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Abstract. These are lecture notes and exercises for the VIGRE summer school Birational Geometry

and Moduli Spaces at the University of Utah, June 1-12, 2010. In these notes, we discuss the cones of
ample and effective divisors on various moduli spaces such as the Kontsevich moduli spaces of stable

maps and the moduli space of curves. We describe the stable base locus decomposition of the effective

cone in explicit examples and determine the corresponding birational models.
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1. Preliminaries on the Cones of Ample and Effective divisors

In this section, we review the basic terminology and facts about the cones of ample
and effective divisors. The two volumes Positivity in Algebraic Geometry I [L1] and II
[L2] by Rob Lazarsfeld are great references for the material in this section and for further
reading.

A variety X is called Q-factorial if every Weil divisor on X is Q-Cartier. Throughout
this section, let X be a Q-factorial, normal, projective variety over the complex numbers.
The moduli spaces discussed in these notes will be Q-factorial, normal, projective varieties.

Definition 1.1. Two divisors D1, D2 are called numerically equivalent if the intersection
numbers C · D1 = C · D2 are equal for every irreducible curve C ⊂ X. Numerical
equivalence naturally extends to Q or R divisors. The Neron-Severi space, N1(X) is the
vector space of numerical equivalence classes of R-divisors. The intersection pairing gives
a duality between curves and divisors. Two curves C1, C2 are called numerically equivalent
if C1 · D = C2 · D for every codimension one subvariety D ⊂ X. Let N1(X) denote the
vector space of curves up to numerical equivalence. The vector spaces N1(X) and N1(X)
are dual under the intersection pairing.

The vector spaces N1(X) and N1(X) contain several natural cones that control the
birational geometry of X.

Definition 1.2. Let X be a normal, irreducible, projective variety. A line bundle L on X
is called very ample if L = φ∗OPn(1) for some embedding φ : X ↪→ Pn. A line bundle L is
called ample if a positive multiple of L is very ample. A divisor D on X is ample if the
line bundle associated to a sufficiently divisible, positive multiple is ample.

The Nakai-Moishezon criterion says that a divisor on a projective variety is ample if
and only if Ddim(V ) · V > 0 for every irreducible, positive dimensional subvariety V of
X. In particular, being ample is a numerical property: if D1 and D2 are numerically
equivalent divisors on X, then D1 is ample if and only if D2 is ample.

Exercise 1.3. Prove the Nakai-Moishezon criterion by carrying out the following steps (see
Theorem 1.2.23 of [L1]).

Step 1. Show that if D is ample, then Ddim(V ) · V > 0 for every irreducible, positive
dimensional subvariety V of X (including X).

Step 2. For the remainder of this exercise assume that Ddim(V ) · V > 0 for every
irreducible, positive dimensional subvariety V of X. Show that if X is a curve, then D is
ample. We will use this as the base case of an induction on dimension.

Step 3. Use asymptotic Riemann-Roch and induction on dimension to deduce that
H0(X,OX(mD)) 6= 0 for m >> 0. (Hint: Express D = A− B, where A and B are very
ample. Use the two standard exact sequences

0→ OX(mD −B)→ OX(mD)→ OB(mD)→ 0

0→ OX(mD −B)→ OX((m+ 1)D)→ OA((m+ 1)D)→ 0

and induction.)
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Step 4. Show that OX(mD) is generated by global sections. Hence, it gives a morphism
to projective space.

Step 5. Check that D is ample.

The tensor product of two ample line bundles is again ample. Moreover, the tensor
product of any line bundle with a sufficiently high multiple of an ample line bundle is
ample. Consequently, the classes of ample divisors form an open, convex cone called the
ample cone in the Neron-Severi space.

Definition 1.4. A divisor D is called NEF if D ·C ≥ 0 for every irreducible curve C ⊂ X.

Clearly, the property of being NEF is a numerical property. Since the sum of two NEF
divisors is NEF, the set of NEF divisors on X forms a closed, convex cone in N1(X) called
the NEF cone of X. The NEF cone contains the ample cone. In fact, Kleiman’s Theorem
characterizes the ample cone as the interior of the NEF cone and the NEF cone as the
closure of the ample cone.

Theorem 1.5 (Kleiman’s Theorem). Let D be a NEF R-divisor on a projective variety
X. Then Dk · V ≥ 0 for every irreducible subvariety V ⊆ X of dimension k.

Exercise 1.6. Prove Kleiman’s Theorem by carrying out the following steps (see Theorem
1.4.9 of [L1]).

Step 1. Using the fact that the classes of rational divisors are dense in the Neron-Severi
space, reduce to the case of rational divisors by approximation.

Step 2. Observe that the theorem is true for curves. By using the Nakai-Moishezon
Criterion and induction on dimension, reduce to proving that Dn ≥ 0.

Step 3. Fix a very ample divisor H. Consider the polynomial P (t) = (D+tH)n. Notice
that the previous statement is implied by P (0) ≥ 0.

Step 4. If P (0) < 0, show that P (t) has a single real root t0 > 0. Show that for t > t0,
D + tH is ample.

Step 5. Write P (t) = Q(t) + R(t), where Q(t) = D(D + tH)n−1 and R(t) = tH(D +
tH)n−1. Show Q(t0) ≥ 0 and R(t0) > 0. Note that this contradicts the assumption
P (t0) = 0. Thus conclude the theorem.

Step 6. Reinterpret the theorem as saying that the NEF cone is the closure of the
ample cone and the ample cone is the interior of the NEF cone.

The cone of curves in N1(X) is the closure of the cone of classes that can be represented
by non-negative linear combinations of classes of effective curves. Under the intersection
pairing, the cone of curves is the dual to the NEF cone. There is a well-developed structure
theory for this cone, thanks to the work of many mathematicians including Kawamata,
Kollár, Mori, Reid and Shokurov. Birational Geometry of Algebraic Varieties by Kollár
and Mori [KM] is a great reference for the cone and contraction theorems about the
structure of the cone of curves.

Theorem 1.7 (Cone theorem). Let X be a smooth projective variety (more generally, a
variety with mild (klt) singularities) of dimension n. Then there are at most countably
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many rational curves Ci ⊂ X with

0 ≤ −Ci ·KX ≤ n+ 1

such that the cone of curves is generated by Ci and the classes in the cone of curves that
have non-negative intersection with KX . If H is an ample divisor and ε > 0, then only
for finitely many of the curves Ci, Ci · (KX + εH) can be negative.

The importance of the extremal rays in the KX-negative part of the cone of curves
is that they can be contracted. If r is an extremal ray of the cone of curves satisfying
(KX + εH) · r < 0, then there exists a morphism contr : X → Y such that any curve
whose class lies in the ray r is contracted. Furthermore, the class of any curve contracted
by contr lies in the ray r. The Contraction Theorem provides a very important way of
constructing new birational models of X.

Unfortunately, we do not understand the KX-positive part of the cone of curves. Even
the KX-negative part of the cone can be very complicated. The next exercise gives a
relatively simple surface for which the KX-negative part of its cone of curves is not finite
polyhedral.

Exercise 1.8. Let X be the blow-up of P2 at the base points of a general pencil of cubic
curves. The nine base points of the pencil give nine sections E1, . . . , E9 of the elliptic
fibration. Fiber-wise translation by differences of two of the sections is a well-defined
automorphism of X. Using the action of the automorphism, show that the KX-negative
part of the cone of curves of X has infinitely many extremal rays.

Let L be a line bundle on a normal, irreducible, projective variety X. The semi-group
N(X,L) of L is defined to be the non-negative powers of L that have a non-zero section:

N(X,L) := { m ≥ 0 : h0(X,L⊗m) > 0 }.
Given m ∈ N(X,L), we can consider the rational map φm associated to L⊗m.

Definition 1.9. The Iitaka dimension of a line bundle L is defined to be the maximum
dimension of the image of φm for m ∈ N(X,L) provided N(X,L) 6= 0. If N(X,L) = 0,
then the Iitaka dimension of L is defined to be −∞.

Remark 1.10. By definition, the Iitaka dimension of a line bundle L on X is an integer
between 0 and dim(X) or it is −∞.

Definition 1.11. A line bundle L on X is called big if its Iitaka dimension is equal to
the dimension of X. A smooth, projective variety is called of general type if its canonical
bundle is big. A singular variety is called of general type if a desingularization is of general
type.

Remark 1.12. The same definitions can be made for Q-Cartier divisors instead of line
bundles. We use the language of Cartier divisors and line bundles interchangably.

Using Iitaka fibrations, one can prove that the Iitaka dimension of a line bundle L can
be characterized as the growth rate of the dimension of the spaces of global sections of L
(see Corollary 2.1.38 in [L1] for the proof).
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Lemma 1.13. A line bundle L on a normal, projective variety X of dimension n has
Iitaka dimension κ if and only if there exists constants C1, C2 > 0 such that

C1m
κ ≤ h0(X,L⊗m) ≤ C2m

κ

for all sufficiently large m ∈ N(X,L). In particular, L is big if and only if there exists
C > 0 such that

h0(X,L⊗m) > Cmn

for all sufficiently large m ∈ N(X,L).

Kodaira’s Lemma allows us to obtain other useful characterizations of big divisors.

Lemma 1.14 (Kodaira’s Lemma). Let D be a big Cartier divisor and E be an arbitrary
effective Cartier divisor on a normal, projective variety X. Then

H0(X,OX(mD − E)) 6= 0

for all sufficiently large m ∈ N(X,D).

Proof. Consider the exact sequence

(∗) 0→ OX(mD − E)→ OX(mD)→ OE(mD)→ 0.

Since D is big by assumption, the dimension of global sections of OX(mD) grows like
mdim(X). On the other hand, dim(E) < dim(X), hence the dimension of global sections
of OE(mD) grows at most like mdim(X)−1. It follows that

h0(X,OX(mD)) > h0(E,OE(mD)

for large enough m ∈ N(X,D). The lemma follows by the long exact sequence of coho-
mology associated to the exact sequence (*). �

A corollary of Kodaira’s Lemma is the characterization of big divisors as those divisors
that are numerically equivalent to the sum of an ample and an effective divisor. We will
use this characterization in determining the Kodaira dimension of the moduli space of
curves.

Proposition 1.15. Let D be a divisor on a normal, irreducible projective variety X.
Then the following are equivalent:

(1) D is big.

(2) For any ample divisor A, there exists an integer m > 0 and an effective divisor E
such that mD is linearly equivalent to A+ E.

(3) There exists an ample divisor A, an integer m > 0 and an effective divisor E such
that mD is linearly equivalent to A+ E.

(4) There exists an ample divisor A, an integer m > 0 and an effective divisor E such
that mD is numerically equivalent to A+ E.
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Proof. To prove that (1) implies (2) given any ample divisor A, take a large enough
positive number r such that both rA and (r + 1)A are effective. By Kodaira’s Lemma,
there is a positive integer m such that mD− (r + 1)A is effective, say linearly equivalent
to an effective divisor E. We thus get that mD is linearly equivalent to A + (rA + E)
proving (2). Clearly (2) implies (3) and (3) implies (4). To see that (4) implies (1), since
mD is numerically equivalent to A + E, mD − E is numerically equivalent to an ample
divisor. Since ampleness is numerical, mD−E is ample. Since ample divisors are big and

h0(X,mD) ≥ h0(X,mD − E),

D is big. �

We conclude that the property of being big is a numerical property. Since the sum of
two big divisors is again big, the set of big divisors forms an open, convex cone called the
big cone in the Neron-Severi space. The closure of the big cone consists of all the divisor
classes that are limits of divisor classes that are effective. This closed, convex cone is
called the pseudo-effective cone.

Recent work of Boucksom, Demailly, Paun and Peternell [BDPP] has identified the
dual of the pseudo-effective cone in N1(X) as the cone of mobile curves. Let X be an
irreducible, projective variety of dimension n. A curve class γ ∈ N1(X) is called mobile
if there exists a projective, birational map f : X ′ → X and ample classes a1, . . . , an−1 in
N1(X ′) such that γ = f∗(a1 · · · · · an−1). The mobile cone in N1(X) is the closed convex
cone generated by all mobile classes. The mobile cone is the dual of the pseudo-effective
cone.

It is possible to define a finer chamber decomposition of the pseudo-effective cone of X.

Definition 1.16. The stable base locus of an integral divisor D is the algebraic set

B(D) =
⋂
m≥1

Bs(|mD|)

obtained by intersecting the base loci of all positive multiples of the complete linear
systems |mD|.

Exercise 1.17. Show that there exists a positive integer m0 such that B(D) = Bs(|km0D|)
for all k >> 0.

The stable base locus is the locus where the rational map associated to a sufficiently
high and divisible multiple of D will not be defined. Hence, stable base loci of divisors play
an essential role in birational geometry. The pseudo-effective cone may be divided into
chambers according to the stable base loci of the divisors (see [ELMNP1] and [ELMNP2]
for details). In these notes, we will discuss this decomposition for some moduli spaces.

In general, it is difficult to determine the ample and/or the effective cone of a variety.
In these lectures, we will be concerned with some moduli spaces where we can determine
these cones. As warm up, determine the NEF and pseudo-effective cones of the following
varieties.

Exercise 1.18. Let X be a homogeneous variety. Show that the NEF cone is equal to the
effective cone. In particular, determine the NEF cone of a flag variety.
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Exercise 1.19. Let Fn = P(OP1 ⊕OP1(n)). Determine the NEF cone and effective cone of
Fn.

Exercise 1.20. Let X be a Del Pezzo surface. Determine the NEF cone and effective cone
of X.

Note that for surfaces, the NEF cone and the pseudo-effective cone are duals under
the intersection pairing. However, even for very simple surfaces these cones are hard to
determine.

Problem 1.21. 1 Let X be the blow-up of P2 at m general points. Determine the NEF
cone of X.

Problem 1.22. Determine the NEF cone of a product of curves C × C × · · · × C.

2. Preliminaries on the Moduli space of curves and the Kontsevich
Moduli Space

In this section, we will recall some of the basic facts about the Deligne-Mumford moduli
space of stable curves and the Kontsevich moduli space of stable maps. Moduli of Curves
by Harris and Morrison [HMo1] and Notes on stable maps and quantum cohomology
by Fulton and Pandharipande [FP] are excellent sources for this section and for further
reading.

2.1. The moduli space of curves. Fix non-negative integers g and n such that 2g+n ≥
3.

Definition 2.1. An n-pointed, genus g stable curve (C, p1, . . . , pn) is a reduced, connected,
projective, at-worst-nodal curve C of arithmetic genus g together with n distinct, ordered,
smooth points pi ∈ C such that ωC(

∑n
i=1 pi) is ample.

Exercise 2.2. (1) Let Cν be the normalization of C. A distinguished point of Cν is any
point that lies over a marked point pi or a node of C. Show that the stability condition
“ωC(

∑n
i=1 pi) is ample” is equivalent to requiring that in the normalization of C, every

rational component has at least three distinguished points.

(2) Show that the stability condition is also equivalent to requiring that (C, p1, . . . , pn)
have finitely many automorphisms.

Let S be a scheme of finite type over a field. The moduli functor

Mg,n : {schemes /S} → {sets}
associates to an S-scheme of finite type X, the set of isomorphism classes of families
f : Y → X flat over X with n sections s1, . . . , sn : X → Y such that for every closed
point x ∈ X, (f−1(x), s1(x), . . . , sn(x)) is an n-pointed genus g stable curve.

Theorem 2.3 (Deligne, Mumford, [DM], Knudsen, [Kn1], [Kn2]). The functor Mg,n

is coarsely represented by an irreducible, normal, Q-factorial projective variety Mg,n of
dimension 3g − 3 + n with only finite quotient singularities.

1In these notes, I will use the label ‘exercise’ for questions that I believe have been answered in the literature. Some of

these exercises are easy and some are challenging and may have taken a research paper to answer. I will reserve the label
‘problem’ to questions that I believe are open (at least in their full generality).
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There is a natural forgetful morphism

πi1,...,in−k : Mg,n → Mg,k

with k < n that forgets the marked points pi1 , . . . , pin−k and then stabilizes the resulting

curve. In particular, let π : Mg,1 → Mg be the forgetful map. Let ω = ωπ be the relative
dualizing sheaf. Then the Hodge bundle is the bundle of rank g defined by Λ = π∗ω. The
class λ is defined to be the first Chern class c1(Λ) = λ of the Hodge bundle Λ. Similarly,
define the classes κi = π∗(c1(ω)i+1) in H2i(Mg,Q). In particular, λ and κ1 are divisor
classes on Mg.

The locus of stable curves that have a node has codimension one in Mg. This locus has
bg/2c+1 irreducible components, each of codimension one. The locus of curves that have
a non-separating node (i.e., a node p such that C − p is connected) forms an irreducible
component denoted by ∆irr. The locus of curves that have a separating node p such that
C − p has two components one of genus i and one of genus g− i also forms an irreducible
components denoted by ∆i.

In the early 1980s, using the fact that the moduli space is the quotient of Teichmüller
space by the action of the mapping class group, Harer was able to compute H2(Mg,Q).
As an important corollary, Harer determined the Neron-Severi space of Mg.

Theorem 2.4 (Harer, [Har]). The Picard group Pic(Mg) ⊗ Q is generated by λ and the
classes of the boundary divisors.

Most often the divisor class calculations are carried out on the moduli stack Mg.
Luckily, Pic(Mg) ⊗ Q ∼= Pic(Mg) ⊗ Q. The rational divisor classes corresponding to
the boundary in Pic(Mg) ⊗ Q are denoted by δirr and δi for 1 ≤ i ≤ bg/2c. The total
boundary class is denoted by δ:

δ = δirr + δ1 + · · ·+ δbg/2c.

There is one subtle point that the reader should keep in mind. The general point of ∆1

corresponds to a curve with an automorphism group of order two. Hence, the map from
the moduli stack to its coarse moduli scheme is ramified of order two along ∆1. As long
as g ≥ 4, the map is not ramified along any other divisorial locus. In particular, let
∆ = Mg −Mg. Then the pull back of ∆ to the moduli stack is

δirr + 2δ1 + δ2 + · · ·+ δbg/2c

and not δ. Sections §3.D and §3.E of [HMo1] explain in detail how to compute divisor
classes on Mg. Here are some calculations that will become useful later in the discussion.

Exercise 2.5. The case g = 2 in Harer’s Theorem is special. Show that Pic(Mg)⊗Q = 0.
In this case, the class λ can be expressed as a linear combination of boundary divisors.
Show that

λ =
1

10
δirr +

1

5
δ1.

Exercise 2.6. More generally, let Hg be the closure of the hyperelliptic locus Hg in Mg.
Show that Pic(Hg) ⊗ Q = 0 (Hint: Realize Hg as the quotient of the Hurwitz scheme
of degree two covers). Conclude that Pic(Hg) is generated by the boundary divisors.
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Show that ∆irr intersects Hg in b(g − 1)/2c + 1 irreducible components. Denote these
components by Ξ0,Ξ1, . . .Ξb(g−1)/2c. ∆i restricts to an irreducible divisor on Hg. Denote
the corresponding divisors by Θi.

Figure 1. The general points of the divisors Θi and Ξi. The first curve depicts a
hyperelliptic curve of genus i and a hyperelliptic curve of genus g − i attached at a
Weierstrass point of each. The second curve depicts a hyperelliptic curve of genus i and
a hyperelliptic curve of genus g − i − 1 glued at two points where the two points are
interchanged by the hyperelliptic involution.

Show that these divisors are independent and give a basis for Pic(Hg). Consider the
map i∗ : Pic(Mg)→ Pic(Hg) induced by the inclusion. Show that

i∗(∆irr) = Ξ0 + 2

b(g−1)/2c∑
i=1

Ξi and i∗(∆i) = Θi/2.

Show that the pull-back of λ is given by

i∗(λ) =

b(g−1)/2c∑
i=0

i(g + 1− i)
4g + 2

Ξi +

bg/2c∑
i=1

i(g − i)
4g + 2

Θi.

(Hint: See [CoH].)

Exercise 2.7. When g ≥ 3, by exhibiting appropriate curves, show that there are no linear
relations among the classes in Harer’s Theorem.

Exercise 2.8. Using Grothendieck-Riemann-Roch, prove the relation

12λ = κ1 + δ.

Show that this relation is equivalent to the following relation

12λ− κ1 = [∆irr] +
1

2
[∆1] + [∆2] + · · ·+ [∆bg/2c]

in Pic(Mg)⊗Q.

2.2. The Kontsevich Moduli Space.

Definition 2.9. Let X be a smooth projective variety. Let β ∈ H2(X,Z) denote the class
of a curve. The Kontsevich moduli space Mg,n(X, β) parameterizes isomorphism classes
of the data (C, p1, . . . , pn, f) satisfying the following properties.

(1) C is a reduced, connected, projective, at-worst-nodal curve C of arithmetic genus
g.

(2) p1, . . . , pn are n ordered, distinct, smooth points on C.
9



(3) f : C → X is a morphism with f∗[C] = β. The map f is stable, i.e., it has only
finitely many automorphisms.

Exercise 2.10. Distinguished points of C are points on the normalization of C that lie
above the marked points pi and the nodes of C. Show that a map f is stable if and only if
every genus zero component of C on which f is constant has at least three distinguished
points and every genus one component of C on which f is constant has at least one
distinguished point.

We have already encountered some examples of Kontsevich moduli spaces.

Exercise 2.11. Show that the moduli space of stable maps to a point coincides with the
moduli space of curves:

Mg,n(P0, 0) ∼= Mg,n.

Exercise 2.12. Show that the moduli space of degree zero stable maps is isomorphic to

Mg,n(X, 0) = Mg,n ×X.

Exercise 2.13. Show that the moduli space of degree one maps to Pr is isomorphic to the
Grassmannian:

M0,0(Pn, 1) = G(2, n+ 1) = G(1, n).

A generalization of this example is the moduli space of degree one maps to a smooth
quadric hypersurface Q in Pn for n > 3. In this case, the Kontsevich moduli space is
isomorphic to the orthogonal Grassmannian OG(2, n+ 1) = OG(1, n).

Exercise 2.14. Show that the Kontsevich moduli space M0,0(P2, 2) is isomorphic to the
space of complete conics or, equivalently, to the blow up of the Hilbert scheme of conics in
P2 along the Veronese surface of double lines. (Hint: Exhibit a map (using the universal
property of complete conics) from M0,0(P2, 2) to the space of complete conics. Check that
this is a bijection on points. The claim then follows by Zariski’s Main Theorem since the
space of complete conics is smooth.)

We will now summarize the main existence theorems for Kontsevich moduli spaces. We
refer you to [FP] for their proofs.

Theorem 2.15. If X is a complex, projective variety, then there exists a projective coarse
moduli scheme Mg,n(X, β).

Note that even when X is a nice, simple variety (such as P2), Mg,n(X, β) may have
many components of different dimensions.

Exercise 2.16. Let M1,0(P2, 3) be the Kontsevich moduli space of genus-one degree-three
stable maps to P2. Show that M1,0(P2, 3) has three irreducible components: two of di-
mension 9 and one of dimension 10. Show that smooth, elliptic cubic curves form an open
set in one of the nine dimensional irreducible components of M1,0(P2, 3). This component
is often referred to as the main component. Show that the locus of maps to P2 from a
reducible curve with one genus zero and one genus one component that is constant on the
genus one component and has degree three on the genus zero component is an irreducible
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component of M1,0(P2, 3) of dimension 10. Show that there is a third component of di-
mension 9 by considering maps from elliptic curves with two rational tails which contract
the elliptic curve and map the rational tails as a line and a conic.

