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1 Introduction

The central result of this paper, Theorem 6.1, gives a constraint that must
be satisfied by the generators of any free, topologically tame Kleinian group
without parabolic elements. The following result is case (a) of Theorem 6.1.

Main Theorem Let k ≥ 2 be an integer and let Φ be a purely loxodromic,
topologically tame discrete subgroup of Isom+(H

3) which is freely generated by
elements ξ1, . . . , ξk. Let z be any point of H3 and set di = dist(z, ξi · z) for
i = 1, . . . , k. Then we have

k∑

i=1

1

1 + edi
≤

1

2
.

In particular there is some i ∈ {1, . . . , k} such that di ≥ log(2k − 1).

The last sentence of the Main Theorem, in the case k = 2, is equivalent to
the main theorem of [14]. While most of the work in proving this generalization
involves the extension from rank 2 to higher ranks, the main conclusion above
is strictly stronger than the main theorem of [14] even in the case k = 2 .
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Like the main result of [14], Theorem 6.1 has applications to the study of
large classes of hyperbolic 3-manifolds. This is because many subgroups of the
fundamental groups of such manifolds can be shown to be free by topological
arguments. The constraints on these free subgroups impose quantitative ge-
ometric constraints on the shape of a hyperbolic manifold. As in [14] these
can be applied to give volume estimates for hyperbolic 3-manifolds satisfying
certain topological restrictions. The volume estimates obtained here, unlike
those proved in [14], are strong enough to have qualitative consequences, as
we shall explain below.

The following result is proved by combining the case k = 3 of the Main
Theorem with the techniques of [15].

Corollary 9.2 Let N be a closed orientable hyperbolic 3-manifold. Suppose
that the first betti number β1(N) is at least 4, and that π1(N) has no subgroup
isomorphic to the fundamental group of a surface of genus 2. Then N contains
a hyperbolic ball of radius 1

2
log 5. Hence the volume of N is greater than 3.08.

There is no reason to expect these estimates to be sharp. For instance,
empirical evidence based on Weeks census [39] suggests that the conclusion of
the corollary may hold under the hypothesis that β1(N) is at least 2, with no
assumption on the surface subgroups of π1(N). However, the significance of
our results lies elsewhere. The point is that these results imply that certain
topological conditions on the manifold follow from an upper bound on the
volume. More specifically, the volumes of hyperbolic 3-manifolds are known
to form a well-ordered set of ordinal type ωω. If one lists the closed hyperbolic
manifolds in ascending order of volume, the topological complexity of the
manifolds tends to grow as one progresses through the list. We are interested
in understanding this phenomenon in an explicit way.

The above result provides explicit information of this type. The volume
of a cusped manifold is larger than that of any of its Dehn fillings, and is a
limit point of the set of volumes of such fillings. There are 8 distinct volumes
less than 3.08 among the volumes of orientable cusped manifolds in the Weeks
census. Thus the result implies that each of the manifolds realizing the first
8ω volumes either has betti number at most 3 or has a fundamental group
containing an isomorphic copy of a genus-2 surface group. (This conclusion is
stated as Corollary 9.3.) It was not possible to deduce qualitative consequences
of this sort in [14] because the lower bound of 0.92, obtained there for the



§1. Introduction 3

volume of a closed hyperbolic 3-manifold of first betti number at least 3, is
smaller than the least known volume of any hyperbolic 3-manifold.

Corollary 9.4 is similar to the above corollary but illustrates the applica-
bility of our techniques to the geometric study of infinite-volume hyperbolic
3-manifolds. It asserts that a non-compact, topologically tame, orientable
hyperbolic 3-manifold N without cusps always contains a hyperbolic ball of
radius 1

2
log 5 unless π1(N) either is a free group of rank 2 or contains an

isomorphic copy of a genus-2 surface group.
Another application of Theorem 6.1 to non-compact finite-volume man-

ifolds is the following result, which uses only the case k = 2 of the Main
Theorem, but does not follow from the weaker form of the conclusion which
appeared in [14].

Theorem 11.1 Let N = H3/Γ be a non-compact hyperbolic 3-manifold. If
N has betti number at least 4, then N has volume at least π.

Theorem 11.1 is deduced via Dehn surgery techniques from Proposition
10.1 and its Corollary 10.3, which are of independent interest. These results
imply that if a hyperbolic 3-manifold satisfies certain topological restrictions,
for example if its first betti number is at least 3, then there is a good lower
bound for the radius of a tube about a short geodesic, from which one can
deduce a lower bound for the volume of the manifold in terms of the length of
a short geodesic. This lower bound approaches π as the length of the shortest
geodesic tends to 0. Corollary 10.3 will be used in [13] as one ingredient in a
proof of a new lower bound for the volume of a hyperbolic 3-manifold of betti
number 3. This lower bound is greater than the smallest known volume of a
hyperbolic 3-manifold, and therefore has the qualitative consequence that any
smallest-volume hyperbolic 3-manifold has betti number at most 2.

The proof of the Main Theorem follows the same basic strategy as the proof
of the main theorem of [14]. The Main Theorem is deduced from Theorem
6.1(d), which gives the same conclusion under somewhat different hypotheses.
In 6.1(d), rather than assuming that the free Kleinian group Φ is topologi-
cally tame and has no parabolics, we assume that the manifold H3/Φ admits
no non-constant positive superharmonic functions. As in [14], the estimate is
proved in this case by using a Banach-Tarski-style decomposition of the area
measure based on a Patterson construction. The deduction of the Main Theo-
rem from 6.1(d) is based on Theorem 5.2, which asserts that, in the variety of
representations of a free group Fk, the boundary of the set CC(Fk) of convex-
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cocompact discrete faithful representations contains a dense Gδ consisting of
representations whose images are “analytically tame” Kleinian groups without
parabolics. This was proved in [14] in the case k = 2.

By definition, a rank-k free Kleinian group Γ without parabolics is ana-
lytically tame if the convex core of H3/Γ can be exhausted by a sequence of
geometrically well behaved compact submanifolds (a more exact definition is
given in Section 5). The case k = 2 of Theorem 5.2 was established in [14]
by combining a theorem of McMullen’s [29] on the density of maximal cusps
on the boundary of CC(Fk) with a special argument involving the canonical
involution of a 2-generator Kleinian group. The arguments used in the proof
of Theorem 5.2 make no use of the involution. This makes possible the gener-
alization to arbitrary k, while also giving a new proof in the case k = 2. The
ideas needed for the proof are developed in sections 2 through 5, and will be
sketched here.

In Section 3 we prove a general fact, Proposition 3.2, about a sequence
(ρn) of discrete faithful representations of a finitely generated, torsion-free,
non-abelian group G which converges to a maximal cusp ω. (For our purposes
a maximal cusp is a discrete faithful representation ω of G into PSL2(C) such
that ω(G) is geometrically finite and every boundary component of the convex
core ofH3/ω(G) is a thrice-punctured sphere.) After passing to a subsequence
one can assume that the Kleinian groups ρn(G) converge geometrically to a
Kleinian group Γ̂, which necessarily contains ω(G) as a subgroup. Proposition
3.2 then asserts that the convex core of N = H3/ω(G) embeds isometrically
in H3/Γ̂. To prove this, we use Proposition 2.7, which combines an algebraic
characterization of how conjugates of ω(G) can intersect in the geometric limit
(Lemma 2.4), and a description of the intersection of the limit sets of two
topologically tame subgroups of a Kleinian group (Theorem 2.5).

In Section 4 we construct a large submanifold D of the convex core of
N which is geometrically well-behaved in the sense that ∂D has bounded
area and the radius-2 neighborhood of ∂D has bounded volume. We use
Proposition 3.2 to show that if ρ is a discrete faithful representation near
enough to ω, then H3/ρ(G) contains a nearly isometric copy of D. This copy
is itself geometrically well-behaved in the same sense.

In Section 5 we specialize to the case G = Fk. We show that if a dis-
crete faithful representation ρ is well-approximated by infinitely many maxi-
mal cusps, then its associated quotient manifold contains infinitely many ge-
ometrically well-behaved submanifolds. In fact, we show that the resulting
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submanifolds exhaust the convex core of the quotient manifold and hence that
the quotient manifold is analytically tame. We then apply McMullen’s theo-
rem to prove that there is a dense Gδ in the boundary of CC(Fk) consisting of
representations which can be well approximated by maximal cusps.

In the argument given in [14], the involution of a 2-generator Kleinian group
is used not only in the deformation argument, but also in the calculation based
on the decomposition of the area measure in the case where H3/Φ supports no
non-constant superharmonic functions. The absence of an involution in the k-
generator case is compensated for by a new argument based on the elementary
inequality established in Lemma 6.2. This leads to the stronger conclusion of
the main theorem in the case k = 2.

Section 6 is devoted to the proof of Theorem 6.1.
We have mentioned that the application of Theorem 6.1 to the geometry

of hyperbolic manifolds depends on a criterion for subgroups of fundamental
groups of such manifolds to be free. The first such criterion in the case of a
2-generator subgroup was proved in [19] and independently in [37]. A partial
generalization to k-generator subgroups, applying only when the given mani-
fold is closed, was given in [3]. In Section 7 of this paper we give a criterion that
includes the above results as special cases and is adapted to the applications
in this paper.

In Section 8 we introduce a generalization of the notion of a Margulis
number. We say that a positive number λ is a k-Margulis number for a Kleinian
group Γ if the following condition holds: if ξ1, . . . , ξk are elements of Γ and
if there exists a point z ∈ H3 which is displaced less than λ by each ξi then
the group 〈ξ1, . . . , ξk〉 can be generated by k − 1 abelian subgroups. In the
case k = 2 the group 〈ξ1, ξ2〉 would have to be abelian; thus the notion of
a 2-Margulis number coincides with that of a Margulis number as defined
in [14] and [33]. This notion, and the related notion of a k-strong Margulis
number proves useful for organizing the applications of the results of the earlier
sections to the study of hyperbolic manifolds. The applications are presented
in Sections 9, 10 and 11.

The pictures of limit sets of maximal cusps which appear in Section 3 were
created by Yair Minsky, and were based on some earlier pictures by Chris
Bishop. We are grateful to them for allowing us to use them here.

We close the introduction by mentioning a few notational conventions
which are used throughout. We use H ≤ G to denote that H is a subgroup of
G, and H < G to denote that H is a proper subgroup of G. The translate of
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a set X by a group element γ is denoted γ · X. Finally, we use dist(z, w) to
denote the hyperbolic distance between points z and w in H3.

2 On the sphere at infinity

In this section we introduce the notion of the geometric limit of a sequence of
Kleinian groups. We will consider a convergent sequence of discrete faithful
representations into PSL2(C) whose images converge geometrically. In general,
the geometric limit of the images contains the image of the limit as a subgroup.
The results in this section characterize the intersection of two conjugates of
this subgroup, and the intersection of their limit sets.

The group PSL2(C) will be considered to act either by isometries on H3

or, via extension to the sphere at infinity, by Möbius transformations on the
Riemann sphere C. The action of a discrete subgroup Γ of PSL2(C) partitions
C into two pieces, the domain of discontinuity Ω(Γ) and the limit set Λ(Γ).
The domain of discontinuity is the largest open subset of C on which Γ acts
properly discontinuously. If Λ(Γ) contains two or fewer points, we say Γ is
elementary. If Γ has an invariant circle in C and preserves an orientation of
the circle then we say that Γ is Fuchsian.

By a Kleinian group we will mean a discrete non-elementary subgroup Γ of
PSL2(C). We will say that a Kleinian group Γ is purely parabolic if every non-
trivial element is parabolic, or purely loxodromic if every non-trivial element
is loxodromic.

Given a finitely generated group G, let Hom(G,PSL2(C)) denote the vari-
ety of representations of G into PSL2(C). A choice of k elements which gener-
ate G determines a bijection from Hom(G,PSL2(C)) to an algebraic subset of
(PSL2(C))k. We give Hom(G,PSL2(C)) the topology that makes this bijec-
tion a homeomorphism onto the algebraic set with its complex topology. This
topology on Hom(G,PSL2(C)) is independent of the choice of generators of
G.

For the rest of this section, and throughout section 3, we will assume that
G is a finitely generated, non-abelian, torsion-free group.

Let D(G) denote the subspace of Hom(G,PSL2(C)) which consists of those
representations which are injective and have discrete image. It is a fundamen-
tal result of Jørgensen’s [20] that D(G) is a closed subset of Hom(G,PSL2(C)).
The proof of Jørgensen’s result is based on an inequality for discrete subgroups
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of PSL2(C). A second consequence of this inequality is the following lemma.

Lemma 2.1 (Lemma 3.6 in [21]) Let (ρn) be a convergent sequence in D(G).
If (gn) is a sequence of elements of G such that (ρn(gn)) converges to the
identity, then there exists n0 such that gn = 1 for n ≥ n0.

2.1

A sequence of discrete subgroups (Γn) is said to converge geometrically to
a Kleinian group Γ̂ if and only if

(1) for every γ ∈ Γ̂, there exist elements γn ∈ Γn such that the sequence
(γn) converges to γ, and

(2) whenever (Γnj ) is a subsequence of (Γn) and γnj ∈ Γnj are elements such
that the sequence (γnj) converges to a Möbius transformation γ, we have

γ ∈ Γ̂.

