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Abstract. The results in this paper show that simple connectivity of a 3-manifold

is reflected in the behavior of essential surfaces in exteriors of knots in the manifold.
A corollary of the main theorem is that any non-trivial knot, with irreducible com-

plement, in a homotopy 3-sphere must have two boundary slopes that differ by at

least 2. This statement is false for knots in a homology 3-sphere. The main theo-
rem itself applies more generally to knots in closed orientable 3-manifolds with cyclic

fundamental group.

Introduction

If K is a knot in the 3-sphere, any minimal-genus spanning surface may be iso-
toped so as to meet the exterior M = M(K) in a non-separating bounded essential
surface. (See Section 1 for the definition of essential surface and of other terms
used here.) Essential surfaces are useful in the study of the topology of the knot
exterior M ; for example, the existence of a non-separating bounded essential sur-
face implies, via Papakyriakopoulos’s work, that π1(M) is an HNN extension with
a free associated subgroup. It was shown in [4] that if K is non-trivial then M
always contains a connected bounded separating essential surface F . This implies
the result, first conjectured by Neuwirth, that π1(M) is a non-trivial free product
with amalgamation, and that the amalgamated subgroup is free. That F separates
M is a consequence of the fact that its boundary slope, an element of Q∪{∞} that
encodes the common isotopy class of all the components of ∂F , is non-zero.

It follows from a theorem of Hatcher’s [6] that the set BK ⊂ Q ∪ {∞} of all
boundary slopes of essential surfaces is finite for any knot exterior M . The argu-
ments of [4] show that this set has at least two elements if K is non-trivial. The
set BK has been computed for some families of knots. The first such computations
were made for 2-bridge knots by Hatcher and Thurston [8]. Their methods were
generalized by Hatcher and Oertel [7], who gave a procedure for computing BK in
the case that K is a Montesinos knot.

The results in [8] led Hatcher and Thurston to ask whether boundary slopes
are always even integers, and whether there always exist two boundary slopes that
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differ by more than 2. The first question was answered negatively in [1]. (More
generally, Hatcher and Oertel showed in [7] that every rational number arises as
a boundary slope for some Montesinos knot.) In the present paper we address
Hatcher and Thurston’s second question. We show that for a non-trivial knot K
in S3, the diameter of BK is at least 2, i.e. that if ∞ /∈ BK then there are two
elements r, s ∈ BK ⊂ Q such that r − s ≥ 2. This is included in Corollary 1.6
below, and may be regarded as a refinement of the main result of [4], insofar as the
latter result bears on knots in S3.

There is an important difference between the nature of the results about BK
proved in this paper and those that were proved in [6] and [4]. The set BK is well-
defined for any knot K in an integer homology sphere. For a knot in an arbitrary
closed orientable 3-manifold it is defined modulo integer translations and reflection
about 0. (In this paper, just as a matter of convenience, we define BK only for
knots with irreducible complement.) Now, the results of [6] establish the finiteness
of BK not only for a knot K in S3 but for a knot in an arbitrary closed orientable
3-manifold. Likewise, the arguments of [4] can easily be adapted to give a proof
that if K is a non-trivial knot in an arbitrary closed 3-manifold Σ, and if M(K)
does not contain an essential separating annulus or a non-separating torus, then K
has at least two boundary slopes. (This result is made explicit in [12].) By contrast,
Corollary 1.7 below, which asserts that BK has diameter at least 2, requires the
hypothesis that Σ be a homotopy 3-sphere. In fact, the discussion given below in
1.8 shows that for any ε > 0, there exist a homology 3-sphere Σ and a non-trivial
knot K ⊂ Σ such that the diameter of BK is < ε. Thus the results of this paper
show that simple connectivity of a 3-manifold is reflected in the behavior of essential
surfaces in exteriors of knots in the manifold. Our results are therefore relevant
to the Poincaré Conjecture. We discuss this further, in a more general context, in
Section 1.9.

Corollary 1.7 is derived from our main result, Theorem 1.1, which applies more
generally to a closed, orientable 3-manifold Σ with a cyclic fundamental group. If
K is a non-cabled knot in Σ such that ∞ /∈ BK, Theorem 1.1 implies that either
BK has diameter at least 2 or else Σ has a genus-1 Heegaard splitting in which K is
a core curve for one of the Heegaard solid tori. (The actual statement of Theorem
1.1 is slightly stronger. For precise definitions of the terms used here, see Section
1.)

Theorem 1.1 is sharp: Nathan Dunfield has discovered that there is a hyperbolic
knot K in a 3-manifold with cyclic fundamental group such that BK has diameter
exactly 2. Dunfield’s example is described in Example 1.4. In [5] Dunfield gives
conditions under which the inequalities of Theorem 1.1 and Corollary 1.7 are strict.

The proof of our main result combines the techniques of [3] and [4] with prop-
erties of the norm on H1(∂M ;R) which was introduced in Chapter I of [1]. Given
the techniques of these earlier papers, the proof of the main theorem is relatively
simple in the case of a hyperbolic knot. One of the refinements which are needed to
handle the non-hyperbolic case is a generalization of the theory of Chapter I of [1]
to manifolds with more than one boundary torus. This is developed in Section 2.
Our results are stated in Section 1 and proved in Section 4, and a key topological
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lemma is proved in Section 3.
We thank Nathan Dunfield and Cameron Gordon for many helpful discussions.

We are especially grateful to Dunfield for permission to present Example 1.4 in this
paper.

1. Notation and Main Results

Suppose that Σ is a closed connected orientable 3-manifold. A knot in Σ will
always be understood to be tame. If K is any knot, a regular neighborhood U
of K is a solid torus, the knot exterior M = Σ− U is a compact 3-manifold with
boundary, and ∂M = ∂U is a torus. We will say that K is round if the manifold
M has a solid torus connected summand. In other words, K is round if and only if
M is boundary-reducible.