Exercise 2.17. Even if we restrict ourselves to genus zero stable maps the Kontsevich
moduli spaces may have many components of different dimensions. Consider degree two
genus zero stable maps to a smooth degree seven hypersurface X in P7. Assume that X
contains a P3 (write down the equation of such a hypersurface!). Show that M0,0(X, 2)
contains at least two components. One component covers X and has dimension 5. The
conics in the P3 give a different component of dimension 8. Expanding on this idea, show
that M0,0(X, 2) can have a second component of dimension arbitrarily larger than the
dimension of the main component even when X is a Fano hypersurface in Pn.

In fact, the dimension and irreducibility of the Kontsevich moduli spaces of genus-zero
stable maps are not known in general even when the target is a general Fano hypersurface
in Pn.

Problem 2.18. Prove (or disprove) that if X is a general hypersurface in Pn of degree
d ≤ n− 2, then M0,0(X, e) is irreducible.

Exercise 2.19. Solve the previous problem affirmatively for e < n.

In order to obtain an irreducible moduli space with mild singularities one needs to
impose some conditions on X. A variety X is convex if for every map

f : P1 → X,

f ∗TX is generated by global sections. Since every vector bundle on P1 decomposes as a
direct sum of line bundles, a variety is convex if for every map

f : P1 → X,

the summands appearing in f ∗TX are non-negative. If we consider genus zero stable maps
to convex varieties, the Kontsevich moduli space has very nice properties.

Theorem 2.20. Let X be a smooth, projective, convex variety.

(1) M0,n(X, β) is a normal, projective variety of pure dimension

dim(X) + c1(X) · β + n− 3.

(2) M0,n(X, β) is locally the quotient of a non-singular variety by a finite group. The
locus of automorphism free maps is a fine moduli space with a universal family and
it is smooth.

(3) The boundary is a normal crossings divisor.

Observe that the previous theorem in particular applies to homogeneous varieties since
homogeneous varieties are convex. In fact, if X is a homogeneous variety, then M0,n(X, β)
is irreducible (see [KiP]).
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Remark 2.21. Although when we do not restrict ourselves to the case of genus zero maps
to homogeneous varieties Kontsevich moduli spaces may be reducible with components
of different dimensions, Mg,n(X, β) possesses a virtual fundamental class of the expected
dimension. The existence of the virtual fundamental class is the key to Gromov-Witten
Theory.

Requiring a variety to be convex is a strong requirement on uniruled varieties. For
instance, the blow-up of a convex variety ceases to be convex. In fact, I do not know any
examples of rationally connected, projective convex varieties that are not homogeneous.

Problem 2.22. Is every smooth, rationally connected, convex projective variety a homo-
geneous space? Prove or give a counterexample.

Kontsevich moduli spaces admit some natural maps. As usual there are the forgetful
maps

πi1,...,ik : Mg,n(X, β)→ Mg,n−k(X, β)

obtained by forgetting the marked points pi1 , . . . , pik and stabilizing the resulting map.
The Kontsevich moduli spaces also come equipped with n evaluation morphisms

evi : Mg,n(X, β)→ X,

where evi maps (C, p1, . . . , pn, f) to f(pi). Finally, if 2g + n ≥ 3, there are also natural
moduli maps

ρ : Mg,n(X, β)→ Mg,n

given by forgetting the map and stabilizing the domain curve.

Next following Rahul Pandharipande [Pa1] we determine the Picard group of the Kont-
sevich moduli space. We start by giving the definitions of standard divisor classes.

(1) H is class of the divisor of maps whose images intersect a fixed codimension two
linear space in Pr. This divisor is defined provided r > 1 and d > 0. Whenever we
refer to H we assume these conditions hold.

(2) Li = ev∗i (OPr(1)), for 1 ≤ i ≤ n, are the n divisor classes obtained by pulling back
OPr(1) by the n evaluation morphisms.

(3) ∆(A,dA),(B,dB) are the classes of boundary divisors consisting of maps with reducible
domains. Here AtB is any ordered partition of the marked points. dA and dB are
non-negative integers satisfying d = dA+dB. If dA = 0 (or dB = 0), we require that
#A ≥ 2 (#B ≥ 2, respectively). When n = 0, we denote the boundary divisors
simply by ∆k,d−k.

Theorem 2.23 (Pandharipande). Let r ≥ 2 and d > 0. The divisor class H, the divisor
classes Li and the classes of boundary divisors ∆(A,dA),(B,dB) generate the group of Q-

Cartier divisors of M0,n(Pr, d).

Proof. We will prove a more precise version of the theorem and determine the relations
between the divisors in the process. For simplicity let

P = Pic(M0,n(Pr, d))⊗Q.
12



Claim 2.24. If the number of marked points n ≥ 3, then H and the boundary divisors
generate P .

Consider the product of n− 3 copies of P1. Let W be the complement of diagonals and
the locus where one of the factors is 0, 1 or ∞. Let U be the open subset

U ⊂ P⊕r0 H0(P1,OP1(d))

parameterizing base-point free degree d maps from P1 to Pr.

Exercise 2.25. Show that the complement of U has codimension at least 2. Show that the
product W × U embeds as an open subset of M0,n(Pr, d) whose complement is the union
of the boundary divisors. Noting that the group of codimension one cycles of W × U is
generated by a multiple of H, deduce the claim.

Claim 2.26. If the number of marked points n = 2, then the boundary, L1 and L2 generate
P .

Fix a hyperplane Λ. Consider the inverse image U of Λ under the third evaluation
morphism from M0,3(Pr, d). Away from the inverse image of the locus where the domain
of the map is reducible and the images of the marked points lie in Λ, the forgetful map
that forgets the third point is finite and projective. Hence, it suffices to show that the
divisor class group of this latter space is zero. This is clear.

Claim 2.27. If the number of marked points n = 1, then the boundary, L1 and H generate
P .

Exercise 2.28. Prove this claim. (Hint: Fix two general hyperplanes Λ1,Λ2 and carry out
an argument similar to the proofs of the previous two claims.)

Claim 2.29. If the number of marked points n = 0, then H and the boundary divisors
generate P .

Fix three hyperplanes H1, H2, H3. Consider the complement Z in M0,0(Pr, d) of the
boundary and the three hypersurfaces of maps intersecting Hi ∩Hj, i 6= j.

Exercise 2.30. Prove that the divisor class group of Z tensor with Q is trivial. Use this
fact to deduce the claim.

Note that the previous four claims suffice to complete the proof of the theorem. �

As the proof has made clear, the divisors in Theorem 2.23 satisfy certain relations.
Using [Ke], these relations can be completely worked out.

Exercise 2.31. Let
πi1,...,in−4 : M0,n → M0,4

be a forgetful map that forgets all but four of the marked points. Since M0,4 = P1,
the three boundary divisors on M0,4 are linearly equivalent. Pulling back the boundary
divisors via πi1,...,in−4 obtain the linear relations∑

i,j∈T ;k,l 6∈T

DT =
∑

k,l∈T,i,j 6∈T

DT for i, j, k, l ∈ {1, . . . , n} distinct
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among the boundary divisors of M0,n. Show that these (and, of course, DT = DT c) are
the only linear relations among the boundary divisors of M0,n (Hint: See [Ke]).

Exercise 2.32. Using the previous exercise and the map

ρ : M0,n(Pr, d)→ M0,n,

obtain linear relations among the boundary divisors of M0,n(Pr, d).

Exercise 2.33. By exhibiting one parameter families that have different intersection num-
bers show that

(1) H is not in the span of boundary divisors. (Hint: Consider the Veronese image of
a pencil of lines in P2)

(2) If the number of marked points is one, then H and L1 are independent modulo the
boundary.

(3) If the number of marked points is two, then L1 and L2 are independent modulo
the boundary.

Exercise 2.34. Fix a hyperplane Λ in Pr. Show that the locus of stable maps in M0,0(Pr, d)
where f−1(Λ) is not d distinct, smooth points is a divisor T in M0,0(Pr, d). Calculate the
class of this divisor in terms of H and the boundary divisors. (Hint:

T =
d− 1

d
H +

bd/2c∑
i=1

i(d− i)
d

∆i.)

Exercise 2.35. Generalize the results of this section to the case when the target is a
Grassmannian G(k, n). Let 2 ≤ k < k + 2 ≤ n. Let λ be a partition with k parts
n − k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0. Fix a flag F•. A Schubert class σλ is the class of the
variety

Σλ(F•) = {[W ] ∈ G(k, n) | dim(W ∩ Fn−k+i−λi) ≥ i}.
Let

π : M0,1(G(k, n), d)→ M0,0(G(k, n), d)

be the forgetful morphism and let

ev : M0,1(G(k, n), d)→ X

be the evaluation morphism. LetHσλ be the class in M0,0(G(k, n), d) defined by π∗(ev
∗σλ).

Show that Pic(M0,0(G(k, n), d)) ⊗ Q is spanned by Hσ1,1 , Hσ2 and the classes of the
boundary divisors. Show that these classes are independent.

Exercise 2.36. Generalize the results of this section to the case when the target X is a
homogeneous variety G/P such as a flag variety or an orthogonal Grassmannian.

Exercise 2.37. The divisors H and T in M0,0(Pr, d) play an important role in the enu-
merative geometry of rational curves in projective space. Prove that H and T are base-
point-free. Calculate the intersection numbers

H5,H4T ,H3T 2,H2T 3,HT 4, T 5
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on M0,0(P2, 2). Interpret these numbers in terms of the enumerative geometry of conics
in the plane.

3. The effective cone of the Kontsevich moduli space

In this section, the main problem we would like to address is the following:

Problem 3.1. Describe the cone of effective divisor classes on M0,0(Pr, d) in terms of the
standard generators of the Picard group.

Denote by Pd the Q-vector space of dimension bd/2c+ 1 with basis labeled H and ∆k,d−k
for k = 1, . . . , bd/2c. For each r ≥ 2, there is a Q-linear map

ud,r : Pd → Pic(M0,0(Pr, d))⊗Q
that is an isomorphism of Q-vector spaces.

Definition 3.2. For every integer r ≥ 2, denote by Effd,r ⊂ Pd the inverse image under
ud,r of the effective cone of M0,0(Pr, d).

Proposition 3.3. For every integer r ≥ 2, Effd,r is contained in Effd,r+1. For every
integer r ≥ d, Effd,r equals Effd,d.

Proof of Proposition 3.3. Let p ∈ Pr+1 be a point, denote U = Pr+1 − {p}, and let π :
U → Pr be a linear projection from p. This induces a smooth morphism

M0,0(π, d) : M0,0(U, d)→ M0,0(Pr, d).

Let i : U → Pr+1 be the open immersion. This induces a morphism

M0,0(i, d) : M0,0(U, d)→ M0,0(Pr+1, d)

relatively representable by open immersions. The complement of the image of M0,0(i, d)
has codimension r, which is greater than 2. Therefore, the pull-back morphism

M0,0(i, d)∗ : Pic(M0,0(Pr+1, d))→ Pic(M0,0(U, d))

is an isomorphism. So there is a unique homomorphism

h : Pic(M0,0(Pr, d))→ Pic(M0,0(Pr+1, d))

such that
M0,0(π, d)∗ = M0,0(i, d)∗ ◦ h.

Recalling that u(r, d) identifies the Picard group of M0,0(Pr, d)) with the vector space
spanned by H and the boundary divisors ∆k,d−k, we see that h ◦ ud,r equals ud,r+1. So to
prove Effd,r is contained in Effd,r+1, it suffices to prove that M0,0(π, d) pulls back effective
divisors to effective divisors classes, which follows since M0,0(π, d) is smooth.

Next assume r ≥ d. Let D be any effective divisor in M0,0(Pr, d). A general point in
the complement of D parameterizes a stable map f : C → Pr such that f(C) spans a
d-plane. Denote by j : Pd → Pr a linear embedding whose image is this d-plane. There is
an induced morphism

M0,0(j, d) : M0,0(Pd, d)→ M0,0(Pr, d).
15



The map M0,0(j, d)∗ ◦ ud,r equals ud,d. By construction, M0,0(j, d)∗([D]) is the class of the
effective divisor M0,0(j, d)−1(D), i.e., [D] is in Effd,d. Thus Effd,d contains Effd,r, which in
turn contains Effd,d by the last paragraph. Therefore Effd,r equals Effd,d. �

In view of Proposition 3.3, it is especially interesting to understand Effd,d. We will
concentrate on this case.

When r = d, the locus parameterizing stable maps f : C → Pd of degree d whose set
theoretic image does not span Pd. We will denote its class by Ddeg. The class is easily
calculated in terms of the standard divisors.

Lemma 3.4. The class Ddeg equals

(1) Ddeg =
1

2d

(d+ 1)H−
bd/2c∑
k=1

k(d− k)∆k,d−k

 .
Proof. We will prove the equality (1) by intersecting Ddeg by test curves. Fix a general
rational normal scroll of degree i and a general rational normal curve of degree d− i− 1
intersecting the scroll in one point p. Consider the one-parameter family Ci of degree d
curves consisting of the fixed degree d − i − 1 rational normal curve union curves in a
general pencil (that has p as a base-point) of degree i + 1 rational normal curves on the
scroll. When 2 ≤ i ≤ bd/2c, Ci has the following intersection numbers with H and Ddeg.

Ci · H = i, Ci ·Ddeg = 0.

The curve Ci is contained in the boundary divisor ∆i+1,d−i−1 and has intersection number

Ci ·∆i+1,d−i−1 = −1.

The intersection number of Ci with the boundary divisors ∆i,d−i and ∆1,d−1 is non-zero
and given as follows:

Ci ·∆i,d−i = 1, Ci ·∆1,d−1 = i+ 1.

Finally, the intersection number of Ci with all the other boundary divisors is zero. When
i = 1, we have to modify the intersection number of C1 with ∆1,d−1 to read C1 ·∆1,d−1 = 3.
Next consider the one-parameter family B1 of rational curves of degree d that contain d+2
general points and intersect a general line. The intersection number of B1 with all the
boundary divisors but ∆1,d−1 is zero. Clearly B1 ·Ddeg = 0. By the algorithm for counting
rational curves in projective space given in [V1], it follows that

B1 · H =
d2 + d− 2

2
, B1 ·∆1,d−1 =

(d+ 2)(d+ 1)

2
.

This determines the class of Ddeg up to a constant multiple. In order to determine the
multiple, consider the curve C that consists of a fixed degree d− 1 curve and a pencil of
lines in a general plane intersecting the curve in one point. The curve C has intersection
number zero with all the boundary divisors but ∆1,d−1 and has the following intersection
numbers:

C · H = 1, C ·Ddeg = 1, C ·∆1,d−1 = −1.

The lemma follows from these intersection numbers. �
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Ddeg plays a crucial role in describing the effective cone of M0,0(Pd, d). The following
theorem completely describes the effective cone of M0,0(Pd, d).

Theorem 3.5. The class of a divisor lies in the effective cone of M0,0(Pd, d) if and only if
it is a non-negative linear combination of the class of Ddeg and the classes of the boundary
divisors ∆k,d−k for 1 ≤ k ≤ bd/2c.

Proof. Since Ddeg and the boundary divisors are effective, any non-negative rational linear
combination of these divisors lies in the effective cone. The main content of the theorem
is to show that there are no other effective divisor classes.

Definition 3.6. A reduced, irreducible curve C on a scheme X is a moving curve if the
deformations of C cover a Zariski open subset of X. More precisely, a curve C is a moving
curve if there exists a flat family of curves π : C → T on X such that π−1(t0) = C for
t0 ∈ T and for a Zariski open subset U ⊂ X every point x ∈ U is contained in π−1(t) for
some t ∈ T . We call the class of a moving curve a moving curve class.

An obvious observation is that the intersection pairing between the class of an effective
divisor and a moving curve class is always non-negative. Intersecting divisors with a
moving curve class gives an inequality for the coefficients of an effective divisor class. The
strategy for the proof of Theorem 3.5 is to produce enough moving curves to force the
effective divisor classes to be a non-negative linear combination of Ddeg and the boundary
classes.

Lemma 3.7. If C ⊂ M0,0(Pd, d) is a reduced, irreducible curve that intersects the com-
plement in M0,0(Pd, d) of the boundary divisors and the divisor of maps whose image is
degenerate, then C is a moving curve.

Proof. The automorphism group of Pd acts transitively on rational normal curves. An
irreducible curve of degree d that spans Pd is a rational normal curve. Hence, a curve
C ⊂ M0,0(Pd, d) that intersects the complement in M0,0(Pd, d) of the boundary divisors
and the divisor of maps whose image is degenerate, contains a point that represents a
map that is an embedding of P1 as a rational normal curve. The translations of C by
PGL(d+ 1) cover a Zariski open set of M0,0(Pd, d). �

First, observe that if D is an effective divisor on M0,0(Pd, d) and D has the class

aH +

bd/2c∑
k=1

bk,d−k∆k,d−k,

then a ≥ 0. Furthermore, if a = 0, then bk,d−k ≥ 0. Consider a general projection of
the d-th Veronese embedding of P2 to Pd. Consider the image of a pencil of lines in P2.
By Lemma 3.7, this is a moving one-parameter family C of degree d rational curves that
has intersection number zero with the boundary divisors. It follows from the inequality
C ·D ≥ 0 that a ≥ 0.

Furthermore, suppose that a = 0. Consider a general pencil of (1, 1) curves on P1 ×
P1. Take a general projection to Pd of the embedding of P1 × P1 by the linear system
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OP1×P1(i, d − i). By Lemma 3.7, the image of the pencil gives a moving one-parameter
family C of degree d curves whose intersection with ∆k,d−k is zero unless k = i. The
relation C ·D ≥ 0 implies that if a = 0, then bi,d−i ≥ 0. We conclude that Theorem 3.5
is true if a = 0. We can, therefore, assume that a > 0.

Suppose that for every 1 ≤ i ≤ bd/2c, we could construct a moving curve Ci in
M0,0(Pd, d) with the property that Ci ·∆k,d−k = 0 for k 6= i and that the ratio of Ci ·∆i,d−i
to Ci · H is given by

(2)
Ci ·∆i,d−i

Ci · H
=

d+ 1

i(d− i)
.

Observe that given these intersection numbers, Lemma 3.4 implies that Ci · Ddeg = 0.
Theorem 3.5 follows from the inequalities Ci ·D ≥ 0.

We now construct approximations to these curves.

Proposition 3.8. Let k, j and d be positive integers subject to the condition that 2k ≤ d.
There exists an integer n(k, d) depending only on k and d such that the linear system

L′(j) = d F1 +

(
jk(k + 1)

2
− 1

)
F2 −

j(d+1)−n(k,d)∑
i=1

k Ei −
j(d+1)+n(k,d)

(k−1)(k+2)
2∑

i=j(d+1)−n(k,d)+1

Ei

on the blow-up of P1×P1 at j(d+ 1) +n(k, d) (k−1)(k+2)
2

general points is non-special (i.e.,
has no higher cohomology) for every j >> 0. The integer n(k, d) may be taken to be

n(k, d) = d2(d+ 1)/ke.

Proposition 3.8 implies Theorem 3.5. Consider the blow-up of P1 × P1 in

j(d+ 1) +
n(k, d)(k − 1)(k + 2)

2

general points. The proper transform of the fibers F2 under the linear system

d F1 +
jk(k + 1)

2
F2 −

j(d+1)−n(k,d)∑
i=1

k Ei −
j(d+1)+n(k,d)

(k−1)(k+2)
2∑

i=j(d+1)−n(k,d)+1

Ei

gives a one-parameter family Ck(j) of rational curves of degree d that has intersection
number zero with Ddeg. Letting j tend to infinity we obtain a sequence of moving curves
Ck(j) in M0,0(Pd, d) that has intersection zero with all the boundary divisors but ∆1,d−1

and ∆k,d−k. Unfortunately, the intersection of Ck(j) with ∆1,d−1 is not zero and the ratio
of Ck(j) ·H to Ck(j) ·∆k,d−k is not the one required by Equation (2). However, as j tends
to infinity, the ratio of the intersection numbers Ck(j) ·∆1,d−1 to Ck(j) · H tends to zero
and the ratio of Ck(j) ·∆k,d−k to Ck(j) · H tends to the desired ratio d+1

k(d−k)
. Theorem 3.5

follows.

Exercise 3.9. Let S be the blow-up of P1 × P1 described in Proposition 3.8. Using the
exact sequence,

0→ OS(L′(j))→ OS(L′(j) + F2)→ OF2(L
′(j) + F2)→ 0,
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Proposition 3.8 and Lemma 3.7, show that Ck(j) is a moving curve in M0,0(Pd, d).

Let S be the blow-up of P2 at general points. Let |M | be a complete linear system on
S. The Harbourne-Hirschowitz Conjecture asserts that if E ·M is non-negative for every
(−1)-curve on S, then M is non-special.

Exercise 3.10. Show that using the Harbourne-Hirschowitz Conjecture, we can construct
the cone of moving curves dual to the effective cone of M0,0(Pd, d) without the need for
approximation. Work out these moving curves explicitly for M0,0(P6, 6) and show that
they exist by verifying the Harbourne-Hirshowitz Conjecture directly in the required cases.

Proof of Proposition 3.8. The specialization technique in §2 of [Y] yields the proof of the
proposition. We will specialize the points of multiplicity k one by one onto a point q. At
each stage the k-fold point that we specialize will be in general position. We will first slide
the point along a fiber f1 in the class F1 onto the fiber f2 in the fiber class F2 containing
the point q. We then slide the point onto q along f2. We will record the flat limit of this
degeneration.

There is a simple checker game that describes the limits of these degenerations. This
checker game for P2 is described in §2 of [Y]. The details for P1 × P1 are identical. The
global sections of the linear system OP1×P1(a, b) are bi-homogeneous polynomials of bi-
degree a and b in the variables x, y and z, w, respectively. A basis for the space of global
sections is given by xiya−izjwb−j, where 0 ≤ i ≤ a and 0 ≤ j ≤ b. We can record these
monomials in a rectangular (a+ 1)× (b+ 1) grid. In this grid the box in the i-th row and
the j-th column corresponds to the monomial xiya−izjwb−j.

Figure 2. Imposing a triple point on OP1×P1(4, 6).

If we impose an ordinary k-fold point on the linear system at ([x : y], [z : w]) = ([0 :
1], [0 : 1]), then the coefficients of the monomials

yawb, xya−1wb, . . . , xk−1ya−k+1zk−1wb−k+1

must vanish. We depict this by filling in a k× k triangle of checkers into the boxes at the
upper left hand corner as in Figure 2. The coefficients of the monomials represented by
boxes that have checkers in them must vanish.

We first slide the k-fold point along the fiber f1 onto the point ([x : y], [z : w]) = ([1 :
0], [0 : 1]). This correspond to the degeneration

([x : y], [z : w]) 7→ ([x : ty], [z : w]).

The flat limit of this degeneration is described by the vanishing of the coefficients of certain
monomials (assuming none of the checkers fall out of the rectangle). The monomials whose
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coefficients must vanish are those that correspond to boxes with checkers in them when
we let the checkers fall according to the force of gravity. The first two panels in Figure
3 depict the result of applying this procedure to a 4-fold point when there is an aligned
ideal condition at the point ([x : y], [z : w]) = ([1 : 0], [1 : 0]).

We then follow this degeneration with a degeneration that specializes the k-fold point
to q by sliding along the fiber f2. This degeneration is explicitly given by

([x : y], [z : w]) 7→ ([x : y], [z : tw]).

The flat limit is described by the vanishing of the coefficients of the monomials that have
checkers in them when we slide all the checkers as far right as possible. The last two
panels of Figure 3 depict this degeneration.

Figure 3. Depicting the degenerations by checkers.

