Hyeon and POSTECH for their hospitality while this work was
completed.

2. Preliminaries

In this section, we recall basic facts concerning the geometry of SF (k1, . . . , kh;n).

Let V be an n-dimensional vector space over the complex numbers endowed with a non-
degenerate skew-symmetric form Q. Since Q is non-degenerate, n must be even. Set n = 2m. A
linear space W ⊂ V is isotropic with respect to Q if for every w1, w2 ∈ W , wT1 Qw2 = 0. Given
an isotropic space W , let the orthogonal complement W⊥ be the set of vectors v ∈ V such that
vTQw = 0 for every w ∈W . If the dimension of W is k, then the dimension of W⊥ is n− k.

The partial flag variety SF (k1, . . . , kh;n) parameterizing partial flags W1 ⊂ · · · ⊂Wh, where
Wi is an isotropic subspace of V of dimension ki, is a homogeneous variety for the symplectic
group Sp(n). Let SG(k, n) denote the symplectic isotropic Grassmannian parameterizing k-
dimensional isotropic subspaces of V . There is a natural projection map

πh : SF (k1, . . . , kh;n)→ SG(kh, n)

sending (W1, . . . ,Wh) to Wh. The fiber of πh over a point Wh is the partial flag variety
F (k1, . . . , kh−1; kh). The geometric properties of SF (k1, . . . , kh;n) can be deduced by study-
ing the geometry of SG(kh, n) and the projection map πh. For example, the dimension of
SF (k1, . . . , kh;n) is

dim(SF (k1, . . . , kh;n)) = nkh −
3k2

h − kh
2

+
h−1∑
i=1

ki(ki+1 − ki),

given by the sum of the dimensions of SG(kh, n) [C4] and F (k1, . . . , kh−1; kh).

By Ehresmann’s Theorem [E] (see also [Bo, IV, 14.12]), the cohomology of SF (k1, . . . , kh;n)
is generated by the classes of Schubert varieties. Our indexing for Schubert varieties will take
into account the projection map πh. Let

0 < λ1 < λ2 < · · · < λs ≤ m

be a sequence of increasing positive integers. Let

m > µs+1 > µs+2 > · · · > µkh ≥ 0

be a sequence of decreasing non-negative integers such that λi 6= µj + 1 for any 1 ≤ i ≤ s and
s < j ≤ kh. Then the Schubert varieties in SG(kh, n) are parameterized by pairs of admissible
sequences (λ•;µ•) [C4].
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Definition 2.1. A coloring c• for a sequence 0 < k1 < · · · < kh ≤ m is a sequence of integers

c1, c2, . . . , ckh

such that ki − ki−1 of the integers are equal to i for 1 ≤ i ≤ h. A coloring for SF (k1, . . . , kh;n)
or F (k1, . . . , kh;n) is a coloring for the corresponding sequences k1 < · · · < kh.

Example 2.2. The sequences 1, 1, 2, 2, 3, 3, 3 and 1, 3, 3, 2, 3, 2, 1 are two coloring schemes for
SF (2, 4, 7;n). Note that ki is equal to the number of integers in the sequence that are less than
or equal to i.

We parameterize Schubert classes in SF (k1, . . . , kh;n) by colored sequences (λ•;µ•; c•), where
(λ•;µ•) is an admissible sequence for SG(kh, n) and c• is a coloring for SF (k1, . . . , kh;n). Fix
an isotropic flag

F• = F1 ⊂ F2 ⊂ · · ·Fm ⊂ F⊥m−1 ⊂ · · ·F⊥1 ⊂ V.
The Schubert variety Σλ•;µ•;c•(F•) is defined as the Zariski closure of the set of partial flags

{(W1, . . . ,Wh) ∈ SF (k1, . . . , kh;n) | dim(Wj ∩ Fλi) = #{cl | l ≤ i, cl ≤ j} for 1 ≤ i ≤ s,
dim(Wj ∩ F⊥µi) = #{cl | l ≤ i, cl ≤ j} for s < i ≤ kh}.

The projection πh(Σλ•;µ•;c•) is a Schubert variety in SG(kh, n) with class σλ•;µ• . Over a gen-
eral point Wh in the image of the projection πh(Σλ•;µ•;c•), the fiber is a Schubert variety in
F (k1, . . . , kh−1; kh) with class determined by the sequence c• (note that the sequence c• deter-
mines a permutation with h − 1 descents sending an integer ki−1 < α = ki−1 + j ≤ ki to the
position of the j-th number equal to i in the sequence c•). More explicitly, at a general point
Wh of the image, the isotropic flag F• defines a complete flag G• on Wh. The Schubert variety
in F (k1, . . . , kh−1; kh) is defined by

{(W1, . . . ,Wh−1) | dim(Wi ∩Gj) ≥ #{cl | l ≤ j, cl ≤ i}}.

Definition 2.3. For 1 ≤ u < h, define cdim(u), the codimension of the color u, by

cdim(u) =
∑

1≤i≤kh, ci≤u
#{j > i | cj = u+ 1}.

Define cdim(c•), the codimension of a coloring, by

cdim(c•) =
h−1∑
u=1

cdim(u).

Define the dimension of a coloring dim(c•) =
∑h−1

u=1 ku(ku+1 − ku) − cdim(c•).

Remark 2.4. The quantity dim(c•) is nothing other than the dimension of the Schubert variety
in F (k1, . . . , kh−1; kh) determined by the sequence c•. Combining this discussion with [C4,
Proposition 4.21], we conclude that a Schubert variety with class (λ•, µ•, c•) has dimension

s∑
i=1

(λi − i) +
kh∑

j=s+1

(n− µj + 1− 2j + #{λi | λi ≤ µj}) + dim(c•).

We denote Schubert varieties in the ordinary flag variety F (k1, . . . , kh;n) by pairs (a•, c•),
where a• is a sequence of increasing positive integers 0 < a1 < · · · < akh ≤ n and c• is a coloring.
The corresponding Schubert variety Σa•,c•(F•) is the Zariski closure of the locus

{(W1, . . . ,Wh) | dim(Wj ∩ Fai) = #{cl | l ≤ i, cl ≤ j} for 1 ≤ j ≤ h}.
5



3. The combinatorial rule

In this section, we define combinatorial objects called colored symplectic diagrams, which
represent the main geometric objects, the symplectic restriction varieties, of this paper. We
then describe an algorithm for computing their cohomology classes in terms of Schubert cycles.
This section makes no reference to geometry. A geometrically minded reader may wish to look
ahead at the next two sections.

A colored (admissible) symplectic diagram for SF (k1, . . . , kh;n) is the data of an (admissible)
symplectic diagram for SG(kh, n) (defined in [C4]) together with a coloring for SF (k1, . . . , kh;n).
For the convenience of the reader, we recall the definition of an admissible symplectic diagram
for SG(kh, n).

Let 0 ≤ s ≤ kh be an integer. A sequence of n natural numbers of type s is a sequence of n
natural numbers such that every number is less than or equal to kh − s. We write the sequence
from left to right with a small gap to the right of each number in the sequence. We refer to the
gap after the i-th number in the sequence as the i-th position. For example, 1 1 2 0 0 0 0 0 and
3 0 0 2 0 1 0 0 are two sequences of 8 natural numbers of types 1 and 0, respectively, for kh = 3.

A sequence D of brackets and braces of type s for SG(kh, n) consists of a sequence of n natural
numbers of type s, s brackets ] ordered from left to right and kh− s braces } ordered from right
to left such that:

(1) Every bracket or brace occupies a position and each position is occupied by at most one
bracket or brace.

(2) Every bracket is to the left of every brace.
(3) Every positive integer greater than or equal to i is to the left of the i-th brace.
(4) The total number of integers equal to zero or greater than i to the left of the i-th brace

is even.

By Definition 2.1, a coloring for SF (k1, . . . , kh;n) is a sequence of kh integers c1, . . . , ckh such
that 1 ≤ cj ≤ h and the number of integers in the sequence equal to i is ki−ki−1. We then have
the following definition of a colored sequence of brackets and braces.

Definition 3.1. A colored sequence of brackets and braces (D, c•) of type s for SF (k1, . . . , kh;n)
is a sequence of brackets and braces of type s for SG(kh, n) together with a coloring c• for
SF (k1, . . . , kh;n).

Notation 3.2. 11]1200}20}200 and 300}220}110}20 are typical examples of sequences of brackets
and braces for SF (1, 3; 8). The colorings in these two examples are 1, 2, 2 and 2, 1, 2, respectively.
The coloring is recorded in the diagram as subscripts to the brackets or braces and is read from
left to right in order. When writing a sequence of brackets and braces, we often omit the gaps
not occupied by a bracket or a brace.

Example 3.3. For concreteness, we remark that condition (1) disallows diagrams such as ]10000}2
(the first bracket ]1 is not in a position), 00]1]200, 0000}1}2, 00]1}200 (two brackets, two braces or
a bracket and a brace in the same position). Condition (2) disallows diagrams such as 00}10]2000
(a brace is to the left of a bracket). Condition (3) disallows diagrams such as 00}120}210 (there
is a 2 in the sequence to the right of the second brace and a 1 in the sequence to the right of
the first brace). Condition (4) disallows diagrams such as 2000}100}2 (the number of zeros to
the left of the second brace is odd).
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Notation 3.4. By convention, the brackets are counted from left to right and the braces are
counted from right to left. We write ]i and }i to denote the i-th bracket and i-th brace, re-
spectively. The index of a bracket or a brace, which is denoted by a superscript, should not
be confused with its color, which is denoted by a subscript. The positions of the brackets and
braces are denoted by p(]i) and p(}i). The position of a bracket or a brace is equal to the number
of integers to its left. Let l(i) denote the number of integers in the sequence that are equal to
i. Let ri denote the number of positive integers less than or equal to i to the left of }i. For
1 ≤ i ≤ kh − s, let ρ(i, 0) = n − p(}i) and, for 1 ≤ i < j ≤ kh − s, let ρ(i, j) = p(}i) − p(}j).
Equivalently, ρ(i, j) denotes the number of integers to the right of the i-th brace and to the left
of the j-th brace and ρ(i, 0) denotes the number of integers to the right of the i-th brace. When
discussing several diagrams simultaneously, to avoid confusion, we indicate the diagram with a
subscript.

For the sequence of brackets and braces 1]122]300]300}200}10 for SF (2, 3, 5; 10), the positions
are p(]1) = 1, p(]2) = 3, p(]3) = 5, p(}2) = 7, p(}1) = 9. The coloring is 1, 3, 3, 2, 1. The numbers
of integers in the sequence are l(1) = 1 and l(2) = 2. Finally, the number of integers between
the braces are ρ(2, 1) = 2 and ρ(1, 0) = 1.

To give some context to the combinatorial objects, we remark that brackets represent isotropic
subspaces and braces represent non-isotropic subspaces. The position of a bracket or a brace is
the dimension of the corresponding linear space and ρ(i, 0) is its codimension. The quantity ri
is the corank of the restriction of the skew-symmetric form Q to the subspace represented by }i.

Definition 3.5. Two colored sequences of brackets and braces (D1, c
1
•) and (D2, c

2
•) are equivalent

if c1
• = c2

•, the length of sequences of integers in D1 and D2 are equal, the brackets and braces
occur in the same positions and the integers occurring between any two consecutive brackets
and/or braces are the same up to reordering.

Example 3.6. 3300}2200}110}20 and 3030}2002}110}20 are equivalent. Note that each equiva-
lence class can be represented by a canonical representative, where between any two brackets
and/or braces the positive integers are listed in increasing order followed by the zeros. In the
example, the first sequence is the canonical representative corresponding to the second sequence.
We always represent sequences by their canonical representatives and often blur the distinction
between the equivalence class and the canonical representative.

Definition 3.7. A colored sequence of brackets and braces of type s for SF (k1, . . . , kh;n) is
saturated if ρ(i, i− 1) = l(i) for every 1 ≤ i ≤ kh − s.

Definition 3.8. A colored sequence of brackets and braces of type s for SF (k1, . . . , kh;n) is
in order if the sequence of numbers consists of a sequence of non-decreasing positive integers
followed by zeros except possibly for one i immediately to the right of }i+1 for 1 ≤ i < kh − s.
Otherwise, we say that the sequence is not in order. A sequence is in perfect order if the sequence
of numbers consists of non-decreasing positive integers followed by zeros.

Example 3.9. The diagram 1]1333]23]200}10000}1100}200 is in order, but it is not saturated. The
diagram 11]122]200}100}200 is in perfect order and saturated. The diagrams 11]100]2100}1000
and 24000000}10}21}30}20 are not in order.

Next, we recall the definition of a symplectic diagram for SG(kh, n) from [C4]. This def-
inition is a technical definition and the reader does not need this definition for running the
algorithm. Every sequence of brackets and braces that occurs in the algorithm (with the ex-
ception of the intermediate marked diagrams in Algorithm 3.38) is a symplectic diagram. The
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properties are needed for ensuring that colored symplectic diagrams correspond to subvarieties
of SF (k1, . . . , kh;n). They also play a role in the dimension counts, so we include them for
precision. The reader should refer to these conditions as necessary.

A sequence of brackets and braces D of type s for SG(kh, n) is a symplectic diagram, if satisfies
the following conditions:

(S1) l(i) ≤ ρ(i, i− 1) for 1 ≤ i ≤ kh − s.
(S2) Let τi be the sum of p(]s) and the number of positive integers between ]s and }i. Then

2τi ≤ p(}i) + ri.

