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Introduction

It follows from work of Gromov, Jørgensen and Thurston (see [3]) that the real numbers

which arise as volumes of hyperbolic 3-manifolds form a well-ordered set. It is not known

at present which closed 3-manifold has the minimal volume (or whether such a manifold is

unique). The techniques developed in the series of papers [6], [7], [8], [9], [1] bear on this

question since they give volume estimates which depend on topological properties of the

manifold. If a certain topological hypothesis can be shown to imply a volume bound that

exceeds the volume of a known manifold, one obtains topological information about any

minimal volume manifold. The first estimates to have interesting qualitative consequences

of this sort appeared in the paper [1]. In the present paper we prove the following result.

Theorem A. If M is a closed orientable hyperbolic 3-manifold of minimal volume then

the first Betti number of M is at most 2.

In fact, we will prove a stronger result than Theorem A. Recall that a torsion free Kleinian

group Γ is said to be topologically tame if the corresponding covering space of M is home-

omorphic to the interior of a compact 3-manifold with (possibly empty) boundary. It is

a conjecture of Marden’s that every finitely generated Kleinian group without torsion is

topologically tame. As our main theorem we will prove:
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Theorem B. LetM = H3/Γ be a closed orientable 3-manifold of minimal volume. Either

Γ = π1(M) has a 2-generator subgroup of finite index or there is a 2-generator subgroup

of Γ which is not topologically tame.

Theorem A follows from Theorem B by virtue of [6; Prop. 10.2], which implies that if the

first Betti number of M is at least 3 then every 2-generator subgroup of Γ = π1(M) is of

infinite index and topologically tame.

According to [15], the arithmetic 3-manifold obtained by (−5/1,−5/2) Dehn surgery on

the Whitehead link has volume 0.94270 . . .. Thus Theorem B follows from the following

result, which will be proved in the body of the paper.

Theorem 1.1. Let M = H3/Γ be a closed orientable hyperbolic 3-manifold such that

every 2-generator subgroup of Γ = π1(M) is topologically tame and of infinite index. Then

the volume of M exceeds 0.94689.

Theorem 1.1 is a refinement of a result proved in [6], which under the same hypotheses

gives a lower bound of 0.92 for the volume of M . In order to explain how we refine

the arguments of [6] in this paper, we must first review them. The basic setting may be

described in terms of the “displacement cylinder” Zλ(X) ⊂ H3 that is associated to a cyclic

group X of loxodromic isometries of H3 and a positive number λ. By definition, Zλ(X)

consists of all points z ∈ H3 such that d(ξ · z) < λ for some element ξ 6= 1 of X, where d

denotes hyperbolic distance. The main theorem of [6], the “log 3 theorem,” which was later

generalized in [ACCS], asserts that if ξ and η are non-commuting orientation-preserving

isometries of H3 that generate a purely loxodromic discrete group which is topologically

tame but not co-compact, then for any point z ∈ H3 we have

max(d(z, ξ · z), d(z, η · z)) ≥ log 3.

From this it is easy to deduce that if M = H3/Γ is a compact hyperbolic 3-manifold and if

all 2-generator subgroups of Γ are topologically tame and of infinite index then the sets of

the form Zlog 3(X), where X ranges over the maximal cyclic subgroups of Γ, are pairwise

disjoint; in particular these sets cannot cover H3. If z is any point of H3−
⋃

Zlog 3(X) then

the ball of radius (log 3)/2 about z embeds in M . From the existence of a ball of radius

(log 3)/2 in M , the volume estimate can be deduced via sphere-packing estimates.

The starting point for the proof of the log 3 theorem is a topological argument which

shows that the group F = 〈ξ, η〉 is free on the generators ξ and η. The free group has a

“Banach-Tarski” decomposition

F = Jξ q Jη q Jξ−1 q Jη−1 q {1};
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here Jξ consists of all reduced words beginning with the letter ξ, and the other terms are

defined similarly. This decomposition leads to a decomposition

µ = νξ + νη + νξ−1 + νη−1

of a Patterson-Sullivan measure on the limit set Λ of F . (The definition of the Patterson-

Sullivan measure depends on identifying H3 conformally with a ball in R3 and hence on the

choice of a center point; we take the center to be the point z that appears in the statement

of the log 3 theorem.)

Let L denote the common perpendicular to the axes of ξ and η. An elementary argument

shows that the quantities d(z, ξ · z) and d(z, η · z) cannot increase when z is replaced by its

projection to L. Thus one can assume without loss of generality that z ∈ L. This implies

that the total masses |νξ| and |νξ−1 | are equal. Since |νξ|+|νξ−1 |+|νη|+|νη−1 | = |µ| = 1, one

can assume by symmetry that |νξ| ≤ 1/4. The group-theoretical identity ξ−1Jξ = F −Jξ−1

then implies that
∫

λδξ−1dνξ = 1− |νξ−1 | = 1− |νξ| ≥
3

4
,

where λξ−1 is the conformal expansion factor of ξ−1 and δ is the critical exponent of

the Poincaré series of F . The function λξ−1 :S∞ → R+ turns out to be a monotonically

decreasing function of the spherical distance from the “pole” Pξ−1 of ξ−1, which is defined

to be the endpoint of the ray in H3 which begins at z and passes through the point ξ · z.

To prove the log 3 theorem one first proves a variant of the statement, in which the as-

sumption that F is topologically tame is replaced by the assumption that µ is the ordinary

area measure on the sphere at infinity S∞ (so that in particular Λ = S∞). In this case

we have δ = 2. Furthermore, using the monotonic behavior of λξ−1 and the fact that νξ is

bounded above by the area measure A, it is not hard to show that the expression
∫

λ2ξ−1dνξ

is bounded above by
∫

C
ξ−1

λ2ξ−1dA, where Cξ−1 is a spherical cap of area |νξ|, centered at

Pξ−1 . Thus
∫

C
ξ−1

λ2ξ−1dA ≥
3

4
.

If the integral above is modified by replacing the cap Cξ−1 by a larger cap of area 1/4

then it can be evaluated in closed form; the result allows one to deduce from the inequality

above that the displacement of the point z under ξ−1 is at least log 3. This gives the

conclusion of the log 3 theorem under the assumption that µ is the area measure.

To complete the proof of the log 3 theorem one must replace this assumption by the as-

sumption that F is topologically tame. If F is topologically tame but not geometrically

finite, it is a result of Canary’s that F has a property, called analytic tameness, which

implies that the area measure is in fact the unique Sullivan-Patterson measure. The case
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where F = 〈ξ, η〉 is geometrically finite requires additional work. The pairs (ξ, η) such that

〈ξ, η〉 is discrete, free of rank 2, purely loxodromic and geometrically finite form an open set

V ⊂ PSL2(C)× PSL2(C). The function (ξ, η) 7→ max(d(z, ξ · z), d(z, η · z)) is easily seen

to have no local minimum on V ; hence if the conclusion of the log 3 theorem fails for some

pair in V , it also fails for some pair lying in the boundary B of V in PSL2(C)×PSL2(C).

It is shown in [6], and generalized in [1], that B, which consists of pairs (ξ, η) such that

〈ξ, η〉 is discrete and free of rank 2, has a dense subset consisting of pairs (ξ, η) such that

〈ξ, η〉 is also purely loxodromic and analytically tame; by continuity it follows that the

conclusion of the log 3 theorem holds when (ξ, η) ∈ B, and hence when (ξ, η) ∈ V .

Many of these steps need to be refined in order to prove Theorem 1.1. First of all, the

lower bound for volM given by Theorem 1.1 is not derived in all cases from a lower bound

on the volume of a ball in M . Instead, we show, for certain constants ε0 and λ0, that M

contains either a ball of radius 1
2
(log 3+ε0) or a closed geodesic of length > λ0. In the first

case, we use a sphere-packing argument to obtain the lower bound for volM . In the case

where M contains a closed geodesic C of length < λ0, we use results from [1] to obtain a

lower bound on the volume of a certain tube about the geodesic C.

This volume estimate given in [1] depends on the hypothesis that 2-generator subgroups

of Γ are topologically tame and of infinite index. The 2-generator groups that come up

here are of the form 〈γ, δ〉 where γ is a representative of the conjugacy class corresponding

to C and δ is an arbitrary element which does not commute with γ. The estimate is

based on a stronger version of the log 3 theorem which asserts that if ξ and η generate a

non-cocompact topologically tame group then

1

1 + ed(z,ξ·z)
+

1

1 + ed(z,η·z)
≤

1

2

for any z ∈ H3. Combining the above inequality with a little hyperbolic trigonometry one

obtains a lower bound for the distance between the axis Aγ and δ · Aγ , and therefore for

the radius, and the volume, of a tube about C.

Assume, then, that M contains neither a “big” ball (of radius > 1
2 (log 3 + ε0)) nor a

“short” geodesic (of length < λ0). The assumption that M contains no big ball implies,

by the argument that was reviewed above, that the displacement cylinders Zλ(X), where

λ = log 3 + ε0 and X ranges over the maximal cyclic subgroups of Γ, form a covering of

H3. By a largely topological argument which is given in Section 2, we can then conclude

that there are four distinct maximal cyclic subgroups Xi (i = 0, 1, 2, 3) of Γ such that
⋂

0≤i≤3 Zλ(Xi) 6= ∅. Let z be a point of this intersection, and for i = 0, 1, 2, 3, let ξi be

an element of Xi such that d(z, ξi · z) < λ. Then for any two distinct elements i, j of

{0, 1, 2, 3}, the elements ξi and ξj fail to commute. Since by the hypotheses of Theorem

1.1 〈ξi, ξj〉 is topologically tame but not co-compact we may apply the log 3 theorem to
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ξi and ξj . If for some i and j we knew that d(z, ξi · z), d(z, ξj · z) < log 3, we would have

a contradiction to the log 3 theorem. What we actually know, for any distinct i and j, is

that d(z, ξi · z), d(z, ξj · z) < log 3 + ε0. This allows us to apply a refined version of the

log 3 theorem, which is proved in this paper as Theorem 4.1 (and is quite distinct from the

version proved in [6]); Theorem 4.1 gives restrictions on the angles ∠(ξ±1i ·z, z, ξ±1j ·z) that

must hold if d(z, ξi · z), d(z, ξj · z) < λ, where λ is somewhat greater than log 3. Actually

Theorem 4.1 also requires as hypotheses certain lower bounds for the translation lengths

of the elements ξ±1i ξ±1j ; in the application, these are satisfied according to our assumption

that M contains no short geodesics. The latter assumption also gives lower bounds for the

angles ∠((ξi · z, z, ξ
−1
i · z) for i = 0, 1, 2, 3.

The rays starting from z and passing through the eight points ξ±1i ·z define eight points on

S∞, and the restrictions on the angles between these rays may be read as restrictions on

the spherical distances between these points. We prove an elementary theorem about the

2-sphere, Theorem 5.1, which shows that these conditions are incompatible; this completes

the proof of Theorem 1.1.

The proof of Theorem 1.1, like that of the log 3 theorem, involves a reduction to the case

where the point z lies on the common perpendicular to the axes of the two given hyperbolic

isometries. However, this reduction is quite complicated in the case of Theorem 1.1. If ξ

and η are hyperbolic isometries satisfying the hypotheses of the log 3 theorem, and if z is

on the common perpendicular L to the axes of ξ and η such that d(z, ξ ·z) and d(z, η ·z) are

less than λ, Theorem 3.1 gives a lower bound for the angle ∠(ξ · z, z, η · z). This relatively

simple statement does not generalize in the obvious way to the case where z /∈ L, because

replacing z by its perpendicular projection to L may well increase the angle in question.

This is why the counterpart of Theorem 3.1 in the general case is the much more technical

Theorem 4.1, which involves a complicated expression in the two angles ∠(ξ ·z, z, η ·z) and

∠(ξ−1 · z, z, η−1 · z) and must be deduced from Theorem 3.1 by an elaborate calculation

involving hyperbolic trigonometry and hard differential calculus.

Still, the heart of the matter is Theorem 3.1, and its proof is a refinement of the case

z ∈ L of the proof of the log 3 theorem. As in the latter proof, one first considers the

case in which the area measure is a Patterson measure. Reasoning by contradiction, we

assume that ∠(ξ · z, z, η · z) is small; we must obtain a contradiction by showing that

max(d(z, ξ · z), d(z, η · z)) ≥ λ, which is an improvement over the conclusion of the log 3

theorem. We will use the notation introduced above in the sketch of the proof of the log 3

theorem. Recall that |νξ| + |νη| = 1/2; an examination of the sketch of the proof given

above shows that a straightforward improvement is possible except in the case where |νξ|

and |νη| are both close to 1/4. For the purpose of this outline of the argument, we therefore
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focus on the case where |νξ| = |νη| = 1/4. In this case, we can make an improvement over

the inequality

(∗)

∫

λ2ξ−1dνξ ≤

∫

C
ξ−1

λ2ξ−1dA

which was used in the proof of the log 3 theorem. What makes the improvement possible

is that the pole Pη−1 of η−1 is close to Pξ−1 on S∞, the spherical distance being equal to

∠(ξ · z, z, η · z); this gives a lower bound, say 2I, for the area of Cξ−1 ∩Cη−1 , where Cη−1 of

course denotes the spherical cap of area |νη| centered at Pη. Using that νξ+ νη is bounded

above by the area measure, we conclude, after interchanging ξ and η if necessary, that

νξ(Cξ−1) ≤ A(Cξ−1)−
1

2
A(Cξ−1 ∩ Cη−1) ≤ |νξ| − I.

This permits us to replace the inequality (*) by one of the form

∫

C0∪R

λ2ξ−1dA ≥

∫

λ2ξ−1dνξ,

where C0 and R are respectively a disk centered at Pξ−1 and an annulus disjoint from

Cξ
−1

, and A(C0 ∪ R) = |νξ|. This leads to the desired improvement over the inequality

max(d(z, ξ · z), d(z, η · z)) ≥ log 3.

Replacing the hypothesis that the area measure is a Patterson measure by the hypothesis of

tameness is achieved by essentially the same technique as in the proof of the log 3 theorem,

but more work is required in the geometrically finite case in the step where a pair (ξ, η) ∈ V

is replaced by a pair in V , in order to preserve the condition z ∈ L.

The paper is organized according to the following plan. In Section 1 we deduce the main

theorem from Proposition 2.5, Proposition 5.1 and a special case of Theorem 4.1 which is

somewhat less technical and is stated as Corollary 4.9. Sections 2, 4, and 5 are devoted to

these results. In Section 3 we prove Theorem 3.1, the key case of Theorem 4.1 in which

the point z lies on the common perpendicular to the two axes. To maintain the flow of the

argument we have relegated to appendices three technical results that are neede along the

way but have self-contained proofs. The appendices are indexed by letters, so for example,

Lemma A.1 is a reference to the first lemma in Appendix A.

Throughout the paper there are times when we need approximate values of certain real

constants. We will give these values as decimal numbers followed by ellipses, so 1.234 . . .

denotes a real number in the interval [1.234, 1.235).

We will be making computations in spherical geometry which will involve the following

conventions and notation. We shall think of S2 as the unit sphere in R3. Any point P ∈ S2
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may be written in the form (cos θ cosλ, sin θ cosλ, sinλ) with −π/2 ≤ λ ≤ π/2 and 0 ≤

θ < 2π. The latitude λ = λ(P ) is uniquely determined by P ; we have λ(P ) = π/2− φ(P ),

where φ(P ) is the polar angle. The longitude θ = θ(P ) is uniquely determined unless P is

one of the poles N = (0, 0, 1) or S = (0, 0,−1).

We shall denote by ` : S2 \ {N,S} → S1 the projection map defined by

`(P ) = (cos θ(P ), sin θ(P )).

For any two points P,Q ∈ S2 \ {N,S} we shall let Θ(P,Q) denote the circular distance

between `(P ) and `(Q). Thus Θ(P,Q) is the absolute value of the unique element of

the interval (−π, π] which is congruent to θ(P ) − θ(Q) modulo 2π. Note that ` : S2 \

{N,S} → S1 and Θ : (S2 \ {N,S}) × (S2 \ {N,S}) → [0, π] are continuous although

θ : S2 \ {N,S} → [0, 2π) is not.

A meridian in S2 is the closure of a fiber of the map `. Two points P, P ′ ∈ S2 lie on a

common meridian if and only if either (i) P or P ′ is a pole or (ii) P, P ′ ∈ S2−{N,S} and

`(P ) = `(P ′).

We will use the notation dists(P,Q) for the spherical distance between two points P

and Q of S2. To minimize confusion when we are working on the sphere at infinity of

hyperbolic space, we will write disth(x, y) for the distance between two points x and y of

the hyperbolic 3-space H3. We will use the notation Isom+(H3) to denote the group of

orientation preseving isometries of H3.

If A, B and C are points in H3 with A 6= B 6= C, we denote the angle between the lines

BA and BC by ∠(A,B,C). If Γ is a group, we shall write H ≤ Γ to indicate that H is

a subgroup of Γ. We shall use 〈x1, . . . , xn〉 to denote the subgroup generated by elements

x1, . . . , xn of Γ.

We thank John Smillie for suggesting the idea that led to the proof of Theorem 3.1.

1. Proof of the Main Theorem

In this section we give a derivation of the main estimate of the paper. The argument

depends on results which are proved in later sections of the paper. We shall state these

results as they are needed in the course of the argument.
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Theorem 1.1. Let M = H3/Γ be a closed orientable hyperbolic 3-manifold such that

every 2-generator subgroup of Γ = π1(M) is topologically tame and of infinite index. Then

the volume of M exceeds 0.94689.