In the case where the exteriorM of K is irreducible, K is round if and only if M
is a solid torus. Note that this implies that Σ has a genus-one Heegaard splitting
and is therefore homeomorphic to a (possibly trivial) lens space or to S2 × S1.

For any knot K ⊂ Σ, the regular neighborhood of K and the exterior of K are
well defined up to ambient isotopy. In certain situations this will allow us to write
U(K) for a regular neighborhood and M(K) for a knot exterior without risk of
ambiguity.

If U is a solid torus in Σ and M = Σ− U , we define a meridian of U to be an
oriented simple closed curve in ∂M = ∂U which bounds an essential disk in U .
We think of such a curve as being defined up to oriented isotopy. From this point
of view, a knot has two meridians, which differ only in orientation. Furthermore,
we shall not always distinguish between an isotopy class of oriented simple closed
curves in ∂M and the corresponding primitive class in H1(∂M ;Z); thus a meridian
may be regarded as an element of H1(∂M ;Z). We define a framing for the solid
torus U in Σ to be a basis (µ, ν) of H1(∂M ;Z), where µ is a meridian.

If K is a knot in Σ, we shall often refer to a meridian of U(K) or a framing for
U(K) as a meridian of K or a framing of K, provided that no ambiguity arises.

In the case where Σ is an integer homology 3-sphere, orientations of Σ and K
give rise to a canonical framing (µ, λ) for K in the following way. The orientation
of Σ restricts to an orientation of M = M(K) which induces an orientation of ∂M .
The kernel of the inclusion homomorphism H1(∂M ;Z) → H1(M ;Z) is a direct
summand of H1(∂M ;Z) = H1(∂U(K);Z), and is generated by an element λ whose
image in H1(U(K);Z) is the element defined by the given orientation of K. We
may think of λ, which is called a longitude, as an oriented simple closed curve in
∂M defined up to isotopy. For either choice of the meridian µ we have an ordered
basis (µ, λ) for H1(∂M ;Z); furthermore, there is a unique choice of µ for which this
ordered basis determines the induced orientation of ∂M .

If U is a solid torus in a general closed, orientable 3-manifold Σ, and if M =
Σ− U , it follows from Poincaré duality that ker(H1(∂M ;Z)→ H1(M ;Z)) is infinite
cyclic, and thus is contained in a unique direct summand Z. A generator of Z will be
called an external longitude for U . In the case that Σ is an integral homology sphere
the longitude of U is an external longitude. In general, however, the kernel may
be a proper subgroup of Z, and Z may fail to be complementary to the summand
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generated by the meridian. For example, if H1(Σ) is infinite cyclic, and if a core
curve of U represents k times a generator of H1(Σ;Z), then ker(H1(∂M ;Z) →
H1(M ;Z)) has index k in Z and the meridian is a generator of Z, i.e. the meridian
is an external longitude.

Suppose that K is a knot in a closed orientable 3-manifold Σ, and let us set
M = M(K). If we fix a framing (µ, ν) for K then any oriented, homotopically non-
trivial simple closed curve γ in ∂M represents a class pµ + qν, where p and q are
relatively prime integers. The element p/q ∈ Q∪{∞}, called the slope of γ, depends
only on the isotopy class of the simple closed curve γ, not on its orientation. This
defines a bijection between isotopy classes of unoriented, homotopically non-trivial
simple closed curves in ∂M and elements of Q∪{∞}. This bijection depends on the
choice of a framing. Changing the framing has the effect of composing the bijection
with an element of the dihedral group D∞ generated by z 7→ z + 1 and z 7→ −z.
Note that for the case of an oriented knot in an oriented integer homology sphere,
we have a standard choice for this bijection arising from the standard framing.

Let M be an orientable compact irreducible 3-manifold whose boundary compo-
nents are tori. By an essential surface in M we mean a tame, orientable, properly
embedded 2-manifold no component of which is a 2-sphere or a surface which is
parallel to a subsurface of ∂M . A connected essential surface F is called a fiber
if it is a fiber in some fibration of M over S1; it is called a semifiber if M is a
union of two twisted I-bundles E1 and E2 over non-orientable surfaces, such that
E1∩E2 = F and F is the common associated ∂I-bundle of E1 and E2. We will say
than an essential surface F is strict if no component of F is a fiber or a semifiber.

If the knot K ⊂ Σ has irreducible exterior M = M(K) and if F is an essential
surface in M with ∂F 6= ∅, then all the components of ∂F are mutually parallel
non-trivial simple closed curves in ∂M . Thus all the components of ∂F determine
the same pair of primitive elements of H1(∂M ;Z), differing by sign; these will be
called the boundary classes of F . If we fix a framing of K, all the components of
∂F have the same slope p/q ∈ Q ∪ {∞}, called the boundary slope of F . We define
an element p/q of Q ∪ ∞ to be a boundary slope of K if it is the boundary slope
of an some bounded essential surface in M . We call p/q a strict boundary slope if
it is the boundary slope of some bounded strict essential surface in M . Given a
framing, we define BK ⊂ Q ∪ {∞} to be the set of all boundary slopes of K, and
BsK to be the set of strict boundary slopes of K.

According to a theorem of Hatcher’s [6], BK is a finite set; hence so is BsK.
Changing the framing of K has the effect of replacing BK (resp. BsK) by its image
under an element of D∞. In particular, if ∞ /∈ BK (resp. ∞ /∈ BsK), the diameter
of BK (resp. BsK), which is defined to be the difference between the greatest and
least elements, is an invariant of the knot K.