We call Γ̂ the geometric limit of (Γn).
The following basic fact is proved in Jørgensen-Marden [21].

Proposition 2.2 (Proposition 3.8 in [21]) Let (ρn) be a sequence of elements
of D(G) converging to ρ. Then (ρn(G)) has a geometrically convergent subse-
quence. If Γ̂ is the geometric limit of any such subsequence, then ρ(G) ≤ Γ̂.

The following fact will also be used.

Lemma 2.3 Let (ρn) be a convergent sequence in D(G) such that (ρn(G))
converges geometrically to Γ̂. Then Γ̂ is torsion-free.

Proof of 2.3: Suppose that γ ∈ Γ̂ has finite order d. Let (gn) be a sequence
of elements of G such that ρn(gn) converges to γ. Then ρn(g

d
n) converges to

the identity. Hence by Lemma 2.1 we have gdn = 1 for large n. Since G is
torsion-free, we have gn = 1 for large n and therefore γ = 1.

2.3
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The following lemma characterizes the intersection of two conjugates of
ρ(G) in the geometric limit Γ̂.

Lemma 2.4 Let (ρn) be a sequence of elements of D(G) converging to ρ. Sup-
pose that the groups ρn(G) converge geometrically to Γ̂. Then ρ(G)∩γρ(G)γ−1

is a (possibly trivial) purely parabolic group for each γ ∈ Γ̂− ρ(G).

Proof of 2.4: Suppose that ρ(a) is a nontrivial element of ρ(G)∩γρ(G)γ−1

for some γ ∈ Γ̂− ρ(G). We will show that ρ(a) is parabolic.
Assume to the contrary that ρ(a) is loxodromic. We may write ρ(a) =

γρ(b)γ−1 for some b ∈ G. Choose gn ∈ G such that (ρn(gn)) converges to γ. We
then have that (ρn(gnbg

−1
n )) converges to ρ(a), and hence that (ρn(a

−1gnbg
−1
n ))

converges to 1. It follows from Lemma 2.1 that there exists an integer n0 such
that a = gnbg

−1
n for all n ≥ n0. Hence g

−1
n0
gn is contained in the centralizer of

b for all n ≥ n0. Applying ρn and passing to the limit, we have that ρ(g−1n0
)γ

commutes with ρ(b).
Since the Kleinian group Γ̂ is torsion-free by Lemma 2.3 and the element

ρ(b) ∈ Γ̂ is loxodromic, the centralizer of ρ(b) in Γ̂ is cyclic. Thus there
are integers j and k such that (ρ(g−1n0

)γ)j = ρ(b)k. A second application of
Lemma 2.1 shows that for some n1 ≥ n0 we have (g−1n0

gn)
j = bk for all n ≥ n1.

But since G is isomorphic to a torsion-free Kleinian group, each element of
G has at most one jth root. Hence bk has a unique jth root c and we have
g−1n0

gn = c for n ≥ M . Thus gn = gn0
c for large n, so the sequence (gn) is

eventually constant. Since (ρn(gn)) converges to γ, this implies that γ is an
element of ρ(G), which contradicts our hypothesis that γ ∈ Γ̂− ρ(G).

2.4

Next we consider the intersection of the limit set of ρ(G) with its image
under an element of the geometric limit Γ̂.

The following definition will be useful. Let Γ1 and Γ2 be subgroups of the
Kleinian group Γ. We will say that a point p ∈ Λ(Γ1)∩Λ(Γ2) is in P(Γ1,Γ2) if
and only if StabΓ1

(p) ∼= Z, StabΓ2
(p) ∼= Z, and 〈StabΓ1

(p), StabΓ2
(p)〉 ∼= Z⊕Z.

In particular, it must be that p is a parabolic fixed point of both Γ1 and Γ2.
We will make use of the following result, due to Soma [34] and Anderson

[1], which provides the link between the intersection of the limit sets of a pair
of subgroups and the limit set of the intersection of the subgroups.
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Recall that a Kleinian group Γ is topologically tame if H3/Γ is homeomor-
phic to the interior of a compact 3-manifold.

Theorem 2.5 Let Γ1 and Γ2 be nonelementary, topologically tame subgroups
of the Kleinian group Γ. Then

Λ(Γ1) ∩ Λ(Γ2) = Λ(Γ1 ∩ Γ2) ∪ P(Γ1,Γ2).

The next lemma shows that the term P(Γ1,Γ2) may be ignored in the case
where Γ1 and Γ2 are distinct conjugates of ρ(G) by elements of the geometric
limit Γ̂.

Lemma 2.6 Let (ρn) be a sequence in D(G) converging to ρ. Suppose that
the groups ρn(G) converge geometrically to Γ̂. Then for each γ ∈ Γ̂ − ρ(G),
the set P(ρ(G), γρ(G)γ−1) is empty.

Proof of 2.6: The argument runs along much the same line as the proof of
Proposition 2.4. Suppose that p ∈ P(ρ(G), γρ(G)γ−1), that Stabρ(G)(p) ∼= Z

is generated by ρ(a) and that Stabγρ(G)γ−1(p) ∼= Z is generated by γρ(b)γ−1.
Note that each of the elements a and b generates its own centralizer.

Choose gn ∈ G so that (ρn(gn)) converges to γ. Since ρ(a) commutes with
γρ(b)γ−1, we conclude as in the proof of Lemma 2.4 that there exists an integer
n0 such that a commutes with gnbg

−1
n for all n ≥ n0. Since a generates its

centralizer in G, each of the elements gnbg
−1
n for n ≥ n0 must be a power of

a. But these are all conjugate elements, while distinct powers of a are not
conjugate. Therefore we must have that gnbg

−1
n = gn0

bg−1n0
for all n ≥ n0.

Thus g−1n0
gn commutes with b for all n ≥ n0. Since the centralizer of b is

cyclic, we may now argue exactly as in the proof of 2.4 that the sequence (gn)
must be constant for n ≥ n1 ≥ n0, obtaining a contradiction to our hypothesis
that γ ∈ Γ̂− ρ(G).

2.6

As an immediate consequence of Lemma 2.4, Theorem 2.5, and Lemma
2.6, we have the following proposition.

Proposition 2.7 Let (ρn) be a sequence in D(G) converging to ρ. Suppose
that the groups ρn(G) converge geometrically to Γ̂ and that ρ(G) is topologically
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tame. Then for any γ ∈ Γ̂−ρ(G) the group ρ(G)∩γρ(G)γ−1 is purely parabolic
and

Λ(ρ(G)) ∩ γ · Λ(ρ(G)) = Λ(ρ(G) ∩ γρ(G)γ−1).

Hence if Λ(ρ(G))∩γ ·Λ(ρ(G)) is non-empty then it must contain only the fixed
point of ρ(G) ∩ γρ(G)γ−1.

3 In the convex core

We continue to assume that G is a finitely generated nonabelian torsion-free
group. We consider a sequence (ρn) in D(G) which converges to a representa-
tion ω which is a maximal cusp (defined below). If we assume that the groups
ρn(G) converge geometrically to Γ̂ then the hyperbolic manifold N = H3/ω(G)
is a covering space of N̂ = H3/Γ̂. The main result of this section says that in
this situation the restriction of the covering projection gives an embedding of
the convex core of N into N̂ .

It may be helpful to recall the most basic situation in which the convex
core of a manifold does not embed in a manifold which it covers. Let N̂ be
a hyperbolic 3-manifold and let f : S → N̂ be a totally geodesic isometric
immersion of a finite area surface S. Let N be the cover of N̂ associated to
π1(S), so that f lifts to a totally geodesic embedding f̃ : S → N . Since f̃(S)
is totally geodesic, Λ(π1(S)) is a circle and f̃(S) is the convex core of N . The
convex core of N embeds in N̂ if and only if f is an embedding. Notice that f
is not an embedding if and only if there exists an element γ of π1(N̂) such that
γ(Λ(π1(S))) intersects Λ(π1(S)) transversely, hence in at least two points.

We will be dealing with the case where the algebraic limit is a maximal
cusp and hence each boundary component of the convex core of our algebraic
limit is a totally geodesic thrice-punctured sphere (Lemma 3.1). We will see,
as in the example above, that if the convex core of the algebraic limit does not
embed then there must be an element γ of Γ̂ − ω(G) such that γ(Λ(ω(G)))
intersects Λ(ω(G)) in at least two points. An application of Proposition 2.7
will complete the proof.

Given a Kleinian group Γ, define its convex hull CH(Γ) in H3 to be the
smallest non-empty convex set in H3 which is invariant under the action of Γ.
Thus CH(Γ) is the intersection of all half-spaces in H3 whose closures in the
compactification H3 ∪ C contain Λ(Γ). (Recall that a Kleinian group is, by
definition, non-elementary so that its limit set has more than two points.)
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The convex core of N = H3/Γ is C(N) = CH(Γ)/Γ. We say that N , or
equivalently Γ, is geometrically finite if Γ is finitely generated and C(N) has
finite volume.

The injectivity radius injN(x) of N at the point x is half the length of the
shortest homotopically non-trivial closed loop passing through x. Note that
injectivity radius increases under lifting to a covering space. That is, if N is
a cover of N̂ with covering map π : N → N̂ , and x is any point of N , then
injN(x) ≥ inj

N̂
(π(x)).

Given a hyperbolic 3-manifold N , define the ε-thick part of N as

Nthick(ε) = {x ∈ N | injN (x) ≥
ε

2
}

and the ε-thin part of N as

Nthin(ε) = {x ∈ N | injN(x) ≤
ε

2
}.

We recall that C(N) ∩ Nthick(ε) is compact for all ε > 0 if and only if N is
geometrically finite (see Bowditch [7]). Hence, for a geometrically finite hy-
perbolic 3-manifoldN , the sets C(N)∩Nthick(1/m) form ≥ 1 form an exhaustion
of C(N) by compact subsets.

We say that a representation ω in D(G) is a maximal cusp if N = H3/ω(G)
is geometrically finite and every component of the boundary ∂ C(N) of its
convex core is a thrice-punctured sphere. We will further require that ω(G)
not be a Fuchsian group. (This rules out only the case that ω(G) is in the
(unique) conjugacy class of finite co-area Fuchsian groups uniformizing the
thrice-punctured sphere.) Maximal cusps are discussed at length by Keen,
Maskit and Series in [22], where the image groups are termed maximally
parabolic.

A proof of the following lemma appears in [22]; since we will be using the
lemma heavily, we include a sketch of the proof here.

Lemma 3.1 Let ω ∈ D(G) be a maximal cusp, and let N = H3/ω(G). Then
each component of ∂ C(N) is totally geodesic.

Proof of 3.1: Since the universal cover of C(N) is CH(ω(G)), it suffices to
show that each component of ∂ CH(ω(G)) is a totally geodesic hyperplane or,
equivalently, that each component of Ω(ω(G)) is a disk bounded by a circle on
the sphere at infinity.
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Figure 1: The domain of discontinuity of a maximal cusp is a union of round disks

Recall, for example from Epstein-Marden [17], that ∂ C(N) is homeo-
morphic to Ω(ω(G))/ω(G). Moreover, by the Ahlfor’s Finiteness theorem
Ω(ω(G))/ω(G) has finite area. Thus each component S of Ω(ω(G))/ω(G) must
be a thrice-punctured sphere. Write S = ∆/Γ∆, where ∆ is a component of
Ω(ω(G)) and Γ∆ is the subgroup of ω(G) stabilizing ∆.

Since ∆/Γ∆ is a thrice-punctured sphere, the group Γ∆ must be a Fuchsian
group and ∆ must be a disk bounded by a circle on the sphere at infinity. (For
a proof, see Chapter IX.C of Maskit’s book [26]; for a picture see figure 1
below.)

3.1

We are now ready to prove the main result of this section. A map between
locally compact spaces will be called an embedding if it is proper and one-to-
one.

Proposition 3.2 Let (ρn) be a sequence of elements of D(G) converging to a
maximal cusp ω. Suppose that the groups ρn(G) converge geometrically to Γ̂.
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Let N = H3/ω(G), N̂ = H3/Γ̂, and let π : N → N̂ be the covering map. Then
π|C(N) is an embedding.

Figure 2: The limit set of a maximal cusp may intersect its translate in at most one

point.

Proof of 3.2: We first note that if (xi) is a sequence in C(N) leaving every
compact set, then limi7→∞ injN(xi) = 0. Hence, limi7→∞ inj

N̂
(π(xi)) = 0, which

implies that (π(xi)) leaves every compact subset of N̂ . Thus, π|C(N) is a proper
mapping.

It remains to show that π is injective. The universal cover of C(N) is
CH(ω(G)). Thus it suffices to show that CH(ω(G)) ∩ γ · CH(ω(G)) is empty
for each γ ∈ Γ̂− ω(G). For notational convenience, set X = CH(ω(G)).