(S3) Either the sequence is in order or there exists at most one integer 1 ≤ η ≤ kh − s such
that the sequence of integers is non-decreasing followed by a sequence of zeros except for
at most one occurrence of η between ]s and }η+1 and at most one occurrence of i < η
after }i+1.

(S4) Let ξj denote the number of positive integers between }j and }j−1. If an integer i occurs
to the left of all the zeros, then either i = 1 and there is a bracket in the position following
it, or there exists at most one index j0 such that ρ(j, j − 1) = l(j) for j0 6= j > min(i, η)
and ρ(j0, j0 − 1) ≤ l(j0) + 2− ξj0 . Moreover, any integer η violating order occurs to the
right of }j0 .

Definition 3.10. A colored sequence of brackets and braces for SF (k1, . . . , kh;n) is a colored
symplectic diagram (D, c•) if D is a symplectic diagram for SG(kh, n).

Next, we define admissible symplectic diagrams. This definition is crucial for the game and
the reader should remember these conditions.

Definition 3.11. A colored symplectic diagram (D, c•) for SF (k1, . . . , kh;n) is called admissible
if D is admissible for SG(kh, n), that is if it satisfies the following two conditions:

(A1) The two integers in the sequence to the left of a bracket are equal. If there is only one
integer to the left of a bracket and s < kh, then the integer is one.

(A2) Let xi be the number of brackets ]l such that every integer in the sequence to the left of
]l is positive and less than or equal to i. Then

xi ≥ kh − i+ 1− p(}i)− ri
2

.

Example 3.12. 11]122]200}200}100 and 22]330000}20}1100}30 are admissible symplectic dia-
grams in F (2, 4; 10) and F (1, 2, 4; 12), respectively. 2]10000}210}10 and 12]20000}210}100 are not
admissible because they violate condition (A1). 22}200}100 and 200}12}200 are not admissible
because they violate condition (A2). See §3 of [C4] for more examples.

Definition 3.13. The dimension of a colored symplectic diagram (D, c•) is defined by

dim(D, c•) =
s∑
i=1

(p(]i)− i) +
kh−s∑
j=1

(p(}j)− 1− 2kh + 2j + xj) + dim(c•).

Example 3.14. 11]122]300}200}300 has dimension 9. 00]30000}22}3000}100 has dimension 13.

Remark 3.15. The admissible colored symplectic diagrams are the main combinatorial objects
of this paper. They represent symplectic restriction varieties in SF (k1, . . . , kh;n). As we will
see in the next section, the diagram records a partial flag with respect to a distinguished basis.
The brackets represent isotropic subspaces and the braces represent non-isotropic subspaces.
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The sequence of integers records the dimension of the kernel of the restriction of the skew-
symmetric form Q to the non-isotropic subspaces. The coloring dictates the rank conditions
imposed on the flags parameterized by SF (k1, . . . , kh;n). The conditions (1)-(4), (S1)-(S4),
(A1) and (A2) are translations of the four main properties of skew-symmetric forms described
in §1. The dimension of an admissible, colored symplectic diagram is equal to the dimension of
the corresponding restriction variety.

Definition 3.16. The symplectic diagramD(λ•;µ•; c•) associated to the Schubert variety Σλ•;µ•;c•
in SF (k1, . . . , kh;n) is the saturated, colored symplectic diagram in perfect order with brackets
at positions λi, braces at positions n− µi and coloring c•.

Lemma 3.17. The symplectic diagram D(λ•;µ•; c•) associated to the Schubert variety Σλ•;µ•;c•
is an admissible colored symplectic diagram.

Proof. Definition 3.16 agrees with the definition of a symplectic diagram associated to a Schubert
variety in G(kh, n) given in [C4, Definition 3.20]. By [C4, Lemma 3.22], the diagram underlying
D(λ•;µ•; c•) is an admissible symplectic diagram for G(kh, n). Therefore, D(λ•;µ•; c•) is an
admissible colored symplectic diagram. �

Definition 3.18. Let σa•,c• be a Schubert class in F (k1, . . . , kh;n). Let i denote the natural
inclusion i : SF (k1, . . . , kh;n) → F (k1, . . . , kh;n). If aj < 2j − 1 for some 1 ≤ j ≤ kh, then
i∗σa•,c• = 0 and we do not associate a symplectic diagram to σa• . Suppose that aj ≥ 2j − 1
for 1 ≤ j ≤ kh. Let P (a•; c•) be the colored symplectic diagram that has a brace at position aj
for 1 ≤ j ≤ kh. The sequence of numbers consists of zeros except for a kh − j + 1 immediately
following the brace at position aj−1 (or at position 1 if j = 1) whenever aj is odd. The colorings
in σa•,c• and P (a•; c•) are equal.

Example 3.19. The diagram P (σ3,5,7;1,1,2) in SF (2, 3; 8) is 300}120}110}20. The diagram

P (σ1,3,6,7,10;1,3,3,2,1) = 5}140}3000}32}2000}1
in SF (2, 3, 5; 10). Notice that the diagram P (σa•;c•) does not have to be admissible because it
fails to satisfy condition (A2) for braces with aj = 2j − 1.

We will later associate a collection of admissible, colored symplectic diagrams to the diagram
P (σa•;c•). For now, we have the following lemma.

Lemma 3.20. Let σa•,c• be a Schubert class in F (k1, . . . , kh;n). If aj ≥ 2j − 1 for all 1 ≤ j ≤
kh, then diagram P (σa•;c•) is a colored symplectic diagram. Furthermore, if aj > 2j − 1 for
1 ≤ j ≤ kh, then P (σa•;c•) is an admissible, colored symplectic diagram.

Proof. If aj > 2j−1 for 1 ≤ j ≤ kh, then, by [C4, Definition 3.34], the underlying diagram is the
diagram associated to σa• in G(kh, n). By [C4, Lemma 3.37], this is an admissible symplectic
diagram for G(kh, n). Therefore, P (σa•;c•) is an admissible, colored symplectic diagram.

Even when aj = 2j−1 for some j, then it is easy to see that P (σa•;c•) is a symplectic diagram.
Briefly, since all the integers in a• are positive and distinct, the braces are in distinct positions.
Hence, condition (1) is satisfied. Since there are no brackets, condition (2) is automatic. Con-
ditions (3) and (4) hold by construction: There is an integer equal to i in the sequence and
it occurs between the braces }i+1 and }i if the position of }i is odd. Otherwise, there are no
integers equal to i. Therefore, every integer equal to i occurs to the left of }i and the number
of integers equal to 0 or greater than i to the left of }i is even. For each 1 ≤ j ≤ kh, there is at
most one integer equal to j in the sequence and the diagram is in order. Therefore, conditions
(S1), (S3) and (S4) evidently hold. The number of positive integers to the left of }j is at most
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kh − j + 1. Furthermore, p(}j) ≥ 2(kh − j) + 1 and if equality holds, then rj = 1. We conclude
that 2τj ≤ 2(kh− j+ 1) ≤ p(}j) + rj . Hence, condition (S2) also holds and P (σa•;c•) is a colored
symplectic diagram. Condition (A1) is also automatic since the diagram does not have any
brackets, but condition (A2) may fail. �

After these preliminaries, we are ready to explain the algorithm for computing symplectic
restriction coefficients.

Definition 3.21. We say that a sequence of brackets and braces D′ of type s′ is obtained from
a colored sequence (D, c•) of type s if s′ ≥ s and the positions pi, p′i occupied by brackets or
braces in D and D′ satisfy p′i ≤ pi for 1 ≤ i ≤ kh.

The next algorithm associates a coloring c′• to a sequence D′ obtained from a colored sequence
(D, c•). The coloring c′• is the least restrictive way of assigning a color to D′ under the condition
that the number of colors less than or equal to i occurring before position p in D′ should be
greater than or equal to the number of colors less than or equal to i occurring before position p
in D for 1 ≤ i ≤ h. The next algorithm makes this precise.

Algorithm 3.22. Let pu1 < · · · < puk1 be the positions in D occupied by brackets and braces to
which the coloring c• assigns the color 1. Let pu′1 be the largest position such that pu′1 ≤ pu1 and
pu′1 is occupied by a bracket or a brace in D′. Let c′• assign the color 1 to the bracket or brace
in position pu′1 . Continuing this way suppose c′• assigns the color 1 to brackets and braces in
positions pu′1 , . . . , pu′j . Let pu′j+1

≤ puj+1 be the largest position occupied by a bracket or brace
of D′ that has not been assigned a color. Let c′• assign the color 1 to the bracket or brace in
position pu′j+1

. Inductively, suppose that c′• has assigned the colors 1 ≤ i ≤ l and has assigned
the color l+ 1 to j < kl+1−kl brackets and braces of D′. Let p be the position of the bracket or
brace in D that is assigned the (j + 1)-st color equal to l+ 1. Let p′ ≤ p be the largest position
in D′ that has a bracket or a brace that has not been assigned a color. Let c′• assign the color
l + 1 to the bracket or brace in position p′. Continuing inductively, we obtain a coloring c′• for
D′.

The reader can easily check that Algorithm 3.22 is well-defined and associates a coloring to
every diagram obtained from D. We next give three applications of Algorithm 3.22.

Example 3.23. Let D = 00]10]2000}300 and let D′ = 0]0]0]00000 be a diagram obtained from D.
The coloring associated to D′ is 3, 1, 2, so that D′ = 0]30]10]200000.

Let D = 0000}23}10}400}300 and let D′ = 1]1]00}00}0000 be a diagram obtained from D.
The coloring associated to D′ is 4, 2, 1, 3, so that D′ = 1]41]200}100}30000.

Let D = 00]10]30]30]10]20]10]200000000 and let D′ = 0]0]0]0]0]0]0]000000000. Then the color-
ing associated to D′ is 3, 1, 3, 2, 1, 2, 1 so that D′ = 0]30]10]30]20]10]20]1000000000.

Any time we form a new diagram from an old one, the associated coloring will be the one
assigned by Algorithm 3.22. While Algorithm 3.22 is the geometrically and logically correct way
of assigning a coloring to a diagram, in Remark 3.45 we will state a short-cut that bypasses this
algorithm. However, Algorithm 3.22 will still be useful in the proof of the main theorem.

Next, given an admissible symplectic diagram, we associate several new symplectic diagrams.
These might not be admissible. We will then give an algorithm for replacing them with admis-
sible symplectic diagrams. The goal is to transform every admissible symplectic diagram into
a collection of saturated symplectic diagrams in perfect order (which correspond to Schubert
classes). Initially, we will phrase the rule as replacing a given diagram by a collection of diagrams
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that have the same dimension as the original diagram. However, we will later reformulate the
rule so that it is not necessary to calculate the dimension of the diagrams.

Definition 3.24. Let (D, c•) be an admissible symplectic diagram of type s for SF (k1, . . . , kh;n).
For the purposes of this definition, read any mention of kh − s + 1 as 0 and any mention of
}kh−s+1 as ]s.
(1) If D is not in order, let η be the integer in condition (S3) violating the order.

(i) If every integer η < i ≤ kh − s occurs to the left of η, let ν be the leftmost integer equal
to η + 1 in the sequence of D. Let Da be the canonical representative of the diagram
obtained by interchanging η and ν.

(ii) If an integer η < i ≤ kh − s does not occur to the left of η, let ν be the leftmost
integer equal to i + 1. Let Da be the canonical representative of the diagram obtained
by swapping η with the leftmost 0 not equal to ν to the right of }i+1 and changing ν to
i.

(2) If D is in order but is not a saturated admissible diagram in perfect order, let κ be the
largest index for which l(i) < ρ(i, i− 1).

(i) If l(κ) < ρ(κ, κ−1)−1, let ν be the leftmost digit equal to κ+1. Let Da be the canonical
representative of the diagram obtained by changing ν and the leftmost 0 not equal to ν
to the right of }κ+1 to κ.

(ii) If l(κ) = ρ(κ, κ − 1) − 1, let η be the integer equal to κ − 1 immediately to the right of
}κ.
(a) If κ occurs to the left of η, let ν be the leftmost integer equal to κ in the sequence

of D. Let Da be the canonical representative of the diagram obtained by changing
ν to κ− 1 and η to zero.

(b) If κ does not occur to the left of η, let ν be the leftmost integer equal to κ+ 1. Let
Da be the diagram obtained by swapping η with the leftmost 0 to the right of }κ+1

and changing ν to κ.

In all these cases, the coloring associated to Da is the one determined by Algorithm 3.22.
However, since the formation of Da does not change the positions of the brackets and braces,
this is simply the coloring c•.

Notation 3.25. For an integer α in the sequence of natural numbers of a symplectic diagram, let
π(α) be the place of α in the sequence. For example, in 1, 4, 2, 3, π(1) = 1, π(2) = 3, π(3) = 4
and π(4) = 2. For a bracket ]i, let yi denote the smallest positive integer to the left of ]i so that
every integer to the left of ]i is positive and less than or equal to yi. If not all the integers to
the left of ]i are positive, set yi = kh − s+ 1.

Definition 3.26. We preserve the notation from Definition 3.24. Suppose that in the diagram
(D, c•) there exists a bracket to the right of ν. For each of the brackets ]i to the right of ν
satisfying the equality p(]i) − π(ν) = yi − ν + i − xν−1 in D, let (Db(]i), ci•) be the diagram
obtained from (Da, c•) by moving the bracket ]i to the position immediately following ν. The
coloring ci• is the one obtained by running Algorithm 3.22. If there are no brackets to the right
of ν or none of the brackets satisfy the inequality, there are no diagrams of this form.