Exercise 3.11. Show that, provided none of the checkers fall out of the ambient rectangle
during these moves, these checker movements do record the flat limits of the linear systems
under the given degenerations.

If one can play this checker game with all the multiple points that one imposes on a
linear system so that during the game none of the checkers fall out of the rectangle, one
can conclude that the multiple points impose independent conditions on the linear system.
The limit linear system has the expected dimension. In particular, it is non-special. By
upper semi-continuity, the original linear system must also have the expected dimension
and be non-special.

Exercise 3.12. Unfortunately, when one plays this game, occasionally checkers may fall
out of the rectangle. In that case, we lose information about the flat limits. This may
happen even if the original linear system has the expected dimension. Find examples
where the game fails even though the linear system has the expected dimension (see [Y]).

In order to conclude the proposition we need to show that if we impose at most j(d+1)−
n(k, d) points of multiplicity k on the linear system OP1×P1(d, jk(k+ 1)/2) where 2k ≤ d,
we do not lose any checkers when we specialize all the k-fold points by the degeneration
just described. This suffices to conclude the proposition because general simple points
always impose independent conditions.

The main observation is that if there is a safety net of empty boxes at the top of the
rectangle, then the checkers will not fall out of the box. The proof of the proposition is
completed by noting the following simple facts.
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(1) At any stage of the degeneration the height of the checkers in the rectangle is at
most k larger than the highest row full of checkers.

(2) The left most checker of a row is to the lower left of the left most checker of any
row above it.

If there are at least (k + 1)(d + 1) empty boxes in our rectangle, then by the above
two observations when we specialize a k-fold point we do not lose any of the checkers. As
long as n(k, d) ≥ d2(d+ 1)/ke, there is always at least (k+ 1)(d+ 1) boxes empty. Hence
until the stage where we specialize the last k-fold point we cannot lose any checkers. This
concludes the proof. �

This also concludes the proof of the theorem. �

Exercise 3.13. Show that the class of Ddeg is not an effective divisor class in M0,0(Pd−1, d)
(Hint: Consider the moving curve obtained by taking a pencil of degree d rational curves
on a rational normal surface scroll in Pd−1. Show that this curve has negative intersection
number with Ddeg). Conclude that the inclusion in Proposition 3.3 is strict for r < d.

Exercise 3.14. Determine that the effective cone of M0,0(P2, 3) (Hint: Consider the locus
of maps that fail to be an isomorphism over a point contained in a fixed line in P2. Show
that this is a divisor and together with the boundary divisor generates the effective cone
of M0,0(P2, 3)). Determine the effective cone of M0,0(P3, 4). (Hint: Consider the locus
of maps that fail to be an isomorphism onto their image. Show that this is a divisor
and calculate its class. Show that the effective cone is generated by this divisor and
the boundary divisors.) If you like a challenge, try to determine the effective cone of
M0,0(P2, 4).

Problem 3.15. Determine the effective cone of M0,0(Pr, d) when r < d.

Exercise 3.16. Much of the theory discussed in this section can be generalized to other
homogeneous varieties. In this exercise, you will work out the case of M0,0(G(k, n), k)
with n ≥ 2k.

(1) Identify the Neron-Severi space of M0,0(G(k, n), k) with the vector space generated
by the symbols Hσ1,1 ,Hσ2 and ∆i for 1 ≤ i ≤ bk/2c. Let Eff(M0,0(G(k, r), k))
denote the image of the effective cone in this vector space. Show that

Eff(M0,0(G(k, r), k)) ⊆ Eff(M0,0(G(k, r + 1), k))

with equality if r ≥ 2k. We may, therefore, restrict the discussion to the effective
cone of M0,0(G(k, 2k), k).

(2) Show that in M0,0(G(k, 2k), k) the locus of maps such that the span of the vector
spaces parameterized by f lie in a proper subspace

{(C, f) ∈ M0,0(G(k, 2k), k) | dim(span of f(p), p ∈ C) ≤ 2k − 1}

is a divisor Ddeg in M0,0(G(k, 2k), k). Calculate the class of this divisor. Informally,
this is the locus of degenerate maps.

(3) Let S be the tautological bundle of G(k, 2k). Let Dunb be the closure of the locus
of maps f with irreducible domain such that H0(C, f ∗S ⊗ OC(−2)) 6= 0. Show
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that Dunb is a divisor and calculate its class. Informally, this is the locus of maps
for which the tautological bundle has unbalanced splitting.

(4) Using the moving curves constructed for the case of Pn, construct moving curves
in M0,0(G(k, 2k), k) to show that that the effective cone of M0,0(G(k, 2k), k) is
generated by Ddeg, Dunb and the boundary divisors.

Generalize this discussion to the case M0,0(G(k, n), d) for n ≥ d+ k. Show that it suffices
to consider the case n = d+ k. Show that the locus of degenerate maps is still a divisor.
When k divides d, there is a natural generalization of the divisor Dunb. What happens
when k does not divide d? Find another extremal divisor in this case. For more details
see [CS].

4. The effective cone of the moduli space of curves

There are very few cases when the effective cone of the moduli space of curves is
completely known. In this section, we will see a few examples.

As a first example, we study the effective cone of M0,n/Sn. The moduli space of
n-pointed genus g curves admits a natural action of the symmetric group, where the sym-
metric group acts by permuting the marked points. The Neron-Severi space of M0,n/Sn

is generated by the classes of the boundary divisors ∆2,∆3, . . . ,∆bn/2c.

Theorem 4.1 (Keel-McKernan, [KeM]). The effective cone of M0,n/Sn is the cone
spanned by the classes of the boundary divisors ∆i for 2 ≤ i ≤ bn/2c.

Proof. Let D be an irreducible effective divisor different from a boundary divisor. We
would like to show that the class of D is a non-negative linear combination of boundary

divisors. Write D =
∑bn/2c

i=2 ai[∆i]. We show that ai ≥ 0 by induction on i. Let C2 be the

curve obtained in M0,n/Sn by fixing n− 1 points on P1 and varying the n-th point on P1.
C2 ·∆2 = n− 1 and C2 ·∆i = 0 for i > 2. Moreover, C2 is a moving curve. We conclude
that a2 ≥ 0. Suppose aj ≥ 0 for 2 ≤ j < i ≤ bn/2c. Fix a P1 with i distinct fixed points
p1, . . . , pi−1 and q1. Fix another P1 with n− i+ 1 fixed points pi, . . . , pn and one variable
point q2. Glue the two P1’s along q1 and q2. Let Ci be the curve in M0,n/Sn obtained by
letting q2 vary. Then Ci ·∆i = n− i+ 1, Ci ·∆i−1 = 2− (n− i+ 1) = −n+ i+ 1 < 0 and
Ci · ∆j = 0 for j 6= i − 1, 1. Curves with the class Ci cover the boundary divisor ∆i−1.
Since D is an irreducible divisor different from the boundary divisors, we conclude that a
general curve with the class Ci cannot be contained in D. Hence, Ci ·D ≥ 0. It follows
that ai ≥ 0 concluding the induction step. �

Exercise 4.2. Examine the previous proof to show that ∆i is in the stable base locus of a
divisor with class D =

∑
aj[∆j] unless

ai+1

ai
≥ n− i− 2

n− i
.

Exercise 4.3. Using the Theorem of Keel and McKernan, deduce that the effective cone
of the locus of hyperelliptic curve Hg is spanned by the boundary divisors.

In contrast to M0,n/Sn, the effective cone of M0,n seems to be very complicated.
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Exercise 4.4. Using the fact that M0,5 is isomorphic to the Del Pezzo surface D5, show
that the effective cone of M0,5 is the cone spanned by the boundary divisors.

Already for M0,6 the boundary divisors do not generate the effective cone. There are
several ways of generating effective divisors on M0,n. First, there are natural gluing maps

gl : M0,2n → Mg

obtained by gluing the points marked p2i−1, p2i to obtain an n-nodal genus n curve. One
can pull-back effective divisors that do not contain the image of gl to obtain effective
divisors on M0,2n. There are several other such gluing maps that one may consider. For
example, one may glue a fixed one-pointed elliptic curve at each of the marked points to
obtain a map

gl′ : M0,g → Mg.

Pulling back effective divisors not containing the image of gl′ produces effective divisors
on M0,n. Next, given an effective divisor in M0,n−k, one may pull-back this divisor via the
forgetful maps

πi1,...,ik : M0,n → M0,n−k

to obtain effective divisors in M0,n. More interestingly, by appropriately choosing the for-
getful morphisms, one may construct birational morphisms from M0,n to a product M0,ni .
Again by choosing the numerics carefully, one sometimes obtains divisorial contractions
(see [CaT1]). The exceptional divisor in that case is an extremal ray of the effective cone.

As already mentioned, the effective cone of M0,6 is not generated by the boundary
divisors. Keel and Vermeire [Ve] have constructed an effective divisor that is not in the
non-negative span of the boundary.

Exercise 4.5. Consider the gluing map

gl : M0,6 → M3.

Show that the locus of hyperelliptic curves Hyp is a divisor in M3 that does not contain
the image of gl. Let DKV be the closure of gl−1(Hyp). Show that the class of DKV is not a
non-negative linear combination of boundary divisors to conclude that the effective cone of
M0,6 is not generated by boundary divisors. In fact, show that there are 15 such different
divisor classes (obtained by different possible identifications of the pairs of points).

Exercise 4.6. Show that a different way of thinking of DKV , which is probably more
convenient for computations, is as the locus of curves that are invariant under the element

(i1, i2)(i3, i4)(i5, i6) ∈ S6.

Exercise 4.7. Show that pulling back the previous divisor by the forgetful morphisms
produces effective divisors in any M0,n that are not the spans of boundary divisors for any
n ≥ 6.

Hassett and Tschinkel have proved that, in fact, the effective cone of M0,6 is generated
by the boundary divisors and the 15 Keel-Vermeire divisors constructed in the previous
exercises.
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Theorem 4.8 (Hassett-Tschinkel, [HT]). The effective cone of M0,6 is generated by the
boundary divisors and the Keel-Vermeire divisors.

We do not know the effective cone of M0,n for n > 6. However, recently Ana-Maria
Castravet and Jenia Tevelev have studied the effective cone of M0,n (see [CaT1] and
[CaT2]) in general. They have constructed new effective divisors called hypertree divisors.

Definition 4.9. A hypertree Γ = {Γ1, . . . ,Γd} on a set N is a collection of subsets of N
such that

• Each subset Γj has at least three elements;
• Any element α ∈ N is contained in at least two of the subsets Γj;
• For any subset S ⊂ {1, . . . , d},

(∗) |
⋃
j∈S

Γj| − 2 ≥
∑
j∈S

(|Γj| − 2)

•

|N | − 2 =
d∑
j=1

(|Γj| − 2).

A hypertree Γ is irreducible if the inequality (*) is strict for 1 < |S| < d.

Exercise 4.10. Find all the irreducible hypertrees when N has cardinality 6, 7 or 8.

Definition 4.11. A planar realization of a hypertree Γ of N = {1, . . . , n} is a configuration
of distinct points p1, . . . , pn ∈ P2 such that for any subset S ⊂ N of cardinality at least
three {pi}i∈S are collinear if and only if S ⊂ Γj for some j.

Given a hypertree Γ of {1, . . . , n}, Castravet and Tevelev construct an effective divisor
DΓ of M0,n. DΓ is the closure of the locus of n-pointed curves that occur as the projection
of a planar realization of Γ from a point p ∈ P2.

Theorem 4.12 (Castravet-Tevelev, [CaT2]). For any irreducible hypertree Γ, the locus
DΓ ⊂ M0,n is a non-empty, irreducible divisor, which generates an extremal ray of the
effective cone of M0,n. Furthermore, there exists a birational contraction such that the
divisor DΓ is the irreducible component of the exceptional locus that intersects the interior
M0,n.

Castravet and Tevelev go as far as conjecturing that the hypertree divisors and bound-
ary divisors generate the effective cone of M0,n.

Conjecture 4.13 (Castravet-Tevelev, [CaT2]). The effective cone of M0,n is generated
by the boundary divisors and the divisors DΓ parameterized by irreducible hypertrees.

Exercise 4.14. Show that the Keel-Vermeire divisor in M0,6 is a hypertree divisor. Con-
clude by the theorem of Hassett and Tschinkel that the Castravet-Tevelev Conjecture
holds for n = 6.

Problem 4.15. Consider the locus of curves in M10 whose canonical images occur as hy-
perplane sections of K3 surfaces. This locus is a divisor DK3 discussed below. Does
the closure of gl−1(DK3) in M0,20 give an effective divisor on M0,20 that is in the cone
generated by hypertree and boundary divisors?
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Problem 4.16. Determine the effective cone of M0,n for n > 6.

It is not even known whether the effective cone of M0,n has finitely many extremal rays.
A Mori dream space is a Q-factorial, projective variety X with Pic(X)⊗R = N1(X) and
whose Cox ring is finitely generated. Mori dream spaces were introduced in [HuK]. They
satisfy many nice properties. For example, in Mori dream spaces, one can run Mori’s
program for every divisor. The NEF cone of a Mori dream space is generated by finitely
many semi-ample divisors. The effective cone of a Mori dream space is finite polyhedral.
One may be bold and conjecture the following:

Conjecture 4.17. M0,n is a Mori dream space for all n.

In particular, the conjecture would imply that the cones of ample and effective divisors
are finite polyhedral cones. The conjecture is easy for n ≤ 5 (check it in these cases!) and
known for n = 6 by Castravet’s work [Ca].

Our knowledge of the effective cone of Mg,n is even more limited. We can determine
the effective cone for some (very) small genus examples. The work of Harris-Mumford
[HM], Eisenbud-Harris [EH4], [H], Farkas-Popa [FaP], Farkas [Far1], [Far3], Khosla [Kh]
and many many others construct interesting effective divisors. Of course, each time
one constructs an effective divisor, one determines part of the effective cone. Recently,
there has been some work by Harris-Morrison [HMo2], Chen [Ch2], Fedorchuk [Fe] and
Pandharipande [Pa3] for bounding the cone of effective divisors by constructing moving
curves. Each time one constructs a moving curve, the effective cone has to lie to one
side of the hyperplane in N1 determined by that moving curve. One thus obtains a cone
containing the effective cone. Unfortunately, we will not be able to survey this literature
in any detail. None the less, let us turn to a few fun examples.

Exercise 4.18. Show that a general genus 2 curve occurs as a (2, 3) curve on P1×P1. More
generally, show that a general hyperelliptic curve of genus g can be embedded in P1 × P1

as a (2, g + 1) curve.

Proposition 4.19. The effective cone of M2 is generated by the boundary divisors δirr
and δ1.

Proof. Since in genus 2, the divisors δirr, δ1 and λ satisfy the linear relation

10λ = δirr + 2δ1,

the Neron-Severi space has dimension two. We need to determine the two rays bounding
the effective cone. Write the class of an effective divisor as D = aδirr + bδ1. We would
like to show that a, b ≥ 0. We can assume that D is an irreducible divisor that does not
contain any of the boundary divisors. Take a general pencil of (2, 3) curves in P1 × P1.
This pencil induces a moving curve C in M2. Since none of the curves in this pencil is
reducible and 20 members of the family are singular, we conclude C ·D = 20a ≥ 0. Hence,
a ≥ 0. Let B be the curve in M2 obtained by taking a fixed elliptic curve E with a fixed
point p ∈ E and identifying a variable point q ∈ E with p to form a genus two nodal
curve. Note that B is a moving curve in the boundary divisor ∆irr. Since

B · δirr = −2, B · δ1 = 1,
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we conclude that −2a+ b ≥ 0. Hence, b ≥ 2a ≥ 0. �

Exercise 4.20. Verify the intersection numbers in the previous proof.

Exercise 4.21. Show that the boundary divisor δirr is in the stable base locus of D =
aδirr+bδ1 if b < 2a. (Hint: Use the curve B introduced in the previous proof.) Conversely,
show that the stable base locus of D = δirr + 2δ1 is empty.

Exercise 4.22. Show that the boundary divisor δ1 is in the stable base locus of D =
aδirr + bδ1 if 12a < b. (Hint: Consider the curve in M2 obtained by taking a pencil of
cubics in P2 and attaching a fixed elliptic curve at one of the base points.)

Exercise 4.23. To complement the previous two exercises, show that D is ample if and only
if 12a > b > 2a > 0. Conclude that the effective cone decomposes into three chambers
consisting of the ample cone bounded by the rays δirr+2δ1 and 12δirr+δ1, a cone bounded
by the rays δirr and δirr + 2δ1, where the stable base locus is the divisor ∆irr ,and a cone
bounded by the rays 12δirr+δ1 and δ1, where the stable base locus is the boundary divisor
∆1.

Theorem 4.24 (Rulla, [Ru]). The effective cone of M3 is generated by the classes of the
divisor of hyperelliptic curves Dhyp and the boundary divisors δirr and δ1.

Proof. First, the class of Dhyp is given by [Dhyp] = 18λ − 2δirr − 6δ1. As usual, express
D = a[Dhyp] + b0δirr + b1δ1. We may assume that D is the class of an irreducible divisor
that does not contain any of the boundary divisors or Dhyp. Take a general pencil of
quartic curves in P2. This pencil induces a moving curve C1 in the moduli space which
is disjoint from ∆1 and Dhyp and has intersection number C1 · δirr = 27 (note also that
C1 · λ = 3). It follows that b0 ≥ 0. Fix a genus 2 curve A and a pointed genus one curve
(E, p). Let C2 be the curve in moduli space induced by attaching (E, p) to A at a variable
point q ∈ A. We have the intersection numbers

C2 · λ = 0, C2 · δirr = 0, C2 ·Dhyp = 12, C2 · δ1 = −2.

Since the class of C2 is a moving curve class in ∆1, we conclude that 12a− 2b1 ≥ 0. Next
fix a genus 2 curve A and a point p ∈ A. Let C3 be the curve induced in the moduli space
by the one-parameter family of nodal genus 3 curves obtained by gluing p to a variable
point q ∈ A. The intersection numbers of C3 are

C3 · λ = 0, C3 ·Dhyp = 2, C3 · δirr = −4, C3 · δ1 = 1.

Since C3 is a moving curve class in ∆irr, we have that 2a − 4b0 + b1 ≥ 0. Rewriting, we
see that 2a + b1 ≥ 4b0 ≥ 0. Since a ≥ 1

6
b1, we conclude that a has to be non-negative.

Finally, to see that b1 is non-negative, restrict the class of D to Dhyp (In Exercise 2.6
we have calculated this restriction.) Dhyp is ample in the Satake compactification of Mg.
Hence, Dhyp intersects D in an effective divisor. Since the coefficient of Θ1 in i∗(Dhyp) to
Dhyp is negative, we conclude that b1 ≥ 0. (In fact, show that if b1 < 3/7a, then Dhyp

must be in the base locus of D.) �

There are a few other curves that are worth analyzing. Let C4 be the curve obtained
by attaching a general one-pointed genus 2 curve to a pencil of cubic curves at a base
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point. Then

C4 · λ = 1, C4 ·Dhyp = 0, C4 · δirr = 12, C4 · δ1 = −1.

Conclude that if b0 < b1/12, then ∆1 is in the stable base locus of D. Similarly, let C5 be
a general pencil of (2, 4) curves on a quadric surface. Then

C5 · λ = 3, C5 · δ1 = 0, C5 · δirr = 28, C5 ·Dhyp = −2.

Conclude that Dhyp is in the stable base locus of D if b0 < a/14.

Exercise 4.25. Let C be a general pencil of plane curves of degree d. Show that the
normalization of every member of C is irreducible. Similarly, let C be a general pencil of
curves of bi-degree (a, b) on P1 × P1. Show that if a and b are larger than one, then the
normalization of every curve parameterized by C is irreducible.

Exercise 4.26. Let C be a plane quartic curve with one node. Let Cv denote the normal-
ization of C and let p and q be the points lying over the node in the normalization. Show
that C is in the closure of the locus of hyperelliptic curves if and only if p+ q is linearly
equivalent to KCv . Conclude that a general pencil of quartic curves does not intersect the
locus of hyperelliptic curves in M3.

Exercise 4.27. Verify the intersection numbers of C1, · · ·C5 with the standard divisors
claimed above.

Exercise 4.28. Using the curve class C1, C2 and C4, verify that [Dhyp] = 18λ − 2[∆irr] −
3[∆1].

Exercise 4.29. Imitate the cases of g = 2, 3 to explore the effective cone of Mg when g = 4
and g = 5.

Problem 4.30. Determine the effective cone of Mg.

Currently this problem seems to be out of reach. A simpler problem is to determine
the intersection of the effective cone with the plane spanned by λ and δ. Since the Satake
compactification is a compactification of the moduli space of smooth curves where the
boundary has codimension two, one extremal ray of this cone is generated by δ. The
slope of the other boundary ray of the effective cone in the (λ − δ)-plane is not known
and is called the slope of Mg. The importance of the slope will become clearer below. We
will see that the slope determines the g for which the moduli space is of general type.
Unfortunately, even the slope of the moduli space of curves is not known. We will discuss
this problem in more detail in section §7.

5. The canonical class of Mg

The canonical class of the moduli space of curves can be calculated using the Grothendieck
-Riemann-Roch formula (see [HM]).

Theorem 5.1. The canonical class of the coarse moduli scheme Mg is given by

KMg
= 13λ− 2δ − δ1.
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Proof. Let π : C0
g → M

0

g be the universal family over the moduli space of stable curves

without any automorphisms. The cotangent bundle of Mg at a smooth, automorphism-
free curve is given by the space of quadratic differentials. More generally, over the
automorphism-free locus the canonical bundle will be the first chern class of

π∗(ΩMg,1/Mg
⊗ ωMg,1/Mg

).

We can calculate this class in the Picard group of the moduli stack using Grothendieck
-Riemann-Roch:

π∗

((
1 + c1(Ω⊗ ω) +

c2
1(Ω⊗ ω)

2
− c2(Ω⊗ ω)

)(
1− c1(Ω)

2
+
c2

1(Ω) + c2(Ω)

12

))
Note that

Ω = ISing · ω,
where ISing denotes the ideal of the singular locus. Hence, expanding (and simplifying
using the relations we have already discussed), we see that this expression equals

π∗

(
2c2

1(ω)− [Sing]− c2
1(ω) +

c2
1(ω) + [Sing]

12

)
= 13λ− 2δ.

We need to adjust this formula to take into account that every element of the locus of
curves with an elliptic tail has an automorphism given by the hyperelliptic involution on
the elliptic tail. The effect of this can be calculated in local coordinates to see that it
introduces a simple zero along δ1. �

Exercise 5.2. Check the last statement in the computation of the canonical class. Choose
local coordinates t1, . . . , t3g−3 for the deformation space of a curve C ∪ E (where C ∪ E
is a general point of ∆1) such that the automorphism g of C ∪ E acts by g∗t1 = −t1 and
g∗ti = ti for i > 1. Then one can choose local coordinates for Mg near C ∪ E so that
s1 = t21 and si = ti for i > 1. Finish the computation by comparing

ds1 ∧ · · · ∧ ds3g−3 = 2t1 dt1 ∧ · · · ∧ dt3g−3.

Remark 5.3. In terms of the class of the boundary divisors in Mg, the canonical class is

13λ− 2[∆] +
1

2
[∆1].

6. Ample divisors on the moduli space of curves

In order to show that the moduli space is of general type we need to show that the
canonical bundle is big (on a desingularization). In view of the discussion in the first
section, we can try to express the canonical bundle as a sum of an ample and an effective
divisor. The G.I.T. construction gives us a large collection of ample divisors.

