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Abstract. If M is a closed orientable hyperbolic 3-manifold with first Betti number 2 then

the volume of M exceeds 0.34.

Introduction

It was shown in [2] that if M is a closed orientable hyperbolic 3-manifold for which the
first Betti number β1(M) is at least 3, then the volume of M is at least 0.92. In this note
we obtain a volume estimate of the same order of magnitude under the weaker hypothesis
β1(M) ≥ 2:

Theorem. If M is a closed orientable hyperbolic 3-manifold with β1(M) ≥ 2 then the

volume of M exceeds 0.34.

In a forthcoming paper [4] we will show that if one excludes certain special manifolds, such
as fiber bundles over S1, then the same estimate holds for hyperbolic manifolds with Betti
number 1.

Our volume estimates can be placed in context by comparing them with volume esti-
mates for general hyperbolic manifolds, as well as with volumes of known examples. The
largest known lower bound for the volume of an arbitrary closed orientable hyperbolic
3-manifold is 0.00115. This is a result of Gehring and Martin [5], who improved an earlier
estimate of 0.00082 due to R. Meyerhoff. An excellent source of examples of hyperbolic
manifolds of small volume is the census conducted by J. Weeks of hyperbolic 3-manifolds
which can be constructed from at most seven ideal tetrahedra. Among the closed manifolds
listed in the census the smallest example is orientable with β1 = 0 and has a volume of
approximately 0.94. There are at most eight distinct manifolds in the census with non-zero
β1, and they are all orientable with β1 = 1. The smallest volume among these examples is
approximately 2.78.
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The volume estimate when β1 ≥ 3 is a corollary of the main theorem of [2], which implies
that if M is a closed orientable hyperbolic 3-manifold and if every 2-generator subgroup
of π1(M) is topologically tame and of infinite index, then M contains an open set which
is isometric (as a Riemannian manifold) to a ball of radius (log 3)/2 in hyperbolic space.
The condition β1(M) ≥ 3 implies that all 2-generator subgroups of π1(M) are topologically
tame and of infinite index. Density estimates for hyperbolic sphere-packings imply that a
hyperbolic manifold which contains a hyperbolic ball of radius (log 3)/2 must have volume
at least 0.92. The estimate in this note is also based on the “Log 3 Theorem” of [2], but
combines it with a trade-off argument similar to that of [8] (see also [6]), where the volume
estimate is obtained by proving that either M contains a hyperbolic ball of a certain radius
or else it contains a tubular neighborhood of a closed geodesic for which the geometry is
sufficiently well prescribed to allow estimation of its volume.

To obtain a quantitative estimate of the volume, we need to carry out a detailed analysis
of the geometry of “displacement cylinders” for hyperbolic isometries. Suppose that x is
a loxodromic isometry of hyperbolic 3-space which has translation length λ < log 3 along
its axis. Consider the “(log 3)-cylinder” consisting of the points of H3 which are moved a
distance less than log 3 by x. This is a circular cylinder centered on the axis of x, i.e. it
consists of all points within some fixed distance R of the axis of x. However, in contrast
to the two-dimensional situation, the radius R is not a function of the translation length
of x. The action of x on H3 involves both a translation through a distance λ along the
axis and a rotation around the axis through a “twist angle” θ. (The twist θ can be defined
as the dihedral angle between P and x(P ) where P is any plane containing the axis of x.)
The radius R depends on both λ and θ. Moreover, it is possible for the (log 3)-cylinder
associated with a power of x to be larger than that associated to x; for example if x has very
small translation length and twist close to π, then x2 will have a larger (log 3)-cylinder.

The tubes that arise in our estimate are defined as follows. We consider the largest
(log 3)-cylinder associated to any power of x, and divide by the action of x. The radius,
and hence the volume, of the resulting tube depends in quite an interesting way on the
length and twist of x.

The body of this paper is divided into three sections. In the first we establish notation
and review some basic geometric facts. In the second section we prove, using the Log 3
Theorem of [2], that if β1(M) ≥ 2 and if λ < log 3, then either M contains a hyperbolic
ball of radius λ/2 or a tube associated with an element x ∈ π1(M) of translation length
less than λ. To carry out the estimate we choose a good value for λ, namely one such
that the volume of the tube associated with any isometry of length less than λ exceeds the
lower bound, given by density estimates for sphere-packings, for the volume of a manifold
containing a hyperbolic ball of radius λ/2. The analysis underlying this choice is described
in the third section.