Remark 3.27. Conditions (S3), (S4) and (A1) imply that, in an admissible diagram D, a bracket
]i satisfies the equality p(]i) − π(ν) = yi − ν + i − xν−1 if the number of brackets in positions
following an integer j is one less than the number of integers equal to j for every j in the part
of the sequence between ν and ]i. For example, in the diagram ...33]13]24566]36]26]1700]10]2...
if ν = 3 is the leftmost 3 in the sequence, then every bracket shown here satisfies the equality.
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Whereas, assuming ν is the leftmost 3 in the diagram ...33]133]244]1500]2..., the brackets other
than the first bracket do not satisfy the equality.

We now give several examples to illustrate the definition of diagrams Da and Db.

Example 3.28. Let D = 2300}110}20}30, then η = 1 violates the order and ν = 2 and 3
occur to the left of it. Hence, we are in case (1)(i) and Da = 1300}120}20}30 is obtained by
swapping 1 and 2. Similarly, let D = 200]1200}200}3, then the second 2 violates the order and
Da = 220]1000}200}3, Db(]1) = 22]10000}200}3.

Let D = 124400}100}21}20}100, the 1 in the ninth place violates the order and 3 does not
occur to its left, so we are in case (1)(ii) and Da = 123400}110}20}20}100.

Let D = 22]100}200}300, then D is in order and κ = 1. Since l(1) = 0 < ρ(1, 0) − 1, we are
in case (2)(i) and Da = 12]100}210}300 and Db(]1) = 1]1200}210}300.

Let D = 3300}1200}20}3, then D is in order and κ = 3. Since l(3) = 2 = ρ(3, 2) − 1, we are
in case (2)(ii)(a) and Da = 2300}1000}20}3.

Let D = 330000}100}21}30, then D is in order and κ = 2. Since l(2) = 0 = ρ(2, 1)− 1 and 2
does not occur in the sequence, we are in case (2)(ii)(b) and Da = 230000}110}20}30.

Let D = 22]12]2344]300}10000}20}3000}400. Then Da = 12]12]2344]300}10000}20}3100}400
and Db(]1) = 1]122]2344]300}10000}20}3100}400, Db(]2) = 1]22]12344]300}10000}20}3100}400
and Db(]3) = 1]32]12]234400}10000}20}3100}400.

As can be seen from the examples, the diagrams Da or Db may fail to be admissible. Da may
fail to satisfy either condition (A1) or condition (A2). Db satisfies condition (A2), but may fail
to satisfy condition (A1). The next two algorithms transform these diagrams into admissible
diagrams.

Algorithm 3.29. Let (D, c•) be a symplectic diagram arising as (Da, c•) or (Db, c•) for some
admissible symplectic diagram or a marked diagram (D, c•, ∗) occurring while running Algorithm
3.38. If (D, c•) does not satisfy condition (A1) or (D, c•, ∗) does not satisfy condition (A1*) (to
be defined shortly), apply the following algorithm: Let ]j be the maximal index bracket for
which condition (A1) or (A1*) fails. Let i be the integer immediately to the left of ]j . Replace
i with i − 1 (or kh − s if i = 0) and move }i−1 (}kh−s if i = 0) one position to the left unless
that position is already occupied. If the position to the left of }i−1 is occupied, let p be the first
position to the left of }i−1 which is not occupied and assume that }i+l, . . . , }i are in positions
p+1, . . . , p(}i−1)−1. Move }i−1 to position p, subtract one from all the integers in the sequence
equal to i, i+ 1, . . . , i+ l and replace the left most integer equal to i+ l+ 1 (or 0 if i+ l = kh−s)
with i + l. The coloring of the new diagram is the one obtained by running Algorithm 3.22.
Discard the diagram if its dimension is smaller than the original diagram. Otherwise, repeat
this process until condition (A1) or (A1*) is satisfied for the diagram.

Example 3.30. Let D = 33]100]20000}100}200}300. Then Da = 23]100]20000}120}200}300,
Db(]1) = 2]1300]20000}120}200}300 and Db(]2) = 2]23]1000000}120}200}300 do not satisfy con-
dition (A1). Algorithm 3.29, replaces Da with 22]100]20000}12}2000}300, which is admissible.
Algorithm 3.29, replaces Db(]1) with 1]1300]20000}120}20}3000, which is admissible. Algorithm
3.29, replaces Db(]2) first with 2]22]1000000}12}2000}3000, which still violates condition (A1).
Then with 1]22]1000000}12}200}3000 and finally with 1]21]1000000}12}20}30000, which is ad-
missible.
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Let D = 00]10000}22}30}400. Then both the diagrams Da = 30]12000}20}30}400 and
Db(]1) = 3]120000}20}30}400 fail condition (A1). Algorithm 3.29 replaces Da with the admissi-
ble diagram 33]1200}200}30}400. Algorithm 3.29 first replaces Db(]1) with 2]12300}30}200}400,
which still fails condition (A1), and then with the admissible diagram 1]12300}30}20}4000.

The most significant difference between the rule for G(kh, n) and SF (k1, . . . , kh;n) is the
algorithm for turning a diagram that does not satisfy condition (A2) to an admissible diagram.
The reader should think of this algorithm as a special case of a generalized Pieri rule. Since
the algorithm is a little involved, we break it into smaller steps. We begin by introducing some
definitions.

Definition 3.31. A marked diagram (D, c•, ∗) is a diagram (D, c•) where either two equal numbers
in the sequence or a number in the sequence and position (-1) are marked by a ∗. Denote by
δ and π(δ) the rightmost marked integer and its place in the sequence. Let π(δ′) denote the
place in the sequence of the leftmost marking. The dimension of a marked diagram (D, c•, ∗) is
defined to be the dimension of (D, c•).

Example 3.32. The diagrams ∗00}11∗}2000 and 1∗2]100]200}31∗0}400 are typical examples of
marked diagrams.

We need to slightly modify condition (A1) for marked diagrams to allow for the two integers
preceding a bracket not to be equal when one of them is marked. We say that a marked diagram
(D, c•, ∗) satisfies condition (A1*) if the two integers in the sequence to the left of any bracket ]j

omitting the marked integer δ are equal. If there is only one integer to the left of ]1 and s < kh,
then the integer is one.

Example 3.33. The diagrams 1∗1]100]21∗]300}4000 and 2∗2]13455]12∗]100}200}20}10}2000}1 sat-
isfy condition (A1*). In both examples, the two integers in the sequence to the left of ]3 are not
equal, so these diagrams do not satisfy condition (A1). 1∗1]122]21∗]40]3000}100}2000 does not
satisfy condition (A1*) since the two integers preceding ]43 omitting 1∗ are 2, 0 and not equal.
Running Algorithm 3.29 gives 1∗1]122]21∗]42]300}1000}2000, which satisfies condition (A1*).

Definition 3.34. The tightening of a marked symplectic diagram (D, c•, ∗) is the diagram defined
as follows:

• If the first bracket or brace to the right of δ is the bracket ]j , move ]j to position π(δ)
immediately to the right of δ.
• If the first bracket or brace to the right of δ is the brace }j , move }j to the position π(δ)

immediately to the right of δ. If j = kh− s, replace }j with ]s+1 and replace the integers
in the sequence equal to kh−s with 0. If j < kh−s, replace the numbers in the sequence
equal to j + 1 with j.
• In either case, if there are no brackets or braces between the markings or the markings

are adjacent, remove the markings.

Example 3.35. The tightening of 1∗1]11∗0]20]300}4000 is 1∗1]11∗]200]300}4000.
The tightening of 1∗2]100]200}31∗0}400 is 1∗1]100]200}31∗}4000.
The tightening of 2∗2∗}100}200 is 00]100}200.
Finally, the tightening of 1∗1]100]20]21∗00}10}1000 is 1∗1]100]20]21∗]1000}1000.

We now define analogues of diagrams Da and Db for marked diagrams. The goal of the
algorithm will be to replace each marked diagram with these new diagrams until the tightening
is no longer a marked diagram. Geometrically, the marked integer δ represents a vector. To

13



have a restriction variety, we would like this vector to be in position π(δ′) + 1. Informally, δ
would like to be next to its marked counterpart δ′. To achieve this, the algorithm moves δ to
the left of the next bracket or brace one at a time. In the case of the Grassmannian, there is a
unique limit of the corresponding specialization, so it was easy to replace Da with one diagram.
For flag varieties, there may be several limits, so the algorithm is more complicated.

Definition 3.36. Let (D, c•, ∗) be a tightened marked symplectic diagram.

• If the bracket or brace at position π(δ) is the bracket ]j+1, then let ε be the integer immediately
to the left of ]j (i.e., π(ε) = p(]j)). Let D̃ be the canonical representative of the diagram obtained
by interchanging ε and δ, keeping δ as the marked integer. Define (Dα, c•, ∗) to be the tightening
of D̃.

Let p be the minimum of πD̃(δ) in D̃ and the first position to the left of p(]j) not occupied
by a bracket in D̃. If p ≤ p(δ′), then (Dβ, c•, ∗) is not defined. Assume p > p(δ′). If there is a
bracket between p and ]j in D̃, let q be the position of the rightmost bracket to the left of p.
For each 1 ≤ t ≤ p − q, let (Dβ(t), cβ• , ∗) be the tightening of the diagram obtained from D̃ by
moving ]j+1 to position q + t. If there are no brackets between p and ]j , for all t > 0 such that
p+ t ≤ p(]j), let (Dβ(t), cβ• , ∗) be the tightening of the diagram obtained from D̃ by moving ]j+1

to position p and ]j to position p+ t. The coloring cβ is the one obtained by running Algorithm
3.22. We will collectively refer to these diagrams as diagrams of type Dβ.

• If the bracket or brace at position π(δ) is the brace }j , then let ε be the leftmost largest integer
in the sequence in D between }j+1 and }j+2 (or ]s if j + 1 = kh − s). Let D̃ be the diagram
obtained from D by moving ε to π(δ), sliding all the integers between ε and δ one unit to the
left and placing δ immediately to the right of }j+1 (keeping δ the marked integer). If ε = 0,
replace the leftmost integer equal to j + 2 with j + 1. If there is no integer equal to j + 2 in
the sequence and the algorithm is being run on a diagram of type (Da, c•), replace the leftmost
zero with j + 1. If there is no integer equal to j + 2 in the sequence and the algorithm is being
run on a diagram of type P (a•, c•), replace the leftmost zero between }j+1 and }j+2 (or ]s if
j+ 1 = kh− s) with j+ 1. Define (Dα, c•, ∗) to be the tightening of the canonical representative
of D̃, replacing any integer equal to j + 1 to the right of }j+1 with 0.

Let p be the first position to the left of p(}j+1) in D̃ not occupied by a brace. Assume that
the braces between p and }j are }j+l, . . . , }j+1. Let γ be the leftmost integer in D̃ equal to j+ 1
(or 0 if j = kh − s) and let ]u, ]u+1, · · · , ]u+v be the brackets to the right of γ. For 0 ≤ t ≤ v,
(Dβ(]u+t), ct•, ∗) be the marked diagram obtained by tightening the canonical representative
obtained from D̃ by moving }j to position p, subtracting one from the integers j + l, . . . , j + 1
in the sequence, changing any integer greater than or equal to j to the right of }j to zero and
moving ]u+t to the position π(γ) immediately to the right of γ. In addition, let (Dβ(}j), c}

j

• , ∗)
be the diagram obtained by tightening the canonical representative of the diagram obtained by
replacing }j in D̃ with a bracket at position π(γ) immediately following γ and subtracting one
from the integers greater than or equal to j in the sequence. The colorings are the ones obtained
by running Algorithm 3.22. We will collectively refer to these diagrams as diagrams of type Dβ.

Example 3.37. Let D = 1∗1]11∗]20000}300}4000, then D̃ = 1∗1∗]11]20000}300}4000. Hence,
Dα = 11]11]20000}300}4000. Since p = p(δ′), there are no diagrams of the form Dβ in this
example.

Let D = 1∗1]100]200}31∗}4000, then D̃ = 1∗1]120]201∗}30}4000. By tightening the canonical
representative, we obtain Dα = 1∗1]100]21∗]300}4000. We have Dβ(]22) = 1∗1]11]200}41∗}30000
and Dβ(}14) = 0∗0]10]40]20∗]300000.
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Let D = 1∗1]12300]21∗]300}10}20}3000, then D̃ = 1∗1]11∗230]20]300}10}20}3000. The tight-
ening of the diagram gives Dα = 1∗1]11∗]22300]300}10}10}1000. We have

Dβ(1) = 1∗1]11∗]32]230000}10}20}3000, Dβ(2) = 1∗1]11∗]323]20000}10}20}3000

and Dβ(3) = 1∗1]11∗]3230]2000}10}20}3000. Note that the diagrams of the form Dβ do not nec-
essarily satisfy condition (A1*). We need to run Algorithm 3.29 on these diagrams. In this exam-
ple, we obtain the three diagrams 1∗1]11∗]31]22300}30}10}20000, 1∗1]11∗]322]2300}20}100}3000,
1∗1]11∗]3233]200}100}20}3000, respectively.

Finally, let D = 1∗1]12300]20]31∗]4000}10}20}3000, then

D̃ = Dα = 1∗1]12300]21∗]30]4000}10}20}3000.

The diagrams of type Dβ are

1∗1]12]4300]21∗]30000}10}20}3000, 1∗1]123]400]21∗]30000}10}20}3000

and 1∗1]1230]40]21∗]30000}10}20}3000. These diagrams do not satisfy condition (A1*). Running
Algorithm 3.29, we replace them with

1∗1]11]4233]21∗]300}300}10}20000, 1∗1]122]433]21∗]300}200}100}3000

and 1∗1]1233]43]21∗]300}1000}20}3000, respectively.