Proof. The group Γ < Isom+(H3) is discrete, torsion-free, co-compact and, consequently,

purely loxodromic.

The proof uses four carefully chosen constants. We set

β0 = 0.51π

ε0 = 0.0065

λ0 = 1.00485

δ0 = 0.71497π.

It follows from [1; Cor. 7.3, Prop. 8.1 and Lemma 10.3] that if every 2-generator subgroup

of π1(M) = Γ has infinite index and is topologically tame, and if M contains a non-trivial

closed geodesic whose length is less than some given positive number λ, then the volume

of M is at least

V (λ) =
πλ

eλ − 1

(

e2λ + 2eλ + 5

2(cosh λ
2
)(eλ + 3)

)

−
πλ

2
.

We have V (λ0) = 0.94689 . . .. Thus the conclusion of Theorem 1.1 is certainly true if M

contains a non-trivial closed geodesic of length ≤ λ0.

We shall now assume that every non-trivial closed geodesic in M has length > λ0. In

particular, every non-trivial element of Γ has translation length > λ0. Recall that by

hypothesis every 2-generator subgroup of Γ is topologically tame and of infinite index.

We shall show that under these conditionsM contains a hyperbolic ball of radius 1
2
(log 3+

ε0). As was observed by Meyerhoff [13], this implies the conclusion of Theorem 1.1 by

an estimate due to Böröczky [4] for the density of a hyperbolic sphere-packing. Given

an embedded ball in M , one obtains a sphere-packing by considering all of the lifts of

the boundary sphere to hyperbolic space. Böröczky’s result gives an explicit estimate for

the volume of the Dirichlet domain for the sphere-packing which, in this case, is also a

Dirichlet domain forM . Applying this estimate, exactly as was done in [6; Corollary 10.4],

one obtains that if M contains a ball of radius 12 (log 3 + ε0) then the volume of M is at

least 0.94689 . . ..

Let us now assume that M contains no ball of radius 1
2
(log 3+ ε0). We will show that this

assumption leads to a contradiction.

We begin by applying the following general result, which is proved in Section 2.
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Proposition 2.5. Let Γ be a co-compact, torsion-free, discrete subgroup of Isom+(H3).
Let M denote the closed hyperbolic 3-manifold H3/Γ. Let ∆ be a positive real number.

Then either

(i) M contains a hyperbolic ball of radius ∆/2, or

(ii) there exist a point z ∈ H3 and pairwise non-commuting elements ξ0, ξ1, ξ2, ξ3 of

Γ such that disth(z, ξi · z) < ∆ for i = 0, 1, 2, 3.

We set ∆ = log 3 + ε0 in Proposition 2.5. Since we have assumed that conclusion (i) does

not hold, we find a point z of H3 which is moved a distance less than 1
2(log 3 + ε0) by

pairwise non-commuting elements ξ0, ξ1, ξ2, ξ3 of Γ = π1(M). Note that, since the ξi are

non-trivial elements of Γ, they are loxodromic and have translation length > λ0.

Let us identify H3 conformally with the open unit ball in R3 in such a way that z is the

center of the ball. Then the unit sphere S2 is identified with the sphere at infinity, and

every ray in H3 emanating from z has a well-defined endpoint in S2. For every (i, u) ∈

{0, 1, 2, 3} × {−1, 1}, let P(i,u) ∈ S
2 denote the endpoint of the ray that emanates from z

and passes through the point ξui (z) (which is distinct from z since ξi is loxodromic). For any

indices (i, u) and (j, v) in {0, 1, 2, 3}×{1,−1}we have dists(P(i,u), P(j,v)) = ∠(ξ
u
i ·z, z, ξ

v
j ·z).

In sections 3 and 4 we derive explicit lower bounds for the spherical distances between pairs

of the points P(i,u). To state these results we must introduce certain auxiliary functions.

First we define a function φ:R+ × R3 → R by

φ(l, t, s, α) =
2 cosh2 s− 2 sinh2 s cosα− cosh l − cos t

cosh l− cos t
.

By direct calculation we find that

φ(λ0, π, log 3 + ε0, 0) = 0.56936 . . . < 1 < 3.40499 . . . = φ(λ0, π, log 3 + ε0, π).

Since φ is monotonically increasing with respect to the fourth variable, there is a unique

α−∞ ∈ [0, π] such that φ(λ0, π, log 3 + ε0, α−∞) = 1, and for any α ∈ (α−∞, π] we have

φ(λ0, π, log 3 + ε0, α) > 1. Solving numerically, one finds that α−∞ = 0.80060 . . ..

We set

σ(α) = cosh−1 φ(λ0, π, log 3 + ε0, α)

for α ∈ (α−∞, π].

We also need a constant K whose value is a slight perturbation of σ(β0). By direct

calculation we find that

φ(λ0, π, log 3− ε0, β0) = 1.98495 . . . > 1,
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and

cosh−1 φ(λ0, π, log 3− ε0, β0) = 1.30822 . . . .

We set

K = 1.30822,

so that cosh−1 φ(λ0, π, log 3− ε0, β0) > K.

The following result is included in the main result of Section 4. It is obtained by assigning

particular values to the parameters appearing in the latter result.

Corollary 4.9. Let ξ and η be isometries which generate a subgroup of Isom+(H3) which
is discrete, free of rank 2, purely loxodromic and topologically tame. Suppose that ξ−1η

has translation length ≥ λ0. Let z be a point of H3 such that

max{disth(z, ξ · z), disth(z, η · z)} < log 3 + ε0.

Set α1 = ∠(ξ ·z, z, η ·z) and α−1 = ∠(ξ
−1 ·z, z, η−1 ·z). Then α1 and α−1 lie in the interval

[α−∞, π] and

σ(α1) + σ(α−1) > 2K.

To first order, the conclusion of 4.9 consists of a lower bound on the sum of the angles α1

and α−1. Corollary 4.9 is a refinement of Theorem 9.1 of [6], which gives a lower bound of

log 3 for the quantity max{disth(z, ξ · z), disth(z, η · z)} without any restriction on α1 and

α−1.

Suppose that (i, u) and (j, v) are indices in {0, 1, 2, 3} × {1,−1} with i 6= j. We wish to

apply Corollary 4.9 with ξ = ξui , η = ξvj , (β, ε) = (β0, ε0), λ = λ0 and θ = π. Since the

first Betti number of M is at least 3, and since ξi and ξj do not commute, it follows from

[1; Cor. 7.2] and [5; Prop. 3.2] that ξ and η generate a free group F of rank 2 which is

topologically tame. Since Γ is co-compact, F is purely loxodromic. Since ξ−1η is a non-

trivial element of Γ, it has translation length > λ0. It follows from the defining properties

of ξ0, . . . , ξ3 that disth(z, ξ
u
i · z) and disth(z, ξ

v
j · z) are less than log 3 + ε0. Thus all the

hypotheses of Corollary 4.9 hold. Setting α1 = ∠(ξ · z, z, η · z) = dists(P(i,u), P(j,v)) and

α−1 = ∠(ξ
−1 · z, z, η−1 · z) = dists(P(i,−u), P(j,−v)), we conclude that

σ(α1) + σ(α−1) > 2K.

This shows that for any two indices (i, u) and (j, v) in {0, 1, 2, 3}×{1,−1} such that i 6= j,

we have dists(P(i,u), P(j,v)) > α−∞, dists(P(i,−u), P(j,−v)) > α−∞ and

σ(dists(P(i,u), P(j,v))) + σ(dists(P(i,−u), P(j,−v)) > 2K.

The next step is to apply the following Proposition about configurations of eight points on

a sphere which is proved in Section 5.
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Proposition 5.1. Suppose that we are given an indexed family

(P(i,u))(i,u)∈{0,1,2,3}×{−1,1}

of points in S2. Assume that for any two indices (i, u) and (j, v) in {0, 1, 2, 3} × {−1, 1}

with i 6= j, we have dists(P(i,u), P(j,v)) > α−∞. Then either

(i) there is an element i of {0, 1, 2, 3} such that dists(P(i,1), P(i,−1))) ≤ δ0, or

(ii) there exist indices (i, u) and (j, v) in {0, 1, 2, 3}× {−1, 1}, with i 6= j, such that

σ(dists(P(i,u), P(j,v))) + σ(dists(P(i,−u), P(j,−v))) ≤ 2K.

Observe that the family (P(i,u)) satisfies the hypothesis of Proposition 5.1 but, by 4.9, does

not satisfy alternative (ii) of the conclusion.

On the other hand, at the end of Section 4 we prove a result which shows that the family

(Pi,u) does not satisfy alternative (i) either. The statement requires one more auxiliary

function. For ∆ > λ > 0 we define

ω(λ,∆) = cos−1
(

1−
2(coshλ− 1)

cosh∆− 1

)

.

Proposition 4.10. Let 0 < λ < ∆ be real numbers. Let ξ be a loxodromic isometry of

H3 with translation length ≥ λ, and let z be a point of H3 such that disth(z, ξ · z) < ∆.

Then we have ∠(ξ−1 · z, z, ξ · z) > ω(λ,∆).

Since each ξi has translation length > λ0 and since disth(z, ξi · z) < ∆, it follows from

Proposition 4.10 that ∠(ξ−1i · z, z, ξi · z) > ω(λ0,∆). By direct computation we have

ω(λ0, log 3− ε0) = (0.71497 . . .)π ≥ δ0.

This means that dists(P(i,1), P(i,−1)) > δ0 for i = 0, 1, 2, 3. Thus alternative (i) of Proposi-

tion 5.1 also fails to hold for the family (P(i,u)). This gives a contradiction to Proposition

5.1, and the proof of Theorem 1.1 is therefore complete.

¤
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2. Intersections of cylinders in H3

In this section we prove Proposition 2.5, which was the starting point for the proof of The-

orem 1.1. The proof is based on an analysis of coverings of hyperbolic space by cylinders,

which is formulated in Proposition 2.1.

We let Ĥ3 denote the union of H3 with the sphere at infinity, equipped with the standard

topology that makes it homeomorphic to a closed 3-ball. In this section we will use the

Beltrami-Klein model for Ĥ3, i.e. we will identify Ĥ3 with the closed unit ball in R3 in such

a way that the lines in H3 are open Euclidean line segments in R3. If we use this model,

the Euclidean metric on the unit ball becomes a metric on Ĥ3 which will be denoted diste
to distinguish it from the hyperbolic metric disth on H3. A subset of H3 is (strictly) convex
in the hyperbolic sense if and only if it is identified with a set in the Beltrami-Klein model

which is (strictly) convex in the Euclidean sense.

For any closed set X ⊂ H3, we let X̂ denote the closure of X in Ĥ3, and we set Ẋ = X̂−X.

In particular, Ḣ3 denotes the sphere at infinity. For any line l ⊂ H3, the set l̂ is identified

with a closed line segment in the Beltrami-Klein model, and l̇ is identified with the set of

endpoints of this segment.

Recall that two lines l and l′ in H3 are said to be parallel if l̇ ∩ l̇′ 6= ∅. In this case, either

l̇ ∩ l̇′ consists of a single point, or l = l′.

If A is a line in H3 and r is a positive real number, we shall denote by Zr(A) the set of all

points in H3 whose hyperbolic distance from A is ≤ r. By a cylinder in H3 we shall mean

a set of the form Z = Zr(A), where A ⊂ H3 is a line and r is a positive number. The

line A is uniquely determined by the set Z because Ȧ = Ḣ3 ∩ Ẑ. It follows easily that r is

also uniquely determined by Z. We shall refer to A and r respectively as the core and the

radius of the cylinder Z.

If Z is a cylinder with core A and radius r, then, by [6; Prop. 1.2], Z is a strictly convex

subset of H3. It follows that Ẑ is a strictly convex, compact subset of Ĥ3 and is therefore

identified in the Beltrami-Klein model with a strictly convex, compact subset of the unit

ball in R3. Since this set clearly has non-empty interior, it follows that Ẑ is a topological

3-ball, and that the boundary of this ball, ∂Ẑ, is identified with its frontier in R3 in the

Beltrami-Klein model. On the other hand, it is clear that Ż is equal to Ȧ, a two-point

subset of Ḣ3. Hence ∂Z = ∂Ẑ− Ż is a topological annulus, and coincides with the frontier

of Z in H3.

The first main result of this section is:
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Proposition 2.1. Let Z be a locally finite collection of cylinders whose interiors cover

H3. Suppose that the cores of any two distinct cylinders in Z are non-parallel (and in

particular distinct). Let R ⊂ (0,∞) denote the set of all radii of cylinders in Z. Suppose

that R has a greatest element r0, and let Z0 be any cylinder of radius r0 in Z. Then

there are cylinders Z1, Z2, Z3 ∈ Z, distinct from one another and from Z0, such that

∂Z0∩ IntZ1∩ IntZ2∩ IntZ3 6= ∅. In particular we have IntZ0∩ IntZ1∩ IntZ2∩ IntZ3 6= ∅.

Note that if the open set IntZ1 ∩ IntZ2 ∩ IntZ3 meets the frontier ∂Z0 of IntZ0 in H3,
then IntZ1 ∩ IntZ2 ∩ IntZ3 must also meet the set IntZ0 itself. Thus the last assertion of

the above proposition does follow from the first.

The following two lemmas are needed for the proof of Proposition 2.1. An open subset U

of a connected, non-simply-connected 2-manifold Σ will be termed inessential if (i) U has

compact closure in Σ and (ii) if U is non-empty then, for every component V of U , the

inclusion homomorphism π1(V )→ π1(Σ) is trivial.

Lemma 2.2. Let Σ be a connected, non-compact, non-simply-connected 2-manifold with-

out boundary. Let U be a locally finite collection of inessential open subsets of Σ that covers

Σ. Then there are three distinct sets U1, U2, U3 ∈ U such that U1 ∩ U2 ∩ U3 6= ∅.

Proof. We may choose a compact set XU ⊂ U for each U ∈ U , in such a way that

the interiors of the sets XU cover Σ. Let us fix a piecewise linear structure on Σ. After

possibly enlarging the XU we may assume that each XU is a polyhedral subset of Σ. After

replacing the XU by their regular neighborhoods we may assume that they are compact

polyhedral 2-manifolds with boundary.

For each U there is a polyhedral disk DU ⊂ Σ such that ∂DU ⊂ XU ⊂ DU . Indeed, the

hypothesis that each U ∈ U is inessential implies that each component C of ∂XU bounds

a disk ∆C ⊂ Σ. We must have either XU ⊂ ∆C or ∆C ∩XU = C. But if ∆C ∩XU = C for

every component C of ∂XU , then the set XU∪
⋃

C ∆C , where C ranges over all components

of ∂XU , is a closed 2-manifold; this is impossible since Σ is connected and non-compact.

Hence for some component C of ∂XU we must have XU ⊂ ∆C . The disk DU = ∆C then

has the asserted properties.

We claim that there exists a set W ∈ U with the property that there is no U ∈ U for

which DW ⊂ IntDU . Assume that this is false. Then there is a sequence (Ui)i≥0 of sets

in U such that if we set Di = DUi for i = 0, 1, . . ., we have Di ⊂ IntDi+1 for every

i ≥ 1. Set D =
⋃

i≥0Di. Then D is an open, simply-connected subset of Σ. Since Σ is

connected and non-simply-connected, D must have a non-empty frontier. Let P be a point

of the frontier of D, and let W be a connected neighborhood of P in Σ whose closure is

compact. The set W meets D, and therefore meets Dj for some j ≥ 0; hence W meets Di

for every i ≥ j. On the other hand, there is no i for which W ⊂ Di; for this would imply
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W ⊂ IntDi+1 ⊂ IntD, and P would not be on the frontier of D. Since W is connected it

follows that W meets the boundary of Di for each i ≥ j. But ∂Di = ∂DUi ⊂ XUi ⊂ Ui;

thus W ∩ Ui 6= ∅ for each i ≥ j. Since it is clear from the choice of the sequence (Ui)i≥0
that the Ui are all distinct, this contradicts the local finiteness of U . This proves the claim.

Now if W ∈ U is the set given by the claim just proved, let us set SU = ∂DW ∩ XU for

each U ∈ U . Since Σ is covered by the sets IntXU for U ∈ U , the simple closed curve

∂DW is covered by the sets SU for U ∈ U . Since XW ⊂ DW , we have SW = ∅. Thus ∂DW

is covered by the sets SU for W 6= U ∈ U . Our choice of W guarantees that each SU is a

proper subset of ∂DW . Since the SU are open in ∂DW and ∂DW is connected, there are

two sets U,U ′ ∈ U , distinct from W and from each other, such that SU ∩ SU ′ 6= ∅. We

have

∅ 6= SU ∩ SU ′ = ∂DW ∩ IntXU ∩ IntXU ′ ⊂ XW ∩XU ∩XU ′ ⊂W ∩ U ∩ U ′,

and the lemma is proved.

¤

Lemma 2.3. Let Z0 and Z be two cylinders in H3 with non-parallel cores, and let r0

and r denote their respective radii. Suppose that r0 ≥ r. Then IntZ ∩ ∂Z0 is inessential

in ∂Z0.

Proof. Let A and A0 denote the cores of Z and Z0 respectively. Since A and A0 are

non-parallel, we have Ż ∩ Ż0 = Ȧ ∩ Ȧ0 = ∅. Hence Z ∩ Z0 ⊂ H3 is compact. In particular

IntZ ∩ ∂Z0 has compact closure in ∂Z0.

It remains to show that for every component V of IntZ∩∂Z0, the inclusion homomorphism

π1(V ) → π1(Σ) is trivial. We first prove this in the “generic” case in which A ∩ A0 = ∅.