Since ω is assumed to be a maximal cusp, each component of ∂ C(N) is
totally geodesic. Hence each component of ∂X is a plane H in H3 whose
boundary at infinity is a circle C which lies in Λ(ω(G)).

If X ∩γ ·X is not empty, there are two possibilities. Either there is a point
in ∂X ∩γ ·∂X, or a component of ∂X lies entirely within γ ·X (or vice versa).

We begin with the case that there is a point x in ∂X ∩ γ · ∂X. There then
exist a plane H in ∂X and a plane H ′ in γ ·∂X with x ∈ H ∩H ′. If two planes
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Figure 3: The convex hull of the limit set of a maximal cusp cannot intersect its

translate

in H3 meet, either their intersection is a line or they are equal. If we let C
denote the boundary at infinity of H and C ′ the boundary at infinity of H ′,
then either C ∩ C ′ contains exactly two points or C = C ′. However, C ∩ C ′ is
contained in Λ(ω(G))∩ γ ·Λ(ω(G)), so that Λ(ω(G))∩ γ ·Λ(ω(G)) contains at
least two points, which contradicts Proposition 2.7.

The second possibility is that a component H of ∂X lies entirely within
γ · X. In this case, the boundary at infinity C of H lies in the boundary
at infinity of γ · X, which is exactly γ · Λ(ω(G)). However, C also lies in
Λ(ω(G)); hence Λ(ω(G)) ∩ γ · (Λ(ω(G))) contains C. This also contradicts
Proposition 2.7. See figures 2 and 3 for an illustration of how Λ(ω(G)) can
meet its translate by γ.

3.2

Remark 3.3 The conclusion of Proposition 3.2 holds, by the same argument,
whenever N is topologically tame and ∂ C(N) is totally geodesic.

In general, the convex core of the algebraic limit need not embed in the
geometric limit. However, one can define the visual hull of a Kleinian group Γ
to be the set of all points in H3 such that the visual area of every component
of Ω(Γ) is at most 1

2
. The visual core is then defined to be the quotient of the

visual hull. Notice that if Γ is a maximal cusp, then its visual core and its
convex core coincide.
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Anderson and Canary [2] use techniques similar to those developed in this
section to prove that the visual core embeds whenever the algebraic limit has
connected limit set and no accidental parabolics. They also show that, under
the same assumptions, there is a compact core for the algebraic limit which
embeds in the geometric limit. It has recently been discovered that the visual
core of the algebraic limit need not embed in the algebraic limit even if the
algebraic limit has connected limit set.

4 Near a maximal cusp

In this section, we will prove that if a representation in D(G) is near enough
to a maximal cusp, then its associated hyperbolic 3-manifold contains a nearly
isometric copy of an ε-truncated convex core of the maximal cusp. We first
define this ε-truncated object and describe some of its useful attributes.

We recall that it follows from the Margulis lemma that there exists a con-
stant λ0, such that if ε < λ0 and N is a hyperbolic 3-manifold, then every com-
ponent P of Nthin(ε) is either a solid torus neighborhood of a closed geodesic,
or the quotient of a horoball H by a group Θ of parabolic elements fixing H
(see for example [4]). In the second case, Θ is isomorphic either to Z or to
Z ⊕ Z. Moreover, H is precisely invariant under Θ < Γ, by which we mean
that if γ ∈ Γ and γ ·H ∩ H 6= ∅, then γ ∈ Θ and γ ·H = H. If Θ ∼= Z, we
call P a rank-one cusp, and if Θ ∼= Z⊕ Z, we call P a rank-two cusp. Recall
also that there exists L(ε) > 0, such that any two components of Nthin(ε) are
separated by a distance of at least L(ε).

The next lemma gives the structure of Nthin(ε) for sufficiently small ε. For
a proof see section 6 of Morgan [31].

Lemma 4.1 Let N be a geometrically finite hyperbolic 3-manifold. There
exists δ(N) < λ0, such that if ε ≤ δ(N) and P is a component of Nthin(ε), then

(i) P is non-compact,

(ii) ∂P meets C(N) orthogonally along each component of their intersection.

(iii) E = ∂P ∩ C(N) is a Euclidean surface with geodesic boundary, and
diamE ≤ 1;

(iv) if P is a rank-one cusp then E is an annulus, and if P is a rank-two
cusp then E is a torus; and
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(v) C(N) ∩ P is homeomorphic to E × [0,∞).

In particular, for any ε ≤ δ(N) the set Nthick(ε)∩C(N) is a compact 3-manifold
with piecewise smooth boundary.

Given a geometrically finite hyperbolic 3-manifold N we may define its
ε-truncated convex core Dε(N) to be the intersection of its convex core C(N)
with the ε-thick part Nthick(ε) of N . The above lemma completely characterizes
C(N)−Dε(N) when ε < δ(N).

Recall that a compact submanifold of N is said to be a compact core for
N if the inclusion map is a homotopy equivalence.

Lemma 4.2 Suppose that N is a geometrically finite hyperbolic 3-manifold,
and δ(N) > ε > 0. Then Dε(N) is a compact core for N .

Proof of 4.2: First recall that the inclusion of C(N) into N is a homotopy
equivalence. Moreover, each component of C(N)−Dε(N) is homeomorphic to
E × (0,∞) for some Euclidean surface E. Thus, the inclusion of Dε(N) into
C(N) is a homotopy equivalence. The result follows.

4.2

For any subset X of a hyperbolic manifold N we will denote by Nr(X) the
closed neighborhood of radius r of X. In the case N = H3/ω(G), where ω
is a maximal cusp, Proposition 4.4 will provide bounds for both the area of
∂Dε(N) and the volume of N2(∂Dε(N)). These bounds will depend only on
the topological type of N and not on ε. We first recall the following special
case of Lemma 8.2 in [8] (see also Proposition 8.12.1 of Thurston [36]).

Lemma 4.3 There is a constant κ > 0, such that for any maximal cusp
ω ∈ D(G) and any collection S of components of the boundary of the convex
core of N = H3/ω(G), the neighborhood N3(S) has volume less than κ areaS.

4.3

If N = H3/ω(G), where ω(G) is a maximal cusp, we will denote by σ(N)
the number of components of ∂ C(N), and by τ(N) the number of rank-two
cusps of N . We set

α(N) =
7

2
πσ(N) + 2πτ(N)



§4. Near a maximal cusp 17

and
β(N) = 2πκσ(N) + πe4τ(N),

where κ is the constant given by Lemma 4.3.

Lemma 4.4 Let ω be a maximal cusp and let N = H3/ω(G). If δ(N) > ε > 0,
then

(i) area ∂Dε(N) ≤ α(N), and

(ii) vol(N2(∂Dε(N))) ≤ β(N).

Proof of 4.4: Notice that ∂Dε(N) = S ∪ E where S = ∂ C(N) ∩ Nthick(ε)
and E = C(N) ∩ ∂Nthick(ε). Since S ⊂ ∂ C(N) and since each component of
∂ C(N) is a thrice-punctured sphere, we have areaS ≤ area ∂ C(N) = 2πσ(N).
By Lemma 4.1, each component of E is a Euclidean manifold of diameter at
most 1, so each component of E has area at most π. Since each component of
∂ C(N) contains three components of ∂E there are 3

2
σ(N) annular components

of E. Moreover, there are τ(N) toroidal components of E. The first assertion
follows.

Let Ŝ denote the union of S with the annular components of E. Since each
annular component of E has diameter less than 1,

N2(Ŝ) ⊂ N3(S) ⊂ N3(∂ C(N)).

Thus Lemma 4.3 guarantees that

volN2(Ŝ) ≤ κ area(∂ C(N)) = 2πκσ(N).

Now, if T is a toroidal component of E, then N2(T ) is (the quotient of) a
region isometric to T × (−2, 2) with the metric ds2 = e−2tds2T + dt2, which has
volume less than 2πe4. The second assertion now follows.

4.4

Our next result, Proposition 4.5, asserts (among other things) that the
hyperbolic manifold associated to a representation which is near enough to a
maximal cusp contains a biLipschitz copy of the ε-truncated convex core of
the manifold associated to the maximal cusp.
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We first outline the argument. Suppose that (ρn) is a sequence of repre-
sentations in D(G) which converges to a maximal cusp ω and that the groups
ρn(G) converge geometrically to Γ̂. Let N = H3/ω(G) and N̂ = H3/Γ̂. If
π : N → N̂ is the covering map, Proposition 3.2 implies that π|Dε(N) is an em-

bedding. Since (ρn(G)) converges geometrically to Γ̂, larger and larger chunks
of N̂ are nearly isometric to larger and larger chunks of Nn = H3/ρn(G).
In particular, for all large enough n there exists a 2-biLipschitz embedding
fn : Vn → Nn where π(Dε(N)) ⊂ Vn ⊂ N̂ . The desired biLipschitz copy of
Dε(N) is fn(π(Dε(N))).

In order to carry out the program outlined above, it will be necessary to
make consistent choices of base points in different hyperbolic 3-manifolds. We
will use the following convention. If z is a point in H3 and Γ is a Kleinian
group, we will let zΓ denote the image of z in the hyperbolic manifold H3/Γ.
In the case that Γ = ρ(G) for some representation ρ ∈ Hom(G,PSL2(C)) we
will write zρ = zρ(G).

If a codimension-0 submanifold X of a hyperbolic manifold N is connected
and has piecewise smooth boundary, then it has two natural distance functions.
In the extrinsic metric the distance between two points of X is equal to their
distance in N , while in the intrinsic metric the distance is the infimum of the
lengths of rectifiable paths in X joining the two points. Observe that if X and
Y are submanifolds of hyperbolic manifolds and if f :X → Y is aK-biLipschitz
map with respect to the extrinsic metrics, then f is also K-biLipschitz with
respect to the intrinsic metrics.

Proposition 4.5 Suppose that ω ∈ D(G) is a maximal cusp and set N =
H3/ω(G). Let ε > 0 be given with the property that ε < δ(N) and let z be
a point of H3 such that zω lies in the interior of Dε(N). Then there is a
neighborhood U(ε, z, ω) of ω in D(G) such that for each ρ ∈ U(ε, z, ω), there
exists a map φ : Dε(N)→ N ′ = H3/ρ(G), with the following properties:

(1) φ maps Dε(N) homeomorphically onto a manifold with piecewise smooth
boundary, and is 2-biLipschitz with respect to the intrinsic metrics on
Dε(N) and φ(Dε(N)),

(2) φ(zω) = zρ,

(3) volN1(∂(φ(Dε(N)))) ≤ 8β(N), and
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(4) φ(Nthin(δ) ∩Dε(N)) ⊂ N ′
thin(2δ) for any δ <

λ0

2
(where λ0 is the Margulis

constant).

Proof of 4.5: Let (ρn) be a sequence in D(G) that converges to ω, and set
Nn = H3/ρn(G). It suffices to prove that (ρn) has a subsequence (ρni) such
that there exist maps φi : Dε(N)→ Nni which have properties (1)—(4).

Given any sequence (ρn) in D(G) converging to ω, Proposition 2.2 guar-
antees that there exists a subsequence (ρni(G)) of (ρn(G)) which converges
geometrically to a group Γ̂ such that ω(G) ⊂ Γ̂. Let N̂ = H3/Γ̂ and let
π : N → N̂ be the associated covering map. Proposition 3.2 guarantees
that π|C(N) is an embedding and hence that π|Dε(N) is an embedding. Let
D = π(Dε(N)). Since π is a local isometry we find using Lemma 4.4 that

volN2(∂D) ≤ volN2(∂Dε(N)) ≤ β(N).

Since (ρni(G)) converges geometrically to Γ̂, it follows from Corollary 3.2.11
in [10] or Theorem E.1.13 in [4] that there exist smooth submanifolds Vi ⊂ N̂ ,
numbers ri and αi, and maps fi : Vi → Nni such that

(i) Vi contains B(ri, zΓ̂), the closed radius-ri neighborhood of z
Γ̂
,

(ii) fi(zΓ̂) = zρni ,

(iii) ri converges to ∞, and αi converges to 1,

(iv) fi maps Vi diffeomorphically onto f(Vi) and is αi-biLipschitz with respect
to the extrinsic metrics on Vi and f(Vi).

Choose d so that D ⊂ B(d, z
Γ̂
). Set µ = max{1, λ0/2}. We may assume

that the subsequence (ρni) has been chosen so that αi < 2 and ri > d+2µ for
all i. This condition on ri implies that N2µ(D) is contained in the interior of
Vi.

We claim that Nµ(fi(D)) ⊂ fi(Vi). To prove the claim, we consider the

frontier X of N2µ(D) in N̂ and the frontier Yi of fi(N2µ(D)) in Nni . Since
fi is a homeomorphism onto its image it follows from invariance of domain
that fi(X) = Yi. Since f

−1
i is extrinsically αi-Lipschitz with αi < 2, and since

every point of X has distance 2µ from D, every point of fi(X) = Yi must be a
distance greater than µ from fi(D). Thus Yi is disjoint from Nµ(fi(D)). Since
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fi(N2µ(D)) contains fi(D) and is disjoint from the frontier Yi of Nµ(fi(D)) we
have fi(N2µ(D)) ⊃ Nµ(fi(D)), and the claim follows.

