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Preface

Linear algebra and matrix theory, abbreviated here as LAMT, is a foundation for
many advanced topics in mathematics, and an essential tool for computer sciences,
physics, engineering, bioinformatics, economics, and social sciences. A first course
in linear algebra for engineers is like a cook book, where various results are given
with very little rigorous justifications. For mathematics students, on the other hand,
linear algebra comes at a time when they are being introduced to abstract concepts
and formal proofs as the foundations of mathematics. In this case, very little of
fundamental concepts of LAMT are covered. For a second course in LAMT there
are a number of options. One option is to study the numerical aspects of LAMT, as
for example in the book [8]. A totally different option, as in the popular book [11],
which views LAMT as a part of a basic abstract course in algebra.

This book is aimed to be an introductory course in LAMT for beginning gradu-
ate students and an advanced (second) course in LAMT for undergraduate students.
Reconciling such a dichotomy was made possible thanks to more than a decade of
teaching the subject by the first author, in the Department of Mathematics, Statis-
tics and Computer Science, the University of Illinois at Chicago, to both graduate
students, and to advanced undergraduate students.

In this book, we used the abstract notions and arguments to give the com-
plete proof of the Jordan canonical form, and more generally, the rational canonical
forms of square matrices over fields. Also, we provide the notion of tensor prod-
ucts of vector spaces and linear transformations. Matrices are treated in depth:
stability of matrix iterations, the eigenvalue properties of linear transformations in
inner product space, singular value decomposition, and mini-max characterizations
of Hermitian matrices and non-negative irreducible matrices.

We now briefly outline out the contents of this book. There are six chapters.
The first chapter is a survey of basic notions. Some sections in this chapter are from
other areas of mathematics, as elementary set theory, analysis, topology, and com-
binatorics. These sections can be assigned to students for self-study. Other sections
deal with basic facts in LAMT, which may be skipped if the students are already
familiar with them. The second chapter is a brief introduction to tensor products
of finite dimensional vector spaces, tensor products of linear transformations, and
their representations as Kronecker product. This chapter can either be skipped or
can be taught later in the course The third chapter is a rigorous exposition of the
Jordan canonical form over an algebraically closed field (which is usually the com-
plex numbers in the engineering world), and a rational canonical form for linear
operators and matrices. Again, the section dealing with cyclic subspaces and ratio-
nal canonical forms can be skipped without losing consistency. Chapter 4 deals with
applications of the Jordan canonical form of matrices with real and complex entries.
First, we discuss the precise expression of f(A), where A is a square matrix and f
is a polynomial, in terms of the components of A. We then discuss the extension of
this formula to functions f which are analytic at a neighborhood of the spectrum of
A. The instructor may choose one particular application to teach from this chapter.
Fifth chapter, the longest one, is devoted to properties of inner product spaces, and
special linear operators such as normal, Hermitian and unitary. We bring the min-
max and max-min characterizations of the eigenvalues of Hermitian matrices, the
singular value decomposition and its minimal low rank approximation properties.
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The last chapter deals with basic aspects of the Perron-Frobenius theory, which are
not usually found in a typical linear algebra book.

One of the main objectives of this book is to show the variety of topics and tools
that modern linear algebra and matrix theory encompass. To facilitate the reading
of this book we have a good number of worked-out problems, helping the reader,
especially those preparing for an exam such as a graduate preliminary exam, to
better-understand the notions and results discussed in each section. We also provide
a number of problems for instructors to assign, as well, to complement the material.

Perhaps, it will be hard to cover all these topics in a one-semester graduate
course. However, as many sections of these book are independent, the instructor
may choose appropriate sections as needed.

August 2016 Shmuel Friedland

Mohsen Aliabadi
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Chapter 1

Preliminaries

1.1 Basic facts in abstract algebra

1.1.1 Groups

A binary operation on a set A is a map which sends elements of the Cartesian product
A ×A to A. A group denoted by G, is a set of elements with a binary operation ⊕,
i.e. a⊕ b ∈ G, for each a, b ∈ G. This operation is

(i) associative: (a⊕ b) ⊕ c = a⊕ (b⊕ c);

(ii) there exists a neutral element ◯ such that a⊕◯ = a, for each a ∈ G;

(iii) for each a ∈ G, there exists a unique ⊖a such that a⊕(⊖a) = ◯.

The group G is called abelian (commutative) if a⊕ b = b⊕ a, for each a, b ∈ G. Oth-
erwise, it is called nonabelian (noncommutative).

Examples of abelian groups

1. The following subsets of complex numbers where ⊕ is the standard addition
+, ⊖ is the standard subtraction − and the neutral element is 0.

(a) The set of integers Z.

(b) The set of rational numbers Q.

(c) The set of real numbers R.

(d) The set of complex numbers C

2. The following subsets of C∗ ∶= C/{0}, i.e. all non-zero complex numbers, where
the operation ⊕ is the standard product, the neutral element is 1, and ⊖a is
a−1.

(a) Q∗ ∶= Q/{0}.

(b) R∗ ∶= R/{0}.

(c) C∗ ∶= C/{0}.
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An example of nonabelian group
The quaternion group is a group with eight elements, which is denoted as (Q8,⊕)
and defined as follows:
Q8 = {1,−1, i,−i, j,−j, k,−k}, 1 is the identity element and
(−1) ⊕ (−1) = 1
(−1) ⊕ i = −i
(−1) ⊕ j = −j
(−1) ⊕ k = −k
i⊕ j = k
j ⊕ i = −k
j ⊕ k = i
k ⊕ j = −i
k ⊕ i = j
i⊕ k = −j,
and the remaining relations can be deduced from these. Clearly, Q8 is not abelian
as for instance i⊕ j ≠ j ⊕ i.

1.1.2 Rings

From now on, we will denote the operation ⊕ by +. An abelian group R is called
a ring , if there exists a second operation, called product, denoted by ab , for any
a, b ∈ R, which satisfies:

(i) associativity: (ab)c = a(bc);

(ii) distributivity: a(b + c) = ab + ac, (b + c)a = ba + ca, (a, b, c ∈ R);

(iii) existence of identity 1 ∈ R: 1a = a1 = a, for all a ∈ R.

Also, R is called a commutative ring if ab = ba, for all a, b ∈ R. Otherwise, R is
called a noncommutative ring.

Examples of rings

1. For a positive integer n > 1, the set of n×n complex valued matrices, denoted
by Cn×n, with the addition A +B, product AB, and with the identity In, the
n × n identity matrix . (We will introduce the concept of a matrix in section
1.5.) Furthermore, the following subsets of Cn×n:

(a) Zn×n, the ring of n × n matrices with integer entries. (Noncommutative
ring).

(b) Qn×n, the ring of n×n matrices with rational entries. (Noncommutative
ring).

(c) Rn×n, the ring of n×n matrices with real entries. (Noncommutative ring).

(d) Cn×n. (Noncommutative ring).

(e) D(n,S), the set of n×n diagonal matrices with entries in S = Z,Q,R,C.
(Commutative ring).

(Diagonal matrices are square matrices in which their entries outside the main
diagonal are zero.)
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2. Zm = Z/(mZ), all integers modulo a positive integer m, with the addition and
multiplication modulo m. Clearly, #Zm, the number of elements in Zm, is m
and Zm can be identified with {0,1, . . . ,m − 1}.

A subring of a ring R is a subset S of R which contains 1 and is closed under
subtraction and multiplication.
An ideal is a special kind of subring. A subring I of R is a left ideal if a ∈ I, r ∈ R
imply ra ∈ I. A right ideal is defined similarly. A two-sided ideal (or just an ideal)
is both left and right ideal. That is, a, b ∈ I, r ∈ R imply a − b, ar, ra ∈ I. It can be
shown that if R is a commutative ring and a ∈ R, then the set I = {ra; r ∈ R} is
an ideal of R. This ideal is called the principal ideal generated by a and is denoted
by ⟨a⟩. If I is an ideal of R and r ∈ R, r + I is defined as {r + x;x ∈ I}. Consider
the set R/I of all cosets a + I, where a ∈ R. On this set, we define addition and
multiplication as follows:

(a + I) + (b + I) = (a + b) + I,
(a + I)(b + I) = ab + I.

With these two operations, R/I is a ring called the quotient ring by I. (Why R/I
is a ring?)

1.1.3 Fields and division rings

A commutative ring R is called a field if each non-zero element a ∈ R has a unique
inverse, denoted by a−1 such that aa−1 = 1. A field is usually denoted by F.
A ring R is called a division ring if any non-zero element a ∈ R has a unique inverse.

Examples of fields

1. Q,R,C, with the standard addition and product.

2. Zm, where m is a prime integer.

An example of a division ring - the quaternion ring
Let QR = {(x1, x2, x3, x4) ∣ xi ∈ R, i = 1,2,3,4}. Define + and ⋅ on QR as follows:

(x1, x2, x3, x4) + (y1, y2, y3, y4) = (x1 + y1, x2 + y2, x3 + y3, x4 + y4)
(x1, x2, x3, x4) ⋅ (y1, y2, y3, y4) = (x1y1 − x2y2 − x3y3 − x4y4,

x1y2 + x2y1 + x3y4 − x4y3,

x1y3 + x3y1 + x4y2 − x2y4,

x1y4 + x2y3 − x3y2 + x4y1).

One can view QR as four dimensional space vector space over R, consisting of vectors
x = x1 + x2i+ x3j+ x4k. Then the product x ⋅y is determined by the product (⊕) in
the nonabelian group Q8 introduced in §1.1.1.

From the definition of + and ⋅, it follows that + and ⋅ are binary operations on
QR. Now + is associative and commutative because addition is associative and
commutative in R. We also note that (0,0,0,0) ∈ QR is the additive identity
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and if (x1, x2, x3, x4) ∈ QR, then (−x1,−x2,−x3,−x4) ∈ QR and −(x1, x2, x3, x4) =
(−x1,−x2,−x3,−x4). Hence, (QR,+) is a commutative group. Similarly, ⋅ is associa-
tive and (1,0,0,0) ∈ QR is the multiplicative identity.
Let (x1, x2, x3, x4) ∈ QR be a nonzero element. Then, N = x2

1+x2
2+x2

3+x2
4 ≠ 0 and N ∈

R. Thus, (x1/N,−x2/N,−x3/N,−x4/N) ∈ QR. It is verified that (x1/N,−x2/N,−x3/N,−x4/N)
is the multiplicative inverse of (x1, x2, x3, x4). Thus, QR is a division ring and is
called the ring of real quaternions. However, QR is not commutative because

(0,1,0,0) ⋅ (0,0,1,0) = (0,0,0,1) ≠ (0,0,0,−1) = (0,0,1,0) ⋅ (0,1,0,0).

Therefore, QR is not a field.

1.1.4 Vector spaces, modules and algebras

An abelian group V is called a vector space over a field F, if for any a ∈ F and
v ∈ V the product av is an element in V, and this operation satisfies the following
properties:

a(u + v) = au + av, (a + b)v = av + bv, (ab)u = a(bu) and 1v = v,

for all a, b ∈ F,u,v ∈ V.
A module M is a vector space over a ring. The formal definition is exactly as

above, but we use a ring R instead of a field. In this case, M is called to be an
R-module.

A ring R is called an algebra over F if R is a vector space over F with respect
to the addition operation +. Denote by ⋅ the product in R. Then for any x,y,z in
R and a, b in F the following equalities hold:

(i) (x + y) ⋅ z = x ⋅ z + y ⋅ z,

(ii) x ⋅ (y + z) = x ⋅ y + x ⋅ z,

(iii) (ax) ⋅ (by) = (ab)(x ⋅ y).
The algebra R is called a division algebra if for any y ∈ R∖{0}, there exists exactly
one element z in R such that z ⋅y = y ⋅z = 1. In what follows we denote for simplicity
x ⋅ y by xy and no ambiguity will arise.

Examples of vector spaces, modules and algebras

1. If M is a vector space over the field F, then M is an F-module.

2. Let M = Rm×n be the set of all m × n matrices with entries in the ring R.
Then M is an R-module, where addition is ordinary matrix addition and
multiplication of the scalar c by matrix A means the multiplication of each
entry of A by c.

3. In the above example, if we change the ring R to a field F, then V = Fm×n
would be a vector space over F.

4. Every abelian group A is a Z-module. Addition and subtraction are defined
according to the group structure of A; the point is that we can multiply x ∈ A
by the integer n. If n > 0, then nx = x + x + ⋯ + x (n times); if n < 0, then
nx = −x − x −⋯ − x (∣n∣ times, where ∣ ∣ denotes the absolute value function.)
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5. Every commutative ring R is an algebra over itself.

6. An arbitrary ring R is always a Z-algebra.

7. If R is a commutative ring, then Rn×n, the set of all n×n matrices with entries
in R is an R-algebra.

1.1.5 More about groups

A setG is called to be a semigroup if it has a binary operation satisfying the condition
(ab)c = a(bc), for any a, b, c ∈ G. (Here, the product operation is replaced by ⊕.)

A subset H of G is called a subgroup of G if H also forms a group under the
operation of G. The set of the integers Z is a subgroup of the group of rational
numbers Q under ordinary addition.

A subgroup N of a group G is called a normal subgroup if for each element n in
N and each g in G, the element gng−1 is still in N . We use the notation N ⊲ G
to denote that N is a normal subgroup of G. For example, all subgroups N of an
abelian group G are normal (why?).

The center of a group G, denoted by Z(G), is the set of elements that commute
with every element of G, i.e.

Z(G) = {z ∈ G; zg = gz, ∀g ∈ G}.

Clearly, Z(G) ⊲ G.

For a subgroup H of a group G and an element x of G, define xH to be the set
{xh;h ∈ H}. A subset of G of the form xH is said to be a left coset of H (a right
coset of H is defined similarly.) For a normal subgroup N of the group G, the
quotient group of N in G, written G/N and read “G modulo N”, is the set of cosets
of N in G. It is easy to see that G/N is a group with the following operation:

(Na)(Nb) = Nab, for all a, b ∈ G.

A group G is called finitely generated if there exist x1, . . . ,xn in G such that every
x in G can be written in the form x = x±1

i1
⋯x±1

im
, where i1, . . . , im ∈ {1, . . . , n} and m

ranges over all positive integers. In this case, we say that the set {x1, . . . ,xn} is a
generating set of G.
A cyclic group is a finitely generated group, which is generated by a single element.
A group homomorphism is a map ϕ ∶ G1 → G2 between two groups G1 and G2

such that the group operation is preserved, i.e. ϕ(xy) = ϕ(x)ϕ(y), for any x,y ∈
G1. A group homomorphism is called an isomorphism if it is bijective. If ϕ is an
isomorphism, we say that G1 is isomorphic to G2 and we use the notation G1 ≅ G2.
It is easy to show that the isomorphisms of groups form an equivalence relation on
the class of all groups. (See Section 1.2 about equivalence relation.)
The kernel of a group homomorphism ϕ ∶ G1 → G2 is denoted by kerϕ and it is
the set of all elements of G1 which are mapped to the identity element of G2. The
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kernel is a normal subgroup of G1. Also, the image of ϕ is denoted by Imϕ and is
defined as follows:

Imϕ = {y ∈ G2;∃x ∈ G1 such that ϕ(x) = y}.

Clearly, Imϕ is a subgroup of G2. (and even its normal subgroup). Also, the cokernel
of ϕ is denoted by cokerϕ and defined as cokerϕ = G2/Imϕ.

Now, we are ready to give the three isomorphism theorems in the context of groups.
The interested reader is referred to [11] to see the proofs and more details about
these theorems.

First isomorphism theorem

Let G1 and G2 be two groups and ϕ ∶ G1 → G2 be a group homomorphism. Then,
G1/kerϕ ≅ Imϕ. In particular, if ϕ is surjective, then G1/kerϕ is isomorphic to G2.

Second isomorphism theorem

Let G a group and S be a subgroup of G and N be a normal subgroup of G. Then

1. The product SN = {sn; s ∈ S and n ∈ N} is a subgroup of G.

2. S ∩N ⊲ S.

3. SN/N ≃ S/S ∩N .

Third isomorphism theorem

1. If N ⊲ G and K is a subgroup of G such that N ⊆ K ⊆ G, then K/N is a
subgroup of G/N .

2. Every subgroup of G/N is of the form K/N , for some subgroup K of G such
that N ⊆K ⊆ G.

3. If K is a normal subgroup of G such that N ⊆ K ⊆ G, then K/N is a normal
subgroup of G/N .

4. Every normal subgroup of G/N is of the form K/N , for some normal subgroup
K of G such that N ⊆K ⊆ G.

5. If K is a normal subgroup of G such that N ⊆K ⊆ G, then the quotient group

(G/N)/ (K/N) is isomorphic to G/K.

Assume that G is a finite group and H its subgroup. Then G is a disjoint union
of cosets of H. Hence the order of H, (#H), divides the order of G - Lagrange’s
theorem. Note that this is the case for vector spaces, i.e. if V is a finite vector
space (this should not be assumed as a finite dimensional vector space.), and W is
its subspace, then #W divides #V . We will define the concept of “dimension” for
vector spaces in subsection 1.6.2.
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1.1.6 The group of bijections on a set X

Let X ,Y be two sets. Then, φ ∶ X → Y is called a mapping , i.e. for each x ∈ X ,
φ(x) is an element in Y. Moreover, φ ∶ X → X is called the identity map if φ(x) = x,
for each x ∈ X . The identity map is denoted as id or idX . Let ψ ∶ Y → Z. Then, one
defines the composition map ψ ○ φ ∶ X → Z as follows (ψ ○ φ)(x) = ψ(φ(x)). A map
φ ∶ X → Y is called bijection if there exists ψ ∶ Y → X such that ψ○φ = idX , φ○ψ = idY
and ψ is denoted as φ−1. Denote by S(X) the set of all bijections of X onto itself. It
is easy to show that S(X) forms a group under the composition, with the identity
element idX . Assume that X is a finite set. Then, any bijection ψ ∈ S(X) is called
a permutation and S(X) is called a permutation group.

Let X be a finite set. Then S(X) has n! elements if n is the number of elements
in X . Assume that X = {x1, . . . , xn}. We can construct a bijection φ on X as follows:

(1) Assign one of the n elements of X to φ(x1). (There are n possibilities for
φ(x1) in X .)

(2) Assign one of the n − 1 elements of X − {φ(x1)} to φ(x2). (There are n − 1
possibilities for φ(x2) in X − {φ(x1)}.)

⋮

(n) Assign the one remaining element to φ(xn). (There is only one possibility for
φ(xn).)

This method can generate n(n − 1)⋯1 = n! different bijections of X .

1.1.7 More about rings

If R and S are two rings, then a ring homomorphism from R to S is a function
ϕ ∶ R→ S such that

(i) ϕ(a + b) = ϕ(a) + ϕ(b),

(ii) ϕ(ab) = ϕ(a)ϕ(b),

for each a, b ∈ R.
A ring homomorphism is called an isomorphism if it is bijective.
Note that we have three isomorphism theorems for rings which are similar to iso-
morphism theorems in groups. See [11] for more details.

Remark 1.1.1 If ϕ ∶ (R,+, ⋅) → (S,+, ⋅) is a ring homomorphism, then ϕ ∶
(R,+) → (S,+) is a group homomorphism.

Remark 1.1.2 If R is a ring and S ⊂ R is a subring, then the inclusion i ∶ S↪
R is a ring homomorphism. (Why?)
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1.1.8 More about fields

Let F be a field. Then by F[x] we denote the set of all polynomials p(x) = anxn +
⋯ + a0, where x0 ≡ 1. p is called monic if an = 1. The degree of p, denoted as deg p,
is n if an ≠ 0. F[x] is a commutative ring under the standard addition and product
of polynomials. F[x] is called the polynomial ring in x over F. Here 0 and 1 are
the constant polynomials having value 0 and 1, respectively. Moreover F[x] does
not have zero divisors, i.e. if p(x)g(x) = 0, then either p or q is zero polynomial. A
polynomial p(x) ∈ F[x] is called irreducible (primitive) if the decomposition p(x) =
q(x)r(x) in F[x] implies that either q(x) or r(x) is a constant polynomial.

A subfield F of a ring R is a subring of R that is a field. For example, Q is a
subfield of R under the usual addition. Note that Z2 is not a subfield of Q, even
though Z2 = {0,1} can be viewed as a subset of Q and both are fields. (Why is Z2

not a subfield of Q?) If F is a subfield of a field E, one also says that E is a field
extension of F, and one writes E/F is a field extension. Also, if C is a subset of E,
we define F(C) to be the intersection of all subfields of E which contains F ∪C. It
is verified that F(C) is a field and F(C) is called the subfield of E generated by C
over F. In the case C = {a}, we simply use the notation F(a) for F(C).
If E/F is a field extension and α ∈ E, then α is called to be algebraic over F, if
α is a root of some polynomial with coefficients in F; otherwise α is called to be
transcendental over F. If m(x) is a monic irreducible polynomial with coefficients
in F and m(x) = 0, then m(x) is called a minimal polynomial of α over F.

Theorem 1.1.3 If E/F is a field extension and α ∈ E is algebraic over F, then

1. The element α has a minimal polynomial over F.

2. Its minimal polynomial is determined uniquely.

3. If f(α) = 0, for some non-zero f(x) ∈ F[x], then m(x) divides f(x).

The interested reader is referred to [11] to see the proof of Theorem 1.1.3.

1.1.9 The characteristic of a ring

Give a ring R and a positive integer n. For any x ∈ R, by n ⋅ x, we mean

n ⋅ x = x +⋯ + x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n terms

.

It may happen that for a positive integer c we have

c ⋅ 1 = 1 +⋯ + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
c terms

= 0.

For example in Zm = Z/(mZ), we have m ⋅1 =m = 0. On the other hand in Z, c ⋅1 = 0
implies c = 0, and then no such positive integer exists.
The smallest positive integer c for which c ⋅ 1 = 0 is called the characteristic of R. If
no such number c exists, we say that R has characteristic zero. The characteristic
of R is denoted by charR. It can be shown that any finite ring is of non-zero
characteristic. Also, it is proven that the characteristic of a field is either zero or
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prime. (See Worked-out Problem 1.5.1-2.) Notice that in a field F with charF = 2,
we have 2x = 0, for any x ∈ F. This property makes fields of characteristic 2
exceptional. For instance, see Theorem 1.11.3 or Worked-out Problem 1.11.4-3.

1.2 Basic facts in set theory

A relation from a set A to a set B is a subset of A ×B where

A ×B = {(a, b); a ∈ A and b ∈ B}.

A relation on a set A is a relation from A to A, i.e. a subset of A × A. Given a
relation R on A, i.e. R ⊆ A ×A, we write x ∼ y if (x, y) ∈ R.
An equivalence relation on a set A is a relation on A that satisfies the following
properties:

(i) Reflexivity: For all x ∈ A, x ∼ x,

(ii) Symmetricity: For all x, y ∈ A, x ∼ y implies y ∼ x,

(iii) Transitivity: For all x, y, z ∈ A, x ∼ y and y ∼ z imply x ∼ z.

If ∼ is an equivalence relation on A and x ∈ A, the set Ex = {y ∈ A; x ∼ y} is called
the equivalence class of x. Another notation for the equivalence class Ex of x is [x].
A collection of non-empty subsets A1,A2, . . . of A is called a partition of A if it has
the following properties:

(i) Ai ∩Aj = ∅ if i ≠ j,

(ii) ∪
i
Ai = A.

The following fundamental results are about the connection between equivalence
relation and a partition of a set. See [19] for their proofs and more details.

Theorem 1.2.1 Given an equivalence relation on a set A. The set of distinct
equivalence classes forms a partition of A.

Theorem 1.2.2 Given a partition of A into sets A1, . . . ,An. The relation de-
fined by “x ∼ y if and only if x and y belong to the same set Ai from the partition”
is an equivalence relation on A.

1.3 Basic facts in analysis

A metric space is an ordered pair (X,d), where X is a set and d is a metric on X,
i.e. a function d ∶X ×X → R, such that for any x, y, z ∈X, the following conditions
hold:

(i) non-negativity
d(x, y) ≥ 0,

(ii) identity of indiscernibles
d(x, y) = 0 if and only if x = y,
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(iii) symmetry
d(x, y) = d(y, x),

(iv) triangle inequality
d(x, z) ≤ d(x, y) + d(y, z).

For any point x in X, we define the open ball of radius r > 0 (where r is a real
number.) about x as the set B(x, r) = {y ∈X ∶ d(x, y) < r}.
A subset U of X is called open if for every x in U , there exists an r > 0 such that
B(x, r) is contained in U . The complement of an open set is called closed.
A metric space X is called bounded if there exists some real number r, such that
d(x, y) ≤ r, for all x, y in X.

Example 1.3.1 (Rn, d) is a metric space for d(x, y) =
√
∑ni=1(xi − yi)2, where

x = (x1, . . . , xn) and y = (y1, . . . , yn). This metric space is well-known as Euclidean
metric space. The Euclidean metric on Cn is the Euclidean metric on R2n, where
Cn viewed as R2n ≡ Rn ×Rn.

If {sn} ⊆ X is a sequence and s ∈ X, it is called sn converges to s if the following
condition holds:
“for any positive real ε, there exists N such that d(sn, s) < ε, for any n > N”. This
is denoted by sn → s or limn→∞ sn = s.
For X = R the limit inferior of {sn} is denoted by lim infn→∞ sn and is defined by
lim infn→∞ sn ∶= limn→∞ (infm≥n sm). Similarly, the limit superior of {sn} is denoted
by lim supn→∞ sn and defined by lim supn→∞ sn ∶= limn→∞ (supm≥n sm). Note that
lim infn→∞ sn and lim supn→∞ sn can take the values ±∞.
The subset Y of X is called compact if every sequence in Y has a subsequence that
converges to a point in Y .
It can be shown that if F ⊆ Rn (or F ⊆ Cn), the following statements are equivalent:

(i) F is compact.

(ii) F is closed and bounded.

The interested reader is referred [18] to see the proof of the above theorem.

The sequence {sn} ⊆X is called Cauchy if the following condition holds:
“For any positive real number ε, there is a positive integer N such that for all natural
numbers m,n > N , d(xn, xm) < ε”.
It can be shown that every convergent sequence is a Cauchy sequence. But the
converse is not true necessarily. For example if X = (0,∞) with d(x, y) = ∣x − y∣,
then sn = 1

n is a Cauchy sequence in X but not convergent. (As sn converges to 0
and 0 /∈X.)
A metric space X in which every Cauchy sequence converges in X is called complete.
For example, the set of real numbers is complete under the metric induced by the
usual absolute value but the set of rational numbers is not. (Why?)
We end up this section with Big O notation.
In mathematics, it is important to get a handle on the approximation error. For

example it is written ex = 1 + x + x
2

2
+O(x3), to express the fact that the error is

smaller in an absolute value than some constant times x3 if x is close enough to
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0. For formal definition, suppose f(x) and g(x) are two functions defined on some
subsets of real numbers. We write

f(x) = O(g(x)) , x→ 0

if and only if there exist positive constants ε and C such that

∣f(x)∣ < C ∣g(x)∣ , for all ∣x∣ < ε.

1.4 Basic facts in topology

A topological space is a set X together with a collection of its subsets T , whose
elements are called open sets, satisfy

(i) ∅ ∈ T ,

(ii) X ∈ T ,

(iii) The intersection of a finite number of sets in T is also in T ,

(iv) The union of an arbitrary number of sets in T is also in T .

(Here, P (X) denotes the power set of X and T ⊂ P (X).)
Note that a closed set is a set whose complement is an open set. Let (X,T ) and
(Y,T ′) be two topological spaces. A map f ∶ X → Y is said to be continuous if
U ∈ T ′ implies f−1(U) ∈ T , for any U ∈ T ′.
The interested reader is encouraged to investigate the relation between continuity
between metric spaces and topological spaces. In particular, the above definition
inspires to check whether the inverse image of an open set under a continuous
function is open or not, in metric space sense? We finish this section by defining
path connectedness for topological spaces. A topological space X is said to be path
connected if for any two points x1 and x2 ∈ X, there exists a continuous function
f ∶ [0,1] →X such that f(0) = x1 and f(1) = x2.
The reader is referred to [13] for more results on topological spaces.

1.5 Basic facts in graph theory

A graph G consists of a set V (or V (G)) of vertices, a set E (or E(G)) of edges,
and a mapping associating to each edge e ∈ E(G) an unordered pair x, y of vertices
called the ends of e. The cardinality of V(G) is called the order of G. Also, the
cardinality of E(G) is called the degree of G. We say an edge is incident with its
ends, and that is joints its ends. Two vertices are adjacent if they are jointed by a
graph edge. The adjacency matrix , sometimes also called the connection matrix of
a graph is a matrix with rows and columns labeled by graph vertices, with a 1 or 0
in position (vi, vj) according to whether vi and vj are adjacent or not. (Here vi and
vj are two vertices of the graph.)
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Example 1.5.1 Consider the following graph:

......

x1

.

x3

.

x4

.

x2

1

Two vertices x1 and x2 are not adjacent. Also, x1 and x4 are adjacent. Here, the
adjacency matrix is

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
For the graph G = (V,E), a matching M in G is a set of pairwise non-adjacent

edges, that is, no two edges share a common vertex. A perfect matching is a matching
which matches all vertices of the graph.
A bipartite graph (or bigraph) is a graph whose vertices can be divided into two
disjoint sets V1 and V2 such that every edge connects a vertex in V1 to one in V2.
Here, V1 and V2 are called bipartite sets of G. If #V1 = #V2, G is called balanced
bipartite.
A directed graph, abbreviated as digraph, is denoted by D = (V,E). V is the set of
vertices and E is the set of directed edges, abbreviated as diedges, in G. So E is a
subset of V × V = {(v,w); v,w ∈ V }. Thus (v,w) ∈ E is a directed edge from v to
w. For example, the graph D = ([4],{(1,2), (2,1), (2,3), (2,4), (3,3), (3,4), (4,1)})
has 4 vertices and 7 diedges.
The diedge (v, v) ∈ E is called a loop, or selfloop.

degin v ∶= #{(w, v) ∈ E}, degout v ∶= #{(v,w) ∈ E},

the number of diedges to v and out of v in D. Here, degin, degout are called the in
and out degrees, respectively. Clearly we have

∑
v∈V

degin v = ∑
v∈V

degout v = #E. (1.5.1)

v ∈ V is called isolated if degin(v) = degout(v) = 0.
A multigraph G = (V,E) has undirected edges, which may be multiple, and may
have multiple loops. A multidigraph D = (V,E) may have multiple diedges.
Each multidigraph D = (V,E) induces an undirected multigraph G(D) = (V,E′),
where each deidges (u, v) ∈ E is viewed as undirected edge (u, v) ∈ E′. (Each loop
(u, v) ∈ E will appear twice in E′.) Vice versa, a multigraph G = (V,E′) induces
a multidigraph D(G) = (V,E), where each undirected edge (u, v) induces diedges
(u, v) and (v, u), when u ≠ v. The loop (u,u) appears p times in D(G) if it appears
p times in G.
Most of the following notions are the same for graphs, digraphs, multigraphs or
multidigraphs, unless stated otherwise. We state these notions for directed multidi-
graphs D = (V,E) mostly.

Definition 1.5.2
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1. A walk in D = (V,E) given by v0v1⋯vp, where (vi−1, vi) ∈ E for i = 1, . . . , p.
One views it as a walk that starts at v0 and ends at vp. The length of the walk
p, is the number of edges in the walk.

2. A path is a walk where vi ≠ vj for i ≠ j.

3. A closed walk is walk where vp = v0.

4. A cycle is a closed walk where vi ≠ vj, for 0 ≤ i < j < p. A loop (v, v) ∈ E is
considered a cycle of length 1. Note that a closed walk vwv, where v ≠ w, is
considered as a cycle of length 2 in a digraph, but not a cycle in undirected
multigraph!

5. A Hamiltonian cycle is a cycle through the graph that visits each node exactly
once.

6. Two vertices v,w ∈ V , v ≠ w are called strongly connected if there exist two
walks in D, the first starts at v and ends in w, and the second starts in w and
ends in v. For multigraphs G = (V,E) the corresponding notion is u, v are
connected.

7. A multidigraph D = ([n],E) is called strongly connected if either n = 1 and
(1,1) ∈ E, or n > 1 and any two vertices in D are strongly connected.

8. A multidiraph g = (V,E) is called connected if either n = 1, or n > 1 and
any two vertices in G are connected. (Note that a simple graph on one vertex
G = ([1],∅) is considered connected directed graph D(G) = G is not strongly
connected.)

9. Two multidigraphs D1 = (V1,E1), D2 = (V2,E2) are called isomorphic if there
exists a bijection φ ∶ V1 → V2 which induces a bijection φ̂ ∶ E1 → E2. That is if
(u1, v1) ∈ E1 is a diedge of multiplicity k in E1, then (φ(u1), φ(v1)) ∈ E2 is a
diedge of multiplicity k and vice versa.

The interested reader is referred to [3] to see more details about the above
concepts.

1.5.1 Worked-out Problems

1. Show that the number e (the base of the natural logarithm) is transcendental
over Q.
Solution:
Assume that I(t) = ∫ t0 et−uf(u)du, where t is a complex number and f(x) is a
polynomial with complex coefficients to be specified later. If f(x) = ∑nj=0 ajx

j ,

we set f̄(x) = ∑nj=0 ∣aj ∣xj , where ∣ ∣ denotes the norm of complex numbers.
Integration by parts gives

I(t) = et
∞
∑
j=0

f (j)(0) −
∞
∑
j=0

f (j)(t) = et
n

∑
j=0

f (j)(0) −
n

∑
j=0

f (j)(t), (1.5.2)

where n is the degree of f(x).
Assume that e is a root of g(x) = ∑ri=0 bix

i ∈ Z[X], where b0 ≠ 0. Let p be a
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prime greater than max{r, ∣b0∣}, and define f(x) = xp−1(x−1)p(x−2)p⋯(x−r)p.
Consider J = b0I(0) + b1I(1) +⋯ + brI(r).
Since g(e) = 0, the contribution of the first summand on the right-hand side
of (1.5.2) to J is 0. Thus,

J = −
r

∑
k=0

n

∑
j=0

bkf
(j)(k),

where n = (r + 1)p − 1. The definition of f(x) implies that many of the terms
above are zero, and we can write

J = −
n

∑
j=p−1

b0f
(j)(0) +

r

∑
k=1

n

∑
j=p

bkf
(j)(k).

Each of the terms on the right is divisible by p! except for

fp−1(0) = (p − 1)!(−1)rp(r!)p,

where we have used that p > r. Thus, since p > ∣b0∣ as well, we see that J is
an integer which is divisible by (p− 1)!, but not by p. That is, J is an integer
with

∣J ∣ ≥ (p − 1)!.

Since

f̄(k) = kp−1(k + 1)p(k + 2)p⋯(k + r)p ≤ (2r)n for 0 ≤ k ≤ r,

we deduce that

∣J ∣ ≤
r

∑
j=0

∣bj ∣∣I(j)∣ ≤
r

∑
j=0

∣bj ∣jej f̄(j) ≤ c ((2r)(r+1))
p
,

where c is a constant independent of p. This gives a contradiction.

2. Prove the following statements.

(a) Any finite ring R is of non-zero characteristic.

(b) The characteristic of a field F is either zero or prime.

Solution:

(a) Assume to the contrary charR = 0. Without loss of generality, we may
assume that 0 ≠ 1. For any m,n ∈ Z, m ⋅ 1 = n ⋅ 1 implies (m − n) ⋅ 1 = 0
and since we assumed charR = 0, it follows m = n. Therefore, the set
{n ⋅ 1;n ∈ Z} is an infinite subset of R which is a contradiction.

(b) Assume that m = charF is non-zero and m = nk; then 0 = (nk) ⋅ 1 =
nk ⋅ (1 ⋅ 1) = (n ⋅ 1)(k ⋅ 1). Then, either n = 0 or k = 0 and this implies
either n =m or k =m. Hence, m is prime.
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1.5.2 Problems

1. Let Z6 be the set of all integers modulo 6. Explain why this is not a field.

2. Assume that G and H are two groups. Let Hom(G,H) denote the set of all
group homomorphisms from G to H. Show that

(a) Hom(G,H) is a group under the composition of functions if H is a sub-
group of G.

(b) #Hom(Zm,Zn) = gcd(m,n), where m,n ∈ N, where # denotes the cardi-
nality of the set.

3. Prove that ϕ ∶ Q→ Qn×n by ϕ(a) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a 0 ⋯ 0
0 a ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ a

⎤⎥⎥⎥⎥⎥⎥⎥⎦

is a ring homomorphism.

1.6 Dimension and basis

As most algebraic structures, vector spaces contain substructures called subspace.
Let V be a vector space over a field F. (For simplicity of the exposition you may
assume that F = R or F = C.) A subset U ⊂ V is called a subspace of V, if a1u1 +
a2u2 ∈ U, for each u1,u2 ∈ U and a1, a2 ∈ F. The subspace U ∶= {0} is called the zero,
or the trivial subspace of V. The elements of V are called vectors. Let x1, . . . ,xn ∈ V
be n vectors. Then, for any a1, . . . , an ∈ F, called scalars, a1x1+ . . .+anxn is called a
linear combinations of x1, . . . ,xn. Moreover, 0 = ∑ni=1 0xi is the trivial combination.
Also, x1, . . . ,xn are linearly independent , if the equality 0 = ∑ni=1 aixi implies that
a1 = . . . = an = 0. Otherwise, x1, . . . ,xn are linearly dependent . The set of all
linear combination of x1, . . . ,xn is called the span of x1, . . . ,xn, and denoted by
span{x1, . . . ,xn}. In particular, we use the notation span(x) to express span{x},
for any x ∈ V . Clearly, span{x1, . . . ,xn} is a subspace of V. (Why?) In general, the
span of a set S ⊆ V is the set of all linear combinations of S, i.e. the set of all linear
combinations of all finite subsets of S.

1.6.1 More details on vector space

If V is a vector space, it is called finitely generated if V = span{x1, . . . ,xn}, for some
vectors x1, . . . ,xn, {x1, . . . ,xn} is a spanning set of V. (In this book we consider
only finitely generated vector spaces.) We will use the following notation for a
positive integer n:

[n] ∶= {1,2, . . . , n − 1, n} (1.6.1)

Observe the following ”obvious” relation for any n ∈ N. (Here, N is the set of all
positive integers 1,2, . . . ,.)

span{u1, . . . ,ui−1,ui+1, . . . ,un}} ⊆ span{u1, . . . ,un}, for each i ∈ [n]. (1.6.2)

It is enough to consider the case i = n. (We assume here that for n = 1, the span of
empty set is the zero subspace U = {0}.) Then, for n = 1, (1.6.2) holds. Suppose
that n > 1. Clearly, any linear combination of u1, . . . ,un−1, which is u = ∑n−1

i=1 biui
is a linear combination of u1, . . . ,un: u = 0un +∑n−1

i=1 biui. Hence, (1.6.2) holds.
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Theorem 1.6.1 Suppose that n > 1. Then, there exists i ∈ [n] such that

span{u1, . . . ,un} = span{u1, . . . ,ui−1,ui+1, . . . ,un}, (1.6.3)

if and only if u1, . . . ,un are linearly dependent vectors.

Proof. Suppose that (1.6.3) holds. Then, ui = b1u1 + ⋯ + bi−1ui−1 + bi+1ui+1 +
⋯ + bnun. Hence, ∑ni=1 aiui = 0, where aj = bj , for j ≠ i and ai = −1. Then,
u1, . . . ,un are linearly dependent. Assume that u1, . . . ,un are linearly dependent.
Then, there exist scalars a1, . . . , an ∈ F, not all of them are equal to zero, so that
a1u1 + . . . + anun = 0. Assume that ai ≠ 0. For simplicity of notation, (or by
renaming indices in [n]), we may assume that i = n. This yields un = − 1

an
∑n−1
i=1 aiui.

Let u ∈ span{u1, . . . ,un}. Therefore,

u =
n

∑
i=1

biui = bnun +
n−1

∑
i=1

biui = −bn
n−1

∑
i=1

ai
an

ui +
n−1

∑
i=1

biui =
n−1

∑
i=1

anbi − aibn
an

ui.

That is, u ∈ {u1, . . . ,un−1}. This proves the theorem. ◻

Corollary 1.6.2 Let u1, . . . ,un ∈ V. Assume that not all ui’s are zero vectors.
Then, there exist d ≥ 1 integers 1 ≤ i1 < i2 < . . . < id ≤ n such that ui1 , . . . ,uid are
linearly independent and span{ui1 , . . . ,uid} = span{u1, . . . ,un}.

Proof. Suppose that u1, . . . ,un are linearly independent. Then, d = n and ik = k,
for k = 1, . . . , n and we are done.

Assume that u1, . . . ,un are linearly dependent. Applying Theorem 1.6.1, we
consider now n−1 vectors u1, . . . ,ui−1,ui+1, . . . ,un as given by Theorem 1.6.1. Note
that it is not possible that all vectors in {u1, . . . ,ui−1,ui+1, . . . ,un} are zero since
this will imply that ui = 0. This will contradict the assumption that not all ui are
zero. Apply the previous arguments to u1, . . . ,ui−1,ui+1, . . . ,un and continue in this
method until one gets d linearly independent vectors ui1 , . . . ,uid . ◻

Corollary 1.6.3 Let V be a finitely generated nontrivial vectors space, i.e. con-
tains more than one element. Then, there exist n ∈ N and n linearly independent
vectors v1, . . . ,vn such that V = span{v1, . . . ,vn}.

The linear equation ∑ni=1 aixi = b with unknowns x1,x2, . . . ,xn is called homo-
geneous if b = 0. Otherwise, it is called non-homogeneous. In the following lemma
we use the fact that any m homogeneous linear equations with n variables have a
nontrivial solution if m < n. (This will be proved later using REF of matrices.)

Lemma 1.6.4 Let n >m ≥ 1 be integers. Then, any w1, . . . ,wn ∈ span{u1, . . . ,um}
are linearly dependent.

Proof. Observe that wj = ∑mi=1 aijuj , for some aij ∈ F, 1 ≤ j ≤ n. Then

n

∑
j=1

xjwj =
n

∑
j=1

xj
m

∑
i=1

aijui =
m

∑
i=1

(
n

∑
j=1

aijxj)ui.
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Consider the following m homogeneous equations in n unknowns: ∑nj=1 aijxj = 0,
for i = 1, . . . ,m. Since n > m, we have a nontrivial solution (x1, . . . , xn). Thus,

∑nj=1 xjwj = 0. ◻

Theorem 1.6.5 Let V = span{v1, . . .vn} and assume that v1, . . . ,vn are lin-
early independent. Then, the following holds.

1. Any vector u can be expressed as a unique linear combination of v1, . . . ,vn.

2. For an integer N > n, any N vectors in V are linearly dependent.

3. Assume that u1, . . . ,un∈ V are linearly independent. Then, V = span{u1, . . . ,un}.

Proof. Assume that ∑ni=1 xivi = ∑ni=1 yivi. Thus, ∑ni=1(xi − yi)vi = 0. As
v1, . . . ,vn are linearly independent, it follows that xi−yi = 0, for i = 1, . . . , n. Hence,
1 holds.

Lemma 1.6.4 implies 2.
Suppose that u1, . . . ,un are linearly independent. Let v ∈ V and consider

n + 1 vectors u1, . . . ,un,v. Next, 2 implies that u1, . . . ,un,v are linearly depen-
dent. Thus, there exist n + 1 scalars a1, . . . , an+1, not all of them zero, such that
an+1v + ∑ni=1 aiui = 0. Assume first that an+1 = 0. Then, ∑ni=1 aiui = 0. Since not
all ai’s are zero, it follows that u1, . . . ,un are linearly dependent, which contradicts
our assumption. Hence, an+1 ≠ 0 and v = ∑ni=1

−ai
an+1

ui. ◻

1.6.2 Dimension

A vector space V over the field F is called to be finite dimensional if there is a
finite subset {x1, . . . , xn} of V such that V = span{x1, . . . , xn}. Otherwise, V is
called infinite dimensional. The dimension of a trivial vector space, consisting of
the zero vector, V = {0}, is zero. The dimension of a finite dimensional non-zero
vector space V is the number of vectors in any spanning linearly independent set,
namely if V contains an independent set of n vectors but contains no independent
set of n + 1 vectors, we say that V has dimension n. Also, the dimension of an
infinite dimensional vector space is infinity. The dimension of V is denoted by
dimFV or simply dimV if there is no ambiguity in the background field. In this
book V is assumed a vector space over the field F unless stated otherwise. See
Worked-out Problem 1.6.3-2 on the existence of basis for vector spaces. Assume
that dimV = n. Suppose that V = span{x1, . . . ,xn}. Then, {x1, . . . ,xn} is a basis
of V, i.e. each vector x can be uniquely expressed as ∑ni=1 aixi. Thus, for each
x ∈ V, one corresponds a unique column vector a = (a1, . . . , an)⊺ ∈ Fn, where Fn is
the vector space on column vectors with n coordinates in F. It will be convenient
to denote x = ∑ni=1 aixi by the equality x = [x1,x2, . . . ,xn]a. (Note that we use the
standard way to multiply row by column.)

Assume now that y1, . . . ,yn are n vectors in V. Then

yi =
n

∑
j=1

yjixj ,
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for some yji ∈ F, 1 ≤ i, j ≤ n.
Denote by Y = [yji]ni=j=1 the n × n matrix with the element yji in j-th row and

i-th column. The above equalities are equivalent to the identity

[y1, . . . ,yn] = [x1, . . . ,xn]Y. (1.6.4)

Then, {y1, . . . ,yn} is a basis if and only if Y is invertible matrix. (See subsection
1.7.5 for details on invertible matrices.) In this case, Y is called the matrix of the
change of basis from [y1, . . . ,yn] to [x1, . . . ,xn]. The matrix of the change of ba-
sis from [x1, . . . ,xn] to [y1, . . . ,yn] is given by Y −1. (Just multiply the identity
(1.6.4) by Y −1 from the right.) Suppose also that [z1, . . . ,zn] is a basis in V. Let
[z1, . . . ,zn] = [y1, . . . ,yn]Z. Then, [z1, . . . ,zn] = [x1, . . . ,xn](Y Z). (Use (1.6.4)).
Here, Y Z is the matrix of the change of basis, from [z1, . . . ,zn] to [x1, . . . ,xn]. See
the next section about matrices and their properties.

We end up this section by investigating the linear analogue of a result in group
theory. It is a well-known fact in elementary group theory that a subgroup of
a finitely generated group is not finitely generated necessarily. See [9] for more
details. Nevertheless, it is not the case for vector spaces, i.e. any subspace of a finite
dimensional vector space is finite dimensional. Now, if V is a finite dimensional
vector space over the field F with the basis {x1, . . . ,xn} and W is its subspace,
this question can be asked that if there exists a subset J ⊆ [n] for which W =
span{xi ∶ i ∈ J}? It is easy to show that this is not the case. For example if V = R3

as a real vector space with the standard basis X = {(1,0,0), (0,1,0), (1,1,0)} and
W = span{(1,1,1), (1,1, 1

2)}, then W is spanned by none of two elements of X.
(Why?)

1.6.3 Worked-out Problems

1. Let C[−1,1] be the set of all real continuous functions on the interval [−1,1]

(a) Show that C[−1,1] is a vector space over R.

(b) Let U(a, b) ⊂ C[−1,1] be all functions such that f(a) = b, for a ∈ [−1,1]
and b ∈ R. For which values of b, U(a, b) is a subspace?

(c) Is C[−1,1] finite dimensional?

Solution:

(a) We use the following elementary facts:
“The sum of two continuous functions is continuous” and “Multiplying a
continuous function by a real number is continuous”.
If f(x) ∈ C[−1,1] and a ∈ R, (af)(x) = af(x). Obviously, af is also in
C[−1,1].
Furthermore, if f(x), g(x) ∈ C[−1,1], then (f+g)(x) = f(x)+g(x). Using
the above facts, f + g is also continuous.
The zero function is in C[−1,1] and works as neutral element for the
operation ”+” defined as above. Also, g(x) = 1 is in C[−1,1] and 1f = f ,
for any f ∈ C[−1,1].
Then, C[−1,1] satisfies all properties of a vector space.
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(b) If U(a, b) is a subspace, it must contain 0-function. Then, 0(a) = 0, i.e.
b = 0. Now, if f and g are in U(a, b) and c and d are real numbers, then
cf(a) + dg(a) = (c + d)b = 0. Then, cf + dg ∈ U(a, b). Since U(a, b) is
closed under addition and product by scaler, it is a subspace.

