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§1. Introduction.

Consider a compact 3-manifold M with boundary consisting of a single torus. The papers

[CS1], [CS2] and [CGLS] discuss the variety of characters of SL2(C) representations of

π1(M), and some of the ways in which the topological structure of M is reflected in the

algebraic geometry of the character variety. We will describe in this paper a certain affine

algebraic curve DM which is naturally associated to the character variety of M . A basis

B = {L,M} for the peripheral subgroup of M determines an embedding pB of DM into

C∗×C∗ with coordinates l and m. The closure in C2 of pB(DM ) is a plane algebraic curve

and therefore is defined by a polynomial AM,B(l,m) that, after certain normalizations, is

uniquely determined up to multiplication by constants. The polynomial AM,B is effectively

computable and is an invariant of the manifold M together with the choice of basis B.

The results in this paper describe how geometric properties of the character variety, and

hence topological properties of M , are reflected by the polynomial AM,B.

In the case that M is the complement of a knot K in a homology 3-sphere we may

take the basis B to consist of the longitude and meridian of K. With the usual orienta-

tion conventions this basis is well-defined modulo the involution which inverts both the

longitude and meridian. It will follow from the construction of DM that if the basis B′ is

obtained from B by inverting both generators then the regular maps pB and pB′ have the

same image. Thus AK := AM,B = AM,B′ is an invariant of the knot.

The polynomialAM,B displays, in a striking way, information about the incompressible

surfaces in M . This involves the Newton polygon of AM,B , which is the convex hull of

the integer lattice points in the plane whose coordinates arise as degrees of monomials

in AM,B . Using the main result of [CS1] we show (Theorem 3.4) that “boundary slopes

are boundary slopes,” that is that the slope of each side of the Newton polygon of AM,B

equals the boundary slope of an incompressible surface in M which is associated to an

1Partially supported by the Sloan Foundation and the National Science Foundation.
2Partially supported by the National Science Foundation.
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action of π1(M) on the affine building of SL2(F ) for a certain function field F . To say

that an incompressible surface S is associated to the action means that S is produced by

a transversality construction using a π1(M)-equivariant map from the universal cover of

M to the building, which is a tree in this case. Such a surface is not unique, but has a

well-defined boundary slope. We will consider surfaces which have the minimal number of

boundary components among all incompressible surfaces associated to the action. These

are called reduced surfaces.

To describe the proof of Theorem 3.4, we consider the following projective embedding

of DM . Embed C∗×C∗ in P2 as the set {(l : m : z)|l 6= 0,m 6= 0, z = 1}. Let DM denote

the closure of the image of DM in P2. By a point at infinity of DM we mean a point

lying on one of the three axes l = 0, m = 0 or z = 0. It follows from the construction of

DM that each local branch of DM through a point at infinity determines an ideal point

of a curve of SL2(C) characters of π1(M). The technique of [CS1], which constructs an

incompressible surface for each ideal point of a curve of characters, extends to provide an

incompressible surface for each local branch of DM through a point at infinity. Moreover,

each local branch determines a discrete valuation v on the function field of the component

of DM containing it. The boundary slope of the incompressible surface associated to the

branch can be expressed in terms of v as −v(l)/v(m).

Theorem 3.4 is thus a consequence of the following statement. Given coprime integers

p and q there exists a local branch of DM through a point at infinity, for which the

associated valuation v satisfies v(l) = p and v(m) = q, if and only if the Newton polygon

of AM,B has a side of slope −p/q. The link between the valuation and the Newton polygon

is provided by the notion of a Puiseaux parametrization of a local branch of a curve. Each

side of the Newton polygon determines a Puiseaux parametrization of some local branch

of DM through a point at infinity. This parametrization provides a local coordinate with

respect to which a function on the local branch can be expanded as a Laurent series. The

valuation assigns to a function the degree of the leading term of its Laurent series.

We construct our Puiseaux parametrization of a local branch of DM so that m is a

power of the local coordinate. It then turns out that the the leading coefficient of the

Laurent series that represents l carries topological information about the reduced surface

associated to the local branch. This coefficient can be described in terms of the valuation.

In general, if f and g are elements of a field F with a discrete rank 1 valuation v, and if s is

the greatest common divisor of v(f) and v(g), then the element gv(f)/sf−v(g)/s determines

a well-defined element of the residue field. We will denote this element by τv(f, g). When

v is the valuation determined by a local branch of DM through a point at infinity we have

τv(l,m) = a
v(l)
0 . We show (Theorem 5.7) that τv(l,m) is always a root of unity and that

the order of τv(l,m) divides the number of boundary components of each component of S.

As corollary we have that the leading coefficient a0 is a root of unity.
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In fact, we give two different proofs that τv(l,m) is a root of unity with order dividing

the number of boundary components of S. Both proofs begin by producing a representation

of π1(M) into SL2(F ), where F is a finite extension of the function field of Y ⊂ DM

equipped with a discrete valuation v′ which is an extension of v. One argument involves

the algebraic K-theory of the field F , while the other uses the action of π1(M) on the

affine building of SL2(F ) determined by the representation. There are intriguing parallels

between these two arguments which presumably are due to the existence of a deeper

connection between K-theory and the theory of affine buildings over function fields.

In the K-theoretic argument the functions l and m, regarded as elements of F , are

eigenvalues of the images of L and M on a common eigenspace. These determine an element

{l,m} of K2(F ). The square of {l,m} is, in a sense, the K-theoretic fundamental class

of the peripheral torus of M and hence vanishes. The result follows from the existence of

a homomorphism (the tame symbol) from K2(F ) to C∗ which sends {x, y} to τv′(x, y)
n

for a certain integer n. It is immediate from the definition that τv(x, y) = τv′(x, y). It

follows from the construction of S that the exponent n divides the number of boundary

components of S.

The tree-theoretic argument also involves eigenvalues and homological considerations,

but in quite a different setting. If an element A of SL2(F ) fixes a vertex w of the affine

building then A is conjugate to an element A′ of SL2(O), where O denotes the valuation ring

in F . The conjugacy determines an identification of the link of the vertex w with with the

complex projective line so that the induced action of SL2(O) factors through the standard

action of SL2(C). If an edge e with initial vertex w is fixed by A then it is identified with

an eigenspace of the reduction of A′ modulo the maximal ideal. The associated complex

eigenvalue is called the eigenvalue of A associated to the fixed (directed) edge e.

If S is an incompressible surface associated to the action of π1(M) on the building of

SL2(F ) then the subgroup π1(S) is contained in the stabilizer of some edge e. Thus each

element of π1(S) has an eigenvalue associated to the edge e. The boundary components of

a component of S can be regarded as elements of π1(S) whose product is contained in the

commutator subgroup of the stabilizer of e, and hence has eigenvalue 1. For any boundary

component the eigenvalue associated to e is either τv(l,m) or τv(l,m)−1. A topological

argument with a homological flavor shows that if S is reduced then, for all of the boundary

components of a component of S, the eigenvalues associated to e are equal. This implies

that τv(l,m) is a root of unity with order dividing the number of boundary components

of each component of S. (So the tree-theoretic argument gives a slightly stronger result

than does the K-theoretic argument.)

The paper is organized as follows. The definitions of DM and AM,B are given in §2.

In §3 we explain the connection between Puiseaux parametrizations and valuations and

prove that boundary slopes are boundary slopes. The K-theoretic arguments are given in
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§4 and the tree-theoretic arguments in §5. In §6 we discuss the relationship between AK

and the Alexander polynomial of K, where K is a knot in a homology sphere. Finally, in

§7 we give computations of AK for several knots K.

This paper is as much an account of overlapping independent efforts by its many

authors as it is a collaboration. Many of the ideas presented here were also discovered by

Andrew Casson.

§2. Definitions.

In this section we give the definition of the curve DM and the polynomial AM,B . The

3-manifold M is assumed to be compact, oriented and to have a single torus boundary

component. We will assume that a basis B = {L,M} of the free abelian group π1(∂M)

has been fixed, and in the case where M is a knot complement in a homology 3-sphere

that L and M are the longitude and meridian respectively.

2.1. We will follow the notational conventions of [CS1], [CS2] and [CGLS]. Given a finitely

generated group π we denote by R(π) the variety of representations of π in SL2(C). The

variety of characters of SL2(C) representations of π is denoted X(π) and t : R(π)→ X(π)

is the canonical projection which, by [CS1], is surjective. If γ is an element of π then Iγ
will be the function defined by Iγ(χ) = χ(γ), and may be regarded as an element of the

function field of any irreducible component of X(π). When π is the fundamental group of

a manifold N we may write R(N) and X(N) for the representation and character varieties

of π. To construct the curve DM , where M is a compact 3-manifold with boundary a

torus, we use the restriction map r:X(M)→ X(∂M) induced by the inclusion of π1(∂M)

into π1(M).