Having discussed the preliminaries, we can now give the algorithm for replacing a diagram
that fails condition (A2) with an admissible diagram.

Algorithm 3.38. Let (D, c•) be a symplectic diagram arising by running the loop defined below
on (Da, c•) or P (a•, c•). If (D, c•) satisfies condition (A2), stop–the algorithm terminates. If
(D, c•) does not satisfy condition (A2), let }i be the brace with the largest index for which
condition (A2) is not satisfied. Form the marked diagram (D, c•, ∗) by tightening the diagram
obtained by either marking the two rightmost integers in the sequence equal to i, or, if there is
only one integer equal to i, marking it and position −1. Run the following loop:

As long as a diagram (D, c•, ∗) is marked, replace (D, c•, ∗) with the diagrams obtained by
running Algorithm 3.29 on all the diagrams of type Dα and Dβ defined above that have the same
dimension as (D, c•, ∗). Repeat for each of the diagrams until the diagrams are not marked.
Once a diagram is not marked, run Algorithm 3.29 on it and return to the beginning of this
algorithm.

We give three examples of Algorithm 3.38.

Example 3.39. Let D = 00}100}200, then Da = 22}100}200 does not satisfy condition (A2).
Algorithm 3.38 replaces this diagram with first 2∗2∗}100}200 and then with the admissible
diagram 00]100}200.

Example 3.40. Let D = 22]100]200}300}400. Then Da = 12]100]200}310}400 fails condition
(A2). The tightening of Da is the diagram 1∗1]100]200}31∗}4000. Algorithm 3.38 first replaces
this diagram with the three diagrams

Dα = 1∗1]100]21∗]300}4000, Dβ(]2) = 1∗1]11]200}41∗}30000 and Dβ(}1) = 0∗0]10]40]20∗]300000.

The third diagram Dβ(}1) is admissible and repeated applications of Algorithm 3.38 results
in the diagram 00]10]40]20]300000 since there can be no diagrams of type Dβ. Algorithm 3.38
replaces Dα with the two diagrams

11]11]200]300}4000 and 11]11]31]200}40000,
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both of which are admissible. Algorithm 3.38 replaces Dβ(]2) with 11]11]21]400}30000 which is
also admissible.

Example 3.41. Let P = ∗00}100}21∗}3000. Then Algorithm first associates the pair of diagrams

P1 = Pα = ∗00}11∗}200}3000 and P2 = P β = ∗00}11}31∗}20000.

P1 and P2 do not satisfy condition (A2). Algorithm 3.38 associates to P1 the two admissible
diagrams

D1 = 1]100}200}3000 and D2 = 1]21]100}30000.
Algorithm 3.38 associates to P2 the two diagrams

P3 = 1]100}31}20000 and D3 = 0]30]10]200000.

The diagram D3 is admissible but P3 violates condition (A2). The algorithm replaces P3 with
D4 = 1]11]300}20000. Hence, Algorithm 3.38 replaces P with the diagrams D1, D2, D3 and D4.

Before proceeding, we urge the reader to practice Algorithm 3.38 on several examples. We
suggest 0000}13}20}31}40 and 12]13400]200}30}40}510}600 as instructive examples.

Definition 3.42. When aj ≥ 2j − 1 for 1 ≤ j ≤ kh, let the diagrams associated to a Schubert
class σa•,c• in F (k1, . . . , kh;n) be the collection of diagrams derived from P (a•; c•) (defined in
Definition 3.18) by running Algorithm 3.38.

We are now ready to state the main algorithm that computes the symplectic restriction
coefficients.

Algorithm 3.43. Let (D, c•) be an admissible, colored symplectic diagram. If (D, c•) is saturated
and in perfect order, then return (D, c•) and stop. Otherwise, replace (D, c•) with the admissible,
colored symplectic diagrams that are derived from the colored diagrams (Da, c•) and (Db(]i), ci•)
and that have the same dimension as (D, c•) by running the Algorithms 3.29 and 3.38.

Remark 3.44. Observe that since Da and Dα always have the same dimension as D, Algorithm
3.43 at each stage replaces a diagram with at least one diagram.

Remark 3.45. Both running Algorithm 3.22 and computing the dimension of a diagram are
onerous and unnecessary for running Algorithm 3.43. We now explain when a diagram formed
while running Algorithm 3.43 has the same dimension as the original one and its coloring without
computing the dimension or running Algorithm 3.22. In a nutshell, if a bracket or brace crosses
another bracket or brace of equal or larger color, then the dimension is strictly smaller.

A diagram (Db(]i), ci•) has the same dimension as (D, c•) if and only if the color of every
bracket between ]i and position π(ν) in (D, c•) is strictly less than the color of ]i. In that case,
the new coloring ci• is the coloring obtained by moving ]i to position π(ν) preserving its color
and the color of every other bracket and brace.

Let D = 22]22]133]23]300}1000}2000}100 and Da = 12]22]133]23]300}1000}2100}100, then
Db(]1) = 1]222]133]23]300}1000}2100}100 and Db(]4) = 1]32]22]133]2300}1000}2100}100 have the
same dimension as D. Note that the formation of the diagram in this case amounts to shifting
]12 or ]43, respectively, to position 1. On the other hand, Db(]2) = 1]22]1233]23]300}1000}2100}100
and Db(]3) = 1]22]22]1333]300}1000}2100}100 have strictly smaller dimension. In particular, one
does not need to compute dimensions or run Algorithm 3.22 when forming diagrams of type Db.

Next, when running Algorithm 3.29, the coloring changes only if we are moving the brace }i
and there is a brace in p(}i) − 1. Let p be the first position to the left of }i not occupied by
a brace. As in the previous case, the diagram obtained has the same dimension as the original
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diagram if and only if the color of every brace at positions between p and p(}i) is strictly less
than the color of }i. The new coloring is the one obtained by moving }i to position p preserving
its color and the color of every other bracket and brace.

Let D = 00]10000}22}30}400 and Db = 3]120000}20}30}400. Running Algorithm 3.29, we get
2]12300}30}200}400, which has the same dimension as D. In contrast, if D = 00]10000}32}20}400
and Db = 3]120000}30}20}400, then 2]12300}30}200}400 has strictly smaller dimension.

Finally, when running Algorithm 3.38, the diagrams among Dβ that have the same dimension
as the original diagram are those diagrams that when a bracket or brace ]j or }j moves past
other brackets or braces, the color of ]j or }j is strictly greater than the color of any bracket or
brace between the old and new position of ]j or }j . In that case, the new coloring is the one
obtained by moving ]j or }j to the new position, preserving the color of all brackets and braces.

Let D = 1∗1]122]21∗]100}200}1000, then Dβ = 11]11]21]1200}20}10000 has strictly smaller
dimension. Similarly, if D = 1∗1]1233]23]31∗]400}4000}30}2000, then running Algorithm 3.29
on Dβ = 1∗1]12]433]21∗]3300}4000}30}2000 yields the strictly smaller dimensional diagram
1∗1]11]422]21∗]3300}40}300}20000

Thanks to the previous remark, when running Algorithm 3.43, it is not necessary to compute
dimensions of diagrams and to run Algorithm 3.22. We also observe that Algorithm 3.43 reduces
to [C4, Algorithm 3.29] in the Grassmannian case. We urge the reader to verify the two previous
remarks using the equation in Definition 3.13, which we will do in the proof of Theorems 5.1
and 5.3. In most of our examples above, to show the maximum number of possibilities, we
have assigned a coloring that is strictly increasing. We encourage the reader to explore how the
possibilities change for different colorings of the same diagrams.

Definition 3.46. A degeneration path is a sequence of admissible colored symplectic diagrams

(D1, c
1
•)→ (D2, c

2
•)→ · · · → (Dr, c

r
•)

such that (Di+1, c
i+1
• ) is one of the admissible colored symplectic diagrams output by running

Algorithm 3.43 on (Di, c
i
•) for 1 ≤ i < r.

The main combinatorial theorem of this paper is the following.

Theorem 3.47. Let (D, c•) be an admissible colored symplectic diagram for SF (k1, . . . , kh;n).
Let V (D, c•) be the symplectic restriction variety associated to (D, c•). Then, in terms of the
Schubert basis of SF (k1, . . . .kh;n), the cohomology class [V (D, c•)] can be expressed as

[V (D, c•)] =
∑

αλ;µ;c•σλ;µ;c• ,

where αλ;µ;c• is the number of degeneration paths starting with (D, c•) and ending with the
symplectic diagram D(λ;µ; c•).

A more precise version of Theorem 1.1 is the following corollary of Theorem 3.47.

Corollary 3.48. Let σa•,c• be a Schubert class in SF (k1, . . . , kh;n). If aj < 2j − 1 for some
1 ≤ j ≤ kh, then i∗σa•,c• = 0. Otherwise, let D(σai•,ci•) be the diagrams associated to the Schubert
class σa•,c• (obtained by running Algorithm 3.38 on P (a•, c•)). Express

i∗σa•,c• =
∑

cλ;µ;cjσλ;µ;cj

in terms of the Schubert basis of SF (k1, . . . , kh;n). Then cλ;µ,ci is the number of degenera-
tion paths starting with one of the diagrams D(σai•,ci•) and ending with the symplectic diagram
D(σλ;µ;cj ).
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Proof. In the next two sections, in Lemma 4.18 and Theorem 5.3, we will prove that the inter-
section of a general Schubert variety Σa•,c• with SF (k1, . . . , kh;n) has class equal to the sum
of the classes of admissible restriction varieties associated to P (a•, c•) by Algorithm 3.38. The
corollary is then an immediate consequence of Theorem 3.47. �

We now give three examples of Algorithm 3.43 to illustrate the algorithm and urge the reader
to carry out similar calculations for themselves. We note that the algorithm is very efficient and
it is no trouble at all to carry out calculations for n as large as 20 easily by hand.

Example 3.49. The first example is a computation in SF (1, 2, 3; 8).

300}120}210}30→ 200}100}210}30→ 200]100}210}30→ 1]10000}200}30→ 1]12200}200}30

↓
100]100}200}30→ 11]1200}20}300

↓
100]10]2000}30

The calculation shows that
i∗σ1,2,3

3,5,7 = σ1,2,3
1;3,1 + σ1,2,3

2;3,2 + σ1,2,3
3,4;1.

Example 3.50. The second example calculates i∗σ2,1,2,1
2,3,5,8 in SF (2, 4; 10).

∗00}23∗}120}2000}100→ ∗1]200}12∗}2000}1000→ 1]21]21]100}100000→ 0]20]20]100]100000

↓
1]21]100}200}10000→ 1]21]100]200}10000→ 0]20]100]20]100000

↓
1]21]11]2100}10000

We conclude that i∗σ2,1,2,1
2,3,5,8 = σ2,2,1,1

1,2,3,5; + σ2,1,2,1
1,2,4,5; + σ2,1,2,1

1,2,3;4.

Example 3.51. As a final more complicated example, we compute i∗σ1,2,3,2
2,3,6,9 in SF (1, 3, 4; 10).

∗00}13∗}2000}3100}20→ 1]21]100}3100}2000→ 1]21]100]3100}2000→ 1]21]111]300}20000

↓ ↓
1]100}200}3100}200 1]21]11]30000}2000
↓

1]100]200}3100}200→ 1]11]2200}310}2000→ 1]11]2100}300}2000→ 1]11]2100]300}2000
↓

1]100]20]31000}200→ 1]111]21]300}20000
↙ ↘

1]11]200]30000}200 1]11]31]20000}2000

We conclude that i∗σ1,2,3,2
2,3,6,9 = σ2,1,3,2

1,2,4;4 + σ2,1,3,2
1,2,3;3 + σ1,2,3,2

1,2,5;3 + σ1,2,3,2
1,3,4;4 + σ1,3,2,2

1,2,3;3 + σ1,2,3,2
1,2,4;2.

We conclude this section by proving that Algorithm 3.43 is well-defined and terminates. The
proof of Theorem 3.47 is geometric and will be taken up in the next two sections.

Proposition 3.52. Let (D, c•) be an admissible colored symplectic diagram for SF (k1, . . . , kh;n).
Algorithm 3.43 replaces (D, c•) with admissible, colored, symplectic diagrams. Furthermore, the
algorithm terminates after finitely many steps.
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Proof. The formation of Da from D is defined exactly as in [C4]. Therefore, by [C4, Proposition
3.39], Da is a (not necessarily admissible) symplectic diagram. Since D satisfies condition (A1)
and ν 6= 1, there cannot be a bracket in the position immediately following ν in D. The diagrams
of the type Db are all formed by moving a bracket to the right of π(ν) to position p = π(ν).
Moving a bracket to the left does not effect conditions (3) and (4) and can only improve condition
(2). Since the position to which we are moving the bracket is not occupied, condition (1) holds.
Conditions (S1), (S3) and (S4) are unaffected and the inequality can only improve in condition
(S2) when we move a bracket to the left. We conclude that both Da and Db are (not necessarily
admissible) symplectic diagrams.