(c) No, C[−1,1] is infinite dimensional. If n is an arbitrary positive integer,
then 1, x, x2, . . . , xn are linearly independent. Indeed, if (a0, . . . , an) is
non-zero, then the assumption that p(x) = ∑ni=0 aix

i is a zero function
implies that p(x) has infinitely many roots. This contradicts the well
known statement that p(x) has at most n roots.

2. Let V be vector space and dimV = n. show that

(a) A set A of n vectors in V spans V if and only if A is independent.

(b) V has a basis and every basis consists of n vectors.

Solution:

(a) Assume that A = {x1,⋯,xn}. Since dimV = n, the set {x,x1,⋯,xn} is
dependent, for every x ∈ V . If A is independent, then x is in the span of
A. Therefore, A spans V.
Conversely, if A is dependent, one of its elements can be removed without
changing the span of A. Thus, A cannot span V, by Problem 1.6.4-9.

(b) Since dimV = n, V contains an independent set of n vectors, and (a)
shows that every such set is a basis of V; the statement follows from the
definition of dimension and Problem 1.6.4-9.

1.6.4 Problems

1. * A complex number ζ is called m-th root of unity if ζm = 1. ζ is called a
primitive unity root of order m > 1 if ζm = 1 and ζk ≠ 1, for k ∈ [m − 1].
Let l be the number of integers in [m − 1] which are coprime with m. Let
Q[ζ] ∶= {a0 + a1ζ + ⋯ + al−1ζ

l−1, a0, . . . , al−1 ∈ Q}. Show that Q[ζ] is a field.
It is a finite extension of Q. More precisely, Q[ζ] can be viewed as a vector
space over Q of dimension l.
(Hints:

(a) Let ξ = e 2πi
m . Show that ζ is an m-th root of unity if and only if ζ = ξk and

k ∈ [m]. Furthermore, ζ is primitive if and only if k and m are coprime.

(b) Let ζ be an m-th primitive root of unity. Show that ζ, ζ2, . . . , ζm−1, ζm

are all m-th root of unity.

(c) Show that xm − 1 has simple roots.

(d) Let p1(x)⋯pj(x) be the decomposition of xm − 1 to irreducible factors in
Q[x]. Assume that ζ, a primitive m-th root of unity, is a root of p1. Let
l = deg pl. Show that Q[ζ] ∶= {a0 + a1ζ +⋯ + al−1ζ

l−1, a0, . . . , al−1 ∈ Q} is
an extension field of Q of degree l which contains all m roots of unity.

(e) ** Show that l is the number of m-primitive roots of unity.
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(f) ** Show that l is given by the Euler’s function φ(m). Namely, assume
that m = pd11 ⋯pdrr , where 1 < p1 < ⋯ < pr are primes and d1, . . . , dr are

positive integers. Then, φ(m) = (p1 − 1)pd1−1
1 ⋯(pr − 1)pdr−1

r .)

Special cases:

(a) m = 4: x4−1 = (x2+1)(x+1)(x−1). The 4-th primitive roots of unity are
±i. They are roots of x2+1. Q[i] is called the Gaussian field of rationals.
The set Z[i] = {a + bi, a, b ∈ Z} is called the Gaussian integers domain.

(b) m = 6: x6 − 1 = (x2 − x + 1)(x2 + x + 1)(x + 1)(x − 1). The primitive roots

of order 6 are 1
2 ±

√
3

2 i, which are the two roots of x2 − x + 1.

2. Quaternions Q is a four dimensional noncommutative division algebra that
generalizes complex numbers. Any quaternion is written as a vector q = a0 +
a1i + a2j + a3k. The product of two quaternions is determined by using the
following equalities.

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Let q̄ = a0 − a1i − a2j − a3k. Show

(a) The map T (q) = q̄ is an involution. (T is a bijection preserving addition
and multiplication and T 2 = id.)

(b) Q is a noncommutative division algebra, i.e. if q ≠ 0, then there exists
a unique r such that rq = qr = 1. (You can try to use the identity
qq̄ = q̄q = ∣q∣2 = ∑3

i=0 a
2
i ).

3. Let Pm be the subset of all polynomials of degree m at most over the field F.
Show that the polynomials 1, x, . . . , xm form a basis in Pm.

4. Let fj be a non-zero polynomial in Pm of degree j, for j = 0, . . . ,m. Show that
f0, . . . , fm form a basis in Pm.

5. Find a basis in P4 such that each polynomial is of degree 4.

6. Does exist a basis in P4 such that each polynomial is of degree 3?

7. Write up the set of all vectors in R4 whose coordinates are two 0’s and two
1’s. (There are six such vectors.) Show that these six vectors span R4. Find
all the collections of four vectors out of these six which form a basis in R4.

8. Prove the Completion lemma: let V be a vector space of dimension m. Let
v1, . . . ,vn ∈ V be n linearly independent vectors. (Here m ≥ n) Then, there
exist m − n vectors vn+1, . . . ,vm such that {v1, . . . ,vm} is a basis in V.

9. Assume that a vector space V is spanned by a set of n vectors, (n ∈ N). Show
that dimV ≤ n.

10. Let V be a vector space over a field F and S ⊆ V, show that

(a) span(span(S)) = span(S)
(b) span(S) is the smallest subspace of V containing S.

(c) span(S) = S if and only if S is a subspace of V.
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1.7 Matrices

1.7.1 Basic properties of matrices

A matrix is a rectangular array of elements from the given set of elements S.
The horizontal arrays of a matrix are called its rows and the vertical arrays called
its columns. A matrix is said to have the order m×n if it has m rows and n columns.
An m × n matrix A can be represented in the following form:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮
⋱ ⋮
am1 am2 ⋯ amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where aij is the entry at the intersection of the i-th row and j-th column. In a more
concise manner, we also write A = [aij]m×n or A = [aij].

The set of m × n matrices with entries in S is denoted by Sm×n. For a field F,
the set Fm×n is a vector space over F of dimension mn. A standard basis of Fm×n
is given by Eij , i = 1, . . . ,m, j = 1, . . . , n, where Eij is a matrix with 1 in the entry
(i, j) and 0 in all other entries. Also, Fm×1 = Fm the set of column vectors with
m coordinates. A standard basis of Fm is ei = (δ1i, . . . , δmi)⊺ , where δji denotes
Kronecker’s delta function defined as

δji =
⎧⎪⎪⎨⎪⎪⎩

0 if j ≠ i
1 if j = i,

for i = 1, . . . ,m.
A matrix obtained by deleting some of the rows and/or columns of a matrix is

said to be a submatrix of the given matrix.
For A ∈ Fm×n and B ∈ Fp×q, the product AB is defined if and only if the number

of columns in A is equal to the number of rows in B, i.e. n = p. In that case,
the resulting matrix C = [cij] is m × q. The entry cij is obtained by multiplying
the row i of A by the column j of B. Recall that for x = (x1, . . . , xn)⊺∈ Fn and
y = (y1, . . . , yn)⊺ ∈ Fn, x⊺y = ∑ni=1 xiyi. (This product can be regarded as a product
of 1×n matrix x⊺ with n×1 product matrix y.) The product of corresponding sizes
of matrices satisfies the properties:

(i) associativity: (AB)C = A(BC);

(ii) distributivity: (A1 +A2)B = A1B +A2B and A(B1 +B2) = AB1 +AB2;

(iii) a(AB) = (aA)B = A(aB), for each a ∈ F;

(iv) identities: ImA = AIn, where A ∈ Fm×n and Im = [δij]mi=j=1 ∈ Fm×m is the
identity matrix of order m.

For A = [aij] ∈ Fm×n denote by A⊺ ∈ Fn×m the transposed matrix of A, i.e. the
(i, j) entry of A⊺ is the (j, i) entry of A. The following properties hold

(aA)⊺ = aA⊺, (A +B)⊺ = A⊺ +B⊺, (AC)⊺ = C⊺A⊺.
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The matrix A = [aij] ∈ Fm×n is called diagonal if aij = 0, for i ≠ j. Denote by
D(m,n) ⊂ Fm×n the vector subspace of diagonal matrices. A square diagonal matrix
with the diagonal entries d1, . . . , dn is denoted by diag(d1, . . . , dn) ∈ Fn×n. A matrix
A is called a block matrix if A = [Aij]p,qi=j=1, where each entry Aij is an mi × mj

matrix. Then, A ∈ Fm×n where m = ∑pi=1mi and n = ∑qj=1 nj . A block matrix A is
called block diagonal if Aij = 0mi×mj , for i ≠ j. A block diagonal matrix with p = q is
denoted by diag(A11, . . . ,App). A different notation is ⊕pl=1All ∶= diag(A11, . . . ,App),
and ⊕pl=1All is called the direct sum of the square matrices A11, . . . ,App.

1.7.2 Elementary row operation

Elementary operations on the rows of A ∈ Fm×n are defined as follows:

1. Multiply row i by a non-zero a ∈ F.

2. Interchange two distinct rows i and j in A.

3. Add to row j, row i multiplied by a, where i ≠ j.

A matrix A ∈ Fn×n is said to be in a row echelon form (REF) if it satisfies the
following conditions:

1. All non-zero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of
the row above it.

3. All entries in a column below a leading entry are zeros.

Also, A can be brought to a unique canonical form, called the reduced row echelon
form, abbreviated as RREF by the elementary row operation. The RREF of zero
matrix 0m×n is 0m×n. For A ≠ 0m×n, RREF of A given by B is of the following form:
In addition to the conditions 1,2 and 3 above, it must satisfy the followings:

1. The leading entry in each non-zero row is 1.

2. Each leading 1 is the only non-zero entry in its column.

A pivot position in the matrix A is a location in A that corresponds to a leading 1
in the RREF of A. First non-zero entry of each row of a REF of A is called a pivot,
and the columns in which pivots appear are pivot columns. The process of finding
pivots is called pivoting.

An elementary row-interchange matrix is an n×n matrix which can be obtained
from the identity matrix In by performing on In a single elementary row operation.

1.7.3 Gaussian Elimination

Gaussian elimination is a method to bring a matrix either to is REF or its RREF
or similar forms. It is often used for solving matrix equations of the form

Ax = b. (1.7.1)
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In the following, we may assume that A is full-rank, i.e. the rank of A equals the
number of rows.

To perform Gaussian elimination starting with the system of equations

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1k

a21 a22 ⋯ a2k

⋮
ak1 ak2 ⋯ akk

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

⋮
xk

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
⋮
bk

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (1.7.2)

compose the “augmented matrix equation”

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1k b1
a21 a22 ⋯ a2k b2
⋮
ak1 ak2 ⋯ akk bk

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(1.7.3)

Here, the column vector is the variable x carried along for labeling the matrix rows.
Now, perform elementary row operations to put the augmented matrix into the
upper triangular form

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a′11 a′12 ⋯ a′1k b′1
0 a′22 ⋯ a′2k b′2
⋮
0 0 ⋯ a′kk b′k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (1.7.4)

Solve the equation of the k-th row for xk, then substitute back into the equation of
the (k − 1)-st row to obtain a solution for xk−1, etc. We get the formula

xi =
1

a′ii

⎛
⎝
b′i −

k

∑
j=i+1

a′ijxj
⎞
⎠
.

Example 1.7.1 We solve the following system using Gaussian elimination:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2x − 2y = −6

x − y + z = 1

3y − 2z = −5

For this system, the augmented matrix is

⎡⎢⎢⎢⎢⎢⎣

2 −2 0 −6
1 −1 1 1
0 3 −2 −5

⎤⎥⎥⎥⎥⎥⎦
First, multiply row 1 by 1

2 :

⎡⎢⎢⎢⎢⎢⎣

2 −2 0 −6
1 −1 1 1
0 3 −2 −5

⎤⎥⎥⎥⎥⎥⎦

Multiply r1 by 1
2−−−−−−−−Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 0 −3
1 −1 1 1
0 3 −2 −5

⎤⎥⎥⎥⎥⎥⎦
Now, adding -1 times the first row to the second row yields zeros below the first entry
in the first column:

⎡⎢⎢⎢⎢⎢⎣

1 −1 0 −3
0 0 1 1
0 3 −2 −5

⎤⎥⎥⎥⎥⎥⎦

−r1 added to r2−−−−−−−−Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 0 −3
0 0 1 4
0 3 −2 −5

⎤⎥⎥⎥⎥⎥⎦

30



Interchanging the second and third rows then gives the desired upper-triangular co-
efficient matrix:

⎡⎢⎢⎢⎢⎢⎣

1 −1 0 −3
0 0 1 4
0 3 −2 −5

⎤⎥⎥⎥⎥⎥⎦

r2↔r1−−−−Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 0 −3
0 3 −2 −5
0 0 1 4

⎤⎥⎥⎥⎥⎥⎦

The third row now says z = 4. Back-substituting this value into the second row gives
y = 1, and back-substitution of both these values into the first row yields x = −2. The
solution system is therefore (x,y,z) = (−2,1,4).

1.7.4 Solution of linear systems

Consider the following system of the linear equations:

a11x1 + a12x2 +⋯ + a1nxn = b1
a21x1 + a22x2 +⋯ + a2nxn = b2
⋮
an1x1 + an2x2 +⋯ + annxn = bn

(1.7.5)

Assume that A = [aij]1≤i,j≤n and b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
⋮
bn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Definition 1.7.2 Let Â ∶= [A∣b] be the augmented m × (n + 1) matrix repre-
senting the system (1.7.5). Suppose that Ĉ = [C ∣c] is a REF of Â. Assume that
C has k-pivots in the columns 1 ≤ `1 < ⋯ < `k ≤ n. Then, the variable x`1 , . . . , x`k
corresponding to these pivots are called the lead variables. The other variables are
called free variables.

Definition 1.7.3 A map f ∶ Rn → R is called affine if f(x) = a1x1+⋯+anxn+b.
Also, f is called a linear function if b = 0.

The following theorem describes exactly the set of all solutions of (1.7.5).

Theorem 1.7.4 Let Â ∶= [A∣b] be the augmented m×(n+1) matrix representing
the system (1.7.5). Suppose that Ĉ = [C ∣c] be a REF of Â. Then, the system (1.7.5)
is solvable if and only if Ĉ does not have a pivot in the last column n + 1.
Assume that (1.7.5) is solvable. Then each lead variable is a unique affine function
in free variables. These affine functions can be determined as follows:

1. Consider the linear system corresponding to Ĉ. Move all the free variables to
the right-hand side of the system. Then, one obtains a triangular system in
lead variables, where the right-had side are affine functions in free variables.

2. Solve this triangular system by back substitution.

In particular, for a solvable system, we have the following alternative.

1. The system has a unique solution if and only if there are no free variables.
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2. The system has infinitely many solutions if and only if there is at least one
free variable.

Proof. We consider the linear system equations corresponding to Ĉ. As an
ERO (elementary row operation) on Â corresponds to an EO (elementary operation)
on the system (1.7.5), it follows that the system represented by Ĉ is equivalent to
(1.7.5). Suppose first that Ĉ has a pivot in the last column. Thus, the corresponding
row of Ĉ which contains the pivot on the column n + 1 is (0,0, . . . ,0,1)⊺. This
equation is unsolvable, hence the whole system corresponding to Ĉ is unsolvable.
Therefore, the system (1.7.5) is unsolvable.
Assume now that Ĉ does not have a pivot in the last column. Move all the free
variables to the right-hand side of the system given by Ĉ. It is a triangular system
in the lead variables where the right-hand side of each equation is an affine function
in the free variables. Now use back substitution to express each lead variable as an
affine function of the free variables.
Each solution of the system is determined by the value of the free variables which
can be chosen arbitrarily. Hence, the system has a unique solution if and only if it
has no free variables. The system has many solutions if and only if it has at least
one free variable. ◻

Consider the following example of Ĉ:

⎡⎢⎢⎢⎢⎢⎣

1 −2 3 −1 0
0 1 3 1 4
0 0 0 1 5

⎤⎥⎥⎥⎥⎥⎦
, (1.7.6)

x1, x2, x4 are lead variables, x3 is a free variable.

x4 = 5,

x2 + 3x3 + x4 = 4⇒ x2 = −3x3 − x4 + 4⇒
x2 = −3x3 − 1,

x1 − 2x2 + 3x3 − x4 = 0⇒ x1 = 2x2 − 3x3 + x4 = 2(−3x3 − 1) − 3x3 + 5⇒
x1 = −9x3 + 3.

◻

Notation 1.7.5 Let S and T be two subsets of a set X. Then, the set T ∖ S is
the set of elements of T which are not in S. (T ∖ S may be empty.)

Theorem 1.7.6 Let Â ∶= [A∣b] be the augmented m×(n+1) matrix representing
the system (1.7.5). Suppose that Ĉ = [C ∣c] is a RREF of Â. Then, the system (1.7.5)
is solvable if and only if Ĉ does not have a pivot in the last column n + 1.
Assume that (1.7.5) is solvable. Then, each lead variable is a unique affine function
in free variables determined as follows. The leading variable x`i appears only in the
equation i, for 1 ≤ i ≤ r = rank A. Shift all other variables in the equation, (which are
free variables), to the other side of the equation to obtain x`i as an affine function
in free variables.

32



Proof. Since RREF is a row echelon form, Theorem 1.7.4 yields that (1.7.5) is
solvable if and only if Ĉ does not have a pivot in the last column n + 1. Assume
that Ĉ does not have a pivot in the last column n + 1. Then, all the pivots of Ĉ
appear in C. Hence, rank Â = rank Ĉ = rank A(= r). The pivots of C = [cij] ∈ Rm×n
are located at row i and the column `i, denote as (i, `i), for i = 1, . . . , r. Since C is
also in RREF, in the column `i there is only one non-zero element which is equal 1
and is located in row i.
Consider the system of linear equations corresponding to Ĉ, which is equivalent to
(1.7.5). Hence, the lead variable `i appears only in the i-th equation. Left hand-
side of this equation is of the form x`i plus a linear function in free variables whose
indices are greater than x`i . The right-hand is ci, where c = (c1, . . . , cm)⊺. Hence,
by moving the free variables to the right-hand side, we obtain the exact form of x`i .

x`i = ci − ∑
j∈{`i,`i+1,...,n}∖{j`1 ,j`2 ,...,j`r}

cijxj , for i = 1, . . . , r. (1.7.7)

(Therefore, {`i, `i + 1, . . . , n} consists of n − `i + 1 integers from j`i to n, while
{j`1 , j`2 , . . . , j`r} consists of the columns of the pivots in C.) ◻

Example 1.7.7 Consider

⎡⎢⎢⎢⎢⎢⎣

1 0 b 0 u
0 1 d 0 v
0 0 0 1 w

⎤⎥⎥⎥⎥⎥⎦
,

x1, x2, x4 lead variables x3 free variable ;

x1 + bx3 = u⇒ x1 = −bx3 + u,
x2 + dx3 = v⇒ x2 = −dx3 + v,
x4 = w.

Definition 1.7.8 The system (1.7.5) is called homogeneous if b = 0, i.e. b1 =
⋯ = bm = 0. A homogeneous system of linear equations has a solution x = 0, which
is called the trivial solution.
Let A be a square n × n, then A is called nonsingular if the corresponding homoge-
neous system of n equations in n unknowns has only solution x = 0. Otherwise, A
is called singular.

Theorem 1.7.9 Let A be an m × n matrix. Then, its RREF is unique.

Proof. Let U be a RREF of A. Consider the augmented matrix Â ∶= [A∣0]
corresponding to the homogeneous system of equations. Clearly, Û = [U ∣0] is a
RREF of Â. Put the free variables on the other side of the homogeneous system
corresponding to Â, where each lead variable is a linear function of the free variables.
Note that the exact formulas for the lead variables determine uniquely the column
of the RREF which correspond to the free variables.
Assume that U1 is another RREF of A. Then, U and U1 have the same pivots.
Hence, U and U1 have the same pivots. Thus, U and U1 have the same columns
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which correspond to pivots. By considering the homogeneous system of linear equa-
tions corresponding to Û1 = [U1∣0], we find also the solution of the homogeneous
system Â, by writing down the lead variables as linear functions in free variables.
Since Û and Û1 give rise to the same lead and free variables, we deduce that the each
linear function in free variables corresponding to a lead variable x`1 corresponding
to Û and Û1 are equal. That is, the matrices U and U1 have the same row i, for
i = 1, . . . , rank A. All other rows of U and U1 are zero rows. Hence, U = U1. ◻

Corollary 1.7.10 The matrix A ∈ Rn×n is nonsingular if and only if rank A = n,
i.e. the RREF of A is the identity matrix

In =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×n. (1.7.8)

Proof. The matrix A is nonsingular if and only if no free variable. Thus,
rank A = n and the RREF is In. ◻

1.7.5 Invertible matrices

A matrix A ∈ Fm×m is called invertible if there exists B ∈ Fm×m such that AB =
BA = Im. Note that such B is unique. If AC = CA = Im, then B = BIm =
B(AC) = (BA)C = ImC = C. We denote B, the inverse of A by A−1. Denote by
GL(m,F) ⊂ Fm×m the set of all invertible matrices. Note that GL(m,F) is a group
under the multiplication, with the unit In. (Observe that for A and B ∈ GL(m,F)
(AB)−1 = B−1A−1.)

A matrix E ∈ Fm×m is called elementary if it is obtained from Im by applying
one elementary row operation. Note that applying an elementary row operation on
A is equivalent to EA, where E is the corresponding elementary row operation. By
reversing the corresponding elementary operation we see that E is invertible, and
E−1 is also an elementary matrix.

The following theorem is well-known as the fundamental theorem of invertible
matrices; in the next subsections, we will see a more detailed version of the funda-
mental theorem of invertible matrices.

Theorem 1.7.11 Let A ∈ Fm×m. The following statements are equivalent.

1. A is invertible.

2. Ax = 0 has only the trivial solution.

3. The RREF of A is Im.

4. A is a product of elementary matrices.

Proof. 1⇒ 2. The equation Ax = 0 implies that x = Imx = A−1(Ax) = A−10 = 0.
2⇒ 3. The system Ax = 0 does not have free variables, hence the number of pivots
is the number of rows, i.e., the RREF of A is Im.
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3⇒ 4. There exists a sequence of elementary matrices so that EpEp−1⋯E1A = Im.
Hence, A = E−1

1 E−1
2 ⋯E−1

p , and each E−1
j is also elementary.

4⇒ 1. As each elementary matrix is invertible, so is their product, which is equal
to A. ◻

Theorem 1.7.12 Let A ∈ Fn×n. Define the matrix B = [A In] ∈ Fn×(2n). Let
C = [C1 C2],C1,C2 ∈ Fn×n be the RREF of B. Then, A is invertible if and only if
C1 = In. Furthermore, if C1 = In then A−1 = C2.

Proof. The fact that “A is invertible if and only if C1 = In” follows straightfor-
ward from Theorem 1.7.11. Note that for any matrix F = [F1F2], F1, F2 ∈ Fn×p,G ∈
Fl×m, we have GF = [(GF1)(GF2)]. Let H be a product of elementary matrices such
that HB = [IC2]. Thus, HA = In and HIn = C1. Hence, H = A−1 and C1 = A−1. ◻

We can extract the following algorithm from Theorem 1.7.12 to calculate the
inverse of a matrix if it was invertible:

Gauss-Jordan algorithm for A−1

� Form the matrix B = [A∣In].

� Perform the ERO to obtain RREF of B ∶ C = [D∣F ].

� A is invertible ⇔D = In.

� If D = In, then A−1 = F .

Example 1.7.13 Let A =
⎡⎢⎢⎢⎢⎢⎣

1 2 −1
−2 −5 5
3 7 −5

⎤⎥⎥⎥⎥⎥⎦
. Write B = [A∣I3] observe that the

(1,1) entry in B is a pivot:

B =
⎡⎢⎢⎢⎢⎢⎣

1 2 −1 1 0 0
−2 −5 5 0 1 0
3 7 −5 0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

Perform ERO: R2 + 2R1 → R2, R3 − 3R1 → R3:

B1 =
⎡⎢⎢⎢⎢⎢⎣

1 2 −1 1 0 0
0 −1 3 2 1 0
0 1 −2 −3 0 1

⎤⎥⎥⎥⎥⎥⎦
.

To make (2,2) entry pivot do: −R2 → R2:

B2 =
⎡⎢⎢⎢⎢⎢⎣

1 2 −1 1 0 0
0 1 −3 −2 −1 0
0 1 −2 −3 0 1

⎤⎥⎥⎥⎥⎥⎦
.

To eliminate (1,2), (1,3) entries do R1 − 2R2 → R1, R3 −R2 → R3

B3 =
⎡⎢⎢⎢⎢⎢⎣

1 0 5 5 2 0
0 1 −3 −2 −1 0
0 0 1 −1 1 1

⎤⎥⎥⎥⎥⎥⎦
.
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Now, (3,3) entry is a pivot. To eliminate (1,3), (2,3) entries do: R1 − 5R3 → R1,
R2 + 3R3 → R2

B4 =
⎡⎢⎢⎢⎢⎢⎣

1 0 0 10 −3 −5
0 1 1 −5 2 3
0 0 1 −1 1 1

⎤⎥⎥⎥⎥⎥⎦
.

Then, B4 = [I3∣F ] is RREF of B. Thus, A has the inverse:

A−1 =
⎡⎢⎢⎢⎢⎢⎣

10 −3 −5
−5 2 3
−1 1 1

⎤⎥⎥⎥⎥⎥⎦
.

1.7.6 Row and column spaces of A

Two matrices A and B ∈ Fm×n are called left equivalent row equivalent) if A and B
have the same reduced row echelon form or B can be obtained from A by applying
elementary row operations. Equivalently, B = UA for some U ∈ GL(m,F ). This is
denoted as A ∼l B. It is straightforward to show that ∼l is an equivalence relation.
Right equivalent (column equivalence) is defined similarly and denoted by ∼r. Note
that A ∼r B if and only if A⊺ ∼l B⊺. Also A,B ∈ Fm×n are called equivalent if
B = UAV , for some U ∈ GL(m,F), V ∈ GL(n,F). Equivalently, B is equivalent to
A, if B can be obtained from A by applying elementary row and column operations.
This is denoted as A ∼ B. It is straightforward to show that ∼ is an equivalence
relation.

LetA ∈ Fm×n. Denote by c1, . . . ,cn the n column ofA. We writeA = [c1 c2 . . . cn].
Then, span{c1, . . . ,cn} is denoted by R(A) and called the column space of A. Its
dimension is rank A. Similarly, the dimension of the columns space of A⊺, which is
equal to the dimension of the row space of A, is rank A, i.e. rank A⊺ = rank A. Let
x = (x1, . . . , xn)⊺. Then, Ax = ∑ni=1 xici. Hence, the system Ax = b is solvable if
and only if b is in the column space of A. The set of all x ∈ Fn such that Ax = 0
is called the null space of A. It is a subspace of dimension n − rank A and is de-
noted as N(A) ⊂ Fm, dim N(A) is called the nullity of A, and denoted by nullA.(See
Worked-out Problem 1.9.2-5.) If A ∈ GL(n,F), then Ax = b has the unique solution
x = A−1b.

Theorem 1.7.14 Let A ∈ Fm×n. Assume that B ∈ Fm×n is a row echelon form
of A. Let k = rank A. Then

1. The non-zero rows of B form a basis in the row space of A.

2. Assume that the pivots of B are the columns 1 ≤ j1 < . . . < jk ≤ n, i.e.
xj1 , . . . , xjk are the lead variables in the system Ax = 0. Then, the columns
j1, . . . , jk of A form a basis of the column space of A.

3. If n = rank A, then the null space of A consists only of 0. Otherwise, the null
space of A has the following basis. For each free variable xp, let xp be the
unique solution of Ax = 0, where xp = 1 and all other free variables are zero.
Then, these n − rank A vectors form a basis in N(A).

Proof. 1. Note that if E ∈ Fm×m, then the row space of EA is contained in A,
since any row in EA is a linear combination of the rows of A. Since A = E−1(EA),
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it follows that the row space of A is contained in the row space of EA. Hence, the
row space of A and EA are the same. Therefore, the row space of A and B are the
same. Since the last m − k rows of B are zero rows, it follows that the row space
of B spanned by the first k rows b⊺1 , . . . ,b

⊺
k. We claim that b⊺1 , . . . ,b

⊺
k are linearly

independent. Indeed, consider xb⊺1 + . . . +xkbk = 0⊺. Since all the entries below the
first pivot in B are zero, we deduce that x1 = 0. Continue in the same manner to
obtain that x2 = 0, . . . , xk = 0. Then, b⊺1 , . . . ,b

⊺
k form a basis in the row space of B

and A.
2. We first show that cj1 , . . . ,cjk are linearly independent. Consider the equality

∑kj=1 xijcij = 0. This is equivalent to the system Ax = 0, where x = (x1, . . . , xn)⊺
and xp = 0 if xp is a free variable. Since all free variables are zero, all lead variables
are zero, i.e. xji = 0, for i = 1, . . . , k. Thus, cj1 , . . . ,cjk are linearly independent.
It is left to show that cp, where xp is a free variable, is a linear combination of
cj1 , . . . ,cjk . Again, consider Ax = 0, where each xp = 1 and all other free variables
are zero. We have a unique solution to Ax = 0, which states that 0 = cp+∑ki=1 xjicji ,
i.e. cp = ∑ki=1 −xjicji .

3. This follows for the way we write down the general solution of the system
Ax = 0 in terms of free variables. ◻

Remark 1.7.15 Let x1, . . . ,xn ∈ Fm. To find a basis in U ∶= span{x1, . . . ,xn}
consisting of k vectors in {x1, . . . ,xn}, apply Theorem 1.7.14 to the column space
of the matrix A = [x1 x2 . . .xn]. To find an appropriate basis in U, apply Theorem
1.7.14 to the row space of A⊺.

Lemma 1.7.16 Let A ∈ Fm×n. Then, A is equivalent to a block diagonal matrix
Irank A ⊕ 0.

Proof. First, bring A to REF matrix B with all pivots equal to 1. Now perform
the elementary column operations corresponding to the elementary row operations
on B⊺. This will give a matrix C with r pivots equal to 1 and all other elements
zero. Now, interchange the corresponding columns to obtain Ir⊕0. It is left to show
that r = rank A. First, recall that if B = UA, then the row space of A and B are
the same. Then, rank A = rank B, which is the dimension of the row space. Next, if
C = BV , then C and B have the same column space. Thus, rank B = rank C, which
is the dimension of the column space. This means r = rank A. ◻

The following theorem is a more detailed case of Theorem 1.7.11. Its proof is
left as Problem 1.8.5-4.

Theorem 1.7.17 Let A ∈ Fn×n. The following statements are equivalent:

(1) A is invertible (non-singular),

(2) Ax = b has a unique solution for every b ∈ Fn,

(3) Ax = 0 has only the trivial (zero) solution,

(4) The reduced row echelon form of A is In,
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(5) A is a product of elementary matrices,

(6) detA ≠ 0,

(7) rank A = n,

(8) N(A) = {0},

(9) nullA = 0,

(10) The column vectors of A are linearly independent,

(11) The column vectors of A span Fn,

(12) The column vectors of A a basis for Fn,

(13) The row vectors of A are linearly independent,

(14) The row vectors of A span Fn,

(15) The row vectors of A a basis for Fn.

1.7.7 Special types of matrices

The following are some special types of matrices in Fn×n.

1. A is symmetric if A⊺ = A. Denote by S(n,F) the subspace of n × n symmetric
matrices.

2. A is skew-symmetric, or anti-symmetric, if A⊺ = −A. Denote by A(n,F) the
subspace of the skew-symmetric matrices.

3. A = [aij] is called upper triangular if aij = 0, for each j < i. Denote by U(n,F)
the subspace of upper triangular matrices.

4. A = [aij] is called lower triangular if aij = 0 for each j > i. Denote by L(n,F)
the subspace of lower triangular matrices.

A triangular matrix is one that is either lower triangular or upper triangular.

Let α = {α1 < α2 < . . . < αp} ⊂ [m],β = {β1 < β2 < . . . < βp} ⊂ [n] Then A[α,β]
is an p × q submatrix of A, which is obtained by erasing in A all rows and
columns which are not in α and β, respectively. Assume that p < m,q < n.
Denote by A(α,β) the (m − p) × (n − q) submatrix of A, which is obtained
by erasing in A all rows and columns which are in α and β, respectively. For
i ∈ [m], j ∈ [n] denote by A(i, j) ∶= A({i},{j}). Assume that A ∈ Fn×n. Note
that A[α,β] is called a principal if and only if α = β.

5. A = [aij] is called tridiagonal if aij = 0 for all i, j with ∣i − j∣ > 1.

6. A = [aij] is called upper Hessenberg if aij = 0 for i > j + 1.

7. A ∈ Rn×n is called orthogonal if AA⊺ = A⊺A = In.
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1.8 Sum of subspaces

1.8.1 Sum of two subspaces

Let V be a vector space and U and W be its two subspaces. To determine the
smallest subspace of V containing U and W, we make the following definition.

Definition 1.8.1 For any two subspaces U,W ⊆ V denote, U + W ∶= {v ∶=
u +w,u ∈ U,w ∈ W}, where we take all possible vectors u ∈ U, w ∈ W.

Theorem 1.8.2 Let V be a vector space and U,W be subspaces in V. Then

(a) U +W and U ∩W are subspaces of V.

(b) Assume that V is finite dimensional. Then

1. U,W,U∩W are finite dimensional. Let l = dimU∩W ≥ 0, p = dimU ≥
1, q = dimW ≥ 1

2. There exists a basis {v1, . . . ,vm} in U+W such that {v1, . . . ,vl} is a basis
in U ∩W, {v1, . . . ,vp} is a basis in U and {v1, . . . ,vl,vp+1, . . . ,vp+q+1}
is a basis in W.

3. dim(U +W) = dimU + dimW − dimU ∩W
Identity #(A∪B) = #A+#B−#(A∩B) for finite sets A, B is analogous
to 3.

4. U + W ⊆ span(U ∪ W), i.e. U + W is the smallest subspaces of V
containing U and W.

Proof.
(a) 1. Let u,w ∈ U ∩ W. Since u,w ∈ U, it follows au + bw ∈ U. Similarly
au + bw ∈ W. Hence, au + bw ∈ U ∩W and U ∩W is a subspace.
(a) 2. Assume that u1,u2 ∈ U, w1,w2 ∈ W. Then, a(u1 + w1) + b(u2 + w2) =
(au1 + bu2) + (aw1 + bw2) ∈ U +W. Hence, U +W is a subspace.
(b) 1. Any subspace of an m-dimensional space has dimension m at most.
(b) 2. Let {v1, . . . ,vl} be a basis in U∩W. Complete this linearly independent set
in U and W to a basis {v1, . . . ,vp} in U and a basis {v1, . . . ,vl,vp+1, . . . ,vp+q−l}
in W. Hence, for any u ∈ U, w ∈ W, u + w ∈ span(v1, . . . ,vp+q−l). Hence
U +W = span{v1, . . . ,vp+q−l}.
We now show that v1, . . . ,vp+q−l are linearly independent. Suppose that a1v1 +
⋯ + ap+q−lvp+q−l = 0. So u ∶= a1v1 + ⋯ + apvp = −ap+1vp+1 + ⋯ − ap+q−lvp+q−l ∶= w.
Note that u ∈ U, w ∈ W. So w ∈ U ∩ W. Hence, w = b1v1 + ⋯ + blvl. Since
v1, . . . ,vl,vp+1, . . . ,vp+q−l are linearly independent, then ap+1 = ⋯ = ap+q−l = b1 = ⋯ =
bl = 0. So w = 0 = u. Since v1, . . . ,vp are linearly independent, then a1 = ⋯ = ap = 0.
Hence, v1, . . . ,vp+q−l are linearly independent.
(b) 3. Note that from (b) 2, dim(U +W) = p + q − l.
Observe that U +W = W +U.
(b) 4. Clearly, every element u +w of U +W is in span(U +W). Thus, U +W ⊆
span(U +W). ◻
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Definition 1.8.3 The subspace X ∶= U+W of V is called a direct sum of U and
W, if any vector v ∈ U+W has a unique representation of the form v = u+w, where
u ∈ U, w ∈ W. Equivalently, if u1 +w1 = u2 +w2, where u1,u2 ∈ U, w1,w2 ∈ W,
then u1 = u2, v1 = v2.
A direct sum of U and W is denoted by U⊕W. Here, U is said to be a complement
of W in U⊕W. Also, U (or W) is called a summand of X.

Proposition 1.8.4 For two finite dimensional vector subspaces U,W ⊆ V, the
following are equivalent:

(a) U +W = U⊕W

(b) U ∩W = {0}

(c) dimU ∩W = 0

(d) dim(U +W) = dimU + dimW

(e) For any bases {u1, . . . ,up}, {w1, . . . ,wq} in U, W, respectively {u1, . . . ,up,w1, . . . ,wq}
is a basis in U +W.

Proof. Straightforward. ◻

Example 1.8.5 Let A ∈ Rm×n, B ∈ Rl×n. Then, N(A)∩N(B) = N((A
B
)). Note

that x ∈ N(A) ∩N(B) if and only if Ax = Bx = 0.

Example 1.8.6 Let A ∈ Rm×n, B ∈ Rm×l. Then, R(A) + R(B) = R((AB)).
Note that x ∈ R(A) +R(B) is the span of the columns of A and B.

1.8.2 Sums of many subspaces

Definition 1.8.7 Let U1, . . . ,Uk be k subspaces of V. Then, X ∶= U1 +⋯+Uk

is the subspace consisting all vectors of the form u1 + u2 + ⋯ + uk, where ui ∈ Ui,
i = 1, . . . , k. U1 + ⋯ + Uk is called a direct sum of U1, . . . ,Uk, and denoted by
⊕ki=1U1 ∶= U1 ⊕ ⋯ ⊕ Uk if any vector in X can be represented in a unique way as
u1 + u2 +⋯ + uk, where ui ∈ Ui, i = 1, . . . , k.

Proposition 1.8.8 For finite dimensional vector subspaces Ui ⊆ V, i = 1, . . . , k,
the following statements are equivalent:

(a) U1 +⋯ +Uk = ⊕ki=1Ui,

(b) dim(U1 +⋯ +Uk) = ∑ki=1 dimUi

(c) For any bases {u1,i, . . . ,upi,i} in Ui, the vectors uj,i form a basis in U1+⋯+Uk,
where 1 ≤ i ≤ k and 1 ≤ j ≤ pi.
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Proof. (a) ⇒ (c). Choose a basis {u1,i, . . . ,upi,i} in Ui, i = 1, . . . , k. Sine ev-
ery vector in ⊕ki=1Ui has a unique representation as u1 + ⋯ + uk, where ui ∈ Ui for
i = 1, . . . , k, it follows that 0 can be written in the unique form as a trivial linear
combination of all u1,i, . . . ,upi,i, for i ∈ [k]. So all these vectors are linearly inde-
pendent and span ⊕ki=1Ui.
Similarly, (c) ⇒ (a).
Clearly (c) ⇒ (b).
(b) ⇒ (c). It is left as an exercise. ◻

Note that Proposition 1.8.8 states that the dimension of a direct sum is the sum
of the dimensions of its summands.

1.8.3 Dual spaces and annihilators

Let V be a vector space over the field F. Then V′ = L(V,F), the space of the linear
functionals on V, is called the dual space. For S ⊆ V we define the annihilator of S
as

S⊥ = {f ∈ V′ ∶ f(v) = 0, for all v ∈ S}.

Theorem 1.8.9 Let V be a vector space and S ⊆ V.

(i) S⊥ is a subspace of V′ (although S does not have to be subspace of V).

(ii) S⊥ = (spanS)⊥.

(iii) Assume that V is finite dimensional with a basis {v1, . . . ,vn}. Let i ∈ {1, . . . , n}
and Vi = {v1, . . . ,vi−1,vi+1, . . . ,vn} . Then dimV ⊥i = 1. Let fi be a basis in V ⊥i .
Then {f1, . . . , fn} is a basis in V′. (It is called the dual basis of {v1, . . . ,vn}.)
Furthermore, fi+1, . . . , fn is a basis of span(v1, . . . ,vi)⊥.

Proof. First we show that S⊥ is a subspace of V′. Note that the zero functional
obviously sends every vector in S to zero, so 0 ∈ S⊥. If c, d ∈ F and f1, f2 ∈ S⊥, then
for each v ∈ S

(cf1 + df2)(v) = cf1(v) + df2(v) = 0.

Then, cf1 + df2 ∈ S⊥ and S⊥ is a subspace of V′.
Next we show that S⊥ = (spanS)⊥. Take f ∈ S⊥. Then if v ∈ spanS we can write

v = c1v1 +⋯ + cmvm,

for scalars ci ∈ F and vi ∈ S. Thus

f(v) = c1f(v1) +⋯ + cmf(vm) = 0,

so f ∈ (spanS)⊥. On the other hand if f ∈ (spanS)⊥ then clearly f(v) = 0, for all
v ∈ S. This completes the proof of (ii).
(iii) Let fi ∈ V′ be given by the equalities fi(vj) = δij for j = 1, . . . , n. Clearly,
fi ∈ V ⊥i . Assume that f ∈ V ⊥i . Let f(vi) = a. Consider g = f − afi. So g ∈ V ⊥i and
g(vi) = f(vi) − afi(vi) = 0. So g ∈ {v1, . . . ,vn}⊥. Hence g = 0 and f = afi. Thus {fi}
is a basis in V ⊥i . Observe next that f1, . . . , fn are linearly independent. Assume that

∑nj=1 ajfj = 0. Then 0 = (∑nj=1 ajfj)(vi) = aifi(vi) = ai for i = 1, . . . , n. We now show
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that f1, . . . , fn is a basis in V′. Let f ∈ V′ and assume that f(vi) = ai for i = 1, . . . , n.
Then g = f − ∑ni=1 aifi ∈ {v1, . . . ,vn}⊥. Hence g = 0 and f = ∑ni=1 f(vi)fi. Assume
that f ∈ V span

i . Let f = ∑nj=1 ajfj . Assume that k ∈ {1, . . . , i}. Hence 0 = f(vk) = ak.
Hence f = ∑nj=i+1 ajfj . Vice versa, suppose that f = ∑nj=i+1 ajfj . Then f ∈ V span

i .
Hence {fi+1, . . . , fn} is a basis of V ⊥i . ◻

1.8.4 Worked-out Problems

1. Consider the set of all polynomials of degree two at most with real coefficients
and denote it by P2. P2 is a real vector space with the usual addition and
scalar multiplication. Show that the polynomials 1, x− 1, (x− 1)2 form a basis
in this vector space.
Solution:
Using Taylor series at x = 1, we have p(x) = p(1) + p′(1)(x− 1) + p′′(1)

2! (x− 1)2,

where all other terms in Taylor series are zero, i.e. p(k)(x) = 0, for k ≥ 3.
Then, {1, x − 1, (x − 1)2} spans P2. Suppose that a linear combination of
1, x − 1, (x − 1)2 is identically zero; p(x) = a + b(x − 1) + c(x − 1)2 = 0. Then,
0 = p(1) = a, 0 = p′(1) = b and 0 = p′′(1) = 2c. Hence, 1, x − 1 and (x − 1)2 are
linearly independent. Thus, it is a basis for P2.

2. Let V be the set of all complex numbers of the form a + ib
√

5, where a, b are
rational numbers and i =

√
−1. It is easy to see that V is a vector space over

Q.

(a) Find the dimension of V over Q.

(b) Define a product on V such that V is a field.

Solution:

(a) Let u = 1+i0
√

5 and v = 0+i
√

5. Then, a+ib
√

5 = au+bv and so {1, i
√

5}
spans V. In addition, u and v are linearly independent. As u and v are
non-zero, suppose that v = tu, for some t ∈ Q. Thus, t = v

u = i
√

5, which
is not a rational number. Hence, dimQV = 2.

(b) Define
(a + ib

√
5)(c + id

√
5) = (ac − 5bd) + i(ad + bc)

√
5.

If (a, b) ≠ 0, then (a + ib
√

5)−1 = a−ib
√

5
a2+5b2

.

3. Let A ∈ Fn×n be an invertible matrix. Show that

(a) (A−1)⊺ = (A⊺)−1

(b) A is symmetric if and only if A−1 is symmetric.

Solution:

(a) (A−1)⊺A⊺ = (AA−1)⊺ = (In)⊺ = In. Then, (A−1)⊺ = (A⊺)−1.

(b) Assume that A is symmetric. Using part (a), we have (A−1)⊺ = (A⊺)−1.
On the other hand A⊺ = A. Then, (A−1)⊺ = A−1. The Converse is
obtained by considering (A−1)−1 = A and using the same argument.
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4. If A ∈ Fm×n, show that the dimension of its row space equals the dimension of
its column space.
Solution:
Use the row operations to find an equivalent echelon form matrix C. Using
Theorem 1.7.14, we know that the dimension of the row space of A equals the
number of non-zero rows of C. Note that each non-zero row of C has exactly
one pivot and the different rows have pivots in different columns. Therefore,
the number of pivot columns equals the number of non-zero rows. But by
Theorem 1.7.14, the number of pivot columns of C equals the number vector
in a basis for the column space of A. Thus, the dimension of the column space
equals the number of non-zero rows of B. This means the dimensions of the
row space and column space are the same.

5. Let A and B be n × n matrices over the field F. Prove that if I − AB is
invertible, then I −BA is in invertible and (I −BA)−1 = I +B(I −AB)−1A.
Solution:

(I −BA)(I +B(I −AB)−1A) = I −BA +B(I −AB)−1A −BAB(I −AB−1)A.

After the identity matrix, we can factor B on the left and A on the right, and
we get:

(I −BA)(I +B(I −AB)−1A) = I −B[−I + (I −AB)−1 −AB(I −AB)−1]A
= I −B[−I + (I −AB)(I −AB)−1]A
= I + 0 = I.

1.8.5 Problems

1. Let A ∈ Fn×n be an invertible matrix. Show that

(a) A is skew-symmetric if and only if A−1 is skew-symmetric.

(b) A is lower triangular if and only if A−1 is lower triangular.

(c) A is upper triangular if and only if A−1 is upper triangular.

2. Let A = [aij] ∈ Fn×n with the following property. Its row echelon form (REF)
is an upper triangular matrix U with 1’s on the main diagonals and there is
no pivoting. That is, first a11 ≠ 0. Apply the Gauss elimination to obtain

a matrix A1 = [a(1)ij ], where the first column of A1 is e1 the first column of

the identity. Let B1 = [a(1)ij ]ni=j=2 be the matrix obtained by deleting the first
row and column of A1. Then, B1 satisfies the same assumptions as A, i.e.

a
(1)
22 ≠ 0. Now continue as above to obtain U . Show that A = LU , where L is

a corresponding nonsingular lower triangular matrix.

3. Let A ∈ Fl×m,B ∈ Fm×n. Show rank AB ≤ min{rank A, rank B}. Furthermore,
if A or B are invertible, then equality holds. Give an example where inequality
holds strictly.
(Hint: Use the fact that each column of AB is a combination of the columns
of A and then use Worked-out Problem 1.8.4-4.)

43



4. Prove Theorem 1.7.17.

5. Let V be a finite dimensional vector space and U be a subspace of V. Prove
that U has a complement in V.

6. Let V be a finite dimensional vector space and U is a subspace of V. Sup-
pose W1 and W2 are complements to U in V. Prove that W1 and W2 are
isomorphic.

7. Prove the following statements:

(a) Row equivalence is an equivalence relation.

(b) Row equivalent matrices have the same row space.

(c) Let F be a field. Then the set of matrices of rank r, whose rows, (viewed as
column vectors), span a given subspace U ⊆ Fn of dimension r, correspond
exactly one row equivalence class in Fm×n .