In particular, N1(fi(∂D)) ⊂ fi(Vi). Again using that f−1i is extrinsically
2-Lipschitz we conclude that N1(fi(∂D)) ⊂ fi(N2(∂D)). On the other hand,
since fi is extrinsically 2-Lipschitz, it is intrinsically 2-Lipschitz and can there-
fore increase volume by at most a factor of 8. Therefore

volN1(∂fi(D)) ≤ 8 volN2(∂D) ≤ 8β(N). (1)

We now define φi:Dε(N) → Nni to be fi ◦ π. We will complete the proof
of the proposition by showing that φi has properties (1)—(4).

Since π is a local isometry and π|Dε(N) is an embedding, the map π|Dε(N)

is an isometry between Dε(N) and π(Dε(N)) with respect to their intrinsic
metrics. Since fi:D → fi(D) is an extrinsically (and hence intrinsically) 2-
biLipschitz homeomorphism, it follows that φi has property (1).

We have φi(zω) = fi(π(zω)) = fi(zΓ̂) = zρni . This is property (2). Property
(3) follows from equation (1) since φi(Dε(N)) = fi(D).

It remains to check property (4). Suppose that x ∈ Nthin(δ)∩Dε(N) and δ <
λ0

2
. Then there exists a homotopically non-trivial loop C (in N) based at x and

having length at most δ. Notice that φi(C) has length at most 2δ. Hence φi(x)
must lie in the 2δ-thin part of Nni unless φi(C) is homotopically trivial. But
since φi(C) has length at most 2δ, it is contained in the closed δ-neighborhood
of φi(x) in Nni. Thus if φi(C) were homotopically trivial in N , it would lift to
a loop in a ball of radius δ in H3 whose center projects to φi(x). Hence φi(C)
would be null-homotopic in B(δ, φi(x)) ⊂ Nδ(φi(D)) ⊂ Nµ(φi(D)) ⊂ fi(Vi).

This would imply that f−1i (φi(C)) = π(C) is homotopically trivial in N̂ , in
contradiction to the fact that π is a covering map. Thus, φi has property (4),
and the proof is complete.

4.5

Remark 4.6 Lemmas 4.3 and 4.4 have analogues for general geometrically
finite hyperbolic 3-manifolds, but the constants would also depend on the min-
imal length of a compressible curve in ∂ C(N). Proposition 4.5 remains true,
by similar arguments, whenever N is geometrically finite and every compo-
nent of ∂ C(N) is totally geodesic. One may use arguments similar to those
in section 3 of [11] to prove that, if ρ is sufficiently near to a maximal cusp ω,
then φ(Dε(Nω)) is a compact core for Nρ.
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5 All over the boundary of Schottky space

We now restrict to the case where G is the free group Fk on k generators,
where k ≥ 2. We set Dk = D(Fk). Recall that Dk is a closed subset of
Hom(Fk,PSL2(C)). Let CCk denote the subset of Dk consisting of representa-
tions which are convex-cocompact , i.e. are geometrically finite and have purely
loxodromic image. Moreover, let Bk = CCk−CCk ⊂ Dk. It is known (see Mar-
den [24]) that CCk is an open subset of Hom(Fk,PSL2(C)). (The quotient of
CCk under the action of PSL2(C) is often called Schottky space.)

LetMk denote the set of maximal cusps in Dk. It is a theorem of Maskit’s
[28] that Mk ⊂ Bk. McMullen has further proved that Mk is a dense subset
of Bk. This result, though not written down, is in the spirit of McMullen’s
earlier result [29] that maximal cusps are dense in the boundary of any Bers
slice of quasi-Fuchsian space.

The main result of this section, Theorem 5.2, asserts that there is a dense
Gδ-set of purely loxodromic, analytically tame representations in Bk. This
theorem generalizes and provides an alternate proof of Theorem 8.2 in [14].

The proof of Theorem 5.2 makes use of Proposition 4.5 and McMullen’s
theorem. We use Proposition 4.5 to show that if ρ ∈ Bk is well-approximated
by an infinite sequence of maximal cusps, then its convex core can be exhausted
by nearly isometric copies of the truncated convex cores of the maximal cusps;
this implies that ρ is analytically tame. McMullen’s theorem guarantees that
the Gδ-set of points in Bk which are well-approximated by an infinite sequence
of maximal cusps is dense.

We now recall the definition of an analytically tame hyperbolic 3-manifold.

Definition: A hyperbolic 3-manifold N with finitely generated fundamental
group is analytically tame if C(N) may be exhausted by a sequence of compact
submanifolds {Mi} with piecewise smooth boundary such that

(1) Mi ⊂
◦
M j if i < j, where

◦
M j denotes the interior of Mj considered as a

subset of C(N),

(2) ∪
◦
M i = C(N),

(3) there exists a number K > 0 such that the boundary ∂Mi of Mi has area
at most K for all i, and
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(4) there exists a number L > 0 such that N1(∂Mi) has volume at most L
for every i.

While the definition of analytic tameness is geometric in nature, it does
have important analytic consequences. In particular, for an analytically tame
group Γ one can control the behavior of positive Γ-invariant superharmonic
functions on H3. Specifically, we will make extensive use of the following
result, which is contained in Corollary 9.2 of [8].

Proposition 5.1 If N = H3/Γ is analytically tame and Λ(Γ) = C then all
positive superharmonic functions on N are constant.

5.1

We are now in a position to state Theorem 5.2.

Theorem 5.2 For all k ≥ 2, there exists a dense Gδ-set Ck in Bk, which
consists entirely of analytically tame Kleinian groups whose limit set is the
entire sphere at infinity.

The proof of Theorem 5.2 involves the following three lemmas. The first
lemma is contained in Chuckrow [12].

Lemma 5.3 The set Uk of purely loxodromic representations in Bk is a dense
Gδ-set in Bk. Moreover, if ρ ∈ Uk, then Λ(ρ(Fk)) = C.

5.3

The second lemma is an adaptation of Bonahon’s bounded diameter lemma
[5].

Lemma 5.4 For every δ > 0, there is a number ck(δ) with the following
property. Let ε > 0 be given, let ω be any maximal cusp in Dk, and set
N = H3/ω(Fk). If δ(N) > ε, then any two points in ∂Dε(N) may be joined
by a path β in ∂Dε(N) such that β ∩Nthick(δ) has length at most ck(δ).
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Proof of 5.4: Let δ > 0 be given. In order to define ck(δ) we consider a
hyperbolic 2-manifold P which is homeomorphic to a thrice-punctured sphere;
there is only one such hyperbolic 2-manifold up to isometry. Since Pthick(δ) is a
compact subset of the metric space P , it has a finite diameter d(δ). It is clear
that any two points in P may be joined by a path β such that β ∩Pthick(δ) has
length at most d(δ). We set ck(δ) = (2k − 2)d(δ) + 3k − 3.

Now let ω be any maximal cusp in Dk, and set N = H3/ω(Fk). We
consider an arbitrary component S of ∂ C(N). Then S is a totally geodesic
thrice-punctured sphere. Hence S, with its intrinsic metric, is isometric to P .
Furthermore, the inclusion homomorphism π1(S) → π1(N) is injective, and
hence Sthin(δ) ⊂ Nthin(δ). It follows that any two points in S may be joined by
a path β in S such that β ∩Nthick(δ) has length at most d(δ).

Now, since Dε(N) is a compact core for N and π1(N) is a free group of
rank k, we see that Dε(N) is a handlebody of genus k. In particular, there are
exactly 2k− 2 components of ∂ C(N) and exactly 3k− 3 annular components
of ∂Dε(N) − ∂ C(N). Also recall, from Lemma 4.1 that each component of
∂Dε(N)− ∂ C(N) has diameter at most 1. Thus, since ∂Dε(N) is connected,
we see that any two points in ∂Dε(N) may be joined by a path β such that
β ∩Nthick(δ) has length at most (2k − 2)d(δ) + 3k − 3 = ck(δ).

5.4

In the following lemma, and in the rest of the section, we arbitrarily fix a
base point z0 ∈ H3, and we let Xk denote the set of all representations ρ ∈ Bk
such that z0 lies in the interior of CH(ρ(Fk)) relative to H3.

Lemma 5.5 The set Xk is an open dense subset of Bk.

Proof of 5.5: Given a representation ρ ∈ Xk, we have that z0 lies in the
interior of CH(ρ(Fk)). Hence z0 lies in the interior of some ideal tetrahedron
T with vertices in Λ(ρ(Fk)). Since the fixed points of elements of ρ(Fk) are
dense in Λ(ρ(Fk)), we may assume that the vertices of T are attracting fixed
points of elements ρ(g1), . . . , ρ(g4) of ρ(Fk). It follows that for any ρ′ ∈ Bk
sufficiently close to ρ, the attracting fixed points of ρ′(g1), . . . , ρ

′(g4) span a
tetrahedron having z0 as an interior point. Hence z0 lies in the interior of
CH(ρ′(Fk)). This shows that Xk is an open subset of Bk.

If ρ ∈ Uk, then ρ ∈ Xk since Λ(ρ(Fk)) = C. Hence, Lemma 5.3 implies
that Xk is dense.
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5.5

Proof of 5.2: By the result of McMullen’s discussed at the beginning of
this section, Mk is a dense subset of Bk. In view of Lemma 5.5 it follows that
Mk ∩ Xk is also dense in Bk. For each ω ∈ Mk ∩ Xk and each ε > 0 we will
define a neighborhood V (ε, ω) of ω in Xk ⊂ Bk.

Set Nω = H3/ω(Fk). Since ω ∈ Xk, we have z0 ∈ CH(ω(Fk); in the
basepoint convention given in Section 4 we have z0ω ∈ C(Nω). Hence either
z0ω ∈ Dε(Nω), or z

0
ω lies in the interior of the ε-thin part of Nω. Let η(ε, ω) =

min{ε, δ(Nω)}. If z0ω ∈ Dε(Nω) then we set V (ε, ω) = U(η(ε, ω), z0, ω) ∩ Xk,
where U(η(ε, ω), z0, ω) is the open set given by Proposition 4.5. If z0ω lies in
the ε-thin part of Nω, we take V (ε, ω) to be a neighborhood of ω in Xk such
that for every ρ ∈ V the point z0ρ lies in the interior of the ε-thin part of
H3/ρ(Fk). (Such a neighborhood exists because there is an element g ∈ Fk
such that dist(z0, ω(g) · z0) < ε. For any ρ sufficiently close to ω we have
dist(z0, ρ(g) · z0) < ε.)

We now set Wk(ε) = ∪ω∈Mk∩Xk
V (ε, ω). Since Mk ∩ Xk is dense in Bk, the

set Wk(ε) is an open dense subset of Xk for every ε > 0. Since Uk is a dense
Gδ-set in Bk it follows that

Ck = Uk ∩
⋂

m∈Z+

Wk(
1

m
)

is a dense Gδ-set in Xk. In order to complete the proof, we need only to show
that each element of Ck is analytically tame and has the entire sphere as its
limit set.

Let ρ : Fk → PSL2(C) be a representation in Ck. Set N = H3/ρ(Fk).
Lemma 5.3 guarantees that C(N) = N .

By the definition of Ck, for every m ∈ Z+ there exists a maximal cusp
ωm : Fk → PSL2(C) such that ρ ∈ V ( 1

m
, ωm). Let Nm = H3/ωm(Fk) and let

m0 be a positive integer such that 1
2m0

is less than the injectivity radius of N

at z0ρ. In what follows we consider an arbitrary integer m ≥ m0.
By the definition of m0 the point z0ρ lies in the 1

m
-thick part of N . By the

definition of the sets V ( 1
m
, ωm), it follows that ρ ∈ U(η( 1

m
, δ(Nm)), z

0, ωm).
Let Dm = Dη( 1

m
,δ(Nm))(Nm). Proposition 4.5 guarantees that there is a map

φm : Dm → N , such that
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(1) φm maps Dm homeomorphically onto a manifold with piecewise smooth
boundary, and is 2-biLipschitz with respect to the intrinsic metrics on
Dm and φm(Dm),

(2) φm(z
0
ωm

) = z0ρ,

(3) volN1(∂(φm(Dm))) ≤ 8β(Nm) = 32πκ(k − 1), and

(4) φm((Nm)thin(δ) ∩Dm) ⊂ Nthin(2δ) for any δ <
λ0

2
.

(Here κ is the constant given by Lemma 4.3. Notice that since π1(Nm) is a
free group we have τ(Nm) = 0 and hence β(Nm) = 2πκσ(Nm) = 4πκ(k − 1).)

We set δ0 = λ0/3 and Mm = φm(Dm).
Then by (4) we have

Mm ∩ φm(Dm ∩ (Nm)thin(δ0)) ⊂ Nthin(2δ0).

Hence, by Lemma 5.4, any two points in ∂Mm may be joined by a path β in
∂Mm such that β ∩Nthin(2δ0) has length at most 2ck(δ0).