For our purposes in the next section, we need only the following fact:

Lemma 6.1. The divisor class λ is big and NEF.
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Proof. The shortest proof of this result is based on some facts about the Torelli map and
the moduli spaces of abelian varieties. We can map the moduli space of curves Mg to
the moduli space Ag of principally polarized abelian varieties of dimension g by sending
C to the pair (Jac(C),Θ) consisting of the Jacobian of C and the theta divisor. In
characteristic zero, this map extends from Mg to the Satake compactification of Ag. The
class λ is a multiple of the pull-back of an ample divisor on Ag. The lemma follows. �

A much more precise theorem due Cornalba and Harris [CoH], which we will need in
the last section, determines the restriction of the ample cone of Mg to the plane spanned
by λ and δ.

Theorem 6.2. Let a and b be any positive integers. Then the divisor class aλ − bδ is
ample on Mg if and only if a > 11b.

For a nice exposition of the proof see [HMo1] §6.D.

Remark 6.3. Note that λ itself is not ample, but since it is big it is a sum of an ample
and an effective divisor. Consequently, to show that the canonical bundle of Mg is big, it
suffices to express it as a sum of λ and an effective divisor.

Exercise 6.4. Fix a curve C of genus g − 1 and a pointed curve (E, p) of genus one. Let
B be the curve in Mg obtained by attaching (E, p) to (C, q) at a variable point q ∈ C.
Show that the degree of λ on B is zero. Conclude that λ is not ample.

Exercise 6.5. Conclude from the previous two results that the intersection of the ample
cone with the plane spanned by δ and λ is bounded by the rays λ and 11λ− δ.

We do not know the ample cone of Mg in general. There is, however, a beautiful
conjecture due to Fulton that describes the ample cone of Mg,n in general.

Definition 6.6. The dual graph of a stable curve C is a decorated graph such that

(1) The vertices are in one-to-one correspondence with the irreducible components of
C. Each vertex is marked by a non-negative integer equal to the geometric genus
of the corresponding component.

(2) For every node of C there is an edge connecting the corresponding vertices.
(3) For every marked point pi, there is a half-edge emanating from the vertex corre-

sponding to the component containing pi.

Figure 4. The dual graph of a stable curve.
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Example 6.7. Figure 4 depicts the dual graph of a 2-pointed, genus 5 stable curve with
3 components C1, C2, C3. C1 is a nodal rational curve with no marked points. C2 is a
genus one curve containing the marked point p2 and C3 is a genus 2 curve containing the
marked point p1. The three irreducible components are pairwise connected by a node.

Exercise 6.8. Show that only finitely many graphs can occur as the dual graphs of n-
pointed, genus g stable curves.

Exercise 6.9. List all the dual graphs for the following values of (g, n):

(2, 0), (3, 0), (4, 0), (2, 1), (2, 2), (2, 3).

There is a stratification of Mg,n, called the topological stratification, where the strata
are indexed by the dual graphs and consist of stable curves with that dual graph.

Exercise 6.10. Show that the codimension of a stratum is the number of nodes of a curve
contained in the stratum (equivalently, the number of edges in the dual graph).

In particular, the strata consisting of curves with 3g − 4 + n nodes form curves in
Mg,n called F -curves (in honor of Faber and Fulton). Of course, every ample divisor has
positive degree on each F -curve. Fulton’s Conjecture asserts that the converse is also
true.

Conjecture 6.11. (F -conjecture) A divisor D on Mg,n is ample if and only if D ·C > 0
for every F -curve on Mg,n.

A consequence of the conjecture would be that the ample cone of Mg,n is a finite,
polyhedral cone. There is a nice theorem due to Gibney, Keel and Morrison that asserts
that to prove the F -conjecture it suffices to check it for g = 0. Unfortunately, even for
g = 0, the cones involved are combinatorially very complicated.

The locus of pig tails is the image of the morphism M0,g+n/Sg → Mg,n obtained by
attaching the one-pointed, one-nodal genus one curve at the g unordered points.

Theorem 6.12 (Gibney, Keel, Morrison, [GKM]). A divisor D on Mg.n is NEF if and
only if D has non-negative intersection with all the F -curves and the restriction of D
to the locus of pig tails is NEF. In particular, the F -conjecture for g = 0 implies the
F -conjecture for all g.

We should also remark that the F -conjecture is known for small genera and small
numbers of points thanks to the work of Keel, McKernan, Farkas and Gibney (see [KeM],
[FaG], [Gi]).

7. The moduli space Mg is of general type when g ≥ 24

7.1. The general strategy. In this section, we would like to sketch the main steps of
the proof of the fundamental theorem due to Harris, Mumford and Eisenbud that asserts
that Mg is of general type for g ≥ 24. You can read more about the details in [HMo1]
§6.F. The papers [HM], [H] and [EH4] contain the proofs.

Theorem 7.1. The moduli space of curves Mg is of general type if g ≥ 24.
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The strategy of the proof is to show that the canonical class of the moduli space of
curves is big by showing that it is numerically equivalent to the sum of an ample and an
effective divisor. We already know that the class of any divisor on the moduli space may
be expressed as a linear combination of the classes λ and the boundary divisors δi.

We also know that the canonical class of Mg is given by the formula

KMg
= 13λ− 2δ − δ1.

Since (11 + ε)λ− δ is ample, λ is big. Hence, if we could find an effective divisor D with
class

aλ− b0δirr − b1δ1 − · · · − bbg/2cδbg/2c
satisfying the inequalities

a

bi
<

13

2
,

a

b1

<
13

3
,

we can conclude that the canonical bundle is big. We will have expressed the canonical
class as the sum of the classes of a big divisor λ and an effective divisor (a non-negative
linear combination of D and the boundary divisors).

In order to encode the inequalities in the previous paragraph, one introduces the notion
of the slope. The slope of a divisor [D] = aλ−b0δirr−· · ·−bbg/2cδbg/2c on Mg is the maximum

of a/bi. The slope of the moduli space Mg is the infimum over all effective divisors D of
the slope of D. In order to prove that Mg is of general type, we need to produce divisors
of sufficiently small slope.

There are two main difficulties with the approach we have outlined so far. First the
construction of effective divisors with small slope is a difficult problem. We will see
that the Brill-Noether and Petri divisors will do the job for Theorem 7.1. However, the
calculation of these divisor classes requires some work.

The second problem is that even if we show that there are many canonical forms on
Mg, this does not necessarily prove that the moduli space is of general type. The problem
is that Mg is singular. It is possible that canonical forms defined on the smooth locus do
not extend to a desingularization. Luckily, this is not the case. All the singularities of
Mg are canonical, hence the canonical forms defined on the smooth locus extend to any
desingularization. More precisely:

Theorem 7.2. Let g ≥ 4. Then for every n, the n-canonical forms defined on the locus
of curves without automorphisms extend to n-canonical forms on a desingularization of
Mg.

A sketch of some ideas. The proof of this theorem would take us too far afield. We will
briefly outline some of the main ideas that go into the proof. For a complete argument
see [HM].

The moduli space of curves has only finite quotient singularities along the locus of curves
with non-trivial automorphisms. Locally analytically, around a point corresponding to a
curve C with an automorphism, the moduli space looks like an open set in C3g−3 modulo
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the action of the automorphism group of C. We may, therefore, analyze the singularities
of the moduli space using the Reid-Tai Criterion (see [R] and [T]). Let G be a finite
group acting on a finite dimensional vector space V linearly. Let V 0 be the locus where
the action is free. The Reid-Tai criterion answers the question of when pluri-canonical
forms extend from V 0/G to a desingularization of V/G. For all g ∈ G, let g be conjugate
to a matrix Diag(ζa1 , . . . , ζad) where ζ is a primitive m-th root of unity and 0 ≤ ai < m.
If for all g ∈ G and ζ

d∑
i=1

ai
m
≥ 1

then any pluri-canonical form on V 0/G extends holomorphically to a desingularization of
V/G.

In view of the Reid-Tai Criterion, one has to check whether
∑d

i=1
ai
m
≥ 1 holds and,

in cases it does not hold, verify by hand that the pluri-canonical sections extend holo-
morphically to a desingularization. The following theorem characterizes the stable curves
that fail to satisfy the Reid-Tai criterion.

Theorem 7.3. Let C be a stable curve of arithmetic genus g ≥ 4. Let φ be an auto-
morphism of C of order n. Let ζ be a primitive n-th root of unity and suppose that the
action of φ on H0(ΩC ⊗ ωC) is given by Diag(ζa1 , . . . , ζa3g−3). Then one of the following
possibilities hold:

(1)
∑3g−3

i=1
ai
m
≥ 1.

(2) C is the union of an elliptic or one-nodal rational curve C1 meeting a curve C2 of
genus g − 1 at one point. φ is the hyperelliptic involution on C1 and the identity
on C2.

(3) C is the union of the elliptic curve C1 with j invariant 0 meeting a curve C2 of
genus g − 1 at one point. φ is an order 6 automorphism of C1 and is the identity
on C2.

(4) C is the union of the elliptic curve C1 with j invariant 123 meeting a curve C2 of
genus g − 1 at one point. φ is an order 4 automorphism of C1 and is the identity
on C2.

The proof of this result rests on a case by case analysis of the possibilities based on a
lemma that solves the problem for smooth curves.

Lemma 7.4. Let C be a smooth curve. Let φ be an automorphism of C of order n. Let
ζ be a primitive n-th root of unity and suppose that the action of φ on H0(ΩC ⊗ ωC) is
given by Diag(ζa1 , . . . , ζa3g−3). Then one of the following possibilities hold:

(1)
∑3g−3

i=1
ai
m
≥ 1.

(2) C is a genus zero or one curve.
(3) C is a hyperelliptic curve of genus 2 or 3 and φ is the hyperelliptic involution.
(4) C is a genus 2 curve which is the double cover of an elliptic curve and φ is the

involution exchanging the branches.
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The proof of the lemma is based on an analysis of the possibilities using the Riemann-
Hurwitz formula.

The final step of the proof is to check by explicit computation that pluri-canonical
forms extend to the resolution of the singularities over the loci that do not satisfy the
Reid-Tai Criterion.

�

The fact that Mg has canonical singularities allows us to carry out the naive program
outlined above. We need effective divisors of small slope. The largest dimensional irre-
ducible component of the locus of curves that admit a degree d map to Pr, where g, r, d
satisfy the equality

g − (r + 1)(g − d+ r) = −1,

forms a divisor on Mg called the Brill-Noether divisor. Its class is calculated in the
following theorem.

Theorem 7.5. If g + 1 = (r + 1)(g − d + r), then the class of the Brill-Noether divisor
on Mg is given by

c

(g + 3)λ− g + 1

6
δirr −

bg/2c∑
i=1

i(g − i)δi


where c is a positive rational constant.

Unfortunately, this divisor exists only when g + 1 is composite. When g is composite
and g + 1 is not, every curve admits finitely many degree d maps to Pr, where

g − (r + 1)(g − d+ r) = 0.

The number of such maps may be determined by Schubert calculus. We can then try to
define a divisor by asking that some of these maps not be distinct. This will essentially
be the Petri divisor (we will give a more precise definition below).

Example 7.6. The Petri divisors in g = 4 and 6 are fun to describe. Consider a smooth,
non-hyperelliptic curve C of genus 4. The canonical model of such a curve is the complete
intersection in P3 of a quadric and a cubic surface. Such a curve lies on a unique quadric
surface. If the quadric is a smooth quadric surface, then C possesses two (distinct) g1

3s.
They are given by projection to either of the factors of P1 × P1. In codimension one, C
lies on a quadric cone. Such curves do not admit two distinct g1

3s. The Petri divisor is
simply the closure of the locus of such curves.

Exercise 7.7. Calculate the class of the divisor in M4 given by the closure of the locus of
non-hyperelliptic curves whose canonical model lies on a singular quadric surface in P3.

Example 7.8. Let C be a smooth, non-hyperelliptic curve of genus 6. A general such curve
C lies on a Del Pezzo surface of degree 5 and contains 5 distinct g2

6s corresponding to the
ways of blowing down D5 to P2 (verify these claims!). If C lies on a Del Pezzo surface
with double points, then these g2

6s are no longer distinct. The Petri divisor is the closure
of the locus of such curves.

33



Exercise 7.9. Calculate the class of this divisor in M6.

In general, the Petri divisor is defined as the closure of the union of codimension one
loci in Mg of curves which possess a linear series V ⊂ H0(C,L) of degree d and dimension
1 such that the multiplication map

V ⊗H0(C,K ⊗ L−1)→ H0(C,K)

is not injective.

Theorem 7.10. Let g = 2(d− 1). Then the class of the Petri divisor is given by

2(2d− 4)!

d!(d− 2)!

(
(6d2 + d− 6)λ− d(d− 1)δirr − (2d− 3)(3d− 2)δ1 − · · ·

)
,

where the coefficients of the remaining boundary divisors are negative and larger in abso-
lute value than that of δ1 (at least when d > 4).

The Brill-Noether and Petri divisors give us the necessary divisors to conclude the proof
of Theorem 7.1. When g ≥ 24 and odd, we can use the Brill-Noether divisor with r = 1.
The relevant ratio is that of λ and δ0 and is equal to

6 +
12

g + 1
.

When g ≥ 24 this is less than 6.5, hence the canonical class of Mg is big provided g + 1
is not prime. The Brill-Noether divisors also take care of the cases g = 24, 26. When g is
even and greater than or equal to 28, the Petri divisor works to give the conclusion.

We will spend the next section calculating the class of the Brill-Noether divisor. The
class of the Petri divisor is harder to compute. You can find the computation in [EH4].

Remark 7.11. Recently, G. Farkas has announced that M22 is also of general type. The
strategy of his proof is the same. However, he constructs more elaborate effective divisors
[Far2], [Far1], [Far3].

This section clarifies the importance of the slope defined in §4. Unfortunately the slope
of the moduli space is not known. Initially, Harris and Morrison conjectured that the
Brill-Noether divisor should give the divisor with the smallest slope on the moduli space
[HMo2]. This conjecture turns out to be false. For example, in M10 the closure of the
locus of curves whose canonical models occur as hyperplane sections of K3-surfaces forms
a divisor DK3. The class of this divisor has been calculated by Farkas and Popa [FaP].

[DK3] = 7λ− δirr −
5∑
i=1

i(11− i)
2

δi.

In particular, the slope obtained from this divisor is 7 < 7 1
11

, which is less than the
Brill-Noether slope.
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Exercise 7.12. It is somewhat surprising that the locus of curves that are hyperplane
sections of K3 surfaces forms a divisor in M10. Show that the moduli space of K3 surfaces
with a fixed polarization has dimension 19. It turns out that if a canonical curve C of
genus 10 is a hyperplane section of a K3-surface, then it is the hyperplane section of a
3-dimensional family of K3-surfaces. Using this fact, show that DK3 is indeed a divisor.

Exercise 7.13. Show that the slope of M2 is 10. (Hint: Consider a pencil of (2, 3)-curves
on a quadric surface and use the relation between λ, δirr and δ1).

Exercise 7.14. Show that the slope of M3 is 9. (Hint: The divisor of hyperelliptic curves
has slope 9. On the other hand, considering the curve induced by a general pencil of
quartic plane curves, show that the slope cannot be less than 9.)

Exercise 7.15. Show that the slope of M4 is 17/2. (Hint: The divisor of curves whose
canonical model lies on a singular quadric surface in P3 has slope 17/2. On the other
hand, by taking a pencil of (3, 3) curves on a smooth quadric surface in P3 show that the
slope cannot be less than 17/2.)

Exercise 7.16. Show that the slope of M5 is 8. (Hint: The Brill-Noether divisor has slope
8. Show that no member of the one-parameter family of canonical curves that contain 11
general points and intersect a general line is contained in a cubic scroll. Conclude that
the slope cannot be less than 8.)

Exercise 7.17. Show that the slope of M6 is 47/6. (Hint: The Petri divisor has slope 47/6.
By taking a pencil of canonical curves in a smooth Del Pezzo surface D5, show that the
slope cannot be less than 47/6.)

Exercise 7.18. Determine the slope of Mg for g < 12. (Hint: The slope conjecture of
Harris and Morrison is true in this range except for g = 10. The divisor class determined
by Farkas and Popa gives the largest possible slope in g = 10. Use pencils of hyperplane
sections on a K3 surface to check these statements.)

One way to obtain moving curves in Mg is to consider one-parameter families of canon-
ical curves incident or tangent to general linear spaces. Let

C(a0Λ0, . . . , ag−3Λg−3, b1TΓ1, . . . , bg−2TΓg−2)

denote the locus of canonical curves of genus g in Pg−1 that are incident to ai general
linear spaces Λi of dimension i and are tangent to bi general linear spaces Γi of dimension
i such that

g−2∑
i=0

ai(g − 1− i) +

g−1∑
i=1

bi(g − i) = g2 + 3g − 5.

Let the canonical cone be the cone in N1 cut out by the supporting hyperplanes to non-
empty curves of this form as ai and bi vary over all possible values.

Exercise 7.19. Show that the effective cone of Mg is contained in the canonical cone of
Mg.
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Exercise 7.20. Show that these curves give a uniform way of interpreting some of the
calculations described in the exercises above and give a way of generalizing them to higher
genera. In particular, show that C(13P0) gives the sharp slope bound in M3, C(9P0, 5P1)
gives the sharp slope bound in M4, C(11P0,P1) gives the sharp slope bound in M5 and
C(15P0,P1,P2) gives the sharp slope bound in M6.

Unfortunately, it is hard to compute the canonical cone in general.

Problem 7.21. Determine the canonical cone of Mg. In particular, determine the slope
bound from the one-parameter families of canonical curves described above.

Remark 7.22. By the work of Harris-Morrison [HMo2] and Pandharipande [Pa3], we know
that the slope of Mg is positive. These papers in fact show that the slope is bounded
below by c/g for an appropriate positive constant c. However, we do not know any
effective divisor on any Mg whose slope is less than 6. As g tends to infinity, it would be
interesting to determine whether the slope tends to zero or remains bounded below by a
positive constant. If such a constant exists, it has to be less than or equal to 6 (Show this
by calculating the slope of the Brill-Noether divisors!). It is known that the slope of the
moduli space Ag of principally polarized abelian varieties of dimension g tends to zero as
g tends to infinity. If the slope of Mg is bounded below by a positive constant, then one
would obtain equations for the Schottky locus.

The Kodaira dimension of Mg is not known for all g. M2 is rational. Using the explicit
description of canonical curves of genus g ≤ 6, it is easy to see that Mg is unirational
when g ≤ 6. With quite a bit more work, it is possible to see that Mg is unirational for
g ≤ 13 and uniruled for g ≤ 15.

Exercise 7.23. Using the explicit description of hyperelliptic curves of genus g as double
covers of P1 branched along 2g + 2 points, show that the hyperelliptic locus of genus g
curves Hg ⊂ Mg is rational. In particular, conclude that M2 is rational.

Exercise 7.24. Show that Mg is unirational for g = 3, 4, 5, 6. (In fact, Mg is rational for
g ≤ 6 [KS]).

Exercise 7.25. If you would like a challenge, show that Mg is unirational for g = 7, 8, 9, 10.
If you are feeling really energetic, show that Mg is unirational for g ≤ 13 (see [ChR] for
g = 11, 12, 13.)

Exercise 7.26. Show that the trigonal locus (the locus of curves that admit a degree three
map to P1) is unirational. How about the tetragonal or pentagonal loci?

Problem 7.27. What is the Kodaira dimension of the k-gonal locus in Mg? If you fix k
and let g tend to infinity, how does the Kodaira dimension of the k-gonal locus vary?

Problem 7.28. Determine the Kodaira dimension of Mg when 15 < g ≤ 21.

It is also known that when g ≥ 2, Mg,n is of general type for n sufficiently large. The
best results of this form to date are due to Logan [Lo] and Farkas [Far1]. It would take
us too far a field to explore this avenue in detail, but we encourage the reader to consult
the literature for more information.
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7.2. The Brill-Noether Theorem. In this subsection, we will discuss some of the basics
of Brill-Noether theory and the theory of limit linear series. Eisenbud and Harris have
developed this theory in order to prove theorems like the Brill-Noether Theorem or the
Gieseker-Petri Theorem. We will describe their approach to some of these theorems. The
best places to start learning about the subject are Chapter 5 of [HMo1] and [ACGH].
Other good references are [GH], [EH1], [EH2], [EH3], [EH4], [K1], [K2].

Brill-Noether theory asks the following fundamental question:

Question 7.29. When can a curve of genus g be represented in Pr as a non-degenerate
curve of degree at most d?

There is an expected answer to this question. We may reformulate the question as
follows. When does there exist a degree d line bundle on a curve C of genus g with
at least an (r + 1)-dimensional space of global sections? We can calculate the expected
dimension of this locus in Picd(C) as follows. Let us twist all the line bundles in Picd(C)
by OC(np) for a sufficiently large n (large enough so that h1(C,L ⊗ OC(np)) = 0 for all
line bundles L of degree d. This, of course, can be achieved by taking n > 2g − 1 − d).
Over Picd(C) there is a map between the push-forward of the Poincaré bundle and the
trivial bundle of rank n given by evaluation at the point p. We are interested in the
dimension of the locus where the evaluation map has kernel of dimension at least r + 1.
The expected codimension of the locus is given by (r + 1)(g − d+ r).

Exercise 7.30. Let φ : El → Fm be a morphism of vector bundles of rank l and m,
respectively, on an n-dimensional variety X. Calculate the expected dimension of the
locus on X where the rank of φ is less than or equal to k.

Define the Brill-Noether number by

ρ(g, r, d) = g − (r + 1)(g − d+ r).

By the discussion in the previous paragraph, on a general curve of genus g, we expect
there to be a grd if and only if ρ(g, r, d) is non-negative.

Example 7.31. The first instance concerns the existence of non-constant meromorphic
functions on Riemann surfaces. In a first course in complex analysis, one learns that
every Riemann surface admits a non-constant meromorphic function. One can then ask
given a genus g Riemann surface S, what is the smallest degree meromorphic function on
S?

(1) If S has genus zero, then there are non-constant meromorphic functions of degree
one, namely the Möbius transformations.

(2) If S has genus one or two, then the smallest degree non-constant meromorphic
function has degree 2.

(3) If S has genus 3, already the story becomes more complicated. If S is hyperelliptic,
then it does admit a meromorphic function of degree 2. However, not all genus
3 curves are hyperelliptic. They do not admit meromorphic functions of degree
2. Non-hyperelliptic curves of genus 3 can be realized as plane quartics in P2.
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Projecting the quartic from a point on the curve gives a meromorphic function of
degree 3.

(4) If S is a non-hyperelliptic curve of genus 4, then its canonical image is the complete
intersection of a quadric surface and a cubic surface in P3. By projecting to one
of the factors of P1 × P1 or to the base of the Hirzebruch surface F2 (in case the
quadric is singular), we obtain a map of degree 3 from S to P1.

(5) If S is a non-hyperelliptic and non-trigonal curve of genus 5, then it is the complete
intersection of three quadric hypersurfaces in P4. Hence, such a curve does not
admit a map of degree 3 to P1 (Exercise: why?). Show, however, that such a curve
does admit a map of degree 4 to P1. (Hint: The intersection of two quadrics is a
Del Pezzo surface of degree 4. The map to P2 blowing down 5 disjoint exceptional
curves presents the curve as a five-nodal sextic. Projecting from a node gives the
desired map.)

(6) Show that a general curve of genus 6 does not admit a map of degree 2 or 3 to P1,
but does admit a map of degree 4. (Hint: The canonical image of a general curve
of genus 6 lies on a degree 5 Del Pezzo surface in P5.)