The set of subspaces of given dimension in a fixed vector space is called Grass-
mannian. In part (c) of the above problem, we have constructed a bijec-
tion between the Grassmannian of r-dimensional subspaces of Fn (denoted by
Gr(r,Fm) and the set of reduced row echelon matrices with n columns and r
non-zero rows. We will study this notion in Section 5.10

1.9 Permutations

1.9.1 The permutation group

Denote by Sn the group of the permutations of the set [n] ∶= {1, . . . , n} onto itself.
Indeed Sn = S([n]). The smallest integer N > 0 such that for ω ∈ Sn, ωN = id is
called the order of ω. If a1, . . . , ar ∈ [n] are distinct, then the symbol (a1, . . . , ar)
denotes the permutation ω of [n] which sends a1 to a2, sends a2 to a3, ..., sends
ar−1 to ar, sends ar to a1, and fixes all the other numbers in [n]. In other words,
ω(a1) = a2, ω(a2) = a3, ..., ω(ar) = a1 and ω(i) = i, if i ∈ {a1, . . . , ar}. Such a
permutation is called cyclic. The number r is called the length of the cycle. For
example the permutation of S4 that sends 1 to 3, 3 to 2, 2 to 4 and 4 to 1 is cyclic,
while the permutation that sends 1 to 3, 3 to 1, 2 to 4 and 4 to 2 is not.

Remark 1.9.1 The cyclic permutation ω by (a1, . . . , ar) has order r. Note that
ω(a1) = a2, ω2(a1) = a3, ..., ωr−1(a1) = ar, ωr(a1) = a1, by definition of ω. Likewise,
for any i = 1, . . . , r, we have ωr(ai) = ai.

Now, introduce the following polynomials

Pω(x) ∶= ∏
1≤i<j≤n

(xω(i) − xω(j)),x = (x1, . . . , xn), for each ω ∈ Sn. (1.9.1)

Define

sign(ω) ∶= Pω(x)
Pid(x)

. (1.9.2)
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Theorem 1.9.2 For each ω ∈ Sn, sign(ω) ∈ {1,−1}. The map sign ∶ Sn →
{1,−1} is a group homomorphism, i.e.

sign(ω ○ σ) = sign(ω)sign(σ), for each ω,σ ∈ Sn. (1.9.3)

Proof. Clearly, if ω(i) < ω(j), then the factor (xω(i) −xω(j)) appears in Pid(x).
If ω(i) > ω(j), then the factor −(xω(i) − xω(j)) appears in Pid(x). Hence sign(ω) ∈
{1,−1}. Observe next that

Pω○σ(x)
Pid(x)

= Pω○σ(x)
Pσ(x)

Pσ(x)
Pid(x)

= sign(ω)sign(σ).

(To show the equality
Pω○σ(x)
Pσ(x) = sign(ω), introduce new variables yi = xσ(i), for

i ∈ [n].)
◻

An element τ ∈ Sn is called a transposition if there exists a pair of integers
1 ≤ i < j ≤ n such that τ(i) = j, τ(j) = i. Furthermore, τ(k) = k for k ≠ i, j.
(Transposition is a cycle of length 2.) Note that τ ○ τ =id, i.e. τ−1 = τ .

Theorem 1.9.3 For an integer n ≥ 2, each ω ∈ Sn is a product of transpositions

ω = τ1 ○ τ2 ○ ⋯ ○ τm. (1.9.4)

The parity of m is unique. More precisely, sign(ω) = (−1)m.

Proof. We agree that in (1.9.4), m = 0 if and only if ω = id. (This is true for
any n ∈ N.) We prove the theorem by induction on n. For n = 2, S2 consists of two
elements id and a unique permutation τ , which satisfies τ(1) = 2, τ(2) = 1.) Thus,
τ ○ τ =id. In this case, the lemma follows straightforward.

Suppose that theorem holds for n = N ≥ 2 and assume that n = N +1. Let ω ∈ Sn.
Suppose first that ω(n) = n. Then, ω can be identified with the bijection ω′ ∈ Sn−1,
where ω′(i) = ω(i), for i = 1, . . . , n − 1. Use the induction hypothesis to express ω′

as a product of m transposition τ ′1 ○ τ ′2 ○⋯ ○ τ ′m in Sn−1. Clearly, each τ ′i extends to
a transposition τi in Sn. Hence, (1.9.4) holds.

Suppose now that ω(n) = i < n. Let τ be the transposition that interchange i
and n. Let ω′ = τ ○ ω. Then, ω′(n) = τ(ω(n)) = n. The previous arguments show
that ω′ = τ1 ○ . . . ○ τl. Therefore, ω = τ ○ ω′ = τ ○ τ1 ○ . . . ○ τl.

It is left to show that the parity of m is unique. First observe that sign(τ) = −1.
Using Problem 1.9.3-4 and Theorem 1.9.2, we obtain sign(ω) = (−1)m. Hence, the
parity of m is fixed. ◻

Remark 1.9.4 Note that the product decomposition is not unique if n > 1. For
example for (1,2,3,4,5) we have the following product decompositions:

(5,4)(5,6)(2,1)(2,5)(2,3)(1,3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

6 transpositions

= (1,2)(2,3)(3,4)(4,5)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

4 transpositions

= (1,5)(1,4)(1,3)(1,2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

4 transpositions

= ⋯
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We finish this section with the definition of a permutation matrix.

Definition 1.9.5 A permutation matrix is a square matrix obtained from the
same size identity matrix by a permutation of rows. A permutation matrix is called
elementary if it is obtained by permutation of exactly two distinct rows.

Clearly, every permutation matrix has exactly one 1 in each row and column. It is
easy to show that every elementary permutation matrix is symmetric. Note that an
elementary permutation matrix corresponds to a transposition in Sn. Theorem 1.9.3
implies that every permutation matrix is a product of elementary row-interchange
matrices. Note that a general permutation matrix is not symmetric.

We denote by Pn the set of all permutation matrices. It is easy to see that
#Pn = n!. Indeed, there is a one-to-one correspondence between Pn and Sn, the set
of all permutations of [n] and every P = [pij] ∈ Pn is associated to a permutation
σ ∈ Sn for which σ(i) = j if pij = 1.
In Section 1.13, we will be familiarized with a new family of matrices called doubly
stochastic matrices and will see their relation with permutation matrices.

1.9.2 Worked-out Problems

1. In Sn consider all elements ω such that sign(ω) = 1, denote it by An.

(a) Show that it is a subgroup of Sn.

(b) How many elements it has?

(c) Show that S3 is not a commutative group.

Solution:

(a) Since id ∈ An, then An is a non-empty subset of Sn. Now, if σ and ω are
two elements of An, then

sign(σω−1) (1)== sign(σ)sign(ω−1) (2)== sign(σ)sign(ω) = 1.

(1): Use Theorem 1.9.3.
(2): Use Problem 1.9.3-2.
Then, σω−1 ∈ An and this means An is a subgroup of Sn. Note that An
is called to be the alternating group on n elements.

(b) Let σ ∈ Sn be a transposition. Then, for any ω ∈ An, sign(σω) =
sign(σ)sign(ω) = (−1)(1) = −1. It follows σAn∪An = Sn. Since #σAn = #An
and An ∩ σAn = ∅, then #An = #Sn

2 = n!
2 .

(c) Take σ(1) = 2, σ(2) = 3, σ(3) = 1, ω(1) = 2, ω(2) = 1 and ω(3) = 3. We
have

(σω)(1) = σ(ω(1)) = σ(2) = 3,

(ωσ)(1) = ω(σ(1)) = ω(2) = 1.

Thus, σω ≠ ωσ and S3 is not commutative.
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1.9.3 Problems

Assume that ω andτ ∈ Sn. Show that

1. sign(id) = 1.

2. sign(ω−1) = sign(ω).
(Hint: Use the previous problem and the fact that sign(ωω−1) = sign(id).)

3. Assume that 1 ≤ i < j ≤ n. We say that ω changes the order of the pair (i, j)
if ω(i) > ω(j). Let N(ω) be number of pairs (i, j) such that ω changes their
order. Then, sign(ω) = (−1)N(ω).

4. Assume that 1 ≤ i < j ≤ n. Let τ be the transposition τ(i) = j, τ(j) = i. Then,
N(τ) = 2(j − i) − 1. Hence, sign(τ) = −1 for any transposition τ .

5. Give an example of permutation matrix which is not symmetric.

6. Let X be a set. Show that S(X) is a group.

7. Show that if X has one or two elements, then S(X) is a commutative group.

8. Show that if X has at least three elements, then S(X) is not a commutative
group.

9. Show that Z(Sn) = {1}, for n ≥ 3.

10. Let An = {σ ∈ Sn; sign(ω) = 1}. Show that

(a) An ⊲ Sn,

(b) Sn/An ≈ Z2,

(c) #An = n!
2 .

Note that An is called an alternating group on [n]. See Worked-out Problem
1.9.2-1.

1.10 Linear, multilinear maps and functions

Roughly speaking, a linear operator is a function from one vector space to another
that preserves the vector space operations. In what follows, we give its precise
definition and related concepts.

Let U and V be two vector spaces over a field F. A map T ∶ U → V is called
linear or a linear operator (linear transformation) if T (au + bv) = aT (u) + bT (v),
for all a, b ∈ F and u,v ∈ V. The set of linear maps from U to V is denoted by
L(U,V). For the case U = V, we simply use the notation L(V). A linear operator
T ∶ U→V is called linear isomorphism if T is bijective. In this case, U is called to
be isomorphic to V and it is denoted by U ≅ V. Also, the kernel and image of T
are denoted by kerT and Im T , respectively and defined as follows:

kerT = {x ∈ U; T (x) = 0},
Im T = {T (x); x ∈ U}.
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It is easy to show that kerT and Im T are subspaces of U and V, respectively.
Furthermore, the nullity and the rank of T are denoted by nullT and rank T and
defined as follows:

nullT = dim(kerT ),
rank T = dim(Im T ).

Let U1, . . . ,Uk be vector spaces (k ≥ 2). Denote by
k×
i=1

Ui ∶= U1 × . . . ×Uk the set

of all tuples (u1, . . . ,uk), where ui ∈ Ui, for i ∈ [k]. A map T ∶ k×
i=1

Ui → V is called

multilinear or a multilinear operator if it is linear with respect to each variable ui,
while all other variable are fixed, i.e.

T (u1, . . . ,ui−1, avi + bwi,ui+1, . . . ,uk) =
aT (u1, . . . ,ui−1,vi,ui+1, . . . ,uk) + bT (u1, . . . ,ui−1,wi,ui+1, . . . ,uk),

for all a, b ∈ F, uj ∈ Uj , j ∈ [k] ∖ {i},vi,wi ∈ Ui and i ∈ [k].
Note that if k = 2, then T is called bilinear.
Suppose that U1 = . . . = Uk = U. Denote ×

k
U ∶= U × . . . ×U

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

. A map T ∶ ×
k
U→V

is called a symmetric map if

T (uσ(1), . . . ,uσ(k)) = T (u1, . . . ,uk),

for each permutation σ ∈ Sk and each u1, . . . ,uk. A map T ∶ ×
k
U → V is called a

skew-symmetric map if

T (uσ(1), . . . ,uσ(k)) = sign(σ)T (u1, . . . ,uk), for each permutation σ ∈ Sk.

Since each permutation is a product of transpositions, and sign(τ) = −1, for any
transposition, a map T is skew-symmetric if and only if

T (uτ(1), . . . ,uτ(k)) = −T (u1, . . . ,uk), for each transposition τ ∈ Sk. (1.10.1)

In this book most of the maps are linear or multilinear. If V = F, then the map T
is called linear, multilinear, symmetric and skew-symmetric functions, respectively.

Example 1.10.1 Consider the multilinear map T ∶ Fm × Fn → Fm×n given by
T (x,y) = xy⊺. Then, T (Fm×Fn) is the set of all matrices of rank one and zero.

Example 1.10.2 Consider T and Q ∶ Fm × Fm → Fm×m given by T (x,y) =
xy⊺ + yx⊺, Q(x,y) = xy⊺ − yx⊺. Then, T and Q are multilinear symmetric and
skew-symmetric map, respectively. Also, T (Fm×Fm) is the set of all symmetric
matrices of rank two, one and zero.
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Examples of linear operators

1. If A ∈ Fm×n, then the map TA ∶ Fn → Fm
x ↦ Ax

is linear.

2. The derivative map D ∶ R[z] → R[z] given by D(f) = df
dz is linear (Here, R[z]

denotes all polynomials with variable z and real coefficients and f ∈ R[z].)

3. The integral map T ∶ R[z] → R[z] given by T (f) = ∫ 1
0 f(z)dz is linear.

Remark 1.10.3 Consider the linear operator given in example 1. The function
TA is called the linear operator associated to the matrix A.

Notation 1.10.4 The vectors e1 = (1,0, . . . ,0)⊺, e2 = (0,1, . . . ,0)⊺, . . ., en =
(0, . . . ,0,1)⊺ in Fn will be called the standard basis vectors. Generally, all the com-
ponents of ei’s are zero except for the i-th component which is one. Any vector
x = (x1, . . . , xn)⊺ ∈ Fn may be written x = x1e1 + x2e2 +⋯ + xnen.

Theorem 1.10.5 Let T ∶ Fn → Fm be a linear operator. Then, T = TA for some
A ∈ Fm×n. The j-th column of A equals T (ej), for j = 1, . . . , n.

Proof. For any x = (x1, . . . , xn)⊺ ∈ Fn, we have T (x) = T (∑ni=1 xiei) = ∑ni=1 xiT (ei).
Consequently, T is entirely determined by its value on the standard basis vectors,
which we may write

T (e1) = (a11, a21, . . . , am1)⊺, . . . , T (en) = (a1n, a2n, . . . , amn)⊺.

Combining this with the previous formula, we obtain

T (x) = x1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11

a21

⋮
am1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+⋯ + xn

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1n

a2n

⋮
amn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

∑nj=1 aijxj
⋮

∑nj=1 amjxj

⎤⎥⎥⎥⎥⎥⎦

Then, T = TA for the matrix A = [aij]m×n. ◻

Corollary 1.10.6 There is a one-to-one correspondence between linear opera-
tors T ∶ Fn → Fm and m × n matrices, i.e. Fm×n.

Definition 1.10.7 An inner product space is a vector space V over the field F
(F = R or F = C), together with an inner product, i.e. with a map ⟨⋅, ⋅⟩ ∶ V ×V → F
that satisfies the following three axioms for all vectors x,y,z ∈ V and all scalars
a ∈ F:

(i) Conjugate symmetry:
⟨x,y⟩ = ⟨y,x⟩

(See Section 1.9 for the above notation).
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(ii) Linearity in the first component:

⟨ax,y⟩ = a⟨x,y⟩
⟨x + y,z⟩ = ⟨x,z⟩ + ⟨y,z⟩

(iii) Positive-definiteness:

⟨x,x⟩ ≥ 0

⟨x,x⟩ = 0⇒ x = 0

We will discuss about this map with more details in chapter 5.

Definition 1.10.8 For vectors u = (u1, u2, u3)⊺ and v = (v1, v2, v3)⊺ in R3, the
cross product is defined by

u × v = (u2v3 − u3v2,−u1v3 + u3v1, u1v2 − u2v1)⊺.

Example 1.10.9 Assume that U = V = R3. Let T (x,y) = x × y be the cross
product in R3. Then, T ∶ R3 ×R3 → R3 is a bilinear skew-symmetric map.

Example 1.10.10 If a vector space V over the real numbers carries an inner
product, then the inner product is a bilinear map V ×V → R.

Example 1.10.11 Matrix multiplication is a bilinear map, Fm×n×Fn×p → Fm×p.

Remark 1.10.12 Note that in the definition of a linear operator, the back-
ground fields of the vector spaces of the domain and codomain must be the same.

For example, consider the identity linear operator id ∶ V →V
x ↦ x

. If the background

fields of the vector space V as domain and codomain are not the same, then the iden-
tity function is not a linear operator necessarily. If we look at the identity function
id ∶ C → C, where C in the domain is a vector space over R and it is a vector space
over Q for codomain. If id is a linear operator, then it is a linear isomorphism.
This contradicts the case dimRC = 2 < dimQC. (See the first Worked-out Problem.)

1.10.1 Worked-out Problems

1. Let V and W be finite dimensional vector spaces over the field F. Show that
V ≅ W if and only if dimV = dimW.
Solution:
Assume that T ∶ V → W is a linear isomorphism and {v1, . . . ,vn} is a basis
for V. We claim that {T (v1), . . . , T (vn)} is a basis for W. First, we verify
that T (vi)’s are linearly independent. Suppose that ∑ni=1 ciT (vi) = 0, for some
ci ∈ F. Since T is linear, then T (∑ni=1 civi) = 0 = T (0) and as T is injective, so

∑ni=1 civi = 0. Since vi’s are linearly independent, thus ci = 0, 1 ≤ i ≤ n. This
verifies that T (v1), . . . , T (vn) are linearly independent. Next, we show that
T (vi)’s span W. Choose y ∈ W, since T is surjective, one can find x ∈ V, for
which T (x) = y. Now, if x = ∑ni=1 civi, for some ci ∈ F, then y = ∑ni=1 ciT (vi).
Thus, dimW = n. Conversely, assume that dimV = dimW and {v1, . . . ,vn}
and {w1, . . . ,wn} are bases for V and W, respectively. Then, the map vi ↦wi

is a linear isomorphism from V to W.
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2. Prove the rank-nullity theorem:
For any A ∈ Fm×n we have

rank A + nullA = n.

Solution:
If rank A = 0, then by Theorem 1.7.17, the only solution to Ax = 0 is the trivial
solution x = 0. Hence, in this case, nullA = 0 and the statement holds. Now
suppose that rank A = r < n. In this case, there are n − r > 0 free variables
in the solution to Ax = 0. Let t1, . . . , tn−r denote these free variables (chosen
as those variable not attached to a leading one in any row-echelon form of
A), and let x1, . . . ,xn−r denote the solution obtained by sequentially setting
each free variable to 1 and the remaining free variables to zero. Note that
{x1, . . . ,xn−1} is linearly independent. Moreover, every solution to Ax = 0
is a linear combination of x1, . . . ,xn−r which shows that {x1, . . . ,xn−r} spans
N(A). Then, {x1, . . . ,xn−r} is a basis for N(A) and nullA = n − r.

1.10.2 Problems

1. If U, V and W are vector spaces over the field F, show that

(a) If T1 ∈ L(U,V) and T2 ∈ L(V,W), then T2 ○ T1 ∈ L(U,W).
(b) nullT2 ○ T1 ≤ nullT1 + nullT2.

(Hint: Use Worked-out Problem 1.10.1-2.)

2. Assume that V is a vector space over the field F. Let W be a subspace of V.
Show that there exists a T1 ∈ L(V,F) such that ker(T1) = W. Show also that
there is a T2 ∈ L(V,F) such that Im(T2) = W.

3. If U and V are vector spaces over the field F, show that L(U,V) is a vector
space over F, too.

4. Consider the matrices A = [cos θ − sin θ
sin θ cos θ

] ∈ R2×2 and B = [eiθ] ∈ C1×1 = C.

Show that TA and TB both are counterclockwise rotation through angle θ.
(Then, A and B represent the same motion.)

1.11 Definition and properties of the determinant

Given a square matrix A. It is important to be able to determine whether or not A is
invertible, and if it is invertible, how to compute A−1. This arises, for example, when
trying to solve the non-homogeneous equation Ax = y, or trying to find eigenvalues
by determining whether or not A − λI is invertible. (See Section 3.1 to find the
definition and details on eigenvalues.)

1.11.1 Geometric interpretation of determinant (First encounter)

Let A be a n × n real matrix. As we mentioned already, we can view A as a linear
transformation from Rn to Rn given by x→ Ax.
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If A is a 2× 2 matrix with column vectors a and b, then the linearity means that A
transforms the unit square in R2 into the parallelogram in R2 determined by a and
b. (See Figure 1.1)

Figure 1.1: Effect of the matrix A = [a∣b] on the unit square.

Similarly, in the 3 × 3 case, A maps the unit in R3 into the parallelepiped (or
solid parallelogram) in R3 determined by the column vectors of A. In general, an
n × n matrix A maps the unit n-cube in Rn into the n-dimensional parallelogram
determined by the column vectors of A.
Other squares (or cubes, or hypercubes, etc.) are transformed in much the same
way and scaling the sides of the squares merely scales the sides of the parallelograms
(or parallelepipeds, or higher dimensional parallelograms) by the same amount. In
particular, the magnification factor

area (or volume) of image region

area (or volume) of original region

is always the same, no matter which squares (or cubes, or hypercubes) we start with.
Indeed, since we can calculate the areas (or volumes) of reasonably nice regions by
covering them with little squares (or cubes) and taking limits, the above ratio will
still be the same for these regions, too.

Definition 1.11.1 The absolute value of the determinant of the matrix A is the
above magnification factor.

For example, since the unit square has area 1, the determinant of a 2 × 2 matrix
A is the area of the parallelogram determined by the columns of A. Similarly, the
determinant of a 3 × 3 matrix A is the volume of the parallelepiped determined by
columns of A. See Section 5.6 for more results on geometric approach to determi-
nant. Moreover, for more results see [10]. See also Section 5.7. In what follows, we
give an explicit formula to calculate determinant of a matrix on an arbitrary field.

1.11.2 Explicit formula of the determinant and its properties

We define the determinant over an arbitrary field in the standard way.
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Definition 1.11.2 For A ∈ Fn×n, we define the determinant of A by the formula:

detA = ∑
ω∈Sn

sign(ω)a1ω(1)a2ω(2) . . . anω(n), A = [aij]∈ Fn×n. (1.11.1)

In what follows, we verify that the formulas given in Definition 1.11.1 and Def-
inition 1.11.2 are the same for 2 × 2 real matrices. This can be generalized for real

matrices of any size. We assume that A = [a11 a12

a21 a22
]. We are going to calculate the

area of the parallelogram determined by a and b. We have

a = A(1,0)⊺ = (a11, a21)⊺

b = A(0,1)⊺ = (a12, a22)⊺

The equation of the line passing through the origin and a is f(x, y) = a21
a11
x−y. Next,

we have

d(b, f) =
∣a21a12a11

− a22∣
√

(a21a11
)

2
+ 1

d(a,0) =
√
a2

11 + a2
21

Here, d denotes the distance of two points or a point and a line. Then, the area of
image region in Figure 1.1 is equal to

√
a2

11 + a2
21 ⋅

∣a21a12a11
− a22∣

√
(a21a11

)
2
+ 1

= ∣a11a22 − a21a12∣ .

As the area of the original region (unit square) in Figure 1.1 is 1, then the magni-
fication factor (∣detA∣) is ∣a11a22 − a21a21∣. Clearly, we obtain the same value for
∣detA∣ by formula 1.11.1.
Note that here we used the distance formula between a line L = ax + by + c and a

point p = (x0, y0) which is denoted by d(p,L) and given as d(p,L) = ∣ax0+by0+c∣√
a2+b2

.

In the following theorem, we study the main properties of the determinant function.

Theorem 1.11.3 Assume that the characteristic of F is different from 2, i.e.
2 ≠ 0 in F. Then, the determinant function det ∶ Fn×n → F is the unique skew-
symmetric multilinear functions in the rows of A satisfying the normalization con-
dition:

det In = 1.

Furthermore, it satisfies the following properties:

1. detA = detA⊺.

2. detA is a multilinear function in rows or columns of A.

3. The determinant of a lower triangular or an upper triangular matrix is a
product of the diagonal entries of A.
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4. Let B obtained from A by permuting two rows or columns of A. Then detB =
−detA.

5. If A has two equal rows or columns, then detA = 0.

6. A is invertible if and only if detA ≠ 0.

7. Let A,B ∈ Fn×n. Then, detAB = detAdetB.

8. ( Laplace row and column expansion for determinants) For i, j ∈ [n] denote by
A(i, j) ∈ F(n−1)×(n−1) the matrix obtained from A by deleting its i-th row and
j-th column. Then

detA =
n

∑
j=1

aij(−1)i+j detA(i, j) =
n

∑
i=1

aji(−1)i+j detA(i, j), (1.11.2)

for i = 1, . . . , n.

(If A = [aij] ∈ Fn×n, we sometimes denote detA by

RRRRRRRRRRRRRR

a11 a12 ⋯ a1n

⋮ ⋮ ⋯ ⋮
an1 an2 ⋯ ann

RRRRRRRRRRRRRR
.)

Proof. First, observe that if the determinant function exists, then it must be
defined by (1.11.1). Indeed,

ri =
n

∑
j=1

aije
⊺
j , ej = (δj1, . . . , δjn)⊺.

Let T ∶ ⊕
n
Fn → F be a multilinear skew-symmetric function. Use multilinearity of T

to deduce
T (r1, . . . , rn) = ∑

i1,...,in∈[n]
a1i1 . . . aninT (ei1 , . . . ,ein).

Since T is skew-symmetric, T (ei1 , . . . ,ein) = 0 if ip = iq, for some 1 ≤ p < q ≤ n.
Indeed, if we interchange eip = eiq , then we do not change the value of the T .
On the other hand, since T is skew-symmetric, then the value of T is equal to
−T , when we interchange eip = eiq . As the characteristic of F is not 2, we deduce
that T (ei1 , . . . ,ein) = 0, if ip = iq. Hence, in the above expansion of T (r1, . . . , rn),
the only non-zero terms are where {i1, . . . , in} = [n]. Each such set of n indices
{i1, . . . , in} corresponds uniquely to a permutation ω ∈ Sn, where ω(j) = ij , for
j ∈ [n]. Now {e1, . . . ,en} can be brought to {eσ(1), . . . ,eσ(n)} by using transposi-
tions. The composition of this transpositions yields σ. Since T is skew-symmetric,
it follows that T (eσ(1), . . . ,eσ(n)) = sign(ω)T (e1, . . . ,en). As T (In) = 1, we deduce
that T (eσ(1), . . . ,eσ(n)) = sign(ω).

1. In (1.11.1) note that if j = ω(i), then i = ω−1(j). Since ω is a bijection,we deduce
that when i = 1, . . . , n, then j takes each value in [n]. Since sign(ω) = sign(ω−1), we
obtain

detA = ∑
ω∈Sn

sign(ω)aω−1(1)1aω−1(2)2 . . . aω−1(n)n =

∑
ω∈Sn

sign(ω−1)aω−1(1)1aω−1(2)2 . . . aω−1(n)n = detA⊺.
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(Note that since Sn is a group, when ω varies over Sn, so is ω−1.)
2. Fix all rows of A except the row i. From (1.11.1) it follows that detA is a linear
function in the row i of A, i.e. detA is a multilinear function in the rows of A. In
view of the identity detA = detA⊺, we deduce that detA is a multilinear function
of the columns of A.
3. Assume that A is upper triangular. Then, anω(n) = 0 if ω(n) ≠ n. Therefore, all
non-zero terms in (1.11.1) are zero unless ω(n) = n. Thus, assume that ω(n) = n.
Then, a(n−1)ω(n−1) = 0 unless ω(n − 1) = n − 1. Hence, all non-zero terms in (1.11.1)
must come from all ω satisfying ω(n) = n,ω(n − 1) = n − 1. Continuing in the same
manner we deduce that the only non-zero term in (1.11.1) comes from ω =id. As
sign(id) = 1, it follows that detA = ∏n

i=1 aii. Since detA = detA⊺, we deduce the
claim for lower triangular matrices.
4. Note that a permutation of two elements 1 ≤ i < j ≤ n in [n] is achieved by a
transposition τ ∈ Sn. Therefore, B = [bpq] and bpq = aτ(p)q. As in the proof of 1 we
let τ(i) = j, then j = τ−1(i) = τ(i). Hence

detB = ∑
ω∈Sn

sign(ω)aτ(1)ω(1)aτ(2)ω(2) . . . aτ(n)ω(n) =

∑
ω∈Sn

sign(ω)a1ω(τ(1))a2ω(τ(2)) . . . anω(τ(n)) =

∑
ω∈Sn

−sign(ω ○ τ)a1(ω○τ)(1)a2(ω○τ)(2) . . . an(ω○τ)(n) = −detA.

5. Suppose A has two identical rows. Interchange these two rows to obtain
B = A. Then, detA = detB = −detA, where the last equality is established in 4.
Thus, 2 detA = 0 and this means detA = 0 as charF ≠ 2.
6. Use 2, 3 and 5 to deduce that detEA = detE detA if E is an elementary matrix.
(Note that detE ≠ 0.) Hence, if E1, . . . ,Ek are elementary matrices, we deduce
that det(Ek . . .E1) = ∏k

i=1 detEi. Let B be the reduced row echelon form of A.
Therefore, B = EkEk−1 . . .E1A. Hence, detB = (∏n

i=1 detEi)detA. If In ≠ B, then
the last row of B is zero, so detB = 0 which implies that detA = 0. If B = In, then
detA = ∏n

i=1(detEi)−1.
7. Assume that either detA = 0 or detB = 0. We claim that (AB)x = 0 has a
nontrivial solution. Suppose detB = 0. Using 6 and Theorem 1.7.11, we conclude
that the equation Bx = 0 has a nontrivial solution which satisfies ABx = 0. Suppose
that B is invertible and Ay = 0, for some y ≠ 0. Then, AB(B−1y) = 0 which implies
that detAB = 0. Hence in these cases detAB = 0 = detAdetB. Suppose that A and
B are invertible. Then, each of them is a product of elementary matrices. Use the
arguments in the proof of 6 to deduce that detAB = detAdetB.
8. First we prove the first part of formula 1.11.2 for i = n. Clearly, (1.11.1) yields
the equality

detA =
n

∑
j=1

anj ∑
ω∈Sn,ω(n)=j

sign(ω)a1ω(1) . . . a(n−1)ω(n−1). (1.11.3)

In the above sum, let j = n. Hence, ω(n) = n and then ω can be viewed as
ω′ ∈ Sn−1. Also sign(ω) = sign(ω′). Hence, ∑ω′∈Sn−1 sign(ω)a1ω′(1) . . . a(n−1)ω′(n−1) =
detA(n,n). Note that (−1)n+n = 1. This justifies the form of the last term of ex-
pansion 1.11.2 for i = n. To justify the sign of any term in 1.11.2 for i = n, we take

55



the column j and interchange it first with column j +1, then with column j +2, and
at last with the column n. The sign of detA(n, j) is (−1)n+j . This proves the case
i = n.

By interchanging any row i < n with row i + 1, row i + 2, and finally with row
n, we deduce the first part of formula 1.11.2, for any i. By considering detA⊺, we
deduce the second part of formula 1.11.2.

◻

1.11.3 Matrix inverse

Observe that det In = 1. Hence

1 = det In = detAA−1 = detAdetA−1 ⇒ detA−1 = 1

detA
.

For A = [aij] ∈ Fn×n denote by Aij the determinant of the matrix obtained from
A by deleting i-th row and j-th column and multiplied by (−1)i+j . (This is called
the (i, j) cofactor of A.)

Aij ∶= (−1)i+j detA(i, j). (1.11.4)

Then, the expansion of detA by the row i and the column j, respectively is given
by the equalities

detA =
n

∑
j=1

aijAij =
n

∑
i=1

aijAij . (1.11.5)

Then, the adjoint matrix of A is defined as follows:

adj A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A11 A21 . . . An1

A12 A22 . . . An2

⋮ ⋮ ⋮ ⋮
A1n A2n . . . Ann

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (1.11.6)

Proposition 1.11.4 Let A ∈ Fn×n. Then

A(adj A) = (adj A)A = (detA)In. (1.11.7)

Hence, A is invertible if and only if detA ≠ 0. Furthermore, A−1 = (detA)−1adj A.

Proof. Consider an (i, k) entry of A(adj A). It is given as ∑nj=1 aijAkj . For
i = k, (1.11.5) yields that ∑nj=1 aijAij = detA. Suppose that i ≠ k. Let Bk be the
matrix obtained from A by replacing the row k of A by the row i. Then, Bk has
two identical rows, hence detBk = 0. On the other hand, expand Bk by the row
k to obtain that 0 = detBk = ∑nj=1 aijAkj . This shows that A(adj A) = (detA)In.
Similarly, one shows that (adj A)A = (detA)In.

Using Theorem 1.11.3 part 6, we see that A is invertible if and only if detA ≠ 0.
Hence, for invertible A, A−1 = 1

detAadj A. ◻

Proposition 1.11.5 (Cramer’s rule) Let A ∈ GL(n,F) and consider the system
Ax = b, where x = (x1, . . . , xn)⊺. Denote by Bk the matrix obtained from A by
replacing the column k in A by b. Then, xk = detBk

detA , for k = 1, . . . , n.
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Proof. Clearly, x = A−1b = 1
detA(adj A)b. Hence, xk = (detA)−1∑nj=1Ajkbj ,

where b = (b1, . . . , bk)⊺. Expand Bk by the column k to deduce that detBk =
∑nj=1 bjAjk. ◻

Example 1.11.6 We solve the following system of equations by Cramer’s rule:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2x1 + x2 + x3 = 3

x1 − x2 − x3 = 0

x1 + 2x2 + x3 = 0

We rewrite this system in the coefficient matrix form;

⎡⎢⎢⎢⎢⎢⎣

2 1 1
1 −1 −1
1 2 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

3
0
0

⎤⎥⎥⎥⎥⎥⎦

Assume that D denotes the determinant of the coefficient matrix:

D =
RRRRRRRRRRRRRR

2 1 1
1 −1 −1
1 2 1

RRRRRRRRRRRRRR
Denote by D1 the determinant of the matrix obtained from the coefficient matrix by
replacing the first column with the right-hand side column of the given system:

D1 =
RRRRRRRRRRRRRR

3 1 1
0 −1 −1
0 2 1

RRRRRRRRRRRRRR
Similarly, D2 and D3 would then be:

D2 =
RRRRRRRRRRRRRR

2 3 1
1 0 −1
1 0 1

RRRRRRRRRRRRRR
and D3 =

RRRRRRRRRRRRRR

2 1 3
1 −1 0
1 2 0

RRRRRRRRRRRRRR
.

Evaluating each determinant, we get:

D = 3, D1 = 3, D2 = −6 and D3 = 9.

Cramer’s Rule says that x1 = D1

D = 3
3 = 1, x2 = D2

D = −6
3 = −2 and x3 = D3

D = 9
3 = 3.

Note that the point of Cramer’s Rule is that you don’t have to solve the whole system
to get the one value we need.

For large matrices, Cramer’s rule does not provide a practical method for com-
puting the inverse, because it involves n2 determinants, and the computation via
Gauss-Jordan algorithm given in 1.7.5 is significantly faster. Nevertheless, Cramer’s
rule has important theoretical importance.
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1.11.4 Worked-out Problems

1. If A ∈ Fn×n, show that the rank of adj A is n, 1 or 0.
Solution:
Since A is an n × n matrix, then

A(adj A) = (detA)In ⇒
(detA)(det(adj A)) = (detA)(det In) = detA.

Assume thatA is a full-rank matrix, then detA ≠ 0 and so: (detA)(det(adj A)) =
detA gives det(adj A) = 1. Therefore, the matrix adj A is also invertible and
it is of rank n. If the rank of A is n− 1 , then at least one minor of order n− 1
of A is non-zero and this means adj A is non-zero and so the rank of adj A is
greater than zero. Since rank A = n − 1, then detA = 0 and so A(adj A) = 0.
This tells us rank A(adj A) = 0. Now, by Problem 1.10.2-2, we conclude that:
0 ≥ rank A + rank adj A − n or n − 1 + rank adj A ≤ n or rank adj A ≤ 1.
But we showed that rank adj A > 0. Then, rank adj A = 1. Finally, if rank A ≤
n − 1, then all minors of orders n − 1 of A are zero. Thus, adj A = 0 and then
rank adj A = 0.

2. Assume that the matrix A ∈ F(n+1)×(n+1) is given as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 x2
0 ⋯ xn0

1 x1 x2
1 ⋯ xn1

⋮ ⋮ ⋮ ⋮
1 xn x2

n ⋯ xnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Show that
detA =∏

i>j
(xi − xj). (1.11.8)

The determinant of A is called the Vandermonde determinant of order n + 1.
Solution:
We prove by induction. First, we can verify that the result holds in the 2 × 2
case. Indeed

∣1 x0

1 x1
∣ = x1 − x0.

We now assume the result for n − 1 and consider n. We note that the index
n corresponds to a matrix of order (n + 1) × (n + 1), hence our induction
hypothesis is that the claim (1.12.1) holds for any Vandermonde determinant
of order n × n. We subtract the first row from all other rows, and expand the
determinant along the first column

RRRRRRRRRRRRRRRRRRR

1 x0 ⋯ xn0
1 x1 ⋯ xn1
⋮ ⋮ ⋮
1 xn ⋯ xnn

RRRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRRR

1 x0 ⋯ xn0
0 x1 − x0 ⋯ xn1 − xn0
⋮ ⋮ ⋮
0 xn − x0 ⋯ xnn − xn0

RRRRRRRRRRRRRRRRRRR

=
RRRRRRRRRRRRRR

x1 − x0 ⋯ xn1 − xn0
⋮ ⋮

xn − x0 ⋯ xnn − xn0

RRRRRRRRRRRRRR
.
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For every row k in the last determinant, we factor out a term xk − x0 to get

RRRRRRRRRRRRRR

x1 − x0 ⋯ xn1 − xn0
⋮ ⋮

xn − x0 ⋯ xnn − xn0

RRRRRRRRRRRRRR
=

n

∏
k=1

(xk − x0)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

1 x1 + x0 ⋯
n

∑
i=0
xn−1−i

1 xi0

1 x2 + x0 ⋯
n

∑
i=0
xn−1−i

2 xi0

⋮ ⋮ ⋮
1 x1 + x0 ⋯

n

∑
i=0
xn−1−i
n xi0

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Here we use the expansion

xnk − xn0 = (xk − x0)(xn−1
k + xn−2

k x0 + xn−3
k x2

0 +⋯ + xn−1
0 ).

For example, the first row of the last determinant is

1 x1 + x0 x2
1 + x1x0 + x2

0 x3
1 + x2

1x0 + x1x
2
0 + x3

0 ⋯.

Now for every column l, starting from the second one, subtracting the sum of
xi0 times column i, we end up with

n

∏
k=1

(xk − x0)

RRRRRRRRRRRRRRRRRRR

1 x1 ⋯ xn−1
1

1 x2 ⋯ xn−1
2

⋮ ⋮ ⋮
1 xn ⋯ xn−1

n

RRRRRRRRRRRRRRRRRRR

. (1.11.9)

Next step, using the first row as the example, means

(x2
1+x2

1x0+x1x
2
0+x3

0)−(x2
1+x1x0+x2

0)x0 = x3
1, (x2

1+x1x0+x2
0)−(x1+x0)x0 = x2

1,

(x1 + x0) − 1 × x0 = x1.

Now we have on the right-hand side of (1.11.9) a Vandermonde determinant of
dimension n×n, we can use the induction to conclude with the desired result.
Note that the matrix given in this problem is well-known as a Vandermonde
matrix, named after Alexander-Theophile Vandermonde.

3. Prove that Theorem 1.10.2-3 is the case for any field without any condition
on characteristic.
Solution:
Assume that charF = 2, i.e. 2 = 0. In this case, detA equals to the permanent
of A;

permA = ∑
ω∈Sn

a1ω(1)a2ω(2)⋯anω(n).

(See the next section for more details on the permanent of a matrix.)
Since A has two identical rows, each term appears twice. For example, if row
one is equal to row two, then a1ia2j = a1ja2i. Thus, we have only n!

2 terms
and each term is multiplied by 2 = 0. Hence, detA = 0. Use detA = detA⊺ to
deduce that detA = 0 if A has two identical columns.
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1.11.5 Problems

1. Let A = [aij] ∈ Fn×n be a symmetric tridiagonal matrix, . If B is a matrix
formed from A by deleting the first two rows and columns, show that

detA = a11 detA(1,1) − a2
12 detB

2. If A ∈ Fm×n and B ∈ Fn×p, show that

rank A + rank B − n ≤ rank AB (1.11.10)

(Hint: Use Problem 1.10.2-1.b and Worked-out Problem 1.10.1-2.)
The combination of the inequality (1.11.10) with the inequality mentioned in
Problem 1.8.5-3, is well-known as Sylvester’s Inequality.

3. Let A,B ∈ Fn×n. Prove that

rank (A +B) ≤ rank A + rank B.

4. If A,B ∈ Fn×n, prove or disprove the following statement:

”rank (A +B) ≤ min{rank A, rank B}.”

Compare this statement with Problem 1.8.5-3.

5. If A,B ∈ Fn×n and A −B = AB, prove that AB = BA.

6. Let A ∈ Fm×n and denote by Ak the upper left k × k submatrix of A. Assume
that detAi ≠ 0 for i = 1, . . . , k. Show that the i-th pivot of A is detAi

detAi−1
for

i = 1, . . . , k. (Assume that detA0 = 1.)

7. Let A ∈ Rn×n. Prove that rank AA⊺ = rank A⊺A.

8. Let A ∈ R2×2 be an orthogonal matrix. Show the followings:

(a) if detA = 1, then A = [cos θ − sin θ
sin θ cos θ

], for some θ, 0 ≤ θ < 2π. That is, A

counterclockwise rotates every point in R2 by an angle θ.

(b) if detA = −1, then A = [cos θ sin θ
sin θ − cos θ

], for some θ, 0 ≤ θ < 2π. That

is, A reflects every point in R2 about a line passing through the origin.
Determine this line. Or equivalently, there exists an invertible matrix P

such that P −1AP = [1 0
0 −1

].

(See problem 1.10.2-4.)
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1.12 Permanents

1.12.1 A combinatorial approach of Philip Hall Theorem

The following theorem is well-known as Philip Hall Theorem and gives us the nec-
essary and sufficient conditions to have a perfect matching in a bipartite graph. See
[23] for more results on this theorem and its proof.

Theorem 1.12.1 If G = (V,E) is a bipartite graph with the bipartite sets X
and Y , then G has a perfect matching if and only if #X = #Y and for any subset
S ⊂X, #S ≤ #N(S), where N(S) denotes the neighborhood of S in Y , i.e. the set
of all vertices in Y adjacent to some elements of S.

If A = {Ai}ni=1 is a family of non-empty subsets of a finite set S, a system of distinct
representative (SDR) of A is a tuple (a1, . . . , an) with ai ∈ Ai and ai ≠ aj , 1 ≤ i, j ≤ n,
i ≠ j. This is also called a transversal of A.

Theorem 1.12.2 Let A = {Ai}ni=1 is a family of non-empty subsets of a finite
set A. Then, A has an SDR if and only if

#⋃
i∈J
Ai≥#J,

for any J ⊆ [n].

It is easy to check that the above theorem is equivalent to Philip Hall Theorem.
Indeed, construct a bipartite graph with X = {a1, . . . , an} and Y = {A1, . . . ,An}.
Furthermore, there is an edge (ai,Aj) if and only if ai ∈ Aj .
The interested reader can verify that the number of perfect matchings in a bipartite
graph G with bipartite sets X and Y and #X = #Y = n is equal to perm A, where
A is the adjacency matrix of G.

We end up this section with the linear version of Philip Hall Theorem.
Let V be a vector space over the field F and let V = {V1, . . . ,Vn} be a family of
vector subspaces of V. A free transversal for V is a family of linearly independent
vectors x1, . . . ,xn such that xi ∈ Vi, i = 1, . . . , n. The following result of Rado [16]
gives a linear version of Philip Hall Theorem for the existence of a free transversal
for V. The interested reader is referred to [1] to see the proof and more details.

Theorem 1.12.3 Let V be a vector space over the field F and let V = {V1, . . . ,Vn}
be a family of vector subspaces of V. Then, V admits a free transversal if and only
if

dim span(⋃
i∈J

Vi) ≥ #J,

for all J ⊂ [n].

1.12.2 Permanents

Recall that if A ∈ Fn×n, the permanent of A = [aij] is denoted by perm A and defined
as

permA = ∑
w∈Sn

n

∏
i=1

aiw(i).
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From the definition of permanent, it follows that permA = permA⊺.

The matrix A ∈ Fm×n whose entries are either 1 or 0 is called a (0,1)-matrix. A
special class of (0,1)-matrices, namely the (0,1)-matrices in Fn×n that have exactly
k ones in each row and column. We denote this class by C(n, k). We define

S(n, k) ∶= max{permA; A ∈ C(n, k)},
s(n, k) ∶= min{permA; A ∈ C(n, k)}.

The following result, known as Fekete’s lemma. It will be used to find an upper
bound for the permanent function. See [23] for more details about Fekete’s lemma.

Lemma 1.12.4 Let f ∶ N → N be a function for which f(m + n) ≥ f(m)f(n),

for all m,n ∈ N. Then limn→∞ f(n)
1
n exists (possibly ∞).

It is easy to check the following inequalities:

S(n1 + n2, k) ≥ S(n1, k)S(n2, k),
s(n1 + n2, k) ≤ s(n1, k)s(n2, k).

By applying these inequalities to Fekete’s lemma, we can define:

S(k) ∶= lim
n→∞

{S(n, k)}
1
n ,

s(k) ∶= lim
n→∞

{s(n, k)}
1
n .

Note that a function f ∶ Rn → R is called to be convex if f(tx + (1 − t)y) ≤ tf(x) +
(1 − t)f(y), for any x, y ∈ Rn and t ∈ [0,1]. Note that it can be shown that the
necessary and sufficient condition for a continuous function f on [0,1], such that f ′

and f ′′ exist on(0,1), is that the second derivative is always non-negative. (Try to
justify!)

Lemma 1.12.5 If t1, . . . , tn are non-negative real numbers, then

(∑
n
i=1 ti
n

)
∑ni=1 ti

≤
n

∏
i=1

ttii .

Proof. Since x lnx is a convex function, we have

∑ni=1 ti
n

ln(∑
n
i=1 ti
n

) ≤ ∑
n
i=1 ti ln ti
n

,

which proves the assertion. ◻

It was conjectured by H. Minc that if A ∈ Rn×n is a (0,1)-matrix with row-sums
r1, . . . , rn, then

perm A ≤
n

∏
j=1

(rj !)
1
rj .

This conjecture was proved by L.M. Bregman [4].
The following short proof of this theorem was given by A. Schrijver [20].
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Proof by induction on n: For n = 1 the statement is obvious. Suppose that it satisfies
for (n − 1) × (n − 1) matrices. We will show that

(permA)npermA ⩽ (
n

∏
i=1

ri!
1
ri )

npermA

,

which implies the above inequality. In the following inequalities, the variables i, j
and k range from 1 to n. Let S be the set of all permutations ω ∈ Sn for which
aiω(i) = 1, for i = 1, . . . , n. Clearly, #S = perm A. Using Lemma 1.12.5,

∏
i

(perm A)perm A ⩽∏
i

⎛
⎜⎜
⎝
rperm A
i ∏

k
aik=1

perm Aperm Aik
ik

⎞
⎟⎟
⎠
,

where Aik denotes the minor obtained from A by deleting row i and column k. Now,

∏
i

⎛
⎜⎜
⎝
rpermA
i ∏

k
aik=1

permApermAik
ik

⎞
⎟⎟
⎠
= ∏
ω∈S

((∏
i

ri)(∏
i

permAiω(i))) ,

because the number of factors ri equals permA on both sides, while the number
of factors permAik equals the number of ω ∈ S for which ω(i) = k. Applying the
induction hypothesis to each Aiω(i), we conclude that the recent expression is less
than or equal to

∏
ω∈S

⎛
⎜⎜⎜⎜⎜
⎝

(∏
i

ri)

⎛
⎜⎜⎜⎜⎜
⎝

∏
i

⎛
⎜⎜⎜⎜⎜
⎝

∏
j
j≠i

aiω(i)=0

rj !
1
rj

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

∏
j
j≠i

aiω(i)=1

(rj − 1)!
1

(rj−1)

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

. (1.12.1)

Changing the order of multiplication and considering that the number of i such that
i ≠ j and ajω(j) = 0 is n − ri, whereas the number of i such that i ≠ j and ajω(i) = 1
is rj − 1 we get

(1.12.1) = ∏
ω∈S

⎛
⎝
(∏
i

ri)
⎛
⎝∏j

rj !
(n−rj)

rj (rj − 1)!
(rj−1)

(rj−1)
⎞
⎠
⎞
⎠
. (1.12.2)

That (1.12.2) equals ∏
ω∈S

(∏
i
ri!

n
ri ) = (∏

i
ri!

1
ri )

nperm A

is trivial. Since (perm A)npermA =

∏
i
(permA)permA, the proof is complete.

Now, if G is a balanced bipartite graph with adjacency matrix A ∈ {0,1}n×n and

row-sums r1, . . . , rn, then by Bregman ’s theorem, ∏n
j=1(rj !)