2.2. The curve DM . Let ∆ ⊂ R(∂M) be the subvariety consisting of diagonal representa-

tions. There is an isomorphism pB from the affine variety ∆ to C∗×C∗ defined as follows:

if ρ is the representation defined by

ρ(L) =

[

l 0

0 l−1

]

and ρ(M) =

[

m 0

0 m−1

]

then pB(ρ) = (l,m). It is easily verified that t restricts to a surjection t∆: ∆ → X(∂M),

and that t∆ is a finite map which is generically 2-to-1. In fact X(∂M) may be identified

with the quotient of pB(∆) under the involution σ which interchanges l with l−1 and m

with m−1; the map t∆ is the composition of pB with the quotient map.

Denote by X ′(M) the union of the irreducible components Y ′ of X(M) such that the

closure of r(Y ′) is 1-dimensional. For each component Z ′ of X ′(M) let Z be the curve
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t−1∆ (r(Y ′)) ⊂ ∆. We define DM to be the union of the curves Z as Z ′ varies over all

components of X ′(M).

Note that if B′ is the basis consisting of L−1 and M−1 then pB′ = (l−1,m−1) = pB ◦σ.

Thus pB and pB′ have the same image. Having made this observation, it will no longer be

necessary to indicate dependence upon the (fixed) basis B of π1(M), so the subscript B

will be suppressed. We will identify DM with its image in C∗ ×C∗. If Y is an irreducible

component of DM we will write Y for the projective completion of Y in CP 2 and Ỹ for

the smooth projective model of Y . By an ideal point of DM we will mean a point of Ỹ , for

some irreducible component Y of DM , which corresponds to a point of Y − Y . There are

finitely many ideal points of DM , each of which determines a discrete rank one valuation

on the function field C(Y ) for some irreducible component Y of DM . If v is a valuation

on C(Y ) which corresponds to an ideal point of DM then at least one of l, m, l−1 or m−1

is not contained in the valuation ring of v.

Proposition. Let Y be an irreducible component of DM . Then there exists a finite

extension F of C(Y ) and a representation P :π1(M)→ SL2(F ) such that

P (L) =

[

l 0

0 l−1

]

and P (M) =

[

m 0

0 m−1

]

,

where l and m are regarded as elements of the coordinate ring of Y .

Proof. By the construction of DM there is an irreducible component Y ′ of X(M)

and a curve Y∂M contained in X(∂M) such that the restriction of r to Y ′ is a dominating

map to Y∂M . Also the restriction of t∆ to the component Y is a dominating map to Y∂M .

Finally, since t:R(M) → X(M) is surjective we may choose a curve YR ⊂ R(M) such

that the restriction of r ◦ t to YR is dominating. Thus the function fields of YR and Y are

both finite extensions of that of Y∂M . Moreover, since YR is a curve in R(M) there is a

tautological representation P1:π1(M)→ SL2(C(YR)). Let F be a common finite extension

of C(Y ) and C(YR). We may regard P1 as a representation of π1(M) into SL2(F). Since

F contains l and m, which are the eigenvalues of the commuting matrices P1(L) and

P1(M), the representation P1 is conjugate in GL2(F ) to a representation P satisfying the

conclusion of the proposition.

tu

2.3. The polynomial AM . By a defining polynomial of a plane curve we mean a polynomial

which vanishes exactly on the curve and has no repeated irreducible factors. Such a

polynomial is unique up to multiplication by non-zero constants. We define AM (l,m) to

be the defining polynomial of the closure of DM in C×C.
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Proposition. After multiplication by a non-zero constant the coefficients of AM can be

taken to be integers.

Proof. It suffices to show that the curve X ′(M) is defined by polynomial equations

with integral coefficients. For this we use a theorem attributed to Weil [La, Ch. III

Theorem 7]. This theorem asserts that an ideal I in a polynomial ring K[x1, . . . , xn], K a

field, has a minimal field of definition k ⊂ K. Moreover an automorphism of K leaves I

invariant if and only if it fixes k. Thus we need only show that X ′(M) is invariant under

any automorphism of the field of complex numbers (i.e under the the diagonal action of the

automorphism on affine space.) It is clear that the variety R(M) is defined over Q. Since

the projection to X(M) is a polynomial map with integral coefficients, the variety X(M)

is also defined over Q. Similarly, the restriction map r:X(M)→ X(∂M) is a polynomial

map with integral coefficients, so r(X(M)) is defined over Q. If a variety defined over Q is

invariant under an automorphism of the complex numbers then the set of generic points on

the variety is also invariant; it follows that the automorphism must take components of the

variety to components of the same dimension. Therefore, since X ′(M) is defined to be the

union of the components of X(M) whose image under the restriction map is 1-dimensional,

X ′(M) must be invariant under any automorphism of the complex numbers.

tu

2.4. It is very often (but not always) the case that every component of X(M) has di-

mension 1, so that we actually have X ′(M) = X(M). In particular we have the following.

Proposition. There are no 0-dimensional components of X(M). Moreover, ifM contains

no closed incompressible surface then every component of X(M) has dimension 1.

Proof. It is shown in [CS1] that the characters of reducible representations form a

closed algebraic subset of X(M), and that any component of X(M) which contains the

character of an irreducible representation has dimension at least 1. Thus a 0-dimensional

component of X(M) would have to be a character of a reducible representation. But it is

also shown in [CS1] that any reducible character in X(M) is the character of a diagonal

representation. It follows that a component of X(M) which consists entirely of characters

of reducible representations must have dimension greater than or equal to the first Betti

number of M . Therefore X(M) can have no 0-dimensional component.

If there is a component of X(M) with dimension greater than 1 then for any periph-

eral element γ in π1(M) there is a curve contained in X(M) on which the function Iγ

restricts to a constant function. By the main theorem of [CS1] this implies that either M

contains a closed incompressible surface or ±[γ] is a boundary slope of an incompressible

surface in M for every peripheral element γ. The second alternative would contradict a
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theorem of Hatcher [H] which states that there are only finitely many boundary slopes of

incompressible surfaces in M .

tu

2.5. The subvariety X ′(M) always has at least one component of reducible characters

since any homomorphism h : π1(M) → Z gives rise to a subvariety of X ′(M) consisting

of characters of representations which factor through h. In the case where M is a knot

complement in a homology 3-sphere, if Y is a component of X ′(M) consisting of reducible

characters then the curve Ỹ in ∆ is just the line l = 1. (This is because the longitude

is mapped to the identity by any reducible representation of π1(M).) Thus l − 1 is a

factor of AK(l,m) for any knot K in a homology sphere, and if K is the trivial knot then

AK(l,m) = l− 1.

2.6. Proposition. If K is a hyperbolic knot then AK(l,m) 6= l− 1.

Proof. It follows from [CS2] that if Y ′ is an irreducible component of X(M) which

contains the character of a discrete faithful representation then Y ′ is 1-dimensional and the

function Iγ is non-constant on Y ′ for any non-trivial peripheral element γ. This implies

that the closure Y of r(Y ′) is an irreducible component of X(∂M), of dimension at most

1, which admits a non-constant function. Thus Y is 1-dimensional and hence determines

a component of DM . Since the trace function IL is non-constant on Y ′, it follows that the

component of DM corresponding to Y is different from the line l = 1.

tu

2.7. Proposition. If K is a non-trivial (p, q)-torus knot then AK(l,m) is divisible by

lmpq + 1. In particular, AK(l,m) 6= l− 1.

Proof. The fundamental group of the complement M of the (p, q)-torus knot has

presentation 〈x, y : xp = yq〉. If mp + nq = 1 then we may take M = xnym and L =

xpM−pq. A family of irreducible representations of π1(M) can be constructed by sending

x and y to non-commuting elements of SL2(C) of order 2p and 2q respectively. After

conjugation, such a representation can be taken to restrict to a diagonal representation of

π1(∂M), which is then contained in DM . The relation L = xpM−pq immediately implies

that the closure of the set of diagonal representations obtained this way is the curve

lmpq = −1. Thus lmpq + 1 is a factor of AK(l,m).

tu

2.8. A point of intersection of DM with one of the lines m = ±1 corresponds to a

representation ρ:π1(M) → SL2(C) for which ρ(M) has trace ±2. Since ρ(M) and ρ(L)

commute we either have ρ(M) = ±I or tr ρ(L) = ±2. If M is a knot complement in S3
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then π1(M) is generated by conjugates of M. Therefore in this case ρ(M) = ±1 implies

that ρ has abelian image and hence that ρ(L) = I. This shows that if K is a knot in S3

then there are non-negative integers k1 and k2 such that AK(l,±1) = (l− 1)k1(l + 1)k2 .

The intersection points of the line l = 1 with the other components of DM are related

to the Alexander polynomial; see §6.

2.9. Proposition. If K is knot in a homology sphere then A(l,m) involves only even

powers of m.