Since Algorithms 3.29 and 3.38 differ from the corresponding algorithms in [C4], we need to
check that the outputs of these algorithms are still symplectic diagrams. The diagram Da may
fail to satisfy condition (A2). The formation of Da does not change the positions of the brackets
or braces. Hence, the quantities p(}j) and xj remain constant. In cases (1)(i) and (2)(ii)(a),
the quantities rj also remain constant. Hence, in these cases Da satisfies condition (A2). In
cases (1)(ii), (2)(i) and (2)(ii)(b), these quantities remain unchanged except ri increases by two
in (1)(ii) and rκ increases by two in cases (2)(i) and (2)(ii)(b). We conclude that Da can violate
condition (A2) only by one for one index when the equality xj = k − j + 1− p(}j)−rj

2 holds for
j = i in case (1)(ii) and j = κ in cases (2)(i) and (2)(ii)(b). For future reference, observe that
if equality holds in the inequality in condition (A2) for an index j′ in an admissible diagram
D, then equality holds for every index j ≥ j′. Notice that since xi (respectively, xκ) increases
by one in case (1)(ii) (respectively, (2)(i) and (2)(ii)(b)) in the diagrams of the type Db, we
conclude that Db always satisfies condition (A2). The initial diagram P fails to satisfy condition
(A2) for indices j such that aj = 2j − 1.

We next check that Algorithm 3.29 preserves condition (A2) and the fact that the diagrams
are symplectic diagrams. This has been checked in the proof of [C4, Proposition 3.39] except
in the case when position p(}i)− 1 is occupied by a brace. In that case, we move }i to the first
unoccupied position to the left of p(}i) and change the integers in the sequence as specified by
Algorithm 3.29. The conditions (1)-(4) do not change for any of the braces or brackets except
for the brace that we move. Since we are moving the brace to an unoccupied position, condition
(1) holds. Since the original diagram is admissible, there is an unoccupied position between
the brackets and braces, so condition (2) holds. Conditions (3) and (4) hold by construction.
Observe that by changing one of the integers from i+ l+ 1 to i+ l, we guarantee condition (4).
Similarly, (S1) holds for }i+l and }i+l+1 by construction. If the diagram is in order, applying
Algorithm 3.29 preserves order. If η violates order, then η remains the only integer violating
the order and conditions (S3) and (S4) are preserved. Finally, condition (S2) must hold for the
new }i+l (the only brace for which the quantities change) since compared to the }i+l before
applying the algorithm τ does not change, p(}i+l) decreases by one and ri+l increases by one.
Hence, the inequality remains the same. There is one possible exception: if i + l = kh − s,
then τi+l may increase by one provided that the leftmost zero is to right of all the brackets.
However, in that case, condition (S2) holds automatically. We conclude that Algorithm 3.29
preserves symplectic diagrams. Similarly, the operation preserves the inequality in condition
(A2). If no two braces occupy the same position, then xi−1 and ri−1 both increase by one and
p(}i−1) decreases by one, preserving the inequality in condition (A2). If two braces occupy
the same position when running Algorithm 3.29 on (D, c•), then the diagram must look like
· · · i]i+ 1 · · · i+ l · · · }i+l0}i+l−1 · · · }i0}i−1 · · · . Hence, if after applying the algorithm condition
(A2) is violated by 1 for one of the braces, condition (A2) must violated for }i−1 by one in
(D, c•). We conclude that Algorithm 3.29 preserves condition (A2).
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We next check that Algorithm 3.38 replaces marked diagrams with admissible symplectic
diagrams. Note that diagrams of the type Dβ may have more braces that fail to satisfy condition
(A2) when running the algorithm on initial diagrams P (a•, c•). However, after every run of the
loop in Algorithm 3.38, there is at least one more bracket and one fewer brace. Since the total
number of braces is bounded, Algorithm 3.38 terminates.

By construction, it is easy to see that the diagrams Dα and Dβ satisfy conditions (1)-(4),
(S1) and (S2). When running Algorithm 3.38 on a diagram derived from Da, the only possibly
out of order integer is the marked integer δ. The diagrams underlying the marked diagrams
occurring while running the algorithm may fail to satisfy (S3) or (S4) because δ may be to
the left of ]s. Nevertheless, the loop terminates when there are no brackets or braces between
the two markings. At that point, the diagram is in order. Hence, (S3) and (S4) hold for the
resulting diagrams. The fact that the resulting diagrams satisfy condition (A1) is built into
Algorithm 3.38. When running the Algorithm 3.38 on a diagram Da, the formation of Dβ does
not create any new braces failing condition (A2). When running Algorithm 3.38 on an initial
diagram P , the diagrams may have one more integer other than δ out of order. In that case,
the integer is · · · }j+1j − 1}jδ∗}j−1 · · · and at the next stage of the algorithm, we swap δ and
j − 1 to obtain a diagram where again only δ (possibly) violates the order. The fact that the
diagrams Dβ resulting after the swap satisfy condition (3) has been explicitly built into the
construction. We conclude that every diagram resulting by running Algorithm 3.29 and 3.38 are
admissible symplectic diagrams. Hence, Algorithm 3.43 replaces admissible symplectic diagrams
or an initial diagram with a collection of admissible symplectic diagrams.

The termination of the algorithm is clear. In case (2)(i), the formation of Da from D increases
the number of positive integers in the sequence. In cases (1)(i), (1)(ii), (2)(ii)(a) and (2)(ii)(b),
the formation of Da from D either increases the number of positive integers in the initial part of
the sequence or decreases at least one of the positive integers in the initial part of the sequence.
The formation of Db shifts one bracket to the left. Similarly, Algorithm 3.29 decreases at least
one positive integer in the initial part of the sequence or increases the number of positive integers
in the sequence and shifts at least one brace to the left. Similarly, Algorithm 3.38 decreases the
number of braces and increases the number of brackets. Since the total number of brackets and
braces is fixed at kh, no new braces are formed during the algorithm and no bracket or brace
ever moves to the right, each of these steps can only be repeated finitely many times until the
resulting diagram is saturated and in order.

�

Remark 3.53. It can be useful to estimate the sizes of restriction coefficients. We note that at
each stage of the algorithm, a diagram is replaced by at most h+ 1 new diagrams. Here a stage
of the algorithm should be interpreted as each replacement of (D, c•) with diagrams of type Da

or Db or each run of the loop in Algorithm 3.38 replacing a marked diagram with diagrams of
the type Dα or Dβ.

4. The symplectic restriction varieties

In this section, we define symplectic restriction varieties in SF (k1, . . . , kh;n) and show that
they can be represented by admissible colored symplectic diagrams. We develop the basic
geometric properties of these varieties. The translation between the combinatorics and the
geometry is almost identical to the Grassmannian case discussed in [C4]. For the convenience
of the reader, we recall the main definitions from [C4].
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Let Q denote a non-degenerate skew-symmetric form on an n-dimensional vector space V .
Let Lnj denote an isotropic subspace of Q of dimension nj . Let Qridi denote a linear space of
dimension di such that the restriction of Q to it has corank ri. Let Ki denote the kernel of the
restriction of Q to Qridi .

A sequence (L•, Q•) for SG(kh, n) is a partial flag of linear spaces

Ln1 ⊂ · · · ⊂ Lns ⊂ Q
rkh−s
dkh−s

⊂ · · · ⊂ Qr1d1 such that

• dim(Ki ∩Kl) ≥ ri − 1 for l > i,
• dim(Lnj ∩Ki) ≥ min(nj , dim(Ki ∩Q

rkh−s
dkh−s

)− 1) for every 1 ≤ j ≤ s and 1 ≤ i ≤ kh − s.

Definition 4.1. A colored sequence (L•, Q•, c•) for SF (k1, . . . , kh;n) is a sequence (L•, Q•) for
SG(kh, n) together with a coloring c• for SF (k1, . . . , kh;n).

The main geometric objects of this paper are colored sequences satisfying further properties.
A colored sequence for SF (k1, . . . , kh;n) is in order if the underlying sequence (L•, Q•) satisfies:

• Ki ∩Kl = Ki ∩Ki+1, for all l > i and 1 ≤ i ≤ kh − s, and
• dim(Lnj ∩Ki) = min(nj , dim(Ki ∩Q

rkh−s
dkh−s

)), for 1 ≤ j ≤ s and 1 ≤ i < kh − s.

A colored sequence (L•, Q•, c•) is in perfect order if

• Ki ⊆ Ki+1, for 1 ≤ i < kh − s, and
• dim(Lnj ∩Ki) = min(nj , ri) for all i and j.

Definition 4.2. A colored sequence (L•, Q•, c•) is called saturated if di+ri = n, for 1 ≤ i ≤ kh−s.

Definition 4.3. A colored sequence (L•, Q•, c•) is called a symplectic sequence if it satisfies the
following properties.

(GS1) The sequence (L•, Q•, c•) is either in order or there exists at most one integer 1 ≤ η ≤
kh − s such that

Ki ⊆ Kl for l > i > η and Ki ∩Kl = Ki ∩Ki+1 for i < η and l > i.

Furthermore, if Kη ⊆ Kkh−s, then

dim(Lnj ∩Ki) = min(nj ,dim(Ki ∩Q
rkh−s
dkh−s

)) for i < η and

dim(Lnj ∩Ki) = min(nj ,dim(Ki ∩Q
rkh−s
dkh−s

)− 1) for i ≥ η.

If Kη 6⊆ Kkh−s, then dim(Lnj ∩Ki) = min(nj ,dim(Ki ∩Q
rkh−s
dkh−s

)) for all i.

(GS2) If α = dim(Ki ∩Q
rkh−s
dkh−s

) > 0, then either i = 1 and nα = α or there exists at most one
j0 such that, for j0 6= j > min(i, η), rj − rj−1 = dj−1 − dj . Furthermore,

dj0−1 − dj0 ≤ rj0 − rj0−1 + 2− dim(Kj0−1) + dim(Kj0−1 ∩Q
rj0
dj0

)

and Kη 6⊂ Q
rj0
dj0

.

Remark 4.4. Given a sequence (L•, Q•, c•), the basic principles about skew-symmetric forms
imply inequalities among the invariants of a sequence. The evenness of rank implies that di− ri
is even for every 1 ≤ i ≤ kh−s. The corank bound implies that ri−dim(Qridi∩Ki−1) ≤ di−1−di.
The linear space bound implies that 2(ns+ri−dim(Ki∩Lns)) ≤ ri+di for every 1 ≤ i ≤ kh−s.
These inequalities are implicit in the sequence (L•, Q•, c•).
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Remark 4.5. For a symplectic sequence (L•, Q•, c•), the coloring c•, the invariants nj , ri, di and
the dimensions dim(Lnj ,Ki) and dim(Qrhdh ∩Ki) determine the sequence (L•, Q•, c•) up to the
action of the symplectic group. This will become clear when we construct these sequences by
choosing bases.

Definition 4.6. A colored symplectic sequence (L•, Q•, c•) is admissible if it satisfies the following
additional conditions:

(GA1) nj 6= dim(Lnj ∩Ki) + 1 for any 1 ≤ j ≤ s and 1 ≤ i ≤ kh − s.
(GA2) Let xi denote the number of isotropic subspaces Lnj that are contained in Ki. Then

xi ≥ kh − i+ 1− di − ri
2

.

The symplectic restriction varieties will be defined in terms of colored admissible sequences.

The translation between sequences and symplectic diagrams. Colored symplectic se-
quences can be represented by colored symplectic diagrams introduced in §3. An isotropic linear
space Lnj is represented by a bracket ] in position nj . A linear space Qridi is represented by a
brace } in position di such that there are exactly ri positive integers less than or equal to i to
the left of the i-th brace. Finally, dim(Lnj ∩ Ki) and dim(Qrldl ∩ Ki), l > i, are recorded by
the number of positive integers less than or equal to i to the left of ]j and }l, respectively. The
colorings associated to the sequence and the diagram are the same.

More explicitly, given a colored symplectic sequence (L•, Q•, c•), the corresponding symplectic
diagram D(L•, Q•, c•) is determined as follows: The sequence of integers begins with dim(Ln1 ∩
K1) integers equal to 1, followed by dim(Ln1 ∩ Ki) − dim(Ln1 ∩ Ki−1) integers equal to i,
for 2 ≤ i ≤ kh − s, in increasing order, followed by n1 − dim(Ln1 ∩ Kkh−s) integers equal
to 0. The sequence then continues with dim(Lnj ∩ K1) − dim(Lnj−1 ∩ K1) integers equal to
1, followed by dim(Lnj ∩ Ki) − max(dim(Lnj−1 ∩ Ki),dim(Lnj ∩ Ki−1)) integers equal to i in
increasing order, followed by nj−max(nj−1,dim(Lnj∩Kkh−s)) zeros for j = 2, . . . , s in increasing
order. The sequence then continues with dim(Q

rkh−s
dkh−s

∩K1) − dim(Lns ∩K1) integers equal to

1, followed by dim(Q
rkh−s
dkh−s

∩ Ki) − max(dim(Q
rkh−s
dkh−s

∩ Ki−1),dim(Lns ∩ Ki)) integers equal to
i in increasing order, followed by zeros until position dkh−s. Between positions di and di−1

(i > kh − s), the sequence has dim(Qri−1

di−1
∩K1) − dim(Qridi ∩K1) integers equal to 1, followed

by dim(Qri−1

di−1
∩Kl) −max(dim(Qridi ∩Kl), dim(Qri−1

di−1
∩Kl−1)) integers equal to l in increasing

order, for l ≤ i− 1, followed by zeros until position di−1. Finally, the sequence ends with n− d1

zeros. The brackets occur at positions nj and the braces occur at positions di. The colorings
are the same.