1
rj is an upper bound

for the number of perfect matchings in G.

1.12.3 Worked-out Problems

1. Assume that Tn ⊆ (N ∪ {0})n×n is the set of matrices with row-sums and
column-sums 3; tn = min{perm A; A ∈ Tn}. Denote by Xn the set of all
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matrices obtained from elements of Tn by decreasing one positive entry by 1;
xn = min{perm A; A ∈ Xn}. Show that tn ⩾ ⌈3

2xn⌉, where ⌈ ⌉ denotes the
ceiling function.
Solution:
Choose A ∈ Tn with first row y = (y1, y2, y3,0, . . . ,0), where yi ⩾ 0, for i = 1,2,3.
Then

2y = y1(y1 − 1, y2, y3,0, . . . ,0) +
y2(y1, y2 − 1, y3,0, . . . ,0) +
y3(y1, y2, y3 − 1,0, . . . ,0).

Since S(n1 + n2, k) ≥ S(n1, k)S(n2, k), then 2tn ⩾ (y1 + y2 + y3)xn = 3xn.

1.12.4 Problems

1. Show that

(a) S(n, k) ≥ k!

(b) S(k) ≤ (k!) 1
k

(c) Show by example that S(k) ≥ (k!) 1
k . This shows that S(k) = (k!) 1

k .

(Hint: Use Bregman’s theorem.)

1.13 An application of Philip Hall Theorem

Recall that a permutation matrix is a square matrix that has exactly one entry of
1 in each row and each column and zero elsewhere. Now, we define a more general
family of matrices called doubly stochastic as mentioned in Section 1.9.

Definition 1.13.1 A doubly stochastic matrix is a square matrix A = [aij] of
non-negative real entries, each of whose rows and columns sum 1, i.e.

∑
i

aij = ∑
j

aij = 1.

The set of all n × n doubly stochastic matrices is denoted by Ωn. If we denote all
n × n permutation matrices by Pn, then clearly Pn ⊂ Ωn.

Definition 1.13.2 A subset A of a real vector space V is said to be convex if
λx + (1 − λ)y ∈ A, for all vectors x,y ∈ A and all scalars λ ∈ [0,1]. Via induction,
this can be seen to be equivalent to the requirement that ∑ni=1 λixi ∈ A, for all vectors
x1, . . . ,xn ∈ A and all scalars λ1, . . . , λn ⩾ 0 with ∑ni=1 λi = 1. A point x ∈ A is called
an extreme point of A if y,z ∈ A, 0 < t < 1, and x = ty + (1 − t)z imply x = y = z.
With this restrictions on λi’s, an expression of the form ∑ni=1 λixi is said to be a
convex combination of x1, . . . ,xn. The convex hull of a set B ⊂ V is defined as
{∑λixi ∶ xi ∈ B, λi ≥ 0 and ∑λi = 1}. The convex hull of B can also be defined as
the smallest convex set containing B. (Why?)

The importance of extreme points can be seen from the following theorem whose
proof can be found in [2].
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Theorem 1.13.3 (Krein-Milman) Let A ⊂ Rn be a nonempty compact convex
set. Then

1. The set of all extreme points of A is non-empty.

2. The convex hull of the set of all extreme points of A is A itself.

The following theorem is a direct application of matching theory to express the
relation between two sets of matrices Pn and Ωn.

Theorem 1.13.4 (Birkhoff) Every doubly stochastic matrix can be written as
a convex combination of permutation matrices.

Proof. We use Philip Hall Theorem to prove this theorem. We associate to our
doubly stochastic matrix A = [aij] a bipartite graph as follows. We represent each
row and each column with a vertex and we connect the vertex representing row i
with the vertex representing row j if the entry aij is non-zero.

For example if A =
⎡⎢⎢⎢⎢⎢⎣

7
12 0 5

12
1
6

1
2

1
3

1
4

1
2

1
4

⎤⎥⎥⎥⎥⎥⎦
, the graph associated to A is given in the picture

below.

row 1 column 1

row 2 column 2

row 3 column 3

We claim that the associated graph of any doubly stochastic matrix has a perfect
matching. Assume to the contrary, A has no perfect matching. Then, by Philip
Hall Theorem, there is a subset E of the vertices in one part such that the set R(E)
of all vertices connected to some vertex in E has strictly less than #E elements.
Without loss of generality, we may assume that A is a set of vertices representing
rows, the set R(A) consists then of vertices representing columns. Consider now
the sum ∑i∈E,j∈R(E) aij = #E, the sum of all entries located in columns belonging
to R(E). (by the definition of the associated graph). Thus

∑
i∈E,j∈R(E)

aij = #E.

Since the graph is doubly stochastic and the sum of elements located in any of given
#E rows is #E. On the other hand, the sum of all elements located in all columns
belonging to R(E) is at least ∑i∈E,j∈R(E) aij , since the entries not belonging to a
row in E are non-negative. Since the matrix is doubly stochastic, the sum of all
elements located in all columns belonging to R(E) is also exactly #R(E). Thus,
we obtain

∑
i∈E,j∈R(E)

aij ≤ #R(E) < #E = ∑
i∈E,j∈R(E)

aij ,

a contradiction. Then, A has a perfect matching.
Now, we are ready to prove the theorem. We proceed by induction on the number
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of non-zero entries in the matrix. As we proved, associated graph of A has a perfect
matching. Underline the entries associated to the edges in the matching. For ex-
ample in the associated graph above, {(1,3), (2,1), (3,2)} is a perfect matching so
we underline a13, a23 and a32. Thus, we underline exactly one element in each row
and each column. Let α0 be the minimum of the underlined entries. Let P0 be the
permutation matrix that has a 1 exactly at the position of the underlined elements.
If α0 = 1, then all underlined entries are 1, and A = P0 is a permutation matrix. If
α0 < 1, then the matrix A−α0P0 has non-negative entries, and the sum of the entries
in any row or any column is 1 − α0. Dividing each entry by (1 − α0) in A − α0P0

gives a doubly stochastic matrix A1. Thus, we may write A = α0P0 + (1 − α0)A1,
where A1 is not only doubly stochastic but has less non-zero entries than A. By our
induction hypothesis, A1 may be written as A1 = α1P1 +⋯+αnPn, where P1, . . . , Pn
are permutation matrices, and α1P1 +⋯+ αnPn is a convex combination. But then
we have

A = α0P0 + (1 − α0)α1P1 +⋯ + (1 − α0)αnPn,
where P0, P1, . . . , Pn are permutation matrices and we have a convex combination.
Since α0 ≥ 0, each (1 − α0)αi is non-negative and we have

α0 + (1 − α0)α1 +⋯ + (1 − α0)αn = α0 + (1 − α0)(α1 + . . . + αn) = α0 + (1 − α0) = 1.

In our example

P0 =
⎡⎢⎢⎢⎢⎢⎣

0 0 1
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
and α0 = 1

6 . Thus, we get

A1 =
1

1 − 1
6

(A − 1

6
P0) =

6

5

⎡⎢⎢⎢⎢⎢⎣

7
12 0 1

4
0 1

2
1
3

1
4

1
3

1
4

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

7
10 0 3

10
0 3

5
2
5

3
10

2
5

3
10

⎤⎥⎥⎥⎥⎥⎦
.

The graph associated to A1 is the following:

1 1

2 2

3 3

A perfect matching is {(1,1), (2,2), (3,3)}, the associated permutation matrix is

P1 =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

Remark 1.13.5 Let e ∈ Rn be the column vector with each coordinate equal to
1. Then, for a matrix A ∈ Rn×n, the condition that each sum of entries in every row
and column can be described by e⊺A = e⊺ and Ae = e. It follows that the product of
finitely many doubly stochastic matrices is a doubly stochastic matrix.
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1.13.1 Worked-out Problems

1. If we denote by Ωn,s, the subset of symmetric doubly stochastic matrices, show
that each A ∈ Ωn,s can be written as a convex combination of 1

2(P +P
⊺), where

P ∈ Pn.
Solution:
As A ∈ Ωn,s ⊂ Ωn, by Theorem 1.13.4, one can find P1, . . . , PN ∈ Pn and
t1, . . . , tn ∈ (0,1) such that A = ∑Nj=1 tjPj and ∑Nj=1 tj = 1. Since A is symmetric,

then ∑nj=1 tjPj = (∑nj=1 tjPj)
⊺
. This implies ∑Nj=1 tj(Pj −P ⊺

j ) = 0. Since tj ’s are

positive and Pj ’s are non-negative matrices, we conclude that (Pj − P ⊺
j )’s are

zero matrices and so Pj = P ⊺
j , 1 ≤ j ≤ N . Therefore, Pj = 1

2(Pj +P
⊺
j ) and then,

A = ∑Nj=1 tj
1
2(Pj + P

⊺
j ).

1.13.2 Problems

1. Show that in the decomposition of Worked-out Problem 1, N ⩽ n2−n+2
2 , for

n > 2.
(Hint: Use Carathéodary’s theorem [22].)

2. Let A be a doubly stochastic matrix. Show that perm A > 0.

3. Show that Ωn is a compact set.

4. Show that Pn is a group with respect to the multiplication of matrices, with
In the identity and P −1 = P ⊺.

5. Let A ∈ Ωn and B ∈ Ωm. Show that A⊕B ∈ Ωn+m.

6. Assume that A is an invertible n×n doubly stochastic matrix and that A−1 is
doubly stochastic. Prove A is a permutation matrix.

7. Let x be a vector in Rn. The x is said to be a stochastic vector if its entries
are non-negative that add up to one. Denote by Πn the set of all probability
vectors in Rn. Prove that Πn is a compact set.

1.14 Polynomial rings

1.14.1 Polynomials

Let F be a field, (usually F = R,C). By the ring polynomials in the indeterminate,
z, written as F[z], we mean the set of all polynomials p(z) = a0z

n + a1z
n−1 +⋯+ an,

where n can be any non-negative integer and coefficients a0, . . . , an are all in F. The
degree of p(z), denoted by deg p, is the maximal degree n − j of a monomial ajx

n−j

which is not identically zero, i.e. aj ≠ 0. Then, deg p = n if and only if a0 ≠ 0,
the degree of a non-zero constant polynomial p(z) = a0 is zero, and the degree of
the zero polynomial is agreed to be equal to −∞. For two polynomials p, q ∈ F[z]
and two scalars a, b ∈ F, ap(z) + bq(z) is a well-defined polynomial. Hence, F[z]
is a vector space over F, whose dimension is infinite. The set of polynomials of
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degree at most n, is n + 1 dimensional subspace of F[z]. Given two polynomials
p = ∑ni=0 aiz

n−i, q = ∑mj=0 bjz
m−j ∈ F[z], one can form the product

p(z)q(z) =
n+m
∑
k=0

(
k

∑
i=0

aibk−i)zn+m−k, where ai = bj = 0, for i > n and j >m.

Note that pq = qp and deg pq = deg p + deg q. The addition and the product in F[z]
satisfy all the nice distribution identities as the addition and multiplication in F.
This implies that F[z] is a commutative ring with the addition and product defined
above. Here, the constant polynomial p ≡ 1 is the identity element, and the zero
polynomial as the zero element. (That is the reason for the name ring of polynomials
in one indeterminate (variable) over F.)

Given two polynomials p, q ∈ F[z], one can divide p by q /≡ 0 with the residue
r, i.e. p = tq + r, for some unique t, r ∈ F[z], where deg r < deg q. For p, q ∈ F[z],
let (p, q) denote greatest common divisor of p, q. If p and q are identically zero,
then (p, q) is the zero polynomial. Otherwise, (p, q) is a polynomial s of the highest
degree that divides p and q. Note that s is determined up to a multiple of a non-zero
scalar and it can be chosen as a unique monic polynomial:

s(z) = zl + s1z
l−1 + . . . + sl ∈ F[z]. (1.14.1)

For p, q /≡ 0, s can be found using the Euclid algorithm:

pi(z) = ti(z)pi+1(z) + pi+2(z), deg pi+2 < deg pi+1 i = 1, . . . (1.14.2)

Start this algorithm with p1 = p, p2 = q. Continue it until pk = 0 the first time. (Note
that k ≥ 3). Then, pk−1 = (p, q). It is easy to show, for example by induction, that
each pi is of the form uip + viq, for some polynomials ui, vi. Hence, the Euclidean
algorithm yields

(p(z), q(z)) = u(z)p(z) + v(z)q(z), for some u(z), v(z) ∈ F[z]. (1.14.3)

(This formula holds for any p, q ∈ F[z] .) Note that p, q ∈ F[z] are called coprime if
(p, q)∈ F.

Note that if we divide p(z) by z − a, we get the residue p(a), i.e. p(z) = (z −
a)q(z) + p(a). Hence, z − a divides p(z) if and only if p(a) = 0, i.e. a is the root of
p. A monic p(z) splits to a product of linear factors if

p(z) = (z − z1)(z − z2) . . . (z − zn) =
n

∏
i=1

(z − zi). (1.14.4)

Note that z1, . . . , zn are the roots of p.
Let z = (z1, . . . , zn)⊺ ∈ Fn. Denote

σk(z) ∶= ∑
1≤i1<i2<...<ik≤n

zi1zi2 . . . zik , k = 1, . . . , n. (1.14.5)

Then, σk(z) is called the k − th elementary symmetric polynomial in z1, . . . , zn.
Observe that

σ1(z) = z1 + z2 + . . . + zn, n summands,

σ2(z) = z1z2 + . . . + z1zn + z2z3 + . . . + znzn +⋯ + zn−1zn,
n(n + 1)

2
summands,

σn(z) = z1z2 . . . zn, n terms in the product.
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A straightforward calculation shows

n

∏
i=1

(z − zi) = zn +
n

∑
i=1

(−1)iσi(z)zn−i. (1.14.6)

Remark 1.14.1 For a field F, the ring of polynomials p(z1, . . . , zn) in vari-
ables z1, . . . , zn and with coefficients in F is denoted by F[z1, . . . , zn]. The field
of fractions of the polynomial ring F[z1, . . . , zn] over F is the field of fractions

{f(z1,...,zn)g(z1,...,zn) ; f, g ∈ F[z1, . . . , zn], g ≠ 0} and this is denoted by F(z1, . . . , zn).

1.14.2 Finite fields and finite extension of fields

A finite field of order q exists if and only if the order q is a prime power pk. (Why?)
The field of order q is denoted by Fq. For the prime number p, Fp is isomorphic to
Zp, while Fpk can be viewed as a vector space of dimension k over Fp. Moreover, it
can be proved that for any prime p and positive integer n, there exists an irreducible
polynomial π(x) ∈ Fp[x] of degree n such that Fp[x]/⟨π(x)⟩ ≅ Fpn .

Suppose that E/F is a field extension. Then, E may be considered as a vector
space over F. The dimension of this vector space is called the degree of the field
extension, and it is denoted by [E ∶ F]. The degree may be finite or infinite, the
field extension being called a finite extension or infinite extension accordingly. An
extension E/F is also sometimes said to be simply finite if it is a finite extension;
this should not be confused with the fields themselves being finite fields (fields with
finitely many elements). For example, [C ∶ R] = 2 as dimRC = 2.

A polynomial p(z) ∈ F[z] is called irreducible, if all polynomials q that divide p
are either constant non-zero polynomials or polynomials of the form ap(z), where
a ∈ F∖{0}. The field F is called an algebraically closed field if any monic polynomial
p(z) ∈ F[z] splits to linear factors in F[z]. It is easy to see that F is algebraically
closed if and only if the only irreducible monic polynomials are z − a, for all a ∈ F.
Then, F is not algebraically closed if and only if there exists an irreducible monic
polynomial in F[z] of degree greater than 1. For example, R is not algebraically
closed as x2 + 1 ∈ R[x] is irreducible over R.
If f(z) = a0 + a1z + ⋯ + anzn ∈ F[z], an extension field E of F is called a splitting
field for f(z) over F if there exist elements c1, . . . , cn ∈ E such that

(i) f(z) = an(z − c1)⋯(z − cn),

(ii) E = F(c1, . . . , cn).

For example Q(
√

2) is a splitting field of x2 − 2 ∈ Q[x] over Q.

Theorem 1.14.2 Let F be a field. Assume that p(z) = zd + ∑di=1 aiz
d−i be an

irreducible polynomial, where d > 1. Denote by F[z]/⟨p(z)⟩ the set of all polynomials
modulo p(z). That is, for f(z), g(z) ∈ F[z], f(z) ≡ g(z) if the polynomial f(z)−g(z)
is divided by p(z). Then, this set is a field, denoted by Fp(z), under the addition and
product modulo p(z). Moreover, Fp(z) is a vector space over F of dimension d. The
set of all constant polynomials in Fp(z) is isomorphic to F. (Fp(z) is called a finite
extension of F, and more precisely an extension of degree d).
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1.14.3 Worked-out Problems

1. An element λ ∈ F is called an eigenvalue of A ∈ Fn×n if there exists 0 ≠ x ∈ Fn
such that Ax = λx. This x ≠ 0 is called an eigenvector of A corresponding to
λ. It can be shown that λ is an eigenvalue of A if and only if it is a root of the
polynomial det(zIn −A). (See Problem 1.14.4-5.) Also, det(zIn −A) is called
the characteristic polynomial of A and it is denoted by PA(z) or simply P (z).

(a) Give an example of A ∈ F2×2
3 that does not have an eigenvalue in F3.

(b) Does this matrix have a multiple eigenvalue in some field extension of F3,
where the characteristic polynomial of A splits?

Solution:

(a) Consider A = [0 2
1 0

] ∈ F2×2
3 . If A has an eigenvalue in F3, then by Problem

1.14.4-5, det(zI −A) = 0 has solution in F3. Then, z2 − 2 = 0 has root in
F3. But 02 = 0, 12 = 1 and 22 = 1 in F3. Thus, A has no eigenvalue in F3.

(b) Assume that λ is a multiple eigenvalue of A, then z2 − 2 = (z − a)2 =
z2 − 2az + a2. This means 2a = 0 and since charF3) ≠ 2, then a = 0, which
is impossible. Therefore, A does not have any multiple eigenvalue in any
extension of F3.

2. Let A ∈ Rn×n be a skew-symmetric matrix. Show that if n is odd, then A is
singular.
Solution:
We know that detA = detA⊺. On the other hand, −A = A⊺ as A is skew-
symmetric. This means detA = detA⊺ = det(−A) = (−1)n detA. Since n is
odd, then (−1)n = −1. Thus, detA = −detA and so detA = 0. Therefore, A is
singular.

3. If A is an invertible matrix and B is a matrix such that AB exists, prove that
rank AB = rank B.
Solution:
Assume that C = AB. Since A is invertible, then B = A−1C. Using Problem
1.8.5-3, we have

rank C ≤ rank B,

and
rank B = rank (A−1C) ≤ rank C.

Then, rank B = rank C = rank AB.

4. If A ∈ Fn×n satisfies A2 = A, show that rank A + rank (In −A) = n.
Solution:
Since A−A2 = 0, then A(In −A) = 0. As the sum of the matrices A and In −A
is the matrix In, using Sylvester Inequality we have:

n = rank (A + In −A) ≤ rank A + rank (In −A). (1.14.7)
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Again since 0 = rank (A − A2) = rank (A(In − A)), by Sylvester Inequality
0 ≥ rank A + rank (In −A) − n, i.e.

n ≥ rank A + rank (In −A). (1.14.8)

Hence from (1.14.7) and (1.14.8), we get rank A + rank (In −A) = n.

5. Show that a finite dimensional vector space over an infinite field cannot be
written as a finite union of its proper subspaces.
Solution:
Assume that V is a vector space over the infinite field F. Assume to the

contrary, V =
n

⋃
i=1

Vi, where Vi’s are proper subspaces of V. Pick a non-zero

vector x ∈ V1. Choose y ∈ V∖V1, and note that there are infinitely many
vectors of the form x+cy, with c ∈ F∗. Now, x+cy in never in V1 and so there
is Vj , j ≠ 1, with infinitely many of these vectors, so it contains y, and thus

contains x. Since x was arbitrary, we see V1 is contained in
n

⋃
i=2

Vi; clearly this

process can be repeated to find a contradiction.

6. Show that a finite dimensional vector space over an arbitrary filed (not an infi-
nite field necessarily) cannot be written as the union of two proper subspaces.
First Solution:
Bearing in mind the previous problem, the statement is clear for vector spaces
over infinite fields. Assume that the background field F is finite and V =
V1 ∪V2, where V1 and V2 are proper subspaces. Using Problem 1.14.4-3, it
follows #F = q, where q is a prime power. Assume that dimFV = n. Thus,
#V = qn. Clearly, the cardinality of Vi’s can be at most qn−1 (because of
Lagrange’s theorem). Since Vi’s have at least the zero element in common,
#V1 ∪V2 ⩽ 2qn−1 − 1 which is strictly less than qn as q≥2. This shows that
the statement is valid for vector spaces over finite fields as well.
Second Solution:
Assume to the contrary, there exist two proper subspaces V1 and V2 of V for
which V = V1 ∪V2. Choose the elements x and y of V1 ∖V2 and V2 ∖V1,
respectively. Then, x + y ∈ V1 ∪V2 since V = V1 ∪V2. This contradicts the
cases x /∈ V2 and y /∈ V1.

1.14.4 Problems

1. Prove Theorem 1.14.2.

2. Show that there is only one monic irreducible polynomial of degree two over
F2. Describe the extension of F2 of degree 2.

3. Show that every finite field is of order pm, for some prime p and positive integer
m.
(Hint: Use Lagrange’s theorem for groups to show that there is no prime other
than p which divides #F, where F is considered as a finite field.)

4. Show that any finite extension of Fp, where p ≥ 2 is prime, has pd elements.

5. The characteristic polynomial of A ∈ Fn×n is defined as det(zIn −A).
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(a) Show that the characteristic polynomial is a monic polynomial of degree
n.

(b) Prove that the coefficient of zn−k of the characteristic polynomial of A is
the sum of all minors detA[α,α], where α runs over all subsets of [n] of
cardinality k.

(c) Show that λ is an eigenvalue of A if and only if λ is a zero of the charac-
teristic polynomial of A.

6. Find an A ∈ F2×2
2 , which does not have eigenvalues in Z2.

7. Show that C is a 2-extension of R, i.e. the degree of C over R as a field
extension is 2. What is the corresponding irreducible polynomial in R[z]?

8. Let p ≥ 3 be a prime and consider the polynomial fp = ∑p−1
i=0 z

i ∈ Q[z]. Show
that this polynomial is irreducible over Q[z].

9. If F is a finite field, show that F∗ = F∖{0} is a cyclic group under multiplication.

10. Show that any finite field has prime characteristic.
(Hint: Use Worked-out Problem 1.5.1-2)

11. Find a non-zero symmetric matrix A ∈ Fn×np (p a prime) such that A2 = 0.

12. Find a non-zero matrix A ∈ C2×2 such that AA⊺ = 0.

13. Prove that if the union of two subspaces is a subspace, then one of the two
subspaces contains the other.

1.15 The general linear group

If F is a field, then GL(n,F), the subset of n × n invertible matrices of Fn×n, is a
group under matrix multiplication. (Here, n is a positive integer.) This group is
called the general linear group of degree n.
It is not immediately clear whether GL(n,F) is an infinite group when F is. However,
such is the case. If a ∈ F is non-zero, then aIn is an invertible n × n matrix with
inverse a−1In. Indeed, the set of all such matrices forms a subgroup of GL(n,F)
that is isomorphic to F∗ = F ∖ {0}.
Obviously, if F is a finite field, GL(n,F) is. An interesting question: how many
elements this group has. Before answering this question completely, let’s look at
particular case n = 1; clearly GL(1,Fq) ≅ F∗q , which has q−1 elements (note that
here q is a prime power and Fq denotes a field with q elements.)

Theorem 1.15.1 The number of elements of GL(n,Fq) is
n−1

∏
k=0

(qn − qk).

Proof. We will count the n × n matrices whose rows are linearly independent.
The first row can be anything other than the zero row, so there are qn − 1 possibil-
ities. The second row must be linearly independent from the first, which is to say
that it must not be a multiple of the first. Since there are q multiples of the first
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row, there are qn − q possibilities for the second row. In general, the ith row must
be linearly independent from the first i − 1 rows, which means that it cannot be a
linear combination of the first i − 1 rows. There are qi−1 linear combinations of the
first i − 1 rows, so there are qn − qi−1 possibilities for the ith row. Once we build
the entire matrix this way, we know that the rows are all linearly independent by
choice. Also, we can build any n × n matrix whose rows are linearly independent

in this fashion. Thus, there are (qn − 1)(qn − q)⋯(qn − qn−1) =
n−1

∏
k=0

(qn − qk) such

matrices. ◻

Now, we consider an interesting subgroup of GL(n,F). The determinant function,
det ∶ GL(n,F) → F∗ is a group homomorphism; it maps the identity matrix to 1, and
it is multiplicative, as desired. We define the special linear group SL(n,F), to be the
kernel of this homomorphism. Put another way, SL(n,F) = {M ∈ GL(n,F); detM =
1}.

1.15.1 Matrix Groups

This subsection is devoted to subgroups of general linear groups. We will show that
any subgroup of GL(n,C) is isomorphic to a subgroup of GL(m,R), for some m.

Definition 1.15.2 A subgroup G of GL(n,F) with the operation of matrix mul-
tiplication is called a matrix group over F.

Example 1.15.3 SL(n,F) is a matrix group over F.

Definition 1.15.4 A subgroup H of a matrix group G is called a matrix sub-
group of G.

Example 1.15.5 We can consider GL(n,F) as a subgroup of GL(n + 1,F) by
identifying the matrix A = [aij] with

[A 0
0 1

] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 . . . a1n 0
⋮ ⋱ ⋮ ⋮
an1 . . . ann 0
0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence, GL(n,F) is a matrix subgroup of GL(n + 1,F). Similarly, it is verified that
SL(n,F) is a matrix subgroup of SL(n + 1,F).

Example 1.15.6 Consider the upper triangular matrix A = [aij] ∈ Fn×n with
aii = 1, 1 ≤ i ≤ n. Then, A is called unipotent. The upper trinangular subgroup of
GL(n,F) is UT (n,F) = {A ∈ GL(n,F); A is upper trinangular}, while the unipotent
subgroup of GL(n,F) is

SUT (n,F) = {A ∈ GL(n,F); A is unipotent}.

Note that SUT (n,F) is a matrix subgroup of UT (n,F).

For the case SUT (2,F) = {[1 c
0 1

] ∈ GL(2,F); c ∈ F}, the function σ ∶ F→ SUT (2,F)
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defined as σ(c) = [1 c
0 1

], is a group isomorphism. Then, we can view F as a matrix

group.
Note that the complex numbers can be viewed as a 2-dimensional real vector space.
Similarly, every A ∈ Cn×n can be viewed as a 2n × 2n real matrix as follows:

Consider the function f ∶ C→ R2×2 defined as x+yi↦ [x −y
y x

]. It is easily verified

that f is an injective ring homomorphism. Thus, we can view C as a subring of
R2×2. Note that f(z̄) = f(z)⊺. (See Section 1.15 for the conjugate of a complex
number.)
Given A = [aij] ∈ Cn×n with ars = xrs + yrsi, we write A = [xij] + i[yij], where the
matrices X = [xij] and Y = [yij] are real symmetric. Define a function fn ∶ Cn×n →

R2n×2n by A↦ [X −Y
Y X

], which is an injective ring homomorphism.

Let J2n = [On −In
In On

] ∈ R2n×2n. Then J2
2n = −I2n and J⊺2n = −J2n. We have

fn(A) = [ X On
On X

] + [ Y On
On Y

]J2n;

fn(Ā) = fn(A)⊺.

Note that fn(GL(n,C)) is a subgroup of GL(2n,R), so any subgroup G of GL(n,C)
can be viewed as a matrix subgroup of GL(2n,R) by identifying it with fn(G). (Here,
we use the fact that fn is continuous.)

1.15.2 Worked-out Problems

1. Determine the number of elements of SL(n,Fq).
Solution:
Consider the group homomorphism det ∶ GL(n,Fq) → F∗q . This map is surjec-
tive and sine SL(n,Fq) is the kernel of the homomorphism, it follows from the
First Isomorphism Theorem that GL(n,Fq)/SL(n,Fq) ≅ F∗q . Therefore,

# SL(n,Fq) =
# GL(n,Fq)

#F∗q
= ∏

n−1
k=0(qn − qk)
q − 1

.

Note that since ker(det) = SL(n,Fq), then SL(n,Fq) ⊲ GL(n,Fq). Also, this
is the case for infinite fields.

1.15.3 Problems

1. Prove that Z(GL(n,F)) = {a ⋅ In; a ∈ F∗}.

2. Prove that Z(SL(n,F)) = {a ⋅ In; a ∈ F∗ and an = 1}.

1.16 Complex numbers

Denote by C, the field of complex numbers. A complex number z can be written
in the form z = x + iy, where x, y ∈ R. Here, i2 = −1. Sometimes in this book we
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denote i by
√
−1. Then, C can be viewed as R2, where the vector (x, y)⊺ represents

z. Note that x = Rz, the real part of z, and y = Iz, the imaginary part of z. In
addition, z̄ = x − iy is the conjugate of z. Note that ∣z∣ =

√
x2 + y2 is the absolute

value of z or the modulus of z. For z ≠ 0, the argument of z is defined as arctan y
x .

The polar representation of z is z = reiθ = r(cos θ + i sin θ). Here, r and θ are the
modulus and the argument of z(≠ 0), respectively. Let w = u+ iv = R(cosψ+ i sinψ),
where u, v ∈ R. Then

z +w = (x + u) + i(y + v), zw = (xu − yv) + i(xv + yu) = rRei(θ+ψ),
w

z
= 1

zz̄
wz̄ = R

r
ei(ψ−θ) if z ≠ 0.

For a complex number w = Reiψ and a positive integer n ≥ 2, the equation zn−w = 0

has n-complex distinct roots for w ≠ 0, which are R
1
n ei

ψ+2kπ
n for k = 0,1, . . . , n − 1.

The fundamental theorem of algebra states that any monic polynomial p(z) ∈
C[z] of degree n ≥ 2 splits to linear factors, i.e. p(z) = ∏n

i=1(z − zi). See [6] for more
details about fundamental theorem of algebra. The interested reader is referred to
[21] to see an improvement of the fundamental theorem of algebra.

1.16.1 Worked-out Problems

1. Find the real part of (cos 0.7 + i sin 0.7)53.
Solution:
This is the same as (e0.7i)53 = e37.1i = cos(37.1) + i sin(37.1).
Then, the real part is simply cos(37.1).

2. Write (1 − i)100 as a + ib, where a and b are real.
Solution:
The complex number 1 − i has modulus

√
2 and argument −π4 . That is

1 − i =
√

2(cos(−π
4
) + i sin(−π

4
)) ⇒

(1 − i)100 = (
√

2)100 (cos(−100π

4
) + i sin(−100π

4
))

= 250 (cos (−25π) + i sin (−25π))
= 250 (−1 + 0i) = −250.

1.16.2 Problems

1. Show that p(z) = z2 + bz + c ∈ R[z] is irreducible over R if and only if b2 < 4c.

2. Show that any monic polynomial p(z) ∈ R[z] of degree at least 2 splits to a
product of irreducible linear and quadratic monic polynomials over R[z].

3. Deduce from the previous problem that any p(z) ∈ R[z] of odd degree must
have a real root.

4. Show that for θ ∈ R and n ∈ N, (cos θ + i sin θ)n = cosnθ + i sinnθ.
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1.17 Linear operators (Second encounter)

Let V and U be two finite dimensional subspaces over F, where dimV = n,dimU =
m. Recall that a map T ∶ V → U is called a linear transformation (or linear
operator) if T (au + bv) = aT (u) + bT (v), for all a, b ∈ F and u,v ∈ V. Assume that
α ={v1, . . . ,vn} and β ={u1, . . . ,um} are two bases in V and U, respectively. Then,
T is completely determined by T (vj) = ∑mi=1 aijui, j = 1, . . . , n. Let A = [aij]m,nj=i=1 ∈
Fm×n. Then, the above equality is equivalent to

T [v1,v2, . . . ,vn] = [T (v1), T (v2), . . . , T (vn)] = [u1,u2, . . . ,um]A. (1.17.1)

The matrix A is called the representation matrix of T in the ordered bases α and
β; we write [T ]βα. Note that if V = U and α = β, we write [T ]β instead of [T ]ββ.
Assume that

[y1, . . . ,yn] = [v1,v2, . . . ,vn]Y, [x1, . . . ,xm] = [u1,u2, . . . ,um]X, (1.17.2)

where Y ∈ GL(n,F) and X ∈ GL(m,F) are other bases in V and U, respectively.
Then

T [y1,y2, . . . ,yn] = [x1,x2, . . . ,xm]X−1AY. (1.17.3)

Denote by V′ ∶= L(V,F), the set of all linear functions on V. Then, V′ is called
the dual space of V. If v,w ∈ U′, then av + bw is the linear transformation, (also
called linear functional), defined as follows: (av + bw)(u) = av(u) + bw(u). It is
straightforward to show that U′ is a vector space over the background field of V as
a vector space.

Proposition 1.17.1 Let U be a finite dimensional vector space. Then, U′ is
isomorphic to U.

Proof. Choose a basis {u1, . . . ,un} for U. Let vi ∈ U′ be the following linear
transformation vi(uj) = δij , for i, j ∈ [n]. (This basis is called a dual basis in U.) It
is straightforward to show that {v1, . . . ,vn} is a basis in U′. ◻

If U is finite dimensional, then all three spaces U,U′,U
′′ ∶= (U′)′ are isomorphic.

There is a natural isomorphism φ ∶ U→U′′. Namely

φ(u)(v) ∶= v(u), u ∈ U, v ∈ U′.

Let T ∈ L(V,U). Then, there exists a unique T ′ ∈ L(U′,V′) defined as follows.

(T ′w)(v) = w(Tv), w ∈ U′. (1.17.4)

Assume that U and V are finite dimensional. Choose the bases {u1, . . . ,um}
and {v1, . . . ,vn} in U and V, respectively. Assume that T is represented in these
bases by A ∈ Fm×n. Choose dual bases in U′ and V′, respectively. Then, T ′ is
represented in these dual bases by A⊺.

Denote by L(V) ∶= L(V,V). Any T ∈ L(V) is represented by a matrix A ∈ Fn×n
in a basis [v1, . . . ,vn] of V as follows:

T [v1, . . . ,vn] = [v1, . . . ,vn], i.e. T (vj) =
n

∑
i=1

aijvi, for j ∈ [n]. (1.17.5)
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1.17.1 Worked-out Problems

1. If A and B ∈ Fn×n, then A is called to be similar to B if there exists an
invertible matrix P such that B = P −1AP . It is straightforward to show that
the relation “A similar to B” is an equivalence relation in Fn×n. Equivalently,
we say that A and B are similar.
If A and B ∈ Fn×n are similar, show that A and B have the same characteristic
polynomials. Give an example where the opposite claim does not hold.
Solution:
Since A and B are similar, then B = PAP−1, for some P ∈ GL(n,F). Thus , the
characteristic polynomial of B = det(zI −B) = det(zI −PAP−1) = det(P (zI −
A)P −1) = detP.det(zI−A).(detP )−1 = det(zI−A) = characteristic polynomial
of A.

For the second part, consider the matrices A = [0 0
0 0

] and B = [0 1
0 0

] in R2×2.

Then, det(zI−A) = det(zI−B) = z2. If A and B are similar, then XAX−1 = 0,
for any X ∈ GL(2,R). But B ≠ 0 and then B is not similar to A.

2. Assume that V is a finite dimensional vector space. Let T ∶ V →V be a linear
transformation. Show that the following statements are equivalent:

(a) T is not one-to-one.

(b) T is not onto.

(c) detT = 0.

(d) T has 0 as an eigenvalue.

Solution:
Assume that T is represented by A ∈ Fn×n, where n = dimV. Put r = rank A
and m = nullA.
(a) ⇒ (b) Since m > 0, then r < n. Then, r = dim(Rang(T )) < n and so T is
not onto.
(b) ⇒ (c) Since r < n, then detA = 0 and so detT = 0.
(c) ⇒ (d) Since detT = 0, then detA = 0 and so det(0I − A) = 0. Therefore
λ = 0 is an eigenvalue of T .
(d) ⇒ (a) Since T has 0 as an eigenvalue, then Ax = 0x = 0, for some non-zero
x. Thus, nullA > 0 and so T is not one-to-one.

1.17.2 Problems

1. Show that any n-dimensional vector space V over the field F is isomorphic to
Fn.

2. Show that any finite dimensional vector space V over F is isomorphic to (V′)′.
Define an explicit isomorphism from V to (V′)′.

3. Show that any T ∈ L(V,U) is an isomorphism if and only if T is represented
by an invertible matrix in some bases of V and U.

4. Recall that the matrices A and B ∈ Fn×n are called similar if B = P −1AP , for
some P ∈ GL(n,F). Show that similarity is an equivalence relation on Fn×n.
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5. Show that the matrices A and B ∈ Fn×n are similar if and only if they represent
the same linear transformation T ∈ L(V) in different bases, for a given n-
dimensional vector space V over F.

6. Suppose that A and B ∈ Fn have the same characteristic polynomial, which
has n distinct roots in F. Show that A and B are similar.

7. Show that every square matrix is similar (over the splitting field of its charac-
teristic polynomial) to an upper triangular matrix.

8. Show that the eigenvalues of a triangular matrix are the entries on its main
diagonal.

9. Assume that A ∈ Rn×n and λ ∈ C is an eigenvalue of A. Show that λ̄ is also an
eigenvalue of A.

10. Let V and W two vector spaces over a field F and T ∈ L(V,W). Show that

(a) If dimV > dimW, then T is not one-to-one.

(b) If dimV = dimW, then T is one-to-one if and only if T is onto.

11. Let A,B ∈ Fn×n are similar. Prove that detA = detB.

1.17.3 Trace

As we saw before, the determinant is a function that assigns a scalar value to every
square matrix. Another important scalar-valued function is the trace.

The trace of A = [aij] ∈ Fn×n is denoted as trA and defined to be the sum of the
elements on the main diagonal of A, i.e.

trA =
n

∑
i=0

aii

Clearly, det(zI −A) = zn − trAzn−1 +⋯. Assume that A is similar to B ∈ Fn×n. As
A and B have the same characteristic polynomial, it follows that trA = trB. Let V
be an n-dimensional vector space over F. Assume that T ∈ L(V) is represented by
A and B, respectively, in two different bases in V. Therefore A and B are similar.
Hence trA = trB. Then, the trace of T is denoted by trT and defined to be trA.

Note that the trace is only defined for a square matrix. The following properties
are obvious about the trace:
If A,B ∈ Fn×n and c ∈ F, then

1. trA +B = trA + trB

2. tr cA = c trA

3. trA = trA⊺

4. trAB = trBA

Furthermore, if A ∈ Fm×n and B ∈ Fn×m, then trAB = trBA. Also, the trace is
invariant under cyclic permutations, i.e.

trABCD = trBCDA = trCDAB = trDABC,

where A,B,C,D ∈ Fn×n. This is known as the cyclic property. Note that arbitrary
permutations are not allowed; in general trABC ≠ trACB.
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1.17.4 Worked-out Problems

1. If A,B ∈ Fn×n, char F ≠ 2, and A is symmetric and B is skew-symmetric, prove
that trAB = 0.
Solution:

trAB
(3)= tr(AB)⊺ = trB⊺A⊺ = tr−BA (2)= − trBA = − trAB.

Then, trAB = 0.
(Here, (2) and (3) mean the second and third properties mentioned for trace.)

1.17.5 Problems

1. Deduce the cyclic property by proving trABC = trBCA = trCAB, where
A,B,C ∈ Fn×n.

2. Let A,B ∈ Fn. Prove or disprove the following statements:

(a) trAB = trA trB,

(b) tr(A−1) = 1
trA , if A is invertible,

(c) det(xI −A) = x2 − trA + detA, if A ∈ F2×2.

3. Determine if the map ϕ ∶ Fn×n → F by ϕ(A) = trA is a ring homomorphism.
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Chapter 2

Tensor products

2.1 Universal property of tensor products

Let U1, . . . ,Ud and V be given finite dimensional subspaces over F, where d > 1 is an
integer. Denote by U1 ×⋯Ud the product set, all d-tuples of the form (u1, . . . ,ud).
Let L ∶ U1 × ⋯×Ud → V be a multilinear map. That is, for any fixed i ∈ [d] and
vectors uj ∈ Uj , for j ∈ [d]∖{i}, the restriction of L to (u1, . . . ,ui−1,Ui,ui+1, . . . ,ud)
is linear in u ∈ Ui. Note that for any 1 ≤ p < q ≤ d, we have equality

L(u1, . . . ,up−1, aup,up+1, . . . ,ud) = aL(u1, . . . ,up−1,up,up+1, . . . ,ud)
= L(u1, . . . ,uq−1, auq,uq+1, . . . ,ud).(2.1.1)

Theorem 2.1.1 Let U1, . . . ,Ud be given finite dimensional subspaces over F
(d > 1). Then, there exists a unique vector space U over F, up to an isomorphism,
of dimension ∏i∈[d] dimUi with the following properties.

1. There exists a multilinear map ι ∶ U1×⋯×Ud →U with the following properties.

(a) ι((u1, . . . ,ud)) = 0 if and only if ui = 0, for some i ∈ [d].
(b) Assume that ui,vi ≠ 0, for i ∈ [d]. Then, ι((u1, . . . ,ud)) = ι((v1, . . . ,vd))

if and only if there exist scalars ti ∈ F, i ∈ [d] satisfying ∏i∈[d] ti = 1 such
that vi = tiui, for i ∈ [d].

2. Let V be a finite dimensional vector space over F. Assume that L ∶ U1 ×
⋯ × Ud → V is a multilinear map. Then, there exists a unique linear map
L̂ ∶ U→V such that L = L̂ ○ ι.

Usually one denotes:

U1 ⊗⋯⊗Ud = ⊗i∈[d]Ui ∶= U, u1 ⊗⋯⊗ ud = ⊗i∈[d]ui ∶= ι((u1, . . . ,ud)). (2.1.2)

Property 2 is called the lifting property. It is usually started in terms of a commu-
tative diagram.

U1 ×⋯ ×Ud U1 ⊗⋯⊗Ud

V

L L̂

ι

80



Proof.

1. Assume that {e1,i, . . . ,emi,i} is a basis in Ui, for i ∈ [d]. Let U be a finite
vector space of dimension m ∶= m1⋯md. Choose a basis of cardinality m and
denote the elements of this basis by ej1,1⊗⋯⊗ejd,d, where ji ∈ [mi] for i ∈ [d].
Assume that

ui = ∑
ji∈[mi]

uji,ieji,i, i ∈ [mi]. (2.1.3)

Define ι by the formula

ι((u1, . . . ,ud)) ∶= ∑
j1∈[m1],...,jd∈[md]

uj1,1⋯ujd,dej1,1 ⊗⋯⊗ ejd,d. (2.1.4)

It is straightforward to see that ι is multilinear. Suppose that some ui = 0.
Clearly, ι((u1, . . . ,ud)) = 0. Assume that each ui ≠ 0. Then, uji,i ≠ 0, for some
ji ∈ [mi] for each i ∈ [d]. Thus, the coefficient uj1,1⋯ujd,d of the basis element
ej1,1⊗⋯⊗ejd,d is non-zero, hence ι((u1, . . . ,ud)) ≠ 0. To show part 1b, consider
first the case d = 2. Let u1 = x = (x1, . . . , xp)⊺, u2 = y = (y1, . . . , yq)⊺, where
p =m1, q =m2. The coefficients of e1,ie2,j correspond to the rank one matrix
xy⊺. Similarly, let v1 = z, v2 = w. Then, the equality ι((u1,u2)) = ι((v1,v2))
is equivalent to xy⊺ = zw⊺. Hence, z = t1x, w = t2y and t1t2 = 1. The case
d ≥ 3 follows by induction, where we use the obvious identity:

U1 ⊗⋯⊗Ud = U1 ⊗ (U2 ⊗⋯⊗Ud). (2.1.5)

2. Let L̂ be define by L̂(ej1,1 ⊗⋯⊗ ejd,d) ∶= L((ej1,1, . . . ,ejd,d), for ji ∈ [mi] and

i ∈ [d]. Then, L̂ extends uniquely to a linear map from U to V. It is straight-
forward to show that L = L̂ ○ ι.
The isomorphism to two representation of a tensor product follows from 2. ◻

In quantum mechanics the tensor product U = U1 ⊗ ⋯ ⊗ Ud over C is associated
with the d-partite system. That is, a vector in Ui of length one represents the state
of the particle i, while a tensor in U of length one represents the d-partite system,
which is usually quantum entanglement, [14] .

2.2 Matrices and tensors

We start with the case d = 2. Assume that U1 = E and U2 = F are two vector
spaces, and assume that dimE =m and dimF = n. Let {e1, . . . ,em} and {f1, . . . , fn}
be bases in E and F, respectively. Then, it follows from 2.1.1 that E⊗F has a basis
ei⊗ fj , i ∈ [m], j ∈ [n]. Thus, any vector in E⊗F is of the from ∑m,ni=j=1 aijei⊗ fj . Let

A = [aij]m,ni=j=1 ∈ Fm×n. Hence, Fm ⊗ Fn is isomorphic to the space of m × n matrices
over the field F, denoted as Fm×n. In particular

e⊗ f ↔ ef⊺, e ∈ Fm, f ∈ Fn. (2.2.1)

Hence, all tensors of the form e⊗ f are called rank one tensors.
A more functorial isomorphism is the following. Let F′ denote the dual space to F,
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i.e. all linear transformations from F to F, denoted as L(F,F). Denote G ∶= F′.
Then, g ∶ F → F is a linear functional. Recall next that G′ is isomorphic to F,
where we define f(g) ∶= g(f). Then, e⊗ f can be viewed as an element of the space
of linear transformations L(F′,E), namely

(e⊗ f)(g) = f(g)e = g(f)e.

Hence, E⊗F is isomorphic to L(F′,E).
Let 3 ≤ d ∈ N and m1, . . . ,md ∈ N. Denote by Fm1×⋯×md the linear space of all
d-mode tensors A ∶= [aj1⋯jd], where ji ∈ [mi] for i ∈ [d]. Let Ui = Fmi , for i ∈ [d].
By assuming that {e1,i, . . . ,emi,i} is a standard basis in Fmi , for i ∈ [d], the proof
of Theorem 2.1.1 yields that ⊗i∈[d]Fmi is isomorphic to Fm1×⋯×md .
Note that u ∈ ⊗i∈[d]Ui is called a rank one tensor, or decomposable, if u = ⊗i∈[d]ui,
where each ui is a non-zero vector. (If ui is allowed to be zero, then u is at most
rank one matrix.) Zero vector has rank zero. Each 0 ≠ u ∈ ⊗i∈[d]Ui is a sum of rank
one tensors. Moreover, rank u = k if u is a sum of rank one tensors, and if u is a
sum of k′ rank one tensors than k′ ≥ k.

2.3 Tensor product of linear operators and Kronecker
product

Let Ti ∈ L(Ui,Vi) be linear operators for i ∈ [d]. Then, ⊗i∈[d]Ti acts on the rank
one tensors in ⊗i∈[d]Ui as follows:

(⊗i∈[d]Ti)(⊗i∈[d]ui) ∶= ⊗i∈[d]Ti(ui). (2.3.1)

It is straightforward to check that that the above action of ⊗i∈[d]Ti on rank one
tensors extends to a linear operator in L(⊗i∈[d]Ui,⊗i∈[d]Vi), denoted as ⊗i∈[d]Ti.
Assume that Qi ∈ L(Vi,Wi), for i ∈ [d]. Then

(⊗i∈[d]Qi)((⊗i∈[d]Ti)(⊗i∈[d]ui)) = (⊗i∈[d]Qi)(⊗i∈[d]Ti(ui)) = ⊗i∈[d](QiTi)(ui).

Hence
(⊗i∈[d]Qi)(⊗i∈[d]Ti) = ⊗i∈[d]QiTi. (2.3.2)

In particular, if Ui = Vi and Ti is invertible for i ∈ [d], then

(⊗i∈[d]Ti)−1 = ⊗i∈[d]T−1
i .