Proof. Identify the cyclic group Z2 with the subgroup ±1 ⊂ C∗. Any homomor-

phism α:π1(M) → Z2 determines an involution of R(M) which sends a representation

ρ to the representation ρα defined by ρα(g) = α(g)ρ(g). In the case where M is a knot

complement in a homology 3-sphere the unique non-trivial homomorphism from π1(M)

to Z2 sends M to −1. The corresponding involution of R(M) induces an involution of

DM which sends (l,m) to (l,−m). Thus AK is invariant under this involution, giving the

result.

tu

§3. Boundary slopes and the Newton polygon

One of the important aspects of the relationship between the algebraic geometry of the

character variety and the topological structure of M is described by the main theorem of

[CS1] which associates incompressible surfaces in M to ideal points of curves in X(M). In

this section we reinterpret this theorem in terms of the curve DM and show that boundary

slopes of incompressible surfaces are displayed by the coefficients of AM ; the slope of each

side of the Newton polygon of AM is equal to the boundary slope of an incompressible

surface associated to an ideal point of DM .

3.1. Recall that a slope is an unoriented homotopy class of non-trivial simple closed

curves on ∂M ; that is a pair {[±γ]} of primitive homology classes in H1(∂M ;Z). If S is

an incompressible surface with non-empty boundary in M then ∂S is a family of parallel

simple closed curves on ∂M and hence determines a slope, called the boundary slope of S.

If, as in our situation, a basis of H1(∂M ;Z) is given then a slope can be represented by an

element of Q ∪ {∞} in the usual way. In our case the slope {±(aL + bM)} is represented

by the rational number b/a.
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Proposition. To each ideal point x of DM there corresponds an incompressible surface

with non-empty boundary in M . If v is the valuation on C(DM ) associated to x then the

boundary slope of this incompressible surface is −v(l)/v(m).

Proof. The construction of the incompressible surface proceeds exactly as in [CS1].

Let Y be the irreducible component of DM and v the valuation on C(Y ) associated to x.

By Proposition 2.2 there is a representation P of π1(M) into SL2(F ) where F is a finite

extension of C(Y ). The discrete valuation v can be extended to a discrete valuation v ′ on F

which satisfies v′(f) = Nv(f) for some integer N and all f ∈ C(Y ). One can then consider

the action of π1(M) on the tree of SL2(F ) determined by the representation P . The fact

that one of v(l) or v(m) is non-zero implies that P is not conjugate to a representation into

SL2(Ov′) and hence that this action is non-trivial. Using transversality and Dehn surgery,

exactly as in [CS1] or [CGLS], one obtains an incompressible surface in M .

Let us identify π1(∂M) with a subgroup of π1(M) and with H1(∂M). Then in our

situation the unique slope {±γ} with the property that the trace of P (γ) lies in the

valuation ring Ov′ is that which corresponds to the extended rational number −v(l)/v(m).

As in [CGLS] this implies that the surface has non-empty boundary and that its boundary

slope is −v(l)/v(m).

tu

3.2. Puiseaux parametrizations. Consider an irreducible plane curve C defined by a ho-

mogeneous equation F (x, y, z) = 0. Assume that F is not divisible by x or y or z and that

C passes through (0 : 0 : 1). A Puiseaux parametrization of C at (0 : 0 : 1) is a solution of

the equation F (x, y, 1) = 0 in the power series ring C[[t]] of the form

x(t) = tp and y(t) = tq
∞
∑

n=0

ant
n (3.2.1)

where p and q are positive integers and a0 6= 0. Puiseaux proved that such solutions exist

and that the power series y(t) converges; thus a Puiseux parametrization does actually

give a parametrization of the curve. (Puiseaux parametrizations exist at all points of C

but for our purposes it suffices to consider parametrizations at (0 : 0 : 1).) Given a rational

function R(x, y) which represents a non-zero element of the function field of C, one defines

the order of R to be the integer n such that R(x(t), y(t)) = tnE(t) where E(t) is a power

series with non-zero constant term. It is shown in [Le] that the order depends only on the

element of C(C) represented by R, and that the induced integer valued function on the

non-zero elements of C(C) is a valuation. Note that if v is the valuation determined by

the Puiseaux parametrization 3.2.1 then v(x) = p and v(y) = q, where we have abused

notation by using x and y to denote the elements of C(C) represented by the corresponding

polynomials.
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3.3. The Newton polygon. Given a polynomial

F (x, y) =
∑

m,n

bmnx
myn

consider the subset NF of the integer lattice in R2 given by NF = {(m,n)|bmn 6= 0}. The

Newton polygon of F is defined to be the convex hull of NF .

Let us assume that

x(t) = tp and y(t) = tq
∞
∑

n=0

ant
n

satisfy the equation F (x, y) = 0. Let f(m,n) be the linear functional on R2 given by

f(m,n) = mp + nq. Setting the coefficient of the term of lowest degree d in the power

series F (x(t), y(t)) equal to 0 one obtains

∑

f(m,n)=d

bmna
n
0 = 0. (3.3.1)

Since a0 6= 0, one obtains immediately that a necessary condition for (x(t), y(t)) to be a

solution to F (x, y) = 0 is that the minimum value of f(m,n) on the set N (F ) should be

attained at two points. This is equivalent to the condition that the Newton polygon of

F have a side of slope −p/q lying below NF . If this condition is satisfied then equation

3.3.1 exhibits a0 as a root of a certain polynomial. It is proved in [Le] or [K] that if a0 is

taken to be any root of this polynomial then one can repeat this procedure to recursively

determine the coefficients of y(t), and that the power series produced in this way converges.

This means that for each pair (p, q) satisfying the necessary condition above there exists

a Puiseaux parametrization of some irreducible component C of the curve defined by F .

In particular, for each side of the Newton polygon of F which has slope −p/q, p, q > 0,

and lies below the set NF there is a valuation v on the function field of C which satisfies

v(x) = p and v(y) = q. This statement is extended to apply to any side of the Newton

polygon by the following proposition.

Proposition. Let C be a plane curve with defining polynomial F (x, y). Assume that

F is not divisible by x or y. If the Newton polygon of F has a side of slope p/q then

there is a valuation v on the function field of some irreducible component of C such that

p/q = −v(x)/v(y). Moreover we have v(y) > 0 if and only if the side lies below NF .

Proof. In view of the discussion above we need only show how to handle the case of

a side of non-negative slope or a side which lies above NF .

If the Newton polygon of F has side of slope 0 lying below NF then there are at least

two terms in F which are powers of x. Thus there is a point on C with coordinates (x0, 0)
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where x0 6= 0. It is easy to see that if v is a valuation on C(C) corresponding to a place

centered at (x0, 0) then v(x) = 0 while v(y) > 0. A similar argument applies to the case

where a side of the Newton polygon has slope ∞.

To handle the remaining cases one simply changes coordinates. Consider the birational

self-equivalence of CP 2 defined by the Cremona transformation T (x : y : z) = (xy : z2 :

yz). Note that if y 6= 0 then T (x : y : 1) = (x : 1/y : 1). In particular T restricts to a

birational isomorphism from the closure of C to its image. The defining polynomial for

T (C) in the affine coordinates x and y is obtained from F by substituting 1/y for y and

multiplying by a power of y. The Newton polygon for this polynomial is obtained from

that of F by reflection through the horizontal axis and translation; the new polygon has

a side of negative slope lying below it for each side of the Newton polygon of F which has

positive slope and lies above NF . If the Newton polygon for F has a side of slope p/q,

p, q > 0, which lies above NF then a Puiseaux parametrization for T (C) gives rise to a

valuation v on the function field of some component of T (C) with v(x) = p and v(y) = −q.

Since T is a birational isomorphism from C to T (C) it induces isomorphisms between the

function fields of corresponding components. This gives the proposition in this case. The

other cases are handled the same way by using birational equivalences which map (x : y : 1)

to (1/x : y : 1) or (1/x : 1/y : 1).

tu

3.4. Theorem. The slopes of the sides of the Newton polygon of AM are boundary

slopes of incompressible surfaces in M which correspond to ideal points of DM .

Proof. Combine Proposition 3.1 with Proposition 3.3.

tu

§4. Algebraic K-theory and τv(l,m).

The main result of this section implies that τv(l,m) is a root of unity for each valuation

v corresponding to an ideal point of DM . As mentioned in the introduction, this implies

that in the power series which appears in a Puiseaux parametrization of a local branch of

DM through a point at infinity, the leading coefficient is a root of unity. The proof given

here uses results from algebraic K-theory about the group K2(F ) where F is a field with

discrete valuation. In the next section we will give another proof of this fact using the

tree of SL2(F ), which also relates the order of τv(l,m) to topological information about

incompressible surfaces in M .

The main result of the section can be summarized as follows. Let Y denote the

irreducible component of DM and v the discrete valuation on C(Y ) corresponding to the

given ideal point. Let F be the finite extension of C(Y ) provided by Proposition 2.2, and

11



let F be endowed with a discrete valuation v′ which extends the valuation v on C(Y ).

The functions l and m determine an element {l,m} of K2(F ). The main result is that

{l,m}2 = 0. There is a homomorphism from K2(C(Y )) to C∗, called the tame symbol,

whose value on {l,m} is a power of τv(l,m). Thus τv(l,m) is a root of unity.

Given units f and g in the coordinate ring of a smooth affine curve one can define

a closed (real) differential 1-form on the curve by the formula η(f, g) = log |f |d arg g −

log |g|d arg f . This form arises in the construction of the regulator on K2 of a curve. The

main result of this section implies that the form η(l,m) is exact on Y , a fact which has

a geometric interpretation in terms of the volumes of hyperbolic dehn fillings of M . For

an arbitrary curve in C∗×C∗, the exactness of η(l,m) gives a computable obstruction to

realizing the curve as DM for a 3-manifold M .