Example 4.7. Given a sequence L1(1) ⊂ L3(3) ⊂ L5(2) ⊂ L7(1) ⊂ Q6
10(2) ⊂ Q3

13(3) ⊂ Q2
16(1) for

SF (3, 5, 7; 18), where the numbers in parentheses denote the coloring, and the relationsK2 ⊂ K3,
dim(K1 ∩Q3

13) = 1, dim(K1, L1) = 1, L3 = K3
13 and L5 = K6

16 ∩ L7, the corresponding diagram
is 1]122]333]200]1300}2000}3100}100. The dimensions of the isotropic spaces are 1, 3, 5, 7, hence
the brackets occur at these positions. The dimensions of the non-isotropic spaces are 10, 13, 16,
so the braces occur at these positions. The dimensions of the kernels are 6, 3, 2, so the sequence
has 2 integers equal to 1. Since dim(K1 ∩ Q3

13) = 1 and dim(K1, L1) = 1, one of these occur
at position 1 and one at position 14. The sequence then has 2 integers equal to 2 and since
L3 = K3

13, these occur at positions 2 and 3. Finally, the sequence has 3 integers equal to 3.
Since L5 = K6

16 ∩ L7, these have to occur at positions 4,5 and 8.
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Proposition 4.8. The diagram D(L•, Q•, c•) is a symplectic diagram for SF (k1, . . . , kh;n).
Furthermore, if (L•, Q•, c•) is admissible, then D(L•, Q•, c•) is admissible.

Proof. The construction of D(L•, Q•, c•) from (L•, Q•, c•) for SF (k1, . . . , kh;n) is identical to the
construction of D(L•, Q•) from (L•, Q•) for G(kh, n) except for the data of the coloring. By [C4,
Proposition 4.9], D(L•, Q•) is a symplectic diagram for G(kh, n), which is admissible if (L•, Q•)
is admissible. We conclude that D(L•, Q•, c•) is a symplectic diagram for SF (k1, . . . , kh;n)
which is admissible if (L•, Q•, c•) is admissible. �

Remark 4.9. Proposition 4.8 explains the conditions in the definition of a symplectic diagram in
geometric terms. Condition (1) holds since every linear space in the flag is a distinct vector space
and its dimension corresponds to the position of the corresponding bracket or brace. Condition
(2) reflects the fact that isotropic subspaces precede the non-isotropic ones in the sequence.
Integers in the sequence equal to i represent vectors in the kernel of the restriction of Q to
Qridi . Hence, condition (3) holds. Condition (4) of Definition 3.1 is implied by the evenness of
rank and simply states that di − ri is even. Condition (S1) is a translation of the corank bound
saying that the codimension of Ki−1 ∩Ki in Ki is bounded by the codimension of Qridi in Qri−1

di−1
.

Condition (S2) is a consequence of the linear space bound since the linear space Qridi contains a
linear space of dimension at least τi.

Conversely, we can associate an admissible sequence to every admissible symplectic diagram
(D, c•) for SF (k1, . . . , kh;n). By Darboux’s Theorem, we can take the skew-symmetric form to
be defined by

∑m
i=1 xi∧yi. Let the dual basis for xi, yi be ei, fi such that xi(ej) = δji , yi(fj) = δji

and xi(fj) = yi(ej) = 0. Given an admissible symplectic diagram, we associate e1, . . . , ep(]s) to
the integers to the left of ]s in order. We then associate ep(]s)+1, . . . , er′ to the positive integers
to the right of ]s and left of }kh−s in order. Let ei1 , . . . , eil be vectors that have so far been
associated to zeros. Then associate fi1 , . . . , fil to the remaining zeros to the left of }kh−s in
order. If there are any zeros to the left of }kh−s that have not been assigned a basis vector,
assign them er′+1, fr′+1, . . . , er′′ , fr′′ in pairs in order. Continuing this way, if there is a positive
integer between }i+1 and }i associate to it the smallest index basis element eα that has not yet
been assigned. Assume that the integers equal to i+1 have been assigned the vectors ej1 , . . . , ejl .
Assign to the zeros between }i+1 and }i, the vectors fj1 , . . . , fjl . If there are any zeros between
}i+1 and }i that have not been assigned a vector, assign them eα+1, fα+1, . . . , eβ, fβ in pairs until
the zeros are exhausted. Let Lnj be the span of the basis elements associated to the integers to
the left of ]j . Let Qridi be the span of the basis elements associated to the integers to the left of
}i. We thus obtain a sequence (L•, Q•, c•) whose associated symplectic diagram is (D, c•). The
vectors associated to the integers in a marked diagram occurring in Algorithm 3.38 is the same
as the sequence associated to the underlying diagram (D, c•).

Example 4.10. Let D = 11]3233]100]230000}2200000}3100}1000 be a diagram for SF (2, 4, 6; 24).
To this diagram we associate the vectors

e1, e2, e3, e4, e5, e6, e7, e8, f6, f7, e9, f9, e10, f4, f5, f8, e11, f11, e12, f3, f10, f1, f2, f12

in order. Then L2(3) is the span of e1 and e2. L5(1) is the span of ei for 1 ≤ i ≤ 5. L7(2) is
the span of ei for 1 ≤ i ≤ 7. Q6

12(3) is the span of ei, 1 ≤ i ≤ 9 and f6, f7, f9. Q4
18(3) is the

span of Q6
12(3) and the vectors e10, e11, f4, f5, f8, f11. Finally, Q3

21(1) is the span of Q4
18(3) and

the vectors e12, f3, f10.

Remark 4.11. As observed in [C4, Remark 4.13], the construction of (L•, Q•, c•) from (D, c•)
is well-defined thanks to conditions (4), (S1), (S2) and (S3). The formation of a sequence
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(L•, Q•, c•) from an admissible diagram (D, c•) and the formation of an admissible symplectic
diagram (D, c•) from an admissible sequence are inverse constructions. Further note that equiv-
alent symplectic diagrams correspond to permutations of the basis elements that do not change
the vector spaces in (L•, Q•, c•).

We are now ready to define symplectic restriction varieties.

Definition 4.12. Let (L•, Q•, c•) be an admissible sequence for SF (k1, . . . , kh;n). Then the
symplectic restriction variety V (L•, Q•, c•) is the Zariski closure of the locus in SF (k1, . . . , kh;n)
parameterizing

{(W1, . . . ,Wh ∈ SF (k1, . . . , kh;n) | dim(Wu ∩ Lnj ) = #{cl | l ≤ j, cl ≤ u} for 1 ≤ j ≤ s,
dim(Wu ∩Qridi) = #{cl | l ≤ kh − i+ 1, cl ≤ u} and

dim(Wu ∩Ki)) = #{cl | l ≤ xi, cl ≤ u} for 1 ≤ i ≤ kh − s}.

Remark 4.13. The geometric reasons for imposing conditions (A1) and (A2) in Definition 3.11 are
now clear. Condition (A1) is an immediate consequence of the kernel bound. If dim(Lnj ∩Ki) =
nj−1 and a linear space of dimension kh−i+1 intersects nj in dimension j and Ki in dimension
j − 1, then the linear space is contained in L⊥nj . Hence, we need to impose condition (A1).

The inequality

xi ≥ kh − i+ 1− di − ri
2

is an immediate consequence of the linear space bound. We require the kh-dimensional isotropic
subspaces to intersect Qridi in a subspace of dimension kh−i+1 and to intersect the singular locus
of Qridi in a subspace of dimension xi. By the linear space bound, any linear space of dimension
kh− i+1 has to intersect the singular locus in a subspace of dimension at least kh− i+1− di−ri

2 ,
hence the inequality in condition (A2).

Example 4.14. The two most basic examples of symplectic restriction varieties are:

(1) A Schubert variety Σλ;µ;c• in SF (k1, . . . , kh;n), which is the restriction variety associated
to a symplectic diagram D(σλ;µ;c), and

(2) The intersection Σa•,c•∩SF (k1, . . . , kh;n) of a general Schubert variety in F (k1, . . . , kh;n)
satisfying aj > 2j − 1 for all 1 ≤ j ≤ kh with SF (k1, . . . , kh;n), which is the restriction
variety associated to D(a•, c•).

In general, symplectic restriction varieties interpolate between these two examples. Unlike the
case of Grassmannians, the intersection Σa•,c• ∩ SF (k1, . . . , kh;n) when aj = 2j − 1 for some
j need not be a symplectic restriction variety. However, it can be degenerated into a union of
symplectic restriction varieties as we will see in the next section.

Lemma 4.15. A symplectic restriction variety corresponding to a saturated and perfectly or-
dered admissible sequence is a Schubert variety in SF (k1, . . . , kh;n). Conversely, every Schubert
variety in SF (k1, . . . , kh;n) can be represented by such a sequence.

Proof. The projection πh : SF (k1, . . . , kh;n)→ SG(kh, n) maps a symplectic restriction variety
corresponding to a saturated and perfectly ordered admissible sequence to the same type of
restriction variety in SG(kh, n). By [C4, Lemma 4.17], the latter variety is a Schubert variety
Σ in SG(kh, n). Therefore, the original symplectic restriction variety is a Schubert variety in
SF (k1, . . . , kh;n). �
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The next proposition shows that symplectic restriction varieties are irreducible and calculates
their dimension. Note that the dimension of a symplectic diagram introduced in Definition 3.13
is equal to the dimension of the corresponding symplectic restriction variety.

Proposition 4.16. Let (L•, Q•, c•) be an admissible colored sequence. Then the symplectic
restriction variety V (L•, Q•, c•) is an irreducible subvariety of SF (k1, . . . , kh;n) of dimension

(1) dim(V (L•, Q•, c•)) =
s∑
j=1

(nj − j) +
kh−s∑
i=1

(di − 1− 2kh + 2i+ xi) + dim(c•).

Proof. The projection πh(V (L•, Q•, c•)) is the symplectic restriction variety V (L•, Q•) in SG(kh, n).
By [C4, Proposition 4.21], the latter variety is irreducible of dimension

s∑
j=1

(nj − j) +
kh−s∑
i=1

(di − 1− 2kh + 2i+ xi).

The fibers of the projection πh over the Zariski open set defining V (L•, Q•, c•) are open subsets
of the Schubert variety corresponding to the class c• in F (k1, . . . , kh−1; kh). By the Theorem on
the Dimension of Fibers [S, I.6.7], V (L•, Q•, c•) is irreducible of the claimed dimension. �

Next, we show that the intersection of a general Schubert variety Σa•,c• with SF (k1, . . . , kh;n)
is non-empty if and only if aj ≥ 2j − 1 for 1 ≤ j ≤ kh. Furthermore, the intersection is a
symplectic restriction variety if aj > 2j−1 for 1 ≤ j ≤ kh. Otherwise, the class of the intersection
is the sum of the classes of the restriction varieties derived from D(a•, c•) by Algorithm 3.38.
We postpone the proof of the last statement to the next section.

Lemma 4.17. Let Σa•,c• be a Schubert variety defined with respect to a general partial flag
Fa1 ⊂ · · · ⊂ Fakh . Then Σa•,c• ∩ SF (k1, . . . , kh;n) 6= ∅ if and only if aj ≥ 2j − 1 for 1 ≤ j ≤ kh.

Proof. Suppose aj < 2j − 1 for some j. If [W1 ⊂ · · · ⊂ Wh] ∈ Σa•,c• ∩ SF (k1, . . . , kh;n), then
Wh ∩ Faj is an isotropic subspace of Q ∩ Faj of dimension at least j. Since Faj is general, the
corank of Q∩ Faj is 0 or 1 depending on whether ai is even or odd. By the linear space bound,
the largest dimensional isotropic subspace of Q ∩ Faj has dimension less than or equal to j − 1.
Therefore, Wh cannot exist and Σa•,c• ∩ SF (k1, . . . , kh;n) = ∅.

Conversely, let aj = 2j − 1 for every j. Then G1 = F1 is isotropic, G2 = F⊥1 in F3 is
the unique two-dimensional isotropic subspace of Q ∩ F3 containing G1. By induction, we see
that Gj = G⊥j−1 is the unique subspace of dimension j isotropic with respect to Q ∩ F2i−1

that contains Gj−1. Continuing this way, we construct a unique isotropic subspace Wh of
dimension kh contained in Σa•,c• ∩ SG(kh, n). The flag F• induces a complete flag G• on Wh

and the intersection Σa•,c• ∩ SF (k1, . . . , kh;n) is the Schubert variety Ω in F (k1, . . . , kh−1; kh)
corresponding to c•. In particular, the intersection is non-empty. If aj ≥ 2j − 1, Ω is still
contained in Σa•,c• ∩ SF (k1, . . . , kh;n), hence this intersection is non-empty. �

Lemma 4.18. Let Σa•,c• be a Schubert variety defined with respect to a general partial flag Fa1 ⊂
· · · ⊂ Fakh such that aj ≥ 2j− 1 for 1 ≤ j ≤ kh. Then Σa•,c• ∩SF (k1, . . . , kh;n) = V (P (a•, c•))
and is irreducible. Furthermore, if aj > 2j− 1 for 1 ≤ j ≤ kh, then Σa•,c• ∩SF (k1, . . . , kh;n) =
V (D(a•, c•)).