In this case, since A and A0 are not parallel, we have Â ∩ Â0 = ∅.

To prove the assertion in this case, we begin by defining a map f : Â0 → ∂Ẑ0 as follows.

Given any point z ∈ Â0, we have z /∈ Â since Â ∩ Â0 = ∅. Hence there is a unique line

Lz such that L̂z contains z and Lz meets A perpendicularly. Let Pz denote the point of

intersection of Lz with A. We have Pz 6= z since z /∈ A. In the Beltrami-Klein model,

L̂z is a non-degenerate closed line segment. Let us write L̂z = Xz ∪ Yz, where Xz and Yz
are closed line segments such that Pz ∈ Yz and Xz ∩ Yz = {z}. Note that Yz is always

non-degenerate, but that Xz will be degenerate if z ∈ Ȧ0. Since z ∈ Â0 ⊂ Ẑ0, and since

(according to the remarks at the beginning of this section) Ẑ0 is a strictly convex subset

of the unit ball, there is a unique point of intersection of Xz with ∂Ẑ0. We define f(z)

to be this point of intersection. Note that we may characterize f(z) as the unique point
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of L̂z ∩ ∂Ẑ0 such that diste(f(z), Pz) ≥ diste(f(z), z). Note also that f restricts to the

identity on Ȧ0 and that f(A0) ⊂ ∂Z0.

We claim that f : Â0 → ∂Ẑ0 is continuous. To prove this, it suffices to show that if (zi)

is a sequence of points of A0 converging to a point z ∈ Ȧ0, then (f(zi)) converges to z. If

this is false, then after passing to a subsequence we may assume that (f(zi)) converges to

some point w 6= f(z) in ∂̂Z0.

Now since (zi) converges to z, it is clear that the sequence (Pi) = (Pzi) converges to Pz in

the metric de, and hence that the sequence of line segments (L̂i) = (L̂zi) converges to Lz
in the Hausdorff metric defined by de. Since f(zi) ∈ Li for each i, it follows that w ∈ Lz.

Similarly,

diste(w,Pz) = lim
i→∞

diste(f(zi), Pi) ≥ lim
i→∞

diste(f(zi), zi) = diste(w, z).

From the above characterization of f(z) we conclude that w = f(z). This contradiction

establishes the continuity of f .

Now consider the subset S = ∂Z0 − f(A0) of ∂Z0. Since f restricts to the identity on Ȧ0

and f(A0) ⊂ Z0, we have S = ∂Ẑ0 − f(Â0). The set f(Â0) is compact and connected

since f is continuous and Â0 is homeomorphic to a line segment. Since, according to the

remarks at the beginning of this section, ∂Ẑ0 is a topological 2-sphere, it follows that each

component of S is simply connected. We shall complete the proof that π1(V )→ π1(Σ) is

trivial for every component V of IntZ ∩ ∂Z0 by showing that IntZ ∩ ∂Z0 ⊂ S.

For this purpose we consider an arbitrary point w ∈ IntZ ∩ ∂Z0. Thus

disth(w,A) < r ≤ r0 = disth(w,A0). (2.3.1)

Assume that w /∈ S, so that w = f(z) for some z ∈ A0. According to the definition of the

map f , the point w lies on the line Lz, which meets A perpendicularly at Pz, and z lies

on the segment of Lz with endpoints w and Pz. Hence

disth(w,A) = disth(w,Pz) ≥ (w, z) ≥ disth(w,A0).

This contradicts (2.3.1), and the proof is thus complete in the case A ∩A0 = ∅.

Finally, we consider the case in which A ∩ A0 6= ∅. Assume that IntZ ∩ ∂Z0 has a

component V for which π1(V ) → π1(Σ) is non-trivial. Then there is a continuous map

g : S1 → IntZ∩∂Z0 which is homotopically non-trivial in Σ. Now let us choose a sequence

of lines (A(i)) in H3 such that the sequence (Â(i)) converges to (Â) in the Hausdorff metric

defined by diste, and such that Â(i) ∩ Â0 = ∅ for every i. Set Z(i) = Zr(A
(i)) for every i.

By the case of the assertion already proved, π1(V )→ π1(Σ) is trivial for every i and every
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component V of IntZ(i) ∩ ∂Z0. Hence there is no i for which g(S1) ⊂ Z(i). This means

that for each i there is a point w(i) in the compact set g(S1) such that disth(w
(i), A(i)) ≥ r.

After passing to a subsequence we may assume that (w(i)) converges to a point w ∈ g(S1).

In particular we have w ∈ IntA, so that disth(w,P ) < r for some point P ∈ A. According

to our choice of the A(i), there is a sequence of points (P (i)) in Ĥ3 such that P (i) ∈ Â(i)

for every i and (P (i)) converges to P in the metric diste. We must have P (i) ∈ A(i) for all

large enough i; thus after again passing to a subsequence we may assume that P (i) ∈ A(i)

for all i. It then follows that (P (i)) converges to P in the metric disth. Hence for large

enough i we have disth(w
(i), P (i)) < r. Since P (i) ∈ A(i) and disth(w

(i), A(i)) ≥ r, we have

a contradiction.

¤

2.4. Proof of 2.1. Let U denote the collection of all subsets of ∂Z0 having the form

∂Z0 ∩ IntZ where Z is an element of Z distinct from Z0. Since the interiors of the

cylinders in Z cover H3, and since ∂Z0 is disjoint from IntZ0, the collection U covers the

topological open annulus ∂Z0. Since Z is locally finite, so is U . By Lemma 2.3, each set

in U is inessential in ∂Z0. Hence by Lemma 2.2, applied with Σ = ∂Z0, there are distinct

sets U1, U2, U3 ∈ U with U1 ∩ U2 ∩ U3 6= ∅. Writing Ui = ∂Z0 ∩ IntZi with Zi ∈ Z for

i = 1, 2, 3, we obtain the conclusion of the proposition.

¤

We are now ready to prove the result that was quoted in the proof of Theorem 1.1.

Proposition 2.5. Let Γ be a co-compact, torsion-free, discrete subgroup of Isom+(H3).
Let M denote the closed hyperbolic 3-manifold H3/Γ. Let ∆ be a positive real number.

Then either (i)M contains a hyperbolic ball of radius ∆/2 or (ii) there exist a point z ∈ H3

and pairwise non-commuting elements ξ0, ξ1, ξ2, ξ3 of Γ such that disth(z, ξi · z) < ∆ for

i = 0, 1, 2, 3.

Proof. As in [7], for every maximal cyclic subgroup of Γ we denote by Z(X) = Z∆(X) the

set of all points z ∈ H3 such that disth(z, ξ · z) < ∆ for some non-trivial element ξ of X.

The set Z(X) is the interior of a cylinder Z̄(X) if the maximal subgroup X is generated

by an element of translation length < ∆, and otherwise Z(X) is empty. Let Z denote the

collection consisting of all the cylinders Z̄(X), where X ranges over the maximal cyclic

subgroups of Γ that are generated by elements of translation length < ∆. According to

[7; Prop. 3.2], either M contains a hyperbolic ball of radius ∆/2 or Z covers H3. In the

latter case we shall show that conclusion (ii) of the proposition holds.
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The discreteness of Γ implies that for every point z ∈ H3 there are only finitely many

elements γ ∈ Γ such that dist(z, γ · z) ≤ ∆. Hence the collection Z is locally finite. Since

Γ is discrete and co-compact, every element of Γ lies in a unique maximal cyclic subgroup,

which is its centralizer. The stabilizer in Γ of any point of Ḣ3 is either a maximal cyclic

subgroup or the trivial group Thus if Z(X) is a cylinder in Z then X is the unique maximal

cyclic subgroup fixing either point of Ż(X). It follows that any two distinct cylinders in

Z have non-parallel cores.

On the other hand, since Γ is co-compact, it contains only finitely many conjugacy classes

of elements with translation length < ∆. It follows that the set R ⊂ (0,∞), consisting of all

radii of cylinders in Z, is finite and hence has a greatest element r0. Let Z0 be any cylinder

of radius r0 in Z. Then it follows from Proposition 2.1 that there are cylinders Z1, Z2, Z3 ∈

Z, distinct from one another and from R, such that IntZ0 ∩ IntZ1 ∩ IntZ2 ∩ IntZ3 6= ∅.

We may write Zi = Z(Xi) for i = 0, 1, 2, 3, where Xi is a maximal cyclic subgroup of Γ.

For i = 0, 1, 2, 3 there is a non-trivial element ξi of Xi such that disth(ξi · z, z) < ∆. Since

the ξi lie in distinct maximal cyclic subgroups of Γ, no two of them can commute.

¤

3. Angles and displacements, I

Corollary 4.9, which was used in the proof of Theorem 1.1, is a special case of the main

result of Section 4, Theorem 4.1, which in turn may be regarded as a refined version of

Theorem 9.1 of [6]. If two hyperbolic isometries ξ and η generate a free Kleinian group

of rank 2 which is topologically tame and has no parabolic elements, then Theorem 9.1

of [6] asserts that an arbitrary point z of hyperbolic space is displaced at least a distance

log 3 by either ξ or η. Theorem 4.1 gives an improved lower bound for this displacement

involving the angles ∠(ξ · z, z, η · z) and ∠(ξ−1 · z, z, η−1 · z). To first order, the refined

result says that the lower bound of log 3 can be increased slightly under the assumption

that the sum of these two angles is small.

Theorem 4.1 is proved in two stages. In this section we consider the case when z lies on

the common perpendicular to the axes of ξ and η. Here we are able to take advantage

of the existence of an involution that fixes z and conjugates ξ and η to their inverses. In

particular, this symmetry implies that the two angles mentioned above are equal. The

general case, where z need not lie on the common perpendicular, is handled in the next

section.

The proof of Theorem 9.1 of [6] makes use of a Patterson-Sullivan construction to produce

a certain measure-theoretic decomposition of the limit set of the group Γ = 〈ξ, η〉 into four
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measures corresponding to the two generators and their inverses. As in [6; Lemma 5.3],

the existence of an involution that fixes z and conjugates the generators to their inverses

will be used to conclude that the measure associated to a generator has the same total

mass as that associated to its inverse. Actually, as in [6; Prop. 5.2] these observations are

used only in the special case in which every Γ-invariant positive super-harmonic function

on H3 is constant; the general case of Theorem 4.1 is reduced to this case. In this case

the argument given in [6; Lemma 5.5 and Prop. 5.2] involves comparing the four measures

with characteristic measures of four spherical caps whose areas sum to 1. The angle

α = ∠(ξ · z, z, η · z) = ∠(ξ−1 · z, z, η−1 · z) is the spherical distance between the centers of

two of these caps. In the crucial special case where the caps have areas close to 1/4, the

assumption that α is small implies that there is a substantial overlap bvetween these two

caps. This leads to a refinement of the estimate established in [6; Prop.5.2].

We will need some more notation regarding spherical geometry. If P is a point of S2 and r

is a number in the interval (0, π), we shall denote by C(P, r) the spherical “cap” consisting

of all points of S2 whose spherical distance from P is at most r. An easy computation

shows that the area of C(P, r) is 2π(1 − cos r). For any three real numbers r1, r2, α

in the interval (0, π) we shall denote by ι(α, r1, r2) the area of the intersection of two

spherical caps C(P1, r1) and C(P2, r2), where P1 and P2 are two points of S2 such that

dists(P1, P2) = α. A closed form expression for the function ι is derived in Appendix B.

We define functions E : (0,∞)→ (0, 1
4
) by

E(ε) =
1

1 + 3eε

and

r(ε) = cos−1(1− 2E(ε)).

We define functions I and f on (0, π)× (0,∞) ⊂ R2 by

I(α, ε) =
1

8π
ι(α, r(ε), r(ε)) (3.0.1)

and

f(α, ε) =
1

2
− E(ε)− I(α, ε).

Note that it follows from the definition of ι that it is non-negative and is monotonically de-

creasing as a function of the first variable. Hence I is also non-negative and monotonically

decreasing as a function of the first variable.

We denote by G the subset of R3 consisting of all points (x, u, t) such that x > 1 and

0 ≤ t ≤ u. We define a real-valued function g on G by

g(x, u, t) =
tx

1 + t(x− 1)
+

u− t

(1 + u(x− 1))(1 + (2u− t)(x− 1))
+ u.
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We define a constant ε∞ = 0.05. We shall denote by D the open subset of (0, π)×(0, ε∞) ⊂

R2 consisting of all points (β, ε) satisfying the following conditions:

(1) f(β, ε) > 0;

(2) g(9e2ε, 12 − E(ε), f(β, ε)) < 1; and

(3) I(β, ε) < 1
3E(ε).

Note that if (1) holds then (9e2ε, 12 −E(ε), f(β, ε)) ∈ G, so that condition (2) makes sense.

The main result of this section is the following theorem, the proof of which will occupy

the rest of the section.

Theorem 3.1. Let (β, ε) be any point in D. Let ξ and η be two loxodromic isometries of

H3 such that the group Γ generated by ξ and η is discrete, topologically tame, purely loxo-

dromic and free on the generators ξ and η. Let z be a point on the common perpendicular

to the axes of ξ and η. Suppose that ∠(ξ · z, z, η · z) < β. Then we have

max{disth(z, ξ · z), disth(z, η · z)} ≥ log 3 + ε.

We follow the notation of Section 5 of [6]. We denote by λγ,z : S∞ → R the conformal

expansion factor of a hyperbolic isometry γ relative to a point z ∈ H3. It is shown in

paragraph 2.4 of [6] that if we identify Ĥ3 = H3∪S∞ conformally with the closed unit ball

in R3 in such a way that z is the origin and γ−1 · z is on the positive vertical axis, then

the conformal expansion factor of γ is given by the formula

λγ,z(ζ) = (c− s cosφ)−1, (3.1.1)

where c = cosh disth(z, γ · z), s = sinh disth(z, γ · z), and φ = φ(ζ) is the polar angle of ζ.

In this paper we define the pole of γ (relative to z) to be the endpoint P ∈ S∞ of the ray

emanating from z and passing through γ−1 · z. In the coordinate system just described, P

is the north pole of S2 and the polar angle of a point of S2 is its spherical distance from

P . Thus λγ,z is a positive-valued, decreasing function of the spherical distance of a point

from the pole of γ. In particular, the pole is the unique maximum point of λγ,z.

For any point z ∈ H3 we denote by Az the area measure on the sphere at infinity S∞

determined by the round metric centered at z, normalized so as to have total mass 1.

Thus in the coordinate system described above, A is obtained from the ordinary area

measure by dividing by 4π.
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The following lemma is a key step in the proof of Theorem 3.1 which replaces one of the

basic estimates in [6]. The original estimate contained in [6; Lemma 5.5], depends on the

observation that if ν is a Borel measure on S∞ which is bounded above by Az, then

∫

S∞

(λγ,z)
2 dν ≤

∫

C0

(λγ,z)
2 dAz,

where C0 is a spherical cap centered at the pole of γ with area u = ν(S∞). Here we observe

that the cap C0 can be replaced by the union of a smaller cap of area t = ν(C0) and an

annulus of area u − t. Later we will use our condition on angles to get bounds on u and

t. The conclusion that g(e2∆, u, t) ≥ 1 can, as we shall see, be regarded as giving a lower

bound for the displacement ∆ = disth(z, γ · z).

Lemma 3.2. Let γ be a loxodromic isometry of H3 and let z be any point of H3. Set

∆ = disth(z, γ · z). Let ν be a Borel measure on S∞ such that

(i) ν ≤ Az and

(ii)
∫

S∞
(λγ,z)

2 dν = 1− ν(S∞).

Set u = ν(S∞). Let C0 be the spherical cap with center at the pole of γ and with area u.

Set t = ν(C0). Then we have g(e2∆, u, t) ≥ 1 .

Proof. Let z ∈ H3 be given. As in the discussion preceding the statement of the lemma,

we identify Ĥ3 = H3 ∪S∞ conformally with the closed unit ball in R3 in such a way that z

is the origin and γ−1 ·z is on the positive vertical axis. We set A = Az, φ1 = arccos(1−2t),

and C1 = C(P, φ1). Since A is 1/4π times the area measure on S∞, and since C1 has area

2π(1− cos t), we have

A(C1) =
1

2
(1− cosφ1) = t.

Now we set φ0 = cos−1(1− 2u) and C0 = C(P, φ0). We also set φR = arccos(1− 4u+ 2t),

and we let R ⊂ S∞ denote the annulus C(P, φR) \ IntC(P, φ0). Then we have

A(R) =
1

2
(1− cosφR)−

1

2
(1− cosφ0) = u− t.

Let us denote by ν1, ν2 the restrictions of the measure ν to C0 and to S∞ \ C0 respectively.