4.1. The symbol. Suppose that Λ is a commutative ring. Let SL(Λ) denote the direct limit

of the groups SL(n,Λ) and E(Λ) < SL(Λ) the direct limit of the groups E(n,Λ) of n × n

elementary matrices. Recall that the abelian group K2(Λ) is canonically isomorphic to the

kernel of the universal central extension of E(Λ). The extension is the Steinberg group

St(Λ). In other words we have a short exact sequence

0−→K2(Λ)−→ St(Λ)−→E(Λ)−→0

which is a universal central extension. Recall also that it follows from the five-term exact

sequence of a group extension that the kernel of a universal central extension is naturally

isomorphic to the second integral homology group of the quotient. So we have a natural

isomorphism η:K2(Λ)→ H2(E(Λ)).

Following Milnor [M], given any two commuting elements U and V of E(Λ) we define

an element U ? V of K2(Λ) by lifting U and V to elements u and v of St(Λ)and setting

U ? V = uvu−1v−1. This commutator lies in the kernel of the central extension, since U

and V commute, and is independent of the choice of lifts.

Given any two units f and g in Λ the symbol {f, g} is an element of K2(Λ) which is

defined as follows. Consider the matrices

Df =









f 0 0

0 f−1 0

0 0 1









and D′g =









g 0 0

0 1 0

0 0 g−1









which are elements of E(3,Λ). Then {f, g} = Df ? D
′
g.

By [M, Lemma 8.3], using multiplicative notation for the abelian groupK2 and writing

diag(f1, . . . , fn) for the diagonal matrix with diagonal entries f1, . . . , fn, we have

diag(f1, . . . , fn) ? diag(g1, . . . , gn) = {f1, g1} . . .{fn, gn}.

Thus we have diag(f, f−1) ? diag(g, g−1) = {f, g}{f−1, g−1} = {f, g}2. (The last equality

follows from the bimultiplicativity of the symbol [M, Lemma 8.2].)

12



Lemma. Suppose that f and g are units in Λ. Let A be a free abelian group with basis

{U, V }. Let φ:A→ E(Λ) be the homomorphism defined by

φ(U) = diag(f, f−1) and φ(V ) = diag(g, g−1).

Then there is a generator ξ of H2(A) such that η∗ ◦ φ∗(ξ) = {f, g}2.

Proof. By the remarks above it suffices to show that

η∗ ◦ φ∗(ξ) = φ(U) ? φ(V ).

Let F be a free group on the letters U and V . The homomorphism φ determines a

commutative diagram
[F, F ] −→ F −→ A




y





y





y
φ

K2(Λ) −→ St(Λ) −→ E(Λ)

for which the homomorphism from [F, F ] to K2(Λ) sends the commutator [U, V ] to

φ(U) ? φ(V ). Consider the commutative diagram below in which the vertical maps be-

tween terms of the five-term exact sequences are induced by φ.

H2(F ) → H2(A) → H0(A;H1([F, F ])) → H1(F ) → H1(A)




y





y





y





y





y

H2(St(Λ)) → H2(E(Λ)) → H0(E(Λ);K2(Λ)) → H1(St(Λ)) → H1(E(Λ))

Note that the second map is an isomorphism in each of the five-term sequences. If we

identify H0(A;H1([F, F ]) with the second quotient of the lower central series of F , which

is a cyclic group generated by the coset of [U, V ], then the isomorphism from H2(A) to

H0(A;H1([F, F ]) must take a generator ofH2(A) to the coset of [U, V ]. Since [U, V ] maps to

φ(U) ?φ(V ) in K2(Λ) = H0(E(Λ); H1(K2(Λ))), the lemma follows from the commutativity

of the diagram.

tu

Proposition. Suppose that M is a 3-manifold with boundary a torus and that M and L

form a basis of the peripheral subgroup ofM . Suppose that ρ is a representation of π1(M)

into SL2(Λ) for which ρ(L) = diag(l, l−1) and ρ(M) = diag(m,m−1). Then the symbol

{l,m} ∈ K2(Λ) has order dividing 2.

Proof. The homomorphism induced by ρ from H2(π1(∂M)) to H2(E(F)) = K2(F)

factors through the homomorphism induced on H2 by the inclusion of π1(∂M) into π1(M)

and is thus trivial.

tu
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4.2. The tame symbol. Here we consider representations of π1(M) into SL2(F ), where F

is a field with discrete valuation v and residue field k.

Recall [M, Corollary 9.13] that K2(F ) is generated by the symbols {f, g} for f, g ∈ F ∗.

Recall also that there is a homomorphism dv:K2(F )→ k∗ which is called the tame symbol

and is defined by

dv({f, g}) = fv(g)/gv(f).

(The element fv(g)/gv(f) is a unit in O and hence has a well-defined value in k∗. By

definition this value is τv(f, g)
s, where s = (v(f), v(g))).

Suppose now that F is the function field of a smooth projective curve C and that

v is the valuation associated to a point p of C. Let ρ be as above, so that for a general

peripheral element LmMn we have

ρ(LmMn) =

[

lmmn 0

0 l−mm−n

]

.

Unless l and m are both finite-valued at p there will be a primitive element γ of the

peripheral subgroup of π1(M), unique up to inverse, for which the diagonal entries of ρ(γ)

are finite-valued at p. We must have

γ±s = Lv(m)/Mv(l)

where s is the greatest common divisor of v(l) and v(m). Since the tame symbol is a

homomorphism, Proposition 4.1 implies that the eigenvalues of γ(p) are roots of unity

whose order divides 2s.

4.3. Let x be an ideal point of DM and Y an irreducible component of DM such that x is

contained in Ỹ . Let F be the finite extension of C(Y ) and P the representation provided

by Proposition 2.2. Let v be the discrete valuation on C(Y ) associated to x and v ′ a

discrete valuation on F satisfying v′|C(Y )∗ = Nv.

Proposition. Let s be the greatest common divisor of v(l) and v(m). If the incompress-

ible surfaces in M associated to the ideal point x of DM have boundary slope p/q then

τv(l,m) is a root of unity of order dividing 2Ns.

Proof. Let dv′ :K2(F ) → C∗ and dv:K2(C(Y )) → C∗ be the tame symbols. Note

that dv′({l,m}) = dv({l,m})N . Thus by 4.2 we have

(1) dv′({l,m}) is a root of unity of order dividing 2;

(2) dv({l,m}) is a root of unity of order dividing 2N ;

(3) τv(l,m) is a root of unity of order dividing 2Ns.

tu
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4.4. Regulator homomorphisms and the 1-form η(l,m). In this section and the next we

describe some connections with the hyperbolic geometry of M . These sections are inde-

pendent of the rest of the paper.

Suppose that Y is a smooth complex projective curve and that f and g are functions

on Y . Let S be a finite subset of Y containing the zeroes and poles of both f and g. We

then define a (real) differential 1-form on Y − S by the formula

η(f, g) = log |f |d arg g − log |g|d arg f.

Note that

dη = =

(

df

f
∧
dg

g

)

.

Thus dη is the imaginary part of a complex 2-form on Y , so η(f, g) is a closed 1-form. We

denote by c(f, g) the class in H1(Y −S;R) whose value on the homology class represented

by a loop γ in Y − S is given by 1
2π

∫

γ
η(f, g). We will regard c(f, g) as an element of the

direct limit of the groups H1(Y − S;R) as S ranges over the finite subsets of Y .

Proposition. There is a unique homomorphism r0:K2(C(Y ))→ limH1(Y −S;R) which

sends the symbol {f, g} to c(f, g).

Proof. Using Matsumoto’s Theorem, it suffices (see [M, Corollary 1.3]) to show that

c(f, g) satisfies

(i) c(f1f2, g) = c(f1, g) + c(f2, g)

(ii) c(f, g) = −c(g, f)

(iii) c(f, 1− f) = 0

The first two properties are immediate, so we concentrate on property (iii). Let S be

a finite subset of Y such that neither f nor 1− f has a zero or a pole in Y − S. We may

then regard f as a function from Y −S to P1−{0, 1,∞}. By naturality it suffices to check

(iii) in the case where Y = P1 ⊂ C, S = {0, 1,∞}, and f = z is the standard coordinate.

If γ is a circle of radius ε about 0 then

∫

γ

η(z, 1− z) =

∫

γ

log |z|d arg(1− z)−

∫

γ

log |1− z|d arg(z)

Now,
∫

γ

log |z|d arg(1− z) = ε

∫

γ

d arg(1− z) = 0

and
∣

∣

∣

∣

∫

γ

log |1− z|d arg(z)

∣

∣

∣

∣

< 2π| log(1− ε)|.
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Taking the limit as ε → 0 shows that c(z, 1 − z) takes the value 0 on the homology class

represented by γ. A symmetric calculation about 1 shows that c(z, 1 − z) vanishes on a

basis of H1(P
1 − {0, 1,∞};R), proving the proposition.

tu

Combining the proposition above with Proposition 4.1 gives:

Corollary. The 1-form η(l,m) is exact on the smooth projective model of each irre-

ducible component of the curve DM .