We now discuss a particular case of the tensor product T1 ⊗ T2. Assume that

U1 = Fn, V1 = Fm, U2 = Fq, V2 = Fp.

By choosing the standard bases in all the above four vector spaces, we have that T1,
T2 are represented by the matrices A = [aij] ∈ Fm×n, B = [bkl] ∈ Fp×q, respectively.
Thus, the action of T1 and T2 can be described respectively as

x↦ Ax, x = (x1, . . . , xn)⊺, y ↦ By, y = (y1, . . . , yq)⊺.

Recall that in 2.2 we associated with u1 ⊗ u2 the matrix xy⊺. Hence, in view of
(2.3.1) the action of T1 ⊗ T2 on u1 ⊗u2 is given by xy⊺ ↦ (Ax)(By)⊺ = A(xy⊺)B⊺.

82



Thus, if we identify Fn ⊗ Fq with Fn×q, the space of n × q matrices, then the action
of T1 ⊗ T2 is equivalent to

X ↦ AXB⊺, X ∈ Fn×q. (2.3.3)

In order to represent T1 ⊗T2 as a matrix, we need to convert the matrix X = [xjl] ∈
Fn×q to a column vector Fnq. This task is achieved by arranging the pairs (i, j),
j ∈ [n], l ∈ [q] in the lexicographical order:

(1,1), . . . , (1, q), (2,1), . . . , (2, q), . . . , (n,1), . . . , (n, q).

Let
c(X) ∶= (x11, . . . , x1q, x21, . . . , x2q, . . . , xn1, . . . , xnq)⊺. (2.3.4)

Note that

c(xy⊺) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1y
x2y
⋮

xny

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2.3.5)

As the transformation (2.3.3) is a linear transformation from Fn×q to Fm×p, it follows
that we must have an equality of the form c(AXB⊺) = Cc(X), for some matrix
C ∈ F(mp)×(nq). Use the choice X = xy⊺ and (2.3.5) to deduce that C has the
following block matrix from:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11B a12B ⋯ a1nB
a21B a22B ⋯ a2nB
⋮ ⋮ ⋮ ⋮

am1B am2B ⋯ amnB

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2.3.6)

The above matrix is called the Kronecker (tensor) product of A and B and denoted
by A⊗̂B. In most references, A⊗̂B is just identified with A ⊗ B. Observe that
c(xy⊺) = x⊗̂y. Similarly, we can define the Kronecker tensor product of more than
two matrices by the formula:

⊗i∈[d]Ai = (⊗i∈[d−1]Ai) ⊗Ad.

Equivalently, we can define ⊗i∈[d]Ai as follows; assume that Ai = [ajiki,i] ∈ Fmi×ni ,
for i ∈ [d]. Let

A = [a(j1,j2,...,dd)(k1,k2,...,kd)] ∈ R
(m1m2⋯md)×(n1n2⋯nd), (2.3.7)

a(j1,j2,...,dd)(k1,k2,...,kd) = aj1k1,1aj2k2,2,⋯ajdkd,d.
Here, we arrange the indices (j1, j2, . . . , jd) and (k1, k2, . . . , kd) in the lexicographical
order.
Another possibility is to view each Ai as a linear operator in L(Fni ,Fmi). Then,
⊗i∈[d]Ai is viewed as a tensor product of operators.
Let Ai ∈ Fmi×ni , Bi ∈ Fni×pi for i ∈ [d]. Then, we have identity

(⊗i∈[d]Ai)(⊗i∈[d]Bi) = ⊗i∈[d]AiBi. (2.3.8)

This identity holds if the above product are Kronecker products.
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2.3.1 Worked-out Problems

1. A square matrix A is called diagonalizable if it is similar to a diagonal matrix,
i.e. if there exists an invertible matrix P such that P −1AP is a diagonal
matrix. Otherwise, A is called nondiagonalizable.
Let A ∈ Fm×m and B ∈ Fn×n. Assume that the characteristic polynomials of A
and B split in F:

det(λIm −A) = ∏
i∈[m]

(λ − αi), det(λIn −B) = ∏
j∈[n]

(λ − βj).

Show that
det(λImn −A⊗B) = ∏

i∈[m],j∈[n]
(λ − αiβj). (2.3.9)

Furthermore, if A and B are diagonalizable, prove that A⊗B is diagonalizable.
Solution:
Since the characteristic polynomials of A and B split, it is well-known that
A and B are similar to upper triangular matrices: A = UA1U

−1, B = V B1V
1

(Problem 1.17.2-7). As the characteristic polynomials of A1, B1 are equal
to A, B, respectively, it follows that the diagonal entries of A1 and B1 are
{α1, . . . , αm} and {β1, . . . , βn}, respectively. Observe that

A⊗B = (U ⊗ V )(A1 ⊗A2)(U−1 ⊗ V −1) = (U ⊗ V )(A1 ⊗A2)(U ⊗ V )−1.

Thus, the characteristic polynomials of A⊗B and A1⊗B1 are equal. Observe
that A1⊗̂B1 is also upper triangular with the diagonal entries

α1β1, . . . , α1βn, α2β1, . . . , α2βn, . . . , αmβ1, . . . , αmβn.

Hence, the characteristic polynomial of A1 ⊗B1 is ∏i∈[m],j∈[n](λ−αiβj). This
establishes (2.3.9).
Assume that A and B are diagonalizable, i.e. one can assume that A1 and A2

are diagonal matrices. Clearly, A1⊗̂B1 is a diagonal matrix. Hence, A⊗B is
a diagonal matrix.

Note that diagonalization is the process of finding a corresponding diagonal
matrix for a diagonalizable matrix or linear transformation.

2.3.2 Problems

1. Let A ∈ Fm×m and B ∈ Fn×n. Assume that x1, . . . ,xk and y1, . . . ,yl are lin-
early independent eigenvectors of A and B with the corresponding eigenvalues
α1, . . . , αk and β1, . . . , βl, respectively. Show that x1⊗y1, . . . ,x1⊗yl, . . . ,xk ⊗
y1, . . . ,xk ⊗ yl are kl linearly independent vectors of A ⊗ B with the corre-
sponding α1β1, α1βl, . . . , αkβl, respectively.

2. Let Ai ∈ Fmi×mi for i ∈ [d], where d ∈ N. Assume that the characteristic poly-
nomial of Ai splits in F: det(λImi −Ai) = ∏ji∈[mi](λ−αji,i), for i ∈ [d]. Prove
that det(λIm1⋯md − ⊗i∈[d]Ai) = ∏ji∈[mi],i∈[d](λ − αj1,1⋯αjd,d). Furthermore,
show that if each Ai is diagonalizable, then ⊗i∈[d]Ai is diagonalizable. (This
statement can be viewed as a generalization of Worked-out Problem 2.3.1-1)
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Chapter 3

Canonical forms

In this chapter, we will discuss two different canonical forms for similarity; the
Jordan canonical form, which applies only when the base field is algebraically closed
and the rational canonical form, which applies in all cases.

3.1 Jordan canonical forms

For a matrix A ∈ Fn×n , the polynomial p(z) ∶= det(zIn−A) is called the characteristic
polynomial of A. An element λ ∈ F is called an eigenvalue of A if there exists
0 ≠ x ∈ Fn such that Ax = λx. This x ≠ 0 is called an eigenvector of A corresponding
to λ. Note that for an eigenvalue λ of, since Ax = λx, (for some x ≠ 0), then x
is in the kernel of λIn − A. Using Theorem 1.7.17, λIn − A is not invertible and
det(λIn −A) = 0. On the other hand, if λ ∈ F is a root of p(z), then λIn −A is not
invertible and reusing Theorem 1.7.17 yields ker(λIn−A) ≠ 0. If 0 ≠ x ∈ ker(λIn−A),
then Ax = λx and then λ is an eigenvalue of A. Therefore, if we call the set of
eigenvalues of A as spectrum of A and denote it by spec A, then we have

spec A = {λ ∈ F; p(λ) = 0}.

Geometrically, an eigenvector corresponding to a real, nonzero eigenvalue points in
a direction that is stretched, and the eigenvalue is the factor by which it is stretched.
If the eigenvalue is negative, the direction is reversed. In particular, the eigenvector
does not change its direction under TA ∈ L(V), where V is a vector space.

Note that for an algebraically closed field F, every matrix has at least one eigen-
value. However, the definition of eigenvalue does not show how to compute them
in practice. To do this, we need to use the fact that eigenvalues are the roots of
det(zIn − A). If λ is an eigenvalue of A, then eigenvectors for λ are elements of
the null space of A − λIn, which can be found via row reduction. Then, the prob-
lem of finding λ is solved by investigating the case A − λIn is singular. Thus, we
have reduced the problem of determining eigenvalues to the problem of determining
invertibility of a matrix. This can be considered as a motivation to define determi-
nant.

Lemma 3.1.1 Let A ∈ Fn×n. Then, det(zIn−A) = zn+∑ni=1 aiz
n−i and (−1)iai is

the sum of all i× i principal minors of A. Assume that det(zIn−A) = (z−z1) . . . (z−
zn), and denote z ∶= (z1, . . . , zn)⊺ ∈ Fn. Then, (−1)iai = σi(z), for i = 1, . . . , n.

85



Proof. Consider det(zI −A). To obtain the coefficient of zn−i, we need to take
the product of some n−i diagonal elements of zIn−A: (z−aj1j1) . . . (z−ajn−ijn−i). We
take zn−i in this product. Then, this product is multiplied by the det(−A[α,α]),
where α is the complement of {j1, . . . , jn−i} in the set [n]. This shows that (−1)iai
is the sum of all principal minors of A of order i.

Suppose that det(zIn −A) splits to linear factors in F[z]. Then, (1.14.6) implies
that (−1)iai = σi(z). ◻

Corollary 3.1.2 Let A ∈ Fn×n and assume that det(zIn − A) = ∏n
i=1(z − zi).

Then

trA ∶=
n

∑
i=1

aii =
n

∑
i=1

zi, detA =
n

∏
i=1

zi.

Definition 3.1.3 Let GL(n,F) ⊂ Fn×n denote the set (group) of all n×n invert-
ible matrices with entries in a given field F. Two matrices A,B ∈ Fn×n are called
similar, and this is denoted by A ∼ B, if B = PAP−1, for some P ∈ GL(n,F). The set
of all B ∈ Fn×n similar to a fixed A ∈ Fn×n is called the similarity class corresponding
to A, or simply a similarity class.

The following proposition is straightforward:

Proposition 3.1.4 Let F be a field. Then, the similarity relation on Fn×n is an
equivalence relation. Furthermore, if B = UAU−1 then

1. For any integer m ≥ 2, Bm = UAmU−1.

2. If A is invertible, then B is invertible and B−1 = UA−1U−1.

Corollary 3.1.5 Let V be an n-dimensional vector space over F. Assume that
T ∶ V → V is a linear transformation. Then, the set of all representation matrices
of T in different bases is a similarity class. (Use (1.17.2) and (1.17.3), where
m = n, xi = yi, i = 1, . . . , n,X = Y .) Hence, the characteristic polynomial of T is
defined as det(zIn −A) = zn +∑n−1

i=0 aiz
i, where A is the representation matrix of T

in any basis [u1, . . . ,un], and this definition is independent of the choice of a basis.
In particular, detT ∶= detA, and trTm = trAm, for any non-negative integer. (T 0

is the identity operator, i.e. T 0(v) = v, for all v ∈ V, and A0 = I.)

An element v ∈ V is called an eigenvector of T corresponding to the eigenvalue
λ ∈ F, if v ≠ 0 and T (v) = λv. This is equivalent to the existence 0 ≠ x ∈ Fn such
that Ax = λx. Hence, (λI −A)x = 0 which implies that det(λI −A) = 0. Thus, λ is
the zero of the characteristic polynomial of A and T . The assumption λ is a zero
of the characteristic polynomial yields that the system (λI − A)x has a nontrivial
solution x ≠ 0.

Corollary 3.1.6 Let A ∈ Fn×n. Then, λ is an eigenvalue of A if and only if λ is
a zero of the characteristic polynomial of A det(zI −A). Let V be an n-dimensional
vector space over F. Assume that T ∶ V →V is a linear transformation. Then, λ is
an eigenvalue of T if and only if λ is a zero of the characteristic polynomial of T .
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Example 3.1.7 Here, we first show that 5 is an eigenvalue of A = [1 2
4 3

] ∈ R2×2.

We must show that there is a non-zero vector x ∈ R2 such that Ax = 5x. Clearly,
this is equivalent to the equation (A − 5I)x = 0. Then, we need to compute the null

space of the matrix A − 5I = [−4 2
4 −2

].

Since the rows (or columns) of A − 5I are clearly linearly dependent, using the fun-
damental theorem of invertible matrices, N(A) > 0. Thus, Ax = 5x has a nontrivial
solution and this tells us 5 is an eigenvalue of A. Next, we find its eigenvectors by
computing the null space.

[ A − 5I 0 ] = [ −4 2 0
4 −2 0

] → [ 1 −1
2 0

0 0 0
] .

Therefore, if x = [x1

x2
] is an eigenvector corresponding to 5, then x1 − 1

2x2 = 0, or

x1 = 1
2x2. Thus, the eigenvectors are of the form x = [

1
2x2

x2
], equivalently the non-

zero multiples of [
1
2
1
].

Note that the set of all eigenvectors corresponding to an eigenvalue λ of an n × n
matrix A is the set of non-zero vectors in the null space of A−λI. This means that
the set of eigenvectors of A together with the zero vector in Fn is the null space of
A − λI.

Definition 3.1.8 Assume that A is an n×n matrix and λ is an eigenvalue of A.
The collection of all eigenvectors corresponding to λ, together with the zero vector,
is called the eigenspace of λ and in denoted by Eλ. Then, in the above example,

E5 = {t [1
2
] ; t ∈ R}.

Moreover, for any m ∈ N and λ ∈ F, we define Emλ as follows:

Emλ = {x ∈ F; (A − λI)mx = 0}.

It can be shown that Emλ ≠ 0 for some m if and only if λ is an eigenvalue of A, and
Emλ ∩Emµ ≠ {0}, for some m,n > 0 yields λ = µ. Furthermore, if p(x) = ∏

λ
(x − λ)nλ

is the characteristic polynomial of A, then Emλ ⊆ Enλλ for all m, dimEnλλ = nλ and
Fn = ⊕

λ
Enλλ .

The proof is left as an exercise.

Definition 3.1.9 A linear operator T ∶ V →V is said diagonalizable if it admits
a diagonal matrix representation with respect to some basis of V, i.e. there is a basis
β of V such that the matrix [T ]β is diagonal.

Note that a basis of Fn consisting of eigenvectors of A is called an eigenbasis for A.
Diagonal matrices are possess a very simple structure and they allow for a very

fast computation of determinants and inverses, for instance. Here, we will have a
closer look at how to transform matrices into diagonal form. More specifically, we
will look at T ∈ L(V) of finite-dimensional vector spaces, which are similar to a
diagonal matrix.
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Proposition 3.1.10 Let V be n-dimensional vector space over F. Assume that
T ∶ V → V is a linear transformation. Then, there exists a basis in V such that T
is represented in this basis by a diagonal matrix

diag(λ1, λ2, . . . , λn) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 ... 0
0 λ2 ... 0
⋮ ⋮ ⋮ ⋮
0 0 ... λn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

(T is diagonalizable) if and only if the characteristic polynomial of T is (z −λ1)(z −
λ2) . . . (z − λn), and V has a basis consisting of eigenvectors of T .

Equivalently, A ∈ Fn×n is similar to a diagonal matrix diag(λ1, λ2, . . . , λn) if and
only if det(zI −A) = (z − λ1)(z − λ2) . . . (z − λn), and A has n-linearly independent
eigenvectors.

Proof. Assume that there exists a basis {u1, . . . ,un} in V such that T is
represented in this basis by a diagonal matrix Λ ∶= diag(λ1, . . . , λn). Then, the
characteristic polynomial of T is det(zI −Λ) = ∏n

i=1(z − λi). From the definition of
the representation matrix of T , T (ui) = λiui, for i = 1, . . . , n. Since each ui ≠ 0, we
deduce that each ui is an eigenvector of T . By our assumption {u1, . . . ,un} is a
basis in V.

Conversely, assume now that V has a basis {u1, . . . ,un} consisting eigenvectors
of T . Thus, T (ui) = λiui for i = 1, . . . , n. Hence, Λ is the representation matrix of
T in the basis {u1, . . . ,un}.

To prove the corresponding results for A ∈ Fn×n, let V ∶= Fn and define the linear
operator T (x) ∶= Ax, for all x ∈ Fn. ◻

Lemma 3.1.11 Let A ∈ Fn×n and assume that x1, . . . ,xk are k eigenvectors
corresponding to k distinct eigenvalues λ1, . . . , λk, respectively. Then, x1, . . . ,xk are
linearly independent.

Proof. We prove by induction on k. For k = 1, x1 ≠ 0. Hence, hence x1 is
linearly independent. Assume that the lemma holds for k = m − 1. Suppose that
k =m. Assume that ∑mi=1 aixi = 0. Then

0 = A0 = A
m

∑
i=1

aixi =
m

∑
i=1

aiAxi =
m

∑
i=1

aiλixi.

Multiply the equality ∑mi=1 aixi = 0 by λm and subtract it from the above inequality
to deduce that ∑m−1

i=1 ai(λi −λm)xi = 0. Since x1, . . . ,xm−1 are linearly independent,
by the induction hypothesis, we deduce that ai(λi −λm) = 0, for i = 1, . . . ,m− 1. As
λi − λm ≠ 0, for i < m, we get that ai = 0, for i = 1, . . . ,m − 1. The assumption that

∑mi=1 aixi = 0 yields that amxm = 0. Since xm ≠ 0, we obtain that am = 0. Hence,
a1 = . . . = am = 0. ◻

Theorem 3.1.12 Let V be an n-dimensional vector space over F. Assume that
T ∶ V →V is a linear transformation. Assume that the characteristic polynomial of
T , p(z) has n distinct roots over F, i.e. p(z) = ∏n

i=1(z − λi) where λ1, . . . , λn ∈ F,
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and λi ≠ λj for each i ≠ j. Then, there exists a basis in V in which T is represented
by a diagonal matrix.

Similarly, let A ∈ Fn×n and assume that det(zI − A) has n distinct roots in F.
Then, A is similar to a diagonal matrix.

Proof. It is enough to consider the case of the linear transformation T .
Recall that each root of the characteristic polynomial of T is an eigenvalue of T
(Corollary 3.1.6). Hence, each λi corresponds an eigenvector ui: T (ui) = λiui.
Then, the proof of the theorem follows from Lemma 3.1.11 and Proposition 3.1.10.

◻

If A ∈ Fn×n, it may happen that det(zI −A) does not have n roots in F. (See for
example Problem 3.2.2-2.) Hence, we cannot diagonalize A, i.e. A is not similar to
a diagonal matrix. If F is algebraically closed, i.e. any det(zI −A) has n roots in F
. We can apply Proposition 3.1.10 in general and Theorem 3.1.12 in particular to
see if A is diagonalizable.

Since R is not algebraically closed and C is, that is the reason that we sometimes
view a real valued matrix A ∈ Rn×n as a complex valued matrix A ∈ Cn×n. ( Again
see Problem 3.2.2-2)

Corollary 3.1.13 Let A ∈ Cn×n be nondiagonalizable. Then, its characteristic
polynomial must have a multiple root.

Diagonal matrices A = P −1BP exhibit the nice properties that they can be easily
raised to a power:

Bk = (PAP−1)k = PAkP −1.

Computing Ak is easy because we apply this operation individually to any diagonal
element. As an example, this allows to compute inverses of A by performing fewer
flops.

Definition 3.1.14 Let ∼ be an equivalence relation on the set X. A subset
A ⊆X is said to be a set of canonical form for ∼ if for every x ∈X, there is exactly
one a ∈ A such that x ∼ a.

Example 3.1.15 We have already seen that row equivalence is an equivalence
relation on Fm×n. The subset of reduced row echelon form matrices is a set of
canonical form for row equivalence as every matrix is row equivalent to a unique
matrix in row echelon form.

Remark 3.1.16 Recall that A,B ∈ Fn×n are called to be similar if there exists
an invertible matrix P such that

A = P −1BP.

Similarly is an equivalence relation on Fn×n. As we have seen, two matrices are
similar if and only if they represent the same linear operators. Hence, similarity
is important to study the structure of linear operators. As we mentioned at the
beginning, this chapter is devoted to developing canonical forms for similarity.
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Definition 3.1.17

1. Let k be a positive integer and λ ∈ F. Then, Jk(λ) ∈ Fk×k is a k × k upper
triangular matrix, with λ on the main diagonal, 1 on the next sub-diagonal
and other entries are equal to 0 for k > 1:

Jk(λ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0 ... 0 0
0 λ 1 ... 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ... λ 1
0 0 0 ... 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and Jk(λ) is called a Jordan block associated with the scalar λ.

2. If Aij are matrices of the appropriate sizes, then by block matrix

A =
⎡⎢⎢⎢⎢⎢⎣

A11 A12 ⋯ A1n

⋮ ⋮
Am1 Am2 ⋯ Amn

⎤⎥⎥⎥⎥⎥⎦
,

we mean the matrix whose left submatrix is A11, and so on. Thus, the Aij’s
are submatrices of A and not entries of A.

3. Let Ai ∈ Fni×ni, for i = 1, . . . , l. Denote by

A = ⊕ki=1 Ai = A1 ⊕A2 ⊕ . . .⊕Ak = diag(A1,A2, . . . ,Ak) ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 ... 0
0 A2 ... 0
⋮ ⋮ ⋮ ⋮
0 0 ... Ak

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Fn×n, n = n1 + n2 + . . . + nk,

Here, A is said to be a block diagonal matrix, whose blocks are A1,A2, . . . ,Ak.

Theorem 3.1.18 (The Jordan Canonical Form) Let A ∈ Cn×n, (A ∈ Fn×n,
where F is an algebraically closed field.) Then, A is similar to its Jordan canonical
form ⊕ki=1Jni(λi) for some λ1, . . . , λk ∈ C, (λ1, . . . , λk ∈ F), and positive integers
n1, . . . , nk. The Jordan canonical form is unique up to the permutations of the
Jordan blocks Jn1(λ1), . . . , Jnk(λk).

Equivalently, let T ∶ V → V be a linear transformation of an n-dimensional
space over C, or any other algebraically closed field. Then, there exists a basis in
V, such that ⊕ki=1Jni(λi) is the representation matrix of T in this basis. The blocks
Jni(λi), i = 1, . . . , k are unique.

Note that A ∈ Cn×n is diagonalizable if and only in its Jordan canonical form
k = n, i.e. n1 = . . . = nn = 1. For k < n, the Jordan canonical form is the simplest
form of the similarity class of a nondiagonalizable A ∈ Cn×n.

We will prove Theorem 3.1.18 in the next several sections.
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Example 3.1.19 Consider the matrix

A =
⎡⎢⎢⎢⎢⎢⎣

2 2 3
1 3 3
−1 −2 −2

⎤⎥⎥⎥⎥⎥⎦
,

we see that det(xI −A) = (x − 3)3. For λ = 1, we have A − I =
⎡⎢⎢⎢⎢⎢⎣

1 2 3
1 2 3
−1 −2 −3

⎤⎥⎥⎥⎥⎥⎦
which

has rank 1. Thus, dimN(A − I) = 2. Now, (A − I)2 = 0, so dimN ((A − I)2) = 3.
Next, dimN(A − I) = 2 tells us the JCF of A has 2 blocks with eigenvalue 1. The
dimN ((A − I)2) − dimN(A − I) = 1 condition tells us one of these blocks has size

at least 2, and so the other has size 1. Thus JCF(A) =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

The following is an algorithm to compute the Jordan canonical form of A ∈ Fn×n.

Algorithm:

1. Compute and factor the characteristic polynomial of A.

2. Let mλ be the maximal integer k ≤ nλ such that Ekλ/Ek−1
λ is not a zero sub-

space.

3. For each λ, compute a basis A = {x1, . . . ,xk} for Emλλ /Emλ−1
λ and lift to

elements of Emλλ . Add the elements (A − λI)mxi to A, for 1 ≤m <mλ.

4. Set i =mλ − 1.

5. Compute A ∩ Eiλ to a basis for Eiλ/Ei−1
λ . Add the element (A − λI)mx to A

for all m and x ∈ A.

6. If i ≥ 1, set i = i − 1, and return to the previous step.

7. Output A, the matrix for A with respect to a suitable ordering of A is in
Jordan Canonical Form.

Proof of correctness. To verify that this algorithm works, we need to check that
it is always possible to complete A ∩ Ekλ to a basis for Ekλ/Ek−1

λ . Suppose A ∩ Ekλ
is linearly dependent. Then, there are x1, . . . ,xs ∈ A ∩Ekλ with ∑i cixi = 0, and not
all ci = 0. By the construction of A, we know that xi = (A − λI)yi, for some yi ∈ A,
so consider y = ∑i ciyi. Then y ≠ 0, since the yi’s are linearly independent, and
not all ci are zero. Indeed, by the construction of the yi’s, we know y /∈ Ekλ. But
(A − λI)w = 0, so y ∈ E1

λ, which is a contradiction, since k ≥ 1.

Example 3.1.20 Consider the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −4 2 2
−2 0 1 3
−2 −2 3 3
−2 −6 3 7

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

91



Then, the characteristic polynomial of A is (x − 2)2(x − 4)2. A basis for E1
2 is

{(2,1,0,2)⊺, (0,1,2,0)⊺}, so since there is a two-dimensional 2 blocks, each of size
one. To confirm this, check that Em2 = E1

2 for all m > 1. A basis for E1
4 is

{(0,1,1,1)⊺}, while a basis for E2
4 is {(0,1,1,1)⊺, (1,0,0,1)⊺}, so we can take

{(1,0,0,1)⊺} as a basis for E2
4/E1

4 . Then (A − 4I)(1,0,0,1)⊺ = (0,1,1,1)⊺, so
our basis is then {(2,1,0,2)⊺, (0,1,2,0)⊺, (0,1,1,1)⊺, (1,0,01)⊺}. The matrix of the
transformation with respect to this basis is:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 4 1
0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

3.2 An application of diagonalizable matrices

The sequence of Fibonacci numbers Fn

0,1,1,2,3,5,8,13,21,34, . . .

is defined recursively as follows:
One begins with F0 = 0 and F1 = 1. After that every number is defined to be sum
of its two predecessors:

Fn = Fn−1 + Fn−2, for n > 1.

Johannes Kepler (1571-1630) observed that the ratio of consecutive Fibonacci num-
bers converges to the golden ratio.

Theorem 3.2.1 (Kepler) lim Fn+1
Fn

= 1+
√

5
2 .

The purpose of this section is using of linear algebra tools to prove Kepler’s theorem.
In order to this, we will need to find an explicit formula for Fibonacci numbers.
Particularly, we need the following lemma. See also subsection 4.1.1.

Lemma 3.2.2 For n > 1, Fn = (1+
√

5)n−(1−
√

5)n
2n

√
5

.

Proof. Let T be the linear operator on R2 represented by the matrix

A = [1 1
1 0

]

with respect to the standard basis of R2. Then, for the vector vk whose coordinates

are two consecutive Fibonacci numbers (Fk, Fk−1)⊺, we have that T (vk) = A [ Fk
Fk−1

] =

[1 1
1 0

] [ Fk
Fk−1

] = [Fk + Fk−1

Fk
] = [Fk+1

Fk
] = vk+1. Therefore, [Fn+1

Fn
] = An [1

0
] and this

equation helps us to calculate the powers An of A by using the diagonalization. We
start with finding the eigenvalues of A which are

λ1 =
1 +

√
5

2
and λ2 =

1 −
√

5

2
,
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and we conclude that A is diagonalizable as its eigenvalues are real and distinct.
Next, we find the eigenvectors corresponding to λ1 and λ2. We solve the equations

A [x1

y1
] = λ1 [

x1

y1
], A [x2

y2
] = λ2 [

x2

y2
] and it is obtained that [x1

y1
] = [λ1

1
] and [x2

y2
] =

[λ2

1
]. Therefore, the matrix of change of basis between standard basis and the

basis of eigenvectors is p = [λ1 λ2

1 1
] and so p−1Ap = [λ1 0

0 λ2
]. This means An =

p [λ
n
1 0

0 λn2
]p−1. Totally, we have

[Fn+1

Fn
] = An [1

0
] = p [λ

n
1 0

0 λn2
]p−1 [1

0
]

= 1

λ1 − λ2
[λ1 λ2

1 1
] [λ

n
1 0

0 λn2
] [ 1 −λ2

−1 λ1
] [1

0
]

= 1

λ1 − λ2
[λ

n+1
1 − λn+1

2

λn1 − λn2
] .

Equating the entries of the vectors in the last formula we obtain

Fn =
λn1 − λn2
λ1 − λ2

= (1 +
√

5)n − (1 −
√

5)n

2n
√

5
,

as claimed. ◻

We now are ready to prove Kepler’s theorem by using the above lemma.

lim
n→∞

Fn+1

Fn
= lim

n→∞
(1 +

√
5)n+1 − (1 −

√
5)n+1

2n+1
√

5

2n
√

5

(1 +
√

5)n − (1 −
√

5)n

= 1

2
lim
n→∞

(1 +
√

5)n+1 − (1 −
√

5)n+1

(1 +
√

5)n − (1 −
√

5)n

= 1

2
lim
n→∞

(1 +
√

5) − (1−
√

5
1+

√
5
)
n
(1 −

√
5)

1 − (1−
√

5
1+

√
5
)
n = 1 +

√
5

2
.

Note that

lim
n→∞

(1 −
√

5

1 +
√

5
)
n

= 0

because

∣1 −
√

5

1 +
√

5
∣ < 1.

3.2.1 Worked-out Problems

1. Show that the Jordan block Jk(λ) ∈ Fn×n is similar to Jk(λ)⊺.
Solution:
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Consider the k × k permutation matrix P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋯ 1
0 1 0

⋱ ⋮
1 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, P −1Jk(λ)P = Jk(λ)⊺ and so Jk(λ) ∼ Jk(λ)⊺.

2. Assume that the characteristic polynomial of A splits in F. Show that A is
similar to A⊺.
Solution:
Denote by JCF (A), a Jordan canonical form of A. Using Theorem 3.1.18, A is
similar to JCF (A) = ⊕

i
Jki(λi). Clearly, A⊺ ∼ ⊕

i
Jki(λi)⊺. Using the previous

problem, we conclude that ⊕
i
Jki(λi) ∼ ⊕

i
Jki(λi)⊺ and this yields A ∼ A⊺.

3.2.2 Problems

1. Let V be a vector space over F. (You may assume that F = C). Let T ∶ V →V
be a linear transformation. Suppose that ui is an eigenvector of T with the
corresponding eigenvalue λi, for i = 1, . . . ,m. Show by induction on m that if
λ1, . . . , λm are m distinct scalars, then u1, . . . ,um are linearly independent.

2. Let A = [ 0 1
−1 0

] ∈ R2×2.

(a) Show that A is not diagonalizable over the real numbers R.

(b) Show that A is diagonalizable over the complex numbers C.

(c) Find U ∈ C2×2 and a diagonal Λ ∈ C2×2 such that A = UΛU−1.

3. Let A = ⊕ki=1Jni(λi). Show that det(zI −A) = ∏k
i=1(z − λi)ni . (You may use

the fact that the determinant of an upper triangular matrix is the product of
its diagonal entries.)

4. Let A = ⊕ki=1Ai, where Ai ∈ Cni×ni , i = 1, . . . , k. Show that det(zIn − A) =
∏k
i=1 det(zIni −Ai).

(Hint: First show the identity for k = 2 using the determinant expansion by
rows. Then use induction for k > 2.)

5. (a) Show that any eigenvector of Jn(λ) ∈ Cn×n is in the subspace spanned by
e1. Conclude that Jn(λ) is not diagonalizable unless n = 1.

(b) What is the rank of zIn − Jn(λ) for a fixed λ ∈ C and for each z ∈ C?

(c) What is the rank of zI −⊕ki=1Jni(λi) for fixed λ1, . . . , λk ∈ C and for each
z ∈ C?

6. Let A ∈ Cn×n and assume that det(zIn − A) = zn + a1z
n−1 + . . . + an−1z + an

has n distinct complex roots. Show that An + a1A
n−1 + . . . an−1A + anIn = 0,

where 0 ∈ Cn×n denotes the zero matrix, i.e. the matrix whose all entries are
0. (This is a special case of the Cayley-Hamilton theorem, which states that
the above identity holds for any A ∈ Cn×n.)
(Hint: Use the fact that A is diagonalizable.)
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7. If A,B ∈ Fn×n, show that AB and BA have the same characteristic polynomial.

8. Let 1 ≤ m ≤ n ∈ N and suppose that A ∈ Cm×n and B ∈ Cn×m. Prove that
det(zI −BA) = zn−m det(zI −AB).
(In particular, if m = n, then the characteristic polynomials of AB and BA
are the same, see the previous problem.)

9. If A ∈ Rn×n is a symmetric matrix, show that all of its eigenvalues are real.

10. If A ∈ Fn×n is an invertible matrix and PA(z) and PA−1(z) denote the character-
istic polynomial of A and A−1, respectively, show that PA−1(z) = zn

PA(0)PA(
1
z ).

11. If A ∈ Rn×n with n distinct eigenvalues λ1, . . . , λn, show that Rn =
n
⊕
i=1
Eλi .

12. If A ∈ Fn×n is a diagonalizable matrix with the characteristic polynomial

pA(z) =
k

∏
i=1

(z − λi)di and V = {B ∈ Fn×n; AB = BA}, prove that dimV =

∑ki=1 d
2
i .

13. Prove that a matrix is invertible if and only if it does not have a zero eigenvalue.
(See Theorem 1.9.2.)

14. Let A be a square matrix with the block form A = [X Y
0 Z

], where X and Z

are square matrices. Show that detA = detX detZ.

15. Let A ∈ Fm×n.

(a) Prove that A in its reduced row echelon form must have the block form

Ji = [Ii 0
0 0

] .

(b) Show that A is equivalent to exactly one matrix of the form Ji.

(c) Conclude that the set of these matrices is a set of canonical form for
equivalence, (See Lemma 1.7.16.)

16. Assume that A is a doubly stochastic matrix. Show that for each eigenvalue
λ of A, λ ≤ 1.

17. Show that the matrix A = [cos θ − sin θ
sin θ cos θ

] ∈ R2×2 has complex eigenvalues if

θ is not a multiple of π. Give the geometric interpretation of it. (See also
Problem 1.10.2-4.)

18. Let A ∈ Fn×n. Prove that

(a) if λ is an eigenvalue of A, then λk is an eigenvalue of Ak, for any k ∈ N.

(b) if λ is an eigenvalue of A and A is invertible, then λ−1 is an eigenvalue of
A−1.

95



3.3 Matrix polynomials

Let P (z) = [pij(z)]m,ni=j=1 be an m × n matrix whose entries are polynomials in F[z].
The set of all such m × n matrices is denoted by F[z]m×n. Clearly, F[z]m×n is a
vector space over F, of infinite dimension. Given p(z) ∈ F[z] and P (z) ∈ F[z]m×n,
one can define p(z)P (z) ∶= [p(z)pij(z)] ∈ F[z]m×n. Again, this product satisfies nice
distribution properties. Thus, F[z]m×n is a module over the ring F[z]. (Note F[z]
is not a field!)

Let P (z) = [pij(z)] ∈ F[z]m×n. Then, degP (z) ∶= maxi,j deg pij(z) = l. Write

pij(z) =
l

∑
k=0

pij,kz
l−k, Pk ∶= [pij,k]m,ni=j=1 ∈ F

m×n for k = 0, . . . , l.

Then
P (z) = P0z

l + P1z
l−1 + . . . + Pl, Pi ∈ Fm×n, i = 0, . . . , l, (3.3.1)

is a matrix polynomial with coefficients in Fm×n.
Assume that P (z),Q(z) ∈ F[z]n×n. Then, we can define P (z)Q(z) ∈ F[z]. Note

that in general P (z)Q(z) ≠ Q(z)P (z). Hence, F[z]n×n is a noncommutative ring.
For P (z) ∈ Fn×n of the form (3.3.1) and any A ∈ Fn×n, we define

P (A) =
l

∑
i=0

PiA
l−i = P0A

l + P1A
l−1 + . . . + Pl, where A0 = In.

Given two polynomials p, q ∈ F[z], one can divide p by q /≡ 0 with the residue
r, i.e. p = tq + r, for some unique t, r ∈ F[z], where deg r < deg q. One can trivially
generalize that to polynomial matrices:

Proposition 3.3.1 Let p(z), q(z) ∈ F[z] and assume that q(z) /≡ 0. Let p(z) =
t(z)q(z) + r(z), where t(z), r(z) ∈ F[z] are unique polynomials with deg r(z) <
deg q(z). Let n > 1 be an integer, and define the following scalar polynomials:
P (z) ∶= p(z)In,Q(z) ∶= q(z)In, T (z) ∶= t(z)In,R(z) ∶= r(z)In ∈ F[z]n×n. Then,
P (A) = T (A)Q(A) +R(A), for any A ∈ Fn×n.

Proof. Since AiAj = Ai+j , for any non-negative integer, with A0 = In, the equal-
ity P (A) = T (A)Q(A) +R(A) follows trivially from the equality p(z) = t(z)q(z) +
r(z). ◻

Recall that p is divisible by q, denoted as q∣p, if p = tq, i.e. r is the zero
polynomial. Note that if q(z) = (z − a), then p(z) = t(z)(z − a) + p(a). Thus,
(z −a)∣p if and only if p(a) = 0. Similar results hold for square polynomial matrices,
which are not scalar.

Lemma 3.3.2 Let P (z) ∈ F[z]n×n,A ∈ Fn×n. Then, there exists a unique
Tleft(z), of degree degP − 1 if degP > 0 or degree −∞ if degP ≤ 0, such that

P (z) = Tleft(z)(zI −A) + P (A). (3.3.2)

In particular, P (z) is divisible from the right by zI −A if and only if P (A) = 0.
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Proof. We prove the lemma by induction on degP . If degP ≤ 0, i.e. P (z) =
P0 ∈ Fn×n, then Tleft = 0, P (A) = P0 and the lemma trivially holds. Suppose that
the lemma holds for all P with degP ≤ l − 1, where l ≥ 1. Let P (z) be of degree
l ≥ 1 of the form (3.3.1). Then P (z) = P0z

l + P̃ (z), where P̃ (z) = ∑li=1 Piz
l−1. By

the induction assumption P̃ (z) = T̃left(z)(zIn−A)+ P̃ (A), where T̃left(z) is unique.
A straightforward calculation shows that

P0z
l = T̂left(z)(zIn −A) + P0A

l, where T̂left(z) =
l−1

∑
i=0

P0A
izl−i−1,

and T̂left is unique. Hence, Tleft(z) = T̂left(z)+ T̃left is unique, P (A) = P0A
l + P̃ (A)

and (3.3.2) follows.
Suppose that P (A) = 0. Then P (z) = Tleft(z)(zI −A), i.e. P (z) is divisible by

zIn −A from the right. Assume that P (z) is divisible by (zIn −A) from the right,
i.e. there exists T (z) ∈ F[z]n×n such that P (z) = T (z)(zIn − A). Subtract (3.3.2)
from P (z) = T (z)(zIn −A) to deduce that 0 = (T (z) − Tleft(z))(zIn −A) − P (A).
Hence, T (z) = Tleft(z) and P (A) = 0. ◻

The above lemma can be generalized to any Q(z) = Q0z
l+Q1z

l−1+. . .+Ql ∈ F[z],
where Q0 ∈ GL(n,F); there exists unique Tleft(z),Rleft(z) ∈ F[z] such that

P (z) = Tleft(z)Q(z) +Rleft(z), degRleft < degQ, Q(z) =
l

∑
i=0

Qiz
l−i, Q0 ∈ GL(n,F).

(3.3.3)
Here we agree that (Azi)(Bzj) = (AB)zi+j , for any A,B ∈ Fn×n and non-negative
integers i, j.

Theorem 3.3.3 (Cayley-Hamilton theorem) Let A ∈ Fn×n and p(z) = det(zIn−
A) be the characteristic polynomial of A. Let P (z) = p(z)In ∈ F[z]n×n. Then,
P (A) = 0.

Proof. Let A(z) = zIn − A. Fix z ∈ F and let B(z) = [bij(z)] be the adjoint
matrix of A(z), whose entries are the cofactors of A(z). That is bij(z) is (−1)i+j
times the determinant of the matrix obtained from A(z) by deleting row j and
column i. If one views z as indeterminate, then B(z) ∈ F[z]n×n. Consider the
identity

A(z)B(z) = B(z)A(z) = detA(z)In = p(z)In = P (z).
Hence, (zIn −A) divides P (z) from the right. Lemma 3.3.2 yields that P (A) = 0.

◻

Note that the Cayley-Hamilton theorem holds even if F is not algebraically closed
by doing a field extension.

For p, q ∈ F[z], let (p, q) denote the greatest common divisor of p, q. If p and q are
identically zero, then (p, q) is the zero polynomial. Otherwise (p, q) is a polynomial
s of the highest degree that divides p and q. Also s is determined up to a multiple
of a non-zero scalar and it can be chosen as a unique monic polynomial:

s(z) = zl + s1z
l−1 + . . . + sl ∈ F[z]. (3.3.4)

Equality (1.14.3) yields.
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Corollary 3.3.4 Let p, q ∈ F[z] be coprime. Then, there exist u, v ∈ F[z] such
that 1 = up + vq. Let n > 1 be an integer and define P (z) ∶= p(z)In,Q(z) ∶=
q(z)In, U(z) ∶= u(z)In, V (z) ∶= u(z)In ∈ F[z]n×n. Then, for any A ∈ Fn×n, we
have the identity In = U(A)P (A) +V (A)Q(A), where U(A)P (A) = P (A)U(A) and
V (A)Q(A) = Q(A)V (A).

Let us consider that case where p and q ∈ F[z] are both non-zero polynomials
that split (to linear factors) over F. Thus

p(z) = p0(z − α1) . . . (z − αi), p0 ≠ 0, q(z) = q0(z − β1) . . . (z − βj), q0 ≠ 0.

In that case (p, q) = 1, if p and q do not have a common root. If p and q have a
common zero, then (p, q) is a non-zero polynomial that has the maximal number of
common roots of p and q counting with multiplicities.

From now on, for any p ∈ F[z] and A ∈ Fn×n we identify p(A) with P (A), where
P (z) = p(z)In.

Definition 3.3.5 For an eigenvalue λ, its algebraic multiplicity is the multiplic-
ity of λ as a root of the characteristic polynomial and it is denoted by ma(λ). The
geometric multiplicity of λ is the maximal number of linearly independent eigenvec-
tors corresponding to it and it is denoted by mg(λ). Also λ is called an algebraically
simple eigenvalue if its algebraic multiplicity is one.

Example 3.3.6 Consider the matrix A = [1 1
0 1

]. Let us find its eigenvalues

and eigenvectors. Characteristic polynomial is (1 − x)2. So λ = 1 is a double root.
Eigenvectors corresponding to this eigenvalue:

[1 − λ 1
0 1 − λ] [

x1

x2
] = [0

0
] ⇒ [0 1

0 0
] [x1

x2
] = [0

0
] .

So x2 = 0, and x1 can be anything. There is only one linearly independent vector:

[0
1
]

Consider another example: the identity matrix,

A = [1 0
0 1

] .

Then, by the same way, λ = 1 is a double root of the characteristic polynomial and
the only eigenvalue. But any non-zero vector can serve as its eigenvector, because
for any x ∈ R2 we have: Ax = x = 1⋅x. So, it has two linearly independent eigenvector

[1
0
] and [0

1
].

Here, for both matrices λ = 1 is the only eigenvalue with algebraic multiplicity two.

But its geometric multiplicity is one for [1 1
0 1

] and two for [1 0
0 1

].

Theorem 3.3.7 Let A ∈ Fn×n and λ is an eigenvalue of A. Then mg(λ) ≤
ma(λ).
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Proof. Set m = mg(λ) and let {x1, . . . ,xm} be a basis for Eλ. Extend it to a
basis {x1, . . . ,xn} for Fn. Let P ∈ Fn×n be the invertible matrix with column vectors
x1, . . . ,xn and B = P −1AP . Then, for each 1 ≤ j ≤m, we have

Bej = P −1APej = P −1Avj = P −1λvj = λ(P −1vj) = λej ,

and so B has the block form

B = [λIm X
0 Y

]

Using Problem 3.2.2-13 and the fact that similar matrices have the same character-
istic polynomials, we have

PA(t) = PB(t) = det [(t − λ)Im −X
0 tIn−m − Y ] = det((t − λ)Im)det(tIn−m − Y )

= (t − λ)mPY (t).

This shows that λ appears at least m times as a root of PA(t), and then ma(t) ≥m.

3.4 Minimal polynomial and decomposition to invariant
subspaces

Recall that Fn×n is a vector space over F of dimension n2. Let A ∈ Fn×n and consider
the powers A0 = In,A,A2, . . . ,Am. Let m be the smallest positive integer such that
these m + 1 matrices are linearly dependent as vectors in Fn×n. (Note that A0 ≠ 0.)
Thus, there exists (b0, . . . , bm)⊺ ∈ Fn for which (b0, . . . , bm)⊺ ≠ 0 and ∑mi=0 biA

m−i = 0.
If b0 = 0, then A0, . . . ,Am−1 are linearly dependent, which contradicts the definition
of m. Hence, b0 ≠ 0. Divide the linear dependence by b0 to obtain ∑mi=0 aiA

m−i = 0,
where ai = bi

b0
, 0 ≤ i ≤m.

Define ψ(z) = zm + ∑mi=0 aiz
m−i ∈ F[z]. Then, ψ(A) = 0. Here, ψ is called the

minimal polynomial of A. In principle m ≤ n2, but in fact m ≤ n.

Theorem 3.4.1 Let A ∈ Fn×n and ψ(z) be its minimal polynomial. Assume that
p(z) ∈ F[z] is an annihilating polynomial of A, i.e. p(A) = 0n×n. Then, ψ divides p.
In particular, the characteristic polynomial p(z) = det(zIn −A) is divisible by ψ(z).
Hence, degψ ≤ deg p = n.

Proof. Divide the annihilating polynomial p by ψ to obtain p(z) = t(z)ψ(z) +
r(z), where deg r < degψ =m. Proposition 3.3.1 yields that p(A) = t(A)ψ(A)+r(A),
which implies that r(A) = 0. Assume that l = deg r(z) ≥ 0, i.e. r is not identically
the zero polynomial. Therefore, A0, . . . ,Al are linearly dependent, which contradicts
the definition of m. Hence r(z) ≡ 0.

The Cayley-Hamilton theorem yields that the characteristic polynomial p(z) of
A annihilates A. Hence, ψ∣p and degψ ≤ deg p = n. ◻

Comparing the minimal polynomial of an algebraic element in a field extension
with the minimal polynomial of a matrix, we can see their common features. For
example, if E/F is a field extension and we denote the minimal polynomial of an
algebraic element α ∈ E by p(z) and if we denote the minimal polynomial of A ∈ Fn×n
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by ψ(z), then both p(z) and ψ(z) are annihilator for α and A, respectively and both
are non-zero polynomials of minimum degree with this character. According to the
definition, p(z) is irreducible over F. Now, this question can be asked that if ψ(z)
is necessarily irreducible over F, too? We will answer to this question in the last
Worked-out Problem!

Theorem 3.4.2 Let A ∈ Fn×n. Denote by q(z) the g.c.d (monic polynomial),
of all the entries of adj (zIn −A) ∈ F[z]n×n, which is the g.c.d of all (n − 1) × (n −
1) minors of (zIn − A). Then, q(z) divides the characteristic polynomial p(z) =
det(zIn −A) of A. Furthermore, the minimal polynomial of A is equal to

p(z)
q(z) .

Proof. Expand det(zIn −A) by the first column. Since q(z) divides each (n −
1) × (n− 1) minor of zIn −A, we deduce that q(z) divides p(z). Let φ(z) = p(z)

q(z) . As

q(z) divides each entry of adj (zIn −A), we deduce that adj (zIn −A) = q(z)C(z),
for some C(z) ∈ F[z]n×n. Divide the equality p(z)In = adj (zIn − A)(zIn − A) by
q(z) to deduce that φ(z)In = C(z)(zIn −A). Lemma 3.3.2 yields that φ(A) = 0.