1. Notation

1.1. We will identify the group of orientation-preserving isometries of hyperbolic 3-space
H3 with the group of Möbius transformations of the upper half-space model. A loxodromic
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isometry will be said to have complex length α if it is conjugate to the Möbius transforma-
tion z 7→ eαz. If x has complex length α then the real and imaginary parts of α will be
called, respectively, the translation length and twist of x. We will say that an isometry of
H3 is λ-short if it is loxodromic and has translation length less than λ.

1.2. If M is a hyperbolic 3-manifold then M may be regarded as the quotient of H3 by a
torsion-free discrete group Γ of hyperbolic isometries. If M is closed then Γ is cocompact
and each non-trivial element of Γ is loxodromic. In this case the centralizer of a non-trivial
element x of Γ is the maximal cyclic subgroup of Γ containing x. The centralizer of x can
also be characterized as the subgroup of Γ consisting of all elements which keep the axis
of x invariant.

1.3. Suppose that x is a loxodromic isometry of H3 with complex length α = l + iθ. It
will be useful to have a formula for the displacement of x, i.e. the distance from a point
of H3 to its image under x (see [3]). If p is a point at a distance R from the axis of x then

cosh dist(p, x(p)) = cosh l + sinh2(R)(cosh l − cos θ).

We will write

Zn
λ (x) = {p ∈ H3 | dist(p, xk(p)) < λ for some k with 1 ≤ k ≤ n}

and
Zλ(x) =

⋃

n≥1

Zn
λ (x) = {p ∈ H3 | dist(p, xk(p)) < λ for some k ≥ 1}.

If x has complex length l + iθ then Z1
λ(x) is empty if l ≥ λ and otherwise is a circular

cylinder about the axis of x with radius R satisfying

sinh2(R) =
coshλ− cosh l

cosh l − cos θ
.

The quotient Z1
λ(x)/〈x〉 is a tube which has volume

πl sinh2(R) = πl

(

coshλ− cosh l

cosh l − cos θ

)

.

It follows that Zλ(x)/ < x > is a tube of volume

πlmax
n≥1

(

cosh λ− cosh nl

cosh nl− cosnθ

)

. (1.3.1)

The following observation, which is immediate from the definitions, will be used through-
out.

If x and y are isometries of H3 then Zλ(x) ∩ Zλ(y) 6= ∅ if and only if there exists p ∈ H3

and nonzero integers m and n with max(dist(p, xn(p)), dist(p, ym(p))) < λ.

1.4. A finitely generated Kleinian group Γ is said to be topologically tame if the quotient
3-manifold H3/Γ is homeomorphic to the interior of a compact 3-manifold.
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2. Hyperbolic balls and tubes

2.1. The following consequence of the Log 3 Theorem of [2] is the basis for the volume
estimate in this paper.

Proposition. Let M = H3/Γ be a closed orientable hyperbolic 3-manifold. Let λ < log 3
be given. Suppose that x is a λ-short element of Γ which is not a proper power. If every

subgroup of Γ generated by two conjugates of x is of infinite index and topologically tame,

then M contains an open set isometric to Zlog 3(x)/〈x〉.
Proof. To prove that M contains an open set isometric to Zlog 3(x)/〈x〉, it suffices to
show that under every element of Γ the cylinder Zlog 3(x) either is invariant or is mapped
to a disjoint cylinder. The subgroup which keeps Zlog 3(x) invariant is exactly the cen-
tralizer of x, which is generated by x since x is not a proper power. Thus it suffices
to show that if y ∈ Γ does not commute with x then y maps Zlog 3(x) to a disjoint
cylinder, i.e that Zlog 3(x) ∩ Zlog 3(yxy

−1) = ∅. By 1.3 we must show that if y does
not commute with x then for any nonzero integers m and n and any p ∈ H3 we have
max(dist(p, xn(p)), dist(p, yxmy−1(p))) ≥ log 3.