Given a curve in C∗ × C∗, the exactness of η(l,m) is a computable obstruction to

realizing the curve as DM for a 3-manifold M ; integration of η(l,m) around a cycle in the

complement of the singular set of the curve must yield 0 if the curve is to be realizable as

DM .

The homomorphism r is very closely related to the regulator homorphism on K2 of a

curve. Specifically, it follows from [R, 4.2, 4.4, and 6.2] that if Y is defined over a number

field k ⊂ C then there is a commutative diagram

K2(Y ) −→ H1(Y (C);R)




y
α





y
β

K2(k(Y ))
r
−→ limH1(Y (C)− S;R)

where α is the localization homomorphism, β is the injection induced by inclusion and the

map at the top is, up to twisting by 2πi, the regulator as defined by Beilinson.

4.5. Volumes. The exactness of η(l,m) has geometric significance. We will explain, fol-

lowing Hodgson [H], how to define a natural “volume” function V :R(M)→ R which has

the property that if ρ is a discrete faithful representation of π1(M) then V (ρ) is the volume

of the hyperbolic manifold ρ(π1(M))\H3. The differential dV is essentially a pull-back of

the 1-form η(l,m) to R(M), which implies the exactness of η.

For the definition of the function V we begin with a triangulation of the 1-point

compactification of M − ∂M . Deleting the point at infinity produces a triangulation of M

with some ideal vertices. Lift this triangulation to the universal cover of M and add points

at infinity to complete the simplices with ideal vertices. The result is a simplicial complex

which we shall denote M̃ . There is a simplicial action of π1(M) on this complex for which

each interior vertex has a trivial stabilizer while each vertex at infinity is stabilized by a

conjugate of the peripheral subgroup of π1(M).

Let ρ:π1(M) → SL2(C) be a representation. Let H
3
denote hyperbolic space com-

pactified by adjoining the sphere at infinity. A map of a 3-simplex into H
3
will be called

totally geodesic if its image is a hyperbolic 3-simplex with totally geodesic faces and if it
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sends faces to faces. (The hyperbolic simplex is allowed to have vertices at infinity and

may be degenerate.) By a pseudo-hyperbolic structure with holonomy ρ we will mean a

map from M̃ to H
3
which is π1(M)-equivariant with respect to the action determined by

ρ, sends vertices at infinity of M to points at infinity in H
3
, and restricts to a totally

geodesic map on each 3-simplex. Such a map is not necessarily an immersion since it is

not required to preserve orientation of the 3-simplices. If Ψ is a pseudo-hyperbolic struc-

ture then the volume of Ψ is defined to be
∑

σ∈Σ ε(σ) volΨ(σ) where Σ is a complete set

of representatives for the π1(M)-orbits of 3-simplices in M̃ , and ε(σ) = ±1 according to

whether Ψ preserves the orientation of σ.

Given a representation ρ, it is not difficult to construct a pseudo-hyperbolic structure

with holonomy ρ. Choose representatives v1, v2, . . . , vn of the π1(M)-orbits of the interior

vertices of M̃ . The action of π1(M) is transitive on the vertices at infinity of M̃ ; let v∞ be a

representative of this orbit. The stabilizer of v∞ is a conjugate of the peripheral subgroup

and has a common fixed point on the sphere at infinity of hyperbolic space. Map v∞ to

such a fixed point and map v1, . . . , vn to arbitrary interior points of H3. There is a unique

extension to a π1(M)-equivariant map of the 0-skeleton of M̃ . This can be extended over

the 1-skeleton, sending edges to geodesic segments, and over the 2-skeleton, sending faces

to totally geodesic triangles. Finally, the map can then be extended over the 3-simplices

to give a pseudo-hyperbolic structure. More generally, given a smooth 1-parameter family

ρt of representations, it is clearly possible to construct a smooth 1-parameter family Ψt of

pseudo-hyperbolic structures so that the holonomy of Ψt is ρt.

Now, using Schläfli’s formula for the derivative of the volume of a smooth 1-parameter

family of hyperbolic polyhedra, Hodgson computes in [H] the derivative of the volume of

a smooth family of pseudo-hyperbolic structures on M . Let Ψt be such a family, let ρt be

the holonomy of Ψt, and let lt and mt be the eigenvalues of ρt(L) and ρt(M) associated

to a common eigenvector. We can take ρt, lt and mt to depend smoothly on t. In this

situation, Hodgson’s calculation shows that

dV

dt
= −

1

2
(log |l|

d argm

dt
− log |m|

d arg l

dt
).

This implies that the function V determines a well-defined function onDM which is smooth

away from the singularities. Lifting to the smooth projective model of an irreducible

component of DM we obtain a smooth function whose differential is η(l,m).

A slight extension is required to apply Hodgson’s argument in our situation since he

only considers the case where the pseudo-hyperbolic structures are immersions and where

the triangulation has only ideal vertices. It is remarked in [H] that the arguments apply

without change to the case of pseudo-hyperbolic structures which are not immersions. The
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Schläfli formula states that for a smooth family of polyhedra in H3 the differential of the

volume is given by

dV = −
1

2

∑

lidθi

where the sum is over the edges of the polyhedron, and li and θi denote respectively the

length and dihedral angle of the ith edge. In the case of a polyhedron with ideal vertices

one first chooses an arbitrary small horosphere at each ideal vertex along which to truncate

the polyhedron. The value of li is interpreted to be the length of the truncated edge; the

choice of truncating horosphere does not affect the differential since the sum of the dihedral

angles at the edges incident to an ideal vertex is constant. In computing the differential of

the volume of a pseudo-hyperbolic structure one obtains a sum of contributions from the

edges of the triangulation. Edges with ideal vertices make non-trivial contributions, which

reflect the fact that in general it is not possible to choose invariant horospheres at the ideal

points when truncating the simplices of the triangulation. This part of Hodgson’s argument

goes through in our setting. One must only add the observation that an edge with no ideal

endpoints contributes 0 because the sum of the dihedral angles of the simplices containing

the edge is constant.

§5. The tree of SL2(F ) and τv(l,m).

We again consider an ideal point x of DM . Let Y be the component of DM and v the

discrete valuation on C(Y ) associated to x. We have seen that there is an incompressible

surface S inM with boundary slope −v(l)/v(m) which is also associated to x. Assume that

S has been chosen among all such surfaces to have the fewest possible number of boundary

components. The main result of this section shows that the root of unity τv(l,m) carries

topological information about this surface. We show that the order of τv(l,m) divides the

number of boundary components of any component of S.

The main theorem of this section, Theorem 5.7, applies to a general representation P

of π1(M) in SL2(F ), where F is a field with discrete valuation. The application to DM ,

Corollary 5.7, is obtained by specializing to the case where F is the finite extension of the

function field of an irreducible component of DM provided by Proposition 2.2.

At the end of this section we state the conditions which are imposed upon the coeffi-

cients of AM by the conclusion of Theorem 5.7.

5.1. Eigenvalues. Let F be a field with discrete valuation v:F ∗ → Z. We denote by O

the valuation ring of F , by π a generator of the maximal ideal in O and by k the residue

field O/(π).

Recall from [S] that the affine building TF of SL2(F ) is a tree. The vertices of TF are

homothety classes of O-lattices in the 2-dimensional vector space F 2. There is an edge

of TF joining the class [L] to the class [L′] whenever πL ⊆6 L′ ⊆6 L. By “edge” we shall
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always mean “directed edge”; there are two edges joining each pair of adjacent vertices,

one in each direction. If e is an edge then e will denote the opposite of e, the edge with

the same endpoints and opposite orientation. We denote by i(e) and t(e) respectively the

initial and terminal vertices of an edge e. The set of edges of TF with initial vertex [L]

are in one-to-one correspondence with the lines in the 2-dimensional k-vector space L/πL.

If L′ is an O-lattice with πL ⊆6 L′ ⊆6 L then the edge from [L] to [L′] corresponds to the

1-dimensional subspace L′/πL of L/πL.

The action of SL2(F ) on the set of O-lattices in F 2 induces an action on TF . This is

an action without inversions, i.e. no element of SL2(F ) sends an edge to its opposite. The

stabiliizer in SL2(F ) of a vertex [L] coincides with the stabilizer of the O-lattice L, and

is therefore conjugate in GL2(F ) to SL2(O). It follows (cf. [CS1, Theorem 2.2.1] that A

fixes some vertex of TF if and only if trA ∈ O. Let e be an edge of T which is fixed by

an element A ∈ SL2(F ). Then i(e) and t(e) are represented by lattices L and L′ such that

πL ⊆6 L′ ⊆6 L; the linear transformation of the 1-dimensional k-vector space L′/πL which

is induced by A must be multiplication by a scalar λ. We shall call λ the eigenvalue of A

associated to the fixed edge e. The eigenvalue λ does not depend on the choice of L and

L′ because the pair {L,L′} is uniquely determined up to homothety.