(7) In fact, the following proposition, which is the first case of the Brill-Noether Theo-
rem, determines the degree of the smallest degree non-constant meromorphic func-
tion on a general Riemann surface of genus g.

Proposition 7.32. Every Riemann surface of genus g admits a non-constant mero-
morphic function of degree bg+3

2
c. Moreover, a general Riemann surface of genus

g does not admit a non-constant meromorphic function of smaller degree.

We say that a curve C of genus g has a grd if there exists a line bundle L of degree d on
C with h0(C,L) ≥ r+ 1. The Brill-Noether theorem asserts that a general curve has a grd
if and only if the Brill-Noether number ρ(g, r, d) is non-negative. In fact, more is true. Let
W (C)rd be the locus of line bundles in Picd(C) that have at least an (r + 1)-dimensional
space of global sections. Then for a general C, the dimension of this locus is given by the
Brill-Noether number.

Theorem 7.33 (Brill-Noether, Kempf, Kleiman-Laksov, Griffiths-Harris, Eisenbud-Har-
ris). Let C be a general curve of genus g. Then the dimension of W (C)rd is equal to
the Brill-Noether number. In particular, there exists a grd on C if and only if the Brill-
Noether number is non-negative. Moreover, in case ρ(g, r, d) = −1, the closure of the
locus of smooth curves that possess a grd is a divisor in Mg.

Remark 7.34. Observe that the Proposition 7.32 is a special case of the Brill-Noether
Theorem. If we take r = 1, then we see that the Brill-Noether number is non-negative if
and only if d ≥ bg+3

2
c.

A sketch of the proof. The idea of the proof goes back to Castelnuovo. Let us consider
a g-nodal rational curve and try to calculate the dimension of the space of grds on such
a curve. If the dimension is correct, then we have a chance of deducing the theorem for

38



general curves by specializing them to a g-nodal rational curve. A map of degree d to Pr
(where r < d) on a g-nodal rational curve amounts to the same thing as the projection of
a rational normal curve of degree d from a Pd−r−1 that meets g specified secant lines. In
other words, we are asking for the dimension of the intersection of g Schubert cycles Σr

in G(d− r − 1, d). Had these cycles been general, we could conclude that the dimension
of the space of grd on a g-nodal rational curve is

(d− r)(r + 1)− gr.

This is precisely the Brill-Noether number.

There are a few problems with the previous idea. First, the Jacobian of a g-nodal
curve is not compact, so the limits of grds on a general curve need not be grds. The
second, more serious problem is that the Schubert cycles Σr are not general Schubert
cycles, hence, their intersection need not be dimension theoretically transverse. We will
completely circumvent the first problem and simultaneously deal with the second problem
by specializing to g-cuspidal curves. In other words, we will make the Schubert cycles
Σr be defined with respect to tangent lines to the rational normal curve. Note that the
semi-stable reduction of such a curve is the normalization of the curve with g elliptic tails
attached at the points that map to the cusps. In particular, the non-compactness issue
disappears.

Theorem 7.35 (Eisenbud-Harris). Let p1, . . . , pm be distinct points on a rational normal
curve of degree d in Pd. Let F1, . . . , Fm be the osculating flags to the rational normal curve
defined at these points, respectively. Then Schubert varieties defined with respect to the
flags Fi in the Grassmannian, if non-empty, intersect in the expected dimension.

The proof of this theorem is based on a Plücker formula. Let V ⊂ H0(C,L) be a linear
series of vector-space dimension r + 1 on a genus g curve C. Let

0 ≤ α0(p) ≤ α1(p) ≤ · · · ≤ αr(p)

be the ramification sequence of V at a point p of C. Let Ri(p) be the orders of vanishing
of sections in V at p. Recall that the ramification sequence index αi(p) is defined to be
αi(p) = Ri(p) − i. The sum of all the ramification indices over all points of the curve C
may be expressed only in terms of the dimension of V , the degree of L and the genus of
C as the following proposition indicates.

Proposition 7.36. Let V be a linear series of degree d and vector-space dimension r+ 1
on a genus g curve. Then the sum of the ramification indices satisfy the following equality∑

j,p

αj(p) = (r + 1)d+
r(r + 1)

2
(2g − 2).

Proof of Proposition. The Taylor expansions of order r of the sections in V gives a map
to the bundle of r-jets of sections of L

α : V ⊗OC → P r(L).
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Taking the (r + 1)-st exterior power, we get a map

OC →
r+1∧

P r(L).

The formula claimed in the proposition arises from calculating the number of zeroes of
this map in two different ways. First, using the exact sequence that relates principal parts
bundles

0→ L×Km
C → Pm(L)→ Pm−1(L)→ 0,

we see inductively that
r+1∧

P r(L) ∼= Lr+1 ⊗K
r(r+1)

2
C .

Therefore, the number of zeros is equal to

(r + 1)d+
r(r + 1)

2
(2g − 2),

which is the right hand side of the claimed formula.

On the other hand, we can calculate the number of zeros in local coordinates. At each
point p ∈ C, we choose the sections of V that vanish to order i+αi(p) in terms of a local
coordinate t. The order of zeros of the map is the smallest order of vanishing of any linear
combination of the (r + 1)× (r + 1) minors of the matrix tα0(p) t1+α1(p) t2+α2(p) · · ·

α0(p)tα0(p)−1 (1 + α1(p))tα1(p) · · · · · ·
. . . . . . . . . . . .

 .

This order is precisely the left hand side of the formula in the proposition. �

In particular, when the genus is equal to zero, we see that the total ramification is equal
to (r+ 1)(d− r). Since the total ramification may not exceed this number, it is now easy
to conclude the Eisenbud-Harris Theorem. �

Exercise 7.37. Check that for a map of a rational curve C to have a ramification sequence
α0, . . . , αr+1 at p is equivalent to asking the center of the projection to satisfy a Schubert
condition (of codimension equal to the sum of the ramification indices) with respect to
the osculating flag to C at p. Express the class of the Schubert variety in terms of the
ramification sequence.

Another central theorem of curve theory that is amenable to similar (but more difficult)
techniques is the Gieseker-Petri Theorem.

Theorem 7.38 (Gieseker-Petri, Eisenbud-Harris, Lazarsfeld). Let C be a general curve.
Let L be any line bundle on C. Then the multiplication map

H0(C,L)⊗H0(C,K ⊗ L−1)→ H0(C,K)

is injective.
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Suppose that there exists a grd with negative Brill-Noether number. Using Riemann-
Roch for curves, we see that

h0(K − grd) = h0(grd)− d+ g − 1 = r + 1− d+ g − 1 = r − d+ g.

Since the Brill-Noether number is negative, we must have (r+1)(r−d+g) ≥ g+1. Hence
the domain of the map H0(C,L) ⊗ H0(C,K ⊗ L−1), where L is the line bundle giving
the grd has dimension at least g + 1. Consequently, the Petri map cannot be injective.
We conclude that for a Gieseker-Petri general curve there does not exist a grd if the Brill-
Noether number is negative.

Remark 7.39. In general, the failure of the injectivity cannot be explained by dimension
theoretic reasons alone. Consider a non-hyperelliptic genus 4 curve with a canonical form
with a single zero (necessarily of multiplicity 6). The Weierstrass sequence for such a
point is given as follows:

h0(3p) = 2, h0(5p) = 3, h0(6p) = 4.

Although the target and the domain vector spaces in h0(3p)⊗ h0(3p)→ h0(6p) have the
same dimension, the multiplication map is not an isomorphism since it is not possible to
get a section vanishing to order 5 by multiplying sections vanishing to order 3.

Unfortunately, the curves that are easiest to work with are often not general in the sense
of Gieseker-Petri. For example, a k-gonal curve, i.e., a curve admitting a non-constant
holomorphic map of degree k to P1 will not satisfy the Gieseker-Petri Theorem if k is
small (k < (g + 3)/2) compared to g.

7.3. Limit linear series. In this subsection, we will briefly sketch the theory of limit
linear series for curves of compact type developed by Eisenbud and Harris in order to
study Brill-Noether theory. Since there are nice expository treatments of this material,
our treatment will be brief. One of the main uses of the theory is to describe the closure of
the Brill-Noether locus at the boundary of the moduli space. For more details see [HMo1]
Chapter 5, [EH1], [EH2], [EH3], [EH4].

Definition 7.40. A curve is of compact type if its dual graph is a tree.

Proposition 7.41. The following conditions on an at-worst-nodal curve C of genus g
are equivalent

(1) C is of compact type.
(2) The sum of the geometric genera of the components of C equals g.
(3) The Jacobian of C is compact.

Proof. If C is of compact type, then its dual graph is a tree. In particular, every irreducible
component of C is smooth and any two components meet at most in one point. We can
prove the equivalence of 1 and 2 by induction. If the dual graph of C has only one vertex,
then the equivalence is obvious. Suppose the result is true for C whose dual graphs have
at most k vertices. Take a leaf of the dual graph of C with k + 1 vertices. If we remove
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the leaf, the remaining curve is a curve of compact type whose dual graph has k vertices.
Hence, the sum of the geometric genera of its components equals its genus. Since the
component we removed is attached at one point using the exact sequence

0→ OC → OC1 ⊕OC2 → OC1∩C2 → 0

we see that
h1(C,OC) = h1(C1,OC1) + h1(C2,OC2).

This completes the proof that 1 implies 2.

To see that 2 implies 1, we observe that by the same exact sequence that the genus of
a curves is at least the sum of the genus of its components. If there is a loop, then by the
exact sequence the genus of the curve formed by a loop is one more than the sum of its
components.

To see the equivalence of these conditions with the condition that the Jacobian is
compact, we need to study the group line bundles on a singular curve. Let ν : C̃ → C be
the normalization of the curve C.

We have an exact sequence

0→ C∗ → (C∗)r → Γ(C)→ Pic(C)→ Pic(C̃)→ 0,

where r is the number of irreducible components of C. Consequently, J(C) is compact
if and only if the number of points lying over the singular points of the curve is two less
than twice the number of irreducible components. But the latter can only happen if and
only if the dual graph of the curve is a tree. This proves the equivalence of the conditions.

�

The importance of curves of compact type arises from the fact that one can develop a
theory of limits of line bundles on such curves. In fact, one can develop such a theory
on tree-like curves. A Deligne-Mumford stable curve is tree-like if after normalizing the
curve at its non-separating nodes one obtains a curve of compact type. In other words,
a tree-like curve differs from curves of compact type in that the irreducible components
may have internal nodes.

The main difficulty. Let X → B be a one-parameter family of curves such that the total
space of the family is smooth, all the fibers but the central fiber are smooth curves and
the central fiber is a reducible nodal curve with smooth components. Given a line bundle
L on X − X0, we can always extend it to the total space. Since X − X0 is smooth, the
line bundle L corresponds to a Cartier divisor on X −X0. We can take the closure of this
divisor in X to obtain a Cartier divisor on X (Note that here we use the smoothness of the
total space). Since Cartier divisors correspond to line bundles, there is a corresponding
line bundle L̃ extending L.

Unfortunately, the extension is not unique. This is the main technical difficulty of the
subject. Suppose the central fiber X0 = Y ∪ Z. If we twist L̃ by OX (mY ) or OX (mZ),
we do not change the line bundle L on X −X0; however, we obtain a different line bundle
on the total space.

42



Definition 7.42 (Limit linear series). Let C be a curve of compact type. A limit linear
series D of degree d and dimension r on C is a linear series |VY | of degree d and dimension
r on every irreducible component of C called the aspect of D on Y , such that for any two
components Y and Z of C meeting at a node p the aspects VY and VZ satisfy

ai(VY , p) + ar−i(VZ , p) ≥ d.

The limit linear series is refined if these inequalities are equalities for every i. The limit
linear series is crude if one inequality is strict.

Using the Plücker formulae, one may generalize the Brill-Noether theorem to curves of
compact type. In fact, one can generalize further to tree-like curves.

Theorem 7.43. Let C be a tree-like curve. Suppose the following about the irreducible
components of Y :

(1) If the genus of Y is 1, then Y meets the rest of the curve in one point.

(2) If the genus of Y is 2, then Y meets the rest of the curve in one point which is not
a Weierstrass point.

(3) If the genus of Y is three or more, then Y meets the rest of the curve at general
points

If p1, . . . , pr are general points of C or arbitrary smooth points on rational components of
C, then for any ramification sequence at the points pi, the dimension of the special linear
series with the given ramification sequences at the points has the expected dimension.

Remark 7.44. For our purposes, the important corollary of the theorem is that if we
consider the pull-back of the Brill-Noether divisor to M0,n and M2,1 via the map that
attaches g fixed elliptic curves at the marked points and the map that attaches a fixed
genus g − 2 curve, respectively, the pull-back to M0,n is zero while the pull-back to M2,1

is supported on the Weierstrass divisor.

7.4. Calculating the classes of the Brill-Noether divisors. In this subsection, we
complete our discussion of the proof of Theorem 7.1 by calculating the class of the Brill-
Noether divisors. For the rest of this section, assume that the Brill-Noether divisor has
the following expression in terms of the standard generators

aλ− b0δirr −
bg/2c∑
i=1

biδi.

We calculate the class by pulling-back the Brill-Noether divisor to M2,1 and M0,g. Using
the first pull-back, we obtain the relations

a = 5b1 − 2b2 and birr =
b1

2
− b2

6
.

Using the second pull-back, we obtain for i > 1 the relations

bi =
i(g − i)
g − 1

b1.
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Solving for all the coefficients in terms of b1, we obtain the class of the Brill-Noether
divisors up to a positive constant. (One can determine the constant, but we do not need
this for proving Theorem 7.1.)

Theorem 7.45. If g + 1 = (r + 1)(g − d+ r), then the class of the Brill-Noether divisor
on Mg is given by

c

(g + 3)λ− g + 1

6
δirr −

bg/2c∑
i=1

i(g − i)δi


where c is a positive rational constant.

To conclude the proof, we need to show the claimed relations between the coefficients.
First, consider the map

atg−2 : M2,1 → Mg

obtained by attaching a fixed genus g− 2 curve with a marked point to curves of genus 2
with a marked point along their marked points. The theory of limit linear series shows that
the pull-back of the Brill-Noether divisor is a multiple of the divisor W on M2,1 obtained
by taking the closure of the locus in M2,1 where the marked point is a Weierstrass point.
The first set of relations are obtained by comparing the class of W and the pull-backs of
the standard generators by atg−2.

Claim 7.46. The class of the Weierstrass divisor W is given by

W = 3ω − λ− δ1,

where ω is the class of the relative dualizing sheaf on M2,1.

The pull-back of λ by atg−2 is λ on M2,1. Similarly the pull-backs of δirr and δ1 by atg−2

are δirr and δ1 on M2,1, respectively. By adjunction the pull-back of δ2 is −ω. It follows
that by pulling back the Brill-Noether divisor and using the claim we obtain the relation

aλ− birrδirr − b1δ1 − b2ω = c(3ω − λ− δ1).

We thus see that b2 = 3c. Next we use the relation

10λ = δirr + 2δ1

to solve for the other coefficients to obtain the first set of relations.

To calculate the class of the Weierstrass divisor W , we note that a Weierstrass point
is a ramification point of the canonical linear series. Using this one can exhibit W as the
degeneracy locus of a map between vector bundles.

Exercise 7.47. Carry this out and complete the calculation of the class of W . (Hint: If
stuck, see page 338-339 in [HMo1]).
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Next, consider the map
att : M0,g → Mg

obtained by attaching a fixed one pointed elliptic curve to the marked points. To obtain
the required relations among the coefficients of the boundary we consider the pull-back of
the Brill-Noether divisors by π. Since the Brill-Noether divisor is disjoint from the image
of att, the pull-back of the divisor to M0,g is zero.

We thus obtain the following relation among the coefficients:

a att∗λ− b0 att
∗δ0 −

bg/2c∑
i=1

bi att
∗δi = 0.

We have to calculate the pull-backs of the standard divisors by att. Clearly, λ and δirr
pull-back to zero. The pull-backs of the divisors δi are the classes δ0

i on M0,g (where we
place a 0 to remind ourselves that these are the divisors on M0,g) provided i > 1. The
image of att is contained in ∆1 ⊂ Mg, so the pull-back of δ1 is the hardest to calculate.
To calculate its class, we take a one-parameter family of curves

π : C → B

in M0,g. We may assume that every member of the family has at most two components
and that the total space of the family is smooth. Contracting the components with fewer
sections (or either of the components when equal numbers of sections pass through both
components), we obtain a P1 bundle with g sections

π̃ : C̃ → B.

Since the classes of any two sections differ by a multiple of the fiber class, the difference
of two section classes has self-intersection zero.

The pull-back of δ1 by att is the push-forward to the sum of the squares of the sections
σi in the original family to the base. The sections γi in the projective bundle and in the
original family are related by

π̃∗(
∑

γ2
i ) = π∗(

∑
σ2
i ) +

bg/2c∑
i=2

i δ0
i .

Using that
γ2
i + γ2

j = 2γi · γj
we obtain the relation

π̃∗(
∑

γ2
i ) =

bg/2c∑
i=2

i(i− 1)

g − 1
δ0
i .

Combining these relations, we obtain that

att∗δ1 =

bg/2c∑
i=2

−i(g − i)
g − 1

δ0
i .

The class of the Brill-Noether divisors (up to a constant multiple) follows from these
calculations.
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8. The ample cone of the Kontsevich moduli space

In this section, we discuss the ample cone of M0,n(Pr, d).

Theorem 8.1. Let r and d be positive integers, n a nonnegative integer such that n+d ≥
3. There is an injective linear map,

v : Pic(M0,n+d/Sd)⊗Q→ Pic(M0,n(Pr, d))⊗Q.

The NEF cone of M0,n(Pr, d) is the product of the cone generated by

H, T ,L1, . . . ,Ln
and the image under v of the NEF cone of M0,n+d/Sd.

Recall that H is the class of the divisor of maps whose images intersect a fixed codi-
mension two linear space in Pr (provided r > 1 and d > 0). The class Li is the pullback
of OPr(1) by the i-th evaluation morphism. Fixing a hyperplane Π ⊂ Pr, T is the class of
the divisor parametrizing stable maps (C, p1, . . . , pi, f) for which f−1(Π) is not d reduced,
smooth points of C. Recall that, in terms of Pandharipande’s generators, the class of T
equals,

T =
d− 1

d
H +

bd/2c∑
k=0

k(d− k)

d

(∑
A,B

∆(A,k),(B,d−k)

)
.

We now describe the map v that occurs in Theorem 8.1.

Figure 5. The morphism α.

The morphism α : M0,n+d × Pr−1 → M0,n(Pr, d). Fix a point p ∈ Pr and a line
L ⊂ Pr containing p. To every curve C in M0,n+d attach a copy of L at each of the last d
marked points and denote the resulting curve by C ′. Consider the morphism f : C ′ → Pr
that contracts C to p and maps the d rational tails isomorphically to L (see Figure 5).
Since the space of lines in Pr passing through the point p is parameterized by Pr−1, there
is an induced morphism α : M0,n+d × Pr−1 → M0,n(Pr, d).

Since α is invariant for the action of Sd permuting the last d marked points, the pull-
back map determines a homomorphism

α∗ = (α∗1, α
∗
2) : Pic(M0,n(Pr, d))→ Pic(M0,n+d)

Sd × Pic(Pr−1).

We will denote the two projections of α∗ by α∗1 and α∗2.
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Figure 6. The morphism βi.

The morphisms βi. For each 1 ≤ i ≤ n, there is a morphism βi : P1 → M0,n(Pr, d)
defined as follows. Fix a degree-(d−1), (n−1)-pointed curve C containing all except the i-
thmarked point. At a general point of C, attach a line L. Attach a line L to C at a general
point of C. The resulting degree-d, reducible curve will be the domain of our map. The
final, i-th marked point is in L. Varying pi in L gives a morphism βi : P1 → M0,n(Pr, d)
(see Figure 6). This definition has to be slightly modified in the cases (n, d) = (1, 1) or
(2, 1). When (n, d) = (1, 1), we assume that the line L with the varying marked point
pi constitutes the entire stable map. When (n, d) = (2, 1), we assume that the map has
L as the only component. One marked point is allowed to vary on L and the remaining
marked point is held fixed at a point p ∈ L.

Figure 7. The morphism γ.

The morphism γ. If d ≥ 2, there is a morphism γ : P1 → M0,n(Pr, d) defined as
follows. Take two copies of a fixed line L attached to each other at a variable point. Fix
a point p in the second copy of L. Let C be a smooth, degree-(d − 2), genus 0, (n + 1)-
pointed stable map to Pr whose (n + 1)-st point maps to p. Attach this to the second
copy of L at p. Altogether, this gives a degree-d, n-pointed, genus 0 stable maps with
three irreducible components. The n marked points are the first n marked points of C.
The only varying aspect of this family of stable maps is the attachment point of the two
copies of L. Varying the attachment point in L ∼= P1 gives a stable maps is parameterized
by P1, hence there is an induced morphism γ : P1 → M0,n(Pr, d) (see Figure 7). When
(n, d) = (1, 2), we modify the definition by assuming that the map consists only of the
two copies of the line L and the marked point is held fixed at the point p on the second
copy of L.
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If d ≥ 2, denote by Pr,n,d the Abelian group

Pr,n,d := Pic(M0,n+d)
Sd × Pic(Pr−1)× Pic(P1)n × Pic(P1).

Denote by u = ur,n,d : Pic(M0,n(Pr, d))→ Pr,n,d the pull-back map

ur,n,d = (α∗, (β∗1 , . . . , β
∗
n), γ∗).

If d = 1, denote by Pr,n,1 the Abelian group

Pr,n,1 := Pic(M0,n+d)
Sd × Pic(Pr−1)× Pic(P1)n

and denote by u = ur,n,1 : Pic(M0,n(Pr, 1))→ Pr,n,1 the pull-back map

ur,n,1 = (α∗, (β1,
∗ , . . . , β∗n))

Theorem 8.1 is equivalent to Theorem 8.2.

Theorem 8.2. The map ur,n,d ⊗ Q : Pic(M0,n(Pr, d)) ⊗ Q → Pr,n,d ⊗ Q is an isomor-
phism. The image under ur,n,d ⊗ Q of the ample cone, resp. NEF, eventually free cone
of M0,n(Pr, d) equals the product of the ample cones, resp. NEF, eventually free cones of
Pic(M0,n+d)

Sd, Pic(Pr−1), and the factors Pic(P1).

To apply Theorem 8.2, we need to express the images of the standard generators of
Pic(M0,n(Pr, d)) in terms of the standard generators for Pic(M0,n+d)

Sd , Pic(Pr−1) and
Pic(P1) factors. This is summarized in Table 8.

Let Π ⊂ Pr be a hyperplane not containing the point p used to define the morphisms α
and γ. Assume that the degree d−1 curve used to define the morphisms βi is not tangent
to Π, and none of the marked points on this curve are contained in Π. Finally, assume
that the degree d− 2 curve used to define the morphism γ is not tangent to Π and none
of the marked points are contained in Π.

Denote by M0,n+d(Pr, d) the open subset of M0,n+d(Pr, d) parameterizing stable maps
with irreducible domain. Let

evn+1,...,n+d : M0,n+d(Pr, d)→ (Pr)d

be the evaluation morphism associated to the last d marked points. Let M0,n+d(Pr, d)Π

denote the inverse image of Πd and by M0,n+d(Pr, d)Π the closure of M0,n+d(Pr, d)Π in
M0,n+d(Pr, d).