Then we have ν = ν1 + ν2. Hence hypothesis (ii) may be rewritten in the form

∫

C0

(λγ,z)
2dν1 +

∫

S∞−C0

(λγ,z)
2dν2 = 1− u. (3.2.1)

Since ν ≤ A we have ν1 ≤ A and ν2 ≤ A. Since, by the discussion preceding the statement

of the lemma, λγ,z(ζ) is a positive-valued monotonically decreasing function of the polar
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angle φ, we apply Lemma 5.4 of [6] with C = C1, µ0 = ν1, µ = A, X = C0 and f = λγ,z
to obtain the following inequality:

∫

C0

(λγ,z)
2dν1 ≤

∫

C1

(λγ,z)
2dA. (3.2.2)

Applying the same lemma from [6] with C = R, µ0 = ν2, µ = A, X = S∞ \ C0 and

f = λγ,z we obtain that
∫

S∞\C0

(λγ,z)
2 dν2 ≤

∫

R

(λγ,z)
2 dA. (3.2.3)

Now we evaluate the right hand sides of (3.2.2) and (3.2.3) using the formula (3.1.1) for

λγ,z. We find that

∫

C1

(λγ,z)
2dA =

1

4π

∫ 2π

0

∫ φ1

0

sinφ

(c− s cosφ)2
dφdθ

=
1

2s
(

1

c− s
−

1

c− s cosφ1
)

=
te2∆

1 + t(e2∆ − 1)
,

(3.2.4)

where in the last step we used that c = cosh∆, s = sinh∆ and cosφ1 = 1− 2t. Likewise,

setting x = e2∆, we have

∫

R

(λγ,z)
2dA =

∫ 2φ

0

∫ φR

φ0

sinφ

(c− s cosφ)2
dφdθ)

=
1

2s
(

1

c− s cosφ0
−

1

c− s cosφR
)

=
u− t

(1 + u(x− 1))(1 + (2u− t)(x− 1))
.

(3.2.5)

Now adding (3.2.2) and (3.2.3), substituting for the right-hand sides the expressions given

by (3.2.4) and (3.2.5), and rewriting the left-hand side of the resulting inequality as 1− u

by virtue of (3.2.1), we obtain

1− u ≤
tx

1 + t(x− 1)
+

u− t

(1 + u(x− 1))(1 + (2u− t)(x− 1))
,

which is equivalent to the conclusion of the lemma.

¤

The proof of Theorem 3.1, like that of Theorem 9.1 of [6], reduces to the case of a hyperbolic

manifold which admits no non-constant positive super-harmonic functions. This case is

contained in the next Proposition. We need two lemmas for the proof.
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Lemma 3.3. Let ε be a given positive number. Let ξ and η be two loxodromic isometries

of H3. Suppose that the group Γ generated by ξ and η is discrete and free on the generators

ξ and η, and that every Γ-invariant, positive, superharmonic function on H3 is constant.
Let z be a point on the common perpendicular to the axes of ξ and η and set α =

∠(ξ · z, z, η · z). If we have

max{disth(z, ξ · z), disth(z, η · z)} < log 3 + ε.

Then there exist real numbers ∆, t and u with ∆ ∈ {disth(z, ξ · z), disth(z, η · z)}, u ∈

[E(ε), 12 − E(ε)] and t ∈ [0, u− I(α, ε)], such that

g(e2∆, t, u) ≥ 1.

Note that the inequalities ∆ ≥ 0 and 0 ≤ t ≤ u imply that (e2∆, t, u) ∈ G, so that the last

conclusion of the lemma makes sense if the others hold.

Proof. Let us identify Ĥ3 = H3 ∪ S∞ conformally with the closed unit ball in R3 in

such a way that z is the origin. Let Pξ and Pη denote the poles of ξ and η relative to

z. By definition Pξ and Pη are the endpoints of the rays emanating from z and passing

through ξ−1 ·z and η−1 ·z. Hence we have dists(Pξ, Pη) = ∠(ξ
−1 ·z, z, η−1 ·z). If we define

τ ∈ Isom+(H3) to be the rotation about L through an angle π, we have τξτ = ξ−1 and

τητ = η−1. Since τ fixes z it follows that

∠(ξ−1 · z, z, η−1 · z) = ∠(τξτ · z, z, τητ · z) = ∠(ξ · z, z, η · z) = α.

Hence

dists(Pξ, Pη) = α. (3.3.1)

We set Ψ = {ξ, ξ−1, η, η−1} ⊂ Γ. We also set A = Az.

According to [6; Lemma 5.3] and the hypotheses of the lemma there exist four Borel

measures (νξ, νξ−1 , νη, νη−1) on S∞ such that

( 3.3.2) A = νξ + νξ−1 + νη + νη−1 ,

( 3.3.3) for each ψ ∈ Ψ we have

∫

S∞

(λψ,z)
2dνψ−1 = 1− νψ(S∞), and

( 3.3.4) νξ(S∞) = νξ−1(S∞) and νη(S∞) = νη−1(S∞).
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Next we apply [6; Lemma 5.5] (after correcting a typographical error by interchanging the

numerator and denominator of the fraction in the conclusion). Setting a = νψ(S∞) and

b = 1− a, we obtain that

log
1− νψ(S∞)

νψ(S∞)
≤ disth(z, ψ(z)) < log 3 + ε

for each ψ ∈ Ψ. We therefore obtain for each ψ ∈ Ψ the inequality

νψ(S∞) >
1

1 + 3eε
= E(ε). (3.3.5)

Conditions (3.3.2) and (3.3.4) above imply that

νξ−1(S∞) + νη−1(S∞) =
1

2
. (3.3.6)

From (3.3.5) and (3.3.6) it follows that

νξ−1(S∞), νη−1(S∞) <
1

2
− E(ε). (3.3.7)

Let us choose two spherical caps Cξ, Cη, centered at the Pξ and Pη, such that A(Cξ) =

νξ−1(S∞) and A(Cη) = νη−1(S∞). Since a spherical cap C(P, r) has area 2π(1−cos r), and

since A is 1/4π times the area measure, we have Cξ = C(Pξ, rξ) and Cη = C(Pξ, rη), where

rξ = cos−1(1−2νξ−1(S∞)) and rη = cos−1(1−2νη−1(S∞)). Since r(ε) = cos−1(1−2E(ε)),

it follows from (3.3.5) that

rξ, rη ≥ r(ε).

If we set G = Cξ ∩ Cη, then by (3.3.1) and (3.0.1) and the definition of the function ι, we

have

A(G) =
1

4π
ι(α, r1, r2) ≥

1

4π
ι(α, r(ε), r(ε)) = 2I(α, ε). (3.3.8)

By property (3.3.2) of the νψ we have

νξ−1(G) + νη−1(G) ≤ A(G).

By symmetry we may assume that

νξ−1(G) ≤
A(G)

2
. (3.3.9)

Set t = νξ−1(Cξ) and u = νξ−1(S∞). By (3.3.5) and (3.3.7) we have

E(ε) < u <
1

2
−E(ε). (3.3.10)
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Using (3.3.2) and (3.3.9) and the definition of Cξ, we find

t = νξ−1((Cξ \G) ∪G) = νξ−1(Cξ \G) + νξ−1(G)

≤ A(Cξ)−A(G) +
A(G)

2
≤ u−

A(G)

2
.

(3.3.11)

Using (3.3.11) and (3.3.8), we get

t ≤ u− I(α, ε). (3.3.12)

We may now apply Lemma 3.2 with γ = ξ and ν = νξ−1 . Indeed, hypothesis (i) of Lemma

3.2 follows from (3.3.2), and hypothesis (ii) follows from (3.3.3) and (3.3.4). The above

definitions of u, t now agree with those given in the statement of Lemma 3.2, while the cap

C0 defined in the latter statement is Cξ. It follows from Lemma 3.2 that

g(e2∆, u, t) ≥ 1, (3.3.13)

where ∆ = disth(z, ξ · z) = disth(z, ξ
−1 · z). The conclusion of the theorem follows from

(3.3.10), (3.3.12) and (3.3.13).

¤

The second lemma is computational. To maintain the flow of the argument, we delay the

proof until Appendix A.

Lemma A.1. Let gx, gu, gt denote the partial derivatives of g with respect to the first,

second and third variables respectively. The function gt is positive everywhere on G. The

functions gx and gu are positive at every point (x, u, t) ∈ G such that u < 1/2 and t > 2u/3.

Proposition 3.4. Let (β, ε) be any point in D. Let ξ and η be two loxodromic isometries

of H3 such that the group Γ generated by ξ and η is discrete and free on the generators ξ

and η. Suppose that every Γ-invariant, positive, superharmonic function on H3 is constant.
Let z be a point on the common perpendicular to the axes of ξ and η. Suppose that

∠(ξ · z, z, η · z) < β. Then we have

max{disth(z, ξ · z), disth(z, η · z)} ≥ log 3 + ε.

Proof. Assume that

max{disth(z, ξ · z), disth(z, η · z)} < log 3 + ε.



The Smallest Hyperbolic 3-Manifold 25

Set α = ∠(ξ · z, z, η · z). According to Lemma 3.3, there exist real numbers ∆, u0 and t0,

where ∆ ∈ {disth(z, ξ · z), disth(z, η · z)}, u0 ∈ [E(ε), 12 − E(ε)] and t0 ∈ [0, u0 − I(α, ε)],

such that g(e2∆, t0, u0) ≥ 1. We write x0 = e2∆.

Let us set t1 = u0 − I(β, ε). Since I is monotonically decreasing as a function of the first

variable, we have t1 ≥ u0−I(α, ε) ≥ t0. We also have t1 ≤ u0 since I(β, ε) is non-negative.

It follows that the line segment σ1 = {x0}× [t0, t1]×{u0} is contained in G. According to

Lemma A.1, the partial derivative gt is positive on G and hence

g(x0, t1, u0) ≥ g(x0, t0, u0) ≥ 1.

Now let us set x2 = 9e2ε, u2 = 1
2
− E(ε) and t2 = f(β, ε) = 1

2
− E(ε) − I(β, ε). Since

∆ ∈ {disth(z, ξ · z), disth(z, η · z)}, our assumption implies that ∆ < log 3 + ε and hence

that x0 < x2. Since u0 was taken to be ≤ 1
2
− E(ε), we have u2 ≥ u0 and t2 ≥ t1.

Now consider the line segment σ2 from (x0, u0, t1) to (x2, u2, t2). Since u2− t2 = I(β, ε) =

u0 − t1, we have u − t = I(β, ε) for every (x, u, t) ∈ σ2. Since I(β, ε) ≥ 0 it follows that

σ2 ⊂ G. On the other hand, by hypothesis we have (β, ε) ∈ D; and applying condition (3)

of the definition of D we find that for every (x, u, t) ∈ D we have

u− t = I(β, ε) <
1

3
E(ε) ≤

1

3
u0 ≤

1

3
u,

so that t > 2
3u. Hence by Lemma A.1, the partial derivatives gx, gu and gt are all positive

on σ2. Since x2 ≥ x0, u2 ≥ u0 and t2 ≥ t1, it follows that

g(x2, u2, t2) ≥ g(x0, u0, t1) ≥ 1.

However, according to condition (2) of the definition of D, we have

g(x2, u2, t2) = g(9e2ε,
1

2
− E(ε), f(β, ε)) < 1.

This contradiction completes the proof.

¤

The proof of Theorem 3.1 requires one more proposition, the proof of which is deferred to

Appendix C.
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Proposition C.1. Let ξ and η be two loxodromic isometries of H3 without any common

fixed point. Denote by L the common perpendicular to the axes Aξ and Aη of ξ and η

respectively. Let z0 be any point of L. Then there exist continuous one-parameter families

(ξt)0≤t≤1 and (ηt)0≤t≤1 of loxodromic isometries of H3 with the following properties:

(i) ξ0 = ξ and η0 = η;

(ii) for every t the axes of ξt and ηt are perpendicular to L;

(iii) the functions t 7→ dist(z0, ξt · z0) and t 7→ dist(z0, ηt · z0) are monotonically

decreasing on [0, 1];

(iv) the function t 7→ ∠(ξt · z0, z0, ηt · z0) is (weakly) monotonically decreasing on

[0, 1]; and

(v) the isometries ξ1 and η1 have the same axis.

3.5. Proof of Theorem 3.1. We argue by contradiction. Assume that

max{disth(z, ξ · z), disth(z, η · z)} < log 3 + ε.

Suppose first that Γ is topologically tame and is not geometrically finite. Then it follows

from [5; Theorem 7.2] that H3 admits no non-constant positive Γ-invariant superharmonic

functions. The assertion of the theorem now follows from Proposition 3.4.

Now suppose that Γ is geometrically finite. Let L denote the common perpendicular

to the axes Aξ and Aη of ξ and η respectively. Let (ξt)0≤t≤1 and (ηt)0≤t≤1 be one-

parameter families having the properties stated in Proposition C.1. Let V denote the

complex affine variety PSL2(C) × PSL2(C) endowed with the classical topology, and

consider the path ρ: [0, 1] → V defined by ρ(t) = (ξt, ηt). By property (i) of C.1 and

the hypotheses of the theorem, we have that (ξ0, η0) is a point in the Schottky space

CC ⊂ V , i.e. the group Γ = 〈ξ, η〉 is a geometrically finite Kleinian group which is free

of rank 2 and has no parabolics. By property (v) of C.1 we have that 〈ξ1, η1〉 is not free

of rank 2 and therefore (ξ1, η1) does not lie in CC. By [12], CC is an open subset of V .

Set t0 = inf{t ∈ [0, 1]|(ξt, ηt) 6∈ CC}. It follows that (ξt0 , ηt0) is in the frontier of CC. By

property (ii) of C.1, the point z is on the common perpendicular to the axes of ξt0 and ηt0 .

By the hypothesis of the theorem and property (iv) of C.1 we have

∠(ξt0 · z, z, ηt0 · z) < β.

Similarly, our assumption and property (iii) of C.1 imply that

max{disth(z, ξt0 · z), disth(z, ηt0 · z)} < log 3 + ε.
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By [6; Theorem 8.2] there exists a sequence (ξi, ηi) in the frontier of CC in V which converges

to (ξt0 , ηt0), and such that for every i the group Γi =< ξi, ηi > is purely loxodromic and

free on the generators ξi and ηi, and H3 admits no non-constant positive Γi-invariant

superharmonic functions. For large enough i we have

∠(ξi · z, z, ηi · z) < β (3.5.1)

and

max{disth(z, ξi · z), disth(z, ηi · z)} < log 3 + ε. (3.5.2)

Denote by Li the common perpendicular to the axes of ξi and ηi. Let zi denote the foot

of the perpendicular from z to Li. The sequence of lines (Li) converges to the common

perpendicular to the axes of ξt0 and ηt0 , which is L by property (ii) of C.1. Since z ∈ L

we have disth(z, Li)→ 0, and hence zi → z. It follows from (3.5.1) and (3.5.2) that

∠(ξi · zi, zi, ηi · zi) < β (3.5.3)

and

max{disth(zi, ξi · zi), disth(zi, ηi · zi)} < log 3 + ε (3.5.4)

for large i. Since (β, ε) ∈ D and zi ∈ Li, and since H3 admits no non-constant positive

Γi-invariant superharmonic functions, it follows from (3.5.3) and Proposition 3.4 that

max{disth(zi, ξi · zi), disth(zi, ηi · zi) ≥ log 3 + ε

for large i. This contradicts (3.5.4), and the proof of the theorem is thus complete.

¤

4. Angles and displacements, II

In this section we complete the proof of Theorem 4.1, of which a special case, Corollary

4.9, was used in the proof of Theorem 1.1. Theorem 4.1 is an extension of the result of the

previous section to the case where the point z does not lie on the common perpendicular of

the axes of ξ and η. Since the point z is not invariant under the involution that conjugates

the generators to their inverses, we have two angles to consider.

We define a function φ:R+ × R3 → R by

φ(l, t, s, α) =
2 cosh2 s− 2 sinh2 s cosα− cosh l − cos t

cosh l− cos t
.
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We denote by V the open subset of R+ × R3 consisting of all points (l, t, s, α) such that

φ(l, t, s, α) > 1. We define a function ρ:V → R by

ρ(l, t, s, α) = cosh−1 φ(l, t, s, α).

Recall that the region D ⊂ R2 was defined in the discussion preceding Theorem 3.1.

The main result of the section is:

Theorem 4.1. Let λ and θ be real numbers with λ > 0 and 0 ≤ θ ≤ π. Let (β, ε) be

a point of the region D ⊂ R2. Let ξ and η be isometries which generate a subgroup of

Isom+(H3) which is discrete, free of rank 2, purely loxodromic and topologically tame.

Suppose that ξ−1η has translation length ≥ λ and twist angle ≤ θ. Let z be a point of H3

such that

max{disth(z, ξ · z), disth(z, η · z)} < log 3 + ε

Set α1 = ∠(ξ ·z, z, η ·z) and α−1 = ∠(ξ
−1 ·z, z, η−1 ·z). Then the points (λ, θ, log 3+ ε, α1)

and (λ, θ, log 3 + ε, α−1) are contained in V. If in addition we have (λ, θ, log 3− ε, β) ∈ V,

then

ρ(λ, θ, log 3 + ε, α1) + ρ(λ, θ, log 3 + ε, , α−1) ≥ 2ρ(λ, θ, log3− ε, β).

The proof of Theorem 4.1 requires several lemmas. We begin with two geometric lemmas.

The first of these was used in the proof of [6; Prop. 5.2] but was inadvertently omitted

from the published paper. The reference to “Proposition 1.15” in the latter paper should

have been a reference to the lemma below.

Lemma 4.2. Let γ be a loxodromic isometry of H3 with axis Aγ . Let L be a line which

meets Aγ orthogonally at a point w0. Suppose that z is any point of H3 and that z0 ∈ L

is the orthogonal projection of z to the line L. Then

disth(z, γ · z) ≥ disth(z0, γ · z0).

Proof. Let r:H3 → L denote the map which sends each point of H3 to it orthogonal

projection in the line L, i.e., to the nearest point of L. It follows from [11; Lemma 1.3.4]

that r is a distance decreasing retraction from H3 to L.

It follows from Lemma C.2 that the displacement of a point under the loxodromic isometry

γ is a monotonically increasing function of its distance from Aγ . Thus it suffices to show

that the distance from z0 to Aγ is not larger than the distance from z to Aγ . Let w denote

the point of Aγ which is nearest to z. Then we must show that disth(z, w) ≥ disth(z0, w0).