The Log 3 Theorem of [2] states that if ξ and η are non-commuting hyperbolic isometries
which generate a torsion-free discrete group that is topologically tame, is not co-compact
and contains no parabolics, then max(dist(p, ξ(p)), dist(p, η(p))) ≥ log 3 for any p ∈ H3.
Since M is closed, Γ contains no parabolics. A subgroup of infinite index in Γ is necessarily
non-co-compact. We wish to apply the Log 3 Theorem with ξ = xn and η = yxmy−1, which
clearly generate a subgroup of infinite index since x and y do. Moreover the group generated
by xn and yxmy−1 is topologically tame since, by [1, Proposition 3.2], a finitely generated
subgroup of an infinite-volume topologically tame Kleinian group is topologically tame.

Thus we need only show that if y does not commute with x, and if m and n are nonzero
integers, then xn and yxmy−1 do not commute. This follows from 1.2 since the axis of
yxmy−1 is the image under y of the axis of x. ¤

2.2. Proposition. Let M = H3/Γ be a closed orientable hyperbolic 3-manifold. Suppose

that x and y are elements of Γ which are contained in the kernel of a homomorphism from

Γ onto Z. Then 〈x, y〉 is topologically tame and of infinite index in Γ.

Proof. The proof of this statement is the main step in the proof of [2, Proposition 10.2]. ¤

2.3. Proposition. Let M = H3/Γ be a closed orientable hyperbolic 3-manifold with

β1(M) ≥ 2. Let λ < log 3 be given. Either M contains a hyperbolic ball of radius λ/2 or

else M contains an open set isometric to Zlog 3(x)/〈x〉, where x is some λ-short element
of Γ.

Proof. If every element of Γ has translation length greater than λ, then the injectivity
radius at every point of M is greater than λ/2. In particular M contains a ball of radius
λ/2.

Otherwise, let x ∈ Γ have translation length less than λ. We may assume that x is not
a proper power. Since β1(M) ≥ 2, any subgroup of Γ which is generated by two conjugates
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of x is contained in the kernel of a homomorphism onto Z, and is thus topologically tame
and of infinite index in Γ by Proposition 2.2. By Proposition 2.1, M contains an open set
isometric to Zlog 3(x)/〈x〉. ¤

3. The estimate

3.1. The first step in obtaining a concrete lower bound for volume from Proposition 2.3
is to make an appropriate choice of a number λ < log 3. We choose λ = 0.8. Using density
estimates for sphere-packings as in [7] (see also [2]) one computes that the volume of a
hyperbolic 3-manifold which contains a hyperbolic ball of radius λ/2 = 0.4 is at least 0.35.
The two lemmas which are proved in this section immediately imply:

Proposition. If x is a loxodromic isometry of H3 with translation length less than 0.8
then the volume of Zlog 3(x)/〈x〉 is greater than 0.34.

Taking λ = 0.8 in Proposition 2.3 we thus obtain our volume estimate for hyperbolic
manifolds with Betti number 2:

Theorem. If M is a closed orientable hyperbolic 3-manifold with β1(M) ≥ 2 then the

volume of M exceeds 0.34.

3.2. When the translation length of our loxodromic isometry x is very short we can use a
lemma of Zagier’s [8, p.1045] to give a lower bound for the volume of Zlog 3(x)/〈x〉.
Lemma. If x is a loxodromic isometry of H3 with translation length less than 0.065 then

the volume of Zlog 3(x)/〈x〉 is at least 0.34.
Proof. Let x have complex length l+ iθ, where 0 < l < 0.065. Zagier’s Lemma states that
if θ and l are real numbers with 0 < l < π

√
3 then there exists an integer n0 ≥ 1 such that

coshn0l − cosn0θ ≤ cosh

√

4πl√
3
− 1.

Note that this implies that

coshn0l ≤ cosh

√

4πl√
3
.

Now, substituting into 1.3.1 and using cosh(log 3) = 5/3, we have

volZlog 3(x)/〈x〉 = πlmax
n>0

(

5/3− cosh nl

cosh nl− cosnθ

)

≥ πl

(

5/3− coshn0l

cosh n0l − cosn0θ

)

≥ πl





5/3− cosh
√

4πl√
3

cosh
√

4πl√
3
− 1





.
= µ(l).

One checks that µ is decreasing on [0, 0.065] and that µ(0.065) = 0.3509826 . . . . ¤
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3.3. Our volume estimate is completed by the following lemma. The proof is simply a
numerical computation, albeit one of sufficient complexity to require the use of a computer.

Lemma. If x is a loxodromic isometry of H3 with translation length in the interval

[0.065, 0.8] then the volume of Zlog 3(x)/〈x〉 is at least 0.34.
Proof. Let x have complex length l + iθ. Recall that

volZlog 3(x)/〈x〉 = πlmax
n≥1

(

5/3− coshnl

coshnl − cosnθ

)

.