Note that we may interpret λ as the eigenvalue corresponding to the eigenspace L′/πL

of the linear transformation induced by A on the 2-dimensional vector space L/πL.

Note also that if A ∈ SL2(F ) fixes an edge then it necessarily fixes two vertices, so its

trace lies in O. If λ is the eigenvalue of A associated to the edge then λ+λ−1 is the image

of trA under the quotient map O → O/π = k.

Finally, note that the eigenvalue of A associated to a fixed edge e depends only on

the conjugacy class of A in the stabilizer of e.

5.2. Proposition. Suppose that A ∈ SL2(F ) fixes an edge e of TF . If the eigenvalue

of A associated to e is λ then the eigenvalue of A associated to e is λ−1.

Proof. Let the initial and terminal vertices of e be [L] and [L′] respectively, where

πL ⊆6 L′ ⊆6 L. Then A induces multiplication by λ on L′/πL. On the other hand we have

πL′ ⊆6 πL ⊆6 L′; hence if λ denotes the eigenvalue of A associated to e, then A induces

multiplication by λ on πL/πL′ ∼= L/L′. From the exact sequence

0→ L′/πL→ L/πL→ L/L′ → 0

it follows that λλ is the determinant of the linear transformation induced by A on L/πL.

Since A ∈ SL2(F ) this means that λ = λ−1.

tu

19



5.3. By an edge path in TF we mean a sequence e0, . . . , en of edges of TF with i(ej) =

t(ej−1) for j = 1, . . . , n. The edge path e0, . . . , en is reduced if ej 6= ej−1 for j = 1, . . . , n.

We define a partial ordering of the edges of TF by setting e ≤ e′ if there is a reduced edge

path e = e0, . . . , en = e′. For any pair {e, e′} of distinct edges exactly one of the following

relations holds: e < e′, e < e′, e′ < e, or e′ < e.

Proposition. Let A be an element of SL2(F ) which fixes two edges e and e′ of TF . The

eigenvalues of A associated to e and e′ are equal if e < e′ or e′ < e. They are reciprocals

if e < e′ or e′ < e.

Proof. We will assume that e < e′; the other cases follow from this one by Proposi-

tion 5.2.

Let e0, . . . , en be the unique reduced edge path with e = e0 and en = e′. Since A

fixes e and e′ it must fix all of the ei. Let λ be the eigenvalue of A associated to e. By

Proposition 5.2, λ−1 is the eigenvalue associated to e.

Now e0 and e1 are distinct edges with the same initial vertex [L] and terminal vertices

[L0] and [L1], where πL ⊆6 L0 ⊆6 L and πL ⊆6 L1 ⊆6 L. The 1-dimensional subspaces

L0/πL and L1/πL of L/πL are invariant under the linear transformation of L/πL induced

by A; furthermore these subspaces are distinct and therefore span L/πL. Since A has

determinant 1 and induces multiplication by λ−1 on L0/πL, it must induce multiplication

by λ on L1/πL. This means that the eigenvalue associated to e1 is λ. It now follows by

induction that the eigenvalue of A associated to e′ = en is also λ.

tu

5.4. The statement of Proposition 5.3 implies that if trA 6= ±2 then comparability is an

equivalence relation on the set of fixed edges of A. This may appear paradoxical because

comparability is never an equivalence relation on the set of edges of a tree which contains

a vertex of valence at least three: consider the three edges shown in Figure 5.4.1 where e0

is comparable to e1 and to e2 but e1 and e2 are not comparable.

However, it is not hard to show directly that if A fixes at least one edge of TF and trA 6= ±2

then the fixed point set of A is a line.

5.5. Reduced surfaces. We now return to our compact, orientable, 3-manifoldM with ∂M

a torus. We fix a universal covering p: M̃ → M and write π1(M) for the group of deck

transformations ofM . We suppose that we are given a representation P :π1(M)→ SL2(F ).

Then P determines an action of π1(M) on TF , and the fundamental group of any connected

submanifold of M has an induced action defined up to conjugacy. We assume that the

induced action of π1(∂M) on TF does not fix any vertex.

In this situation the theory developed in [CS1], as re-formulated in [CGLS], allows

one to associate properly embedded essential surfaces to the action of π1(M) on TF . We

20



e1

e0 e2

Figure 5.4.1

review the relevant definition. Let E denote the set of midpoints of edges of TF . For S to

be associated to the action of π1(M) on TF means that there is a π1(M)-equivariant map

φ̃: M̃ → T such that φ̃−1(E) = p−1(S).

A surface S associated to the action of π1(M) on TF is not necessarily connected. The

assumption that π1(M) fixes no vertex of TF implies that ∂S 6= ∅.

A surface associated to an action of π1(M) on TF will be said to be reduced if it is

essential and has the minimal number of boundary components among all essential surfaces

associated to the action.

5.6. Fix a reduced surface S associated to the action of π1(M) on TF . Also fix orientations

ofM and S. Then the components of ∂M̃ and of p−1(S) have induced orientations, and the

components of S and ∂S have induced transverse orientations in M and ∂M respectively.

Under our assumptions either ∂M is incompressible or some component of S is a

boundary compressing disk. Otherwise the image of π1(∂M) in π1(M) would be a cyclic

subgroup containing an element of the non-trivial conjugacy class represented by a com-

ponent of ∂S. This cyclic group would contain a non-trivial element which fixed a vertex

of TF . This implies that the entire cyclic group fixes a vertex and hence that there is a

vertex fixed by π1(∂M) under the induced action, contrary to our assumption.

If ∂M is incompressible then the components of ∂M̃ are planes and the components

of p−1(∂S) contained in a single component of ∂M̃ form a family of parallel lines. If ∂M is

compressible then the components of ∂M̃ are open annuli and the components of p−1(∂S)

contained in a single component of ∂M̃ form a family of parallel essential circles. We

will say that two components of p−1(∂S) have compatible orientations if they project to

homologous oriented simple closed curves in the torus ∂M .
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For each component C̃ of p−1(∂S) there is a unique (directed) edge e(C̃) of TF so

that φ(C̃) is the midpoint of e(C̃) and the direction of e(C̃) pulls back to the transverse

orientation of C̃.

Proposition. Under the above assumptions, suppose that C̃ and C̃ ′ are components of

p−1(∂S) which lie in the same component of ∂M̃ . Then the orientations of C̃ and C̃ ′ are

compatible if and only if the edges e(C̃) and e(C̃ ′) are comparable.

Proof. Let U be the component of ∂M̃ containing C and C ′.

First consider the case where C and C ′ are adjacent on U . We claim that in this case

φ̃(C) 6= φ̃(C′), i.e. that e(C) 6= e(C ′) and e(C) 6= e(C ′).

The proof of this claim is a simple application of the techniques used in Section 1.3

of [CGLS]. Suppose that φ̃(C) = φ̃(C′). Let Ã denote the submanifold of U which is

bounded by C and C ′. Note that p restricts to a covering projection from Ã to an annulus

A ⊂ ∂M which is bounded by two adjacent components of ∂S. Since p−1(S) = φ̃−1(E),

the components C and C ′ of φ̃−1(E) are mapped by φ̃ to the same point of E while the

interior of Ã maps into a (contractible) component of TF − E. Thus the map φ̃ can be

modified in a small neighborhood of Ã to make the image of Ã disjoint from E. This

modification can be performed equivariantly on each component of the π1(M)-orbit of Ã.

This produces a new equivariant map φ̃1: M̃ → TF . As in [CGLS] the map φ̃1 determines

a surface S1 which is also associated to the action of π1(M) on TF and which differs from

S by a surgery on the annulus A, i.e S1 is obtained from S by “tubing” along the annulus

A. This is a contradiction since S1 has fewer boundary components than S, which proves

the claim.

For the proof of the proposition, let C = C0, . . . , Cn = C ′ be the components of ∂S̃

which lie between C and C ′ on U , numbered consecutively. There is a unique edge path

e0, . . . , en such that for each i = 0, . . . , n either ei = e(Ci) or ei = e(Ci); specifically we

have ei = e(Ci) if the transverse orientation on Ci points toward Ci+1 and ei = e(Ci)

otherwise. The claim proved above implies that ei 6= ei+1 irrespective of whether the

orientations of Ci and Ci+1 are compatible. Therefore this edge path is reduced, so e0

and en are comparable, as are e0 and en. The orientations on C and C ′ are compatible if

and only if either e0 = e(C) and en = e(C ′) or e0 = e(C) and en = e(C ′). Thus e(C) is

comparable to e(C ′) if and only if the orientations on C and C ′ are compatible.

tu

5.7. We continue to let M denote a compact orientable 3-manifold whose boundary is

a torus, and P a representation of π1(M) in SL2(F ), where F is a field with a discrete

valuation. Note that P induces a representation of π1(∂M) in SL2(F ) which is defined up

to conjugacy. The image of this representation will be denoted P (π1(∂M)).
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If S is an essential surface in M then since the boundary components of S are parallel

simple closed curves on ∂M they lie in the same unoriented free homotopy class. Thus they

determine a unique pair [h±1] of conjugacy classes in π1(M). The trace of an element of

SL2(F ) is unchanged by conjugation and taking inverses, so we may define tr ∂S = trP (h).