Let r > 0, and let X(r) denote the set of points x ∈ N for which there
exists a path β beginning in B(r, z0ρ) and ending at x such that β ∩Nthick(2δ0)
has length at most 2ck(δ0). Since ρ(Fk) is purely loxodromic, each compo-
nent of Nthin(2δ0) is compact. Moreover, the components of Nthin(2δ0) are sep-
arated by a distance of at least L(2δ0), so there exist only a finite number of
components of Nthin(2δ0) contained in X(r). Therefore X(r) is compact. Set
ζ(r) = minx∈X(r) injN(x), and set m1 = max(m0, 2/ζ(r)).

If m > m1 then ∂Mm ∩ B(r, z0ρ) = ∅, since any point in ∂Mm may be
joined by a path of length at most 2ck(δ0) to a point of injectivity radius ≤ 2

m

(namely any point in φm(∂Dm − ∂ C(Nm))). Since z
0
ρ ∈Mm by (2), and since

∂Mm ∩ B(r, z0ρ) = ∅, we see that B(r, z0ρ) ⊂Mm for every m > m1.

We therefore have ∪m>m1

◦
Mm = N = C(N). We may pass to a subsequence

Mmj
such that Mmj

⊂
◦
Mmj+1

for all j and ∪j∈Z+

◦
Mmj

= N = C(N).
By (3) we have

volN1(∂Mm) ≤ 32πκ(k − 1)

for all m > m1. Moreover, by (1) and Lemma 4.4 we have

area ∂Mm ≤ 4α(Nm) = 14πσ(Nm) = 28π(k − 1).

Thus N is analytically tame.

5.2
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6 Free groups and displacements

This section is devoted to the proof of the following theorem, which includes
the Main Theorem stated in the introduction.

Theorem 6.1 Let k ≥ 2 be an integer and let Φ be a Kleinian group which is
freely generated by elements ξ1, . . . , ξk. Suppose that either

(a) Φ is purely loxodromic and topologically tame, or

(b) Φ is geometrically finite, or

(c) Φ is analytically tame and Λ(Φ) = C, or

(d) the hyperbolic 3-manifold H3/Φ admits no non-constant positive super-
harmonic functions.

Let z be any point of H3 and set di = dist(z, ξi · z) for i = 1, . . . , k. Then
we have

k∑

i=1

1

1 + edi
≤

1

2
.

In particular there is some i ∈ {1, . . . , k} such that di ≥ log(2k − 1).

Note that if we had di < log(2k − 1) for i = 1, . . . , k it would follow that

k∑

i=1

1

1 + edi
> k ·

1

2k
=

1

2
.

Thus the last sentence of Theorem 6.1 does indeed follow from the preceding
sentence.

Conditions (a)–(d) of Theorem 6.1 are by no means mutually exclusive. In
particular, according to Proposition 5.1, condition (c) implies condition (d).

The following elementary inequality will be needed for the proof of Theorem
6.1.



§6. Free groups and displacements 27

Lemma 6.2 Let x and y be non-negative real numbers with x + y ≤ 1. Set
p = 1

2
(x + y). Then we have

(
1− x

x

)(
1− y

y

)
≥
(
1− p

p

)2
.

Proof of 6.2: We can write x = p + α and y = p − α for some α ∈ R.
We find by direct calculation that p2(1− x)(1− y)− (1− p)2xy = (1− 2p)α2.
But p ≤ 1/2 since x + y ≤ 1. Hence p2(1 − x)(1 − y) ≥ (1 − p)2xy, and the
assertion follows.

6.2

A basic step in the proof of Theorem 6.1 is the observation that if the
inequality in the the conclusion holds on the boundary Bk of CCk then it also
holds on CCk. This observation is contained in the following lemma.

Lemma 6.3 For k > 1 let Fk denote the free group on the k generators
x1 . . . xk and let ρ:Fk → PSL2(C) be any representation in CCk. Given any
point z in H3 there exists a representation ρz ∈ Bk such that

dist(z, ρ(xi) · z) = dist(z, ρz(xi) · z)

for i = 1, . . . , k.

Proof of 6.3: We consider the set

Rz = {σ ∈ Hom(Fk,PSL2(C))| dist(z, σ(xi) · z) = dist(z, ρ(xi) · z)}.

It suffices to show that Rz is connected and contains a point of
Hom(Fk,PSL2(C)) − CCk. The connectedness follows immediately from
the easy observation that for any positive number d the set {ξ ∈
Isom+(H

3)| dist(z, ξ · z) = d} is path-connected. Since Rz contains a rep-
resentation with an invariant line passing through z, Rz − CCk is clearly non-
empty.

6.3
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Proof of Theorem 6.1: We first prove that condition (d) implies the con-
clusion of the theorem.

We use the terminology of [14]. We set Ψ = {ξ1, ξ
−1
1 , . . . , ξk, ξ

−1
k } ⊂ Φ.

According to Lemma 5.3 of [14], there exists a number D ∈ [0, 2] such that,
for any z0 ∈ H3, there exists a Φ-invariant D-conformal density M = (µz) for
H3 and a family (νψ)ψ∈Ψ of Borel measures on S∞ such that

(i) µz0(S∞) = 1;

(ii) µz0 =
∑
ψ∈Ψ νψ; and

(iii) for each ψ ∈ Ψ we have
∫
(λψ,z0)

Ddνψ−1 = 1−
∫
dνψ.

If condition (d) of the theorem holds, it follows from Proposition 3.9 of [14]
that any Φ-invariant conformal density for H3 is a constant multiple of the
area density A. In view of condition (i) above we must in fact have M = A. In
particular D = 2.

For i = 1, . . . , k we set νi = νξi and ν
′
i = νξ−1

i
. We denote by αi and βi the

total masses of the measures νi and ν
′
i respectively. After possibly interchang-

ing the roles of ξi and ξ−1i we may assume that αi ≤ βi. (Interchanging the
roles of ξi and ξ−1i does not affect the truth of the conclusion of the lemma,
since di = dist(z0, ξi · z0) = dist(z0, ξ

−1
i · z0).)

By conditions (i) and (ii) above we have
∑k
i=1(αi + βi) = 1. In particular

for each i we have 0 ≤ βi ≤ 1, and since αi ≤ βi we have 0 ≤ αi ≤ 1/2. Since
M = A, condition (ii) also implies that νi ≤ Az0 , where Az0 denotes the area
measure on S∞ centered at z0. By applying condition (iii) above to ψ = ξ−1i we
get that

∫
S∞ λ

2
ξ−1
i ,z0

dνi = 1−βi. And by definition we have νi(S∞) = αi. Thus

the hypotheses of Lemma 5.5 of [14] hold with ν = νi, a = αi and b = 1− βi.
Hence by Lemma 5.5 of [14] we have

di = dist(z0, ξ
−1
i · z0) ≥

1

2
log

b(1− a)

a(1− b)
.

(This is a corrected version of the conclusion of Lemma 5.5 of [14]. In the
published version of [14] the inequality appeared with the roles of a and b
reversed.)
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Thus

di ≥
1

2
log

(1− βi)(1− αi)

αiβi
.

Since αi + βi ≤
∑k
i=1(αi + βi) = 1, it follows from Lemma 6.2 that

(1− αi)(1− βi)

αiβi
≥ (

1− pi
pi

)2,

where pi = (αi + βi)/2. Hence

di ≥ log
1− pi
pi

.

It follows that
1

1 + edi
≤ pi.

Hence
k∑

i=1

1

1 + edi
≤

k∑

i=1

pi =
1

2

k∑

i=1

(αi + βi) =
1

2
.

This completes the proof that condition (d) implies the conclusion of the
theorem. In view of Proposition 5.1, it follows that condition (c) also implies
the conclusion of the theorem.

Next we assume that condition (a) holds and deduce the conclusion of the
theorem.

Since Φ is purely loxodromic and free of finite rank, either Λ(Φ) = C or
Φ is a Schottky group (see Maskit [27]). In the case that Λ(Φ) = C, we
use Theorem 8.1 in [8], which states that a topologically tame hyperbolic 3-
manifold is analytically tame.

Thus in this case condition (c) holds, and hence the conclusion of the
theorem is true.

Now suppose that Φ is a Schottky group. Let Fk denote the abstract
free group generated by {x1, . . . , xk}. Let ρ0 : Fk → Φ denote the unique
isomorphism that takes xi to ξi for i = 1, . . . , k. We may regard ρ0 as a
representation of Fk in PSL2(C). Since Φ is a Schottky group we have ρ0 ∈
CCk.

We define a continuous, non-negative real-valued function fz on the repre-
sentation space Hom(Fk,PSL2(C)) by setting

fz(ρ) =
k∑

i=1

1

1 + exp dist(z, ρ(xi) · z)
.
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We must show that for any point z in H3 and any representation ρ in CCk
we have fz(ρ) ≤

1
2
. Let z and ρ be given. By Lemma 6.3 there exists a

representation ρz ∈ Bk such that the point z is displaced the same distance by
ρ0(xi) as by ρz(xi) for i = 1, . . . , k. Thus fz(ρz) = fz(ρ0), so it suffices to show
that fz(ρ) ≤

1
2
for any representation ρ ∈ Bk. To see this we consider the dense

Gδ-set Ck ⊂ Bk given by Theorem 5.2. Recall that every representation in Ck
maps Fk isomorphically onto an analytically tame Kleinian group whose limit
set is the entire sphere at infinity. Thus for any ρ ∈ Ck the group ρ(Fk) satisfies
condition (c) of the present theorem, and we therefore have fz(ρ) ≤

1
2
. Since

Ck is dense in Bk and fz is continuous, we have fz(ρ) ≤
1
2
for every ρ ∈ Bk.

Finally, we prove the conclusion of the theorem under the assumption that
condition (b) holds.

We continue to denote by Fk the abstract free group on k generators.
We fix an isomorphism ρ : Fk → Φ, which we regard as a discrete, faithful
representation of Fk in Isom+(H

3). In view of the geometric finiteness of
Φ = ρ(Fk), a theorem of Maskit’s [28] guarantees that there exists a sequence
of discrete faithful representations {ρj : F → Isom+(H

3)} such that (for all
j) ρj(F ) is geometrically finite and purely loxodromic, and ρj converges (as a
sequence of representations) to ρ. Given z ∈ H3, we set

mj =
k∑

i=1

1

1 + edist(ρj(xi)·z,z)
and m =

k∑

i=1

1

1 + edi
.

Since each ρj satisfies (a), we have mj ≤
1
2
. But clearly {mj} converges to m,

so m ≤ 1
2
. This is the conclusion of the theorem.

Theorem 6.1

7 Topology and free subgroups

The results of the last section can be used in studying the geometry of a
hyperbolic manifold N . One writes N in the form H3/Γ where Γ is a torsion-
free Kleinian group, and applies the estimate given by Theorem 6.1 to suitable
free subgroups Φ of Γ to deduce geometric information about N . Of course,
such applications require that one be able to produce free subgroups of Γ. In
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this section we concentrate on the problem of giving sufficient conditions for
a subgroup of Γ ∼= π1(N) to be free.

This problem can be attacked with purely topological techniques. Results
which use 3-manifold theory to deduce, from topological hypotheses, that cer-
tain subgroups of π1(N) are free have appeared in [37], in Section VI.4 of
[19] and in the appendix to [3]. The first two sources consider the case of
a 2-generator subgroup, while the results of the third apply to higher rank
subgroups, but require that N be closed. In this section we give a systematic
treatment of this topic. We prove a result that includes the results of [3] as
special cases and is suitable for the applications in this paper.

We shall follow a couple of conventions that are widely used in low-
dimensional topology. Unlabeled homomorphisms between fundamental
groups are understood to be induced by inclusion maps. Base points will
be suppressed whenever it is clear from the context how to choose consistent
base points.

Recall that an orientable piecewise linear 3-manifold N is said to be irre-
ducible if every PL 2-sphere in N bounds a PL ball. We shall say that N is
simple if N is irreducible and if for every rank-2 free abelian subgroup A of
π1(N), there is a closed PL subspace E of N , piecewise linearly homeomorphic
to T 2× [0,∞), such that A is contained in a conjugate of im(π1(E)→ π1(N)).
(The subgroup im(π1(E) → π1(N)) of π1(N) is itself well-defined up to con-
jugacy.)

We shall say that an orientable PL 3-manifold N without boundary has
cusp-like ends if it is PL homeomorphic to the interior of a compact manifold-
with-boundary M such that (i) every component of ∂M is a torus and (ii) for
every component B of ∂M , the inclusion homomorphism π1(B) → π1(M) is
injective. In particular, note that if N is closed then it has cusp-like ends.

Recall that the rank of a group Γ is the minimal cardinality of a generating
set for Γ.

A group Γ is termed freely indecomposable if it is non-trivial and is not a
free product of two non-trivial subgroups.

For any non-negative integer g we denote by Sg the closed orientable surface
of genus g.

Theorem 7.1 Let N be a simple orientable PL 3-manifold without boundary.
Suppose that k = rank π1(N) < ∞, that π1(N) is freely indecomposable, and
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that π1(N) has no subgroup isomorphic to any of the groups π1(Sg) for 2 ≤
g ≤ k− 1. Then either π1(N) is a free abelian group, or N has cusp-like ends.