If U0 ⊂ Σ is a solid torus, we define a cable on U0 to be a simple closed curve
in ∂U0 which has geometric intersection number at least 2 with a meridian of ∂U0.
A knot K in Σ is called a cable knot if it is not round and is a cable on some solid
torus U0. (If U0 is a regular neighborhood of a knot K0 we may also say that K is
obtained by cabling K0.)

We may now state our main result.
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Theorem 1.1. Let Σ be an orientable 3-manifold with cyclic fundamental group,
and let K be a knot in Σ such that M(K) is irreducible and ∞ /∈ BsK. If K is not
a cable knot or a round knot then diamBsK ≥ 2.

1.2. Theorem 1.1 can be paraphrased by saying that if K is not round and is
not a cable knot, and M(K) is irreducible and ∞ /∈ BsK, then in terms of any
framing of K there exist elements s1, s2 ∈ BsK such that |s1 − s2| ≥ 2. Of course
the quantity |s1 − s2| is independent of the framing since it is invariant under the
action of D∞ described above. However, it is instructive, and will be useful for the
proof of Theorem 1.1, to give a direct definition of this quantity which does not
involve the choice of a framing. To this end let us denote by 〈·, ·〉 the intersection
pairing on H1(∂M ;Q). This pairing is determined by a choice of orientation of
∂M , and is in any case well-defined up to sign. Now if F1 and F2 are bounded
essential surfaces in M(K), then with each Fi we can associate a boundary class
αi, well-defined up to sign. Given any framing (µ, ν) of K we can write αi in the
form piµ + qiν for i = 1, 2, and the boundary slope of Fi is si = pi/qi. We then
have

|s1 − s2| =

∣∣∣∣
p1q2 − p2q1

q1q2

∣∣∣∣ =
∣∣∣∣

〈α1, α2〉

〈α1, µ〉〈α2, µ〉

∣∣∣∣ ,

where the expression on the right is clearly independent of all choices of sign. If we
now define a strict boundary class for M(K) to be the boundary class of a strict
essential surface then Theorem 1.1 can be reformulated as follows:

Theorem 1.3. Let Σ be an orientable 3-manifold with cyclic fundamental group,
and let K be a knot in Σ. Suppose that M = M(K) is irreducible and that K is
not a cable knot or a round knot. Let µ ∈ H1(M ;Z) denote a meridian of K. Then
either µ is a strict boundary class for M , or there exist strict boundary classes α1

and α2 for M such that ∣∣∣∣
〈α1, α2〉

〈α1, µ〉〈α2, µ〉

∣∣∣∣ ≥ 2.

Example 1.4. The following example, which was discovered by Nathan Dunfield,
shows that Theorem 1.1 is sharp.

Let T be a compact orientable genus-1 surface with one boundary component.
We identify the mapping class group of T with PSL(2,Z). LetM denote the bundle
over S1 with fiber T and monodromy

(
0 1
−1 −3

)
.

(This manifold is sometimes called the sister of the figure-8 complement.)
The fundamental group of M has a presentation

|a, b, t : t−1at = aba−1, t−1bt = b−3a−1|.

The commuting elements t and aba−1b−1 of π1(M) are represented by peripheral
simple closed curves whose homology classes, respectively denoted τ and λ, form
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a basis for H1(∂M ;Z). We will work in terms of the framing (τ, λ). We may use
the algorithm in [2] to find the essential surfaces in M . In the notation of [2], we
find three surfaces: the fiber, C(1 : 3) and C(−1 : −3). The “standard framing”
determined by C(1 : 3) is the framing (τ, λ), so according to [2, Table I], the
surface C(1 : 3) has boundary class α1 = 4τ + λ. The “transition index” between
the standard framing of C(−1 : −3) and that of C(1 : 3) is 1, so the boundary slope
of C(−1 : −3) turns out to be α2 = 4τ + 3λ.

Next we claim that the manifold Σ obtained by Dehn filling of M along a curve
representing the class µ = 2τ + λ has cyclic fundamental group. We have

π1(Σ) = |a, b, t : t
−1at = aba−1, t−1bt = b−3a−1, aba−1b−1t2 = 1|.

(Note that t and t−1 were interchanged in the description of the standard framing
that appears in [2].) Substituting t−1at for aba−1 in the third relation we obtain

π1(Σ) = |a, b, t : t
−1at = aba−1, t−1bt = b−3a−1, atb−1t = 1|.

Since the third relator implies a = t−1bt−1 we may eliminate the generator a. This
gives

π1(Σ) = |b, t : t
−1b = bt−1btb−1t, t−1b = b−3tb−1|

= |b, t : t−1bt−1bt−1b−1tb−1 = 1, t−1b2t−1b2 = b−1|.

Writing u = t−1b2 and eliminating t we have

π1(Σ) = |u, b : ub
−1ub−1ub−1u−1b−1 = 1, u2 = b−1|.

Finally we may eliminate b to obtain

π1(Σ) = |u : u10 = 1|.

Thus M is the exterior of a knot K in the manifold Σ. The fundamental group
of Σ is cyclic and the meridian of K is µ. We have∣∣∣∣

〈α1, α2〉

〈α1, µ〉〈α2, µ〉

∣∣∣∣ =
∣∣∣∣

8

2(−2)

∣∣∣∣ = 2

and, for i = 1, 2, ∣∣∣∣
〈αi, λ〉

〈αi, µ〉〈λ, µ〉

∣∣∣∣ = 1.

Thus BK has diameter 2.
We remark that the manifolds obtained by 2/1 and 1/0 Dehn filling also have

cyclic fundamental groups (of order 5 instead of 10). Thus the manifold M is also
extremal with respect to the Cyclic Surgery Theorem [1].