Let ψ(z) be the minimal polynomial of A. Theorem 3.4.1 yields that ψ di-
vides φ. We now show that φ divides ψ. Theorem 3.4.1 implies that p(z) =
s(z)ψ(z), for some monic polynomial s(z). Since ψ(A) = 0, Lemma 3.3.2 yields
that ψ(z)In =D(z)(zIn−A), for some D(z) ∈ Fn×n[z]. Thus, p(z)In = s(z)ψ(z)In =
s(z)D(z)(zIn−A). Since p(z)In = adj (zIn−A)(zIn−A), we conclude that s(z)D(z) =
adj (zIn−A). As all the entries of D(z) are polynomials, it follows that s(z) divides
all the entries of adj (zIn −A). Since q(z) is the g.c.d of all entries of adj (zIn −A),
we deduce that s(z) divides q(z). Consider the equality p(z) = s(z)ψ(z) = q(z)φ(z).
Thus, ψ(z) = q(z)

s(z)φ(z). Hence, φ(z) divides ψ(z). As ψ(z) and φ(z) are monic, we

deduce that ψ(z) = φ(z). ◻

Proposition 3.4.3 Let A ∈ Fn×n and assume that λ ∈ F is an eigenvalue of
A with the corresponding eigenvector x ∈ Fn. Then, for any h(z) ∈ F[z], h(A)x =
h(λ)x. In particular, λ is a root of the minimal polynomial ψ(z) of A, i.e. ψ(λ) = 0.

Proof. Clearly, Amx = λmx. Hence, h(A)x = h(λ)x. Assume that h(A) = 0. As
x ≠ 0, we deduce that h(λ) = 0. Then, ψ(λ) = 0. ◻

Combining Theorem 3.4.1 and Proposition 3.4.3, we conclude that the mini-
mal polynomial and the characteristic polynomial of a matrix have the same roots.
(probably with the different multiplicities).

Definition 3.4.4 A matrix A ∈ Fn×n is called nonderogatory if the minimal
polynomial of A is equal to its characteristic polynomial.

Definition 3.4.5 Let V be a finite dimensional vector space over F, and assume
that V1, . . . ,Vi are non-zero subspaces of V. Then, V is a direct sum of V1, . . . ,Vi,
denoted as V = ⊕ij=1Vj if any vector v ∈ V has a unique representation as v =
v1+ . . .+vi, where vj ∈ Vj, for j = 1, . . . , i. Equivalently, let [vj1, . . . ,vjlj ] be a basis

of Vj, for j = 1, . . . , i. Then, dimV = ∑ij=1 dimVj = ∑ij=1 lj and the dimV vectors
v11, . . . ,v1l1 , . . . ,vi1, . . . ,vili are linearly independent.
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Let T ∶ V →V be a linear operator. A subspace U of V is called a T -invariant
subspace, or simply an invariant subspace when there is no ambiguity about T , if
T (u) ∈ U, for each u ∈ U. We denote this fact by TU ⊆ U. Denote by T ∣U the
restriction of T to the invariant subspace of T . Clearly, T ∣U is a linear operator on
U.

Note that V and the zero subspace {0} are invariant subspaces. Those are called
trivial invariant subspaces. The subspace U is called a nontrivial invariant subspace
if it is an invariant subspace such that 0 < dimU < dimV.

Since the representation matrices of T in different bases form a similarity class,
we can define the minimal polynomial ψ(z) ∈ F[z] of T , as the minimal polynomial
of any representation matrix of T. Equivalently, ψ(z) is the monic polynomial of
the minimal degree which annihilates T ; ψ(T ) = 0.

Theorem 3.4.6 (Primary decomposition Theorem) Let T ∶ V → V be a
linear operator on a finite non-zero dimensional vector space V. Let ψ(z) be the
minimal polynomial of T . Assume that ψ(z) decomposes to ψ(z) = ψ1(z) . . . ψk(z),
where each ψi(z) is a monic polynomial of degree at least 1. Suppose furthermore
that for each pair i ≠ j, ψi(z) and ψj(z) are coprime. Then, V is a direct sum of
V1, . . . ,Vk, where each Vi is a nontrivial invariant subspace of T . Furthermore,
the minimal polynomial of T ∣Vi is equal to ψi(z), for i = 1, . . . , k. Moreover, each
Vi is uniquely determined by ψi(z) for i = 1, . . . , k.

Proof. We prove the theorem by induction on k ≥ 2. Let k = 2. Then,
ψ(z) = ψ1(z)ψ2(z). Let V1 ∶= ψ2(T )V and V2 = ψ1(T )V be the images of the
operators ψ2(T ), ψ1(T ), respectively. Observe that

TV1 = T (ψ2(T )V) = (Tψ2(T ))V = (ψ2(T )T )V = ψ2(T )(TV) ⊆ ψ2(T )V = V1.

Thus, V1 is a T-invariant subspace. Assume that V1 = {0}. This is equivalent
to ψ2(T ) = 0. By Theorem 3.4.1, ψ divides ψ2 which is impossible since degψ =
degψ1 + degψ2 > degψ1. Thus, dimV1 > 0. Similarly, V2 is a non-zero T -invariant
subspace. Let Ti = T ∣Vi , for i = 1,2. Clearly

ψ1(T1)V1 = ψ1(T )V1 = ψ1(T )(ψ2(T )V) = (ψ1(T )ψ2(T ))V = {0},

since ψ is the minimal polynomial of T . Hence, ψ1(T1) = 0, i.e. ψ1 is an annihilating
polynomial of T1. Similarly, ψ2(T2) = 0.

Let U = V1∩V2. Then, U is an invariant subspace of T . We claim that U = {0},
i.e. dimU = 0. Assume to the contrary that dimU ≥ 1. Let Q ∶= T ∣U and denote by
φ ∈ F[z] the minimal polynomial of Q. Clearly, degφ ≥ 1. Since U ⊆ Vi, it follows
that ψi is an annihilating polynomial of Q for i = 1,2. Hence, φ∣ψ1 and φ∣ψ2, i.e. φ
is a nontrivial factor of ψ1 and ψ2. This contradicts the assumption that ψ1 and ψ2

are coprime. Hence, V1 ∩V2 = {0}.
Since (ψ1, ψ2) = 1, there exist polynomials f, g ∈ F[z] such that ψ1f + ψ2g = 1.

Hence, I = ψ1(T )f(T ) + ψ2(T )g(T ), where I is the identity operator Iv = v on
V. In particular, for any v ∈ V we have v = v2 + v1, where v1 = ψ2(T )(g(T )v) ∈
V1,v2 = ψ1(T )(f(T )v) ∈ V2. Since V1 ∩ V2 = {0}, it follows that V = V1 ⊕ V2.
Let ψ̃i be the minimal polynomial of Ti. Then, ψ̃i∣ψi for i = 1,2. Hence, ψ̃1ψ̃2∣ψ1ψ2.
Let v ∈ V. Therefore, v = v1 + v2, where vi ∈ Vi, i = 1,2. Using the facts that
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ψ̃1(T )ψ̃2(T ) = ψ̃2(T )ψ̃1(T ), ψ̃i is the minimal polynomial of Ti, and the definition
of Ti, we deduce

ψ̃1(T )ψ̃2(T )v = ψ̃2(T )ψ̃1(T )v1 + ψ̃1(T )ψ̃2(T )v2 = 0.

Hence, the monic polynomial θ(z) ∶= ψ̃1(z)ψ̃2(z) is an annihilating polynomial of
T . Thus, ψ(z)∣θ(z) which implies that ψ(z) = θ(z), hence ψ̃i = ψ̃ for i = 1,2.

It is left to show that V1 and V2 are unique. Let V̄i ∶= {v ∈ V ∶ ψi(T )v = 0},
for i = 1,2. Therefore, V̄i is a subspace that contains Vi, for i = 1,2. If ψi(T )v = 0,
then

ψi(T )(T (v)) = (ψi(T )T )v = (Tψi(T )v) = T (ψi(T )v) = T0 = 0.

Hence V̄i is T -invariant subspace. We claim that V̄i = Vi. Suppose to the contrary
that dim V̄i > dimVi, for some i ∈ {1,2}. Let j ∈ {1,2} and j ≠ i. Then, dim(V̄i ∩
Vj) ≥ 0. As before we conclude that U ∶= V̄i∩Vj is T -invariant subspace. As above,
the minimal polynomial of T ∣U must divide ψ1(z) and ψ2(z), which contradicts the
assumption that (ψ1, ψ2) = 1. This concludes the proof of the theorem for k = 2.

Assume that k ≥ 3. Let ψ̂2 ∶= ψ2 . . . ψk. Then, (ψ1, ψ̂2) = 1 and ψ = ψ1ψ̂2. Then
V = V1 ⊕ V̂2, where T ∶ V1 →V1 has the minimal polynomial ψ1, and T ∶ V̂2 → V̂2

has the minimal polynomial ψ̂2. Note that V1 and V̂2 are unique. Apply the in-
duction hypothesis for T ∣V̂2 to deduce the theorem. ◻

3.4.1 Worked-out Problems

1. Let A ∈ Fn×n. Show that A and A⊺ have the same minimal polynomial.
Solution:
If ψ(z) denotes the minimal polynomial of A, since ψ(A⊺) = ψ(A)⊺, then ψ(z)
is the minimal polynomial of A⊺ as well.

2. Let A ∈ Cn×n and A2 = −A.

(a) List all possible eigenvalues of A.

(b) Show that A is diagonalizable.

(c) Assume that B2 = −A. Is B diagonalizable?

Solution:

(a) If λ is an eigenvalue of A, then Au = λu, for some non-zero u ∈ Cn. Then,
A2u = λ2u = −Au = −λu and so (λ2 + λ)u = 0. This means λ(λ + 1) = 0
and then λ1 = 0 and λ2 = −1 are possible eigenvalues.

(b) Clearly, p(z) = z2 + z is an annihilating polynomial of A. Using Theorem
3.3.3, its minimal polynomial is either z2 + z or z or z + 1. Each of
them has simple roots. Hence, by the next Worked-out Problem, A is
diagonalizable.

(c) No. Obviously A = [0 0
0 0

] satisfies A2 = −A = 0 and B2 = −A = 0,

where B = [0 1
0 0

]. But since PB(z) = det(zI −B) = z2 and ψB(z)∣PB(z),

then ψB(z) is either z or z2 and clearly ψB(B) = 0 if ψB(z) = z. Then,
ψB(z) = z2 and by the next worked-out problem B is not diagonalizable.
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3. If A ∈ Fn×n, show that A is diagonalizable over F if and only if det(zI − A)
splits to linear factors over F and its minimal polynomial has simple roots.
Solution:
First, assume that ψA(z) = (z − λ1)⋯(z − λm) is the minimal polynomial of
A. Then, λi’s are the eigenvalues of A which are distinct. For any eigenvalue
λi, let Eλi = {v ∈ Fn; Av = λiv} be the corresponding eigenspaces. We

will show that Fn =
m

⊕
i=1

Eλi . According to Worked-out Problem 3.4.1-5, the

eigenvectors with different eigenvalues are linearly independent, so it suffices

to show Fn =
m
⊕
i=1

Eλi , as the sum will then be direct by linear independence.

Now, we want to find polynomials h1(z), . . . , hm(z) in F[z] such that

1 =
m

∑
i=1

hi(z), hi(z) ≡ 0 ( mod
ψA
z − λi

). (3.4.1)

The congruence condition implies the polynomial (z − λi)hi(z) is divisible by
ψA(z). If we substitute the matrix A for z in (3.4.1) and apply both sides to
any vector v ∈ Fn, we get v = ∑mi=1 hi(A)(v),

(A − λiI)hi(A)(v) = 0. (3.4.2)

The second equation says that hi(A)(v) lies in Eλi and the first equation says
v is a sum of such eigenvectors, so Fn = ⊕m

i=1 Eλi . Then, using bases from
each Eλi provides an eigenbasis for A. Now we find hi(z)’s fitting (3.4.2).
For 1 < i < m, let fi(z) = ψA(z)/(z − λi) = ∏

j≠i
(z − λi). Since λi’s are distinct,

the polynomials f1(z), . . . , fm(z) are relatively prime as an m-tuple, so some
F[z]-linear combination of them equals 3.4.1:

1 =
m

∑
i=1

gi(z)fi(z), (3.4.3)

where gi(z) ∈ F[z]. Let hi(z) = gi(z)fi(z). By now, we have proved Fn =
m

⊕
i=1

Eλi . Thus, Fn has a basis of eigenvectors for A and by Proposition 3.1.10,

A is diagonalizable.
Now, assume that A is diagonalizable, so all eigenvalues of A are in F and
Fn is the direct sum of the eigenvectors for A. We want to show the minimal
polynomial of A in F[z] splits and has distinct roots. Let λ1, . . . , λm be the

different eigenvalues of A, so V =
m

⊕
i=1

Eλi . We will show that f(z) =
m

∏
i=1

(z−λi) ∈
F[z] is the minimal polynomial of A in F [z]. By hypothesis, the eigenvectors
of A span Fn. Let v be an eigenvector, say Av = λv. Then, A−λ annihilates v.
The matrices (A−λiI)’s commute with each other and one of them annihilates
v, so their product f(A) annihilates v. Thus, f(A) annihilates the span of the
eigenvectors, which is Fn, so f(A) = 0. The minimal polynomial is therefore a
factor f(z). At the same time, each root of f(z) is an eigenvalue of A and so
is a root of the minimal polynomial of A. Since the roots of f(z) each occur
once, f(z) must be the minimal polynomial of A.
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4. Let A ∈ Cn×n be of finite order, i.e. Am = In, for some positive integer m.
Then, A is diagonalizable.
Solution:
Since Am = In, A is annihilated by zm − 1. Then, the minimal polynomial of
A is a factor of zm − 1. The polynomial zm − 1 has distinct root in C. The
previous problem completes the proof.

5. Show that eigenvectors for distinct eigenvalues are linearly independent.
Solution:
Assume that A ∈ Fn×n and v1, . . . ,vm are eigenvectors of A with distinct
eigenvalues λ1, . . . , λm, we show that vi’s are linearly independent by induction
on m. The case m = 1 is obvious. If m > 1, suppose ∑mi=1 civi = 0, for some
ci ∈ F. Since Av1 = λivi and A∑mi=1 civi = 0, then

m

∑
i=1

ciλivi = 0. (3.4.4)

Multiplying by linear relation ∑mi=1 civi = 0 by λm, we get

m

∑
i=1

ciλmvi = 0. (3.4.5)

Subtracting (3.4.5) from (3.4.4), we get ∑m−1
i=1 ci(λi − λm)vi = 0. By induction

hypothesis, ci(λi − λm) = 0, for i = 1, . . . ,m − 1. Since λ1, . . . , λm−1, λm are
distinct, λi−λm ≠ 0, for i = 1, . . . ,m−1. Then, ci = 0, for i = 1, . . . ,m−1. Thus
the linear relation ∑mi=1 civi = 0 becomes cmvm = 0. The vector vm is non-zero,
then cm = 0.

6. Show that the minimal polynomial of a matrix A ∈ Fn×n is not necessarily
irreducible over F.
Solution:

If A = [0 1
0 0

] ∈ R2×2, then ψA(z) = z2 which is reducible over R.

3.4.2 Problems

1. Let A,B ∈ Fn×n and p(z) ∈ F[z]. Show the following statements:

(a) If B = UAU−1, for some U ∈ GL(n,F), then p(B) = Up(A)U−1.

(b) If A ∼ B, then A and B have the same minimal polynomial.

(c) Let Ax = λx. Then, p(A)x = p(λ)x. Deduce that each eigenvalue of A is
a root of the minimal polynomial of A.

(d) Assume that A has n distinct eigenvalues. Then, A is nonderogatory.

2. (a) Show that the Jordan block Jk(λ) ∈ Fk×k is nonderogatory.

(b) Let λ1, . . . , λk ∈ F be k distinct elements. Let

A = ⊕k,lii=j=1Jmij(λi), where mi =mi1 ≥ . . . ≥mili ≥ 1, for i = 1, . . . , k.
(3.4.6)

Here mij and li are positive integers be integers. Find the minimal poly-
nomial of A. When A is nonderogatory?
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3. Find the characteristic and the minimal polynomials of

C ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 2 −2 4
−4 −3 4 −6

1 1 −1 2
2 2 −2 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

4. Let A ∶= [ x y
u v

]. Then, A is a point in four dimensional space R4.

(a) What is the condition that A has a multiple eigenvalue (det(zI2 −A) =
(z − λ)2) ? Conclude that the set (variety) all 2 × 2 matrices with a
multiple eigenvalue is a quadratic hypersurface in R4, i.e. it satisfies a
polynomial equation in (x, y, u, v) of degree 2. Hence its dimension is 3.

(b) What is the condition that A has a multiple eigenvalue and it is a diag-
onalizable matrix, i.e. similar to a diagonal matrix? Show that this is a
line in R4. Hence its dimension is 1.

(c) Conclude that the set (variety) of 2 × 2 matrices which have multiple
eigenvalues and diagonalizable is “much smaller” than the set of 2 × 2
matrix with multiple eigenvalue.

This fact holds for any n × n matrices in Rn×n or Cn×n.

5. Show that A ∈ Fn×n is diagonalizable if and only if mg(λ) = ma(λ), for any
eigenvalue λ of A.

6. Let A ∈ Fn×n and λ is an eigenvalue of it. Show that the multiplicity of λ is
at least the dimension of the eigenspace Eλ.

7. Programming Problem
Spectrum and pseudo spectrum: Let A = [aij]ni,j=1 ∈ Cn×n. Then, det(zIn−A) =
(z −λ1)⋯(z −λn) and the spectrum of A is given as spec A ∶= {λ1, . . . , λn}. In
computations, the entries of A are known or given up to a certain precision.
Say, in regular precision each aij is known with precision to eight digits: a1 ⋅
a2⋯a8×10m for some integer, e.g. 1.2345678×10−12, in floating point notation.
Thus, with a given matrix A, we associate a whole class of matrices C(A) ⊂
Cn×n of matrices B ∈ Cn×n that are represented by A. For each B ∈ C(A),
we have the spectrum spec B. Then, the pseudo spectrum of A is the union
of all the spectra of B ∈ C(A): pspec A ∶= ∪B∈C(A)spec B. Note that spec A
and pspec A are subsets of the complex plane C and can be easily plotted by
computer. The shape of pspec A gives an idea of our real knowledge of the
spectrum of A, and to changes of the spectrum of A under perturbations.
The purpose of this programming problems to give the reader a taste of this
subject.
In all the computations use double precision.

(a) Choose at random A = [aij] ∈ R5×5 as follows, each entry aij is chosen at
random from the interval [−1,1], using uniform distribution. Find the
spectrum of A and plot the eigenvalues of A on the X−Y axis as complex
numbers, marked say as +, where the center of + is at each eigenvalue.
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i. For each ε = 0.1,0.01,0.0001,0.000001 do the following:
For i = 1, . . . ,100, choose Bi ∈ R5×5 at random as A in the item (a)
and find the spectrum of A+εBi. Plot these spectra, each eigenvalue
of A+ εBi plotted as on the X −Y axis, together with the plot of the
spectrum of A. (Altogether you will have 4 graphs.)

(b) Let A ∶= diag[0.1C, [−0.5]], i.e. A ∈ R5×5 be a block diagonal matrix
where the first 4×4 block is 0.1C, where the matrix C is given in Problem
part (i) of part (a) above with this specific A. (Again you will have 4
graphs.)

(c) Repeat (a) by choosing at random a symmetric matrix A = [aij] ∈ R5×5.
That is choose at random aij for 1 ≤ i ≤ j, and let aji = aij for i < j.

i. Repeat the part (i) of (a). (Bj are not symmetric!) You will have 4
graphs.

ii. Repeat part (i) of (a), with the restriction that each Bj is a random
symmetric matrix, as explained in (c). You will have 4 graphs.

(d) Can you draw some conclusions about these numerical experiments?

8. Assume that A,B ∈ Fn×n are similar and A = PBP −1. Let Eλ(A) be the
λ-eigenspace for A and Eλ(B) be the λ-eigenspace for B. Prove that Eλ(B) =
P −1Eλ(A), i.e.

Eλ(B) = {P −1x; x ∈ Eλ(A)}.

Note that although similar matrices have the same eigenvalues (Worked-out Problem
1.17.1), they do not usually have the same eigenvectors or eigenspaces. The above
problem states that there is a precise relation between the eigenspaces of similar
matrices.

3.5 Quotient of vector spaces and induced linear oper-
ators

We have already defined the concepts of kernel, image, and cokernel of a group
homomorphism. We have the similar definitions for a linear transformation. If V
and W are two vector spaces over the field F and T ∈ L(V,W), then we have:
kerT = {x ∈ V ∶ T (x) = 0}, Im T = {T (x) ∶ x ∈ V} and cokerT = W/Im T .

Let V be a finite dimensional vector space over F. Assume that U is a subspace of
V. Then by V/U we denote the set of cosets x+U ∶= {y ∈ V, y = x+u for all u ∈ U}.
An element in V̂ ∶= V/U is denoted by x̂ ∶= x +U.

Note that codimension of U is denoted by codim U and defined as codim U =
dimV − dimU. One of the results in the following lemma is that codim U =
dimV/U.

Lemma 3.5.1 Let V be a finite dimensional vector space over F. Assume that
U is a subspace of V. Then, V/U is a finite dimensional vectors space over F,
where (x + U) + (y + U) ∶= (x + y + U) and a(x + U) ∶= ax + U. Specifically, the
neutral element is identified with the coset 0 + U = U. In particular, dimV/U =
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dimV − dimU. More precisely, if U has a basis {u1, . . . ,um} and V has a basis
{u1, . . . ,um,um+1, . . . ,um+l}, then V̂ has a basis {ûm+1, . . . , ûm+l}. (Note that if
U = {0}, then V̂ = V and if U = V, then V̂ is the trivial subspace consisting of the
zero element.)

The proof is straightforward and is left as an exercise.

Lemma 3.5.2 Assume that the assumptions of Lemma 3.5.1 hold. Let T ∈
L(V) ∶= L(V,V). Assume furthermore that U is an invariant subspace of T . Then,
T induces a linear operator T̂ ∶ V̂ → V̂ by the equality: T̂ (x +U) ∶= T (x) +U, i.e.
T̂ (x̂) = T̂ (x).

Proof. We first need to show that T̂ (x) is independent of the coset represen-
tative. Namely T (x + u) + U = T (x) + (T (u) + U) = T (x) + U, for each u ∈ U.
Since T (u) ∈ U, we deduce that T (u) +U = U. The linearity of T̂ follows from the
linearity of T . ◻

3.6 Isomorphism theorems for vector spaces

The notion of isomorphism gives a sense in which several examples of vector spaces
that we have seen so far are the same. For example, assume that V is the vector
space of row vectors with two real components and W is the vector space of column
vectors with two real components. Clearly, V and W are the same in some sense
and we can associate to each row vector (a b) the corresponding column vector (a

b
).

We see that T (x y) = (x
y
) is linear and R(T ) = W and N(T ) = {0}. So T is an

isomorphism. The importance of this concept is that any property of V as a vector
space can be translated into an equivalent property of W. For instance, if we have
a set of row vectors and want to know if they are linearly independent, it would
suffice to answer the same question for the corresponding row vectors.

We already studied the isomorphism theorems for groups in Section 1.1. Here,
we investigate the similar theorems for vector spaces.

Theorem 3.6.1 Let V and W be vector spaces over the field F and T ∈ L(V,W).
If V′ and W′ are subspaces of V and W, respectively, and T (V′) ⊆ W′, then T in-
duces a linear transformation T̄ ∶ V/V′ →W/W′ defined by T (v+V′) = T (v)+W′.

Proof. First, we show that T̄ is well-defined. If x +V′ = y +V′, for x,y ∈ V,
then x − y ∈ V′ and so T (x) − T (y) ∈ T (V′) ⊆ W′. Then, T (x) +W′ = T (y) +W′,
and T̄ (x +W) = T̄ (y +W). By linearity of T it follows that T̄ is also linear. ◻

The first isomorphism theorem. If T ∶ V →W is a linear operator, then

V/ker(T ) = Im(T ).

Proof. Let V′ = ker(T ) and W′ = {0}. Then, T induces a linear transformation
T̄ ∶ V/kerT → Im(T ) defined by T̄ (v + ker(T )) = T (v). If y ∈ Im(T ), there exists
x ∈ V such that T (x) = y, and so T̄ (x + ker(T )) = y. Therefore, T̄ is surjective.
Now, we check that T̄ is injective, for x ∈ V, x+kerT ∈ ker T̄ if and only if T (x) = 0,
that is, x ∈ kerT . Thus, T̄ is injective. Using the previous theorem, we conclude
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that T̄ is linear. We are done! ◻

The first isomorphism theorem implies that up to isomorphism, images of linear
operators on V are the same as quotient space of V. The second and third isomor-
phism theorems are consequences of the first isomorphism theorem.
The second isomorphism theorem. Let V be a vector space and let V1 and V2

be subspaces of V. Then
V1 +V2

V2
≅ V1

V1 ∩V2

Proof. Let T ∶ V1 +V2 → V1

V1∩V2
be defined by T (v1 + v2) = v1 + (V1 ∩V2). It

is easy to show that T is a well-defined surjective linear operator with kernel V2.
An application of the first isomorphism theorem then completes the proof. ◻

The third isomorphism theorem. Let V be a vector space, and suppose that
V1 ⊂ V2 ⊂ V are subspaces of V. Then

V/V1

V2/V1
≅ V

V2
.

Proof. Let T ∶ V/V1 → V/V2 be defined by T (v + V1) = v + V2. It is easy
to show that T is a well-defined surjective linear transformation whose kernel is
V2/V1. The rest follows from the first isomorphism theorem. ◻

Figure 3.1: Kernel and Image of a linear mapping T ∶ V →W.

3.7 Existence and uniqueness of the Jordan canonical
form

Definition 3.7.1 A matrix A ∈ Fn×n or a linear transformation T ∶ V → V is
called nilpotent if Am = 0 or Tm = 0 , respectively. The minimal m ≥ 1 for which
Am = 0 or Tm = 0 is called the index of nilpotency of A and T , respectively and
denoted by index A or index T , respectively.

Examples

1. The matrix A = [0 1
0 0

] is nilpotent, since A2 = 0.

2. Any triangular matrix with zero along the main diagonal is nilpotent. For

example, the matrix A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 2 1 6
0 0 1 2
0 0 0 3
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

is nilpotent and its index of nilpotency
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is 4;

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2 7
0 0 0 3
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, A3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 6
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and A4 = 0.

3. Though the examples above have a large number of zero entries, a typical nilpo-

tent matrix does not. For example, the matrix A =
⎡⎢⎢⎢⎢⎢⎣

5 −3 2
15 −9 6
10 −6 4

⎤⎥⎥⎥⎥⎥⎦
is nilpotent,

though the matrix has no zero entries.

Assume that A or T are nilpotent, then the s-numbers of A or T are defined as

si(A) ∶= rank Ai−1 − 2rank Ai + rank Ai+1, (3.7.1)

si(T ) ∶= rank T i−1 − 2rank T i + rank T i+1, i = 1, . . .

Note that A or T are nilpotent with the index of nilpotency m if and only if zm is the
minimal polynomial of A or T , respectively. Furthermore, if A or T , are nilpotent
then the maximal l, for which sl > 0 is equal to the index of nilpotency of A or T ,
respectively. Moreover, if A is nilpotent, then it is singular but the converse does

not satisfy. For example, consider the matrix A = [1 1
0 0

] which is singular but not

nilpotent.

Example 3.7.2 Consider the matrix A =
⎡⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
in R4×4. We have

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and A3 = 0.

Then, A is nilpotent with the index of nilpotency 3. We calculate s-numbers for A;

s1(A) = rank I − 2rank A + rank A2 = 4 − 2 × 2 + 1 = 1

s2(A) = rank A − 2rank A2 + rank A3 = 2 − 2 × 1 + 0 = 0

s3(A) = rank A2 − 2rank A3 + rank A4 = 1 − 2 × 0 + 0 = 1,

and si(A) = 0, for i > 3.
Therefore, the maximal l, for which sl > 0 is 3 which is equal to the index of nilpo-
tency of A.

Proposition 3.7.3 Let T ∶ V → V be a nilpotent operator, with the index of
nilpotency m, on the finite dimensional vector space V. Then

rank T i =
m

∑
j=i+1

(j − i)sj = (m − i)sm + (m − i − 1)sm−1 + . . . + si+1, (3.7.2)

i = 0, . . . ,m − 1.
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Proof. Since T l = 0, for l ≥ m, it follows that sm(T ) = rank Tm−1 and sm−1 =
rank Tm−2 − 2rank Tm−1 if m > 1. This proves (3.7.2) for i =m − 1,m − 2. For other
values of i, (3.7.2) follows straightforward from (3.7.1) by induction on m− i ≥ 2. ◻

Theorem 3.7.4 Let T ∶ V → V be a linear transformation on a finite dimen-
sional vector space. Assume that T is nilpotent with the index of nilpotency m.
Then, V has a basis of the form

xj , T (xj), . . . T lj−1(xj), j = 1, . . . , i, where m = l1 ≥ . . . ≥ li ≥ 1 (3.7.3)

and T lj(xj) = 0, j = 1, . . . , i.

More precisely, the number of lj, which are equal to an integer l ∈ [m], is equal to
sl(T ) given in (3.7.1).

Proof. We first show by induction on the dimension of V that there exists a
basis in V given by (3.7.3). If dimV = 1 and T is nilpotent, then any x ∈ V ∖ {0}
is basis satisfying (3.7.3). Suppose that for dimV ≤ N any nilpotent T has a basis
of the form (3.7.3). Assume now that dimV = N + 1.

Assume that Tm = 0 and Tm−1 ≠ 0. Hence, rank Tm−1 = dim Im Tm−1 > 0. Thus,
there exists 0 ≠ y1 ∈ Im Tm−1. Therefore, Tm−1(x1) = y1, for some x1 ∈ V. Clearly
Tm(x1) = 0. We claim that x1, T (x1), . . . , Tm−1(x1) are linearly independent. Sup-
pose that

m

∑
i=1

aiT
i−1(xi) = 0. (3.7.4)

Apply Tm−1 to this equality to deduce that 0 = a1T
m−1(x1) = a1y1. Since y1 ≠ 0, it

follows that a1 = 0. Now apply to (3.7.4) Tm−2 to deduce that a2 = 0. Continue this
process to deduce that a1 = . . . = am = 0.

Let U = span{x1, T (x1), . . . , Tm−1(x1)}. Clearly, TU ⊂ U. If U = V, we are
done. Now, assume that m = dimU < dimV. We now consider V̂ ∶= V/U and the
corresponding T̂ ∶ V̂ → V̂. Since Tm = 0, it follows that T̂m = 0. Consequently, T̂ is
nilpotent. Assume that T̂m

′ = 0 and T̂m
′−1 ≠ 0. Then, m ≥ m′. We now apply the

induction hypothesis to T̂ . Thus, V̂ has a basis of the form {x̂j , T̂ (x̂j), . . . T̂ lj−1(x̂j)},

for j = 2, . . . , i. Here, m′ = l2 ≥ . . . ≥ li ≥ 1. Furthermore, T̂ lj(x̂j) = 0 in V̂ for
j = 2, . . . , i. Assume that x̂j = zj + U, for j = 2, . . . , i. As T̂ lj(x̂j) = 0, it follows
that T lj(zj) = ∑mi=1 aiT

i−1(x1). Apply Tm−lj to both sides of this identity. Since

Tm = 0, we deduce that 0 = ∑lji=1 aiT
m−lj−1+i−1(x1). As x1, . . . , T

m−1(x1) are linearly

independent, we conclude that a1 = . . . = alj = 0. Let xj ∶= zj −∑m−lji=1 alj+iT
i−1(x1).

Observe that T lj(xj) = 0, for j = 2, . . . , i.
We claim that the vectors in (3.7.3) form a basis in V, as claimed. Assume that

there is a linear combination of these vectors that gives zero vector in V:

i

∑
j=1

lj

∑
k=1

bjkT
k−1(xj) = 0. (3.7.5)

Consider this linear combination in V̂. As x̂1 = 0 in V̂, then the above equality
reduces to:

i

∑
j=2

lj

∑
k=1

bjkT̂
k−1(x̂j) = 0.
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The induction hypothesis yield that bjk = 0, for each j ≥ 2 and each corresponding
k. Hence, (3.7.5) reduces to ∑mk=1 b1kT

k−1(x1) = 0. As x1, . . . , T
m−1(x1) are linearly

independent, we deduce that b1k = 0, for k ∈ [m]. Hence the vectors in (3.7.3) are
linearly independent. Note that the number of these vectors is m+dim V̂ = dimV =
N + 1. Then, the vectors in (3.7.3) form a basis in V.

It is left to show that the number of lj , which is equal to an integer l ∈ [m],
is equal to sl(T ) given in (3.7.1). Since T l = 0, for l ≥ m, it follows that sm =
rank Tm−1 = dim Im Tm−1. Note that if lj < m, then Tm−1(xj) = 0. Hence,
Im Tm−1 = span{Tm−1(x1), . . . , Tm−1(xsm(T ))}. That is, sm(T ) is the number of
lj that are equal to m. Use Lemma 3.7.3 and the basis of V given by (3.7.3) to
deduce that the number of lj , which are equal to an integer l ∈ [m], is equal to sl(T )
for l =m − 1, . . . ,1. ◻

Corollary 3.7.5 Let T satisfy the assumption of Theorem 3.7.4. Denote Vj ∶=
span {T lj−1(xj), . . . , T (xj),xj}, for j = 1, . . . , i. Then, each Vj is a T -invariant sub-
space, T ∣Vj is represented by Jlj(0) ∈ Clj×lj in the basis {T lj−1(xj), . . . , T (xj),xj},

and V = ⊕ij=1Vj. Each lj is uniquely determined by the sequence si(T ), i = 1, . . . ,.
Namely, the index m of the nilpotent T is the largest i ≥ 1 such that si(T ) ≥ 1. Let
k1 = sm(T ), l1 = . . . = lk1 = p1 =m and define recursively kr ∶= kr−1 + spr(T ), lkr−1+1 =
. . . = lkr = pr, where 2 ≤ r, pr ∈ [m − 1], spr(T ) > 0 and kr−1 = ∑m−prj=1 sm−j+1(T ).

Definition 3.7.6 T ∶ V → V be a nilpotent operator. Then, the sequence
(l1, . . . , li) defined in Theorem 3.7.4, which gives the lengths of the corresponding
Jordan blocks of T in a decreasing order is called the Segré characteristic of T . The
Weyr characteristic of T is the dual to Segre’s characteristic. That is, consider
an m × i, 0 − 1 matrix B = [bpq] ∈ {0,1}m×i. The j-th column of B has 1 in the
rows 1, . . . , lj and 0 in the rest of the rows. Let ωp be the p-th row sum of B, for
p = 1, . . . ,m. Then, ω1 ≥ . . . ≥ ωm ≥ 1 is the Weyr characteristic.

Proof of Theorem 3.1.18 (The Jordan Canonical Form)
Let p(z) = det(zIn −A) be the characteristic polynomial of A ∈ Cn×n. Since C

is algebraically closed , then p(z) = ∏k
j=1(z − λj)nj . Here λ1, . . . , λk are k distinct

roots, (eigenvalues of A), where nj ≥ 1 is the multiplicity of λj in p(z). Note
that ∑kj=1 nj = n. Let ψ(z) be the minimal polynomial of A. By Theorem 3.4.1,
ψ(z)∣p(z). Using Problem 3.4.2-1.c, we deduce that ψ(λj) = 0, for j = 1, . . . , k.
Hence

det(zIn −A) =
k

∏
j=1

(z − λj)nj , ψ(z) =
k

∏
j=1

(z − λj)mj , (3.7.6)

1 ≤mj ≤ nj , λj ≠ λi for j ≠ i, i, j = 1, . . . , k.

Let ψj ∶= (z − λj)mj , for j = 1, . . . , k. Then (ψj , ψi) = 1, for j ≠ i. Let V ∶= Cn and
T ∶ V →V be given by T (x) ∶= Ax, for any x ∈ Cn. Then, det(zIn−A) and ψ(z) are
the characteristic and the minimal polynomial of T , respectively. Use Theorem 3.4.6
to obtain the decomposition V = ⊕ki=1Vi, where each Vi is a nontrivial T -invariant
subspace such that the minimal polynomial of Ti ∶= T ∣Vi is ψi, for i = 1, . . . , k. That
is, Ti − λiIi, where Ii is the identity operator, i.e. Iiv = v, for all v ∈ Vi, is a
nilpotent operator on Vi and index (Ti − λiIi) = mi. Let Qi ∶= Ti − λiIi. Then,
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Qi is nilpotent and index Qi = mi. Apply Theorem 3.7.4 and Corollary 3.7.5 to
deduce that Vi = ⊕qjj=1Vi,j , where each Vi,j is Qi-invariant subspace, and each Vi,j
has a basis in which Qi is represented by a Jordan block Jmij(0), for j = 1, . . . , qj .
According to Corollary 3.7.5

mi =mi1 ≥ . . .miqi ≥ 1, i = 1, . . . , k. (3.7.7)

Furthermore, the above sequence is completely determined by rank Qji , j = 0,1, . . .
for i = 1, . . . , k. Noting that Ti = Qi + λiIi, it easily follows that each Vi,j is a Ti-
invariant subspace, hence T -invariant subspace. Moreover, in the same basis of Vi,j

that Qi represented by Jmij(0), Ti is represented by Jmij(λi), for j = 1, . . . , qi and
i = 1, . . . , k. This shows the existence of the Jordan canonical form.

We now show that the Jordan canonical form is unique, up to a permutation
of factors. Note that the minimal polynomial of A is completely determined by its
Jordan canonical form. Namely, ψ(z) = ∏k

i=1(z − zi)mi1 , where mi1 is the biggest
Jordan block with the eigenvalues λi. (See Problem 3.4.2-2.) Thus, mi1 = mi, for
i = 1, . . . , k. Now, Theorem 3.4.6 yields that the subspaces V1, . . . ,Vk are uniquely
determined by ψ. Thus, each Ti and Qi = T − λiIi are uniquely determined. Using
Theorem 3.7.4, we get that rank Qji , j = 0,1, . . . determines the sizes of the Jordan
blocks of Qi. Hence, all the Jordan blocks corresponding to λi are uniquely deter-
mined for each i ∈ [k]. ◻

Corollary 3.7.7 Let A ∈ Fn×n and assume that the characteristic polynomial of
p(z) = det(zIn −A) splits to linear factors, i.e. (3.7.6) holds. Let B be the Jordan
canonical form of A. Then

1. The multiplicity of the eigenvalue λi in the minimal polynomial ψ(z) of A is
the size of the biggest Jordan block corresponding to λi in B.

2. The number of Jordan blocks in B corresponding to λi is the nullity of A−λiIn,
i.e. the number of Jordan block in B corresponding to A − λiIn is the number
of linearly independent eigenvectors of A corresponding to the eigenvalue λi.

3. Let λi be an eigenvalue of A. Then, the number of the Jordan blocks of order
i corresponding to λi in B is given in (3.7.9).

Proof.
1. Since Jn(0)n = 0 and Jn(0)n−1 ≠ 0, it follows that the minimal polynomial of
Jn(λ) is (z−λn)n = det(zIn−Jn(λ)). Use Problem 3.7.2-3.a to deduce the first part
of the corollary.
2. Since Jn(0) has one independent eigenvector, use Problem 3.7.2-3.b to deduce
the second part of the corollary.
3. Use Problem 3.7.2-2.a to establish the last part of the corollary. ◻
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3.7.1 Worked-out Problems

1. Show that the only nilpotent diagonalizable matrix is the zero matrix.
Solution:
Assume that A ∈ Fn×n is a diagonalizable and nilpotent matrix with the index
of nilpotency m. Since A is diagonalizable, then A = C−1DC, for a diagonal
matrix D and C ∈ GL(n,F). Thus, Dm = (CAC−1)m = CAMC−1 = 0. How-
ever, if the diagonal entries of D are d1, . . . , dn, then the diagonal entries of
Dm are just dm1 , . . . , d

m
n . Since Dm = 0, then dmi = 0, for all i and hence di = 0,

for all i. This means D = 0 and it follows that A = 0.

2. Show that the index of nilpotency of the nilpotent matrix A ∈ Fn×n is less than
or equal to n.
Solution:
We already discussed that the minimal polynomial of a nilpotent matrix is zm,
for some positive integer m. Since the minimal polynomial and the character-
istic polynomial of a matrix have the same roots (probably with the different
multiplicities), then the characteristic polynomial of A is zn and based on the
definition of minimal polynomial, m ≤ n. Now, the statement follows from the
fact that the index of nilpotency and the degree of the minimal polynomial of
A are the same.

3. The matrix A ∈ Fn×n is called idempotent if A2 = A. Show that if A is idem-
potent, then detA is equal 0 or 1.
Solution:
Since A2 = A, taking determinant of both sides of this equation, we find

detA = det(A2). (3.7.8)

Then, det(A2) = (detA)2 = detA. Hence, detA(detA−1) = 0 and so detA = 0
or 1.

3.7.2 Problems

1. Let T ∶ V → V be nilpotent with m = index T . Let (ω1, . . . , ωm) be the Weyr
characteristic. Show that rank T j = ∑mp=j+1 ωp, for j = 1, . . . ,m−1.

2. Let A ∈ Cn×n and assume that det(zIn −A) = ∏k
i=1(z − λi)ni , where λ1, . . . , λk

are k distinct eigenvalues of A. Let

si(A,λj) ∶= rank (A − λjIn)i−1 − 2rank (A − λjIn)i + rank (A − λjIn)i+1,(3.7.9)

i = 1, . . . , nj , j = 1, . . . , k.

(a) Show that si(A,λj) is the number of Jordan blocks of order i correspond-
ing to λj for i = 1, . . . , nj .

(b) Show that in order to find all Jordan blocks of A corresponding to λj
one can stop computing si(A,λj) at the smallest i ∈ [nj] such that
1s1(A,λj) + 2s2(A,λj) . . . + isi(A,λj) = nj .

3. Let C = F ⊕G = diag(F,G), F ∈ Fl×l,G ∈ Fm×m.
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(a) Assume that ψF , ψG are the minimal polynomials of F and G, respec-
tively. Show that ψC , the minimal polynomial of C, is equal to ψFψG

(ψF ,ψG) .

(b) Show that nullC = nullF + nullG. In particular, if G is invertible, i.e. 0
is not eigenvalue of G, then nullC = nullF .

3.8 Cyclic subspaces and rational canonical forms

In this section, we study the structure of a linear operator on a finite dimensional
vector space, using the primary decomposition theorem of section 3.4. Let T ∶ V →V
be a linear operator and assume that V is finite dimensional over the field F. Let
0 ≠ u ∈ V. Consider the sequence of vectors u = T 0(u), T (u), T 2(u), . . .. Since
dimV < ∞, there exists a positive integer l ≥ 1 such that u, T (u), . . . , T l−1(u) are
linearly independent, and u, T (v), . . . , T l(u) are linearly dependent. Hence, l is the
smallest integer such that

T l(u) = −
l

∑
i=1

aiT
l−i(u), (3.8.1)

for some scalars ai ∈ F, 1 ≤ i ≤ l.
Clearly, l ≤ dimV. The polynomial ψu(z) ∶= zl+∑li=1 aiz

l−i is called the minimal
polynomial of u, with respect to T . It is a monic polynomial and has the minimum
degree among annihilating polynomials of u. Its property is similar to the property
of the minimal polynomial of T . Namely, if a polynomial φ ∈ F[z] annihilates u, i.e.,
φ(T )(u) = 0, then ψu∣φ. In particular, the minimal polynomial ψ(z) of T is divisible
by ψu, since ψ(T )(u) = 0(u) = 0. Assume that U = span{T i(u); i = 0,1, . . .}.
Clearly, every vector w ∈ U can be uniquely represented as φ(T )(u), where φ ∈ F[z]
and degφ ≤ l − 1. Hence, U is a T -invariant subspace. The subspace U is called the
cyclic subspace, generated by u. Note that in the basis {u1 = u,u2 = T (u), . . . ,ul =
T l−1(u)}, the linear transformation T ∣U is given by the matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 −al
1 0 0 . . . 0 −al−1

0 1 0 . . . 0 −al−2

⋮ ⋮ ⋮ . . . ⋮ ⋮
0 0 0 . . . 1 −a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Fl×l. (3.8.2)

The above matrix is called the companion matrix , corresponding to the polynomial
ψu(z). (Sometimes, the transpose of the above matrix is called the companion
matrix.)

Lemma 3.8.1 Let V be a finite dimensional vector space and T ∈ L(V). Sup-
pose u and w are two non-zero elements of V and ψu and ψw are the minimal
polynomials of u and w with respect to T , respectively and (ψu, ψw) = 1.Then,
ψu+w = ψu ⋅ ψw.

Proof. Let U and W be the cyclic invariant subspaces generated by u and w,
respectively. We claim that the T -invariant subspace X ∶= U ∩ W is the trivial
subspace {0}. Assume to the contrary, there exists 0 ≠ x ∈ X. Let X1 ⊂ X be
a nontrivial cyclic subspace generated by x and ψx be the minimal polynomial
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corresponding to x. Since X1 ⊂ U, it follows that x = φ(T )(u), for some φ(z) ∈
F[z]. Hence, ψu(T )(x) = 0. Thus ψx∣ψu. Similarly ψx∣ψw. This contradicts the
assumption that (ψu, ψw) = 1. Hence, U ∩W = {0}. Let φ = ψuψw. Clearly

φ(T )(u +w) = ψw(T )(ψu(T )(u)) + ψu(T )(ψw(T )(w) = 0 + 0 = 0.

Thus, φ is an annihilating polynomial of u+w. Let θ(z) be an annihilating polyno-
mial of u +w. Then, 0 = θ(T )(u) + θ(T )(w). Since U and V are T -invariant sub-
spaces and U∩W = {0}, it follows that 0 = θ(T )(u) = θ(T )(w). Hence, ψu∣θ,ψw∣θ.
As (ψu, ψw) = 1, it follows that φ∣θ. Hence, ψu+w = φ. ◻

Theorem 3.8.2 Let T ∶ V → V be a linear operator and 1 ≤ dimV < ∞. Let
ψ(z) be the minimal polynomial of T . Then, there exists 0 ≠ u ∈ V such that ψu = ψ.

Proof. Assume first that ψ(z) = (φ(z))l, where φ(z) is irreducible in F[z], i.e.
φ(z) is not divisible by any polynomial θ such 1 ≤ deg θ < degφ, and l is a positive
integer. Let 0 ≠ w ∈ V. Recall that ψw∣ψ. Hence, ψw = (φ)l(w), where l(w) ∈ [l] is
a positive integer. Assume to the contrary that 1 ≤ l(w) ≤ l − 1, for each 0 ≠ w ∈ V.
Then, (φ(T ))l−1(w) = 0. As (φ(T ))l−1(0) = 0, we deduce that (φ(z))l−1 is an
annihilating polynomial of T . Therefore, ψ∣φl−1 which is impossible. Hence there
exists u ≠ 0 such that l(u) = l, i.e. ψu = ψ.

Consider now the general case

ψ(z) =
k

∏
i=1

(φi(z))li , li ∈ N, φi irreducible , (φi, φj) = 1, for i ≠ j, (3.8.3)

where k > 1. Theorem 3.4.6 implies that V = ⊕ki=1Vi, where Vi = kerφlii (T ) and φlii
is the minimal polynomial of T ∣Vi. The first case of the proof yields the existence
of 0 ≠ ui ∈ Vi such that ψui = φlii for i = 1, . . . , k. Let wj = u1 + . . .+uj . Use Lemma

3.8.1 to deduce that ψwj = ∏
j
i=1 φ

li
i . Hence, ψu = ψ for u ∶= wk. ◻

Theorem 3.8.3 (The cyclic decomposition theorem for V) Let T ∶ V →
V be a linear operator and 0 < dimV < ∞. Then, there exists a decomposition of V
to a direct sum of r T -cyclic subspaces V = ⊕ri=1Ui with the following properties. As-
sume that ψi is the minimal polynomial of T ∣Ui, then ψ1 is the minimal polynomial
of T . Furthermore, ψi+1∣ψi, for i = 1, . . . , r − 1.