Set

fn(l, θ) = πl

(

5/3− coshnl

coshnl − cosnθ

)

.

We must show that 0.34 is a lower bound for maxn≥1 fn(l, θ) for (l, θ) in the rectangle
R = [0.065, 0.8]× [0, π]. Clearly it suffices to show that 0.34 is a lower bound for g(l, θ) =
max1≤n≤7 fn(l, θ). Note that g is a maximum of a finite number of differentiable functions;
in particular it is continuous.

We make some observations about the functions fn which can be verified by elementary
calculus:

(i) fn has no local extrema in the interior of R;

(ii) ∂fn

∂l
= 0 implies ∂2fn

∂l2
< 0;

(iii) For fixed l, the local minima of fn(l, θ) are all equal to the global minimum and
occur where nθ = mπ for an odd integer m; in this case we have fn(l, θ) = fn(l, π/n).

Suppose that R0 = [a, b]× [c, d] is a rectangle contained in R. It follows from the three
facts above that the minimum value of fn on R0 is attained at one of the four corners of
R0 unless there exists an odd integer m such that (m/n)π ∈ [c, d]. In the latter case the
minimum is either fn(a, π/n) or fn(b, π/n). The point here is that the minimum of fn
on R0 can be computed by evaluating fn at either two or four points, the coordinates of
which can be computed in terms of a, b, c, d.

Note that max1≤n≤7 minR0
fn, truncated to a prescribed number of digits, gives a lower

bound for g on the rectangle R0, and can be computed by making no more than 28 function
evaluations. Thus the following algorithm will produce an explicit lower bound κ for g on
R: subdivide R into product rectangles Rij , 1 ≤ i ≤ N , 1 ≤ j ≤M ; compute a truncation
κij of max1≤n≤7 minRij

fn; compute κ = mini,j κij .
For programming convenience we used a partition of the rectangle R into 320 × 200

equal-sized rectangles when carrying out the above algorithm by computer. (A somewhat
coarser partition could be used, although 50 × 20 is not fine enough.) The computation
produced a lower bound κ = 0.343, which establishes the Proposition. ¤

3.4. The computer study used to prove 3.3 gives considerable qualitative information
about the behavior of the volume of Zlog 3(x)/〈x〉 as a function of complex length. This is
illustrated in the figures at the end of the paper.
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One conjecture suggested by this study is that the volume of Zlog 3(x)/〈x〉 does not
tend uniformly to infinity as the translation length approaches 0. If x has complex length
l+ iθ where θ is a fixed rational multiple of π then the volume tends to infinity as l tends
to 0. However it appears from the computation that there is a sequence of isometries xi
with translation lengths tending to 0 so that volZlog 3(xi)/〈xi〉 approaches 1√

3
, which is

the limiting value as l→ 0 of the lower bound µ(l) based on Zagier’s Lemma.
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The Volume of Zlog 3(x)/〈x〉 as a Function of Complex Length

The horizontal coordinate is the translation length l of the loxodromic isometry x, and
the vertical coordinate is the twist angle θ. Here 0 < l < 1.4 and 0 < θ < π. The figure
shows the volume of Z30

log 3(x) sampled on a 320× 200 grid. Black represents a volume of 0
and white represents a volume greater than 1. Volumes between 0 and 1 are represented
by shades of gray, smaller values being darker. The circled local minimum has a volume
of 0.34588 . . . , making it the global minimum for 0.065 < l < 0.8.
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Power m ≤ 7 Yielding the Largest Volume Tube

The horizontal coordinate is the translation length l of the loxodromic isometry x, and
the vertical coordinate is the twist angle. Here 0 < l < 0.7 and 0 < θ < π. The figure
shows, as a function of the complex length of x, which of the cylinders Z1

log 3(x
m)/〈x〉 has

the largest volume for 1 ≤ m ≤ 7. The local minima of the volume of Z7
log 3 seem to occur

at the 8 points where three of the tubes Z1
log 3(x

m)/〈x〉 are the same. The sequence of

points corresponding to the triples (1, 2, 3), (1, 2, 4), (1, 2, 5), . . . have l-coordinates tending
to 0 while the volume at these points appears to approach 1√

3
.
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