The following result, which will be proved at the end of Section 3, gives a lower
bound for the diameter of BK in the case of most cable knots K, provided that
H1(Σ;Z) is finite.

If U0 is a solid torus in a closed orientable 3-manifold Σ, and if the meridian
and external longitude of U0 have geometric intersection number at least 2, then
the external longitude can be viewed as a cable on U0. Such a cable will termed
exceptional. A knot in Σ will be called an exceptional cable knot if it is not round
and is an exceptional cable on some solid torus U0 ⊂ Σ. Notice that in a homology
sphere there are no exceptional cable knots.
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Proposition 1.5. Let Σ be a closed orientable 3-manifold such that H1(Σ;Z)
is finite, and let K be a cable on a solid torus U0 ⊂ Σ. Suppose that M(K) is
irreducible (or, equivalently, that Σ− U0 is irreducible), and that∞ /∈ BK. Let n be
the order of the homology class in H1(Σ;Z) represented by a core curve of U0. Then
either K is a round knot, or K is an exceptional cable on U0, or diamBK ≥ 2/n.

Combining Proposition 1.5 with Theorem 1.1 we obtain the following result.

Corollary 1.6. Let K be a knot in a closed 3-manifold Σ with finite cyclic
fundamental group. Suppose that M(K) is irreducible and that ∞ /∈ BK. Then
either K is a round knot or an exceptional cable knot, or diamBK ≥ 2/|π1(Σ)|. ¤

As we observed above, there are no exceptional cable knots in a homology 3-
sphere. Moreover, if a knot K in a homotopy 3-sphere Σ is round, then Σ is S3

and K is a trivial knot. Thus Corollary 1.6 specializes to the following result in the
case that Σ is a homotopy 3-sphere.

Corollary 1.7. Let K be a knot in a homotopy 3-sphere Σ, withM(K) irreducible
and ∞ /∈ BK. Then either diamBK ≥ 2 or Σ is S3 and K is a trivial knot. ¤

1.8. Corollary 1.7 does not extend to knots in an arbitrary homology 3-sphere.
To see this, let us consider any non-trivial oriented knot K in S3, and let Σn be the
result of 1/n Dehn surgery along K. By definition this means that Σn is obtained
from M = M(K) by attaching a solid torus Un along the boundary in such a way
that the boundary of an essential disk in Un is identified with a simple closed curve
whose slope, in terms of the standard framing (µ, λ) of K, is 1/n. A core curve of
Un is then a knot Kn ⊂ Σn. Furthermore, Σn is a homology 3-sphere, and Kn can
be oriented so that its standard framing is (µn, λ), where µn = µ+ nλ. If F is an
essential surface in M whose boundary slope, in terms of the standard framing of
K, is p/q, then the boundary curves of F can be oriented so as to represent the
homology class pµ+ qλ = pµn + (q− pn)λ; thus the boundary slope of F , in terms
of the standard framing of Kn, is p/(q−pn). As this quantity approaches 0 when n
tends to infinity, it follows from Hatcher’s finiteness theorem that diam(BKn) also
approaches 0 as n→∞.

1.9. In order to explain the potential relevance of Theorem 1.1 to the Poincaré
Conjecture, it is convenient to restate it in a contrapositive form. Let Σ be a
closed orientable 3-manifold. Suppose that Σ contains a knot K with the following
property:

(∗) M(K) is irreducible, K is not cabled, ∞ /∈ BK, and diamBK < 2.
In this situation, Theorem 1.1 asserts that if π1(Σ) is cyclic, then K must be a

round knot. According to our definition, this implies that M is a solid torus, so
that Σ is homeomorphic to a (possibly trivial) lens space or to S2 × S1.

We express this by saying that (∗) is a “good property” of a knot. In general,
let Z be a property of knots in closed, orientable 3-manifolds. We will say that Z is
good if every knot K with property Z in a closed, orientable 3-manifold with cyclic
fundamental group is round.

While (∗) is a good property, it follows from 1.8 that many irreducible non-Haken
manifolds contain knots with Property (∗). If one can exhibit a good property Z
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such that every non-Haken manifold contains a knot with Property Z, the Poincaré
Conjecture will follow; more generally, it will follow that every closed 3-manifold Σ
with finite cyclic fundamental group is a lens space. (This deduction is immediate
in the case where Σ is irreducible, since a manifold with finite cyclic fundamental
group is non-Haken. The general case follows from Kneser’s finiteness theorem.)

2. Norms

In the case where K is a hyperbolic knot, Theorem 1.1 follows via elementary
arguments from the properties of the norm on H1(∂M(K);R) that were estab-
lished in [1] and used in the proof of the Cyclic Surgery Theorem. In the case
where M(K) contains an incompressible torus we need to decompose M(K) into
hyperbolic and Seifert-fibered pieces and use a slightly more general version of this
norm to analyze the hyperbolic pieces. The results in [1] apply to manifolds with a
single torus boundary component, but here we need to consider manifolds with sev-
eral torus boundary components. The SL2(C)-character varieties of such manifolds
were considered in [4], but the norm was not introduced in that context.

In this section we sketch the construction of this generalized norm and enumerate
its fundamental properties. We shall use the notation of [1], modified slightly to
accommodate a manifold which may have more than one cusp.

Throughout this section we shall assume thatN is an orientable 3-manifold which
is homeomorphic to the compact core of a finite-volume hyperbolic 3-manifold.
We shall also assume that ∂N consists of tori B0, . . . , Bk, where k ≥ 0. The
manifold N plays the rôle of the manifold M which is discussed in [1], with the
torus component B0 of ∂N replacing the torus ∂M . Accordingly, we identify the
group L = H1(B0;Z) with a lattice in the vector space V = H1(B0;R). We
let e:L → π1(B0) denote the inverse of the Hurewicz map; we often view e as
a homomorphism from L to π1(M) which is well defined up to composition with
inner automorphisms. If α is a primitive element of L then we denote by N(α) the
manifold obtained by glueing a solid torus along B0 so that the meridian of the
solid torus is identified with a curve representing α.