But we have z0 = r(z) and w0 = r(w); this completes the proof since r is distance

decreasing.

¤
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Lemma 4.3. Let L be a line in H3 and let R:H3 → L be the function that assigns to

each point of H3 its distance from the line L. Then R is a convex function.

Proof. Let r:H3 → L be the nearest point retraction. Let z and w be two points of H3

and let m be the midpoint of the segment from z to w and let m′ ∈ L denote the midpoint

of the segment from r(z) to r(w). We must show that R(m) ≤ 1
2
(R(z) +R(w)). It follows

from [10; Lemme 2] that

disth(m
′,m)) ≤

1

2
(disth(r(z), z) + disth(r(w), w)) =

1

2
(R(z) + R(w)).

(The quoted result is stated in [10] only for H2, but the proof works equally well in three

dimensions.) But R(m) = disth(r(m),m)) ≤ disth(m
′,m) by the definition of r. The

lemma follows.

¤

Lemma 4.4. Let l, t, s, λ, θ, s′, α1, α−1 and α0 be real numbers with l ≥ λ > 0,

s > s′ > 0 and 0 ≤ t ≤ θ ≤ π. Suppose that (l, t, s, α1), (l, t, s, α−1) and (l, t, s′, α0) lie in

V and that

ρ(l, t, s, α1) + ρ(l, t, s, α−1) ≥ 2ρ(l, t, s′, α0).

Then the points (λ, θ, s, α1), (λ, θ, s, α−1), and (λ, θ, s′, α0) are contained in V and we have

ρ(λ, θ, s, α1) + ρ(λ, θ, s, α−1) ≥ 2ρ(λ, θ, s′, α0).

Proof. First note that the function φ is monotone decreasing in the variable l for l ≥ 0,

and monotone increasing in the variable t for 0 ≤ t ≤ π. Since the set V is the region in

which φ > 1, and since λ ≤ l and θ ≥ t, it follows immediately that the points (λ, θ, s, α1),

(λ, θ, s, α−1), and (λ, θ, s′, α0) lie in V.

For the rest of the argument we introduce functions ρi(x, y) for i ∈ {−1, 0, 1} defined as

follows:

ρ1(x, y) = cosh−1
(

2 cosh2 s− 2 sinh2 s cosα1 − coshx− cos y

coshx− cos y

)

,

ρ−1(x, y) = cosh−1
(

2 cosh2 s− 2 sinh2 s cosα−1 − cosh x− cos y

coshx− cos y

)

, and

ρ0(x, y) = cosh−1
(

2 cosh2 s′ − 2 sinh2 s′ cosα0 − coshx− cos y

coshx− cos y

)

.
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By hypothesis we have that the inequality

ρ1(x, y) + ρ−1(x, y)− 2ρ0(x, y) ≥ 0

holds with x = l, y = t. We must show that the same inequality holds with x = λ ≤ l, and

y = θ ≥ t. We will consider a linear path (x(s), y(s)) for 0 ≤ s ≤ 1 with (x(0), y(0)) = (l, t)

and (x(1), y(1)) = (λ, θ). We claim that the quantity

w(s) = ρ1(x(s), y(s)) + ρ−1(x(s), y(s))− 2ρ0(x(s), y(s))

is non-negative on the entire path. To establish the claim we will show that w′(s) > 0

whenever w(s) = 0. Since w(0) ≥ 0, this implies w′(0) > 0. Thus if s0 is the first positive

number for which w(s0) = 0 then we must have w′(s0) ≤ 0. Since this is impossible we

must have w(s) > 0 for all s ∈ (0, 1].

Since x(s) decreases monotonically while y(s) increases monotonically we must show that

the condition ρ1(x, y) + ρ−1(x, y)− 2ρ0(x, y) = 0 implies the inequalities

∂ρ1
∂u

+
∂ρ−1
∂u

−
∂ρ0
∂u

< 0

and
∂ρ1
∂v

+
∂ρ−1
∂v

−
∂ρ0
∂v

> 0.

Computing partial derivatives with respect to x and y we find

∂ρi
∂x

=
− sinhx

cosh x− cos y

(

cosh ρi + 1

sinh ρi

)

and
∂ρi
∂y

=
− sin y

cosh x− cos y

(

cosh ρi − 1

sinh ρi

)

.

If we set

p(z) =
cosh z + 1

sinh z
and q(z) =

cosh z − 1

sinh z

then to complete the proof of the claim we must prove that ρ1 + ρ−1 = 2ρ0 implies

p(ρ1) + p(ρ−1) > 2p(ρ0) and q(ρ1) + q(ρ−1) < 2q(ρ0). This is shown by computing second

derivatives of p and q:

p′′(z) =
(cosh z + 1)2

sinh3 z
> 0

and

q′′(z) =
−(cosh z − 1)2

sinh3 z
< 0.

¤
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Lemma 4.5. Let s, s0, λ and θ be real numbers with s, s0, λ > 0 and 0 ≤ θ ≤ π. Let

ξ and η be loxodromic isometries of H3 having no common fixed point on the sphere at

infinity. Suppose that ξ−1η is also loxodromic, and that it has translation length ≥ λ

and twist angle ≤ θ. Let L denote the common perpendicular to the axes of ξ and η.

Let z be any point of H3, and let z0 denote the foot of the perpendicular from z to

L. Suppose that disth(z, ξ · z) < s, disth(z, η · z) < s and disth(z0, ξ · z0) > s0. Set

α1 = ∠(ξ · z, z, η · z), α−1 = ∠(ξ
−1 · z, z, η−1 · z), and α0 = ∠(ξ · z0, z0, η · z0). Suppose that

cosαi < (tanh s0)/(tanh s) for i = 1, 0,−1. Then we have (λ, θ, s, α1), (λ, θ, s, α−1) ∈ V. If

in addition we have (λ, θ, s0, α0) ∈ V, then

ρ(λ, θ, s, α1) + ρ(λ, θ, s, α−1) ≥ 2ρ(λ, θ, s0, α0).

Proof. According to Lemma 4.2, we have

s0 ≤ disth(z0, ξ · z0) ≤ disth(z, ξ · z) ≤ s (4.5.1)

and

s0 ≤ disth(z0, η · z0) ≤ disth(z, η · z) ≤ s. (4.5.2)

In particular s0 ≤ s.

For i = 1, 0,−1 we consider the function

fi(x, y) = coshx cosh y − sinh x sinh y cosαi.

We have
∂

∂x
fi(x, y) = coshx cosh y (tanhx− tanh y cosαi)

and
∂

∂y
fi(x, y) = coshx cosh y (tanh y − tanhx cosαi).

In view of the hypothesis, it follows that fi(x, y) is monotone both in x and in y for

x, y ∈ [s0, s] and for i = 1, 0,−1. In particular we have fi(s0, s0) ≤ fi(x, y) ≤ fi(s, s) for

x, y ∈ [s0, s]; that is,

1 + (1− cosαi) sinh
2 s0 ≤ cosh x cosh y − sinhx sinh y cosαi

≤ 1 + (1− cosαi) sinh
2 s

(4.5.3)

for i = 1, 0,−1 and for all x, y ∈ [s0, s].

Now define τ ∈ Isom+(H3) to be the rotation about L through an angle π. We have

τξτ = ξ−1 and τητ = η−1. Hence

α−1 = ∠(τξτ · z, z, τητ · z) = ∠(ξτ · z, τ · z, ητ · z).
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If we set z1 = z and z−1 = τ · z, it follows from the equation above and the definitions of

α0 and α1 that

∠(ξ · zi, zi, η · zi) = αi (4.5.4)

for i = 1, 0,−1.

We also have disth(z−1, ξ · z−1) = disth(τ · z, ξτ · z) = disth(z, τξτ · z) = disth(z, ξ
−1 · z) =

disth(z1, ξ · z1). Combining this with (4.5.1), and setting Xi = disth(zi, ξ · zi), we get

s0 ≤ Xi ≤ s

for i = 1, 0,−1. Similarly, setting Yi = disth(zi, η · zi) and using (4.5.2), we find that

s0 ≤ Yi ≤ s

for i = 1, 0,−1.

We set Di = disth(ξ · zi, η · zi) for i = 1, 0,−1, and apply the first hyperbolic law of cosines

to the the hyperbolic triangle with vertices zi, ξ · zi and η · zi; by (4.5.4), the angle at the

vertex zi is αi. This gives

coshDi = coshXi cosh Yi − sinhXi sinhYi cosαi. (4.5.5)

Since Xi, Yi ∈ [s0, s], we can combine (4.5.3) and (4.5.5) to conclude that

1 + (1− cosαi) sinh
2 s0 ≤ coshDi ≤ 1 + (1− cosαi) sinh

2 s (4.5.6)

for i = 1, 0,−1.

It follows from the definition of Di that

Di = disth(zi, ξ
−1η · zi).

Let l and t denote the translation length and twist angle of ξ−1η. By hypothesis we have

0 ≤ λ ≤ l and 0 ≤ t ≤ θ ≤ π. If we define Ri to be the orthogonal distance from zi to

the axis of ξ−1η, then it follows from the formula for the displacement of point under a

loxodromic isometry (see Lemma C.2) that

sinh2Ri =
coshDi − cosh l

cosh l − cos t
.

Combining this with (4.5.6) we obtain

1 + (1− cosαi) sinh
2 s0 − cosh l

cosh l − cos t
≤ sinh2Ri ≤

1 + (1− cosαi) sinh
2 s− cosh l

cosh l − cos t
.



The Smallest Hyperbolic 3-Manifold 33

Using the identity cosh 2R = 1 + 2 sinh2R and the definition of φ, we obtain

φ(l, t, s, αi) ≤ cosh 2Ri ≤ φ(l, t, s, αi). (4.5.7)

Since φ is monotone decreasing with respect to the first variable and monotone increasing

with respect to the second variable, we have

φ(λ, θ, s, αi) ≥ φ(l, t, s, αi) ≥ cosh 2Ri ≥ 1.

It follows that (l, t, s, αi) and (λ, θ, s, αi) lie in V for i = 1, 0,−1. This includes the first

assertion of the lemma.

Since (l, t, s, αi) ∈ V, we may conclude from (4.5.7) and the monotonicity of the hyperbolic

cosine that

ρ(l, t, s, αi) ≥ 2Ri (4.5.8)

for i = 1, 0,−1.

It also follows from (4.5.7) that cosh 2R0 = φ(l, t, s′, α0) for some s′ ∈ [s0, s]. This implies

that (l, t, s′, α0) ∈ V and that

ρ(l, t, s′, α0) = 2R0. (4.5.9)

Now let R : H3 → R denote the function that assigns to each point of H3 its minimum

hyperbolic distance from the axis of ξ−1η; thus R(zi) = Ri for i = 1, 0,−1. According to

Lemma 4.3, R is a convex function on H3. Since z0 is the midpoint of the segment joining

z1 to z−1, we have

R1 +R−1 ≥ 2R0. (4.5.10)

Combining (4.5.8), (4.5.9), and (4.5.10), we find that

ρ(l, t, s, α1) + ρ(l, t, s, α−1) ≥ 2R1 + 2R−1 ≥ 4R0 = 2ρ(l, t, s′, α0).

Since we have s′ ≤ s, λ ≤ l and t ≤ θ ≤ π, it follows from Lemma 4.4 that (λ, θ, s, α1),

(λ, θ, s, α−1), and (λ, θ, s′, α0) lie in V and that

ρ(λ, θ, s, α1) + ρ(λ, θ, s, α−1) ≥ 2ρ(λ, θ, s′, α0). (4.5.11)

Let us now assume that (λ, θ, s0, α0) ∈ V. Then since s0 ≤ s′, and since φ is monotonically

increasing with respect to the third variable and the hyperbolic cosine is monotonically

increasing on (0,∞), we have ρ(λ, θ, s0, α0) ≤ ρ(λ, θ, s′, α0). Combining this with (4.5.11)

we conclude that

ρ(λ, θ, s, α1) + ρ(λ, θ, s, α−1) ≥ 2ρ(λ, θ, s0, α0).

¤
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Lemma 4.6. Let ε be a given positive number. Let ξ and η be two loxodromic isometries

of H3. Suppose that the group Γ generated by ξ and η is discrete, free on the generators

ξ and η, and topologically tame. Let z be any point of H3. Suppose that

max{disth(z, ξ · z), disth(z, η · z)} < log 3 + ε.

Then we have

min{disth(z, ξ · z), disth(z, η · z)} > log 3− ε.

Proof. In [1; Theorem 6.1(a)] it was shown that under the hypotheses of the lemma we

have
1

1 + edisth(z,ξ·z)
+

1

1 + edisth(z,η·z)
≤

1

2

for every z ∈ H3. If the conclusion of the lemma is false then one of the two quantities

disth(z, ξ ·z) and disth(z, η ·z) is less than log 3− ε while the other is greater than log 3+ ε.

Hence
1

1 + 3eε
+

1

1 + 3e−ε
≤

1

2
. (4.6.1)

But the left-hand side of (4.6.1) can be written in the form

1 + 3 cosh ε

5 + 3 cosh ε
,

which is monotonically increasing function of ε and takes the value 12 at 0. This contradicts

(4.6.1) since the given value of ε is strictly positive.

¤

Lemma 4.7. Let ε be a positive number less than log 3. Let ξ and η be isometries which

generate a subgroup of Isom+(H3) which is discrete, free of rank 2, purely loxodromic and

topologically tame. Let z be a point of H3 such that

max{disth(z, ξ · z), disth(z, η · z)} < log 3 + ε.

Then we have

cos∠(ξ · z, z, η · z) <
cosh2(log 3 + ε)− cosh(log 3− ε)

sinh2(log 3− ε)
.

Proof. Since max{disth(z, ξ · z), disth(z, η · z)} < log 3+ ε it follows from Lemma 4.6 that

disth(z, η · z) > log 3 − ε)and disth(z, ξ · z) > log 3 − ε). On the other hand, since ξ and

ξ−1η generate the same group as ξ and η, we may apply Lemma 4.6 with ξ−1η in place of
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η to conclude that disth(z, ξη
−1 · z) > log 3 − ε. Now consider the triangle with vertices

z, ξ · z and η · z. The sides adjacent to the vertex z have lengths X = disth(z, ξ · z) and

Y = disth(z, η · z). The third side has length D = disth(ξ · z, η · z) = disth(z, ξ
−1η · z).

Since X and Y lie in (log 3− ε, log 3 + ε) and since D > log 3− ε, the first hyperbolic law

of cosines gives

cosα =
coshX coshY − coshD

sinhX sinhY
≤

cosh2(log 3 + ε)− cosh(log 3− ε)

sinh2(log 3− ε)
.

¤

4.8. Proof of Theorem 4.1. Let L denote the common perpendicular to the axes of ξ and

η. Let z0 denote the foot of the perpendicular from z to L. Let us set α0 = ∠(ξ·z0, z0, η·z0).

We must have α0 ≥ β; for if α0 were < β, then since (β, ε) ∈ D, it would follow from

Theorem 3.1 that max{disth(z, ξ · z), disth(z, η · z)} ≥ log 3 + ε, a contradiction to the

hypothesis of Theorem 4.1.

We shall apply Lemma 4.5, taking s = log 3+ ε and s0 = log 3− ε. By hypothesis we have

disth(z, ξ · z) < log 3 + ε. According to Lemma 4.2 we have

disth(z0, ξ · z0) ≤ disth(z, ξ · z) < log 3 + ε.

Hence by Lemma 4.6 we have disth(z0, η · z0) > log 3− ε.

In order to apply Lemma 4.5 we must still check that for i = 1, 0,−1 we have cosαi <

(tanh(log 3 − ε))/(tanh(log 3 + ε). To this end we observe that by Lemma 4.7 we have

α1 = cos∠(ξ · z, z, η · z) < a, where

a =
cosh2(log 3 + ε)− cosh(log 3− ε)

sinh2(log 3− ε)
.

Applying Lemma 4.7 with ξ−1 and η−1 in place of ξ and η gives α−1 < a; and the same

lemma, with z0 in place of z, gives α0 < a. Now recall that from the definition of D, we

have ε < ε∞. Hence a < a∞, where

a∞ =
cosh2(log 3 + ε∞)− cosh(log 3− ε∞)

sinh2(log 3− ε∞)
= 0.80060 . . . .

Thus we have αi < a for i = 1, 0,−1. But

(tanh(log 3− ε))

(tanh(log 3 + ε)
>

(tanh(log 3− ε∞))

(tanh(log 3 + ε∞)
= 0.95591 . . . > a.
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Hence we indeed have cosαi < (tanh(log 3− ε))/(tanh(log 3 + ε) for i = 1, 0,−1.

It now follows from Lemma 4.5 that (λ, θ, log 3 + ε, α1) and ρ(λ, θ, log 3 + ε, α−1) lie in

V. Now suppose that (λ, θ, log 3 − ε, β) ∈ V. Since α0 ≥ β, and since the function φ is

monotone increasing in the fourth variable, it follows that (λ, θ, log 3− ε, α0) ∈ V and that

ρ(λ, θ, log 3− ε, α0) ≥ ρ(λ, θ, log 3− ε, β).

Since (λ, θ, log 3− ε, α0) ∈ V, Lemma 4.5 gives

ρ(λ, θ, log 3 + ε, α1) + ρ(λ, θ, log 3 + ε, α−1) ≥ 2ρ(λ, θ, log 3− ε, α0).

Combining the two inequalities above, we conclude that

ρ(λ, θ, log 3 + ε, α1) + ρ(λ, θ, log 3 + ε, α−1) ≥ 2ρ(λ, θ, log3− ε, β),

and the theorem is proved.