M0,n+d(Pr, d)Π is Sd-invariant under the action of Sd on M0,n+d(Pr, d) permuting the
last d marked points. Denote by

π : M0,n+d(Pr, d)→ M0,n(Pr, d)

the forgetful morphism that forgets the last d marked points and stabilizes the resulting
family of prestable maps. This is Sd-invariant. Let

ρ : M0,n+d(Pr, d)→ M0,n+d

denote the morphism that stabilizes the universal family of marked prestable curves over
M0,n+d(Pr, d). This is Sd-equivariant.
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Divisors in M0,n(Pr, d) α∗1 α∗2 β∗i γ∗

T 0 0 0 OP1(2)

H 0 OPr−1(d) 0 0

Li 0 0 OP1(1) 0

Lj 6=i 0 0 0 0

∆(∅,1),(n,d−1) c OPr−1(−d) OP1(−1) OP1(4)

∆(∅,2),(n,d−2) ∆̃(∅,2),(n,d−2) 0 0 OP1(−1)

∆({i},1),({i}c,d−1) ∆̃({i},1),({i}c,d−1) 0 OP1(−1) 0

∆(A,dA),(B,dB) ∆̃(A,dA),(B,dB) 0 0 0
all others

Figure 8. The pull-backs of the standard generators

Denote by q : M0,n+d → M0,n+d/Sd the geometric quotient. The composition

q ◦ ρ : M0,n+d(Pr, d)Π → M0,n+d/Sd

is Sd-equivariant. Over the open set OΠ in M0,n(Pr, d) of maps f for which f−1(Π) is d
distinct points of the domain, M0,n+d(Pr, d)Π is an Sd-torsor. Hence there is an induced
morphism φ′Π : OΠ → M0,n+d/Sd such that φ′ ◦ π = q ◦ ρ.

Definition 8.3. Define UΠ to be the maximal open subset of M0,n(Pr, d) over which φ′Π
extends to a morphism, denoted

φΠ : UΠ → M0,n+d/Sd.

Define IΠ to be the normalization of the closure in M0,n(Pr, d)×M0,n+d/Sd of the image

of the graph of φ′Π, i.e., IΠ is the normalization of the image of (π, q ◦ ρ). Define ĨΠ to be

the normalization of the image of (π, ρ) in M0,n(Pr, d)×M0,n+d. Finally, define ŨΠ to be

the inverse image of UΠ in ĨΠ.

There is a pull-back map of Sd-invariant invertible sheaves,

ρ∗ : Pic(M0,n+d)
Sd → Pic(ĨΠ)Sd ,

which further restricts to Pic(ŨΠ)Sd . The pull-back map Pic(UΠ) → Pic(ŨΠ)Sd is an
isomorphism after tensoring with Q; in fact, both the kernel and cokernel are annihilated
by d!. Because M0,n+d/Sd is a proper scheme and because M0,n(Pr, d) is separated and
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normal, by the valuative criterion of properness the complement of UΠ has codimension
≥ 2. Hence, the restriction map Pic(M0,n(Pr, d))→ Pic(UΠ) is an isomorphism.

Definition 8.4. Define v : Pic(M0,n+d)
Sd → Pic(M0,n(Pr, d)) ⊗ Q to be the unique homo-

morphism commuting with ρ∗ via the isomorphisms above.

The map v is independent of the choice of Π, hence it sends NEF divisors to NEF
divisors.

Lemma 8.5. For every base-point-free invertible sheaf L in Pic(M0,n+d)
Sd, v(L) is base-

point-free. In particular, for every ample invertible sheaf L, v(L) is NEF. Thus, by
Kleiman’s criterion, for every NEF invertible sheaf L, v(L) is NEF.

Proof. For every [(C, (p1, . . . , pn), f)] in M0,n(Pr, d), there exists a hyperplane Π satisfying
the conditions above and such that f−1(Π) is a reduced Cartier divisor containing none of
p1, . . . , pn. (C, (p1, . . . , pn), f) is contained in UΠ. Since L is base-point-free, there exists
a divisor D in the linear system |L| not containing φΠ[(C, (p1, . . . , pn), f)]. By the proof
of [Ha, Prop. 6.5(c)], the closure of φ−1

Π (D) is in the linear system |v(L)|; and it does not
contain [(C, (p1, . . . , pn), f)]. �

Lemma 8.6. (i) The images of α, βi and γ are contained in UΠ.
(ii) The morphisms φΠ ◦ βi and φΠ ◦ γ are constant morphisms. Therefore β∗i ◦ v and

γ∗ ◦ v are the zero homomorphism.
(iii) The composition of α with φΠ equals q ◦ prM0,n+d

. Therefore

α∗ ◦ v : Pic(M0,n+d)
Sd → Pic(M0,n+d)

Sd × Pic(Pr−1)

is the homomorphism whose projection on the first factor is the identity, and whose
projection on the second factor is 0.

Proof. (i): The image of α is contained in OΠ. Denote by q the intersection point of L
and Π.

The image βi(L−{q}) is contained in OΠ. The stable map βi(q) sends the i-th marked
point into Π. Up to labeling the d points of the inverse image of Π, there is only one
(n + d)-pointed stable map in M0,n+d(Pr, d)Π that stabilizes to this stable map. It is
obtained from βi(q) by removing the i-th marked point from L, attaching a contracted
component C ′ to L at q, containing the i-th marked point and exactly one of the last d
marked points, and labeling the d− 1 points in C ∩ Π with the remaining d− 1 marked
points.

Similarly, γ(L − {q}) is contained in OΠ. The stable map γ(q) has two copies of L
attached to each other at q. This appears to be a problem, because the inverse image
of γ(q) in M0,n+d(Pr, d)Π is 1-dimensional, isomorphic to M0,4. The stable maps have a
contracted component C ′ such that both copies of L are attached to C ′ and 2 of the d
new marked points are attached to C ′. The remaining d− 2 marked points are the points
of C ∩Π. However, the map ρ that stabilizes the resulting prestable (n+d)-marked curve
is constant on this M0,4. Indeed, the first copy of L has no marked points and is attached
to C ′ at one point. So the first step in stabilization will prune L reducing the number of
special points on C ′ from 4 to 3.
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(ii): In the family defining βi, only the i-th marked point on L varies. After adding
the d new marked points, L is a 3-pointed prestable curve; marked by the node p, the i-th
marked point, and the point q. For every base the only family of genus 0, 3-pointed, stable
curves is the constant family. So upon stabilization, this family of genus 0, 3-pointed,
stable curves becomes the constant family.

In the family defining γ, only the attachment point of the two copies of L varies.
The first copy of L gives a family of 2-pointed, prestable curves; marked by q and the
attachment point of the two copies of L. This is unstable. Upon stabilization, the first
copy of L is pruned and the marked point q on the first copy is replaced by a marked
point on the second copy at the original attachment point. Now the second copy of L
gives a family of 3-pointed, prestable curves; marked by the attachment point p of the
second and third irreducible components, the attachment point of the first and second
components, and q. For the same reason as in the last paragraph, this becomes a constant
family.

(iii): Each stable map in α(M0,n+d×Pr−1) is obtained from a genus 0, (n+d)-pointed,
stable curve (C0, (p1, . . . , pn, q1, . . . , qd)) and a line L in Pr containing p by attaching for
each 1 ≤ i ≤ n, a copy Ci of L to C0 where p in Ci is identified with qi in C0. The map to
Pr contracts C0 to p, and sends each curve C to L via the identity morphism. Denoting
by r the intersection point of L and Π, the inverse image of Π consists of the d points
r1, . . . , rd, where ri is the copy of r in Ci.

The component Ci is a 2-pointed, prestable curve: marked by the attachment point p
of Ci and by ri. This is unstable. So, upon stabilization, Ci is pruned and the marked
point ri is replaced by a marking on C0 at the point of attachment of C0 and Ci, namely
qi. Therefore, up to relabeling of the last d marked points, the result is the genus 0,
(n+ d)-pointed, stable curve we started with, (C0, (p1, . . . , pn, q1, . . . , qd)). �

Lemma 8.7. (i) The Cartier divisors TΠ, Li,Π and HΛ are NEF.
(ii) The pull-backs α∗(TΠ) and α∗(Li,Π) are zero. On the other hand, the pull-back

α∗(HΛ) equals (0,OPr−1(d)) in Pic(M0,n+d)
Sd × Pic(Pr−1); if r = 1, then OPr−1(1)

is the trivial invertible sheaf.
(iii) Assume n ≥ 1 so that βi is defined for 1 ≤ i ≤ n. The pull-backs β∗i (TΠ) and

β∗i (HΠ) are zero. For 1 ≤ j ≤ n different from i, β∗i (Lj,Π) is zero. Finally,
β∗i (Li,Π) is OP1(1).

(iv) Assume d ≥ 2 so that γ is defined. The pull-backs γ∗(HΛ) and γ∗(Li,Π) are zero,
and γ∗(TΠ) is OP1(2) in Pic(P1).

Proof. (i): By an argument similar to the one in Lemma 8.5, these divisors are base-
point-free (whenever they are non-empty). The divisor HΛ is big if r ≥ 2, and TΠ is big
if d ≥ 2. The divisors Li are not big.

(ii): By the proof of Lemma 8.6, the image of α is in OΠ, which is disjoint from TΠ.
Also, evi ◦ α is the constant morphism with image p, so the inverse image of Li is empty.
Finally, the pull-back of HΠ equals the pull-back under the diagonal ∆ of the Cartier
divisor

∑d
j=1 pr−1

j (Λ) in (Pr−1), where Λ is considered as a divisor in Pr−1 via projection
from p.
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(iii): Since the image of βi is disjoint from HΠ, TΠ and Lj,Π for j 6= i, the corresponding
pull-backs are zero. The map evi ◦ βi : P1 → Pr embeds P1 as the line L in Pr, hence
β∗i (Li,Π) = OP1(1).

(iv): Since neither the image curve nor the marked points vary under γ, clearly γ∗HΛ

and γ∗Li,Π are zero. To compute γ∗TΠ, use [Pa1, Lemma 2.3.1]. �

Proposition 8.8. The Q-vector space Pic(M0,n(Pr, d))⊗Q is generated by TΠ, HΛ, Li,Π
for 1 ≤ i ≤ n, and the image of v.

Proof. From Lemmas 8.7 and 8.6 and by pairing with one-parameter families, we see that

v(∆̃(A,dA),(B,dB)) = ∆(A,dA),(B,dB)

unless (#A, dA) or (#B, dB) equals one of (0, 2) or (1, 1).

v(∆̃(A,dA),(B,dB)) =
1

2
T + ∆(A,dA),(B,dB)

if (#A, dA) or (#B, dB) equals (0, 2). Finally,

v(∆̃({i},1),({i}c,d−1)) = ∆({i},1),({i}c,d−1) + Li,Π.
Consequently, it follows that the classes of the divisors H, T , Li,Π and the image of v
generate the classes of all the boundary divisors in the Kontsevich moduli space. Hence,
they generate Pic(M0,n(Pr, d))⊗Q. �

Proof of Theorem 8.1. Now we can complete the proof of Theorem 8.1. Denote by

ṽ : Pr,n,d ⊗Q→ Pic(M0,n(Pr, d))⊗Q

the unique homomorphism whose restriction to Pic(M0,n+d)
Sd is v (see Definition 8.4),

whose restriction to Pic(Pr−1) sends OPr−1(1) to [HΛ], whose restriction to the i-th factor
of Pic(P1)n sends OP1(1) to [Li] if n ≥ 1, and whose restriction to the last factor Pic(P1)
(assuming d ≥ 2) sends OP1(1) to 1/2 [TΠ]. By Lemma 8.6 (ii), (iii) and by Lemma 8.7,
u ⊗ Q ◦ ṽ is the identity map. In particular, ṽ is injective. By Proposition 8.8, ṽ is
surjective. Thus ṽ and u⊗Q are isomorphisms.

Because α, βi and γ are morphisms, for every NEF, resp. eventually free, divisor D in
Pic(M0,n(Pr, d))⊗Q, α∗(D), β∗i (D), and γ∗(D) are NEF, resp. eventually free. Denote,

D1 = α∗1(D), a [OPr−1(1)] = α∗2(D), bi [OP1(1)] = β∗i (D), c [OP1(1)] = γ∗(D),

where by convention a is defined to be 0 if r = 1 and c is defined to be 0 if d = 1. If
D is NEF, resp. eventually free, D1 is NEF, resp. eventually free, in Pic(M0,n+d)

Sd , and
a, bi, c ≥ 0.

Conversely, by Lemma 8.5, for every NEF, respectively, eventually free, divisor D1 in
Pic(M0,n+d)

Sd , v(D1) is NEF, resp. eventually free. By Lemma 8.7(i), for a, bi, c ≥ 0,
a[HΛ], bi[Li,Π] and c/2 [TΠ] are NEF and eventually free. Since a sum of NEF, resp.
eventually free, divisors is NEF, resp. eventually free, D = v(D1)+a [HΛ]+bi [Li]+c/2 [TΠ]
is NEF, resp. eventually free. Therefore D is NEF if and only if u⊗Q(D) is in the product
of the NEF cones of the factors. This argument needs to be modified in the obvious way
when (n, d) = (0, 3) and (1, 2) to account for the slight variations in the formulae.
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Because the interior of a product of cones equals the product of the interiors of the
cones, by Kleiman’s criterion, D is ample iff u⊗Q(D) is contained in the product of the
ample cones of the factors. �

Theorem 8.1 has the following important corollary.

Theorem 8.9. For every integer r ≥ 1 and d ≥ 2, there is a contraction,

cont : M0,0(Pr, d)→ Y,

restricting to an open immersion on the interior M0,0(Pr, d) and whose restriction to the
boundary divisor ∆k,d−k ∼= M0,1(Pr, k)×Pr M0,1(Pr, d−k) factors through the projection to
M0,1(Pr, d− k) for each 1 ≤ k ≤ bd/2c. The following divisor is the pullback of an ample
divisor on Y ,

Dr,d = T +

bd/2c∑
k=2

k(k − 1)∆k,d−k.

In fact, Y can be interpreted as a moduli space of bd/2c-pointed stable maps constructed
by [MM] (see also [Par]) and it is possible to prove a more precise statement.

Definition 8.10. Let k be an integer 0 ≤ k ≤ d. Fix a rational number 0 < ε < 1. The
moduli space of k-stable maps M0,0(Pr, d, k) is the coarse moduli scheme associated to the
functor M0,0(Pr, d, k) which associates to a scheme S the set of isomorphism classes of
the data

(π : C → S, µ : C 99K Pr, L, e)
such that

(1) π : C → S is a flat family of connected, projective, at-worst-nodal curves of
arithmetic genus zero.

(2) L is a line bundle on C that has degree d on each fiber of π and e : Or+1
C → L is a

morphism that determines the rational map µ : C 99K Pr.
(3) ωd−k+ε

C/S ⊗ L is relatively ample over S.

(4) Let E be the cokernel of e. Then the restriction of E to each fiber of π is a
skyscraper sheaf and dim(Ep) ≤ d − k for every p ∈ Cs. Furthermore, if 0 <
dim(Ep), then p ∈ Cs is a smooth point of Cs.

When k = d, M0,0(Pr, d, d) = M0,0(Pr, d). Furthermore, there are natural contraction
morphisms M0,0(Pr, d, k+ 1)→ M0,0(Pr, d, k). Hence, the contraction in Theorem 8.9 can
be factored into a sequence of explicit contractions, where the intermediate spaces have
nice modular interpretations.

Exercise 8.11. Show that for M0,0(P2, 2) the contraction is the natural projection map to
the P5 of dual conics in (P2)∗.

Exercise 8.12. Generalize Theorem 8.1 to the case when the target is a Grassmannian.
More generally, extend the theorem to the case when the target is a partial flag variety.

Exercise 8.13. Describe the ample cone of M0,0(Pr, d) for 2 ≤ d ≤ 5 by explicitly describing
the extremal rays that span the cone.
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Exercise 8.14. Describe the ample cone of M0,0(G(k, n), d) for 2 ≤ d ≤ 5 by explicitly
describing the extremal rays that span the cone.

Exercise 8.15. Formulate an analogue of the F -conjecture for the Kontsevich moduli space
M0,n(Pr, d). Show that the conjecture for the Kontsevich moduli space is equivalent to
the conjecture for M0,n+d/Sd.

9. The stable base locus decomposition of the Kontsevich moduli space
and other birational models

The minimal model program for a moduli space M consists of the following steps.

(1) Determine the cones of ample and effective divisors on M.

(2) Decompose the effective cone of M according to the stable base loci of the divisors.

(3) For an effective divisor D in each chamber of the stable base locus decomposition,
describe

M(D) = Proj

(⊕
m≥0

H0(M,mD)

)
,

assuming that the section ring is finitely generated.

(4) Describe explicitly a sequence of divisorial contractions and flips that transform
M to M(D). Use this description, to find a modular interpretation of M(D) (if
possible).

We have so far concentrated on the first step of the program. In this section, we will
run the entire program on a few concrete examples of Kontsevich moduli spaces. In the
next section, we will discuss the program for the moduli space of curves.

The following Lemma is often useful in identifying birational models (see [L1], §2.1.B).

Lemma 9.1. Let X be a normal, projective variety. Let L be a semi-ample line bundle
on X.

(1) Then the section ring ⊕m≥0H
0(X,L⊗m) of L is finitely generated. Let

M(L) = Proj(⊕m≥0H
0(X,L⊗m))

and let f : X →M(L). Then f∗OX ∼= OM(L).

(2) If there exists a morphism g : X → Y such that every curve contracted by f is
also contracted by g, then g factors through f . In particular, if L′ is an ample line
bundle on Y , then g factors through M(g∗L′) and M(g∗L′) is the normalization of
Y .

9.1. Degree two maps to projective space. As a warm-up example, we describe the
Mori theory of M0,0(P2, 2). The Neron-Severi space of M0,0(P2, 2) is generated by the
divisors H and ∆ = ∆1,1. We have already seen the following:

• The effective cone is the cone bounded by ∆ and Ddeg = 1
4
(3H−∆).

• The NEF cone is the closed cone bounded by H and T = 1
4
(3H + ∆).

The effective cone decomposes into three chambers.
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• If D is in the chamber [Ddeg,H), then the stable base locus of D is divisorial
consisting of Ddeg.

• If D is in the chamber [H, T ], then the stable base locus of D is empty.

• Finally, if D is in the chamber (T ,∆], then the stable base locus of D is divisorial
consisting of the boundary divisor ∆.

Exercise 9.2. Verify the stable base locus decomposition of the effective cone ofM0,0(P2, 2)
by carrying out the following steps.

(1) Let C1 be the curve induced in M0,0(P2, 2) by a general pencil of double covers of a
fixed line L ∈ P2. Show that C1 · H = 0 and C1 ·∆ > 0. Conclude that C1 ·D < 0
if D ∈ [Ddeg,H). Show that curves with class C1 cover Ddeg. Conclude that Ddeg

must be in the base locus of any divisor with class aH + b∆ with b < 0.

(2) Conversely, show that since D ∈ [Ddeg,H) is a non-negative linear combination of
Ddeg and H and H is base-point-free, the stable base locus of D is contained in
Ddeg.

(3) Let C2 be the curve in M0,0(P2, 2) obtained by attaching a line M ⊂ P2 to a pencil
of lines in P2 at their base-point. Show that C2 ·H = 1 and C2 ·∆ = −1. Conclude
that C2 ·D < 0 for D ∈ (T ,∆). Show that curves with class C2 cover ∆. Conclude
that ∆ must be in the stable base locus of D for D ∈ (T ,∆).

(4) Conversely, since T is base-point-free, show that for D ∈ (T ,∆), the stable base
locus must be contained in ∆.

(5) Finally, show that since both H and T are base-point-free, the stable base locus of
any divisor D ∈ [H, T ] is empty.

For an effective divisor D, let M0,0(r, d,D) denote the model

Proj

(⊕
m≥0

H0(M0,0(Pr, d),mD)

)
.

Proposition 9.3. The Kontsevich moduli space M0,0(P2, 2) admits two divisorial contrac-
tions.

(1) The model M0,0(2, 2,H) is the Hilbert scheme of conics in P2 and is isomorphic to
P5.

(2) The model M0,0(2, 2, T ) is the space of dual conics in (P2)∗ and is also isomorphic
to P5.

Exercise 9.4. Interpret M0,0(P2, 2) as the space of complete conics in P5 × (P5)∗. Show
that the two models correspond to the projections to the two factors. Using Lemma 9.1,
verify the proposition.

Exercise 9.5. Show that the stable base locus decomposition of M0,0(Pr, 2) for r > 2 also
has three chambers with the same descriptions. Show that in the chamber [Ddeg,H),
the stable base locus consists of maps that fail to be birational onto their image. Show
that when r > 2, this locus is not divisorial. If you are up for a challenge, give modular
interpretations to the corresponding models.
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9.2. Degree three maps to projective space. The Mori theory of M0,0(P3, 3) was
studied in detail in [Ch1]. We begin by describing the stable base locus decomposition of
M0,0(P3, 3). Since M0,0(P3, 3) has only one boundary divisor, the Neron-Severi space has
dimension two. For simplicity, we set ∆ = ∆1,2.

We need to introduce a new effective divisor. This divisor is easiest to introduce in
M0,0(P2, 3). By Proposition 3.3, it will follow that there is an effective divisor with the
same class in M0,0(P3, 3). Fix a line L ⊂ P2. Let NL denote the locus of maps f that fail
to be an isomorphism onto their image over a point of L. The image of a general map
in M0,0(P2, 3) is a nodal cubic. One can think of NL as the closure of the locus of maps
where the node of the cubic lies on the fixed line L.

Exercise 9.6. Show that NL is a divisor with class

[NL] =
5

3
(H− 1

5
∆).

(Hint: Take a general pencil of cubic curves that have a node at a fixed point. Show
that the induced curve C1 in M0,0(P3, 3) is disjoint from NL. Show that C1 · H = 1 and
C1 ·∆ = 5. This determines the class up to a constant. Determine the constant by using
the curve C2 in M0,0(P2, 3) consisting of a fixed conic attached to a pencil of lines at the
base point.)

Exercise 9.7. Using Proposition 3.3, describe the divisorNL directly on M0,0(P3, 3). (Hint:
Fix a plane Λ ⊂ P3 and a point p ∈ Λ. Show that NL is the class of the divisor of maps
such that f(C) ∩ Λ has two points collinear with p.)

We are now ready to describe the stable base locus decomposition of the effective cone.
Figure 9 depicts this decomposition.

Figure 9. The stable base locus decomposition of M0,0(P3, 3).

Theorem 9.8. The stable base locus decomposition of the effective cone of M0,0(P3, 3) has
four chambers.

(1) The NEF cone is equal to the base-point-free cone and is the chamber bounded by
H and T .

(2) For a divisor D in the chamber (T ,∆], the stable base locus is the boundary divisor
∆.

(3) For a divisor D in the chamber [Ddeg, NL), the stable base locus is the divisor Ddeg.

(4) For a divisor D in the chamber [NL,H), the stable base locus consists of maps that
are not birational onto their image.
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Exercise 9.9. Show that the locus of maps that are not birational onto their image has two
components M3 and M2,1. The general point of M3 consists of a degree three map onto a
line. Show that M3 has dimension 8. A general point of M2,1 is a map from a reducible
curve onto a pair of intersecting lines where the map has degree two on one component
and is an isomorphism on the other component. Show that M2,1 has dimension 9.

Exercise 9.10. Verify Theorem 9.8 by carrying out the following steps.

(1) Note that the curve C1 introduced in Exercise 9.6 is a moving curve class on the
divisor Ddeg. Using the fact that C1 · D < 0 for D ∈ [Ddeg, NL), conclude that
Ddeg must be in the stable base locus of the divisors in this chamber. Conversely,
expressing any divisor in this chamber as a non-negative linear combination of Ddeg

and H and using the fact that H is base-point-free, conclude that the stable base
locus of D ∈ [Ddeg, NL) is equal to Ddeg.