Proof. The Schubert variety Σa•,c• is irreducible. The complement of the open cell in Σa•,c• is
a finite union of lower dimensional Schubert varieties. By Kleiman’s Transversality Theorem,
their intersection with SF (k1, . . . , kh;n) have lower dimension and cannot form components of
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the intersection. We may, therefore, restrict our attention to the open cell U . The lemma
follows by induction on h and kh. If h = 1, the irreducibility is clear by induction on kh
and has been observed in [C4, Lemma 4.18]. The fibers of the restriction of the projection
πh : SF (k1, . . . , kh;n) → SG(kh, n) to U ∩ SF (k1, . . . , kh;n) are open subsets of a Schubert
variety in F (k1, . . . , kh−1; kh). Therefore, the intersection Σa•,c•∩SF (k1, . . . , kh;n) is irreducible
and when aj > 2j − 1 for all j equal to V (D(a•, c•)). �

Similarly, we can associate a variety to a marked diagram (D, c•, ∗) occurring while running
Algorithm 3.38. Let eδ be the vector corresponding to the rightmost marking δ and let F ′ be
the span of the vectors up to and including the leftmost marking δ′. Let F be the span of F ′

and eδ. Assume that the number of brackets to the left of position π(δ′) inclusive is m. Then
the variety corresponding to the marked diagram (D, c•, ∗) is defined by

{(W1, . . . ,Wh ∈ SF (k1, . . . , kh;n) | dim(Wu ∩ Lnj ) = #{cl | l ≤ j, cl ≤ u} for 1 ≤ j ≤ s,
dim(Wu ∩Qridi) = #{cl | l ≤ kh − i+ 1, cl ≤ u}

dim(Wu ∩Ki)) = #{cl | l ≤ xi, cl ≤ u} for 1 ≤ i ≤ kh − s and dim(Wh ∩ F ) = m+ 1}.

As in the proof of Lemmas 4.16 and 4.18, induction on h and [C4, Lemma 4.18] imply that
the variety associated to a marked diagram (D, c•, ∗) is irreducible and has dimension equal to
the dimension of the marked diagram.

5. The geometric explanation of the rule

In this section, we interpret the combinatorial rule introduced in §3 as a specialization of the
corresponding symplectic restriction variety. We will analyze this specialization and show that
the diagrams that replace (D, c•) in Algorithm 3.43 parameterize the irreducible components of
the flat limit and each of these components are generically reduced.

The main specialization. The specialization we use is identical to the specialization in the
Grassmannian case introduced in [C4]. Of course, the flat limits of restriction varieties will
typically have more irreducible components in the case of flag varieties. For the convenience of
the reader, we recall the specialization. There are several cases depending on whether (D, c•) is
in order and whether l(κ) < ρ(κ, κ− 1)− 1 or not.

In the previous section, given an admissible symplectic diagram (D, c•), we associated an
admissible sequence by defining each of the vector spaces (L•, Q•) as a union of basis elements
that diagonalize the skew-symmetric form Q. All our specializations will replace exactly one of
the basis elements v = eu or v = fu for some 1 ≤ u ≤ m in a one-parameter family v(t) = eu(t)
or v(t) = fu(t). For t 6= 0, the resulting set of vectors will be a new basis for V , but when
t = 0 two of the basis elements will become equal. Correspondingly, we get a one-parameter
family of vector spaces (L•(t), Q•(t)) by changing every occurrence of the vector v to v(t). We
thus get a flat family of symplectic restriction varieties V (D(t)), where the restriction variety
at t 6= 0 is defined with respect to the linear spaces (L•(t), Q•(t)). We now explicitly describe
the specialization.

In case (1)(i), D is not in order, η is the unique integer violating the order, and ν is the leftmost
integer equal to η + 1. Suppose that under the translation between symplectic diagrams and
sequences of vector spaces, eu is the vector associated to η and ev is the vector associated to ν.
Then consider the one-parameter family obtained by changing ev to ev(t) = tev + (1− t)eu and
keeping every other vector fixed. When the set of basis elements spanning a vector space Lnj or
Qridi contains ev, Lnj (t) or Qridi(t) is obtained by replacing ev with ev(t). Otherwise, Lnj (t) = Lnj
or Qridi(t) = Qridi .
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In case (1)(ii), D is not in order, η is the unique integer violating the order, i > η does not
occur in the sequence to the left of η and ν is the leftmost integer equal to i + 1. Let eu be
the vector associated to η and let ev be the vector associated to ν. Consider the one-parameter
family obtained by changing fv to fv(t) = tfv + (1 − t)eu. When the set of basis elements
spanning a vector space Lnj or Qridi contains fv, Lnj (t) or Qridi(t) is obtained by replacing fv with
fv(t). Otherwise, Lnj (t) = Lnj or Qridi(t) = Qridi .

In case (2)(i), D is in order and l(κ) < ρ(κ, κ−1)−1. Suppose that ev is the vector associated
to ν, the leftmost κ+1. Let eu and fu be two vectors associated to the zeros between }κ and }κ−1.
These exist since l(κ) < ρ(κ, κ− 1)− 1. Consider the one-parameter specialization replacing fv
with fv(t) = tfv + (1− t)eu. When the set of basis elements spanning a vector space Lnj or Qridi
contains fv, Lnj (t) or Qridi(t) is obtained by replacing fv with fv(t). Otherwise, Lnj (t) = Lnj or
Qridi(t) = Qridi .

In case (2)(ii)(a), D is in order and l(κ) = ρ(κ, κ− 1)− 1. Let ν be the leftmost integer equal
to κ and suppose that ev is the vector associated to ν. Let eu be the vector associated to the
κ − 1 following }κ. Then let ev(t) = tev + (1 − t)eu. When the set of basis elements spanning
a vector space Lnj or Qridi contains ev, Lnj (t) or Qridi(t) is obtained by replacing ev with ev(t).
Otherwise, Lnj (t) = Lnj or Qridi(t) = Qridi .

Finally, in case (2)(ii)(b), D is in order, l(κ) = ρ(κ, κ−1)−1 and there does not exist an integer
equal to κ to the left of κ. Let ev be the vector associated to ν, the leftmost integer equal to κ+1
and let eu be the vector associated to κ− 1 to the right of }κ. Then let fv(t) = tfv + (1− t)eu.
When the set of basis elements spanning a vector space Lnj or Qridi contains fv, Lnj (t) or Qridi(t)
is obtained by replacing fv with fv(t). Otherwise, Lnj (t) = Lnj or Qridi(t) = Qridi .

The flat limit of the vector spaces is easy to describe. If Lnj or Qridi does not contain the
vector v, then Lnj (t) = Lnj and Qridi(t) = Qridi for all t. Similarly, if Lnj or Qridi contains both
of the basis elements spanning v(t), then Lnj (t) = Lnj and Qridi(t) = Qridi for all t 6= 0. Then in
the limit Lnj (0) = Lnj and Qridi(0) = Qridi . A vector space changes under the specialization only
when it contains one and not the other of the two basis elements spanning v(t). In that case, in
the limit t = 0 one swaps the basis vector with coefficient t with the basis vector with coefficient
(1− t).

In each of these cases, the set of limiting vector spaces is depicted by the symplectic diagram
Da. In case (1)(i), the degeneration swaps ev and eu. The effect on symplectic diagrams is
simply switching η and ν. In case (1)(ii), the degeneration switches eu and fv. As a result,
the restriction of Q to the linear space Qridi has ev in its kernel. The resulting set of linear
spaces is depicted by switching η and the zero corresponding to fv and replacing the integer
corresponding to ev with i. In case (2)(i), as a result of the specialization, the restriction of Q to
Qrκdκ contains eu and ev in its kernel. The resulting set of vector spaces is denoted by switching
the zero corresponding to eu and ν to κ. The cases (2)(ii)(a) and (2)(ii)(b) are analogous to the
cases (1)(i) and (1)(ii), respectively.

Correspondingly, we get a family of restriction varieties V (D(t)), where V (D(t)) is the sym-
plectic restriction variety defined with respect to the linear spaces L•(t) and Q•(t). As long as
t 6= 0, the corresponding varieties are projectively equivalent, hence form a flat family. The first
theorem of this section, which is the main geometric theorem of this paper, describes the flat
limit when t = 0.

Theorem 5.1. Let (D, c•) be an admissible colored symplectic diagram. Let V (D(t)) be the
main specialization described in this section and let V (D(0)) be the flat limit at t = 0. Then
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V (D(0)) is supported along the union
⋃
V (Di) of restriction varieties, where Di range over

the symplectic restriction varieties associated to the diagrams replacing D in Algorithm 3.43.
Furthermore, the flat limit is generically reduced along each V (Di). In particular, we have the
equality of cohomology classes

[V (D)] =
∑

[V (Di)].

Proof. The proof has two steps. We first show that the flat limit is supported along the union
of the varieties V (Di), where Di ranges over the diagrams replacing D in Algorithm 3.43. We
then do a local calculation to show that the flat limit is generically reduced along each Di. The
second step is a straightforward local calculation. The first step is the step that requires more
care.

We determine the components of the support of the flat limit using a dimension count. The
following observation puts very strong restrictions on the support of the flat limit.

Observation 5.2. Let c• : c1, . . . , ckh be the coloring. If j ≤ s, let γl(j) denote the number of
integers among c1, . . . , cj less than or equal to l. Then the linear spaces Wl(t) parameterized by
V (D(t)) intersect the linear spaces Lnj (t) in a subspace of dimension at least γl(j). Similarly,
let γl(kh − i + 1) denote the number of integers less than or equal to l among c1, . . . , ckh−i+1.
Then the linear spaces Wl(t) parameterized by V (D(t)) intersect the linear spaces Qridi(t) in a
subspace of dimension at least γl(kh − i+ 1). Since intersecting a proper variety in a subspace
of dimension greater than or equal to a given integer is a closed condition, the flag elements Wl

parameterized by the flat limit V (D(0)) have to intersect the linear spaces Lnj (0) in a subspace
of dimension at least γl(j) and the linear spaces Qridi(0) in a subspace of dimension at least
γl(kh − i+ 1).

We use Observation 5.2 repeatedly to obtain strong restrictions on the flat limit. Let Y be an
irreducible component of the support of V (D(0)). Since the family is flat, dim(Y ) = dim(V (D)).
Consider the complete flag (not necessarily isotropic) determined by the vectors ordered from
left to right depicted by Da. We claim that the rank conditions that the generic element of Y
satisfies with respect to this flag determines Y .

Build a diagram D(Y ) that depicts the flag elements for which the dimension of the intersec-
tion of the flag elements Wh parameterized by the generic element in Y jumps. By Observation
5.2, each Wh has to intersect the flag elements Lnj (0) in dimension at least nj and the flag
elements Qridi(0) in dimension at least kh − i+ 1. Consequently, the diagram D(Y ) is a diagram
obtained from Da. Assign D(Y ) the coloring obtained by Algorithm 3.22. A priori, the flag ele-
ments Wl for l < h may intersect the flag elements more specially. However, by Observation 5.2,
they have to satisfy the rank conditions imposed by D(Y ) assigned the coloring by Algorithm
3.22.

We now compare the dimension of linear spaces satisfying the rank conditions specified by
D(Y ) to the dimension of the diagram D and determine under which conditions the two dimen-
sions can be the same. This almost determines the set of diagrams occurring in Algorithm 3.43.
The change in dimension is determined by Equation (1).

• If we replace a linear space Lani+j of dimension ni+j in the (i+ j)-th position in (La•, Q
a
•)

with a linear space Fui not contained in (La•, Q
a
•), then according to Equation (1) the

dimension changes as follows. Let yai+j be the index of the smallest index linear space
Qrldl such that Lani+j ⊂ Kl. Similarly, let yui be the smallest l such that Fui ⊂ Kl. The
left sum in Equation (1) decreases by nai+j − ui. The quantities xl increase by one for
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yui ≤ l < yai+j . Hence, the dimension decreases by nai+j − nui + yai+j − yui . By condition
(S4) for Da and condition (A1) for D, in Da, there is at most one missing integer among
the positive integers to the left of the brackets and the two integers preceding all but at
most one of the brackets are equal. Therefore, nai+j − nui + yai+j − yui ≥ j with equality
only if the index i = xν−1 + 1 and in D the equality p(]xν−1+1)− π(ν)− 1 = yxν−1+1 − ν
holds. Let the color of Lani+j be ci+j . Then the change in dim(c•) between the original
coloring and the coloring assigned by Algorithm 3.22 can be calculated as follows. Let
i ≤ u1 < u2 < · · · < uz = i+ j be the indices with cu1 > cu2 > · · · > cuz = ci+j and there
does not exist and index between uq and i+ j of color larger than or equal to cuq . Then
dim(c•) increases by (u1−i)+#{i ≤ l < u1 | cl = cu1}+

∑z
q=2(uq−uq−1−1)−#{uq−1 <

l < uq |cl = cuq}). In particular, the increase is at most j with equality if and only if the
color of every linear space in Da with index i, . . . , i+ j − 1 is strictly less than ci+j .
• If we replace the linear space Qri,adi

of dimension dai in (La•, Q
a
•) with a non-isotropic

linear space Fuk−i−j+1
of dimension dui+j , then, by Equation (1), the dimension changes

as follows. Let xui+j be the number of linear spaces that are contained in the kernel of
the restriction of Q to Fuk−i−j+1

. Then the dimension decreases by dai − dui+j +xai −xui+j .
This decrease is at least j, with strict inequality unless Condition (A1) fails for an integer
equal to i. As in the previous case, the increase in dim(c•) is at most j with equality
only if the color of every linear space with index between i+ j and i in Da is strictly less
than the color of Qri,adi

.

• Finally, if we replace a linear space Qrk−sdk−s
of dimension dak−s in (La•, Q

a
•) with an isotropic

linear space Fus+1 , then the first sum in Equation (1) changes by us+1 − s − 1. The
second sum changes by −dak−s + yus+1 − xak−s + (2s+ 1), where yus+1 denotes the number
of non-isotropic subspaces containing Fus+1 in the kernel of the restriction of Q. Hence,
the total change is

−dak−s + us+1 − xak−s − yus+1 + s.