We consider the complex affine algebraic set R = R(π1(N)) of representations
of π1(N) in SL2(C). The set of characters of such representations is also an affine
algebraic set and the map ρ 7→ χρ is a polynomial map. To each element γ of
π1(N) there is associated a function Iγ on X(N) defined by Iγ(χ) = χ(γ) for every
character χ ∈ X(N).

For each i = 1, . . . , k we choose a peripheral element γi 6= 1 in the image of
π1(Bi) in π1(N). We may consider the affine algebraic subset W = W (γ1, . . . , γn)
of X(N) defined by the equations Iγi

= ±2, for i = 1, . . . , n. It is shown in [4, page
541, proof of Theorem 3] that there exists a curve C0 contained in W such that

(C1) C0 contains the character χ0 of a discrete faithful representation of π1(N).
It is also shown that for any such curve C0 we have
(C2) for i = 1, . . . , n, if γ ∈ π1(N) is a peripheral element conjugate to an

element of π1(Bi) then Iγ is identically equal to either 2 or −2 on C0;
and

(C3) if γ 6= 1 is conjugate to an element of π1(B0) then Iγ is non-constant.
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2.1. We let C̃0 denote the smooth projective model of the curve C0. This curve

will replace the curve X̃0 in [1]. As in [1] there is associated to each ideal point x

of C̃0 a non-trivial action of π1(N) on the tree for SL2(F ), where F is the function

field of C̃0 equipped with the discrete valuation vx associated with the smooth
point x. In this section we shall denote this tree by Tx. We shall be considering
surfaces in N which are associated to the action of π1(N) on Tx in the sense of [1,
Definition 1.3.1]. The statements of Propositions 1.2.6, 1.2.7 and 1.3.2 of [1] remain

true with N replacing M and C̃0 replacing X̃0, and the proofs remain the same.
In particular, no point of Tx is fixed by π1(N) and therefore any surface associated
with the action of π1(N) on Tx is non-empty.

The main modification that we must make to the results of [1] consists of re-
placing the class of essential surfaces in M with the class of essential surfaces in
N which are disjoint from the boundary tori B1, . . . , Bk. This is made possible by
the following

Lemma 2.2. If x is any ideal point of C̃0 then for each i = 1, . . . , k the image of
π1(Bi) in π1(N) is contained in the stabilizer of some vertex of Tx

(As in [1] we shall often work with groups that are defined only up to conjugacy
when there is no danger of confusion.)

Proof. For any γ ∈ π1(Bi), for i ≥ 1, the function Iγ is constant on on C̃0. Thus by
[1, Proposition 1.2.6] the element γ fixes a vertex of T . It is shown in [13, Corollary
3 to Proposition 26] that a finitely generated group fixes a vertex of a tree if each
of its elements fixes a vertex. ¤

The next lemma is a slight generalization of Proposition 1.3.8 of [1]. The proof
is identical.

Lemma 2.3. Assume that π1(N) acts on a tree T and that no vertex of T is fixed
by the entire group. Then there exists an essential surface associated to the action.
Furthermore, if K is a subcomplex of ∂N such that for each component K ′ of K
the image of π1(K

′) in π1(N) is contained in a vertex stabilizer, then the surface
may be taken to be disjoint from K. ¤

Generalizing the definition from [1] we define a strict boundary class to be an
element of L which is the boundary class of an essential surface F such that ∂F ⊂ B0

and such that F is not isotopic to the fiber of a fibration of N over S1. (The last
condition is automatic if k ≥ 1.)

The next lemma generalizes Proposition 1.3.9 of [1]

Lemma 2.4. Let x be an ideal point of C̃0. Let α be a primitive element in L
such that Ie(α)(x) 6=∞. then either Ie(β)(x) 6=∞ for all β ∈ L or else α is a strict
boundary class.

Proof. By [1, Proposition 1.2.6] e(α) stabilizes a vertex of Tx. By Lemma 2.2, for
i = 1, . . . , k the image of π1(Bi) in π1(N) also fixes a vertex of Tx. We apply
Lemma 2.3 taking K = B1 ∪ · · · ∪ Bk ∪ c, where c is a simple closed curve B0

representing α. This gives an essential surface S associated to the action of π1(N)
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on Tx such that ∂S is contained in B0 and is disjoint from c. We now proceed
exactly as in the proof of Proposition 1.3.9 of [1]. ¤

If f is an element of the function field C(C0) = C(C̃0) we will denote by Zx(f)

the order of zero of f at the point x ∈ C̃0. If f(x) 6= 0 we set Zx(f) = 0. Similarly
we denote by Πx(f) the order of pole of f at x, with Πx(f) = 0 if f does not have
a pole at x. Thus vx(f) = Zx(f)− Πx(f). For each element α of L we will let fα
denote the function fα = I2

e(α) − 4, which vanishes wherever Ie(α) takes the value 2
or −2.

The next lemma generalizes Proposition 1.6.1 of [1].

Lemma 2.5. Let x be an ideal point of C̃0. Let α and δ be non-zero elements of
L. Suppose that α is primitive and is not a strict boundary class, and that

Zx(fα) > Zx(fδ).

Then M contains a closed orientable π1-injective surface of positive genus. In
particular π1(M(α)) is not cyclic.

Note that the conclusion that π1(α) is not cyclic is non-trivial only in the case
where N has at most two boundary components. The case of two boundary com-
ponents will be crucial for our application of this lemma.