¤

We now specialize Theorem 4.1 to the case which was needed to prove Theorem 1.1. Recall,

from Section 1, that ε0 = 0.0065, and that

{α ∈ [0, π] | ρ(λ0, π, log 3 + ε0, α) ≥ 1} = [α−∞, π].

By comparing the definition of σ in Section 1 with the definition of ρ we find that

σ(α) = ρ(λ0, π, log 3 + ε0, α)

for α ∈ (α−∞, π]. Also recall from Section 1 that the constant

K = 1.30822

is defined so that ρ(λ0, π, log 3 − ε0, β0) = cosh−1 φ(λ0, π, log 3 − ε0, β0) > K. Moreover,

the point (β0, ε0) lies in the region D since we have:

(1) f(β0, ε0) = 0.23139 . . . > 0;

(2) g(9e2ε0 , 1
2
− E(ε0), f(β0, ε0)) = 0.98623 . . . < 1; and

(3) I(β0, ε0) = 0.03964 . . . < 0.08292 . . . = 1
3E(ε0).

Here we have computed I(β0, ε0) =
1
8π
ι(β0, ε0) using Proposition B.1.

Thus by specializing Theorem 4.1 we obtain:
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Corollary 4.9. Let ξ and η be isometries which generate a subgroup of Isom+(H3) which
is discrete, free of rank 2, purely loxodromic and topologically tame. Suppose that ξ−1η

has translation length ≥ λ0. Let z be a point of H3 such that

max{disth(z, ξ · z), disth(z, η · z)} < log 3 + ε0.

Set α1 = ∠(ξ ·z, z, η ·z) and α−1 = ∠(ξ
−1 ·z, z, η−1 ·z). Then α1 and α−1 lie in the interval

[α−∞, π] and

σ(α1) + σ(α−1) > 2K.

¤

We conclude this section by proving another result that was used in the proof of Theorem

1.1. It is similar in flavor to the above results, although independent of them. Recall that

we define the function ω(λ,∆) for ∆ > λ > 0 by

ω(λ,∆) = cos−1(1−
2(coshλ− 1)

cosh∆− 1
).

Proposition 4.10. Let λ and ∆ be positive real numbers. Let ξ be a loxodromic isometry

of H3 with translation length ≥ λ, and let z be a point of H3 such that disth(z, ξ · z) < ∆.

Then we have ∠(ξ−1 · z, z, ξ · z) > ω(λ,∆).

Proof. We let l and θ denote the translation length and twist angle of ξ, so that ξ2 has

length 2l and twist angle 2θ. We set D = disth(z, ξ · z) and D′ = disth(z, ξ
2 · z), and

we denote by R the distance from z to the axis of ξ (which is also the axis of ξ2). In

Appendix C we derive a formula for the displacement of a point of H3 under the action of

a loxodromic isometry. According to Lemma C.2, we have

sinh2R =
coshD − cosh l

cosh l − cos θ

and likewise

sinh2R =
coshD′ − cosh 2l

cosh 2l− cos 2θ
.

Hence

coshD′ =
coshD − cosh l

cosh l − cos θ
(cosh 2l− cos 2θ) + cosh 2l. (4.10.1)

Now consider the triangle with vertices z, ξ · z and ξ−1 · z. The sides adjoining the vertex

z have length D, and the third side has length disth(ξ
−1 · z, ξ · z) = disth(z, ξ

2 · z) = D′.

Setting w = ∠(ξ−1 · z, z, ξ · z) and applying the first hyperbolic law of cosines we find that

coshD′ = cosh2D − sinh2D cosw = 1 + sinh2D(1− cosw).
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Combining this with (4.10.1) we obtain

1− cosw =
1

sinh2D

(

coshD − cosh l

cosh l− cos θ
(cosh 2l − cos 2θ) + cosh 2l− 1

)

=
2

sinh2D
((cosh l + cos θ)(coshD − cosh l) + cosh2 l − 1)

≥
2

sinh2D
((cosh l − 1)(coshD − cosh l) + cosh2 l − 1)

=
2

sinh2D
(coshD + 1)(cosh l − 1) =

2(cosh l − 1)

coshD − 1
.

Since 0 < D < ∆ and l ≥ λ, it follows that

1− cosw >
2(coshλ− 1)

cosh∆− 1
,

which is equivalent to the conclusion of the proposition.

¤

5. Geography

This section is devoted to the proof of the proposition about configurations of eight points

on the sphere which was used in the proof of Theorem 1.1. Recall that the constants

δ0 = 0.71497π, K = 1.30822 and α−∞ = 0.80060 . . . were defined in Section 1. Recall also

that the function σ has domain [α−∞, π]. By inspection of the definition of σ in Section 1

one sees that for every x > α−∞ we have

σ(x) = cosh−1(A−B cos(x)) (5.0.2)

where the constants A and B are defined by

A =
2 cosh2(log 3 + ε0)− cosh λ0 + 1

coshλ0 + 1
= 1.98717 . . .

B =
2 sinh2(log 3 + ε0)

cosh λ0 + 1
= 1.41781 . . .

The main result of this section, which was quoted in Section 1, is:
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Proposition 5.1. Suppose that we are given an indexed family

(P(i,u))(i,u)∈{0,1,2,3}×{−1,1}

of points in S2. Assume that for any two indices (i, u) and (j, v) in {0, 1, 2, 3} × {−1, 1}

with i 6= j, we have dists(P(i,u), P(j,v)) > α−∞. Then either

(i) there is an element i of {0, 1, 2, 3} such that dists(P(i,1), P(i,−1)) ≤ δ0, or

(ii) there exist indices (i, u) and (j, v) in {0, 1, 2, 3}× {−1, 1}, with i 6= j, such that

σ(dists(P(i,u), P(j,v))) + σ(dists(P(i,−u), P(j,−v))) ≤ 2K.

We will need a formula for the distance between two points on the unit sphere. We use

the conventions established in the introduction. If P and P ′ are points of S2, the spherical

distance dists(P, P
′) is equal to the angle between the (unit) position vectors of P and P ′

in R3. If P, P ′ /∈ {N,S}, so that Θ(P, P ′) is defined, we find by writing down the inner

product and using the identity cos(θ − θ′) = cosΘ(P, P ′) that

cos dists(P, P
′) = cosλ(P ) cosλ(P ′) cosΘ(P, P ′) + sinλ(P ) sinλ(P ′).

Proposition 5.1 is deduced by a combinatorial argument from three estimates which are

stated below as Lemmas 5.2, 5.7 and 5.8.

Lemma 5.2. Let P , P ′, Q and Q′ be points of S2 . Suppose that

(a) Q and Q′ lie on a common meridian and 0 < λ(Q) = −λ(Q′),

(b) dists(P, P
′) > δ0 and dists(Q,Q

′) = 2λ(Q) > δ0,

(c) dists(P,Q), dists(P
′, Q′), dists(P

′, Q)) and dists(P,Q
′) are all ≥ α−∞,

(c′) σ(dists(P,Q)) + σ(dists(P
′, Q′)) > 2K, and

(c′′) σ(dists(P
′, Q)) + σ(dists(P,Q

′)) > 2K.

Then |λ(P )| and |λ(P ′)| are less than π/6.

Lemma 5.2 will follow from the next three lemmas.
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Lemma 5.3. Let a and b be positive real numbers. If |a − b| < 1 then the function

cosh−1(a−b cosx) has negative second derivative at each point in the interior of its domain.

Proof. We may assume that a + b > 1 since otherwise the domain has empty interior.

One checks that the second derivative is given by

−q(cosx)

((a− b cosx)2 − 1)3/2

where q is the quadratic polynomial function given by

q(t) = ab2t2 − (a2b+ b3 − b)t+ ab2.

Thus it suffices to check that the polynomial q is everywhere positive. Clearly q(0) > 0,

and the discriminant of q is

b2(1− (a+ b)2)(1− (a− b)2),

which is negative since a+ b > 1 and |a− b| < 1.

¤

We let A′ denote the function given by A′(x, y) = A− 2B sinx sin y.

Lemma 5.4. Let P , Q, and Q′ be points on S2. Assume that Q and Q′ lie on the same

meridian and that 0 ≤ λ(Q) = −λ(Q′). Assume also that dists(P,Q) > α−∞. Then

σ(dists(P,Q)) = cosh−1(A′(λ(P ), λ(Q))− B cos dists(P,Q
′)).

Proof. This follows directly from (5.0.2) and the identity

cos(dists(P,Q)) = cos(dists(P,Q
′)) + 2 sinλ(P ) sinλ(Q).

The identity is an immediate consequence of the spherical distance formula, given that

λ(Q′) = −λ(Q).

¤
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Lemma 5.5. Let P , Q, and Q′ be points on S2. Assume that Q and Q′ lie on the same

meridian and that δ0/2 ≤ λ(Q) = −λ(Q′). Assume also that dists(P,Q) ≥ α−∞ and that

λ(P ) ≥ π/6. Then 2π − δ0 − dists(P,Q
′) ≥ α−∞ and

σ(dists(P,Q)) + σ(2π − δ0 − dists(P,Q
′)) < 2K.

Proof. Our hypothesis on the latitudes of Q and Q′ implies that dists(Q,Q
′) > δ0. Since

the perimeter of a spherical triangle is at most 2π we have

2π − δ0 − dists(P,Q
′) ≥ 2π − dists(Q,Q

′)− dists(P,Q
′) ≥ dists(P,Q) ≥ α−∞.

In particular, the left hand side of the inequality in the conclusion is defined.

It follows from the spherical distance formula that if the configuration of the three points

P , Q and Q′ is modified by moving these points along their meridians toward the equator

while preserving the condition λ(Q) = −λ(Q′), then dists(P,Q) increases while dists(P,Q
′)

decreases. Hence it suffices to consider the case where λ(P ) = π/6 and λ(Q) = δ0/2.

Then the expression σ(dists(P,Q)) + σ(2π − δ0 − dists(P,Q
′)) is defined and, by (5.0.2)

and Lemma 5.4, is equal to

cosh−1(A′(λ(P ), λ(Q))−B cos dists(P,Q
′)) + cosh−1(A− B cos(2π − δ0 − dists(P,Q

′))).

We will use A′ to denote the quantity A′(π/6, δ0/2) = 0.70911 . . .. It follows from Lemma

5.4 that the left hand side of the inequality in the conclusion of the lemma is given by

f(dists(P,Q
′)), where

f(x) = cosh−1(A′ − B cos(x)) + cosh−1(A− B cos(2π − δ0 − x)).

Thus it suffices to show that f(x) < 2K for all x in the intersection of the domain of f

with the interval [0, π]. (This intersection is easily seen to be an interval, which we will

denote J .) Note that f ′′(x) < 0 for all x in J , since Lemma 5.3 implies that each of the

summands of f has negative second derivative on the interior of its domain.

To complete the proof we give a numerical estimate of the maximum value of f on J . To

make the estimate we will exhibit two points x1 and x2 with x1 < x2 such that f ′(x1) > 0,

and f ′(x2) < 0. By the concavity of f we then know that f(x) < f(x1) + f ′(x1)(x2 − x1)

for all x in J .

We set
x1 = 2.3;

x2 = 2.4.
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We then have

f(x1) = 2.52535 . . . ;

f ′(x1) = 0.09792 . . . ;

f ′(x2) = −0.11091 . . . ;

f(x1) + f ′(x1)(x2 − x1) = 2.53514 . . . ≤ 2K = 2.61644.

This completes the proof of the lemma.

¤

5.6. Proof of Lemma 5.2. Because of the symmetry of the hypotheses, it suffices to show

that |λ(P )| < π/6. Assume to the contrary that |λ(P )| ≥ π/6. Then in view of hypotheses

(a), (b) and (c), we may apply Lemma 5.5 to deduce that 2π − δ0 − dists(P,Q
′) ≥ α−∞

and that

σ(dists(P,Q)) + σ(2π − δ0 − dists(P,Q
′)) < 2K.

On the other hand, using hypothesis (b) and the fact that a spherical triangle has perimeter

at most 2π, we find that

2π − δ0 − dists(P,Q
′) > 2π − dist(P, P ′)− dists(P,Q

′) ≥ dist(P ′, Q′).

Hence

σ(dists(P,Q)) + σ(dists(P
′, Q′)) < 2K.

But this contradicts hypothesis (c′).

¤

We need two more lemmas for the proof of Proposition 5.1.

lemma 5.7. Let 0 < ∆ < π and 0 < Λ < π/2 be constants. Suppose that R and R′ are

points of S2 such that |λ(R)| and |λ(R′)| are less than Λ, and dists(R,R
′) ≥ ∆. Then

cosΘ(R,R′) <
cos(∆) + sin2 Λ

cos2 Λ
.

In particular, if |λ(R)| and |λ(R′)| are less than π/6 and dists(R,R
′) > δ0 then Θ(R,R′) >

2π/3.

Proof. We have

cosΘ(R,R′) =
cos dists(R,R

′)− sinλ(R) sinλ(R′)

cosλ(R) cosλ(R′)
≤

cos∆− sinλ(R) sinλ(R′)

cosλ(R) cosλ(R′)
.
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We consider the function

f(x, y) =
cos∆− sinx sin y

cosx cos y
= cos∆ secx sec y − tanx tan y.

One checks by elementary calculus that f is differentiable in a neighborhood of the rectangle

[−Λ,Λ]× [−Λ,Λ], that f has only one critical point in the interior of the rectangle, which

is a saddle located at the origin, and that the maxima occur at the two points ±(−Λ,Λ).

This gives the first conclusion.

Direct computation shows that

cos δ0 + sin2 π/6

cos2 π/6
= −0.50022 . . . < −

1

2
.

The second conclusion follows.

¤

Lemma 5.8. Let P , P ′, Q and Q′ be points of S2\{N,P}. Suppose that both dists(P,Q)

and dists(P
′Q′) are greater than α−∞, and that

σ(dists(P,Q)) + σ(dists(P
′, Q′)) > 2K.

Suppose further that |λ(P )|, |λ(Q)|, |λ(P ′)| and |λ(Q′)| are all less than π/6. Then

Θ(P,Q) + Θ(P ′, Q′) >
2π

3
.

Proof. Applying Lemma 5.7 with P and Q playing the roles of P and P ′ in the latter

result, and taking Λ = π/6 and ∆ = dists(P,Q), we obtain

cos dists(P,Q) ≥
3

4
cosΘ(P,Q)−

1

4
.

Similarly,

cos dists(P
′, Q′) ≥

3

4
cosΘ(P ′, Q′)−

1

4
.

Recall that σ(x) = cosh−1(A−B cosx). Since B > 0 we have that σ is monotone increasing

on the intersection of its domain with the interval [0, π]. Thus by the inequalities above,

σ(dists(P,Q)) ≤ cosh−1((A+
1

4
B)−

3

4
B cosΘ(P,Q))
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and

σ(dists(P
′, Q′)) ≤ cosh−1((A+

1

4
B)−

3

4
B cosΘ(P ′, Q′)).

We define a function on the interval [0, π] by f(x) = cosh−1((A+ 1
4B)− 3

4B cosx). Note

that A− 1
2B > 1, so this definition makes sense. The inequalities above show that

f(Θ(P,Q)) + f(Θ(P ′, Q′)) ≥ σ(dists(P,Q)) + σ(dists(P
′, Q′)) ≥ 2K (5.8.1)

The function f is monotonically increasing, and we have f(0) = 0.72972 . . . and f(π) =

1.89609 . . . while 2K − f(0) = 1.88671 . . . and 2K − f(2π/3) = 0.89958 . . .. It follows that

f−1(2K − f(x)) is defined for all x in [0, 2π3 ], so we may define a monotonically increasing

function g on the interval [0, 2π
3
] by g(x) = 2π

3
− f−1(2K − f(x)).

We now assume, contrary to the conclusion of the lemma, that

Θ(P,Q) + Θ(P ′, Q′) ≤
2π

3
.

By symmetry we may also assume that Θ(P,Q) ≤ π
3 .

From the inequality (5.8.1) and the monotonicity of f we conclude that

2K − f(Θ(P,Q)) ≤ f(Θ(P ′, Q′)) ≤ f(2π
3
−Θ(P,Q)).

Since 2K − f(Θ(P,Q)) is in the domain of the increasing function f−1 we have

f−1(2K − f(Θ(P,Q))) ≤ 2π
3
−Θ(P,Q)

and hence that

g(Θ(P,Q)) = 2π
3
− f−1(2K − f(Θ(P,Q))) ≥ Θ(P,Q)).

Since the function g is increasing and

g( 2π3 ) = 1.54878 . . . ∈ [π3 ,
2π
3 ] ⊂ [Θ(P,Q), 2π3 ],

we have shown (under our assumption) that g maps the interval [Θ(P,Q), 2π/3] into itself.

In particular for every positive integer k the kth iterate gk(π/3) is positive. But this leads

to a contradiction because direct computation shows that g5(π/3) = −0.30973 . . . < 0.

¤

5.9. Proof of Proposition 5.1. Suppose that we are given an indexed family

(P(i,u))(i,u)∈{0,1,2,3}×{−1,1}
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of points in S2 for which conclusions (i) and (ii) of 5.1 both fail to hold. Thus the (P(i,u))

satisfy the following conditions:

(-i) for every i ∈ {0, 1, 2, 3} we have dists(P(i,1), P(i,−1))) > δ0; and

(-ii) for every two indices (i, u) and (j, v) in {0, 1, 2, 3}× {−1, 1} such that i 6= j, we

have

σ(dists(P(i,u), P(j,v))) + σ(dists(P(i,−u), P(j,−v))) > 2K.

We shall derive a contradiction.