Since the dimension of an isotropic linear space is bounded by (dk−s + rk−s)/2, we
conclude that this quantity is less than or equal to zero, with strict inequality unless
xk−s = s, rk−s = dk−s and dk−s = us+1. In this case, since we are not changing the
ordering of the linear spaces, the coloring does not change.

We will now conclude from the dimension calculation that D(Y ) can only be one of the
diagrams Da or Db replacing D in Algorithm 3.43. We need one further observation from the
proof of Theorem 5.2 in [C4]. In the first case, if ui is less than π(ν), by semi-continuity of the
dimension of intersection of W⊥h with Kν ∩ Lxν−1+1, not every linear space parameterized by
D(Y ) can be in the flat limit. Hence, Y yielding such a D(Y ) has strictly smaller dimension.

Now the proof of the first statement of the theorem is immediate. If Da is admissible and
the generic linear space parameterized by Y does not satisfy more special rank conditions, then
Y is contained in V (Da). Since the two varieties are irreducible of the same dimension, they
are equal. If Da violates condition (A1), then as argued in the proof of Theorem 5.2 in [C4], Y
is the variety associated to the diagram obtained by applying Algorithm 3.29 to Da. We will
analyze the case when Da fails condition (A2) in the next theorem. In any case, if Da does
not satisfy condition (A2), then, by the same argument, Y is equal to the variety obtained by
tightening the marked diagram corresponding to Da.

If D(Y ) is obtained by moving a bracket ]i from Da to a position p, then by the first dimension
count and the requirement that p ≥ π(ν), we can move at most one bracket and p = π(ν).
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Furthermore, the bracket has to satisfy the equality p(]i) − π(ν) = yi − ν + i − xν−1 in D and
every bracket between p(]i) and π(ν) must have color strictly less than the color of ]i. If the
resulting diagram is admissible, then by the second and third dimension counts, we cannot move
a brace or replace a brace with a bracket without obtaining a strictly smaller dimensional locus.
We conclude that Y has to be contained in Db(]i). Since they have the same dimension, Y is
equal to Db(]i). If the resulting diagram is not admissible, then it fails condition (A1). By the
kernel bound, Y has to be contained in the variety associated to the result of applying Algorithm
3.29 to the diagram Db(]i). By the second dimension count, this has the same dimension if and
only if either two braces never occupy the same position while running Algorithm 3.29 or if
two braces occupy the same position, there are no braces of equal or larger color until the
first unoccupied position to the left. We thus conclude that the flat support of the flat limit
is contained in the union of the varieties V (Da) and V (Db) described in Algorithm 3.43 and
Remark 3.45.

Finally, we need to check that each of the components are generically reduced. This is a routine
local calculation, which is almost identical to the calculation in [C2] or [C4] for orthogonal flag
varieties or symplectic Grassmannians. As a sample, we check the case (2)(i) and leave the
modifications in other cases to the reader. For each Da and Db(]i), we exhibit a variety that
has intersection number one with V (D) and that V (Da) or V (Db(]i)) and zero with the others.
It follows that each of the components occur and are generically reduced. Since this is a local
calculation, we may assume that κ = 1, dκ + rκ = n − 2 and xκ = 0. For each Db(]i) and
Da, there is a dual Schubert variety obtained as follows. Apply Algorithm 3.43 to Db(]i) or Da

taking the branch of type Da at each step. (Notice that the coefficient of the resulting Schubert
class is one in the class of V (D) according to Algorithm 3.43.) Let Σ be the variety dual to this
Schubert variety. By the same argument as in [C2] or [C4], Kleiman’s Transversality Theorem
implies that Σ intersects V (Db(]i)) and V (D) in one point and does not intersect the other
V (Db(]l) for l 6= i and V (Da). We conclude that the flat limit is generically reduced along each
component. �

The specialization for Algorithm 3.38. We now need to do a careful analysis of Algorithm
3.38. We can interpret Algorithm 3.38 also as a sequence of specializations. We begin by
describing this specialization.

Let (D, c•, ∗) be a marked diagram. Recall that the vectors associated to a marked diagram
are the same as the vectors associated to the underlying diagram (D, c•). Let eδ be the vector
corresponding to δ. If ε is positive or to the left of a bracket, let eε be the vector corresponding
to ε. If ε is zero and does not have a bracket to its right, then let fε be the vector of least
index associated to the zeros between the two braces and/or brackets bounding ε. To unify the
notation, let vε denote this vector in either case. Consider the specialization that replaces vε
by tvε + (1 − t)eδ. When t = 1, we have the original set of vector spaces. When t = 0, the
specialization replaces vε with eδ. If a vector space in the sequence contains both vε and eδ
or if it does not contain vε, then the specialization leaves the vector space fixed. Otherwise, it
interchanges vε for eδ in the vector space.

The diagram D̃ encodes the flat limit of the sequence of vector spaces. If ε is positive or to
the left of a bracket, then the limit of the linear spaces that contain eε but not eδ is obtained
by swapping eε and eδ. These precisely correspond to swapping ε and δ in the diagram. If ε
is zero and to the left of all the brackets, then δ is between }j and }j+1 for some j. In this
case, ε corresponds to a vector fε. If (D, c•, ∗) is obtained by repeatedly running the loop in
Algorithm 3.38 on a diagram of type Da, then eε is the leftmost zero in the sequence. Hence,
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the specialization swaps ε and δ and changes the leftmost j + 2 (or if j + 2 does not exist in the
sequence, the leftmost zero) to j + 1. On the other hand, if (D, c•, ∗) is obtained by repeatedly
running the loop in Algorithm 3.38 on a diagram of type P , then eε is a vector contained in
Q
rj+2

dj+2
, but not in any vector space in the sequence of smaller dimension. Hence, the flat limit of

the linear spaces is depicted by the diagram changing ε and δ and changing the leftmost j + 2,
or if there does not exist an integer equal to j + 2, the leftmost zero between }j+1 and }j+2 to
j+1. Hence, the difference between running the algorithm on an initial diagram P or a diagram
of type Da is explained by the location of eδ in these diagrams.

The next theorem determines the flat limit of the symplectic restriction varieties under this
specialization and shows that Algorithm 3.38 replaces a diagram with a collection of diagrams
whose cohomology classes sum to the cohomology class of the original diagram.

Theorem 5.3. Let (D, c•, ∗) be a marked symplectic diagram that arises while running Algorithm
3.38 on (Dα, c•) or P (a•, c•). Then the flat limit of the specialization applied to V (D, c•, ∗) is
supported along the varieties associated to the diagrams Dα and Dβ described by Algorithm 3.38.
Moreover, the flat limit is generically reduced along each component. In particular, the class of
V (D, c•, ∗) is equal to the sum of the classes of admissible restriction varieties associated to
(D, c•, ∗) by Algorithm 3.38.

Proof. As in the previous theorem, the proof has two steps. We interpret Algorithm 3.38 as the
specialization described above. We first show that the flat limit of the specialization is supported
along the V (Di, c

i
•, ∗), where Di are the marked diagrams replacing D in Algorithm 3.38. We

then check that the flat limit is generically reduced along each of the components. The proofs
of both steps are almost identical to the proofs in the previous theorem.

First, using the dimension count in the proof of Theorem 5.1, we determine the support of
the flat limit. In an initial diagram P , for each j such that aj = 2j − 1, the linear space
Q1

2j−1 contains a j-dimensional isotropic subspace. Hence, by the linear space bound, this j-
dimensional subspace must contain the kernel of the restriction of Q to Q1

2j−1. The kernel for
the smallest j for which aj = 2j − 1 is denoted by the marked integer δ. Similarly, if Da

fails condition (A2) for the linear space Qridi , then by the linear space bound, the (kh − i + 1)-
dimensional subspace intersects the kernel of the restriction of Q in a subspace of dimension
xi + 1. This kernel is denoted by the span of the vectors corresponding to δ and the integers up
to and including δ′. Hence, the markings denote the additional intersection with Ki.

More generally, observe that when Dα does not satisfy condition (A2) for }i, then the linear
spaces are required to intersect Qridi in a subspace of dimension kh − i + 1. By the linear space
bound, we conclude that the linear spaces have to intersect Ki in a subspace of dimension xi+1.
Consequently, the (kh − i + 1)-dimensional subspace contained in Qridi is contained in the span
of Qri+1

di+1
and eδ. Hence, we can replace Qridi by the span of Qri+1

di+1
and eδ in the diagram Dα.

Notice that these vector spaces are depicted by the diagram obtained by tightening Dα.

If δ is between }j+1 and }j , let F = Q
rj+1

dj+1
and if δ is between ]j and ]j+1, let F = Lnj .

In the first case, let mj = kh − dj + 1. In the latter case, let mj = nj . The flag elements Wh

parameterized by (D, c•, ∗) intersect F in a subspace of dimension mj and intersect the span of F
with eδ in a subspace of dimension mj+1. When we make the specialization, δ becomes a vector
of the flat limit of F . There are two possibilities. Either the flag elements Wh parameterized by
a component of the flat limit intersect F in a subspace of dimension mj or mj + 1 or greater.
In the former case, the intersection of the linear spaces with F have to be contained in the span
of the one smaller linear space in the sequence and eδ. Hence, this component is the variety
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corresponding to Dα, the tightening of D̃. Notice that by the dimension count in the proof of
Theorem 5.1, there cannot be any components where the linear spaces are more special. Such
a component would be contained in a variety corresponding to a diagram where one or more of
the brackets or braces are shifted to the left. By the dimension counts in the proof of Theorem
5.1, shifting any of the brackets or braces would produce a locus of strictly smaller dimension.
We conclude that such a locus cannot support a component of the flat limit.

Else, Wh intersects F in a subspace of dimension mj +1 (or possibly greater). In this case, we
have to determine the possible limits. Let Y be an irreducible component of the support of the
flat limit. Associate to it the diagram D(Y ) depicting the rank conditions satisfied by a linear
space corresponding to a general point of Y . By Observation 5.2, D(Y ) is a diagram obtained
from the diagram one gets from D̃ by moving the brace }j or ]j+1, depending on the case, to
the first position not occupied by a bracket or brace to its left. This is because by assumption
there is a (kh − j + 2)-dimensional subspace contained in the span of the vectors up to }j+1 or
]j . We have to check whether it is possible to obtain any components of the same dimension by
moving bracket and/or braces to the left.

Now we can go through the possibilities quickly. If δ is between }j+1 and }j , then by the linear
space bound, the linear spaces have to intersect the kernel of the restriction of Q to Q

rj+1

dj+1
in

dimension xj+1 + 1. By the first dimension count, we can move at most one of the brackets and
the bracket we move cannot cross any brackets of equal or larger color. We recover the diagrams
Dβ(]i). In this case, since }j is moved to the first empty spot, note that there is one more
possibility. We can move }j provided that the color of all the brackets and braces in between is
strictly less than the color of }j . We recover the diagram Dβ(}j). By the dimension count in
the proof of Theorem 5.1, the locus of linear spaces satisfying more special rank conditions has
strictly smaller dimension, hence cannot be a component of the support of the flat limit. We
also remark that when running Algorithm 3.38, the equality in Definition 3.26 automatically
holds for all the brackets. If the diagram is obtained from repeated applications of the loop on
an initial diagram P , there are no brackets that lead to diagrams of the type Dβ(]i). In this
case, the remark is vacuous. If the diagram is obtained by repeated applications of the loop on a
diagram of type Da, then Da fails condition (A2) for an index i. Hence, there must be equality
for all indices j ≥ i in D in condition (A2). This implies that all brackets of D to the right of
π(δ′) satisfy the equality in Definition 3.26. This is the reason we do not need to specify that
the brackets satisfy this equality in Algorithm 3.38. If some of these diagrams do not satisfy
condition (A1*), then the list of possibilities is analogous to the diagrams that do not satisfy
condition (A1) in Theorem 5.1 and are obtained by running Algorithm 3.29.

If δ is between ]j and ]j+1 and there is no bracket between position p and ]j , we move the
bracket ]j+1 to position p since there is a j-dimensional subspace contained in the span of Lnj−1

and eδ and a (j + 1)-dimensional subspace contained in Lnj . This has the same dimension if
cj < cj+1. Otherwise, it has strictly smaller dimension. By the dimension count in the proof
of Theorem 5.1, moving ]j to any position p + t ≤ p(]j) preserves the dimension and moving
any other bracket or brace to the left strictly decreases the dimension. If any of the resulting
diagrams fail condition (A1*), then the component Y is contained in the locus corresponding to
the diagram obtained by running Algorithm 3.29. We conclude that Y is one of the diagrams
of type Dβ produced by running the loop in Algorithm 3.38.

If δ is between ]j and ]j+1 and there are brackets between position p and ]j , we move the
bracket ]j+1 to a position to the right of p since there is a (j+1)-dimensional subspace contained
in Lnj . By the first dimension count in the proof of Theorem 5.1, moving ]j+1 to any of the
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positions between the first bracket to the left of p and p preserves the dimension provided that
the brackets between p and ]j all have color less than cj+1. Moving any other bracket or brace
strictly decreases the dimension. If any of the resulting diagrams fail condition (A1*), then
the component Y is contained in the locus corresponding to the diagram obtained by running
Algorithm 3.29. We conclude that Y is one of the diagrams of type Dβ produced by running
the loop in Algorithm 3.38. We conclude that the flat limit is supported along the union of the
varieties associated to the diagrams assigned to (D, c•, ∗) by Algorithm 3.38.

The multiplicity calculation is identical to the calculation in the proof of the previous theorem,
so we leave it to the reader. This concludes the proof of the theorem. �
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