Proof. We prove the theorem by induction on dimV. For dimV = 1, any 0 ≠ u
is an eigenvector of T : T (u) = λu, so V is cyclic, and ψ(z) = ψ1(z) = z −λ. Assume
now that the theorem holds of all non-zero vector spaces of dimension less than n+1.
Suppose that dimV = n + 1. Let ψ(z) be the minimal polynomial of T , m = degψ
and T is nonderogatory, i.e., m = n + 1, which is the degree of the characteristic
polynomial of T . Theorem 3.8.2 implies that V is a cyclic subspace.This yields
r = 1, and the theorem holds in this case.

Assume now that T is derogatory. Then, m < n + 1. Theorem 3.8.2 implies the
existence of 0 ≠ u1 such that ψu1 = ψ. Let U1 be the cyclic subspace generated by
u1. Let V̂ ∶= V/U1. Thus, 1 ≤ dim V̂ = dimV −m ≤ n. We now apply the induction
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hypothesis to T̂ ∶ V̂ → V̂. Therefore, V̂ = ⊕ri=2Ûi, where Ûi is a cyclic subspace
generated by ûi, i = 2, . . . , r. The minimal polynomial of ûi is ψi, i = 2, . . . , r and
ψ2 is the minimal polynomial of T̂ , and ψi+1∣ψi, for i = 2, . . . , r − 1. Observe first
that for any polynomial φ(z), we have the identity φ(T̂ )([x]) = [φ(T )(x)]. Since
ψ(T )(x) = 0, it follows that ψ1 ∶= ψ(z) is an annihilating polynomial of T̂ . Hence,
ψ2∣ψ1.

Observe next that since ψi+1∣ψi, for i = 1, . . . , r − 1, it follows that ψi∣ψ1 = ψ.
Consequently, ψ = θiψi, where θi is a monic polynomial and i = 2, . . ., r. Since
[0] = ψi(T̂ )([ûi]) = [ψi(T )(ûi)], it follows that ψi(T )(ûi) ∈ U1. Hence, ψi(T )(ûi) =
ωi(T )(u1), for some ω(z) ∈ F[z]. Hence, 0 = ψ(T )(ûi) = θi(T )(ψi(T )(ûi)) =
θi(T )(ωi(T )(u1)). Therefore, ψu1 = ψ divides θiωi. Then, ψi∣ωi and so ωi = ψiαi.
Define ui = ûi −αi(T )(u1), for i = 2, . . . , r. The rest of the proof of theorem follows
from Problem 3.8.2-5. ◻

The cyclic decomposition theorem can be used to determine a set of canonical
forms for similarity as follows.

Theorem 3.8.4 (Rational canonical form) Let A ∈ Fn×n. Then, there exist
r monic polynomials ψ1, . . . , ψr, of degree one at least, satisfying the following con-
ditions: First ψi+1∣ψi, for i = 1, . . . , r. Second, ψ1 = ψ is the minimal polynomial of
A. Then, A is similar to ⊕ri=1C(ψi), where C(ψi) is the companion matrix of the
form (3.8.2) corresponding to the polynomial ψi.

Decompose each ψi = ψi,1 . . . ψi,ti to the product of its irreducible components, as
in the decomposition of ψ = ψ1 given in (3.8.3). Then, A is similar to ⊕r,tii=l=1C(ψi,l).

Suppose finally that ψ(z) = ∏k
j=1(z − λj)mj , where λ1, . . . , λk are the k distinct

eigenvalues of A. Then, A is similar to the Jordan canonical form given in Theorem
3.1.18.

Proof. Identify A with T ∶ Fn → Fn, where T (x) = Ax. Use Theorem 3.8.3
to decompose Fn = ⊕ri=1Ui, where each Ui is a cyclic invariant subspace such that
T ∣Ui has the minimal polynomial ψi. Since Ui is cyclic, then T ∣Ui is represented
by C(ψi) in the appropriate basis of Ui as shown in the beginning of this section.
Hence, A is similar to ⊕ri=1C(ψi).

Consider next Ti ∶= T ∣Ui. Use Theorem 3.4.6 to deduce that Ui decomposes to
a direct sum of Ti invariant subspaces ⊕til=1Ui,l, where the minimal polynomial of
Ti,l ∶= Ti∣Ui,l is ψi,l. Since Ui was cyclic, i.e., Ti was nonderogatory, it follows that
each Ti,l must be nonderogatory, i.e. Ui,l cyclic. (See Problem 3.8.2-3.) Recall that
each Ti,l is represented in a corresponding basis by C(ψi,l). Hence, A is similar to
⊕r,tii=l=1C(ψi,l).

Suppose finally that ψ(z) splits to linear factors. Hence, ψi,l = (z − λl)mi,l and
Ti,l − λlI is nilpotent of index mi,l. Thus, there exists a basis in Ui,l such that Ti,l
is represented by the Jordan block Jmi,l(λl). Therefore, A is similar to a sum of
corresponding Jordan blocks. ◻

The polynomials ψ1, . . . , ψk appearing in Theorem 3.8.3 are called invariant polyno-
mials of T or its representation matrixA, in any basis. The polynomials ψi,1, . . . , ψi,ti , i =
1, . . . , k appearing in Theorem 3.8.4 are called the elementary divisors of A, or the
corresponding linear transformation T represented by A. We now show that these
polynomials are uniquely defined.
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Lemma 3.8.5 (Cauchy-Binet formula) For two positive integers 1 ≤ p ≤m, de-
note by Qp,m the set of all subsets α of {1, . . . ,m} of cardinality p. Let A ∈ Fm×n,B ∈
Fn×l and denote C = AB ∈ Fm×l. Then, for any integer p ∈ [min(m,n, l)],α ∈
Qp,m,β ∈ Qp,l the following identity holds.

detC[α,β] = ∑
γ∈Qp,n

detA[α,γ]detB[γ,β]. (3.8.4)

Proof. It is enough to check the case where α = β = {1, . . . , p}. This is equivalent
to the assumption that p = m = l ≤ n. For p = m = n = l, the Cauchy-Binet
formula reduces to detAB = (detA)(detB). Thus, it is sufficient to consider the
case p =m = l < n. Let C = [cij]pi=j=1. Then, cij = ∑ntj=1 aitjbtjj for i, j = 1, . . . , p. Use
multilinearity of the determinant to deduce

detC = det[
n

∑
tj=1

aitjbtjj]ni=j=1 =
n

∑
t1,...,tp=1

det[aitjbtjj]ni=j=1 =

n

∑
t1,...,tp=1

detA[{1, . . . , p},{t1, . . . , tp}]bt11bt22 . . . btpp.

Observe next that detA[{1, . . . , p},{t1, . . . , tp}] = 0 if ti = tj , for some 1 ≤ i < j ≤ p,
since the columns ti and tj in A[{1, . . . , p},{t1, . . . , tp}] are equal. Consider the sum

∑
{t1,t2,...,tp}=γ∈Qp,n

A[{1, . . . , p},{t1, . . . , tp}]bt11bt22 . . . btpp.

The above arguments yield that this sum is

det(A[⟨p⟩,γ]C[γ, ⟨p⟩]) = (detA[⟨p⟩,γ])(detC[γ, ⟨p⟩]).

This establishes (3.8.4). ◻

Proposition 3.8.6 Let A(z) ∈ Fm×n[z]. Denote by r = rank A(z) the size of
the biggest minor of A(z) which is not a zero polynomial. For an integer k ∈ [r], let
δk(z) be the greatest common divisor of all k × k minors of A(z), which is assumed
to be a monic polynomial. Assume that δ0 = 1. Then, δi∣δi+1, for i = 0, . . . , r − 1.

Proof. Expand a non-zero (k + 1) × (k + 1) minor of A(z) to deduce that
δk(z)∣δk+1(z). In particular, δi∣δj , for 1 ≤ i < j ≤ r. ◻

Proposition 3.8.7 Let A(z) ∈ F[z]m×n. Assume that P ∈ GL(m,F) and Q ∈
GL(n,F). Let B(z) = PA(z)Q. Then

1. rank A(z) = rank B(z) = r.

2. δk(A(z)) = δk(B(z)), for k = 0, . . . , r.

Proof. Use Cauchy-Binet to deduce that rank B(z) ≤ rank A(z). Since A(z) =
P −1B(z)Q−1, it follows that rank A(z) ≤ rank B(z). Hence, rank A(z) = rank B(z) =
r. Use the Cauchy-Binet to deduce that δk(A(z))∣δk(B(z)). AsA(z) = P −1B(z)Q−1,
we deduce also that δk(B(z))∣δk(A(z)). ◻
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Definition 3.8.8 Let A ∈ Fn×n and define A(z) ∶= zIn−A. Then, the polynomi-
als of degree 1 at least in the sequence φi = δn−i+1

δn−i(z) , i = 1, . . . , n are called the invariant
polynomials of A.

Note that the product of all invariant polynomials is det(zIn−A). In view of Propo-
sition 3.8.7, we obtain that similar matrices have the same invariant polynomials.
Hence, for linear transformation T ∶ V →V, we can define its invariant polynomials
of T by any representation matrix of T in a basis of V.

Theorem 3.8.9 Let T ∶ V →V be a linear operator. Then, the invariant poly-
nomials of T are the polynomials ψ1, . . . , ψr appearing in Theorem 3.8.3.

To prove this theorem we need the following lemma:

Lemma 3.8.10 Let A = diag(B,C)(= B ⊕ C) ∈ Fn×n, where B ∈ Fl×l,C ∈
Fm×m,m = n− l. Let p ∈ [n− 1] and assume that α = {α1, . . . , αp},β = {β1, . . . , βp} ∈
Qp,n:

1 ≤ α1 < . . . < αp ≤ n, 1 ≤ β1 < . . . < βp ≤ n.

If #α ∩ [l] ≠ #β ∩ [l], then detA[α,β] = 0.

Proof. Let k ∶= #α ∩ [l], i.e. αk ≤ l, αk+1 > l. Consider a term in detA[α,β].
Up to a sign it is ∏p

j=1 aαjβσ(j) , for some bijection σ ∶ [p] → [p]. Then, this product
is zero unless σ([k]) = [k] and βk ≤ l, βk+1 > l. ◻

Proof of Theorem 3.8.9. From the proof of Theorem 3.8.3, it follows that
V has a basis in which T is represented by C ∶= ⊕ri=1C(ψi). Assume that C(ψi) ∈
Fli×li , i ∈ [r], where n = ∑ri=1 li.

Let θ ∶= zl+a1z
m−1+. . .+al. Then, the companion matrix C(θ) is given by (3.8.2).

Consider the submatrix of B(z) of zIl −C(θ) obtained by deleting the first row an
the last column. It is an upper triangular matrix with −1 on the diagonal. Hence,
detB(z) = (−1)l−1. Therefore, δl−1(zIm −C(θ)) = 1. Thus, δl−j(zIl −C(θ)) = 1, for
j ≥ 1.

We claim that δn−j(zIn − C) = ∏r
i=j+1ψj , for j ∈ [r]. Consider a minor of or-

der n − j of the block diagonal matrix zIn − C of the form (zIn − C)[α,β], where
α,β ∈ Qn−j,n. Lemma 3.8.10 claims that det(zIn − C)[α,β] = 0, unless we choose
our minor such that in each submatrix (zIli − C(ψi)), we delete the same number
of rows and columns. Deleting the first row and last column in (zIli − C(ψi)), we
get a minor with value (−1)li−1. Recall also that δli−k(zIli − C(ψi)) = 1, for k ≥ 1.
Since ψi+1∣ψi, it follows that δn−j(zIn −C) is obtained by deleting the first row and
the last column in (zIli −C(ψi)), for i = 1, . . . , j and j = 1, . . . , r. (ψr+1 ∶= 1.) Thus,

δn−j(zIn −C) = ∏r
i=j+1ψj , for j ∈ [r]. Hence, ψi = δn−i+1(zIn−C)

δn−i(zIn−C) . ◻

Note that the above theorem implies that the invariant polynomials of A satisfy
φi+1∣φi, for i = 1, . . . , r − 1.

The irreducible factors φi,1, . . . , φi,ti of ψi given in Theorem 3.8.4, for i = 1, . . . , r

are called the elementary divisors of A. The matrices ⊕ki=1C(ψi) and ⊕k,tii=l=1C(ψi,l)
are called the rational canonical forms of A. Those are the canonical forms in the
case that the characteristic polynomial of A does not split to linear factors over F.
Note that the diagonal elements of the Jordan canonical form of a matrix A are
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the eigenvalues of A, each appearing the number of times equal to its algebraic
multiplicity. However, the rational canonical form does not expose the eigenvalues
of the matrix, even when these eigenvalues lie in the base field.

Example 3.8.11 Let T ∈ L(R7) with the minimal polynomial ψ(z) = (z−1)(z2+
1)2. Since its elementary divisors are z−1 and (z2+1)2, then we have the following
possibilities for the list of elementary divisors:

1. z − 1, z − 1, z − 1, (z2 + 1)2

2. z − 1, (z2 + 1)2, z2 + 1

These correspond to the following rational canonical forms:

1.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 1 0 0 0
0 0 0 0 1 0 −2
0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 1 0 0 0 0 0
0 0 1 0 −2 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.8.1 Worked-out Problems

1. Consider the following matrix:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 2 −2 4
−4 −3 4 −6
1 1 −1 2
2 2 −2 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Assume that the minimal polynomial of C is ψC(z) = z(z − 1)2. Find the
rational canonical form of C.
Solution:
Since

pC(z)
ψ1(z) = z, then ψ2(z) = z. According to the definition of the companion

matrix,

C(ψ1) =
⎡⎢⎢⎢⎢⎢⎣

0 0 0
1 0 −1
0 1 2

⎤⎥⎥⎥⎥⎥⎦
,
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and C(ψ2) = 0 and so

C ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎣

0 0 0
1 0 −1
0 1 2

⎤⎥⎥⎥⎥⎥⎦
[0]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

3.8.2 Problems

1. Let φ(z) = zl + ∑li=1 aiz
l−i. Denote by C(φ) the matrix (3.8.2). Show the

following statements:

(a) φ(z) = det(zI −C(φ)).
(b) The minimal polynomial of C(φ) is φ, i.e. C(φ) is nonderogatory.

(c) Assume that A ∈ Fn×n is nonderogatory. Show that A is similar to C(φ),
where φ is a characteristic polynomial of A.

2. Let T ∶ V →V,dimV < ∞,0 ≠ u,w. ψu+w = ψuψw

(ψu,ψw) .

3. Let T ∶ V → V and assume that V is a cyclic space, i.e. T is nondegenerate. Let
ψ be the minimal and the characteristic polynomial. Assume that ψ = ψ1ψ2,
where degψ1,degψ2 ≥ 1, and (ψ1, ψ2) = 1. Show that there exist 0 ≠ u1,u2

such that ψi = ψui , i = 1,2. Furthermore, V = U1 ⊕U2, where Ui is the cyclic
subspace generated by ui.

4. Let T is a linear operator T ∶ V →V and U is a subspace of V.

(a) Assume that TU ⊆ U. Show that T induces a linear transformation
T̂ ∶ V/U→V/U, i.e. T̂ ([x]) ∶= [T (x)].

(b) Assume that TU ⊈ U. Show that T̂ ([x]) ∶= [T (x)] does not make sense.

5. In this problem we finish the proof of Theorem 3.8.3.

(a) Show that ψi is an annihilating polynomial of ui, for i ≥ 2.

(b) By considering the vector [ûi] = [ui], show that ψui = ψi for i ≥ 2.

(c) Show that the vectors ui, T (ui), . . . , T degψi−1(ui), i = 1, . . . , r are linearly
independent.
(Hint: Assume linear dependence of all vectors, and then quotient this
dependence by U1. Then, use the induction hypothesis on V̂ .)

(d) Let Ui be the cyclic subspace generated by ui, for i = 2, . . . , r. Conclude
the proof of Theorem 3.8.3.

6. Let the assumptions of Theorem 3.8.3 hold. Show that the characteristic
polynomial of T is equal to ∏r

i=1ψi.

7. Prove that any A ∈ Fn×n can be written as the product of two symmetric
matrices. (Hint: Use rational canonical form.)

8. Let A,B ∈ Fn×n. Prove that A is similar to B if and only if they have the same
elementary divisors.
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Chapter 4

Applications of Jordan
canonical form

4.1 Functions of Matrices

Let A ∈ Cn×n. Consider the iterations

xl = Axl−1, xl−1 ∈ Cn, l = 1, . . . (4.1.1)

Clearly, xl = Alx0. To compute xl from xl−1, one need to perform n(2n − 1) flops,
(operations: n2 multiplications and n(n − 1) additions). If we want to compute
x108 , we need 108n(2n − 1) operations, if we simply program the iterations (4.1.1).
If n = 10, it will take us some time to do these iterations, and we will probably run
to the roundoff error, which will render our computations meaningless. Is there any
better way to find x108? The answer is yes, and this is the purpose of this section.

For a scalar function f and a matrix A ∈ Cn×n we denote by f(A) to be a matrix
of the same dimension as A. This provides a generalization of a scalar variable
matrix f(z), z ∈ C. If f(x) is a polynomial or rational function, it is natural to
define f(A) by substituting A for x, replacing division by matrix inversion and

replacing 1 by the identity matrix. For example if f(x) = 1+x3
1−x then

f(A) = (I −A)−1(I +A3),

if 1 is not an eigenvalue of A. As rational functions of a matrix commute, so it does
not matter if we write (I −A)−1(I +A3) or (I +A3)(I −A)−1. In what follows, we
are going to provide the formal definition of a matrix function. Let A ∈ Cn×n. Using
Theorem 3.1.18 (The Jordan canonical form) we have

P −1AP =
k
⊕
i=1
Jni(λi),

for some P ∈ GL(n,C), and λi’s are the eigenvalues of A each of order ni. The
function f is said to be defined on the spectrum of A if the values

f (j)(λi), j = 0,1, . . . , ni − 1 i ∈ [k]

exist. These are called the values of the function f on the spectrum of A.
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Definition 4.1.1 (Matrix function) Let f be defined on the spectrum of A.
Then, f(A) = Pf(J)P −1 = P diag(f(Jk))P −1, where

f(Jk) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(λi) f ′(λi) ⋯ f(ni−1)(λi)
(ni−1)!

f(λi) ⋱ ⋮
⋱ f ′(λi)

f(λi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For example for J = [
1
4 1

0 1
4

] and f(x) = x2, we have

f(J) = [f(
1
4) f ′(1

2)
0 f(1

4)
] = [

1
16 1

0 1
16

] ,

which is easily proved to be J2.

Theorem 4.1.2 Let A ∈ Cn×n and

det(zIn −A) =
k

∏
i=1

(z − λi)ni , ψ(z) =
k

∏
i=1

(z − λi)mi , (4.1.2)

1 ≤m ∶= degψ =
k

∑
i=1

mi ≤ n =
k

∑
i=1

ni,

1 ≤mi ≤ ni, λi ≠ λj , for i ≠ j, i, j = 1, . . . , k,

where ψ(z) is the minimal polynomial of A. Then, there exist unique m linearly
independent matrices Zij ∈ Cn×n, for i = 1, . . . , k and j = 0, . . . ,mi − 1, which depend
on A, such that for any polynomial f(z) the following identity holds

f(A) =
k

∑
i=1

mi−1

∑
j=0

f (j)(λi)
j!

Zij . (4.1.3)

(Zij , i = 1, . . . , k, j = 1, . . . ,mi are called the A-components.)

Proof. We start first with A = Jn(λ). So Jn(λ) = λIn +Hn, where Hn ∶=
Jn(0). Thus, Hn is a nilpotent matrix, with Hn

n = 0 and Hj
n has 1’s on the j-

th subdiagonal and all other elements are equal 0, for j = 0,1, . . . , n − 1. Hence,
In =H0

n,Hn, . . . ,H
n−1
n are linearly independent.

Let f(z) = zl. Then

Al = (λIn +Hn)l =
l

∑
j=0

(l
j
)λl−jHj

n =
min(l,n−1)
∑
j=0

(l
j
)λl−jHj

n.

The last equality follows from the equality Hj = 0, for j ≥ n. Note that ψ(z) =
det(zIn − Jn(λ)) = (z − λ)n, i.e. k = 1 and m =m1 = n. From the above equality we
conclude that Z1j =Hj

n, for j = 0, . . . if f(z) = zl and l = 0,1, . . .. With this definition
of Z1j , (4.1.3) holds for Klz

l, where Kl ∈ C and l = 0,1, . . .. Hence, (4.1.3) holds for
any polynomial f(z) for this choice of A.

Assume now thatA is a direct sum of Jordan blocks as in (3.4.6): A = ⊕k,lii=j=1Jmij(λi).
Here mi = mi1 ≥ . . . ≥ mili ≥ 1 for i = 1, . . . , k, and λi ≠ λj for i ≠ j. Thus,
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(4.1.2) holds with ni = ∑lij=1mij for i = 1, . . . , k. Let f(z) be a polynomial. Then,

f(A) = ⊕k,lii=j=1f(Jmij(λi)). Use the results for Jn(λ) to deduce

f(A) = ⊕k,lii=j=1

mij−1

∑
r=0

f (r)(λi)
r!

Hr
mij .

Let Zij ∈ Cn×n be a block diagonal matrix of the following form. For each integer
l ∈ [k] with l ≠ i, all the corresponding blocks to Jlr(λl) are equal to zero. In the
block corresponding to Jmir(λi) Zij has the block matrix Hj

mir , for j = 0, . . . ,mi−1.
Note that each Zij is a non-zero matrix with 0−1 entries. Furthermore, two different
Zij and Zi′j′ do not have a common 1 entry. Hence, Zij , i = 1, . . . , k, j = 0, . . . ,mi −1
are linearly independent. It is straightforward to deduce (4.1.3) from the above
identity.

Let B ∈ Cn×n. Then, B = UAU−1 where A is the Jordan canonical form of B.
Recall that A and B have the same characteristic polynomial. Let f(z) ∈ C[z].
Then (4.1.3) holds. Clearly

f(B) = Uf(A)U−1 =
k

∑
i=1

mi−1

∑
j=0

f (j)(λi)
j!

UZijU
−1.

Hence, (4.1.3) holds for B, where UZijU
−1, i = 1, . . . , k, j = 0, . . . ,mij−1 are the B-

components.
The uniqueness of the A-components follows from the existence and uniqueness

of the Lagrange-Sylvester interpolation polynomial, explained below.
◻

Theorem 4.1.3 (The Lagrange-Sylvester interpolation polynomial). Let
λ1, . . . , λk ∈ C be k-distinct numbers. Let m1, . . . ,mk be k positive integers and
m = m1 + . . . +mk. Let sij , i = 1, . . . , k, j = 0, . . . ,mi − 1 be any m complex numbers.
Then, there exists a unique polynomial φ(z) of degree at most m − 1 satisfying the
conditions φ(j)(λi) = sij, for i = 1, . . . , k, j = 0, . . . ,mi − 1. (For mi = 1, i = 1, . . . , k, φ
is the Lagrange interpolating polynomial.)

Proof. The Lagrange interpolating polynomial is given by the formula

φ(z) =
k

∑
i=1

(z − λ1) . . . (z − λi−1)(z − λi+1) . . . (z − λk)
(λi − λ1) . . . (λi − λi−1)(λi − λi+1) . . . (λi − λk)

si0.

In the general case, one can determine φ(z) as follows. Let ψ(z) ∶= ∏k
i=1(z−λi)mi .

Then

φ(z) = ψ(z)
k

∑
i=1

mi−1

∑
j=0

tij

(z − λi)mi−j
=

k

∑
i=1

mi−1

∑
j=0

tij(z − λi)jθi(z). (4.1.4)

Here

θi =
ψ(z)

(z − λi)mi
=∏
j≠i

(z − λj)mj , for i = 1, . . . , k. (4.1.5)
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Observe
dlθi
dzl

(λr) = 0, for l = 0, . . . ,mr − 1 and r ≠ i. (4.1.6)

Now start to determine ti0, ti1, . . . , ti(mi−1) recursively for each fixed value of i. This

is done by using the values of φ(λi), φ′(λi), . . . , φ(mi−1)(λi) in the above formula for
φ(z). Note that degφ ≤m − 1. It is straightforward to show that

ti0 =
φ(λi)
θi(λi)

, ti1 =
φ′(λi) − ti0θ′i(λi)

θi(λi)
, ti2 =

φ
′′(λi) − ti0θ

′′

i (λi) − 2ti1θ
′
i(λi)

2θi(λi)
. (4.1.7)

The uniqueness of φ is shown as follows. Assume that θ(z) is another Lagrange-
Sylvester polynomial of degree less than m. Then, ω(z) ∶= φ(z) − θ(z) must be
divisible by (z − λi)mi , since ω(j)(λi) = 0, for j = 0, . . . ,mi − 1, for each i = 1, . . . , k.
Hence, ψ(z)∣ω(z). As degω(z) ≤m − 1, it follows that ω(z) is the zero polynomial,
i.e. φ(z) = θ(z). ◻

How to find the components of A:

Assume that the minimal polynomial of A, ψ(z) is given by (4.1.2). Then, we
have

Zij = φij(A), where φij(z) is the Lagrange-Sylvester polynomial of degree m
at most satisfying

φij(λp) = 0, for p ≠ i and φ
(q)
ij (λi) = j!δpj , j = 0, . . . ,mi − 1. (4.1.8)

Indeed, assume that φij(z) satisfies (4.1.8). Use (4.1.3) to deduce that φij(A) = Zij .

To find φij do the following steps. Set

φij(z) =
θi(z)(z − λi)j

θi(λi)
(1 +

mi−1

∑
l=j+1

al(z − λi)l−j), j = 0, . . . ,mi − 2, (4.1.9)

φi(mi−1)(z) =
θi(z)(z − λi)mi−1

θi(λi)
. (4.1.10)

To find aj+1, . . . , ami−1 in (4.1.9), use the conditions

φ
(q)
ij (λi) = 0 for q = j + 1, . . . ,mi − 1. (4.1.11)

Namely, the condition for q = j + 1 determines aq+1. Next the condition for q = j + 2
determines aq+2. Continue in this manner to find all aj+1, . . . , ami−1.

We now explain briefly why these formulas hold. Since θi(z)∣φij(z), it follows

that φ
(q)
ij (λp) = 0 for p ≠ i and q = 0, . . . ,mq − 1. (That is, the first condition of

(4.1.8) holds.) Since (z − λi)j ∣φij(z), it follows that φ
(q)
ij (λi) = 0, for q = 0, . . . , j − 1.

A straightforward calculation shows that φ
(j)
ij (λi) = j!. The values of aj+1, . . . , ami−1

are determined by (4.1.11).

Proof of the uniqueness of A-components. Let φij(z) be the Lagrange-
Sylvester polynomial given by (4.1.8). Then, (4.1.3) yields that Zij = φij(A). ◻
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The following Proposition gives a computer algorithm to find Zij . (Not recom-
mended for hand calculations!).

Proposition 4.1.4 Let A ∈ Cn×n. Assume that the minimal polynomial ψ(z) be
given by (4.1.2) and denote m = degψ. Then, for each integers u, v ∈ [n] denote by

a
(l)
uv and (Zij)uv the (u, v) entries of Al and of the A-component Zij, respectively.

Then, (Zij)uv, i = 1, . . . , k, j = 0, . . . ,mi − 1 are the unique solutions of the following
system with m unknowns

k

∑
i=1

mi−1

∑
j=0

(l
j
)λmax(l−j,0)

i (Zij)uv = a(l)uv , l = 0, . . . ,m − 1. (4.1.12)

(Note that (l
j
) = 0 for j > l.)

Proof. Consider the equality (4.1.3) for f(z) = zl, where l = 0, . . . ,m − 1. Re-
stricting these equalities to (u, v) entries, we deduce that (Zij)uv satisfy the system
(4.1.12). Thus, the systems (4.1.12) are solvable for each pair (u, v), u, v = 1, . . . , n.
Let Xij ∈ Cn×n, i = 1, . . . , k, j = 1, . . . ,mi − 1 such that (Xij)uv satisfy the system

(4.1.12), for each u, v ∈ [n]. Hence, f(A) = ∑ki=1∑mi−1
j=0

f(j)(λi)
j! Tij , for f(z) = zl and

l = 0, . . . ,m − 1. Hence, the above equality holds for any polynomial f(z) of degree
less than m. Apply the above formula to the Lagrange-Sylvester polynomial φij as
given in the proof of the uniqueness of the A-components. Then, φij(A) = Xij . So
Xij = Zij . Thus, each system (4.1.12) has a unique solution. ◻

The algorithm for finding the A-components and its complexity.

(a) Set i = 1.

(b) Compute and store Ai. Check if In,A, . . . ,A
i are linearly independent.

(c) m = i and express Am = ∑mi=1 aiA
m−i. Then, ψ(z) = zm − ∑mi=1 aiz

m−i is the
minimal polynomial.

(d) Find the k roots of ψ(z) and their multiplicities: ψ(z) = ∏k
i=1(z − λi)mi .

(e) Find the A-components by solving n2 systems (4.1.12).

Complexity of an algorithm is a measure of the amount of time or space required
by an algorithm for an input of a given size.
The maximum complexity to find ψ(z) happens when m = n. Then, we need to com-
pute and store In,A,A

2, . . . ,An. So, we need n3 storage space. Viewing In,A, . . . ,A
i

as row vectors arranged as i × n2 matrix Bi ∈ Ci×n
2
, we bring Bi to a row echelon

form: Ci = UiBi, Ui ∈ Ci×i. Note that Ci is essentially upper triangular. Then, we
add i + 1-th row: Ai+1 to the Bi to obtain Ci+1 = Ui+1Bi+1. (Ci is i × i submatrix of
Ci+1.) To get Ci+1 from Ci we need 2in2 flops. In the case m = nCn2+1 has the last
row zero. So to find ψ(z) we need at most Kn4 flops. (K ≤ 2?). The total storage
space is around 2n3.
Now to find the roots of ψ(z) with certain precision will take a polynomial time,
depending on the precision.
To solve n2 systems with n variables, given in (4.1.12), use Gauss-Jordan for the
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augmented matrix [S T ]. Here, S ∈ Cn×n stands for the coefficient of the system

(4.1.12), depending on λ1, . . . , λk. Next, T ∈ Cn×n2
given the “left-hand side” of n2

systems of (4.1.12). One needs around n3 storage space. Bring [S T ] to [InQ] using
Gauss-Jordan to find A-components. To do that we need about n4 flops.
In summary, we need storage of 2n3 and around 4n4 flops. (This would suffice to
find the roots of ψ(z) with good enough precision.)

4.1.1 Linear recurrence equation

Consider the linear homogeneous recurrence equation of order n over a field F.

um = a1um−1 + a2um−2 +⋯ + anum−n, m = n,n + 1, . . . (4.1.13)

The initial conditions are the values u0, . . . , un−1. Given the initial conditions, then
the value of each um for m ≥ n are determined recursively by (4.1.13). Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 . . . 0 1
an an−1 an−2 an−3 . . . a2 a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Fn×n,xk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

uk
uk+1

⋮
uk+n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Fn, (4.1.14)

where k = 0,1, . . .. Hence, the linear homogeneous recurrence equation (4.1.13) is
equivalent to the homogeneous linear system relation

xk = Axk−1, k = 1,2, . . . . (4.1.15)

Then, the formula for um, m ≥ n, can be obtained from the last coordinate of
xm−n+1 = Am−n+1x0.
Thus, we could use the results of this section to find um. Note that this can also be
used as a tool to compute a formula for Fibonacci numbers as discussed in subsection
3.1.1. See also subsection 6.2.

4.1.2 Worked-out Problems

1. Compute the components of A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 2 −2 4
−4 −3 4 −6
1 1 −1 2
2 2 −2 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(Assume that its minimal polynomial is ψ(z) = z(z − 1)2.)
Solution:
We have:

λ1 = 0, θ1(z) = (z − 1)2, θ1(λ1) = 1, λ2 = 1, θ2(z) = z, θ2(λ2) = 1.

Next, (4.1.10) yields

φ10 =
θ1(z)z0

θ1(0)
= (z − 1)2, φ21 =

θ2(z)(z − 1)1

θ2(1)
= z(z − 1)
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Also, (4.1.9) yields that φ20 = z(1 + a1(z − 1)). The value of a1 is determined
by the condition φ′20(1) = 0. Hence, a1 = −1. So φ20 = z(2 − z). To

Z10 = (A − I)2, Z20 = A(2I −A), Z21 = A(A − I).

Use (4.1.3) to deduce

f(A) = f(0)(A − I)2 + f(1)A(A − 2I) + f ′(1)A(A − I), (4.1.16)

for any polynomial f(z).

4.1.3 Problems

1. Let A ∈ Cn×n and assume that det(zIn −A) = ∏k
i=1(z −λi)ni , and the minimal

polynomial ψ(z) = ∏k
i=1(z − λi)mi , where λ1, . . . , λk are k distinct eigenvalues

of A. Let Zij , j = 0, . . . ,mi − 1, i = 1, . . . , k are the A-components.

(a) Show that ZijZpq = 0 for i ≠ p.
(b) What is the exact formula for ZijZip?

4.2 Power stability, convergence and boundedness of
matrices

Let A ∈ Cn×n Assume that the minimal polynomial ψ(z) is given by (4.1.2) and
denote by Zij , i = 1, . . . , k, j = 0, . . . ,mj − 1 the A-components. Using Theorem 4.1.2
obtain

Al =
k

∑
i=1

mi−1

∑
j=0

(l
j
)λmax(l−j,0)

i Zij , (4.2.1)

for each positive integer l.
If we know the A-components, then to compute Al we need only around 2mn2 ≤

2n3 flops! Thus, we need at most 4n4 flops to compute Al, including the compu-
tations of A-components, without dependence on l! (Note that λji = elog jλi .) So to

find x108 = A108x0, discussed in the beginning of the previous section, we need about
104 flops. So to compute x108 , we need about 104102 flops compared with 108102

flops using the simple-minded algorithm explained in the beginning of the previous
section. There are much simpler algorithms to compute Al which are roughly of the
order (log2 l)2n3 of computations and (log2 l)2n2 (4n2) storage.

Definition 4.2.1 Let A ∈ Cn×n. A is called power stable if liml→∞A
l = 0. Also,

A is called power convergent if liml→∞A
l = B, for some B ∈ Cn×n. A is called power

bounded if there exists K > 0 such that the absolute value of every entry of every
Al, l = 1, . . . is bounded above by K.

Theorem 4.2.2 Let A ∈ Cn×n. Then

1. A is power stable if and only if each eigenvalue of A is in the interior of the
unit disk: ∣z∣ < 1.

2. A is power convergent if and only if each eigenvalue λ of A satisfies one of the
following conditions
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(a) ∣λ∣ < 1;

(b) λ = 1 and each Jordan block of the JCF of A with an eigenvalue 1 is of
order 1, i.e. 1 is a simple zero of the minimal polynomial of A.

3. A is power bounded if and only if each eigenvalue λ of A satisfies one of the
following conditions

(a) ∣λ∣ < 1;

(b) ∣λ∣ = 1 and each Jordan block of the JCF of A with an eigenvalue λ is of
order 1, i.e. λ is a simple zero of the minimal polynomial of A.

(Clearly, power convergence implies power boundness.)

Proof. Consider the formula (4.2.1). Since theA-components Zij , i = 1, . . . , k, j =
0, . . . ,mi − 1 are linearly independent, we need to satisfy the conditions of the the-
orem for each term in (4.2.1), which is (l

j
)λl−ji Zij for l >> 1. Note that for a fixed

j, liml→∞ (l
j
)λl−ji = 0 if and only if ∣λi∣ < 1. Hence, we deduce the condition 1 of the

theorem.
Note that the sequence (l

j
)λl−ji , l = j, j + 1, . . . , converges if and only if either

∣λi∣ < 1 or λi = 1 and j = 0. Hence, we deduce the condition 2 of the theorem.
Note that the sequence (l

j
)λl−ji , l = j, j + 1, . . . , is bounded if and only if either

∣λi∣ < 1 or ∣λi∣ = 1 and j = 0. Thus, we deduce the condition 3 of the theorem.
◻

Corollary 4.2.3 Let A ∈ Cn×n and consider the iterations xl = Axl−1 for l =
1, . . .. Then for any x0

1. liml→∞ xl = 0 if and only if A is power stable.

2. xl, l = 0,1, . . . converges if and only if A is power convergent.

3. xl, l = 0,1, . . . is bounded if and only if A is power bounded.

Proof. If A satisfies the conditions of an item of Theorem 4.2.2, then the cor-
responding condition of the corollary clearly holds. Assume that the conditions of
an item of the corollary holds. Choose x0 = ej = (δ1j , . . . , δnj)⊺, for j = 1, . . . , n to
deduce the corresponding condition of Theorem 4.2.2. ◻

Theorem 4.2.4 Let A ∈ Cn×n and consider the nonhomogeneous iterations

xl = Axl−1 + bl, l = 0, . . . (4.2.2)

Then, we have the following statements:

1. liml→∞ xl = 0 for any x0 ∈ Cn and any sequence b0,b1, . . . satisfying the con-
dition liml→∞ bl = 0 if and only if A is power stable.

2. The sequence xl, l = 0,1, . . . converges for any x0 and any sequence b0,b1, . . .
satisfying the condition ∑ll=0 bl converges if and only if A is power convergent.
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3. The sequence xl, l = 0,1, . . . is bounded for any x0 and any sequence b0,b1, . . .
satisfying the condition ∑ll=0 ∣∣bl∣∣∞ converges if and only if A is power bounded.
(Here, ∣∣(x1, . . . , xn)∣∣∞ = maxi∈[n] ∣xi∣.)

Proof. Assume that bl = 0. Since x0 is arbitrary, we deduce the necessity
of all the conditions from Theorem 4.2.2. The sufficiency of the above conditions
follows from the Jordan canonical form of A:

Let J = U−1AU , where U is an invertible matrix and J is the Jordan canonical
form of A. Letting yl ∶= U−1xl and cl = U−1bl, it is enough to prove the sufficiency
part of the theorem for the case where A is sum of Jordan blocks. In this case the
system (4.2.2) reduces to independent systems of equations for each Jordan block.
Thus, it is left to prove the theorem when A = Jn(λ).

1. We show that if A = Jn(λ) and ∣λ∣ < 1, then liml→∞ xl = 0, for any x0 and
bl, l = 1, . . . if liml→∞ bl = 0. We prove this claim by the induction on n. For
n = 1, (4.2.2) is reduced to

xl = λxl−1 + bl, x0, xl, bl ∈ C for l = 1, . . . (4.2.3)

It is straightforward to show, e.g. use induction that

xl =
l

∑
i=0

λibl−i = bl + λbl−1 + . . . + λlb0 l = 1, . . . , were b0 ∶= x0. (4.2.4)

Let βm = supi≥m ∣bi∣. Since liml→∞ bl = 0, it follows that each βm is finite, the
sequence βm,m = 0,1, . . . decreasing and limm→∞ βm = 0. Fix m. Then, for
l >m we have:

∣xl∣ ≤
l

∑
i=0

∣λ∣i∣bl−i∣ =
l−m
∑
i=0

∣λ∣i∣bl−i∣ + ∣λ∣l−m
m

∑
j=1

∣λ∣j ∣∣bm−j ∣ ≤

βm
l−m
∑
i=0

∣λ∣i + ∣λ∣l−m
m

∑
j=1

∣λ∣j ∣∣bm−j ∣ ≤ βm
∞
∑
i=0

∣λ∣i + ∣λ∣l−m
m

∑
j=1

∣λ∣j ∣∣bm−j ∣ =

βm
1 − ∣λ∣ + ∣λ∣l−m

m

∑
j=1

∣λ∣j ∣∣bm−j ∣ →
βm

1 − ∣λ∣ as l →∞.

That is, lim supl→∞ ∣xl∣ ≤ βm
1−∣λ∣ . As limm→∞ βm = 0, it follows that lim supl→∞ ∣xl∣ =

0, which is equivalent to the statement liml→∞ xl = 0. This proves the case
n = 1.

Assume that the theorem holds for n = k. Let n = k + 1. View x⊺l ∶=
(x1,l,y

⊺
l , )

⊺,bl = (b1,l,c⊺l , )
⊺, where yl = (x2,l, . . . , xk+1,l)⊺,cl ∈ Ck are the vec-

tors composed of the last k coordinates of xl and bl, respectively. Then
(4.2.2) for A = Jk+1(λ) for the last k coordinates of xl is given by the system
yl = Jk(λ)yl−1+cl for l = 1,2, . . .. Since liml→∞ cl = 0, the induction hypothesis
yields that liml→∞ yl = 0. The system (4.2.2) for A = Jk+1(λ) for the first coor-
dinate is x1,l = λx1,l−1+(x2,l−1+b1,l), for l = 1,2, . . .. From induction hypothesis
and the assumption that liml→∞ bl = 0, we deduce that liml→∞ x2,l−1 + b1,l = 0.
Hence, from the case k = 1, we deduce that liml→∞ x1,l = 0. Therefore,
liml→∞ xl = 0. The proof of this case is concluded.
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2. Assume that each eigenvalue λ of A satisfies the following conditions: either
∣λ∣ < 1 or λ = 1 and each Jordan block corresponding to 1 is of order 1. As we
pointed out, we assume that A is a direct sum of its Jordan form. So first we
consider A = Jk(λ) with ∣λ∣ < 1. Since we assumed that ∑∞

l=1 bl converges, we
deduce that liml→∞ bl = 0. Thus, by part 1 we get that liml→∞ xl = 0.

Assume now that A = (1) ∈ C1×1. Thus, we consider (4.2.3) with λ = 1. Then,
(4.2.4) yields that xl = ∑li=0 bl. By the assumption of the theorem, ∑∞

i=1 bl
converges, hence the sequence xl, l = 1, . . . converges.

3. As in the part 2 , it is enough to consider the case J1(λ) with ∣λ∣ = 1. Note
that (4.2.4) yields that ∣xl∣ ≤ ∑li=0 ∣bi∣. The assumption that ∑∞

i=1 ∣bi∣ converges
implies that ∣xl∣ ≤ ∑∞

i=0 ∣bi∣ < ∞.

◻

Remark 4.2.5 The stability, convergence and boundedness of the nonhomoge-
neous systems:

xl = Alxl−1, Al ∈ Cn×n, l = 1, . . . ,

xl = Alxl−1 + bl, Al ∈ Cn×n, bl ∈ Cn l = 1, . . . ,

are much harder to analyze.

4.3 eAt and stability of certain systems of ODE

The exponential function ez has the Maclaurin expansion

ez = 1 + z + z
2

2
+ z

3

6
+ . . . =

∞
∑
l=0

zl

l!
.

Hence, for each A ∈ Cn×n one defines

eA ∶= In +A + A
2

2
+ A

3

6
+ . . . =

∞
∑
l=0

Al

l!
.

More generally, if t ∈ C then

eAt ∶= In +At +
A2t2

2
+ A

3t3

6
+ . . . =

∞
∑
l=0

Altl

l!
.

Therefore, eAt satisfies the matrix differential equation

deAt

dt
= AeAt = eAtA. (4.3.1)

Also, one has the standard identity eAteAu = eA(t+u) for any complex numbers t, u.
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Proposition 4.3.1 Let A ∈ Cn×n and consider the system of linear system of

n ordinary differential equations with constant coefficients
dx(t)
dt = Ax(t), where

x(t)= (x1(t), . . . , xn(t))⊺ ∈ Cn, satisfying the initial conditions x(t0) = x0. Then,
x(t) = eA(t−t0)x0 is the unique solution to the above system. More generally, let
b(t) = (b1(t), . . . , bn(t))⊺ ∈ Cn be any continuous vector function on R and consider
the nonhomogeneous system of n ordinary differential equations with the initial con-
dition:

dx(t)
dt

= Ax(t) + b(t), x(t0) = x0. (4.3.2)

Then, this system has a unique solution of the form

x(t) = eA(t−t0)x0 + ∫
t

t0
eA(t−u)b(u)du. (4.3.3)

Proof. The uniqueness of the solution of (4.3.2) follows from the uniqueness of
solutions to system of ODE (Ordinary Differential Equations). The first part of the
proposition follows from (4.3.1). To deduce the second part, one does the variations
of parameters. Namely, one tries a solution x(t) = eA(t−t0)y(t), where y(t) ∈ Cn is
unknown vector function. Hence

x′ = (eA(t−t0))′y(t)+eA(t−t0)y′(t) = AeA(t−t0)y(t)+eA(t−t0)y′(t) = Ax(t)+eA(t−t0)y′(t).

Substitute this expression of x(t) to (4.3.2) to deduce the differential equation
y′ = e−A(t−t0)b(t). Since y(t0) = x0, this simple equation has a unique solution
y(t) = x0 + ∫ ut0 e

A(u−t0)b(u)du. Now, multiply by eA(t−t0) and use the fact that

eAteAu = eA(u+v) to deduce (4.3.3). ◻

Use (4.1.3) for ezt and the observation that djezt

dzj
= tjezt, j = 0,1, . . . to deduce:

eAt =
k

∑
j=1

mi−1

∑
j=0

tjeλit

j!
Zij . (4.3.4)

We can substitute this expression for eAt in (4.3.3) to get a simple expression of the
solution x(t) of (4.3.2).

Definition 4.3.2 Let A ∈ Cn×n. A is called exponentially stable, or simple
stable, if limt→∞ eAt = 0. A is called exponentially convergent if limt→∞ eAt = B, for
some B ∈ Cn×n. A is called exponentially bounded if there exists K > 0 such that the
absolute value of every entry of every eAt, t ∈ [0,∞) is bounded above by K.

Theorem 4.3.3 Let A ∈ Cn×n. Then

1. A is stable if and only if each eigenvalue of A is in the left half of the complex
plane: Rz < 0.

2. A is exponentially convergent if and only if each eigenvalue λ of A satisfies
one of the following conditions

(a) Rλ < 0;
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(b) λ = 2πli, for some integer l, and each Jordan block of the JCF of A with
an eigenvalue λ is of order 1, i.e. λ is a simple zero of the minimal
polynomial of A.

3. A is exponentially bounded if and only if each eigenvalue λ of A satisfies one
of the following conditions

(a) Rλ < 0;

(b) Rλ = 0 and each Jordan block of the JCF of A with an eigenvalue λ is of
order 1, i.e. λ is a simple zero of the minimal polynomial of A.

Proof. Consider the formula (4.3.4). Since theA-components Zij , i = 1, . . . , k, j =
0, . . . ,mi−1 are linearly independent, we need to satisfy the conditions of the theorem
for each term in (4.3.4), which is tj

j! e
λitZij . Note that for a fixed j, limt→∞

tj

j! e
λit = 0

if and only if Rλi < 0. Hence, we deduce the condition 1 of the theorem.
Note that the function tj

j! e
λit converges as t → ∞ if and only if either Rλi < 0 or

eλi = 1 and j = 0. Hence, we deduce the condition 2 of the theorem.
Note that the function tj

j! e
λit is bounded for t ≥ 0 if and only if either Rλi < 0 or

∣eλi ∣ = 1 and j = 0. Hence, we deduce the condition 3 of the theorem. ◻

Corollary 4.3.4 Let A ∈ Cn×n and consider the system of differential equations
dx(t)
dt = Ax(t),x(t0) = x0. Then, for any x0

1. limt→∞ x(t) = 0 if and only if A is stable.

2. x(t) converges as t→∞ if and only if A is exponentially convergent.

3. x(t), t ∈ [0,∞) is bounded if and only if A is exponentially bounded.

Theorem 4.3.5 Let A ∈ Cn×n and consider the system of differential equations
(4.3.2). Then, for any x0 ∈ Cn, we have the following statements:

1. limt→∞ x(t) = 0, for any continuous function b(t), such that limt→∞ b(t) = 0,
if and only if A is stable.

2. x(t) converges as t→∞, for any continuous function b(t), such that ∫ ∞t0 b(u)du
converges, if and only if A is exponentially convergent.

3. x(t), t ∈ [0,∞) is bounded for any continuous function b(t), such that ∫ ∞t0 ∣b(u)∣du
converges if and only if A is exponentially bounded.

Proof. It is left as Problem 4.3.2-2.