Proof of Lemma 2.5. It suffices to produce a closed surface associated to the action
of π1(N) on Tx. Then the proof of [1, Proposition 1.6.1], which occupies Section
1.6 of [1], goes through without change.

By applying Lemma 2.3 with K = ∂N we see that there will exist a closed
surface if the image of π1(Bi) fixes a vertex of Tx for i = 0, . . . , k. We know from
Lemma 2.2 that the image of π1(Bi) fixes a vertex of Tx for i ≥ 1. Our hypothesis
implies that Ie(α)(x) 6=∞. Since α is not a strict boundary class, we conclude from
Lemma 2.4 that Ie(β)(x) 6=∞ for all β ∈ L. Arguing as in the proof of Lemma 2.2
this implies that the image of π1(B0) fixes a vertex of Tx. ¤

We may view C̃0 and P1 as compact 2-manifolds and regard fα as a branched

covering map from C̃0 to P1. As such, fα has a well-defined topological degree
which equals the number of inverse images of a generic point of P1. The following
result generalizes Proposition 1.1.2 and Corollary 1.1.4 of [1].

Proposition 2.6. There exists a norm || · || on the vector space V which has the
following properties.

(N1) For every α ∈ L, ||α|| is equal to the degree of fα.
(N2) The unit ball of the norm || · || is a (balanced convex) polygon. Each

vertex of this polygon is a rational multiple of a strict boundary class (in
L ⊂ V ).

(N3) If α is a primitive class in L which is not a strict boundary class and if,
in addition, the Dehn-filled manifold N(α) has cyclic fundamental group,
then ||α|| ≤ ||δ|| for each non-zero element δ of L.



BOUNDARY SLOPES OF KNOTS 11

Proof. The proof is essentially the same as the proofs of the corresponding state-
ments in [1], using Lemmas 2.4 and 2.5 in place of Propositions 1.3.9 and 1.6.1 of
[1]. We sketch the main ideas.

Let α be an element of L. We first observe that the degree of fα can be computed

as the sum, over all ideal points p of C̃0, of the order of pole of fα at p. (The function

fα has no poles at ordinary points of C̃0.) Thus we have

deg fα =
∑

x ideal

Πx(fα).

One shows, using the valuation extension theorem exactly as in [1, section 1.4],

that for each ideal point x of C̃0 there exists a homomorphism of abelian groups
φx:L→ Z such that Πx(fα) = |φx(α)| for every α in L. We extend φx to a linear
functional Φx:V → R and for each v ∈ V we set

||v|| =
∑

x ideal

|Φx(v)|.

In particular if α is an element of L then ||α|| equals the degree of fα. Thus the
equality in (N1) holds.

The function ||·|| is a sum of the absolute values of finitely many linear functionals

with integer coefficients, each arising from an ideal point of C̃0. This implies that ||·||
is a linear semi-norm given by a piecewise-linear function with integer coefficients.
If || · || were not a norm then there would exist non-zero element α of L which
was contained in the kernel of every homomorphisms φx. But then the degree of
fα would be zero, i.e. fα would be constant. This is ruled out by condition (C3)
above, so || · || is a norm.

Each vertex u of the unit ball of || · || is an element of the kernel of one of the
linear functionals Φx, where φx is not identically zero. Hence u is a scalar multiple
of a generator α of the kernel of φx. Since φx(α) = 0 we have that fα(x) 6= ∞.
Since φx is not identically zero there exists β in L with fβ(x) =∞. Thus by Lemma
2.4 α is a strict boundary class. This establishes property (N2).

To prove property (N3) we use the observation that the degree of fα can also be

written as the sum of Zx(fα) over all points x ∈ C̃0. We will assume that fα(x) = 0
and consider two cases, according to whether x is an ideal point or not. In each
case we will obtain a contradiction to the hypothesis that π1(N(α)) is cyclic.

Suppose that we are given two arbitrary elements α and δ of L. If x is not an
ideal point then we can apply Proposition 1.5.2 of [1], with M replaced by N and

Xν
0 replaced by the set C̃ν

0 of ordinary points of C̃0. The proof of this proposition,
which occupies Section 1.5 of [1], goes through without change. The essential
property of C0 which is used in the argument is that it contains the character of an
irreducible representation. We conclude that if Zx(fα) > Zx(fδ) then there exists
a representation of π1(N(α)) into PSL2(C) which has non-cyclic image. This is a
contradiction. If x is an ideal point then we can apply Lemma 2.5 to conclude that
if Zx(fα) > Zx(fδ) then π1(N(α)) is non-cyclic, giving a contradiction. ¤
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2.7. As in [1] it will be useful to consider the ball Q = {v: ||v|| ≤ m} where
m = min06=δ∈L ||δ||. It follows from (N2) that this is a balanced convex polygon.
By definition there are no non-zero elements of L in its interior. By a theorem of
Minkowski’s Q has area at most 4 with respect to the natural area element in which
the area of V/L is 1 (cf [1, page 244]). It follows from (N3) that if µ is a primitive
element of L such that π1(N(µ)) is cyclic then µ lies on the boundary of Q. If, in
addition, µ is not a strict boundary class then (N2) implies that µ is not a vertex
of Q and hence lies in the interior of a side.

3. Proof of the Main Theorem

This section is devoted to the proof of Theorem 1.3 which, as was pointed out
in Section 1, is equivalent to Theorem 1.1. Throughout the section Σ will denote
an orientable 3-manifold with cyclic fundamental group, K will denote a knot in Σ
with irreducible complement, and M = M(K) will denote the exterior of K. We
shall assume that K is not round. The solid torus Σ −M will be denoted by U .
We shall let µ denote a meridian of K.