After a rotation of the sphere we may assume that P(0,1) and P(0,−1) lie on a common

meridian, that λ(P(0,1)) ≥ 0 and that λ(P(0,−1)) = −λ(P(0,−1)). Since conditions (-i) and

(-ii) are open, we may assume after perturbing the remaining (P(i,u)) that none of the six

points P(1,±1), P(2,±1), P(3,±1) has latitude 0 and that no two of these six points lie on a

common meridian. In particular these six points are distinct.

Let us consider any index i ∈ {1, 2, 3}. We wish to apply Lemma 5.2, taking P = P(i,1),

P ′ = P(i,−1), Q = P(0,1) and Q
′ = P(0,−1). We have arranged that P(0,1) and P(0,−1) lie on a

common meridian, that λ(P(0,1)) ≥ 0 and that λ(P(0,−1)) = −λ(P(0,−1)). Thus hypothesis

(a) of 5.2 holds. Hypothesis (b) follows from condition (-i) above, while hypothesis (c)

follows directly from the hypotheses of the proposition. Hypothesis (c′) of 5.2 is simply

condition (-ii) above with the given i ∈ {1, 2, 3} and with u = 1, j = 0 and v = 1. Likewise,

hypothesis (c′′) is condition (-ii) with the given i and with u = 1, j = 0 and v = −1. Thus,

for each (i, u) ∈ {1, 2, 3}× {−1, 1}, we have |λ(Pi,u)| < π/6.

Now consider any two indices (i, u), (j, v) ∈ {1, 2, 3} × {−1, 1} such that i 6= j. We shall

apply Lemma 5.8 taking P = P(i,u), Q = P(j,v), P
′ = P(i,−u), Q

′ = P(j,−v). According to

(-ii) we have

σ(dists(P(i,u), P(j,v)) + σ(dists(P(i,−u), P(j,−v)) > 2K

and

σ(dists(P(i,u), P(j,−v)) + σ(dists(P(i,−u), P(j,v)) > 2K.

On the other hand, we have that λ(P(i,u)), λ(P(j,v)), λ(P(i,−u)), and λ(P(j,−v)) are all less

than π/6. Thus the hypotheses of 5.8 all hold, and it follows that

Θ(P(i,u), P(j,v)) + Θ(P(i,−u), P(j,−v)) >
2π

3
. (5.9.1)

For each (i, u) ∈ {1, 2, 3}×{−1, 1}, the hypothesis of Lemma 5.7 holds if we set P = P(i,u)
and Q = Q(i,−u). Hence we have

Θ(P(i,u), P(i,−u)) > 2π/3. (5.9.2)
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Recall that ` is the retraction with meridian fibers from S2 \{N,S} to the equator. We set

ζ(i,u) = `(P(i,u) for each (i, u) ∈ {1, 2, 3}×{−1, 1}. The six points ζ(1,±1), ζ(2,±1), ζ(3,±1) are

distinct because no two of the six points P(1,±1), P(2,±1), P(3,±1) lie on a common meridian.

The six-element set Z = {ζ(i,u) : (i, u) ∈ {1, 2, 3} × {−1, 1}} has two natural fixed-point-

free involutions. The first, which we denote τ1, is defined by τ1(ζ(i,u)) = ζ(i,−u). To define

the second involution, which we denote by τ2, we observe that since Z is a six-element

subset of S1, there exists for each ζ ∈ Z a unique ζ ′ ∈ Z such that each component of

S1 \ {ζ, ζ ′} contains exactly two elements of Z \ {ζ, ζ ′}. We set τ2(ζ) = ζ ′. We consider

two cases.

Case 1. The involutions τ1 and τ2 coincide. In this case we may assume, after relabeling

some of the P(i,u) if necessary, that as one circumnavigates S1 in the counterclockwise

sense beginning with ζ(1,1), the ζi,u appear in the order

ζ(1,1), ζ(2,1), ζ(3,1), ζ(1,−1), ζ(2,−1), ζ(3,−1).

(The relabeling may involve permuting the indices i = 1, 2, 3 and, for certain values of i,

interchanging the labels of P(i,−1) and P(i,1).)

To unify the notation we set P(4,u) = P(1,−u) and ζ4,u = ζ(1,−u) for u = ±1. The points of

the set Z divide S1 into six arcs A(1,±1), A(2,±1), A(3,±1), where A(i,u) has endpoints ζ(i,u)
and ζ(i+1,u) for i = 1, 2, 3. The length of the arc A(i,u) is greater than or equal to the

circular distance between its endpoints, which by definition is Θ(P(i,u), P(i+1,u)). Hence

2π =
3
∑

i=1

lengthA(i,1) +
3
∑

i=1

lengthA(i,−1)

≥
3
∑

i=1

Θ(P(i,1), P(i+1,1)) +

3
∑

i=1

Θ(P(i,−1), P(i+1,−1))

=

3
∑

i=1

(Θ(P(i,1), P(i+1,1)) + Θ(P(i,−1), P(i+1,−1))).

But it follows from (5.9.1) that

Θ(P(i,1), P(i+1,1)) + Θ(P(i,−1), P(i+1,−1)) > 2π/3.

for i = 1, 2, 3. Thus we have a contradiction in this case.

Case 2. The involutions τ1 and τ2 are distinct. In this case we may assume, after relabeling

the P(i,u) if necessary, that τ1(ζ(1,1)) = (ζ(1,−1)) is distinct from τ2(ζ(1,1)); that is, some

component A of S1 \ {ζ(1,1), ζ(1,−1)} contains at least three points of Z \ {ζ(1,1), ζ(1,−1)}.

Hence for some p ∈ {2, 3}, the arc A contains ζ(p,1) and ζ(p,−1). After further relabeling
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the P(i,u) if necessary we may assume that A contains ζ(2,1) and ζ(2,−1). Then the four

element set Z ′ = {ζ(i,u) : i ∈ {1, 2}, u ∈ {−1, 1}} divides S
1 into four arcs B1, B2, C1, C−1,

where Bi has endpoints P(i,1) and P(i,−1), and Cu has endpoints P(1,u) and P(2,u).

Reasoning as in Case 1, we find that

2π = lengthB1 + lengthB2 + lengthC1 + lengthC−1

≥ Θ(P(1,1), P(1,−1)) + Θ(P(2,1), P(2,−1)) + Θ(P(1,1), P(2,1)) + Θ(P(1,−1), P(2,−1)).

But we have

Θ(P(1,1), P(2,1)) + Θ(P(1,−1), P(2,−1)) >
2π

3

by (5.9.1), and by (5.9.2) each of the terms Θ(P(1,1), P(1,−1)) and Θ(P(2,1), P(2,−1)) is >
2π
3
.

Thus we have a contradiction in this case as well.

¤

Appendix A. Monotonicity of g

In this appendix we prove the following monotonicity statement, which was needed in

the proof of Theorem 3.1. The definition of the function g and the domain G appear

immediately before the statement of 3.1.

Lemma A.1. Let gx, gu, gt denote the partial derivatives of g with respect to the first,

second and third variables respectively. The function gt is positive everywhere on G. The

functions gx and gu are positive at every point (x, u, t) ∈ G such that u < 1/2 and t > 2u/3.

proof. On the set G we define functions A = A(x, t), B = B(x, u) and C = C(x, u, t) by

A = 1+ t(x− 1), B = 1+u(x− 1) and C = 1+ (2u− t)(x− 1). Since x > 1 and 0 < t < u

for (x, u, t) ∈ G, we have 0 < A < B < C on G. The definition of g may be rewritten in

the form

g(x, u, t) =
tx

A
+

(u− t)x

BC
+ u.

Differentiating with respect to t, we find that

gt(x, u, t) =
x

A2
−

x

B2
,

and the right-hand side is positive on G since 0 < A < B. This proves the first assertion.

Retaining the assumptions (x, u, t) ∈ G, u < 1/2 and t > 2u/3, we now differentiate with

respect to u. We obtain

gu(x, u, t) = 1 +
x

B2C2
(BC − (u− t)(x− 1)(2B + C)).
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In order to show that gu(x, u, t) > 0, it certainly suffices to show that BC − (u − t)(x −

1)(2B + C) > 0. Again using that 0 < B < C, that x > 1 and that t < u, we find that

BC − (u− t)(x− 1)(2B + C) > C(B − 3(u− t)(x− 1)).

Now, again using the definition of B and the inequalities x > 1 and 3t/2 < u, we find that

B − 3(u− t)(x− 1) = 1 + (x− 1)(3t− 2u) > 0.

Thus gu(x, u, t) is indeed positive.

Differentiating with respect to x we find that gx is a rational function in x, u and t with

denominator (ABC)2. We introduce a new variable v = t/u and define

h(x, u, v) = (A(x, u, uv)B(x, u, uv)C(x, u, uv))2gx(x, u, uv).

It suffices to show that h(x, u, v) > 0 for all x > 0 and for all (u, v) in the rectangle

R = {(u, v)|0 < u < 1/2, 2/3 < v < 1}.

We find, with the assistance of a symbolic computation program, that

h(x, u, v) =
4
∑

i=0

pi(u, v)x
i

where
p0 = u(1− u)(vu+ 1− 2u)(1− vu)(1− (2v − v2)(2u− u2))

p1 = 4vu2(2− v)(u− 1)2(1− vu)(vu+ 1− 2u)

p2 = u3((−6v4 + 24v3 − 24v2)u3 + (6v4 − 24v3 + 12v2 + 24v)u2+

(−2v4 + 8v3 + 8v2 − 32v)u+ (−8v2 + 16v − 2))

p3 = 4vu4(2− v)(1− vu)(vu+ 1− 2u) and

p4 = vu5(2− v)(2− (2v − v2)(1 + u)).

Using the inequalities 2v− v2 < 1 and 2u− u2 < 3/4 one checks easily that p0, p1, p3 and

p4 are positive for (u, v) ∈ R. It remains to show that p2 is positive for (u, v) ∈ R. For

this it suffices to show that

q(u, v) = (−6v4 + 24v3 − 24v2)u3 + (6v4 − 24v3 + 12v2 + 24v)u2+

(−2v4 + 8v3 + 8v2 − 32v)u+ (−8v2 + 16v − 2)

is positive. We will show that qu(u, v) < 0 and qv(u, v) > 0 for (u, v) ∈ R and thus that

q(u, v) > q(1/2, 2/3) = 19/324 for (u, v) ∈ R.
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Differentiating, we find that

qu(u, v) = −2v(2− v)(2 + v − 3vu)(3vu+ (4− v − 6u)).

Thus by inspection qu < 0 for (u, v) ∈ R.

Finally we have

qv = (−3v3 + 9v2 − 16v)u3 + (3v2 − 9v2 + 3v + 24)u2+

(−v3 + 3v2 + 2v − 2)u+ (2− 2v).

One checks that the coefficient of u3 is negative for 2/3 < v < 1 and hence, since u3 < u2,

we have

qv(u, v) ≥ (24− 13v)u2 + (3v2 − v3)u+ (2− 2v)(1− u).

The right hand side of this inequality is positive for v ≤ 1 and 0 < u < 1/2. This completes

the proof of the lemma.

¤

Appendix B. Intersections of spherical caps

In this appendix we use the Gauss-Bonnet theorem to derive a formula for the area of the

intersection of two spherical caps. This formula was needed in the proof of Corollary 4.9.

Recall that ι(α, r1, r2) denotes the area of the intersection of two spherical caps C(P1, r1)

and C(P2, r2), where P1 and P2 are two points of S2 such that dists(P1, P2) = α.

We shall denote by U the region in R3 consisting of all points (x1, x2, x3) such that 0 <

xi < π for i = 1, 2, 3 and such that x1 + x2 > x3, x2 + x3 > x1 and x3 + x1 > x2. For any

(x1, x2, x3) ∈ U we have

−1 <
cosx3 − cosx1 cosx2

sinx1 sinx2
< 1.

Hence we may define a function J :U → (0, π) by

J(x1, x2, x3) = arccos(
cosx3 − cosx1 cosx2

sinx1 sinx2
).

Note that the region U is by definition invariant under permutations of the coordinates

of R3; hence for any point (x1, x2, x3) ∈ U and any permutation π ∈ S3, we have

(xπ(1), xπ(2), xπ(3)) ∈ U , so that J(xπ(1), xπ(2), xπ(3)) is defined.

We shall prove:
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Proposition B.1. Let α, r1, r2 be numbers in the interval (0, π). If r1 + r2 ≤ α then

ι(α, r1, r2) = 0. If r1 + α ≤ r2 or r2 + α ≤ r1 then ι(α, r1, r2) = | cos r1 − cos r2|. Finally,

if (r1, r2, α) ∈ U then

ι(r1, r2, α) = 2π − 2(J(r1, α, r2) cos r1 + J(r2, α, r1) cos r2 + J(r1, r2, α)).

Suppose that P1, P2 are points in S2 and that r1, r2 are numbers in (0, π). Let us set

Ci = C(Pi, ri) and α = dists(P1, P2). It is clear that IntC2 ∩ IntC1 = ∅ if and only if

r1 + r2 ≤ α. Furthermore, we have C1 ⊂ C2 if and only if r1 + α ≤ r2; in this case, since

Ci has area 2π(1 − cos r), we have ι(r1, r2, α) = 2π(cos r2 − cos r1). Similarly, we have

C2 ⊂ C1 if and only if r2 + α ≤ r1, and in this case ι(r1, r2, α) = 2π(cos r2 − cos r1). and

likewise C2 ⊂ C1 if and only if r2 + α ≤ r1. This establishes the first two assertions of

Proposition B.1, and also shows that the boundary circles of C1 and C2 cross if and only

if (r1, r2, α) ∈ U . In this case it is clear that A1 = ∂C1 ∩ C2 and A2 = ∂C2 ∩ C1 are arcs

and that C1 ∩ C2 is a topological disk whose boundary A1 ∪ A2 consists of two smooth

arcs. We shall refer to such a configuration as a digon.

The rest of the section is devoted to the proof of the final assertion of Proposition B.1.

The proof depends on Lemmas B.2 and B.3 below.

At certain points in the proof it will be necessary to keep track of orientations. We

shall always give S2 the orientation induced from the restriction to the unit ball of the

standard orientation of R3. When we consider a spherical cap C(P, r) we shall always give

it the orientation obtained by restricting the orientation of S2. This orientation of C(P, r)

induces an orientation of ∂C(P, r).

Lemma B.2. Let P1, P2 be points in S
2, let r1 and r2 be numbers, set α = dists(P1, P2),

and suppose that (r1, r2, α) ∈ U . Then length of the arc ∂C(P1, r1)∩C(P2, r2) is equal to

2J(r1, α, r2) sin r1. Furthermore, the exterior angles of the digon C(P1, r1) are both equal

to J(r1, r2, α).

Proof. Set Ci = C(Pi, ri). Let Q and Q′ denote the endpoints of A. It is clear that the

exterior angles of C1 ∩C2 at Q and Q′ have the same value ε. Let pi, q and q′ denote the

position vectors of Pi and Q in R3. We have

cos r2 = cos dists(Q,P2) = q · Pi, (B.2.1)

where · denotes the scalar product.

Let ∂Ci be given the orientation induced from the orientation of Ci, and let vi denote the

unit tangent vector to Ci at Q which is positive with respect to this orientation. We have

v1 · v2 = cos ε. (B.2.2)
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Note that q is orthogonal to S2 and hence to the vi, and that pi is orthogonal to Ci and

hence to vi. The angle between pi and q is dists(Pi, Q) = ri. In view of our orientation

conventions, it follows that

vi = (csc ri)pi × q, (B.2.3)

where × denotes the vector product.

After a rotation of the sphere, we may assume that P1 is the north pole and that P2
has longitude 0 and polar angle α. Thus p1 = (0, 0, 1) and p2 = (sinα, 0, cosα). The

endpoints of the arc A = ∂C1 ∩ C2 have polar angle r1, and their longitudes are opposite

in sign and equal in absolute value. Thus we have q = (sin r1 cos θ, sin r1 sin θ, cos r1), Q
′ =

(sin r1 cos θ,− sin r1 sin θ, cos r1). After a reflection of the sphere we may assume that θ > 0.

From (B.2.1) we obtain

cos r2 = (sin r1 cos θ, sin r1 sin θ, cos r1) · (sinα, 0, cosα),

which implies that

θ = J(r1, α, r2). (B.2.4)

Since the circle ∂C(P1, r1) has Euclidean radius sin r1, and since the arc A subtends an

angle of 2θ = 2J(r1, α, r2) in this circle, the length of A is 2J(r1, α, r2) sin r1. This is the

first assertion of the lemma.

From (B.2.3) we have

v1 =
1

sin r1
(a2,−a1, 0)

and

v2 =
1

sin r2
(a2 cosα,−a1 cosα+ a3 sinα,−a2 sinα).

Computing the scalar product of the vi from these expressions and substituting the value

of θ given by (B.2.4) we find that

v1 · v2 =
cosα− cos r1 cos r2

sin r1 sin r2
,

which by (B.2.2) implies that ε = J(r1, r2, α).

¤

The next lemma gives the geodesic curvature of the boundary of a spherical cap. Recall that

geodesic curvature is a signed quantity and that its sign depends on both an orientation of

the curve and an orientation of the ambient surface. We have already fixed an orientation

of S2.
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Lemma B.3. Let P be any point P ∈ S2 and let any r be any number in the interval

(0, π). Let us regard the circle ∂C(P, r), as an oriented curve in S2 with the orientation

induced from that of C(P, r). Then ∂C(P, r) has constant geodesic curvature cot r.