Proof of 7.1: According to [32], there is a compact PL manifold-with-
boundary M ⊂ N such that π1(M) → π1(N) is an isomorphism. Among all
compact PL manifolds-with-boundary with this property we may suppose M
to have been chosen so as to minimize the number of components r = rM of
∂M . We may assume if we like that r > 0, for if r = 0 then N =M is closed,
and in particular it has cusp-like ends. Let B1, . . . , Br denote the components
of ∂M . Let gi denote the genus of Bi for i = 1, . . . , r. Since π1(M) ∼= π1(N)
has rank k, the first betti number of M is at most k.

It follows from Poincaré-Lefschetz duality and the exact homology sequence
of (M, ∂M) that the total genus

∑
gi of ∂M is at most the first betti number

of M . Thus
∑
gi ≤ k.

We must have gi > 0 for i = 1, . . . , r. Indeed, if Bi is a 2-sphere for
some i, then since N is irreducible, Bi bounds a PL ball K ⊂ N . We have
either K ⊃ M or K ∩M = Bi. If K ⊃ M then since π1(M) → π1(N) is an
isomorphism we have π1(N) = 1, in contradiction to the free indecomposability
of π1(N). If K ∩M = Bi then M

′ =M ∪K has fewer boundary components
than M and π1(M

′) → π1(N) is an isomorphism; this contradicts our choice
of M .

Let us consider the case in which π1(Bi) → π1(M) has a non-trivial ker-
nel for some i ≤ r. According to the Loop Theorem [35], M contains a
properly embedded disk D such that ∂D is homotopically non-trivial in ∂M .
If D separates M , both components of M − D have boundary components
of positive genus and are therefore non-simply connected. This contradicts
the free indecomposability of π1(M). Hence D does not separate M , and
π1(M) is a free product of an infinite cyclic group with a group isomorphic to
π1(M −D). The latter group must be trivial in view of the free indecompos-
ability of π1(M) ∼= π1(N). Thus π1(N) ∼= π1(M) is infinite cyclic in this case,
and in particular free abelian.

From this point on we assume that π1(Bi) → π1(M) is injective for i =
1, . . . , r. Since by the hypothesis of the theorem, π1(M) ∼= π1(N) has no
subgroup isomorphic to π1(Sgi) for 2 ≤ gi ≤ k − 1, each gi is either ≤ 1 or
≥ k. We have seen that the gi are all strictly positive and that their sum is
at most k. Hence we must have either (i) r = 1 and g1 = k, or (ii) gi = 1 for
i = 1, . . . , r.
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Suppose that (i) holds. Then ∂M is a connected surface of genus k. Hence
the Euler characteristic χ(∂M) is equal to 2−2k. We have χ(M) = 1

2
χ(∂M) =

1−k. Now as a compact PL 3-manifold with non-empty boundary,M admits a
simplicial collapse to a 2-complex L. In particular M is homotopy-equivalent
to L, and hence to the CW-complex L′ obtained from L by identifying a
maximal tree in the 1-skeleton of L to a point. If ci denotes the number of
i-cells in L′, we have c0 = 1 and 1 − c1 + c2 = χ(L′) = χ(M) = 1 − k, so
that c1 − c2 = k. But π1(L

′) ∼= π1(M) ∼= π1(N) has a presentation with c1
generators and c2 relations, and k = c1 − c2 is by definition the deficiency of
the presentation. On the other hand, k is by hypothesis the rank of π1(N).
It is a theorem due to Magnus [23] that if a group Γ has rank k and admits
a presentation of deficiency k, then Γ is free of rank k. Since π1(N) is freely
indecomposable, we must have k = 1, and π1(N) must be infinite cyclic in this
case as well.

Now suppose that (ii) holds. Then B1, . . . , Br are tori. Since the inclusion
homomorphisms π1(Bi)→ π1(M) are injective, the groups Ai = im(π1(Bi)→
π1(M)) are free abelian groups of rank 2. Since N is simple, there are closed
PL subspaces E1, . . . , Er of N , each piecewise linearly homeomorphic to T 2 ×
[0,∞), such that Ai is contained in a conjugate of im(π1(Ei) → π1(N)) for
i = 1, . . . , r. It follows from Proposition 5.4 of [38] that Bi is isotopic to ∂Ei
for i = 1, . . . , r. Hence we may suppose the Ei to have been chosen so that
∂Ei = Bi. For each i ≤ r we have either M ⊂ Ei or M ∩ Ei = Bi.

If M ∩ Ei = Bi for i = 1, . . . , r, we have N = M ∪ E1 . . . ∪ Er. It follows
that in this case N is PL homeomorphic to the interior of M , and hence that
N has cusp-like ends.

There remains the case in which M ⊂ Ei for some i. In the sequence of
inclusion homomorphisms

π1(Bi)→ π1(M)→ π1(Ei)→ π1(N)

the composition of the first two arrows (from the left) is the isomorphism
π1(Bi) → π1(Ei), and the composition of the last two arrows is the isomor-
phism π1(M)→ π1(N). It follows that the entire sequence consists of isomor-
phisms, and hence that π1(N) is a rank-2 free abelian group in this case.

7.1

We shall say that a group is semifree if it is a free product of abelian groups.
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Corollary 7.2 Let N be an orientable hyperbolic 3-manifold of infinite vol-
ume. Suppose that k = rank π1(N) < ∞, and that π1(N) has no subgroup
isomorphic to any of the groups π1(Sg) for 2 ≤ g ≤ k − 1. Then π1(N) is
semifree.

Proof of 7.2: Let us write N = H3/Γ, where Γ ∼= π1(N) is a discrete
torsion-free subgroup of Isom+(H

3). Since Γ is finitely generated it can be
written as a free product Γ1 ∗ . . . ∗ Γn of freely indecomposable subgroups.
Since N has infinite volume, so does the manifold Ni = H3/Γi for i = 1, . . . , n.
The rank ki of Γi ∼= π1(Ni) is at most k. Hence the hypothesis of the corollary
implies that Γi has no subgroup isomorphic to any of the groups π1(Sg) for
2 ≤ g ≤ k − 1. Applying Theorem 7.1 with Ni in place of N , we conclude
that for each i ≤ n, either Γi is free abelian or Ni has cusp-like ends. But the
latter alternative is impossible because a hyperbolic manifold with cusp-like
ends has finite volume (see [4], D.3.18). Thus all the Γi are free abelian and
hence Γ is semifree.

7.2

Recall that a group Γ is termed k-free, where k is a cardinal number, if
every subgroup of Γ whose rank is at most k is free. We shall say that Γ is
k-semifree if every subgroup of Γ whose rank is at most k is semifree.

Corollary 7.3 Let N be an orientable hyperbolic 3-manifold and let k be a
non-negative integer. Suppose that π1(N) has no subgroup isomorphic to any
of the groups π1(Sg) for 2 ≤ g ≤ k − 1. In addition suppose that either

(i) N has infinite volume, or

(ii) every subgroup of π1(N) whose rank is at most k is of infinite index in
π1(N).

Then π1(N) is k-semifree.

Proof of 7.3: Let ∆ be any subgroup of π1(N) whose rank is at most k.
Let Ñ denote the covering space of N associated to ∆. If either (i) or (ii)
holds, Ñ has infinite volume. Hence by Corollary 7.2, ∆ is semifree.

7.3
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Hypothesis (ii) of 7.3 clearly holds if the first betti number of N is at least
k + 1. According to Proposition 1.1 of [33], it also holds if H1(N,Z/p) has
rank at least k + 2 for some prime p. Thus we have:

Corollary 7.4 Let N be an orientable hyperbolic 3-manifold and let k be a
non-negative integer. Suppose that π1(N) has no subgroup isomorphic to any
of the groups π1(Sg) for 2 ≤ g ≤ k − 1. In addition suppose that either

(i) the first betti number of N is at least k + 1, or

(ii) H1(N,Z/p) has rank at least k + 2 for some prime p.

Then π1(N) is k-semifree.

Remark 7.5 If the orientable hyperbolic 3-manifold N has no cusps, then
every abelian subgroup of π1(N) is infinite cyclic; thus π1(N) is k-semifree for
a given k if and only if it is k-free. Thus if N has no cusps we may replace
“semifree” by “free” in the conclusions of Corollaries 7.3 and 7.4.

8 Strong Margulis numbers and k-Margulis numbers

In order to unify the different applications of the results of the last two sections
it is useful to introduce a little formalism. Let Γ be a discrete torsion-free
subgroup of Isom+(H

3). Recall from [33] and [14] that a positive number λ
is termed a Margulis number for the group Γ, or for the orientable hyperbolic
3-manifold N = H3/Γ, if whenever ξ and η are non-commuting elements of
Γ, and z ∈ H3, we have max{dist(ξ · z, z), dist(η · z, z)} ≥ λ. We shall say
that λ is a strong Margulis number for Γ, or for N , if whenever ξ and η are
non-commuting elements of Γ, we have

1

1 + edist(ξ·z,z)
+

1

1 + edist(η·z,z)
≤

2

1 + eλ
.

Notice that if λ is a strong Margulis number for Γ, then λ is also a Margulis
number for Γ.

More generally, let k ≥ 2 be an integer, and let λ be a positive real number.
We shall say that λ is a k-Margulis number for the discrete torsion-free group
Γ ≤ Isom+(H

3), or for N = H3/Γ, if for any k elements ξ1, . . . , ξk ∈ Γ, and
for any z ∈ H3, we have that either
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(i) maxki=1 dist(ξi · z, z) ≥ λ, or

(ii) the group 〈ξ1, . . . , ξk〉 is generated by at most k − 1 abelian subgroups.

We say that λ is a strong k-Margulis number for Γ, or for N , if for any k
elements ξ1, . . . , ξk ∈ Γ, and for any z ∈ H3, we have that either

(i)
∑ 1

1 + edist(ξi·z,z)
≤

k

1 + eλ
,

or

(ii) the group 〈ξ1, . . . , ξk〉 is generated by at most k − 1 abelian subgroups.

Note that λ is a (strong) 2-Margulis number for Γ if and only if it is a
(strong) Margulis number for Γ. Note also that if λ is a strong k-Margulis
number for Γ, then λ is also a k-Margulis number for Γ.

In this section we will use Theorem 6.1 and the corollaries of Theorem 7.1 to
prove that under various conditions a hyperbolic 3-manifold has log(2k−1) as
a strong k-Margulis number. In the following three sections these results will
be used to obtain lower bounds for the volume of various classes of hyperbolic
3-manifolds.

Our first result is an easy consequence of Theorem 6.1(a). We shall say that
a Kleinian group Γ is k-tame, where k is a positive integer, if every subgroup
of Γ having rank at most k is topologically tame.

Proposition 8.1 Let k ≥ 2 be an integer and let Γ be a discrete subgroup of
Isom+(H

3). Suppose that Γ is k-free, k-tame and purely loxodromic. Then
log(2k − 1) is a strong k-Margulis number for Γ.

Proof of 8.1: If ξ1, . . . , ξk ∈ Γ are elements of Γ, the group 〈ξ1, . . . , ξk〉 is
topologically tame, purely loxodromic and free of some rank ≤ k. If its rank
is k then it is freely generated by ξ1, . . . , ξk; hence for any z ∈ H3, we have

∑ 1

1 + edist(ξi·z,z)
≤

1

2
=

k

1 + elog(2k−1)

by Theorem 6.1(a). If 〈ξ1, . . . , ξk〉 has rank ≤ k − 1, then in particular it is
generated by at most k − 1 abelian subgroups.

8.1
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Corollary 8.2 Let k ≥ 2 be an integer and let N be a non-compact, topologi-
cally tame orientable hyperbolic 3-manifold without cusps. Suppose that π1(N)
has no subgroup isomorphic to any of the groups π1(Sg) for 2 ≤ g ≤ k − 1.
Then log(2k − 1) is a strong k-Margulis number for N .

Proof of 8.2: Let us write N = H3/Γ, where Γ is a discrete, non-
cocompact, purely loxodromic subgroup of Isom+(H

3). According to Propo-
sition 3.2 in [8], every finitely generated subgroup of Γ is topologically tame.
In particular Γ is k-tame. On the other hand, since N has infinite vol-
ume and π1(N) has no subgroup isomorphic to any of the groups π1(Sg) for
2 ≤ g ≤ k − 1, Corollary 7.3 and Remark 7.5 guarantee that Γ ∼= π1(N) is
k-free. The desired conclusion therefore follows from Proposition 8.1.

8.2

It is worth pointing out that the following corollary can be deduced from
Proposition 8.1, although a more general result, Corollary 8.7, will be proved
below by a slightly different argument.

Corollary 8.3 Let k ≥ 2 be an integer and let N be a closed orientable hy-
perbolic 3-manifold. Suppose that the first betti number of N is at least k + 1
and that π1(N) has no subgroup isomorphic to any of the groups π1(Sg) for
2 ≤ g ≤ k − 1. Then log(2k − 1) is a strong k-Margulis number for N .