(2) Let C3 be the curve obtained by attaching a general conic to the base-point of
a pencil of lines (note that C3 has the same class as the curve C2 introduced in
Exercise 9.6). Show that C3 ·D < 0 for D ∈ (T ,∆]. Since C3 is a moving curve in
∆, conclude that ∆ is in the stable base locus of D in this chamber. Conversely,
expressing D as a non-negative linear combination of ∆ and T and using the fact
that T is base-point-free, conclude that the stable base locus of D is equal to the
boundary divisor ∆.

(3) Show that a map which is birational onto its image is not in the base locus of NL.
Conclude that for a divisor D ∈ [NL,H), the stable base locus must be contained
in the union M3 ∪M2,1. Conversely, by fixing the image of the map and varying
the multiple cover, obtain moving curves in M3 and M2,1 to show that their union
must be contained in the stable base locus of D ∈ [NL,H).

Before we state the next theorem, we need to introduce some notation. Let H3,0 denote
the component of the Hilbert scheme parameterizing twisted cubic curves in P3. It is well-
known that H3,0 is a smooth, projective, twelve dimensional variety [PS]. The space of
twisted cubic curves has another natural compactification in G(3, 10). The homogeneous
ideal of a twisted cubic is generated by three quadratic equations. Let H(2) ∈ G(3, 10)
be the closure of the nets of quadrics that are the equations of a smooth twisted cubic
curve. It is also known that H(2) is smooth. Since dim(H0(I(2)) = 3 for every scheme in
H3,0, there is a well-defined morphism h : H3,0 → H(2). The morphism h realizes H3,0 as
the blow-up of H(2) along the flag variety F (1, 3; 4) ⊂ H(2) [EPS].

The following theorem summarizes the birational models that correspond to the cham-
bers in the stable base locus decomposition.

Theorem 9.11. Corresponding to the stable base locus decomposition in Theorem 9.8,
there are five birational models of M0,0(P3, 3).

(1) M0,0(3, 3, D) is isomorphic to the Kontsevich moduli space for D ∈ (H, T ).

(2) M0,0(3, 3,H) is the normalization C3,0 of the Chow variety of degree-three genus-
zero curves in P3. The morphism φ : M0,0(P3, 3) → M0,0(3, 3,H) is a small con-
traction with exceptional locus M3 ∪M2,1.
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(3) For D ∈ (NL,H), M0,0(3, 3, D) is the flip of the morphism φ and is isomorphic to
the component of the Hilbert scheme H3,0 parameterizing twisted cubics in P3.

(4) M0,0(3, 3, NL) is a divisorial contraction of H3,0 contracting the locus of degenerate
curves. The model M0,0(3, 3, NL) is isomorphic to H(2), the compactification of
twisted cubics by nets of quadrics.

(5) Finally, there is a divisorial contraction ψ : M0,0(P3, 3) → M0,0(3, 3, T ). This
coincides with the contraction described in the pervious section. M0,0(3, 3, T ) is
isomorphic to the moduli space of 2-stable maps M0,0(P3, 3, 2) constructed by [MM].

Exercise 9.12. Show that the Chow variety parameterizing rational curves of degree d ≥ 3
in Pr (r ≥ 2) is not normal. (Hint: The divisor class H gives a map from M0,0(Pr, d) to
the Chow variety of rational curves. Show that this map is birational, but not all the
fibers are connected.)

Exercise 9.13. Let ch : H3,0 → C3,0 be the Hilbert-Chow morphism from the component
of the Hilbert scheme parameterizing twisted cubics to the normalization of the Chow
variety. Check that for D ∈ (NL,H), −D is φ-ample and D is ch-ample. Conclude that
H3,0 is the flip of the Kontsevich moduli space over the normalization of the Chow variety.

Exercise 9.14. The previous exercise is the most interesting part of the proof of Theorem
9.11. Part (1) of the theorem is clear since the divisors in this chamber are ample. Using
Theorem 9.8, verify parts (2), (4) and (5).

Exercise 9.15. Find the stable base locus decomposition of M0,0(Pr, 3) for r > 3 (Hint:
The chambers do not change.) If you are looking for a challenge, describe the birational
models that correspond to each of the chambers.

Problem 9.16. Calculate the stable base locus decomposition of M0,0(Pr, d) in general.
Note that this is a very hard problem. For instance, it does include the problem of
finding the ample cone of M0,n/Sn.

Note that a corollary of our discussion is that the Kontsevich moduli spaces M0,0(Pr, 2)
and M0,0(Pr, 3) are Mori dream spaces. Since the two examples we discussed in detail are
Fano, this follows by general principles (by [BCHM] a log-Fano variety is a Mori dream
space). However, for large r, these Kontsevich moduli spaces are not Fano.

Problem 9.17. For which r, d is M0,0(Pr, d) log Fano?

Exercise 9.18. Show that the canonical class of M0,0(Pr, d) is given by

−(r + 1)(d+ 1)

2d
H +

bd/2c∑
k=1

(
(r + 1)i(d− i)

2d
− 2

)
∆k,d−k.

Determine for which r, d the Kontsevich moduli space is Fano.

Problem 9.19. Show (or disprove) that the Kontsevich moduli spaces M0,0(Pr, d) are Mori
dream spaces.
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9.3. Degree two maps to Grassmannians. In our examples so far the dimension of
the Neron-Severi space has been two. We give one final example where the dimension of
the Neron-Severi space is three.

Let G(k, n) denote the Grassmannian of k-dimensional subspaces of an n-dimensional
vector space V . Let λ denote a partition with k parts satisfying n−k ≥ λ1 ≥ · · · ≥ λk ≥ 0.
Let λ∗ denote the partition dual to λ with parts λ∗i = n−k−λk−i+1. Let F• : F1 ⊂ · · · ⊂ Fn
denote a flag in V . The Schubert cycle σλ is the Poincaré dual of the class of the Schubert
variety Σλ defined by

Σλ(F•) = {[W ] ∈ G(k, n) | dim(W ∩ Fn−k+i−λi) ≥ i}.
Schubert cycles form a Z-basis for the cohomology of G(k, n).

Let M0,0(G(k, n), d) denote the Kontsevich moduli space of stable maps to G(k, n) of
Plücker degree d. As usual, let

π : M0,1(G(k, n), d)→ M0,0(G(k, n), d)

be the forgetful morphism and let

e : M0,1(G(k, n), d)→ G(k, n)

be the evaluation morphism. Let us summarize the results scattered in several exercises
above.

• Let Hσ1,1 = π∗e
∗(σ1,1) and Hσ2 = π∗e

∗(σ2). Geometrically, Hσ1,1 (resp., Hσ2) is the class

of the divisor of maps f in M0,0(G(k, n), d) whose image intersects a fixed Schubert cycle
Σ1,1 (resp., Σ2).

• Let Tσ1 denote the class of the divisor of maps that are tangent to a fixed hyperplane
section of G(k, n).

• Let Ddeg denote the class of the divisor Ddeg of maps in M0,0(G(k, k + d), d) whose
image is contained in a sub-Grassmannian G(k, k+ d− 1) embedded in G(k, k+ d) by an
inclusion of the ambient vector spaces. More generally, for n ≥ k+ d, let Ddeg denote the
class of the divisor of maps f in M0,0(G(k, n), d) such that the projection of the span of
the linear spaces parameterized by the image of f from a fixed linear space of dimension
n− k − d has dimension less than k + d.

• If k divides d, then let Dunb be the closure Dunb of the locus of maps f with irreducible
domains for which the pull-back of the tautological bundle f ∗(S) has unbalanced splitting
(i.e., f ∗(S) 6= ⊕ki=1OP1(−d/k)).

• If k does not divide d, let d = kq + r, where r is the smallest non-negative integer that
satisfies the equality. The subbundle of the pull-back of the tautological bundle of rank
k − r and degree −q(k − r) induces a rational map

φ : M0,0(G(k, k + d), d) 99K M0,0(F (k − r, k; k + d), q(k − r), d).

The natural projection πk−r : F (k − r, k; k + d)→ G(k − r, k + d) from the two-step flag
variety to the Grassmannian induces a morphism

ψ : M0,0(F (k − r, k, k + d), q(k − r), d)→ M0,0(G(k − r, k + d), q(k − r)).
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The maps whose linear spans intersect a linear space of codimension (q + 1)(k − r) is a
divisor D in M0,0(G(k − r, k + d), q(k − r)). Let Dunb = φ∗ψ∗([D]).

Then in Exercises 2.35, 3.16 and 8.12, we have seen the following:

Theorem 9.20. Let M0,0(G(k, n), d) denote the Kontsevich moduli space of stable maps
to G(k, n) of Plücker degree d. Then:

(1) [Theorem 1, [Opr]] The Picard group Pic(M0,0(G(k, n), d)) ⊗ Q is generated by the
divisor classes Hσ1,1, Hσ2, and the classes of the boundary divisors ∆k,d−k, 1 ≤ k ≤ bd/2c.

(2) [Theorem 1.1, [CS]] There is an explicit, injective linear map

v : Pic(M0,d/Sd)⊗Q→ Pic(M0,0(G(k, n), d))⊗Q

that maps base-point-free divisors and NEF divisors to base-point-free divisors and NEF
divisors, respectively. A divisor class D in M0,0(G(k, n), d) is NEF if and only if D can
be expressed as a non-negative linear combination of Hσ1,1 ,Hσ2 , Tσ1 and v(D′), where D′

is a NEF divisor in M0,d/Sd.

(3) [Theorem 1.2, [CS]] A divisor class D in M0,0(G(k, k+ d), d) is effective if and only if
it can be expressed as a non-negative linear combination of Ddeg, Dunb and the boundary
divisors ∆k,d−k, 1 ≤ k ≤ bd/2c.

Remark 9.21. If we identify the Neron-Severi space of M0,0(G(k, n), d) with the vector
space spanned by the divisor classes Hσ1,1 , Hσ2 , and the classes of the boundary divisors

∆k,d−k, 1 ≤ k ≤ bd/2c, then the effective cone of M0,0(G(k, n), d) is contained in the
effective cone of M0,0(G(k, n + 1), d), with equality if n ≥ k + d. Hence, Part (3) of
Theorem 9.20 determines the effective cone of M0,0(G(k, n), d) for every n ≥ k + d.

Exercise 9.22. Show that the canonical class of M0,0(G(k, n), d)

K =
(n

2
− k − 1− n

2d

)
Hσ1,1 +

(
k − n

2
− 1− n

2d

)
Hσ2 +

bd/2c∑
i=1

(
ni(d− i)

2d
− 2

)
∆i,d−i.

(Hint: If stuck, see Theorem 1.1 of [dJS2].) Determine for which k, n and d, M0,0(G(k, n), d)
is Fano.

Exercise 9.23. Let 2 ≤ k ≤ n−2. Let ∆ = ∆1,1. Show that the divisors T , Ddeg and Dunb

on M0,0(G(k, n), 2) have the following expressions.

T =
1

2

(
Hσ1,1 +Hσ2 + ∆

)
Ddeg =

1

4
(−Hσ1,1 + 3Hσ2 −∆)

Dunb =
1

4
(3Hσ1,1 −Hσ2 −∆)
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Most questions about the divisor theory of M0,0(G(k, n), 2) can be reduced to studying
the divisor theory of M0,0(G(2, 4), 2). Let W be a four-dimensional subspace of V . Let U
be a (k − 2)-dimensional subspace of V such that U ∩W = 0. Given a two-dimensional
subspace Λ of W , the span of Λ and U is a k-dimensional subspace of V . Hence, there is
an inclusion i : G(2, 4)→ G(k, n), which induces a morphism

φ : M0,0(G(2, 4), 2)→ M0,0(G(k, n), 2).

It is easy to see that

φ∗(Hσ1,1) = Hσ1,1 , φ
∗(Hσ2) = Hσ2 , φ

∗(∆) = ∆.

Under this correspondence, the stable base-locus-decomposition of M0,0(G(k, n), 2) and
M0,0(G(2, 4), 2) coincide, as will become clear below. Many of our constructions will be
extended from G(2, 4) to G(k, n) via the morphism φ. The reader who wishes to specialize
G(k, n) to G(2, 4) in this section will not lose much generality.

Exercise 9.24. The geometry of M0,0(G(2, 4), 2) is closely related to the geometry of
quadric surfaces in P3. Show that the lines parameterized by a point in M0,0(G(2, 4), 2)
sweep out a degree two surface in P3. The maps parameterized by a point in Ddeg sweep
out a plane two-to-one. The maps parameterized by a general point in Dunb sweep out a
quadric cone.

Notation 9.25. Let Q[λ] denote the closure of the locus of maps f inM0,0(G(k, n), 2) with
irreducible domain such that the map f factors through the inclusion of some Schubert
variety Σλ in G(k, n).

Exercise 9.26. Show that Q[(1)∗] denotes the locus of maps two-to-one onto a line in
the Plücker embedding of G(k, n). Show that the union of Q[(1, 1)∗] and Q[(2)∗] in
M0,0(G(k, n), 2) is the locus of maps f such that the span of f is contained in G(k, n).
In particular, the linear spaces parameterized by a general map in Q[(1, 1)∗] sweep out a
Pk two-to-one. The linear spaces parameterized by a general map in Q[(2)∗] sweep out a
k-dimensional cone over a conic curve.

For our calculations of the stable base locus, we will introduce many curve classes and
compute their intersections with divisor classes. For the convenience of the reader, we
summarize this information in the following table. The first column contains the curve
classes in the order that they will be introduced below. The next three columns contain the
intersection numbers of these curve classes with the divisorsHσ1,1 ,Hσ2 and ∆, respectively.

Finally, the last column describes the subvariety of M0,0(G(k, n), 2) covered by effective
curves in that class. The reader may wish to verify Theorem 9.30 for themselves using
this table.
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Curve class C C · Hσ1,1 C · Hσ2 C ·∆ Deformations cover
C1 1 0 3 Q[(1, 1)∗]
C2 0 1 3 Q[(2)∗]
C3 1 1 2 M0,0(G(k, n), 2)
C4 2 0 0 Q[(1, 1)∗]
C5 0 2 0 Q[(2)∗]
C6 1 0 -1 ∆
C7 0 1 -1 ∆
C8 0 0 > 0 Q[(1)∗]

In order to understand the stable base locus decomposition of M0,0(G(k, n), 2), we need
to introduce one more divisor class. Set N =

(
n
k

)
. Let p : M0,0(G(k, n), 2) 99K G(3, N)

denote the rational map, defined away from the locus of double covers of a line in G(k, n),
sending a stable map to the P2 spanned by its image in the Plücker embedding of G(k, n).
This map gives rise to a well-defined map p∗ on Picard groups. Let P = p∗(OG(3,N)(1)).
Geometrically, P is the class of the closure of the locus of maps f such that the linear
span of the image of f (viewed in the Plücker embedding of G(k, n)) intersects a fixed
codimension three linear space in PN−1.

Lemma 9.27. The divisor class P is equal to

P =
1

4
(3Hσ1,1 + 3Hσ2 −∆).

Proof. The formula for the class P follows from Lemma 3.4. However, since we will later
need the curve classes introduced here, we recall the proof. The divisor class P can be
computed by intersecting with test families. Let λ = (1, 1)∗ and µ = (2)∗ be the partitions
dual to (1, 1) and (2), respectively. In the Plücker embedding of G(k, n), both Σλ and
Σµ are linear spaces of dimension two. Let C1 and C2, respectively, be the curves in
M0,0(G(k, n), 2) induced by a general pencil of conics in a fixed Σλ, respectively, Σµ. Let

C̃3 be the curve in M0,0(G(2, 4), 2) induced by a general pencil of conics in a general

codimension two linear section of G(2, 4) in its Plücker embedding. Let C3 = φ(C̃3). The
following intersection numbers are easy to compute.

C1 · Hσ1,1 = 1, C1 · Hσ2 = 0, C1 ·∆ = 3, C1 · P = 0

C2 · Hσ1,1 = 0, C2 · Hσ2 = 1, C2 ·∆ = 3, C2 · P = 0

C3 · Hσ1,1 = 1, C3 · Hσ2 = 1, C3 ·∆ = 2, C3 · P = 1

The class P is determined by these intersection numbers. �

Exercise 9.28. Verify the intersection numbers in the previous lemma.

Notation 9.29. Given two divisor classes D1, D2, let c(D1D2) (respectively, c(D1D2))
denote the open (resp., closed) cone in the Neron-Severi space spanned by positive (resp.,
non-negative) linear combinations of D1 and D2. Let c(D1D2) denote the cone spanned
by linear combinations

c(D1D2) = {aD1 + bD2|a ≥ 0, b > 0}.
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The domain in R3 bounded by the divisor classes D1, D2, . . . , Dr is the open domain
bounded by c(D1D2), c(D2D3), . . . , c(DrD1).

Theorem 9.30 and Figure 10 describe the eight chambers in the stable base locus decom-
position of M0,0(G(k, n), 2). In the figure, we draw a cross-section of the three-dimensional
cone and mark each chamber with the corresponding number that describes the chamber
in the theorem.

(8)

1,1
Η σ2

Η

Τ

P

∆

Dunb Ddeg

(1)

(2)
(3)(4)

(5)

(6)(7)
σ

Figure 10. The stable base locus decomposition of M0,0(G(k, n), 2).

Theorem 9.30. The stable base locus decomposition of the effective cone of M0,0(G(k, n), 2)
is described as follows:

(1) In the closed cone spanned by non-negative linear combinations of Hσ1,1 ,Hσ2 and
T , the stable base locus is empty.

(2) In the domain bounded by Hσ1,1 ,Hσ2 and P union c(Hσ1,1P ) ∪ c(Hσ2P ), the stable
base locus consists of the locus Q[(1)∗] of maps two-to-one onto a line in G(k, n).

(3) In the domain bounded by Hσ2 , Ddeg and P union c(Hσ2Ddeg)∪c(PDdeg), the stable
base locus consists of the locus Q[(1, 1)∗].

(4) In the domain bounded by Hσ1,1 , Dunb and P union c(Hσ1,1Dunb) ∪ c(PDunb), the
stable base locus consists of the locus Q[(2)∗].

(5) In the domain bounded by P,Ddeg and Dunb union c(DdegDunb), the stable base
locus consists of the union Q[(1, 1)∗] ∪Q[(2)∗].

(6) In the domain bounded by Hσ2 , Ddeg and ∆ union c(Ddeg∆), the stable base locus
consists of the union of the boundary divisor and Q[(1, 1)∗].

(7) In the domain bounded by Hσ1,1 , Dunb and ∆ union c(Dunb∆), the stable base locus
consists of the union of the boundary divisor and Q[(2)∗].
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(8) Finally, in the domain bounded by Hσ1,1 , T ,Hσ2 and ∆ union c(Hσ2∆)∪ c(Hσ1,1∆)
the stable base locus consists of the boundary divisor.

Proof. The reader should notice the symmetry across the vertical axis in Figure 10. The
Grassmannians G(k, n) and G(n − k, n) are isomorphic. This isomorphism induces an
isomorphism

ψ : M0,0(G(k, n), 2)→ M0,0(G(n− k, n), 2)

which interchanges Hσ1,1 , Dunb with Hσ2 and Ddeg, respectively, and gives rise to the
symmetry in the figure. The stable base locus of a divisor ψ∗(D) is equal to the inverse
image under ψ of the stable base locus of D. We will often group the divisors that are
symmetric under ψ and use the symmetry to simplify our calculations.

Since the effective cone of M0,0(G(k, n), 2) is generated by non-negative linear combi-
nations of Ddeg, Dunb and ∆, the stable base locus of any divisor has to be contained in
the union of the stable base loci of Ddeg, Dunb and the boundary divisor. We first check
that the loci described in the theorem are in the stable base locus of the claimed divisors.
To show that a variety X is in the base locus of a linear system |D|, it suffices to cover
X by curves C that have negative intersection with D.

Express a general divisor D = aHσ1,1 +bHσ2 +c∆. Recall from the proof of Lemma 9.27
that C1 and C2 are the curves induced by pencils of conics in Σλ and Σµ, respectively,
where λ = (1, 1)∗ and µ = (2)∗. The intersection numbers of C1 and C2 with D are

C1 ·D = a+ 3c, C2 ·D = b+ 3c.

Since curves in the class C1 (resp., C2) cover Q[(1, 1)∗] (resp., Q[(2)∗]), we conclude that
Q[(1, 1)∗] (resp., Q[(2)∗]) is in the base locus of the linear system |D| if a+ 3c < 0 (resp.,
b + 3c < 0). In other words, Q[(1, 1)∗] is in the restricted base locus of the divisors
contained in the interior of the cone generated by Ddeg, Dunb and Ddeg + ∆/3 and in
c(DunbDdeg). Similarly, Q[(2)∗] is in the restricted base locus of a divisor contained in the
interior of the cone generated by Ddeg, Dunb and Dunb + ∆/3 and in c(DdegDunb).

Let C4 and C5 be the curves induced inM0,0(G(k, n), 2) by the one parameter family of
conics tangent to four general lines in a fixed Σλ and Σµ, respectively. It is straightforward
to see that

C4 ·D = 2a, C5 ·D = 2b.

Curves of type C4 and C5 cover Q[(1, 1)∗] and Q[(2)∗], respectively. Consequently, if
a < 0 (resp., b < 0) Q[(1, 1)∗] (resp., Q[(2)∗]) is in the restricted base locus of |D|. We
conclude thatQ[(1, 1)∗] is in the restricted base locus of any divisor contained in the region
bounded by Ddeg,∆,Hσ2 and Dunb and in c(∆Ddeg)∪ c(DunbDdeg). Similarly, Q[(2)∗] is in
the restricted base locus of any divisor contained in the region bounded by Dunb,∆,Hσ1,1

and Ddeg and in c(∆Dunb) ∪ c(DdegDunb).

Next let C6 and C7 be the curves induced by attaching a line at the base point of a
pencil of lines in Σλ and Σµ, respectively. These curves have the following intersection
numbers with D:

C6 ·D = a− c, C7 ·D = b− c.
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Since deformations of the curves in the same class as C6 and C7 cover the boundary
divisor, we conclude that the boundary divisor is in the base locus of |D| if a− c < 0 or
if b− c < 0. Hence, the boundary divisor is in the base locus of the divisors contained in
the region bounded by Dunb, T , Ddeg and ∆ and in c(Dunb∆) ∪ c(Ddeg∆).

Finally, consider the one-parameter family C8 of two-to-one covers of a line l in G(k, n)
branched along a fixed point p ∈ l and a varying point q ∈ l. Then

C8 ·D = c.

Curves in the class C8 cover the locus of double covers of a line. Hence, if c < 0, then
the locus of double covers of a line have to be contained in the restricted base locus.
Note that since the locus of double covers of a line is contained in both Q[(1, 1)∗] and
Q[(2)∗], any divisor containing the latter in the base locus also contains the locus of double
covers. Hence, the locus of double covers is contained in the base locus of every effective
divisor contained in the complement of the closed cone generated by Hσ1,1 ,Hσ2 and ∆.
In particular, this locus is contained in the base locus of divisors contained in the region
bounded by Hσ1,1 ,Hσ2 and P and in c(Hσ1,1P ) ∪ c(Hσ2P ).

We have verified that the loci described in the theorem are in the base locus of the
corresponding divisors. We will next show that the divisors listed in the theorem contain
only the listed loci in their stable base locus. The divisorsHσ1,1 , Hσ2 and T are base-point-
free ([CS] §5). Hence, for divisors contained in the closed cone generated by Hσ1,1 ,Hσ2

and T the base locus is empty.