According to the Characteristic Submanifold Theory of Jaco and Shalen [9] and
Johannson [10], and Thurston’s Geometrization Theorem [11], there exists, up to
isotopy, an essential surface TM ⊂ M , each component of which is a torus, with
the property that each component of the manifold N obtained by splitting M
along TM is either a Seifert-fibered space or the compact core of a finite-volume
hyperbolic manifold. We will think ofN as being the complement of an open regular
neighborhood of TM . Let NP ⊂ M denote the component of N that contains the
boundary torus of M . We regard the boundary torus of M as a distinguished
component of ∂NP which we denote B0. The components of the frontier ∂NP −B0

of NP are all tori.

Lemma 3.1. Suppose that ∞ /∈ BsK. Then either NP = M or NP ∪U is a solid
torus. In particular, π1(NP ∪ U) is cyclic and the frontier of NP has at most one
connected component.

Proof. We shall assume that NP 6= M and show that NP ∪ U is a solid torus.
We can write Σ as the union of the two submanifolds NP ∪ U and M −NP which
meet along the frontier of NP . Since TM is essential each component of M −NP is
boundary irreducible. Since Σ has cyclic fundamental group and therefore cannot
contain a π1-injective torus, we conclude that NP ∪U is boundary reducible. Thus
NP ∪ U has a solid torus connected summand. It therefore suffices to show that
NP ∪ U is irreducible.

Since NP is irreducible any 2-sphere which does not bound a ball in NP ∪ U
must meet U . Every isotopy class of 2-spheres in NP ∪ U contains a sphere which
meets the solid torus U in meridian disks. Among all spheres which do not bound
balls and which meet U in meridian disks, choose one, say S, for which the number
of meridian disks is minimal. Then S ∩NP is a properly embedded planar surface
in NP . We claim that S ∩NP is essential. If the inclusion π1(S ∩NP ) → π1(NP )
fails to be injective then we can use a compressing disk for S ∩ NP to produce
two 2-spheres in NP ∪ U . One of these spheres fails to bound a ball in NP ∪ U
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and both meet U in fewer meridian disks than S. We know that S ∩ NP is not
boundary parallel in NP because otherwise S would bound a ball in NP ∪ U . The
surface S ∩ NP cannot be a fiber in a fibration of M over S1 because there is an
essential torus in its complement. This shows that ∞ ∈ BsK, in contradiction to
our hypotheses. ¤

Recall that the hypotheses of Theorem 1.3 specify that the knot K is not a cable.
The next lemma allows us to conclude under this hypothesis that NP is hyperbolic.

Lemma 3.2. Suppose that ∞ /∈ BsK. If NP is Seifert-fibered then K is a cable
knot.

Proof. We fix a Seifert fibration of NP . We may assume that this is not a Seifert
fibration over a Möbius band with no singular fibers since the twisted I-bundle over
a Klein bottle also admits a Seifert fibration over a disk with two singular fibers.
Because TM consists of essential tori we also do not have a Seifert fibration over a
disk with at most one singular fiber, nor a Seifert fibration over an annulus with
no singular fibers.

Next we claim that the meridian is not a Seifert fiber. Let X denote the base
of our Seifert fibration and let β0 be the boundary component of X which is the
image of the torus B0 under the Seifert fibration. We may choose an arc α in X,
with ∂α ⊂ β0, which is essential in the sense that any closed disk having α as its
frontier contains the image of at least one singular fiber. The inverse image of α
under the Seifert fibration is an essential annulus in NP and hence in M . Our
choice of Seifert fibration guarantees that this annulus is not a fiber in a fibration
over S1. Thus the Seifert fiber is a strict boundary slope and hence cannot be the
meridian.

We may therefore extend the Seifert fibration of NP to a Seifert fibration of
NP ∪ U in such a way that K is a fiber. By Lemma 3.1 we know that NP ∪ U has
a cyclic fundamental group. Thus the Seifert fibration must either have base S2

with at most two singular fibers, or base P2 or D2 with at most one singular fiber.
In each of these cases our conditions on the Seifert fibration of NP guarantee that
K must be a regular fiber and that there must be at least one singular fiber in NP .
Let D be a disk in the base of the Seifert fibration of NP ∪U containing the image
of K and the image of exactly one singular fiber. Then the inverse image of D in
NP ∪ U is a solid torus W . Since K is a regular fiber, it is isotopic to a curve on
the boundary of W . If n > 1 denotes the index of the singular fiber in W then K
has geometric intersection number n with a meridian disk of W , and hence K is a
cable. ¤

For the rest of the section we assume that K is not a cable knot, so that by
Lemma 3.2 NP is homeomorphic to the compact core of a finite-volume hyperbolic
3-manifold. We shall follow the conventions of Section 2, taking N = NP and
letting B0 = ∂M be the distinguished boundary component of N . We set V =
H1(B0;R) and L = H1(B0;Z) ⊂ H1(B0;R). We shall work with the norm || · ||
on V = H1(B0;R) which was constructed in Section 2 and, in particular, with
the polygon Q which was defined in 2.7. Recall that Q = {v: ||v|| ≤ m} where
m = min06=δ∈L ||δ||.
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In Section 2 we were considering essential surfaces in N whose boundary is
contained in B0. The boundary classes of such surfaces are elements of L, as are
boundary classes of essential surfaces in M . Recall from the definition that if NP

has at least one frontier component, i.e. is not equal to M , and if F is any essential
surface in NP with ∂F ⊂ B0, then the boundary class of F is automatically a strict
boundary class.

Lemma 3.3. An element of L is a strict boundary class for M if it is a strict
boundary class for NP .