If S is a compact 2-dimensional manifold with non-empty boundary then n(S) de-

notes the greatest common divisor of the numbers of boundary components of the various

components of S.

Theorem. Suppose that P (π1(∂M)) is not conjugate to a subgroup of SL2(O). Then

tr ∂S = λ+ λ−1 where λ is a root of unity. Moreover, if S is a reduced surface associated

to the action of π1(M) on TF determined by P then λ
n(S) = 1.

Proof. As in Section 4, we fix orientations of S and M . We consider an arbitrary

component S0 of S with ∂S0 6= ∅. Choose a component S̃0 of p
−1(S0). Then S̃0 is a simply

connected cover of S0; we write π1(S0) for its group of deck transformations, which is the

stabilizer of S̃0 in π1(M). The image of S̃0 is the midpoint of an edge e where the direction

of e pulls back to the transverse orientation of S0.

By equivariance, the stabilizer of S̃0 is contained in the stabilizer of e. A component

C of ∂S, with its induced orientation, determines a conjugacy class in the stabilizer of S̃0,

which in turn determines a conjugacy class in the stabilizer of e. Choose a representative

h of the latter conjugacy class and define λC to be the eigenvalue of h associated to e. By

the remarks at the end of Section 2, λC is independent of the choice of h. Since π1(M)

acts transitively on the components of p−1(S0), λC is also independent of the choice of S̃0.

We claim that if C and C ′ are two components of ∂S0 then λC = λC′ . To prove this

we consider an arbitrary component U of ∂M̃ . Let C̃ and C̃ ′ be components of p−1(C)

and p−1(C ′) contained in U . Let S̃0 and S̃′0 denote the components of p−1(S0) containing

C̃ and C̃ ′ respectively. Then φ̃(S̃0) and φ̃(S̃′0) are midpoints of edges e and e′ whose

directions pull back to the transverse orientations of S̃0 and S̃′0. Let h be the generator of

the stabilizer of C̃ corresponding to the oriented curve C. Now h is a deck transformation

of the covering of the torus ∂M by U and leaves C̃ invariant. Since h also preserves the

entire family U ∩ p−1(∂S) of parallel lines or circles, it must leave each member of the

family invariant. In particular, C ′ is invariant under h. However, h will be the generator

of the stabilizer of C̃ ′ corresponding to the oriented curve C ′ if and only if the orientations

of C̃ and C̃ ′ agree. Otherwise h−1 will be this generator.

By Proposition 5.6 the edges e = e(C̃) and e′ = e(C̃ ′) are comparable if and only if

the orientations of C̃ and C̃ ′ are compatible. The eigenvalue of h associated to e is λC .

If the orientations of C̃ and C̃ ′ are compatible then λC′ is the eigenvalue of h associated

to e′; by Proposition 5.3 λC = λC′ since e is comparable to e′. If the orientations are not

compatible then λC′ is the eigenvalue of h−1 associated to e′ which, by Proposition 5.2,
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equals the eigenvalue of g associated to e′. By Proposition 5.3 this equals the eigenvalue

of g associated to e since e and e′ are not comparable. Thus we again have λC = λC′ .

To complete the proof of the theorem we let the boundary components of S0 be

C0, . . . , Cm. For i = 0, . . . ,m let hi be an element of π1(S0) in the conjugacy class deter-

mined by Ci with the induced orientation. Then each hi is an element of the stabilizer of

e and the eigenvalue of hi associated to the edge e is λi = λCi
. Moreover, the product

h0 . . . hm is an element of the commutator subgroup of π1(S0) and hence of the commuta-

tor subgroup of the stabilizer of e. Now, the commutator subgroup of the stabilizer of an

edge of TF consists of unipotent elements mod π. Thus we have λ1 . . . λm = 1 mod π. By

the claim proved above λ1 = . . . = λm. If we let λ be the image of λi in the residue field

k then we have tr ∂S = λ + λ−1 where λm = 1. Since S0 was an arbitrary component of

S, this implies the statement of the theorem.

tu

Corollary. Let M be a compact orientable 3-manifold with boundary a torus. Let x

be an ideal point of DM . Let Y be the component of DM and v the valuation on C(Y )

associated to x. If the incompressible surfaces associated to x have boundary slope p/q,

where (p, q) = 1, then the field value τv(l,m) of mp/lq at x is a root of unity. If S is any

component of a reduced surface associated to the ideal point z then τv(l,m)n(S) = 1.

Proof. Let Y be the irreducible component of DM such that x is an ideal point of Y .

Let F be the finite extension of C(Y ) provided by Proposition 2.2 equipped with a discrete

valuation which extends the valuation on C(Y ) associated to x. Apply the Theorem to P .

tu

5.8. The K-theoretic argument given in section 4 implies that the order of λ divides

2N gcd(v′(l), v′(m)) where v′ is an extension of v to a valuation on F and satisfies v′(f) =

Nv(f) for f ∈ C(Y ). Interpreted in terms of the tree this shows that the order of λ

divides the number of boundary components of any reduced surface associated to z. Thus

Corollary 5.7 gives stronger information when this surface is not connected.

5.9. Corollary 5.7 gives insight into the proof of the Smith Conjecture. In [CS1] Culler

and Shalen proved a strong version of the Smith Conjecture: If Σ̃ is an n-fold cyclic cover

(n > 1) of a closed 3-manifold Σ branched over a non-trivial knot K then either

(1) Σ̃ contains a non-separating 2-sphere or an incompressible surface of positive genus;

or

(2) π1(Σ̃) admits a non-trivial representation in PSL2(C).

In the case where Σ−K is hyperbolic this was proved by considering a suitable curve X in

the character variety of π1(Σ−K), and the function IM where M is a meridian of K. Let
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X̂ denote the smooth projective model of X and ÎM the extension of IM to a function on

X̂. There always exists a point x ∈ X̂ such that Îm(x) = ζ + ζ−1, where λ is a primitive

nth root of unity. If x is an ideal point then conclusion (1) holds; if x ∈ X then conclusion

(2) holds.

It would appear that this proof involves only rather special ideal points, namely those

where some Îg, for g ∈ π1(∂M), takes a value of the form ζ + ζ−1 with ζ a root of unity.

Corollary 5.7 says that these ideal points are not so special.

In the proof of the Cyclic Surgery Theorem [CGLS], an important rôle is played by

ideal points where some Îg takes the value 2 or −2. These correspond to the cases where

ζ = ±1 in the conclusion of Corollary 5.7. The statement of 5.7 leaves open the possibility

that ζ is always ±1. It would be very interesting to give an example for which ζ 6= ±1.

5.10. We record here the conditions which are imposed upon the coefficients of AM by

the conclusion of Corollary 5.7. Assume that

AM (l,m) =
∑

bmnlmmn.

Proposition. Suppose that the Newton polygon of AM has a side of slope −p/q and let

E be the set of lattice points (m,n) which lie on this side. Then the polynomial

Θ(z) =
∑

(m,n)∈E

bmnz
n

is a product of cyclotomic polynomials. The orders of the roots of unity which occur as

roots of ΘM divide the number of boundary components of any component of a reduced

surface determined by the given side of the Newton polygon.

§6. Alexander Polynomials.

In the case whereM is the complement of a knotK in a homology 3-sphere, the polynomial

AK is related to the Alexander polynomial of K. This relationship will be described here.

We will write ∆K(t) for the Alexander polynomial of K. Recall that the ∆K is a Laurent

polynomial which is well defined up to multiplication by units.
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6.1. It was observed by de Rham [dR] that the Alexander polynomial of K can be

regarded as the defining equation of a curve of representations of π1(M) into the affine

group of the complex plane. In de Rham’s formulation one considers meridian generators

g0, g1, . . . , gn of the knot group and a representation α into the affine group which does not

have abelian image. Assume that α has been normalized up to conjugation in the affine

group so that the fixed point of α(g0) is 0. Thus α(g0) is the affine transformation z → tz

for some complex number t. Since the meridians are all conjugate elements of π1(M), the

affine transformations α(gi) all have the same derivative. In particular there exist complex

numbers x1, . . . , xn so that α(gi) is the affine transformation z → tz + xn. The condition

that α have non-abelian image is equivalent to the condition that some xi be non-zero.

Setting the image of a relator in π1(M) equal to 1 gives rise to a homogeneous linear

equation in x1, ..., xn whose coefficients are polynomials in t. An n-relator presentation of

π1(M), e.g. a Wirtinger presentation, determines a homogeneous system of linear equations

over the polynomial ring C[t]. In [dR] it is shown that the determininant of this system

is well-defined up to multiplication by powers of t and is the Alexander polynomial of K.

Thus if α is any affine representation of π1(M) then there is a root t of the Alexander

polynomial such that the derivative of ρ(g) equals t for any meridian g. Conversely, if α is

a function sending the generators g0 . . . gn to the affine transformations given above, then

α extends to a representation with non-abelian image if and only if the linear system has

a non-zero solution. Therefore there exists a non-abelian affine representation of π1(M)

for which the image of each meridian has derivative t if and only if ∆K(t) = 0.