Next, note that the base locus of the linear system |P | is exactly the locus of double
covers of a line. The rational map p in the definition of P is a morphism in the complement
of the locus of double covers of a line. If the image of a map f is a degree two curve in
G(k, n), then in the Plücker embedding of G(k, n) the image spans a unique plane. In
PN−1, we can always find a codimension three linear space Γ not intersecting Λ. Hence,
f is not in the indeterminacy locus of the map to G(3, N) and there is a section of
OG(3,N)(1) not containing the image of f . It follows that f is not in the base locus of |P |.
By the argument two paragraphs above, the locus of degree two maps onto a line is in
the base locus of P . We conclude that in the region bounded by P,Hσ1,1 and Hσ2 and in

c(Hσ2P ) ∪ c(Hσ1,1P ) the stable base locus consists of the locus of double covers of a line.

For a divisor contained in the region bounded by Dunb, P and Hσ1,1 and in c(PDunb)∪
c(Hσ1,1Dunb), the stable base locus must be contained in the stable base locus of Dunb

since every divisor in this region is a non-negative linear combination of Dunb and base-
point-free divisors. Similarly, for a divisor contained in the region bounded by Ddeg, P
and Hσ2 and in c(PDdeg) ∪ c(Hσ2Ddeg), the base locus must be contained in the stable
base locus Ddeg. In the region bounded by Ddeg, Dunb and P and in c(DunbDdeg), the base
locus must be contained in the union of the stable base loci of Ddeg and Dunb. The (stable)
base locus of Ddeg is Q[(1, 1)∗] and the (stable) base locus of Dunb is Q[(2)∗]. The linear
spaces parameterized by a degree two map to G(k, n) span a linear space of dimension at
most k + 2. As long as they span a linear space of dimension k + 2, then the projection
from a general linear space of codimension k + 2 still spans a linear space of dimension
k+2, hence the corresponding map is not in the base locus of Ddeg. By symmetry, as long
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as the intersection of all the linear spaces parameterized by the degree two map does not
contain a k− 1 dimensional linear space, then the map is not contained in the base locus
of Dunb. Hence, the claims in parts (3), (4) and (5) of the theorem follow. Similarly, in the
region bounded by Dunb,∆ and Hσ1,1 and in c(Dunb∆), the base locus must be contained
in the union of Q[(2)∗] and the boundary divisor. In the region bounded by Ddeg, ∆ and
Hσ2 and in c(Ddeg∆), the base locus must be contained in the union of Q[(1, 1)∗] and the
boundary divisor. We conclude the equality in these two cases as well. Finally, in the
region bounded by ∆,Hσ1,1 and Hσ2 the base locus has to be contained in the boundary
divisor. Hence in the complement of the closed cone spanned by Hσ1,1 , T and Hσ2 the
base locus must equal the boundary divisor by the calculations above. This completes
the proof of the theorem. �

Next, we describe the birational models of M0,0(G(k, n), 2) that correspond to the
chambers in the decomposition. For a big rational divisor class D, let φD denote the
birational map

φD :M0,0(G(k, n), 2) 99K Proj(⊕m≥0(H0(O(bmDc)))).

Proposition 9.31. The Kontsevich moduli space M0,0(G(k, n), 2) admits the following
morphisms:

(1) φtHσ1,1+(1−t)Hσ2 , for 0 < t < 1, is a morphism from M0,0(G(k, n), 2) to the normal-

ization of the Chow variety, which is an isomorphism in the complement of Q[(1)∗],
the locus of double covers of a line in G(k, n), and contracts Q[(1)∗] so that the
locus of double covers with the same image line maps to a point.

(2) φHσ1,1 and φHσ2 give two morphisms from M0,0(G(k, n), 2) to two contractions of

the normalization of the Chow variety, where φHσ1,1 (resp., φHσ2 ), in addition to

the double covers of a line, also contract the boundary divisor and Q[(2)∗] (resp.,
Q[(1, 1)∗]). Any two maps f, f ′ in the boundary for which the image is contained in
the union of the same Schubert varieties Σ(2)∗ (resp., Σ(1,1)∗) map to the same point
under φHσ1,1 (resp., φHσ2 ). Similarly, the stable maps in Q[(2)∗] (resp., Q[(1, 1)∗])

with image contained in a fixed Schubert variety Σ(2)∗ (resp., Σ(1,1)∗) map to the
same point under φHσ1,1 (resp., φHσ2 ).

(3) If D is in the domain bounded by Hσ1,1 ,Hσ2 and T , then D is ample and gives rise

to an embedding of M0,0(G(k, n), 2).

Proof. The NEF cone of M0,0(G(k, n), 2), which coincides with the base-point-free cone,
is the closed cone spanned by Hσ1,1 ,Hσ2 and T . We, therefore, obtain morphisms for
sufficiently high and divisible multiples of each of the rational divisors in this cone. The
last part of the proposition follows by Kleiman’s Theorem which asserts that the interior
of the NEF cone is the ample cone.

The curves in the class C8 have intersection number zero with any divisor of the form
tHσ1,1 + (1− t)Hσ2 . Since these curves cover the locus of double covers of a fixed line, we
conclude that the maps obtained from these divisors contract the locus of double covers
of a fixed line to a point. The class H of the divisor of maps whose image intersects a
codimension two linear space in projective space gives rise to the Hilbert-Chow morphism
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on M0,0(PN−1, 2). This morphism has image the normalization of the Chow variety and
is an isomorphism away from the locus of maps two-to-one onto their image. The Plücker
embedding of G(k, n) induces an inclusion ofM0,0(G(k, n), 2) inM0,0(PN−1, 2). The pull-
back of H under this inclusion is Hσ1,1 +Hσ2 . By symmetry, there is no loss of generality
in assuming that 0 < t ≤ 1/2. We can write

tHσ1,1 + (1− t)Hσ2 = t(Hσ1,1 +Hσ2) + (1− 2t)Hσ2 .

Since Hσ2 is base-point-free, the first part of the proposition follows.

The cases of φHσ1,1 and φHσ2 are almost identical, so we concentrate on φHσ1,1 . Hσ1,1 has

intersection number zero with the curve classes C5, C7 and C8. Curves in the class C5 cover
the locus Q[(2)∗]. Curves in the class C7 cover the boundary divisor and curves in the
class C8 cover Q[(1)∗]. We conclude that these loci are contracted by φHσ1,1 . Part (2) of

the proposition follows from these considerations. We observe that the locus of degree two
curves whose span does not lie in G(k, n) admit three distinct Chow compactifications
depending on whether one uses the codimension two class σ1,1, σ2 or aσ1,1 + bσ2 with
a, b > 0. The three models are the normalization of these Chow compactifications. �

Theorem 9.32. (1) The birational model corresponding to the divisor T is the space
of weighted stable maps M0,0(G(k, n), 1, 1). φT is an isomorphism away from the
boundary divisor and contracts the locus of maps with reducible domain f : C1 ∪
C2 → G(k, n) that have f(C1 ∩ C2) = p for some fixed p ∈ G(k, n) to a point.

(2) For D ∈ c(Hσ1,1T ) or D ∈ c(Hσ2T ) the morphism φD is an isomorphism away
from the boundary divisor. On the boundary divisor, for D ∈ c(Hσ1,1T ) (resp., in
c(Hσ2T )) the morphism contracts the locus of line pairs that are contained in the
same pair of intersecting linear spaces with class Σn−k−1,...,n−k−1 (resp., Σn−k,...,n−k)
to a point. These morphisms are flops of each other over φT .

Exercise 9.33. Show that curves in the class C6 have intersection number zero with a
divisor class D in c(Hσ1,1T ). Similarly, show that curves in the class C7 have intersection

number zero with D in c(Hσ2T ). Conclude that φD contracts the loci claimed in the
theorem. curves. Check that both of these admit further small contractions to the image
of φT .

For the next lemma and theorem, we assume that the target is G(2, 4). Recall that
the Plücker map embeds G(2, 4) as a smooth quadric hypersurface in P5. The orthogonal
Grassmannian OG(3, 6) parameterizes planes contained in a smooth quadric hypersurface
in P5, hence can be interpreted as parameterizing planes contained in G(2, 4). OG(3, 6)
has two isomorphic connected components (distinguished depending on whether the plane
has cohomology class σ1,1 or σ2).

Lemma 9.34. Let OGσ1,1(G(2, 4)) and OGσ2(G(2, 4)) denote the two connected compo-
nents of the orthogonal Grassmannian OG(3, 6) parametrizing projective planes contained
in the Plücker embedding of G(2, 4). Then the Hilbert scheme Hilb2x−1(G(2, 4)) corre-
sponding to the Hilbert polynomial 2x − 1 is isomorphic to the blow-up of G(3, 6) along
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OG(3, 6). The blow-down morphism

π : Hilb2x−1(G(2, 4))→ G(3, 6)

factors through
π1,1 : Hilb2x−1(G(2, 4))→ BlOGσ1,1G(3, 6)

and
π2 : Hilb2x−1(G(2, 4))→ BlOGσ2G(3, 6).

Proof. Consider the universal family I ⊂ G(3, 6) × P5 over the Grassmannian admitting
two natural projections φ1 and φ2 to G(3, 6) and P5, respectively. The bundle φ1∗φ

∗
2OP5(2)

is naturally identified with Sym2S∗. Since OG(3, 6) is defined by the vanishing of a
general section of φ1∗φ

∗
2OP5(2) , we can identify the normal bundle of OG(3, 6) at a point

Λ of OG(3, 6) with Sym2S∗|Λ. Hilb2x−1(P5) is naturally identified with P(Sym2(S∗)) →
G(3, 6). Then Hilb2x−1(G(2, 4)) is given by

{([C], [Λ]) | [Λ] ∈ G(3, 6), C ⊂ Λ ∩G(2, 4), [C] ∈ Hilb2x−1(Λ)}.
The projection to G(3, 6) is clearly an isomorphism away from OG(3, 6). Over OG(3, 6)
the fiber of the Hilbert scheme is identified with the projectivization of Sym2S∗. It
follows that Hilb2x−1(G(2, 4)) is isomorphic to the blow-up of G(3, 6) along OG(3, 6).
Since OG(3, 6) has two connected components, this leads to two exceptional divisors that
can be blown-down independently. The Lemma follows from these considerations. �

Theorem 9.35. The rational maps corresponding to the divisors D in the cone generated
by Hσ1,1 ,Hσ2 and P are as follows.

(1) Let 0 < t < 1. The Hilbert scheme Hilb2x−1(G(2, 4)) is the flip of M0,0(G(2, 4), 2)
over the Chow variety ChowtHσ1,1+(1−t)Hσ2 . For D in the domain bounded by

Hσ1,1 ,Hσ2 and P , the rational transformation φD equals

M0,0(G(2, 4), 2) 99K Hilb2x−1(G(2, 4))

(2) For D ∈ c(Hσ1,1P ), the rational transformation φD equals

M0,0(G(2, 4), 2) 99K BlOGσ1,1G(3, 6)

(3) For D ∈ c(Hσ2P ), the rational transformation φD equals

M0,0(G(2, 4), 2) 99K BlOGσ2G(3, 6).

(4) The rational transformation φP equals

M0,0(G(2, 4), 2) 99K G(3, 6).

Proof. Consider the incidence correspondence consisting of triples (C,C∗,Λ), where Λ is
a plane in P5, C is a connected, arithmetic genus zero, degree two curve in G(2, 4) ∩ Λ
and C∗ is a dual conic of C in Λ. This incidence correspondence admits a map both to
M0,0(G(2, 4), 2) and to Hilb2x−1(G(2, 4)) by projection to the first two and by projection
to the first and third factors, respectively. The projection to the first factor gives a
morphism to the Chow variety. Note that this projection is an isomorphism away from
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the locus where C is supported on a line. The morphism to the Chow variety is a small
contraction in the case of both the Hilbert scheme and the Kontsevich moduli space.
The fiber over a point corresponding to a double line in the morphism from the Hilbert
scheme to the Chow variety is isomorphic to P1 corresponding to the choice of plane Λ
everywhere tangent to the Plücker embedding of G(2, 4) in P5. The fiber over a point
corresponding to a double line in the morphism fromM0,0(G(2, 4), 2) to the Chow variety
is isomorphic to P2 = Sym2(P1) corresponding to double covers of P1. Note in both the
Hilbert scheme and the Kontsevich moduli space the morphisms to the Chow variety
are small contractions. The locus of double lines in the Hilbert scheme (respectively,
in M0,0(G(2, 4), 2)) has codimension 3 (respectively, 2). Finally, note that for D in the
domain bounded by Hσ1,1 ,Hσ2 and P , −D is ample on the fibers of the projection of

M0,0(G(2, 4), 2) to the Chow variety and D is ample on the fibers of the projection of
the Hilbert scheme to the Chow variety. We conclude that Hilb2x−1(G(2, 4)) is the flip of
M0,0(G(2, 4), 2) over the Chow variety. The rest of the Theorem follows from the previous
lemma and the definition of P . �

Remark 9.36. For G(k, n) with (k, n) 6= (2, 4), the flip of M0,0(G(k, n), 2) corresponding
to a divisor D in the domain bounded by F,Hσ1,1 and Hσ2 is no longer the Hilbert scheme,
but a divisorial contraction of the Hilbert scheme.

Exercise 9.37. Determine the stable base locus decomposition of M0,0(G(2, 5), 3). If you
want a challenge, determine the stable base locus decomposition of M0,0(G(k, n), 3) in
general. Interpret the birational models that correspond to the chambers in the decom-
position.

As d increases, the dimension of the Neron-Severi space of M0,0(Pr, d) or M0,0(G(k, n), d)
increases linearly. The chamber decompositions of the cones become complicated very
quickly. A more approachable problem is to describe the decomposition in various dis-
tinguished planes or other small dimensional linear spaces of the Neron-Severi space.
For example, for M0,0(Pr, d), one may consider the plane spanned by H, T or the three-
dimensional subspace spanned by KM0,0(Pr,d),H, T . A large number of geometrically sig-
nificant divisors lie in these subspaces. The stable base locus decomposition of the plane
in the Neron-Severi space spanned by H and T has partially been discussed in [CC2].

10. The first divisorial contraction and the first flip for Mg

In this section, we briefly sketch recent progress in the Minimal Model Program for
Mg due to Hassett and Hyeon. In [Has], Brendan Hassett initiated a program, first
conceived in an extended e-mail correspondence between Hassett and Keel, to understand
the canonical model

Proj(
⊕
m≥0

H0(Mg,mKMg
))

of the moduli space of curves. By the celebrated result of Birkar, Cascini, Hacon and
McKernan [BCHM], the canonical ring is finitely generated. When g ≥ 22, Mg has
pluri-canonical sections, so the canonical model of Mg is a projective variety. (Of course,
when Mg is uniruled, the canonical ring is not very interesting. In this section, whenever
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we refer to the canonical model of Mg, we will exclude the cases when Mg is uniruled.)
Unfortunately, we do not know the canonical model of Mg for any g. Given the importance
of Mg and its centrality in mathematics, it is surprising that we do not even have any
guesses as to what the canonical model of Mg may be. Hassett had the idea of starting
with Mg and arriving at the canonical model by a sequence of divisorial contractions and
flips. He considers the log canonical models

Mg(a) = Proj(
⊕
m≥0

H0(Mg,m(KMg
+ aδ))).

When a = 1, the corresponding divisor on Mg is ample, hence Mg(1) is the usual Deligne-
Mumford moduli space of stable curves. One then decreases the coefficient a of the
boundary divisor δ. When a = 0, of course, one obtains the canonical model of Mg.
Hassett’s program is to describe the birational changes that occur as a decreases from one
to zero.

Surprisingly, in the few steps of the program that have been carried out, the log canon-
ical models Mg(a) themselves have modular interpretations. There are three natural ways
of constructing different birational models of a moduli space. First, we can vary the defini-
tion of the functor. For example, instead of parameterizing isomorphism classes of stable
curves, we might parameterize isomorphism classes of a slightly different class of curves.
The moduli space of pseudo-stable curves, which we introduce next, will provide a typical
example. Second, if the moduli space is constructed as a G.I.T. quotient, we can vary
the linearization and consider the corresponding quotients. As we vary the linearization,
we get different birational models (see Theorem 10.12 for some examples). Finally, we
can run the minimal model program. It is a beautiful feature of the theory that in the
examples worked out so far these three points of view coincide to produce some very rich
geometry.

Definition 10.1. A complete curve is pseudo-stable if

(1) it is connected, reduced and has only nodes and cusps as singularities;
(2) every subcurve of arithmetic genus one meets the rest of the curve in at least two

points;
(3) the dualizing sheaf of the curve is ample.

Exercise 10.2. Show that the stability condition on the dualizing sheaf is equivalent to
asking that every subcurve of arithmetic genus zero meets the rest of the curve in three
points.

Let Mps

g be the functor that associates to each scheme S of finite type over k, the
isomorphism classes of families f : C → S, where f is proper and flat and the geometric
fibers of f are pseudo-stable curves of genus g. Let M

ps

g denote the coarse moduli scheme.
Let Chown denote the locally closed subset of the Chow variety of curves of degree 2n(g−1)
in P(2n−1)(g−1)−1 parameterizing n-canonically embedded curves of genus g (for n > 1).
D. Schubert [S] proved that a Chow point in Chow3 is G.I.T. stable if and only if the
corresponding cycle is a pseudo-stable curve of genus g. Furthermore, he showed that
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there are no strictly semi-stable points. In fact, he proves that the coarse moduli scheme
Chow3//SL(5g − 5) is isomorphic to the coarse moduli scheme M

ps

g ([S], Theorem 5.4).

Hassett and Hyeon have identified M
ps

g
∼= Mg(9/11) as the first divisorial contraction

that occurs in Hassett’s program sketched above ([HH2]).

Theorem 10.3 ([HH2], Theorem 1.1). There is a morphism of stacks φ : Mg → M
ps

g

which is an isomorphism in the complement of the boundary divisor δ1. Mg(9/11) is

isomorphic to the coarse moduli scheme M
ps

g and is the divisorial contraction of Mg con-
tracting ∆1.

Exercise 10.4. Using the Theorem 6.2 of Cornalba and Harris that KMg
+ aδ is ample for

1 ≥ a > 9/11. Take a pencil of cubic curves in P2. Attach a fixed pointed stable curve
of genus g − 1 at a base point of the pencil of cubic curves. Show that the induced curve
C in Mg has C · 11λ − δ = 0. Show since curves in the class cover ∆1, ∆1 is in the
stable base locus of the divisor (11 − ε)λ − δ for 1 >> ε > 0. Conversely, show that ∆1

is the only stable base locus. Theorem 1.1 of [HH2] gives a complete description of the
corresponding divisorial contraction.

Furthermore, Hassett and Hyeon show that the model remains the same until a = 7/10.

Theorem 10.5 ([HH2], Theorem 1.2). For 7/10 < α ≤ 9/11, Mg(α) exists as a projective

variety and is isomorphic to M
ps

g .

in [HH1], Hassett and Hyeon analyze the model Mg(7/10). Even a summary of their
results is beyond the scope of these notes. However, we state their main theorem.

Definition 10.6. An elliptic bridge is a connected subcurve of arithmetic genus one meeting
the rest of the curve in two nodes. An open elliptic chain of length r is a two-pointed
projective curve (C, p, q) such that C consists of a chain E1∪· · ·∪Er of r genus one curves
with nodes, cusps and tacnodes as singularities. Ei and Ei+1 intersect in a single tacnode
for r − 1 ≥ i ≥ 1 and non-consecutive curves do not intersect. p is a smooth point of E1

and q is a smooth point of Er and ωC(p+ q) is ample.

Definition 10.7. Let C be a projective, connected curve of arithmetic genus g ≥ 3 with
nodes, cusps and tacnodes as singularities. C admits an open elliptic chain if there exists
a subcurve C ′ of C joined to the rest of the curve only at two nodes p and q such that
(C ′, p, q) is an open elliptic chain. If one of the points, say p, is a tacnode instead of a
node, we say C admits a weak elliptic chain. If p = q, the chain is called a closed elliptic
chain. If p = q is a tacnode of C, then C is called a closed weak elliptic chain.

Definition 10.8. A complete curve C is c-semi-stable if

(1) C has nodes, cusps and tacnodes as singularities;
(2) ωC is ample;
(3) a connected genus one subcurve meets the rest of the curve in at least two distinct

points.

C is c-stable if it is c-semi-stable and has no tacnodes or elliptic bridges.
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Definition 10.9. A complete curve of genus g is h-semi-stable if it is c-semi-stable and
admits no elliptic chains. It is h-stable if it is h-semi-stable and admits no weak elliptic
chains.

Let Chowg,2 and Hilbg,2 denote the closure of the loci of bi-canonically embedded curves
of genus g in the Chow variety and the Hilbert scheme, respectively. Let

M
cs

g = Chowg,2//SL(3g − 3)

and let
M
hs

g = Hilbg,2//SL(3g − 3).

Hassett and Hyeon explicitly analyze the semi-stable locus of the SL(3g − 3) action for
both quotients. They show that the (semi-)stable locus in the Chow quotient correspond
to the bi-canonically embedded c-(semi-)stable curves. The (semi)-stable locus in the
Hilbert quotient correspond to bi-canonically embedded h-(semi-)stable curves. They
obtain the following characterization of the log canonical models of Mg.

Theorem 10.10 ([HH1], Theorem 2.12). For rational numbers 7/10 < a ≤ 9/11, there
exists a small contraction

Ψ : Mg(a)→ Mg(7/10).

Then
Mg(7/10) ∼= M

cs

g

and
Mg(7/10− ε) ∼= M

hs

g

such that the induced morphism

Ψ+ : Mg(7/10− ε)→ Mg(7/10)

is the flip of Ψ for small rational ε > 0.

Remark 10.11. In some small genera, Hassett’s program has been completely carried out.
For example, in genus three Hyeon and Lee [HL] prove the following beautiful theorem.

Theorem 10.12 (Hyeon-Lee, [HL]). (1) There is a small contraction

Ψ : M
ps

3 → M3(7/10)

that contracts the locus of elliptic bridges. M3(7/10) is isomorphic to the GIT
quotient Chow3,2//SL(6) of the Chow variety of bicanonical curves.

(2) There exists a flip Ψ+ : (M
ps

3 )+ → M3(7/10) and (M
ps

3 )+ is isomorphic to M3(α)
for 17/28 < α < 7/10. Moreover, for α in this range, M3(α) is isomorphic to the
GIT quotient Hilb3,2//SL(6) of the Hilbert scheme of bicanonical curves.

(3) Finally, there exists a divisorial contraction that contracts the divisor of hyperellip-
tic curves Dhyp. The log canonical model is isomorphic to P(Γ(OP2(4)))//SL(3).

Unfortunately, the GIT analysis required to prove these theorems are beyond the scope
of these notes. We conclude by mentioning some open problems.

Problem 10.13. Determine the stable base locus of the canonical linear system on Mg.
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The two steps of Hassett’s program sketched above might give the mistaken impression
that these birational models involve only changing the boundary of the moduli space. In
fact, there are many loci in the locus of smooth curves that are contained in the stable base
locus of the canonical linear series. Hence, the canonical model is not a compactification
of Mg.

Exercise 10.14. Let g ≥ 3, show that the locus of hyperelliptic curves is in the base locus
of Mg.

Problem 10.15. For a fixed g, determine which k-gonal loci are in the stable base locus of
the canonical linear system.

Problem 10.16. Determine the stable base locus decomposition of the effective cone of Mg.

Problem 10.17. Determine the canonical model of Mg.
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