Proof. Since the stabilizer of C = C(P, r) in the group of orientation-preserving isometries

of S2 acts transitively on the points of ∂C, the geodesic curvature of ∂C is a constant κ.

Since ∂C is a Euclidean circle of radius sin r, its length is 2π sin r. On the other hand,

C(P, r) has area 2π(1− cos r) and constant Gaussian curvature K = 1. According to the

Gauss-Bonnet theorem we have

2π = 2χ(C(P, r)) =

∫

C

K +

∫

∂C

κ = 2π(1− cos r) + 2πκ sin r,

from which the conclusion follows.

¤

B.4. Proof of Proposition B.1. By the remarks following the statement of the Proposi-

tion, we need only consider the case (α, r1, r2) ∈ U . Let P1 and P2 denote points of S2

with dists(P1, P2) = α. Again by the remarks following the statement, the boundaries

of C1 = C(P1, r1) and C2 = C(P2, r2) cross, and G = C1 ∩ C2 is a digon. Its boundary

consists of two circular arcs A1 = ∂C1 ∩ C2 and A2 = ∂C2 ∩ C1, which by Lemma B.2

have lengths l1 = 2J(r1, α, r2) sin r1 and l2 = 2J(r2, α, r1) sin r2 respectively. Let us fix an

orientation on S2, so that G and the Ci inherit orientations. We give Ai the orientation

induced from G, which is the same as the one induced from Ci. By Lemma B.3, Ai ⊂ ∂Ci

has constant geodesic curvature κi = cot ri. The digon G has constant Gaussian curva-

ture K = 1, and its exterior angles are equal to ε = J(r1, r2, α) by Lemma B.2. By the

Gauss-Bonnet theorem we have

2π = 2πχ(G) = K area(G) + l1κ1 + l2κ2 + 2ε

= ι(α, r1, r2) + 2J(r1, α, r2) cos r1 + 2J(r2, α, r1) cos r2 + 2J(r1, r2, α),

which implies the conclusion of the proposition.

¤
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Appendix C. A path of 2-generator groups

In this appendix we prove the remaining result that was required for the proof of Theorem

3.1. We give a construction of certain 1-parameter families of 2-generator subgroups of

Isom+(H3); these paths were used in the proof of Theorem 3.1 for the reduction to the

case of groups which admit no non-constant invariant super-harmonic functions. In this

appendix we also derive a formula, which is included in Lemma C.2, for the displacement

of a point of H3 under a loxodromic isometry. This formula was used in Lemma 4.2 and

Proposition 4.10 as well as in [9].

Proposition C.1. Let ξ and η be two loxodromic isometries of H3 without any common

fixed point. Denote by L the common perpendicular to the axes Aξ and Aη of ξ and η

respectively. Let z0 be any point of L. Then there exist continuous one-parameter families

(ξt)0≤t≤1 and (ηt)0≤t≤1 of loxodromic isometries of H3 with the following properties:

(i) ξ0 = ξ and η0 = η;

(ii) for every t the axes of ξt and ηt are perpendicular to L;

(iii) the functions t 7→ dist(z0, ξt · z0) and t 7→ dist(z0, ηt · z0) are monotonically

decreasing on [0, 1];

(iv) the function t 7→ ∠(ξt · z0, z0, ηt · z0) is monotonically decreasing on [0, 1]; and

(v) the isometries ξ1 and η1 have the same axis.

The proof of Proposition C.1 depends on the following three lemmas, C.2, C.3 and C.4.

The first assertion of C.2 was used, but not proved, in [9].

Lemma C.2. Let γ be a loxodromic isometry of H3 with axis A, translation length l

and twist angle θ. Let z be any point of H3, let z′ denote the foot of the perpendicular
from z to A, and let R denote the perpendicular distance from z to A. Then we have

cosh disth(z, γ · z) = ∆(R),

where ∆ = ∆l,θ is the function defined on [0,∞) by

∆(R) = cosh−1(cosh l + sinh2R(cosh l − cos θ)).

We also have

∠(z′, z, γ · z) = α(R),
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where α = αl,θ is the function defined on [0,∞) by

α(R) = cos−1
(sinhR)(coshR)(cosh l − cos θ)

√

(cosh l + sinh2R(cosh l − cos θ))2 − 1
.

Furthermore, ∆(R) is strictly monotone increasing on [0,∞) and tends to ∞ as R → ∞,

while α(R) is strictly monotone decreasing on [0,∞) and tends to 0 as R→∞.

Proof. We identify H3 conformally with the upper half-space R2×R+ in such a way that

A = {0} × R+, and so that γ is given by γ · (w, t) = (el+iθw, elt). We may also suppose

the identification to have been made in such a way that z0 = (s, 1) for some positive real

number s. The distance from any point (w, t) ∈ H3 to A is given by the formula

sinh disth((w, t), A) =
|z|

t
. (C.2.1)

Here the right-hand side is the tangent of the angle between the ray A and the ray which

has origin 0 and passes through (w, t). Formula (C.2.1) is the 3-dimensional analogue

of formula (7.20.3) of [2], and follows from applying the latter formula to the hyperbolic

plane spanned by A and (w, t). In the same way, formula (7.2.1(ii)) of [2] implies that the

distance between any two points (w, t) and (w′, t′) of H3 is given by

cosh disth((w, t), (w
′, t′)) = 1 +

|w − w′|2 + (t− t′)2

2tt′
. (C.2.2)

It follows from (C.2.2) that sinhR = sinh disth((s, 1), A) = s. Now let us apply (C.2.2) to

the points z0 = (s, 1) and γ · z0 = (el+iθs, el). This gives

cosh dist(z0, γ · z0) = 1 +
s2|el+iθ − 1|2 + (el − 1)2

2el

= (cosh l − cos θ)s2 + cosh l = cosh∆(R),

and the first assertion of the lemma follows.

To prove the second assertion, we first apply the hyperbolic Pythagorean theorem to the

right triangle with vertices z′, γ · z′ and γ · z. The lengths of the sides adjacent to the right

angle are disth(z
′, γ · z′) = l and disth(γ · z

′, γ · z) = R. Hence, setting c = disth(z
′, γ · z),

we have

cosh c = cosh l coshR.
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Now we apply the first hyperbolic law of cosines to the triangle with vertices z′, z and

γ · z, whose side lengths are disth(z, γ · z) = ∆(R), disth(γ · z, z
′) = c and disth(z

′, z) = R.

This gives

cos∠(z′, z, γ · z) =
cosh∆(R) coshR− cosh c

sinh∆(R) sinhR

=
cosh∆(R)(coshR− cosh l)

sinh∆(R) sinhR

= cosα(R),

and the second assertion follows.

It is clear from the definition of the function ∆(R) that it is strictly monotone increasing

and tends to∞ withR. In order to establish the properties of α(R), we set A = cosh l−cos θ

and B = cosh l. Note that B ≥ A > 0 and B > 1. For each R ∈ [0,∞) we have

α(R) = cosh−1
√

g(sinhR), where g is defined on [0,∞) by

g(x) =
A(x+ 1)x

(Ax+ B)2 − 1
.

It is clear that g(x) tends to 1 as x→∞, and hence that α(R) tends to 0 as R→∞. To

complete the proof, we need only show that g is strictly monotone increasing on [0,∞).

Differentiating g we find that

((Ax+ B)2 − 1)2A−1g′(x) = 2A(B − A)x2 + 2(B2 − 1)x+B2 − 1,

where the right hand side is strictly positive for x > 0 since B ≥ A > 0 and B > 1. Hence

g′(x) > 0 for every x > 0.

¤

In the statement of the next lemma, we fix a line L ⊂ H3 and a point z0 ∈ L. We identify

Ĥ3 = H3 ∪ S∞ conformally with the closed unit ball in R3 in such a way that z0 is the

origin and L is the vertical axis. In particular, S∞ is identified with S2 in such a way that

the end points of L are the north and south poles N and S.

We denote by GL the subgroup of Isom+(H3) consisting of all isometries that stabilize the

line L and preserve orientation on L. Then GL is a Lie subgroup of Isom+(H3) and in

particular it has the structure of a manifold. The non-trivial elements of GL are precisely

the loxodromic and elliptic isometries of H3 having L as axis.
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Lemma C.3. Let ξ be a loxodromic isometry of H3 whose axis meets L perpendicularly

at a point z0. Let us define a map fξ:GL → S∞ = S2 as follows: for each γ ∈ GL we

define fξ(γ) ∈ S∞ to be the endpoint of the ray from z0 to γξγ
−1 · z0. Then fξ maps GL

homeomorphically onto S2 \ {N,S}. Furthermore, there is a strictly monotone increasing

function hξ: [0,∞)→ [0, π/2) such that for every γ ∈ GL we have

|λ(fξ(γ))| = hξ(disth(z0, γξγ
−1 · z0)).

Finally, for each point ζ on the equator of S2 = S∞, the isometry f−1ξ (ζ) ∈ GL maps the

axis of ξ onto the line which passes through z0 and has ζ as an end point.

Proof. Let us fix a transverse orientation for the line L. For each w = e2πiθ ∈ S1,

let τw denote the isometry which fixes L pointwise and whose restriction to each plane

orthogonal to L is a rotation through an angle θ which is counterclockwise in terms of

the chosen transverse orientation. For each r ∈ R \ {0} let hr denote the hyperbolic

isometry with axis L having translation length |r|, and having S or N as its attracting

fixed point according as r is positive or negative. (To say that hr is hyperbolic means that

it leaves each plane through L invariant.) Let hr denote the identity map on H3. Then

(r, w) 7→ τw ◦hr is a homeomorphism of R×S1 onto GL. In particular GL is a topological

2-manifold homeomorphic to R× S1.

Let l and θ denote the translation length and twist angle of ξ, and let Aξ denote its axis.

Let ∆ = ∆l,θ and α = αl,θ be defined as in the statement of Lemma C.2. Consider any

r ≥ 0 and any w ∈ S1, and set γ = τw ◦ hr. The isometry γξγ−1 has axis γ · Aξ, and

its translation length and twist angle are l and θ. The point z0 lies at a distance r from

γ ·Aξ. The foot of the perpendicular from z0 to γ ·Aξ is γ · z0. Hence by Lemma C.2 we

have ∠(γ · z0, z0, γξγ
−1 · z0) = α(r). On the other hand, since r ≥ 0, the point γ · z0 lies

on the ray L+ ⊂ L which has origin z0 and endpoint N . Hence

λ(fξ(γ)) =
π

2
− ∠(N, z0, γξγ

−1 · z0) =
π

2
− ∠(γ · z0, z0, γξγ

−1 · z0) =
π

2
− α(r).

Similarly, for r ≤ 0 we find that λ(fξ(γ)) = α(|r|)− π
2
. Thus for all w ∈ S1 and r ∈ R we

have

λ(fξ(τw ◦ hr)) = β(r), (C.3.1)

where β(r) = |π
2
− α(|r|)|.

By Lemma C.2 the function α(R) decreases monotonically from π/2 to 0 as R varies from

0 to ∞. Hence β(r) increases montonically from 0 to π/2 as r increases from −∞ to ∞.

It therefore follows from (C.3.1) that fξ : GL → S2 \ {N,S} is a proper map.



The Smallest Hyperbolic 3-Manifold 57

We claim that fξ is also one-to-one. Indeed, suppose that for some γ = (τw ◦ hr) and

γ′ = (τw′ ◦ hr′) we have fξ(γ) = fξ(γ
′). By (C.3.1) it follows that β(r) = β(r′). By the

monotonicity of β it follows that r = r′. Hence (γ′) = τw′/w ◦ γ. Since τw′/w fixes z0 ∈ L

we have γ ′αγ′
−1 · z0 = τw′/w · (γαγ

−1 · z0). In view of the definition of fα, this implies

that fα(γ
′) = τw′/w ·fα(γ). Since we have assumed that fα(γ

′) = ·fα(γ), we conclude that

w = w′. This shows that f is one-to-one.

Since f is a proper one-to-one map between the 2-manifolds GL and S2 \ {N,S}, it is a

homeomorphism of GL onto S2−{N,S}. This is the first assertion of the lemma. To prove

the second assertion, we first note that for any γ = τw ◦ hr we have |λ(fξ(γ))| =
π
2
− α(r)

by virtue of (C.3.1). On the other hand, since z0 is at a distance r from the axis of

γξγ−1, which has twist angle θ and translation length l, it follows from Lemma C.2 that

disth(z0, γξγ
−1 · z0) = ∆(|r|). Since, by C.2, the function ∆(R) increases monotonically

from l to∞ as R increases from 0 to∞, and π
2
−α(R) increases from 0 to π

2
as R increases

from 0 to ∞, the second assertion of C.3 follows if we set hξ = α ◦∆−1.

Finally, suppose that ζ is a point on the equator of S2 = S∞, and let B denote the

line which passes through z0 and has ζ as an end point. Since ζ is on the equator, B is

perpendicular to L at z0. As A is also perpendicular to L at z0, we have τw · A = B for

some w ∈ S1. We may suppose w to be chosen so that the ray A+ ⊂ A which has origin

z0 and passes through ξ · z0 is transformed by τw onto the ray B+ ⊂ B which has origin

z0 and end point ζ. Then τwξτ
−1
w · z0 = τwξ · z0 ∈ B+, and hence fξ(τw) = ζ. In view

of the first assertion of the lemma we may therefore write f−1ξ (ζ) = τw. In particular we

have f−1ξ (ζ)(A) = B. This is the final assertion of the lemma.

¤

Lemma C.4. For any two points P and Q of S2 \ {N,S}, there exist two continuous

paths p, q: [0, 1]→ S2 \ {N,S} with the following properties:

(i) p(0) = P and q(0) = Q;

(ii) the functions λ ◦ p and λ ◦ q are (weakly) monotonically decreasing on [0, 1];

(iii) the function t 7→ dists(p(t), q(t)) is (weakly) monotonically decreasing on [0, 1];

and

(iv) the points p(1) and q(1) coincide and lie on the equator.

Proof. We may assume without loss of generality that θ(Q) = 0 and that 0 ≤ θ(P ) ≤ π.

We define p(t) for 0 ≤ t ≤ 1
2
by setting θ(p(t)) = (1 − 2t)θ(P ) and λ(p(t)) = λ(P ). For

1
2 ≤ t ≤ 1 we define p(t) by θ(p(t)) = 0 and λ(p(t)) = (2 − 2t)λ(P ). We define q(t) = Q

for 0 ≤ t ≤ 1
2
, and for 1

2
≤ t ≤ 1 we define q(t) by θ(q(t)) = 0 and λ(q(t)) = (2− 2t)λ(Q).
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Conclusions (i), (ii) and (iv) of the lemma are now clear. It is also clear that the function

t 7→ Θ(p(t), q(t)) is monotone decreasing on [0, 1]. Since by the spherical distance formula

we have

cos dists(p(t), q(t)) = cosλ(p(t)) cosλ(q(t)) cosΘ(p(t), q(t)) + sinλ(p(t)) sinλ(q(t)),

it follows readily that t 7→ cos dists(p(t), q(t)) is monotone increasing on [0, 1], so that

conclusion (iii) holds as well.

¤

C.5. Proof of C.1. According to Lemma C.3 we have homeomorphisms fξ and fη from

GL to S2 \ {N,S}. We set P = fξ(I) and Q = fη(I), where I denotes the identity element

of GL. With these choices of P and Q, let p and q be paths satisfying conclusions (i)—(iv)

of Lemma C.4. For each t ∈ [0, 1] we set γt = f−1ξ (p(t)) and δt = f−1η (q(t)). We set

ξt = γtξγ
−1
t and ηt = γtηγ

−1
t . It is clear that (ξt)0≤t≤1 and (ηt)0≤t≤1 are continuous

one-parameter families of isometries of H3.

As ξ and η are loxodromic with axes Aξ and Aη, the isometries ξt and ηt are also loxodromic

and have axes Aξt = γt · Aξ and Aηt = δt · Aη. Since Aξ and Aη are perpendicular to

L and since γt, δt ∈ GL, it follows that Aξt and Aηt are also perpendicular to L. This is

conclusion (ii) of Proposition C.1. We have γ0 = f−1ξ (P ) = I and hence ξ0 = ξ; similarly

η0 = η. This is conclusion (i) of C.1.

For any t ∈ [0, 1], using the function Λξ given by Lemma C.3, we have

Λξ(dist(z0, ξt · z0)) = Λξ(dist(z0, γtξγ
−1
t · z0)) = |λ(fξ(γt))| = |λ(p(t))|.

Since Λξ is strictly monotone increasing by C.3 and λ ◦ p is monotonically decreasing by

conclusion (iii) of C.4, it follows that t 7→ dist(z0, ξt · z0) is monotonically decreasing on

[0, 1]; the same argument shows that and t 7→ dist(z0, ηt · z0) is monotonically decreasing

on [0, 1]. This is conclusion (iii) of C.1.

For any t ∈ [0, 1] we have

∠(ξt · z0, z0, ηt · z0) = ∠(γtξγ
−1
t · z0, z0, γtηγ

−1
t · z0).

In view of the definition of fξ and fη the right-hand side of the equation above is equal to

the spherical distance between fξ(γt) = p(t) and fη(γt) = q(t). Hence conclusion (iv) of

C.1 follows from conclusion (iii) of C.4.

Finally, according to conclusion (iv) of C.4, we have p(1) = q(1) = ζ, where ζ is some

point of the equator of S2. Thus we have γ1 = f−1ξ (ζ), and the last sentence of Lemma
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C.3 implies that Aξ1 = γ1 ·Aξ is the line passing through z0 and having ζ as an end point.

The same argument shows that Aη1 is the very same line, and thus conclusion (v) of C.1

holds.

¤
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