Lemma. Let K be a knot in a homology 3-sphere Σ. Let M be the complement of K in

Σ. Then any representation of π1(M) into PSL2(C) lifts to a representation of π1(M) into

SL2(C).

Proof. First assume that M is irreducible. To prove the lemma it suffices to show

that any central extension of the cyclic group of order 2 by π1(M) is split. Since M is a

K(π, 1)-space, this is equivalent to the statement H2(M,Z2) = 0, which is immediate since

M is a homology S1. In the general caseM is a connected sum of irreducible manifolds one

of which is a homology S1 while the others are homology 3-spheres. A representation of a

free product lifts if and only if the restrictions to the factors lift. A PSL2(C) representation

of the fundamental group of an irreducible summand of M lifts to SL2(C) again because

its second cohomology group with Z2 coefficients vanishes.

tu

Proposition. Let M be the complement of a knot K in a homology 3-sphere. The

following are equivalent.

1. There exists a reducible representation of π1(M) in SL2(C) which has non-abelian

image and sends M to an element with eigenvalue m.
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2. m2 is a root of ∆K .

Proof. This is immediate from the lemma and the preceding discussion.

tu

6.2. Proposition. Let M be the complement of a knot K in a homology 3-sphere.

Suppose that ρ is a reducible representation of π1(M) such that the character of ρ lies on

a component of X ′ which contains the character of an irreducible representation. Then

ρ(M) has eigenvalue m where m2 is a root of ∆K .

Proof. We need only show that there is a representation with the same character as

ρ which has non-abelian image. It is shown in [CS1] that if Y is a component of X which

contains the character of an irreducible representation then t−1(χ) is 3-dimensional for each

χ ∈ Y . However, by [CGLS] the variety of abelian representations with a given character

is 2-dimensional. Thus t−1(χρ) contains a representation with non-abelian image.

tu

6.3. Recall that the longitude of a knot is an element of the second derived subgroup of

the knot group. This means that if M is the complement of a knot in a homology 3-sphere

then L is in the kernel of any reducible representation of π1(M) in SL2(C). In particular, if

ρ is a reducible representation of π1(M) such that χρ ∈ X ′ then the corresponding point of

DK will have l-coordinate 1. If χρ lies on a component of X ′ which contains the character

of an irreducible representation then Proposition 6.2 shows that the y-coordinate of this

point of DK is m where ∆(m2) = 0. We remarked in Section 2 that the component of DM

which corresponds to a component of X ′ consisting entirely of reducible characters is just

the line l = 1. Thus we have the following.

Proposition. Let V be an irreducible component of DK distinct from the line l = 1.

The points of V which correspond to reducible characters have coordinates (1, t) where

∆(t2) = 0. In this case the minimal polynomial of t is a common irreducible factor of

AK(1,m) and ∆K(m2).
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§7. Computations

The computation of AM can be reduced to classical elimination theory and is therefore, in

principle, possible for arbitraryM . Suppose that we are given a representation ρ:π1(M)→

SL2(C) which restricts to an upper triangular representation of the peripheral subgroup

of π1(M). A diagonal representation ρ′ of π1(∂M) can be constructed as follows:

If ρ(γ) =

[

a(γ) b(γ)

0 d(γ)

]

then ρ′(γ) =

[

a(γ) 0

0 d(γ)

]

.

It follows from the definition that ρ′ is a point of DM ⊂ C∗ × C∗ with coordinates

(a(L), a(M)). Since any representation in R(M) is conjugate to a representation which

is upper triangular on the peripheral subgroup, there is a dense subset of DM which is

produced by this construction.

A finite presentation of π1(M) determines an explicit set of defining equations for

the affine variety R(M). The affine coordinates of a representation ρ are the matrix

entries of the images of the generators. Each relator determines a matrix whose entries are

polynomials in these coordinates; setting these matrices equal to the identity produces a set

of defining equations. Suppose that the elements L and M are included in the generating

set of π1(M). Let U be the subvariety of R(M) consisting of representations ρ with ρ(L)

and ρ(M) upper triangular. Then DM is the closure of the planar projection of U defined

by the two coordinates a(L) and a(M).

These computations are especially tractable in the case of 2-bridge knots. In this case

the usual presentation of π1(M) has the form

〈x, y:xw = wy〉

where x and y are meridians. We set M = x and L = xnww∗ where w∗ is the word

obtained by reversing w and n is chosen to make the exponent sum of L be 0. It suffices to

compute a defining equation A′(l,m) for the curve D′M which is the union of the irreducible

components of DM other than the line l = 1. (This line contains the points of DM

which are determined by reducible representations in U .) Suppose that ρ is an irreducible

representation in U . After conjugation and after replacing y by y−1 if necessary we can

assume that

ρ(x) =

[

m 1

0 m−1

]

and ρ(y) =

[

m 0

t m−1

]

.

Let p(m, t) be the upper right entry of the matrix ρ(xw)−ρ(wy), which has diagonal entries

equal to 0. Let q(m, t) be the upper left entry of ρ(xnww∗). The curve D′M is the closure

of the projection onto the (l,m) plane of the curve defined by p = 0 and q = l. Thus
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A′(l,m) is obtained by deleting repeated factors from the resultant of mrp and ms(q − l)

over t, where the exponents r and s are chosen to make mrp and ms(q− l) be polynomials.

The appendix to this paper lists the polynomials AK for a number of knots, including

some which are not 2-bridge knots. In order to make extraction of the Newton polygon as

easy as possible, the polynomials are specified by giving matrices of coefficients. An m×n

matrix Q represents the polynomial

[ 1 m2 · · · m2m−2 ]Q [ 1 l · · · ln−1 ]
T
.

One computation which is not included in the appendix, because of the enormous size

of the polynomial, is that of AK where K is the untwisted double of the trefoil.

As an indication of the kind of topological information that can be obtained from these

computations we mention that the results in the appendix provide evidence for the following

conjecture, which implies that if a non-trivial knot has no essential closed surface in its

complement then no non-trivial Dehn surgery on the knot produces a simply-connected

manifold.

Conjecture. For any non-trivial knot K the degree of AK as a polynomial in m is more

than twice its degree as a polynomial in l.

To make the connection with Dehn surgery, note that the conjecture above implies

that the degree of IL, as a function on the character variety of the complement M of K,

is at least twice that of IM. We know from [CGLS] that

(i) there is a norm | · | on the vector space R2 such that if p and q are integers then |(p, q)|

is the degree of Iγ for γ = LpMq; and

(ii) if p/q-surgery on K produces a manifold with cyclic fundamental group then either

p/q is the boundary slope of an incompressible surface in M or the vector (p, q) has

minimal norm among non-zero vectors with integer coordinates.

Suppose that p/q-surgery on K produces a simply-connected manifold. By the Cyclic

Surgery Theorem of [CGLS], we know that p/q = ±1. If neither 1/0 nor p/q are boundary

slopes for K then then we would have |(1, 0)| = |(1,±1)|. By the triangle inequality

this implies |(0, 1)| ≤ 2|(1, 0)|, contradicting the conjecture above. On the other hand, it

is shown in [CGLS] that if M contains no essential closed surface then surgery along a

boundary slope cannot produce a simply-connected manifold.

In the general case the conjecture would reduce the question of whether non-trivial

surgery can produce a simply connected manifold to the following question, which has the

flavor of the results in the second chapter of [CGLS]. If a surgery on a boundary slope

produces a simply-connected manifold, must every other surgery produce a non-simply-

connected manifold?
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Appendix

31







0 1
0 0
0 0
1 0







41











0 1 0
0−1 0

−1−2−1
0−1 0
0 1 0











51















0 1
0 0
0 0
0 0
0 0
1 0















52























1−1 0 0
0 2 0 0
0 2 1 0
0 0−1 0
0−1 0 0
0 1 2 0
0 0 2 0
0 0−1 1























61



























0 1−1 0 0
0−1 3 0 0
0 0 1 2 0
0 0−3−3 0
−1−3−6−3−1

0−3−3 0 0
0 2 1 0 0
0 0 3−1 0
0 0−1 1 0



























62























































0 0 0 0 1 0
0 0 0 1 −2 0
0 0 0 −3 1−1
0 0 0 1 2 0
0 0 0 5 −5 0
0 0 −3 3 −5 0
0 0 8 −12 3 0
0 0 3 −13 0 0
0 0−13 3 0 0
0 3−12 8 0 0
0−5 3 −3 0 0
0−5 5 0 0 0
0 2 1 0 0 0
−1 1 −3 0 0 0

0−2 1 0 0 0
0 1 0 0 0 0






















































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63














































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0 0 0 0 6 −12 6 0
0 0 0 0 −1 3 −3 1
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pretzel(−2, 3, 7)























































































































































































































−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0−2 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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0 0 0 0−1 0 0
0 0 0 0−2 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0−1 0
0 0 0 0 0 2 0
0 0 0 0 0−1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
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