Proof. We may assume that NP has non-empty frontier since otherwise NP = M .
Under this assumption we shall show that if F is an essential surface in NP with
∂F ⊂ B0 then F is a strict essential surface in M . Because the frontier tori of NP

are essential in M , and F is essential in NP , it follows that F is essential in M .
Since the complement of F in M contains esential tori, namely the frontier tori of
NP , the surface F cannot be a fiber in a fibration of M over S1. Thus F is a strict
essential surface in M . ¤

Now we are ready to give the

Proof of Theorem 1.3. Assume that ∞ /∈ BsK. Then by Lemma 3.1 the manifold
NP ∪ U = NP (µ) has cyclic fundamental group. (Lemma 3.1 also implies that the
number of frontier components of N = NP , which was denoted by k in Section 2,
is at most 1.)

Recall from 2.7 that Q is a balanced convex polygon of area at most 4 with
respect to the canonical area element on V such that V/L has area 1. Since NP (µ)
has cyclic fundamental group, we know from 2.7 that µ lies on the boundary of Q.
Moreover, since µ is not a strict boundary class by Lemma 3.3 , we know from 2.7
that µ lies in the interior of a side of Q. Let v1 and v2 be the vertices of Q that
are the endpoints of the side containing µ. By (N2) these are multiples of strict
boundary classes α1 and α2. We shall show that

∣∣∣∣
〈α1, α2〉

〈α1, µ〉〈α2, µ〉

∣∣∣∣ ≥ 2.

We may extend the intersection pairing 〈·, ·〉 on L to an alternating bilinear
pairing on the vector space V , also denoted 〈·, ·〉. We then have

∣∣∣∣
〈α1, α2〉

〈α1, µ〉〈α2, µ〉

∣∣∣∣ =
∣∣∣∣

〈v1, v2〉

〈v1, µ〉〈v2, µ〉

∣∣∣∣ .

We write µ = tv1 + (1− t)v2. We have

〈v1, µ〉 = (1− t)〈v1, v2〉 and 〈v2, µ〉 = −t〈v1, v2〉.

Since the parallelogram with vertices at ±v1 and ±v2 is contained in Q, its area,
2|〈v1, v2〉|, is at most 4.
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Hence ∣∣∣∣
〈v1, v2〉

〈v1, µ〉〈v2, µ〉

∣∣∣∣ =
∣∣∣∣

1

t(t− 1)〈v1, v2〉

∣∣∣∣ ≥
1

2t(1− t)
.

The right hand side of this inequality is bounded below by 2 since the maximum
value on [0, 1] of the function t(1− t) is 1/4. This completes the proof. ¤

We end by giving the

Proof of Proposition 1.5. Let M0 = Σ− U0 and let (µ0, ν0) be a framing of U0. Let
pµ0 + qν0 ∈ H1(∂U0;Z) be the class represented by the knot K.

We may choose the regular neighborhood U(K) of K so that the boundary torus

of U0 meets M = M(K) = Σ− U(K) in an annulus A. The boundary curves of A
are parallel in ∂U0 to the knot K, and thus have slope p/q on ∂U0. We claim that
either K is a round knot or A is an essential annulus in M0. If A is compressible,
then the knot K bounds a disk in Σ. But, since Σ is irreducible, this implies that Σ
is a 3-sphere and K a trivial knot. In particular, K is round. On the other hand, if
A is boundary-parallel then, since K is a cable on U0 and hence meets the meridian
of U0 at least twice, A must be parallel to the annulus ∂M ∩M0. This implies that
M0 is a solid torus whose core is parallel to K. Again, this shows that K is round.
This proves the claim. We may therefore assume that A is essential.

Let α be a class in H1(∂U(K);Z) represented by the boundary components of
A, and let µ be a meridian of U(K). Note that (µ, α) is a framing of K. Since we
have assumed that A is essential, α is a boundary class for M .

Let µ, µ0 and ν0 and α denote the elements of H1(M ;Z) which are the images
under inclusion of µ, µ0 and ν0 and α respectively. In particular, we have α =
pµ0 + qν0. Moreover, we have the relation qµ = µ0. To see this, consider a solid
torus U ′ which is isotopic to U(K) by a small isotopy and is contained in the interior
of U0. Let D be a meridian disk of U0 which meets U ′ in q meridian disks of U ′.
Since the meridian of U ′ represents the class µ, the planar surface D − U ′ exhibits
the relation in question.

Since H1(Σ;Z) is finite, the image of ν0 under the inclusion homomorphism
H1(M0;Z) → H1(Σ;Z) is an element of some finite order n. Note that n is equal
to the order of a class in H1(Σ;Z) which is represented by a core curve of U0. Since
H1(Σ;Z) is the quotient of H1(M0;Z) by the cyclic subgroup generated by the
image of µ0, we have mµ0 +nν0 = 0 for some integer m. In particular the external
longitude of U0 has slope m/n with respect to the framing (µ0, ν0). Since K is a
non-exceptional cable it follows that m/n 6= p/q, so ∆ = pn− qm is non-zero.

Let us write the external longitude of K as aµ+ bα where a and b are arbitrary
integers. Then aµ+ bα is a torsion element in H1(M ;Z). On the other hand

naµ+ nbα = naµ+ nbpµ0 + nbqν0

= naµ+ nbpqµ−mbq2µ

= (na+∆qb)µ.

We know that the class µ has infinite order, since otherwise H1(Σ) would be
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infinite. Thus we must have
a

b
=
−∆q

n
.

We have |q| ≥ 2 by the definition of a cable. Thus |a/b| ≥ 2/n. With respect
to the framing (µ, α) of K we have 0 ∈ BK ′ since α is the boundary class of an
essential annulus, and a/b ∈ BK since aµ + bν is an external longitude of K. It
follows that

diamBK ≥ |a/b| ≥ 2/n.

¤
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