Proof of 8.3: Let us write N = H3/Γ, where Γ is a discrete, cocompact,
purely loxodromic subgroup of Isom+(H

3). By Corollary 7.4 and Remark 7.5,
Γ ∼= π1(N) is k-free. On the other hand, since N has betti number at least
k + 1, any subgroup Γ′ of Γ having rank at most k is contained in the kernel
of a surjective homomorphism β : Γ → Z. According to Proposition 8.4 of
[9], it follows that Γ′ is topologically tame. Thus Γ is k-tame and the desired
conclusion follows from Proposition 8.1.

8.3

The following result gives information not contained in Proposition 8.1
because the group Γ is allowed to have parabolic elements.
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Proposition 8.4 Let k ≥ 2 be an integer and let Γ be a discrete subgroup of
Isom+(H

3). Suppose that Γ is k-semifree. Suppose in addition that for every
subgroup Γ′ of Γ having rank at most k, either

(i) Γ′ is geometrically finite, or

(ii) N ′ = H3/Γ′ admits no non-constant positive superharmonic functions.

Then log(2k − 1) is a strong k-Margulis number for Γ.

Proof of 8.4: If ξ1, . . . , ξk ∈ Γ are elements of Γ, the group 〈ξ1, . . . , ξk〉
is semifree. Thus we may write it as a free product A1 ∗ . . . ∗ Ar, where r
is an integer ≤ k and A1, . . . , Ar are free abelian groups. The sum of the
ranks of the Ai is at most k. If r < k, or if some Ai has rank > 1, then
〈ξ1, . . . , ξk〉 is generated by at most k − 1 abelian subgroups. Now suppose
that r = k and that the Ai are all cyclic. Then 〈ξ1, . . . , ξk〉 is free of rank k
and is therefore freely generated by ξ1, . . . , ξk. If condition (i) of the hypothesis
of the proposition holds, it follows from Theorem 6.1(b) that for any z ∈ H3

we have ∑ 1

1 + edist(ξi·z,z)
≤

1

2
=

k

1 + elog(2k−1)
.

If condition (ii) holds, the same conclusion follows from Theorem 6.1(d).

8.4

If a torsion-free Kleinian group Γ is geometrically finite and has infinite
covolume, then a theorem of Thurston’s (see Proposition 7.1 in Morgan [31])
guarantees that every finitely generated subgroup of Γ is geometrically finite.
This yields the following corollary to Proposition 8.4.

Corollary 8.5 Let k ≥ 2 be an integer and let Γ be a discrete subgroup of
Isom+(H

3) which is geometrically finite and k-semifree and has infinite covol-
ume. Then log(2k − 1) is a strong k-Margulis number for Γ.

8.5

This result can also be combined with the results from Section 7 as in the
following corollary.
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Corollary 8.6 Let k ≥ 2 be an integer and let N be a geometrically finite
orientable hyperbolic 3-manifold of infinite volume. Suppose that π1(N) has
no subgroup isomorphic to any of the groups π1(Sg) for 2 ≤ g ≤ k − 1. Then
log(2k − 1) is a strong k-Margulis number for N .

Proof of 8.6: We write N = H3/Γ, where Γ is a geometrically finite
Kleinian group. Since N has infinite volume and π1(N) has no subgroup
isomorphic to any of the groups π1(Sg) for 2 ≤ g ≤ k − 1, Corollary 7.3
guarantees that Γ ∼= π1(N) is k-semifree. The assertion now follows from
Corollary 8.5.

8.6

The next corollary generalizes Corollary 8.3.

Corollary 8.7 Let k ≥ 2 be an integer and let N be an orientable hyperbolic
3-manifold of finite volume. Suppose that the first betti number of N is at least
k + 1 and that π1(N) has no subgroup isomorphic to any of the groups π1(Sg)
for 2 ≤ g ≤ k − 1. Then log(2k − 1) is a strong k-Margulis number for N .

Proof of 8.7: We write N = H3/Γ, where Γ is a Kleinian group of finite
covolume. It follows from Corollary 7.4 that Γ ∼= π1(N) is k-semifree. To
complete the proof it suffices to show that for every subgroup Γ′ of Γ whose
rank is at most k, one of the hypotheses (i) or (ii) of Proposition 8.4 holds.

Since N has betti number at least k+1, the subgroup Γ′ is contained in the
kernel of a surjective homomorphism β : π1(N)→ Z. Therefore, by Corollary
E in [9], Γ′ is either geometrically finite, or N has a finite cover N̂ which fibers
over the circle and Γ′ is topologically tame and contains the fiber subgroup
Γ′′ of N̂ . In the latter case we have Λ(Γ′) = C, since Λ(Γ′′) = C. Corollary
9.2 in [8] then guarantees that N ′ = H3/Γ′ admits no non-constant positive
superharmonic functions.

8.7

Finally, by specializing some of the results stated above to the case k = 2
we obtain some sufficient conditions for log 3 to be a Margulis number for a
hyperbolic 3-manifold.
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Corollary 8.8 Let N = H3/Γ be an orientable hyperbolic 3-manifold, such
that either

(i) N is geometrically finite and has infinite volume,

(ii) N is topologically tame, purely loxodromic, and has infinite volume, or

(iii) N has finite volume and its first betti number is at least 3.

Then log 3 is a strong Margulis number for Γ.

Proof of 8.8: As we observed at the beginning of this section, a Margulis
number is the same thing as a 2-Margulis number. Under the hypothesis (i),
(ii) or (iii), the assertion follows respectively from Corollary 8.6, Corollary
8.2, or Corollary 8.7. The general version of each of these corollaries included
the assumption that π1(N) has no subgroup isomorphic to any of the groups
π1(Sg) for 2 ≤ g ≤ k − 1. For k = 2 this condition is vacuously true.

8.8

Remark 8.9 Given corollary 8.8 it seems reasonable to conjecture that log
3 is a strong Margulis number for any infinite volume hyperbolic 3-manifold.
We notice that our conjecture would follow from the conjecture that every
free 2-generator Kleinian group is a limit of Schottky groups. There appear
to exist closed hyperbolic 3-manifolds for which log 3 is not even a Margulis
number: computations by Hodgson and Weeks give strong evidence that the
Weeks manifold [40] does not contain a ball of radius (log 3)/2.

9 Geometric estimates for closed manifolds

In this section we will prove the results promised in the introduction concern-
ing balls of radius 1

2
log 5 and volume estimates for closed manifolds of betti

number at least 4. This will be done by combining the results of the last
section with the following result, which illustrates the use of the notion of a
k-Margulis number for k > 2.

Theorem 9.1 Let N be an orientable hyperbolic 3-manifold without cusps.
Suppose that π1(N) is 3-free. Let λ be a 3-Margulis number for N . Then
either N contains a hyperbolic ball of radius λ/2, or π1(N) is a free group of
rank 2.
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Before giving the proof of Theorem 9.1 we shall point out how to use it to
prove the corollaries stated in the introduction.

Corollary 9.2 Let N be a closed orientable hyperbolic 3-manifold. Suppose
that the first betti number β1(N) is at least 4, and that π1(N) has no subgroup
isomorphic to π1(S2). Then N contains a hyperbolic ball of radius 1

2
log 5.

Hence the volume of N is greater than 3.08.

Proof of 9.2: According to Corollary 7.4 and Remark 7.5, the group π1(N)
is 3-free. According to Corollary 8.3, log 5 is a strong 3-Margulis number, and
a fortiori a 3-Margulis number, for N . It therefore follows from Theorem
9.1 that either N contains a hyperbolic ball of radius 1

2
log 5 or π1(N) is a

free group of rank 2. The latter alternative is impossible, because Γ, as the
fundamental group of a closed hyperbolic 3-manifold, must have cohomological
dimension 3, whereas a free group has cohomological dimension 1. Thus N
must contains a hyperbolic ball of radius 1

2
log 5.

The lower bound on the volume now follows by applying Böröczky’s density
estimate for hyperbolic sphere-packings as in [14].

9.2

Let W denote the set of all finite volumes of orientable hyperbolic 3-
manifolds. Then W is a set of positive real numbers, and by restricting the
usual ordering of the real numbers we can regard W as an ordered set. It is a
theorem of Thurston’s, based on work due to Jorgensen and Gromov, that W
is a well-ordered set having ordinal type ωω and that there are at most a finite
number of isometry types of hyperbolic 3-manifolds with a given volume. (See
[4], E.1) Thus there is a unique order-preserving bijection between W and the
set of ordinal numbers less than ωω. Let us denote by vc the element of W
corresponding to the ordinal number c.

Corollary 9.3 Let c be any ordinal number less than 8ω and let N be any
orientable hyperbolic 3-manifold with volN = vc. Then either the first betti
number of N is at most 3, or π1(N) contains an isomorphic copy of π1(S2).

Proof of 9.3: Assume that N has first betti number at least 4 and contains
no isomorphic copy of π1(S2). Then by Corollary 9.2 we have vc = volN >
3.08. On the other hand, Weeks census (see [18] and [39]) lists 8 distinct
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volumes less than 3.08 for orientable manifolds with one cusp. The volume of
such a cusped manifold is the limit, from below, of the volumes of its Dehn
fillings (see Theorem E.7.2 in [4]). The result follows.

9.3

Corollary 9.4 Let N be a non-compact, topologically tame, orientable hyper-
bolic 3-manifold without cusps. Suppose (i) that π1(N) is not a free group of
rank 2, and (ii) that π1(N) has no subgroup isomorphic to π1(S2). Then N
contains a hyperbolic ball of radius 1

2
log 5.

Proof of 9.4: According to Corollary 8.2 and Remark 7.5, the group π1(N)
is 3-free. According to Corollary 8.3, log 5 is a strong 3-Margulis number, and
a fortiori a 3-Margulis number, for N . It therefore follows from Theorem 9.1
(and hypothesis (ii)) that N contains a hyperbolic ball of radius 1

2
log 5.

9.4

The rest of this section is devoted to the proof of Theorem 9.1. The essential
ideas of the proof appear in the proof of Theorem B in [15]. We begin by
reviewing and extending a few notions from [15].

As in [15], we shall say that elements z1, . . . , zr of a group Γ are independent
if they freely generate a (free, rank-r) subgroup of Γ. Recall that the rank of
a finitely generated group G to be the minimal cardinality of a generating set
for G.

As in [15], a Γ-labeled complex, where Γ is a group, is defined to be an
ordered pair (K, (Xv)v), where K is a simplicial complex and (Xv)v is a family
of cyclic subgroups of Γ indexed by the vertices of K. If (K, (Xv)v) is a Γ-
labeled complex then for any subcomplex L of K we denote by Θ(L) the
subgroup of Γ generated by all the groups Xv, where v ranges over the vertices
of L.

In this paper we shall use one notion which appeared only implicitly in
[15]. Let Γ be a group and let (K, (Xv)v) be a Γ-labeled complex. By a
natural action of Γ on (K, (Xv)v) we shall mean a simplicial action of Γ on K
such that for each vertex v of K we have Xγ·v = γXvγ

−1. The following result
could have been stated and used in [15].
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Proposition 9.5 Let Γ be a finitely generated 3-free group in which every
non-trivial element has a cyclic centralizer. Let (K, (Xv)v) be a Γ-labeled com-
plex which admits a natural Γ-action. Suppose that Xv is a maximal cyclic
subgroup of Γ for every vertex v of K. Suppose that K is connected and has
more than one vertex, and that the link of every vertex of K is connected.
Suppose that for every 1-simplex e of K the group Θ(|e|) is non-abelian, and
that there is no 2-simplex σ of K such that Θ(|σ|) is free of rank 3. Then
Θ(K) is a free group of rank 2.

Proof of 9.5: The hypotheses of the above proposition include those of
Proposition 4.3 of [15]. According to the latter result, Θ(K) has local rank
2: according to the definitions given in [15], this means that every finitely
generated subgroup of Θ(K) is contained in a subgroup of rank ≤ 2, but
that not every finitely generated subgroup of Θ(K) is contained in a subgroup
of rank ≤ 1. On the other hand, the existence of a natural action of Γ on
(K, (Xv)v) clearly implies that Θ(K) is a normal subgroup of Γ.

Now choose any vertex v0 of K and let x0 denote a generator of X0 = Xv0 .
Since x0 has a cyclic centralizer and X0 is a maximal cyclic subgroup of Γ,
the element x0 generates its own centralizer in Γ. Now it is a special case of
Proposition 4.4 of [15] that if Θ is a normal subgroup of a finitely generated
3-free group Γ, if Γ is 3-free over some finitely generated subgroup of Θ, and
if Θ has local rank 2 and contains an element x0 which generates its own
centralizer in Γ, then Γ is a free group of rank 2.

This completes the proof.

9.5

Proof of Theorem 9.1: As in [15], for any infinite cyclic group X of isome-
tries of H3, generated by a loxodromic isometry, and for any λ > 0, we denote
by Zλ(X) denote the set of points z ∈ H3 such that dist(z, ξ · z) < λ for some
non-trivial element ξ of X.

Suppose that N satisfies the hypotheses of Theorem 9.1 but contains no
ball of radius λ/2. We shall prove the theorem by showing that π1(N) is a
free group of rank 2. Let us write N = H3/Γ, where Γ is a purely loxodromic
Kleinian group. Then according to the discussion in subsection 3.4 of [15], the
indexed family (Zλ(X))X∈X , where X = Xλ(N ) denotes the set of all maximal
cyclic subgroups X of Γ such that Zλ(X) 6= ∅, is an open covering of H3, and
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the nerve K = Kλ(N) of this covering is a simplicial complex. By definition
the vertices of K are in natural one-one correspondence with the maximal
cyclic subgroups in the set X . If we denote by Xv ∈ X the maximal cyclic
subgroup corresponding to a vertex v, then (K, (Xv)v) is a Γ-labeled complex.

We shall show that the group Γ and the Γ-labeled complex (K, (Xv)v)
satisfy the hypotheses of Proposition 9.5. By the hypothesis of the theorem,
Γ is 3-free. Since Γ is a purely loxodromic Kleinian group, it has the property
that each of its non-trivial elements has a cyclic centralizer.

In order to construct a natural action of Γ on (K, (Xv)v), we first define
an action of Γ on the set of vertices of K by Xγ·v = γXvγ

−1. If v0, . . . , vm are
the vertices of an m-simplex of K we have

⋂

0≤i≤m

Zλ(γXγ
−1) =

⋂

0≤i≤m

γ · Zλ(X) = γ ·
⋂

0≤i≤m

Zλ(X) 6= ∅,

so that γ ·v0, . . . , γ ·vm are the vertices of an m-simplex of K. Thus the action
of Γ on the vertex set extends to a simplicial action on K. It is immediate
from the definitions that this is a natural action on (K, (Xv)v).

By Proposition 3.4 of [15], K is a connected simplicial complex with more
than one vertex, and the link of every vertex of K is connected. Now let e
be any 1-simplex of K, and let v and w denote its vertices. Let xv and xw
be generators of Xv and Xw. We have v 6= w and hence Xv 6= Xw; that
is, the elements xv and xw generate distinct maximal cyclic subgroups of Γ.
Since the abelian subgroups of Γ are cyclic, it follows that Θ(|e|) = 〈xv, xw〉 is
non-abelian.

Finally, we claim that if σ is a 2-simplex of K, the group Θ(|σ|) cannot
be free of rank 3. To prove this, let u, v and w denote the vertices of σ,
and let ξu, ξv and ξw be generators of Xu, Xv and Xw. By the definition of
the nerve K we have Zλ(Xu) ∩ Zλ(Xv) ∩ Zλ(Xw) 6= ∅. Let z be any point of
Zλ(Xu) ∩ Zλ(Xv) ∩ Zλ(Xw). By definition there are non-trivial elements of
Xu, Xv and Xw, say ηu = ξnuu , ηv = ξnvv and ηw = ξnww , such that dist(z, ηu · z),
dist(z, ηv · z) and dist(z, ηw · z) are less than λ. Since λ is a 3-Margulis number
for Γ, it follows that 〈ηu, ηv, ηw〉 is generated by at most two abelian subgroups.
Now if Θ(|σ|) were free of rank 3 then ξu, ξv and ξw would be independent, and
so ηu, ηv and ηw would also be independent. This would mean that 〈ηu, ηv, ηw〉
would be free of rank 3, and thus could not be generated by two abelian
subgroups. This proves the claim.
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Thus Γ and (K, (Xv)v) satisfy all the hypotheses of Proposition 9.5. Hence
Γ is a free group of rank 2, as required.

Theorem 9.1

Remark 9.6 It is possible to drop the hypothesis that N has no cusps in
Theorem 9.1. Because π1(N) is 3-free, N could only have rank 1 cusps. The
construction of the Γ-labeled complex in the proof of 9.1 can still be carried
out, although the arguments in [15] must be extended to account for the fact
that some of the sets Zλ(X) will be horoballs instead of cylinders.

10 Volumes and short geodesics

Let C be a non-trivial closed geodesic in a closed hyperbolic 3-manifold N .
Let us write N = H3/Γ, where Γ is a cocompact, torsion-free, discrete group of
isometries of H3. Then C is the image in N of the axis Aγ of some non-trivial
(and hence loxodromic) element γ ∈ Γ which is uniquely determined up to
conjugacy. Let us set

R =
1

2
min
δ

dist(Aγ, δ · Aγ),

where δ ranges over all elements of Γ which do not commute with γ. If we
denote by Z the set of all points in H3 whose distance from Aγ is less than
R, it follows from the definition of R that Z ∩ δ · Z = ∅ for every δ ∈ Γ not
commuting with γ; hence the quotient Z/〈γ〉 embeds in N . The resulting
isometric copy of Z/〈γ〉 in N is called the maximal embedded tube about the
geodesic C, and the number R is called the radius of the tube. If the geodesic
C has length l then the volume of the maximal embedded tube about C is
given by the formula

πl sinh2R, (2)

which is therefore a lower bound for the volume of N .
In this section we prove the following result.

Proposition 10.1 Let N be an orientable hyperbolic 3-manifold having log 3
as a strong Margulis number. Let C be a closed geodesic in N , and let l denote
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its length. If R denotes the radius of the maximal embedded tube about C, we
have

cosh 2R ≥
e2l + 2el + 5

(cosh l
2
)(el − 1)(el + 3)

.

Combining this with Corollary 8.8 we immediately obtain:

Corollary 10.2 Let N be an orientable hyperbolic 3-manifold of finite volume
whose first betti number is at least 3. Let C be a closed geodesic in N , and
let l denote its length. If R denotes the radius of the maximal embedded tube
about C, we have

cosh 2R ≥
e2l + 2el + 5

(cosh l
2
)(el − 1)(el + 3)

.

The above results will also be used to give volume estimates for hyperbolic
3-manifolds containing short geodesics (see 10.3, 10.5 and 10.6 below).

Proof of 10.1: By the definition of R there is an element δ of Γ, not
commuting with γ, such that the distance from Aγ to δ · Aγ = Aδγδ−1 is 2R.
Let B denote the common perpendicular to the lines Aγ and δ · Aγ, and let z
and w denote the points of intersection of B with Aγ and δ · Aγ respectively.
Then dist(z, w) = 2R. Let us write w = δ · u where u is a point of Aγ. Since
γ acts on Aγ as a translation of length l, there is an integer m such that
dist(u, γm · z) ≤ l/2. Hence dist(w, δγm · z) ≤ l/2. The triangle with vertices
z, w and δγm · z has a right angle at w. Writing α = dist(z, δγm · z) for the
hypotenuse of this right triangle and applying the Hyperbolic Pythagorean
Theorem, we obtain

coshα = cosh 2R cosh dist(w, δγm · z) ≤ cosh
l

2
cosh 2R. (3)

Since γ and δ do not commute, the elements γ and δγm of Γ also do not
commute. Applying the definition of a strong Margulis number with ξ = γ
and η = δγm, and using that α = dist(z, δγm · z) and that l = dist(z, γ · z), we
obtain

1

1 + eα
+

1

1 + el
≤

1

2
,

which we rewrite in the form
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eα ≥
el + 3

el − 1
. (4)

On the other hand, using (2) we find that

eα = coshα + sinhα

= coshα +
√
cosh2 α− 1

≤ cosh 2R cosh
l

2
+

√

cosh2 2R cosh2
l

2
− 1.

Combining this with (3) we get

cosh 2R cosh
l

2
+

√

cosh2 2R cosh2
l

2
− 1 ≥

el + 3

el − 1
. (5)

The equation

x cosh
l

2
+

√

x2 cosh2
l

2
− 1 =

el + 3

el − 1

has the solution

x0 =
e2l + 2el + 5

(cosh l
2
)(el − 1)(el + 3)

.

Since the function x cosh l
2
+
√
x2 cosh2 l

2
− 1 is monotone increasing for x ≥ 1,

it follows from (4) that
cosh 2R ≥ x0.

This is the conclusion of Proposition 10.1.

10.1

Let us define a function V (x) for x > 0 by

V (x) =
πx

ex − 1

(
e2x + 2ex + 5

2(cosh x
2
)(ex + 3)

)
−
πx

2
.

Note that
lim
x→0

V (x) = π.

Since sinh2R = 1
2
(cosh 2R − 1), Proposition 10.1 and the above formula

(1) for the volume of a maximal tube now imply:
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Lemma 10.3 Let N be an orientable hyperbolic 3-manifold having log 3 as a
strong Margulis number. Let C be a closed geodesic in N , and let l denote its
length. Then the maximal embedded tube about C has volume at least V (l).

The following result will permit us to put the information given by the
above lemma in a more useful form.

Proposition 10.4 The function V (x) is monotonically decreasing for x > 0.

Proof of 10.4: For x ≥ 0 we set

f(x) =
V (2x)

π
.

We have

(cosh2 x)(e4x + 2e2x − 3)2f ′(x) =

(cosh x− x sinh x)(e4x + 2e2x − 3)(e4x + 2e2x + 5)

−(cosh2 x)(e4x + 2e2x − 3)2

−32x(cosh x)(e4x + e2x).

Hence

(cosh x)(e4x + 2e2x − 3)2f ′(x) ≤ (e4x + 2e2x − 3)(e4x + 2e2x + 5)

−(e4x + 2e2x − 3)2 − 32x(e4x + e2x)

= 8(e4x(1− 4x) + 2e2x(1− 2x)− 3).

But the function e4x(1− 4x) + 2e2x(1 − 2x)− 3 is negative-valued for x > 0,
because it vanishes at 0 and its derivative −xe4x− 4xe2x is negative for x > 0.
Thus f ′(x) < 0 for x > 0.

10.4

Combining Lemma 10.3 with Proposition 10.4, we immediately obtain the
following result.
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Corollary 10.5 Let N be an orientable hyperbolic 3-manifold having log 3 as
a strong Margulis number. Let λ be a positive number, and suppose that N
contains a closed geodesic of length at most λ. Then the maximal embedded
tube about C has volume at least V (λ). In particular the volume of N is at
least V (λ).

Corollary 10.6 Let N be an orientable hyperbolic 3-manifold which has first
betti number at least 3. Let λ be a positive number, and suppose that N contains
a closed geodesic of length at most λ. Then the volume of N is at least V (λ).

Proof of 10.6: We may assume that N has finite volume, as otherwise the
assertion is trivial. It then follows from Corollary 8.8 that log 3 is a Margulis
number for N . The assertion now follows from Corollary 10.5.

10.6

We observed above that limx→0 V (x) = π. Thus Corollary 10.6 implies
that if an orientable hyperbolic 3-manifold N has betti number at least 3 and
contains a very short geodesic, the volume of N cannot be much less than π.
Explicitly, we can say for example that if N contains a geodesic of length at
most 0.1, then the volume of N is at least V (0.1) = 2.906 . . .. We already get
non-trivial information from 10.3 and 10.4 if N contains a closed geodesic of
length at most 1: in this case the results imply that N has volume at least
V (1) = 0.956 . . .. This is greater than the smallest known volume 0.943 . . . of a
closed orientable hyperbolic 3-manifold, which is in turn greater than the lower
bound 0.92 established in [14] for the volume an arbitrary closed orientable
hyperbolic 3-manifold of betti number at least 3.

In [13], Corollary 10.6 will be used as one ingredient in a proof that any
orientable hyperbolic 3-manifold with betti number at least 3 has a volume
exceeding that of the smallest known example, and hence that any smallest-
volume orientable hyperbolic 3-manifold has betti number at most 2.

11 A volume bound for non-compact manifolds

Theorem 11.1 Let N = H3/Γ be a non-compact hyperbolic 3-manifold. If N
has betti number at least 4, then N has volume at least π.
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Proof of 11.1: We may assume that N has finite volume. In this case N
is homeomorphic to the interior of a compact 3-manifold M with non-empty
boundary ∂M which consists of a finite collection of tori. Let T1 be a torus in
∂M and let Mn be the result of the (1, n) Dehn filling of M along T1, in terms
of some fixed system of coordinates on T1 . Notice that Mn has betti number
at least 3, since N had betti number at least 4.

Thurston’s Hyperbolic Dehn Surgery Theorem (see [36]) guarantees that
the interior ofMn admits a hyperbolic structure for all large enough n (see also
Theorem E.5.1 in [4].) Let Nn = H3/Γn be a hyperbolic manifold homeomor-
phic to the interior of Mn. Then we have volNn < volN for all n and volNn

converges to volN (see Theorem E.7.2 in [4].) Moreover, we may assume that
Γn converges geometrically to Γ (see Theorem E.6.2 in [4].)

Let γn denote an element of Γn representing the shortest closed geodesic in
Nn. Then, since Γn converges geometrically to Γ, N has k cusps and Nn has
k − 1 cusps (for every n), we see that ln = l(γn) converges to 0 (see Theorem
E.2.4 in [4]). By Corollary 10.3 we have

volNn ≥ V (ln) =
πl

eln − 1

(
e2ln + 2eln + 5

2(cosh ln
2
)(eln + 3)

)
−
πln
2
.

Recall that V (ln) converges to π, since ln converges to 0. We therefore have
volN ≥ π.

11.1
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