4.3.1 Worked-out Problems

1. Let B = [bij]ni,j=1 ∈ Rn×n and assume that each entry of B in non-negative.
Assume that there exists a vector u = (u1, . . . , un)⊺ with positive coordinates
such that Bu = u.

(a) Show that Bk = [b(k)ij ]ni,j=1 has non-negative entries for each k ∈ N.
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(b) Show that b
(k)
ij ≤ ui

uj
, for i, j = 1, . . . , n and k ∈ N.

(c) Show that each eigenvalue of B satisfies ∣λ∣ ≤ 1.

(d) Suppose that λ is an eigenvalue of B and ∣λ∣ = 1. What is the multiplicity
of λ in the minimal polynomial of B?

Solution:

(a) It is immediate as It is clear since B is a non-negative matrix.

(b) Since Bu = u, by induction on k, we can show that Bku = u, for any

k ∈ N. Now, we have ui = ∑np=1 b
(k)
ip up ≥ b

(k)
ij uj , for all 1 ≤ i, j ≤ n. Then

bij ≤ ui
uj

.

(c) According to part (b), B is power bounded. The statement is immediate
from the third part of Theorem 4.2.2.

(d) According to the third part of Theorem 4.2.2, λ would be a simple zero
of the minimal polynomial of B.

4.3.2 Problems

1. Consider the nonhomogeneous system xl = Alxl−1, Al ∈ Cn×n, l = 1, . . ..
Assume that the sequence Al, l = 1, . . . , is periodic, i.e. Al+p = Al for all
l = 1, . . . , and a fixed positive integer p.

(a) Show that for each x0 ∈ Cn liml→∞ xl = 0 if and only if B ∶= ApAp−1 . . .A1

is power stable.

(b) Show that for each x0 ∈ Cn the sequence xl, l = 1, . . . , converges if and
only if the following conditions satisfy. First, B is power convergent, i.e.
liml→∞B

l = C. Second, AiC = C, for i = 1, . . . , p.

(c) Find a necessary and sufficient conditions such that for each x0 ∈ Cn the
sequence xl, l = 1, . . . ,, is bounded.

2. Prove Theorem 4.3.5.

3. For any A ∈ Fn×n, prove that det eA = etrA.

4. Let A ∈ Rn×n and P ∈ GL(n,R). Prove that eP
−1AP = P −1eAP .
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Chapter 5

Inner product spaces

Through this chapter, we assume that F is either the real field or complex field and
V is a vector space over F. (Unless stated otherwise.) Assume that T ∈ L(U,V).
We abbreviate T (x) to Tx and no ambiguity will arise.

5.1 Inner product

In this section, we shall study a certain type of scalar-valued function on pairs of
vectors, known as an inner product. The first example of an inner product is the
dot product in R3. The dot product of x = (x1, x2, x3) and y = (y1, y2, y3) in R3

is the scalar ∑3
i=1 xiyi. Geometrically, this scalar is the product of the length of x,

the length of y and the cosine of the angle between x and y. Then, we can define
length and angle in R3 algebraically. An inner product on a vector space is the
generalization of the dot product. This section deals with inner product and its
properties. Then, we may turn to discuss length and angle (orthogonality).

Definition 5.1.1 The function ⟨⋅, ⋅⟩ ∶ V × V → F is called an inner product if
the following conditions hold for any x,y,z ∈ V and a ∈ F:

(i) Conjugate symmetry:
⟨x,y⟩ = ⟨y,x⟩,

(ii) Linearity in the first argument:
⟨ax + y,z⟩ = a⟨x,z⟩ + ⟨y,z⟩,

(iii) Positive-definiteness:
⟨x,x⟩ ⩾ 0
⟨x,x⟩ = 0 if and only if x = 0.

If the second condition in positive-definiteness is dropped, the resulting structure
is called a semi-inner product. Other standard properties of inner products are
mentioned in Problems 5.7.2-1 and 5.7.2-2.
The vector space V endowed with the inner product ⟨⋅, ⋅⟩ is called the inner product
space. We will use the abbreviation IPS for inner product space.

Example 5.1.2 On Rn we have the standard inner product (the dot product)
defined by ⟨x,y⟩ = ∑ni=1 xi,yi, where x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn.
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Note that inner product generalizes the notion of the dot product of vectors in Rn.

Example 5.1.3 On Cn we have the standard inner product defined by ⟨x,y⟩ =
∑ni=1 xi,yi, where x = (x1, . . . , xn) ∈ Cn and y = (y1, . . . , yn) ∈ Cn.

Example 5.1.4 Let V = Fn×n. For A = [aij] and B = [bij] ∈ V, define inner
product

⟨A,B⟩ = ∑
i,j

aijbij .

Define conjugate transpose B∗ = (B)⊺. Then

⟨A,B⟩ = trB∗A.

Example 5.1.5 (Integration) Let V be the vector space of all F-value contin-
uous functions on [0,1]. For f, g ∈ V, define

⟨f, g⟩ = ∫
1

0
fgdt.

This is an inner product on V. In some context, this is called L2 inner product
space. This can be done in any ”space” where you have an idea of integration and
it comes under Measure Theory.

Matrix of Inner Product. Let {e1, . . . , en} be a basis of V. Let pij = ⟨ei, ej⟩ and
P = [pij] ∈ Fn×n. Then, for v = x1e1 + . . . + xnen ∈ V and w = y1e1 +⋯ + ynen ∈ V we
have

⟨v,w⟩ = ∑xiyjpij = (x1, . . . , xn)P
⎛
⎜⎜⎜
⎝

y1

y2

⋮
yn

⎞
⎟⎟⎟
⎠
.

This matrix P is called the matrix of the inner product with respect to the basis
{e1, . . . , en} .

Definition 5.1.6 A function ∥ ∥ ∶ V → F is called a norm on V if it has the
following properties for all x,y ∈ V and a ∈ F:

(i) Positive definiteness:
∥x∥ ⩾ 0
∥x∥ = 0 if and only if x = 0,

(ii) Homogeneity:
∥ax∥ = ∣a∣∥x∥,

(iii) Triangle inequality:
∥x + y∥ ⩽ ∥x∥ + ∥y∥.

The vector space V endowed with the norm ∥ ∥ is called the normed linear space.

Note that the notion of norm generalizes the notion of length of a vector in Rn.

Example 5.1.7 On Rn we have the following norms for x = (x1, . . . ,xn) ∈ Rn:
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(1) ∥x∥∞ = max{∣x1∣, . . . , ∣xn∣},

(2) ∥x∥1 = ∣x1∣ + ∣x2∣ + ⋯ + ∣xn∣,

(3) ∥x∥p = (∣x1∣p + ∣x2∣p +⋯ + ∣xn∣p)
1
p , (p is a real number, p ≥ 1).

The interested reader is encouraged to verify the above properties to see that (1), (2)
and (3) define norms.

Note that ∥ ∥p is called the `p norm. The `2 norm is called the Euclidean norm. The
Euclidean norm on the matrix space Fm×n is called the Frobenius norm:

∥A∥F =
⎛
⎝∑i,j

∣aij ∣2
⎞
⎠

1
2

, A = [aij] ∈ Fm×n.

Let ∥ ∥t be a norm on Fn and A ∈ Fn. Define ∥A∥ = max{∥Ax∥t; ∥x∥t = 1, x ∈ Fn}.
Then ∥ ∥ is a norm called operator norm induced by ∥ ∥t.
The operator norm on Fm×n induced by Euclidean norm is called the spectral norm,
denoted ∥ ∥∞:

∥A∥∞ = max{∥Ax∥2; ∥x∥2 = 1, x ∈ Fn} .

Remark 5.1.8 If ⟨ , ⟩ is an inner product, the function ∥ ∥ ∶ V → F defined as

∥x∥ = (⟨x,x⟩)
1
2 is a norm (Why? Use Theorem 5.1.9 to justify it.). This norm is

called the induced norm by the inner product ⟨ , ⟩. Also, ∥x∥ is called the length of
x.

Also, if ∥ ∥ ∶ V → R is a norm, the metric space (V, d) defined as d(x, y) = ∥x−y∥
is called the induced metric by the norm ∥ ∥.

Theorem 5.1.9 (The Cauchy-Schwarz inequality) Let V be an IPS and
x,y ∈ V. Then we have

∣⟨x,y⟩∣ ≤ ∥x∥∥y∥,

with equality holds if and only if x and y are linearly dependent. Here ∥ ∥ is the
induced norm by inner product.

Proof. If either x or y is zero, the result follows. Assume that x,y ≠ 0. Then,
for any real number r ∈ R,

0 ≤ ∥x + ry∥2 = ⟨x + ry,x + ry⟩
= ⟨x,x⟩ + r⟨x,y⟩ + r⟨y,x⟩ + r2⟨y,y⟩
= ⟨x,x⟩ + r⟨y,x⟩ + r⟨x,y⟩ + r2⟨y,y⟩
≤ ⟨x,x⟩ + 2r∣⟨y,x⟩∣ + r2⟨y,y⟩ = f(r).

This implies that the quadratic polynmial f(r) must have non-positive discriminant,
that is,

4∣⟨y,x⟩∣2 − 4⟨y,y⟩⟨x,x⟩ ≤ 0,
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from which the Cauchy-Schwarz inequality follows. Moreover, if equality holds, then
there exists an r ∈ F such that f(r) = 0, that is, 0 = ∥x + ry∥2, and so x + ry = 0,
which implies that x is a scalar multiple of y. ◻

Proposition 5.1.10 Let V be a real vector space. Identify Vc with the set of
pairs (x,y), x,y ∈ V. Then, Vc is a vector space over C with

(a + ib)(x,y) ∶= a(x,y) + b(−y,x), for all a, b ∈ R, x,y ∈ V.

If V has a basis {e1, ...,en} over F, then {(e1,0), ..., (en,0)} is a basis of Vc over
C. Any inner product ⟨⋅, ⋅⟩ on V over R induces the following inner product on Vc:

⟨(x,y), (u,v)⟩ = ⟨x,u⟩ + ⟨y,v⟩ + i(⟨y,u⟩ − ⟨x,v⟩), for x,y,u,v ∈ V.

We leave the proof of this proposition to the reader as Problem 5.7.2-3.

Definition 5.1.11 (Angle) Let x,y ∈ Rn be non-zero and ⟨⋅, ⋅⟩ denote the stan-
dard inner product. Since ∣⟨x,y⟩∣ ≤ ∥x∥∥y∥, we can define the angle between x, y as
follows:

∠(x,y) = arccos
⟨x,y⟩
∥x∥∥y∥ .

In particular, vectors x and y are orthogonal (denoted by x ⊥ y) if ⟨x,y⟩ = 0. We
can define this notion in any inner product space as follows:

Definition 5.1.12 Let V be an IPS. Then
(i) x,y ∈ V are called orthogonal if ⟨x,y⟩ = 0.
(ii) S,T ⊂ V are called orthogonal if ⟨x,y⟩ = 0, for any x ∈ S, y ∈ T .
(iii) For any S ⊂ V, S⊥ ⊂ V denotes the maximal orthogonal set to S, i.e. S⊥ = {v ∈
V; ⟨v,w⟩ = 0, for all w ∈ S}.
(iv) {x1, ...,xm}⊂ V is called an orthonormal set if

⟨xi,xj⟩ = δij , (i, j = 1, ...,m),

where δij denotes the Kronecker delta.
(v) {x1, ...,xn}⊂ V is called an orthonormal basis if it is an orthonormal set which
is a basis in V.

Note that S⊥ is always a subspace of V (even if A was not). Furthermore,

(i) {0}⊥ = V,

(ii) V⊥ = {0},

(iii) S⊥ = (spanS)⊥.
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Gram-Schmidt algorithm. Let V be an IPS and S = {x1, ...,xm} ⊂ V a finite
(possibly empty) set. Then, S̃ = {e1, ...,ep} is the orthonormal set (p ≥ 1) or the
empty set (p = 0) obtained from S using the following recursive steps:
(a) If x1 = 0, remove it from S. Otherwise, replace x1 by ∣∣x1∣∣−1x1.
(b) Assume that {x1, ...,xk} is an orthonormal set and 1 ≤ k < m. Let yk+1 =
xk+1 − ∑ki=1⟨xk+1,xi⟩xi. If yk+1 = 0, remove xk+1 from S. Otherwise, replace xk+1

by ∣∣yk+1∣∣−1yk+1.
Indeed, the Gram-Schmidt process is a method for orthonormalization of a set

of vectors in an inner product space.

Corollary 5.1.13 Let V be an IPS and S = {x1, ...,xn} ⊂ V be n linearly inde-
pendent vectors. Then, the Gram-Schmidt algorithm on S is given as follows:

y1 ∶= x1, r11 ∶= ∣∣y1∣∣, e1 ∶=
y1

r11
,

rji ∶= ⟨xi,ej⟩, j = 1, ..., i − 1, (5.1.1)

pi−1 ∶=
i−1

∑
j=1

rjiej , yi ∶= xi − pi−1,

rii ∶= ∣∣yi∣∣, ei ∶=
yi
rii
, i = 2, ..., n.

In particular, ei ∈ Si and ∣∣yi∣∣ = dist(xi, Si−1), where Si = span{x1, ...,xi}, for
i = 1, ..., n and S0 = {0}. (See Problem 5.7.2-4 for the definition of dist(xi, Si−1).)

Corollary 5.1.14 Any (ordered) basis in a finite dimensional IPS, V induces
an orthonormal basis by the Gram-Schmidt algorithm.

See Problem 5.7.2-4 for some known properties related to the above notions.

5.2 Explanation of G-S process in standard Euclidean
space

First observe that ri(k+1) ∶= ⟨xk+1,ei⟩ is the scalar projection of xk+1 on ei. Next
observe that pk is the projection of xk+1 on {e1, . . . ,ek} = span{x1, . . . ,xk}. Hence,
yk+1 = xk+1 − pk ⊥ span{e1, . . . ,ek}. Thus, r(k+1)(k+1) = ∣∣xk+1 − pk∣∣ is the distance
of xk+1 to span{e1, . . . ,ek} = span{x1, . . . ,xk}. The assumption that x1, . . . ,xn are
linearly independent yields that r(k+1)(k+1) > 0. Hence, ek+1 = r−1

(k+1)(k+1)(xk+1 −pk)
is a vector of unit length orthogonal to e1, . . . ,ek.
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5.3 An example of G-S process

Let x1 = (1,1,1,1)⊺,x2 = (−1,4,4,−1)⊺, x3 = (4,−2,2,0)⊺. Then

r11 = ∣∣x1∣∣ = 2,e1 =
1

r11
x1 = (1

2
,
1

2
,
1

2
,
1

2
)⊺,

r12 = e⊺1x2 = 3,p1 = r12e1 = 3e1 = (3

2
,
3

2
,
3

2
,
3

2
)⊺,

y2 = x2 − p1 = (−5

2
,
5

2
,
5

2
,−5

2
)⊺, r22 = ∣∣y2∣∣ = 5,

e2 =
1

r22
(y2) = (−1

2
,
1

2
,
1

2
,−1

2
)⊺,

r13 = e⊺1x3 = 2, r23 = e⊺2x3 = −2,

p2 = r13e1 + r23e2 = (2,0,0,2)⊺,
y3 = x3 − p2 = (2,−2,2,−2)⊺, r33 = ∣∣y3∣∣ = 4,

e3 =
1

r33
(x3 − p2) = (1

2
,−1

2
,
1

2
,−1

2
)⊺.

5.4 QR Factorization

A QR Factorization of a real matrix A is its decomposition into a product A =QR
of unitary matrix Q and an upper triangular matrix R. QR factorization is often
used to solve the least square problem. (Theorem 5.5.7)

Let A = [a1 a2 . . .an] ∈ Rm×n and assume that rank A = n, i.e. the columns of A
are linearly independent. Perform G-S process with the book keeping as above:

� r11 ∶= ∣∣a1∣∣, e1 ∶= 1
r11

a1.

� Assume that e1, . . . ,ek−1 were computed. Then, rik ∶= e⊺i ak for i = 1, . . . , k − 1,
pk−1 ∶= r1ke1+r2ke2+. . . r(k−1)kek−1 and rkk ∶= ∣∣ak−pk−1∣∣, ek ∶= 1

rkk
(ak−pk−1),

for k = 2, ..., n.

Let Q = [e1 e2 . . .en] ∈ Rm×n and R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13 . . . r1n

0 r22 r23 . . . r2n

0 0 r33 . . . r3n

⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 . . . rnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then, A = QR, Q⊺Q = In and A⊺A = R⊺R. The LSS (Least Squares Solution) of

Ax = b is given by the upper triangular system Rx̂ = Q⊺b which can be solved by
back substitution. Formally, x̂ = R−1Q⊺b. (See Theorem 5.5.7.)

Proof. A⊺Ax = R⊺Q⊺QRx = R⊺Rx = A⊺b = R⊺Q⊺b. Multiply from left by
(R⊺)−1 to get Rx̂ = Q⊺b

Note that QQ⊺b is the projection of b on the columns space of A. The ma-
trix P ∶= QQ⊺ is called an orthogonal projection. It is symmetric and P 2 = P , as
(QQ⊺)(QQ⊺) = Q(Q⊺Q)Q⊺ = Q(I)Q⊺ = QQ⊺. Note that QQ⊺ ∶ Rm → Rm is the
orthogonal projection.

The assumption that rank A = n is equivalent to the assumption that A⊺A is
invertible. So, the LSS A⊺Ax̂ = A⊺b has unique solution x̂ = (A⊺A)−1b. Hence, the
projection of b on the column space of A is Pb = Ax̂ = A(A⊺A)−1A⊺b. Therefore,
P = A(A⊺A)−1A⊺.
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5.5 An example of QR algorithm

Let A = [x1 x2 x3] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 4
1 4 −2
1 4 2
1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

be the matrix corresponding to the Example of

G-S algorithm §5.3. Then

R =
⎡⎢⎢⎢⎢⎢⎣

r11 r12 r13

0 r22 r23

0 0 r33

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2 3 2
0 5 −2
0 0 4

⎤⎥⎥⎥⎥⎥⎦
,

Q = [q1 q2 q3] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2 −1

2
1
2

1
2

1
2 −1

2
1
2

1
2

1
2

1
2 −1

2
1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(Explain why in this example A = QR.) Note that QQ⊺ ∶ R4 → R4 is the projection
on span{x1,x2,x3}.

Remark 5.5.1 It is known, e.g. [8] that the Gram-Schmidt process as described
in Corollary 5.1.13 is numerically unstable. That is, there is a severe loss of orthog-
onality of y1, . . . as we proceed to compute yi. In computations, one uses either a
modified GSP or Householder orthogonalization [8].

Definition 5.5.2 (Modified Gram-Schmidt algorithm.) Let V be an IPS
and S = {x1, ...,xm} ⊂ V a finite (possibly empty) set. Then, S̃ = {e1, ...,ep} is
either the orthonormal set (p ≥ 1) or the empty set (p = 0) obtained from S using
the following recursive steps:

1. Initialize j = 1 and p =m.

2. If xj ≠ 0 goto 3. Otherwise, replace p by p − 1. If j > p exit. Replace xi by
xi+1, for i = j, . . . , p. Repeat.

3. ej ∶= 1
∥xj∥xj.

4. j = j + 1. If j > p exit.

5. For i = 1, . . . , j − 1, let xj ∶= xj − ⟨xj ,ei⟩ei.

6. Goto 2.

MGS algorithm is stable, needs mn2 flops, which is more time consuming than
GS algorithm.

Lemma 5.5.3 Let V be a finite dimensional IPS over R. Let U be a subspace
of V. Then

V = U⊕U⊥ (5.5.1)
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Proof. If U = V or U = {0}, the lemma is trivial. So we assume that n =
dimV >m = dimU ≥ 1. Choose a basis {u1, . . . ,un} for U. Complete this basis to a
basis {u1, . . . ,un} for V. Perform the Gram-Schmidt process on u1, . . . ,un to obtain
an orthonormal basis {v1, . . . ,vn}. Recall that {u1, . . . ,ui} = span{v1, . . . ,vi}, for
i = 1, . . . , n. Hence, U = span{u1, . . . ,um} = span{v1, . . . ,vm}, i.e. {v1, . . . ,vm}
is an orthonormal basis in U. Clearly, y = ∑ni=1⟨y,vi⟩vi ∈ U⊥ if and only if
y = ∑ni=m+1 aivi, i.e. {vm+1, . . . ,vn} is a basis in U⊥. So when we write a vec-
tor z = ∑ni=1 zvi, it is of unique form u +w,u = ∑mi=1 zivi ∈ U,w = ∑ni=m+1 zivi ∈ U⊥.

◻

Corollary 5.5.4 Let the assumptions of Lemma 5.5.3 hold. Then, (U⊥)⊥ = U.

Lemma 5.5.5 For A ∈ Fn×m:

a) N(A⊺) = R(A)⊥,

b) N(A⊺)⊥ = R(A).

The proof is left as an exercise.

Lemma 5.5.6 (Fredholm alternative) Let A ∈ Cm×n. Then, the system

Ax = b, x ∈ Cn, b ∈ Cm (5.5.2)

is solvable if and only if for each y ∈ Cm satisfying y⊺A = 0, the equality y⊺b = 0
holds.

Proof. Suppose that (5.5.2) solvable. Then, y⊺b = y⊺Ax = 0⊺x = 0. Observe
next that y⊺A = 0⊺ if and only if y⊺ ∈ R(A)⊥. As (R(A)⊥)⊥ = R(A), it follows that
if y⊺b = 0, for each y⊺A = 0, then b ∈ R(A), i.e. (5.5.2) is solvable. ◻

Assume that (5.5.2) has no solution. One may seek the best approximation to
a solution. Finding the best approximate solution to an inconsistent linear system
(system with no solution) is the basis of a “least square solution”.

Theorem 5.5.7 (The least squares theorem) Consider the system (5.5.2). Mul-
tiply the both sides of this system by A∗ to obtain the least squares system corre-
sponding to (5.5.2):

A∗Ax = A∗b, A ∈ Cm×n,b ∈ Cm. (5.5.3)

Then, (5.5.3) is always solvable. For each x0, the vector Ax0 is the orthogonal
projection of b on R(A). That is, Ax0 ∈ R(A) and b −Ax0 ∈ R(A)⊥. Furthermore,

∥b − z∥ ≥ ∥b −Ax0∥, for any z ∈ R(A). (5.5.4)

Equality holds if and only if z = Ax0.

Proof. Suppose that z⊺A∗A = 0. Then, 0 = z⊺A∗Az̄ = ∥z⊺A∗∥2. Hence, z⊺A∗ =
0. In particular z⊺A∗b = 0. Lemma 5.5.6 yields that (5.5.3) is solvable. Let x0 be
a solution of (5.5.3). So, A∗(b −Ax0) = 0. Since the columns of A span R(A), it
follows that b −Ax0 ∈ R(A)⊥. Clearly, Ax0 ∈ R(A). Hence, Ax0 is the orthogonal
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projection on the range of A. Let z ∈ R(A). Use the condition that b−Ax0 ∈ R(A)⊥
to deduce

∥b − z∥2 = ∥(b −Ax0) + (Ax0 − z)∥2 = ∥b −Ax0∥2 + ∥Ax0 − z∥2 ≥ ∥b −Ax0∥2. (5.5.5)

Equality holds if and only if z = Ax0. ◻

5.6 The best fit line

A line of best fit is a straight line that is the best approximation of the given set of
data. We explain this notion by the following problem more precisely.

Problem: Fit a straight line y = a + bx in the X − Y plane through m given
points (x1, y1), (x2, y2), . . . , (xm, ym).
Solution: The line should satisfy m conditions:

1 ⋅ a + x1 ⋅ b = y1

1 ⋅ a + x2 ⋅ b = y2

⋮ ⋮ ⋮ ⋮ ⋮
1 ⋅ a + xm ⋅ b = ym

⇒
⎡⎢⎢⎢⎢⎢⎣

1 x1

⋮ ⋮
1 xm

⎤⎥⎥⎥⎥⎥⎦
[a
b
] =

⎡⎢⎢⎢⎢⎢⎣

y1

⋮
ym

⎤⎥⎥⎥⎥⎥⎦
= y = c.

A z = c, z = [a
b
] .

The least squares system A⊺Az = A⊺c:

[ m x1 + x2 +⋯ + xm
x1 + x2 +⋯ + xm x2

1 + x2
2 +⋯ + x2

m
] [a
b
] = [ y1 + y2 +⋯ + ym

x1y1 + x2y2 +⋯ + xmym
] ,

detA⊺A =m(x2
1 + x2

2 +⋯ + x2
m) − (x1 + x2 +⋯ + xm)2,

detA⊺A = 0 if and only if x1 = x2 = ⋯ = xm.
If detA⊺A ≠ 0, then

a∗ = (∑mi=1 x
2
i )(∑mi=1 yi) − (∑mi=1 xi)(∑mi=1 xiyi)

detA⊺A
,

b∗ = −(∑mi=1 xi)(∑mi=1 yi) +m(∑mi=1 xiyi)
detA⊺A

.

We now explain the solution for the best fit line. We are given m points in the plane
(x1, y1), . . . , (xm, ym). We are trying to fit a line y = bx+ a through these m points.
Suppose we chose the parameters a, b ∈ R. Then, this line passes through the point
(xi, bxi + a), for i = 1, . . . ,m. The square of the distance between the points (xi, yi)
and (xi, bxi + a) is (yi − (1 ⋅ a + xi ⋅ b))2. The sum of the squares of distances is

∑mi=1(yi−(1 ⋅a+xi ⋅b))2. Note that this sum is ∥y−Az∥2, where A, z, y are as above.
So Az ∈ R(A). Hence, minz∈R2 ∥y − Az∥2 is achieved for the least square solution
z∗ = (a∗, b∗) given as above, (if not all xi are equal.) So the line y = a∗ + b∗x is the
best fit line.

Example 5.6.1 Given three points in R2 ∶ (0,1), (3,4), (6,5). Find the best
least square fit by a linear function y = a + bx to these three points.
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Solution.

A =
⎡⎢⎢⎢⎢⎢⎣

1 0
1 3
1 6

⎤⎥⎥⎥⎥⎥⎦
, z = [a

b
] , c =

⎡⎢⎢⎢⎢⎢⎣

1
4
5

⎤⎥⎥⎥⎥⎥⎦
,

z = (A⊺A)−1A⊺c = [3 9
9 45

]
−1

[10
42

] = [
4
3
2
3

] = [a
b
] .

The best least square fit by a linear function is y = 4
3 +

2
3x.

5.7 Geometric interpretation of the determinant (Sec-
ond encounter)

Definition 5.7.1 Let x1, . . . ,xm ∈ Rn be m given vectors. Then, the paral-
lelepiped P(x1, . . . ,xm) is defined as follows. The 2m vertices of P(x1, . . . ,xm) are
of the form v ∶= ∑mi=1 aixi, where ai = 0,1 for i = 1, . . . ,m. Two vertices v = ∑mi=1 aixi
and w = ∑mi=1 bixi of P(x1, . . . ,xm) are adjacent, i.e. connected by an edge in
P(x1, . . . ,xm), if ∣∣(a1, . . . , am)⊺ − (b1, . . . , bm)⊺∣∣ = 1, i.e. the 0 − 1 coordinates of
(a1, . . . , am)⊺ and (b1, . . . , bm)⊺ differ only at one coordinate k, for some k ∈ [m].

Note that if {e1, . . . ,en} is the standard basis in Rn, i.e. ei = (δ1i, . . . , δni)⊺, i =
1, . . . , n, then P(e1, . . . ,em) is the m-dimensional unit cube, whose edges are parallel
to e1, . . . ,em and its center (of gravity) is 1

2(1, . . . ,1´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
,0, . . . ,0)⊺, where 1 appears m

times for 1 ≤m ≤ n.
For m > n, P(x1, . . . ,xm) is ”flattened” parallelepiped, since x1, . . . ,xm are

always linearly dependent in Rn for m > n.
Assuming that the volume element generated by e1, . . . ,en, denoted as e1∧⋯∧en

is positive, then the volume element of eσ(1) ∧ ⋯ ∧ eσ(n) has the sign (orientation)
of the permutation σ.

Proposition 5.7.2 Let A ∈ Rn×n and view A = [c1 c2 . . .cn] as an ordered
set of n vectors, (columns), c1, . . . ,cn. Then ∣detA∣ is the n-dimensional volume
of the parallelepiped P(c1, . . . ,cn). If c1, . . . ,cn are linearly independent, then the
orientation in Rn induced by c1, . . . ,cn is the same as the orientation induced by
e1, . . . ,en if detA > 0, and is the opposite orientation if detA < 0.

Proof. detA = 0 if and only if the columns of A are linearly dependent. If
c1, . . . ,cn are linearly dependent, then P(c1, . . . ,cn) lies in a subspace of Rn, i.e.
some n−1 dimensional subspace, and hence the n-dimensional volume of P(c1, . . . ,cn)
is zero.

Assume now that detA ≠ 0, i.e. c1, . . . ,cn are linearly independent. Perform
Gram-Schmidt process. Then, A = QR, where Q = [e1 e2 . . .en] is an orthogonal
matrix and R = [rji] ∈ Rn×n is an upper diagonal matrix. (See Problem 5.7.2-5.)
So detA = detQdetR. Since Q⊺Q = In, we deduce that 1 = det In = detQ⊺ detQ =
detQdetQ = (detQ)2. So detQ = ±1 and the sign of detQ is the sign of detA.

Hence, ∣detA∣ = detR = r11r22 . . . rnn. Recall that r11 is the length of the vector
c1, and rii is the distance of the vector ei to the subspace spanned by e1, . . . ,ei−1,
for i = 2, . . . , n. (See Problem 5.7.2-4, parts f, g and i.) Thus, the length of P(c1) is
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r11. The distance of c2 to P(c1) is r22. Thus, the area, i.e. 2-dimensional volume of
P(c1,c2) is r11r22. Continuing in this manner we deduce that the i − 1 dimensional
volume of P(c1, . . . ,ci−1) is r11 . . . r(i−1)(i−1). As the distance of ci to P(c1, . . . ,ci−1)
is rii, it follows that the i-dimensional volume of P(c1, . . . ,ci) is r11 . . . rii. For
i = n, we get that ∣detA∣ = r11 . . . rnn, which is equal to the n-dimensional volume
of P(c1, . . . , cn).

As we already pointed out, the sign of detA is equal to the sign of detQ = ±1. If
detQ = 1, it is possible to ”rotate” the standard basis in Rn to the basis given by the
columns of an orthogonal matrix Q with detQ = 1. If detQ = −1, we need one reflec-
tion, i.e. replace the standard basis {e1, . . . ,en} by the new basis {e2,e1,e3, . . . ,en}
and rotate the new basis {e2,e1,e3, . . . ,en} to the basis consisting of the columns
of an orthogonal matrix Q′, where detQ′ = 1. ◻

Theorem 5.7.3 (The Hadamard determinant inequality) Let A = [c1, . . . ,cn] ∈
Cn×n. Then, ∣detA∣ ≤ ∣∣c1∣∣ ∣∣c2∣∣ . . . ∣∣cn∣∣. Equality holds if and only if either ci = 0,
for some i or ⟨ci,cj⟩ = 0, for all i ≠ j, i.e. {c1, . . . ,cn} is an orthogonal system.

Proof. Assume first that detA = 0. Clearly, the Hadamard inequality holds.
Equality in Hadamard inequality holds if and only if ci = 0, for some i.

Assume now that detA ≠ 0 and perform the Gram-Schmidt process. From
(5.1.1), it follows that A = QR, where Q is a unitary matrix, i.e. Q∗Q = In and
R = [rji] ∈ Cn×n is upper triangular with rii real and positive numbers. So detA =
detQdetR. Thus

1 = det In = detQ∗Q = detQ∗ detQ = detQdetQ = ∣detQ∣2 ⇒ ∣detQ∣ = 1.

Hence, ∣detA∣ = detR = r11r22 . . . rnn. According to Problem 5.7.2-4 and the proof
of Proposition 5.7.2, we know that ∣∣ci∣∣ ≥ dist(ci, span{c1, . . . ,ci−1}) = rii, for i =
2, . . . , n. Hence, ∣detA∣ = detR ≤ ∣∣c1∣∣ ∣∣c2∣∣ . . . ∣∣cn∣∣. Equality holds if
∣∣ci∣∣ = dist(ci, span{c1, . . . ,ci−1}), for i = 2, . . . , n. Use Problem 5.7.2-4 to deduce
that ∣∣ci∣∣ = dist(ci, span{c1, . . . ,ci−1}) if an only if ⟨ci,cj⟩ = 0, for j = 1, . . . , i − 1.
Use these conditions for i = 2, . . . to deduce that equality in Hadamard inequality
holds if and only if {c1, . . . ,cn} is an orthogonal system. ◻

An application of Fredholm alternative

Let A = [aij] ∈ Zn×n2 be a symmetric matrix. It has been proven in [5] that diagA ∈
Im A. Here, we give Noga Alon’s short proof for this statement:

x⊺Ax =
n

∑
i,j=1

aijxixj = 2 ∑
1≤i<j≤n

aijxixj + x⊺ diagA = x⊺ diagA.

Then, if x⊺A = 0, so x⊺ diagA = 0. The Fredholm alternative implies that diagA in
the range of A.
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5.7.1 Worked-out Problems

1. Let A = [aij]ni,j=1 ∈ Cn×n such that ∣aij ∣ ≤ 1, for i, j = 1, . . . , n. Show that

∣detA∣ = nn2 if and only if A∗A = AA∗ = nIn.
Solution:

Assume first that ∣detA∣ = nn2 and set cj =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1j

a2j

⋮
anj

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. Then, Theorem 5.7.3 and

the assumption ∣aij ∣ ≤ 1 yield ∥ci∥ = √
n, for any 1 ≤ i ≤ n. Reusing the

assumption ∣aij ∣ ≤ 1 follows ∣aij ∣ = 1, for i, j = 1, . . . , n. Finally, as {c1, . . . ,cn}
is an orthogonal system, then A∗A = AA∗ = nIn.
Conversely, assume that A∗A = AA∗ = nIn. We have ∣detA∣2 = detAdetA∗ =
detAA∗ = detnIn = nn. Then ∣detA∣ = nn2 .

2. Let u =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, v =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
0
−2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and U = span{u,v}. Find an orthogonal projection of

the matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

on U using least squares with a corresponding matrix.

Solution:

Define A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2
−1 0
1 −2
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. The least squares theorem implies that

the system A∗Ax = A∗b is solvable, x0 = 1
35 [8

2
] and Ax0 ∈ R(A), i.e. Ax0 =

1
35

⎡⎢⎢⎢⎢⎢⎢⎢⎣

18
−2
−14
−6

⎤⎥⎥⎥⎥⎥⎥⎥⎦

is an orthogonal projection of b.

3. Find A = [aij] ∈ C3×3 satisfying ∣aij ∣ ≤ 1 and ∣detA∣2 = 27.
Solution:

Define A =
⎡⎢⎢⎢⎢⎢⎣

1 1 1
1 ξ1 ξ2

1 ξ2
1 ξ2

2

⎤⎥⎥⎥⎥⎥⎦
, where ξk = e

2kπ
3
i = cos 2kπ

3 + i sin 2kπ
3 , k = 1,2. Clearly,

∣aij ∣ ≤ 1 and AA∗ = A∗A = 3In. Using Worked-out Problem 5.7.1-1, we obtain

∣detA∣ = 3
3
2 =

√
27.

5.7.2 Problems

1. Let V be an IPS over F. Show that
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(a) ⟨0,x⟩ = ⟨x,0⟩ = 0,

(b) for F = R, ⟨z, ax + by⟩ = a⟨z,x⟩ + b⟨z,y⟩, for all a, b ∈ R, x,y,z ∈ V,

(c) for F = C, ⟨z, ax + by⟩ = ā⟨z,x⟩ + b̄⟨z,y⟩, for all a, b ∈ C, x,y,z ∈ V.

2. Let V be an IPS. Show that

(a) ∣∣ax∣∣ = ∣a∣ ∣∣x∣∣, for a ∈ F and x ∈ V.

(b) The triangle inequality

∣∣x + y∣∣ ≤ ∣∣x∣∣ + ∣∣y∣∣,

and equality holds if either x = 0 or y = ax, for some non-negative a ∈ R.
(Hint: Use the Cauchy-Schwarz inequality.)
(c) Pythagorean law; if x ⊥ y, then

∥x + y∥2 = ∥x∥2 + ∥y∥2.

(d) Parallelogram identity;

∥x + y∥2 + ∥x − y∥2 = 2∥x∥2 + 2∥y∥2.

3. Prove Proposition 5.1.10.

4. Let V be a finite dimensional IPS of dimension n. Assume that S ⊂ V.

(a) Show that if {x1, ...,xm} is an orthonormal set, then x1, ...,xm are linearly
independent.

(b) Assume that {e1, ...,en} is an orthonormal basis in V. Show that for any
x ∈ V, the orthonormal expansion holds

x =
n

∑
i=1

⟨x,ei⟩ei. (5.7.1)

Furthermore, for any x,y ∈ V

⟨x,y⟩ =
n

∑
i=1

⟨x,ei⟩⟨y,ei⟩. (5.7.2)

(c) Assume that S is a finite set. Let S̃ be the set obtained by the Gram-
Schmidt process. Show that S̃ = ∅ if and only if spanS = {0}. Moreover,
prove that if S̃ ≠ ∅, then {e1, ...,ep} is an orthonormal basis in span S.

(d) Show that there exists an orthonormal basis {e1, ...,en} in V and 0 ≤m ≤ n
such that

e1, ...,em ∈ S, span S = span{e1, ...,em},
S⊥ = span{em+1, ...,en},
(S⊥)⊥ = spanS.
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(e) Assume from here to the end of the problem that S is a subspace of V.
Show V = S ⊕ S⊥.
(f) Let x ∈ V and let x = u + v, for unique u ∈ S, v ∈ S⊥. Let P (x) ∶= u be
the projection of x on S. Show that P ∶ V → V is a linear transformation
satisfying

P 2 = P, Range P = S, Ker P = S⊥.

(g) Show that

dist(x, S) ∶= ∣∣x − Px∣∣ ≤ ∣∣x −w∣∣ for any w ∈ S,
and equality holds if and only if w = Px. (5.7.3)

(h) Show in part (g) that equality holds if and only if w = Px.

(i) Show that dist(x, S) = ∣∣x − w∣∣, for some w ∈ S if and only if x − w is
orthogonal to S.

(j) Let {e1, . . . ,em} be an orthonormal basis of S. Show that for each x ∈ V,
Px = ∑pi=1⟨y,ei⟩ei.
(Note that Px is called the least square approximation to x in the subspace
S.)

5. Let X ∈ Cm×n and assume that m ≥ n and rank X = n. Let x1, ...,xn ∈ Cm be
the columns of X, i.e. X = [x1, ...,xn]. Assume that Cm is an IPS with the
standard inner product < x,y >= y∗x. Perform the Gram-Schmidt algorithm
(1.1) to obtain the matrix Q = [e1, ...,en] ∈ Cm×n. Let R = [rji]n1 ∈ Cn×n be the
upper triangular matrix with rji, j ≤ i given by (5.1.1). Show that Q̄TQ = In
and X = QR. (This is the QR algorithm.) Show that if in addition X ∈ Rm×n,
then Q and R are real valued matrices.

6. Let C ∈ Cn×n and assume that λ1, ..., λn are n eigenvalues of C counted with
their multiplicities. View C as an operator C ∶ Cn → Cn. View Cn as 2n-
dimensional vector space over R. Let C = A +

√
−1B, A,B ∈ Rn×n.

a. Then, Ĉ ∶= [ A −B
B A

] ∈ R2n×2n represents the operator C ∶ Cn → Cn as an

operator over R in suitably chosen basis.

b. Show that λ1, λ̄1, ..., λn, λ̄n are the 2n eigenvalues of Ĉ counting with mul-
tiplicities.

c. Show that the Jordan canonical form of Ĉ is obtained by replacing each
Jordan block λI +H in C by two Jordan blocks λI +H and λ̄I +H.

7. Let A = [aij]i,j ∈ Cn×n. Assume that ∣aij ∣ ≤K, for all i, j = 1, . . . , n. Show that

∣detA∣ ≤Knn
n
2 .

8. Show that for each n, there exists a matrix A = [aij]ni,j=1 ∈ Cn×n such that

∣aij ∣ = 1, for i, j = 1, . . . , n and ∣detA∣ = nn2 .

9. Let A = [aij] ∈ Rn×n and assume that aij = ±1, i, j = 1, . . . , n. Show that if
n > 2, then the assumption that ∣detA∣ = nn2 yields that n is divisible by 4.
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10. Show that for any n = 2m, m = 0,1, . . . there exists A = [aij] ∈ Rn×n such that
aij = ±1, i, j = 1, . . . , n and ∣detA∣ = nn2 . (Hint : Try to prove by induction on m

that A ∈ R2m×2m can be chosen symmetric, and then construct B ∈ R2m+1×2m+1

using A.)

Note: A matrix H = [aij]i,j ∈ Rn×n such that aij = ±1, for i, j = 1, . . . , n and
∣detH ∣ = nn2 is called a Hadamard matrix. Hadamard matrices admit several
other characterizations; an equivalent definition states that a Hadamard ma-
trix H is an n×n matrix satisfying the identity HH⊺ = nIn. (See Worked-out
Problem 5.7.1-1.) Also, another equivalent definition for a Hadamard matrix
H is an n × n matrix with entries in {−1,1} such that two distinct rows or
columns have inner product zero. It is conjectured that for each n divisible
by 4, there exists a Hadamard matrix. It is known that a necessary condition
for the existence of an n × n Hadamard matrix is that n = 1,2,4k, for some
k, i.e. there exists no n × n Hadamard matrices for n /∈ {1,2,4k, k ∈ N}. That
this condition is also sufficient is known as the Hadamard conjecture, and has
been the subject of a vast amount of literature in recent decades.

11. Let V be an IPS and T ∈ L(V). Assume that v,w ∈ V are two eigenvectors
of T with distinct eigenvalues. Prove that ⟨v,w⟩ = 0.

12. Consider rotation matrices A = [cos θ − sin θ
sin θ cos θ

] ∈ R2×2, θ ∈ [0,2π). Assume

that T ∈ L(V) is orthogonal, where V is a finite dimensional real vector
space. Show that there exists a basis β of V such that [T ]β is block diagonal,
and the blocks are either 2×2 rotation matrices or 1×1 matrices consisting of
1 or -1.
(See Problem 1.10.2-4 and Problem 3.2.2-17).

5.8 Special transformations in IPS

Proposition 5.8.1 Let V be an IPS and T ∶ V → V a linear transformation.
Then, there exists a unique linear transformation T ∗ ∶ V → V such that ⟨Tx,y⟩ =
⟨x, T ∗y⟩, for all x,y ∈ V.

We leave its proof as Problems 5.10.2-1 and 5.10.2-2.

Definition 5.8.2 Let V be an IPS and T ∶ V → V be a linear transformation.
Then
(a) T is called self-adjoint if T ∗ = T ;
(b) T is called anti self-adjoint if T ∗ = −T ;
(c) T is called unitary if T ∗T = TT ∗ = I;
(d) T is called normal if T ∗T = TT ∗.

Note that a self-adjoint transformation (matrix) is also called Hermitian.
Denote by S(V), AS(V), U(V) and N(V) the sets of self-adjoint, anti self-

adjoint, unitary and normal operators on V, respectively.
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Proposition 5.8.3 Let V be an IPS over F with an orthonormal basis E =
{e1, ...,en}. Let T ∶ V → V be a linear transformation and A = [aij] ∈ Fn×n be the
representation matrix of T in the basis E:

aij = ⟨Tej ,ei⟩, i, j = 1, ..., n. (5.8.1)

Then, for F = R:

(a) T ∗ is represented by A⊺,

(b) T is self−adjoint if and only if A = A⊺,

(c) T is anti self−adjoint if and only if A = −A⊺,

(d) T is unitary if and only if A is orthogonal , i.e. AA⊺ = A⊺A = I,
(e) T is normal if and only if A is normal , i.e. AA⊺ = A⊺A,

and for F = C:

(a) T ∗ is represented by A∗ (∶= Ā⊺),
(b) T is self−adjoint if and only if A = A∗,

(c) T is anti self−adjoint if and only if A is anti hermitian , i.e. A = −A∗,

(d) T is unitary if and only if A is unitary , i.e. AA∗ = A∗A = I,
(e) T is normal if and only if A is normal , i.e. AA∗ = A∗A.

We leave the proof as Problem 5.10.2-3.
Let V be a real vector space. The complexification of V is defined by taking the
tensor product of V with the complex field and it is denoted by Vc.

Proposition 5.8.4 Let V be an IPS over R and T ∈ L(V). Let Vc be the
complexification of V. Then, that there exists a unique Tc ∈ L(Vc) such that Tc∣V =
T . Furthermore, T is self-adjoint, unitary or normal if and only if Tc is self-adjoint,
unitary or normal, respectively.

We leave the proof as Problem 5.10.2-4.

Definition 5.8.5 For a field F, let

S(n,F) ∶= {A ∈ Fn×n ∶ A = A⊺},
AS(n,F) ∶= {A ∈ Fn×n ∶ A = −A⊺},
O(n,F) ∶= {A ∈ Fn×n ∶ AA⊺ = A⊺A = I},
SO(n,F) ∶= {A ∈ O(n,F) ∶ detA = 1},
DO(n,F) ∶= D(n,F) ∩O(n,F),
N(n,R) ∶= {A ∈ Rn×n ∶ AA⊺ = A⊺A},
N(n,C) ∶= {A ∈ Cn×n ∶ AA∗ = A∗A},
Hn ∶= {A ∈ Cn×n ∶ A = A∗},
AHn ∶= {A ∈ Cn×n ∶ A = −A∗},
Un ∶= {A ∈ Cn×n ∶ AA∗ = A∗A = I},
SUn ∶= {A ∈ Un ∶ detA = 1},
DUn ∶= D(n,C) ∩Un.
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See Problem 5.10.2-5 for relations between these classes.

Theorem 5.8.6 Let V be an IPS over C of dimension n. Then, a linear trans-
formation T ∶ V →V is normal if and only if V has an orthonormal basis consisting
of eigenvectors of T .

Proof. Suppose first that V has an orthonormal basis {e1, ...,en} such that
Tei = λiei, i = 1, ..., n. From the definition of T ∗, it follows that T ∗ei = λ̄iei, i =
1, ..., n. Hence, TT ∗ = T ∗T .

Assume now T is normal. Since C is algebraically closed, T has an eigenvalue
λ1. Let V1 be the subspace of V spanned by all eigenvectors of T corresponding to
the eigenvalue λ1. Clearly, TV1 ⊂ V1. Let x ∈ V1. Then, Tx = λ1x. Thus

TT ∗x = (TT ∗)x = (T ∗T )x = T ∗Tx = λ1T
∗x⇒ T ∗V1 ⊂ V1.

Hence, TV⊥1 , T
∗V⊥1 ⊂ V⊥1 . Since V = V1 ⊕V⊥1 , it is enough to prove the theorem for

T ∣V1 and T ∣V⊥1 .
As T ∣V1 = λ1IV1 , it is straightforward to show T ∗∣V1 = λ̄1IV1 (see Problem

5.10.2-2). Hence, for T ∣V1 the theorem trivially holds. For T ∣V⊥1 the theorem fol-
lows by induction. ◻

Theorem 5.8.7 is an important result of linear algebra, called spectral theorem
for normal matrices which states that normal matrices are diagonal with respect to
an orthonormal basis. See [17] for its proof and more details.

Theorem 5.8.7 Assume that A ∈ Cn×n is a normal matrix. Then, A is unitarily
similar to a diagonal matrix. That is, there exists a unitary matrix U ∈ Cn×n and a
diagonal matrix Λ ∈ Cn×n such that A = UΛU∗ = UΛU−1. This is called the spectral
decomposition of A. (The columns of U is an orthonormal basis of Cn consisting of
eigenvectors of A, and the diagonal entries of Λ are the corresponding eigenvalues
of A.)

The proof of Theorem 5.8.6 yields the following corollary.

Corollary 5.8.8 Let V be an IPS over R of dimension n. Then, the linear
transformation T ∶ V → V with a real spectrum is normal if and only if V has an
orthonormal basis consisting of eigenvectors of T .

Definition 5.8.9 If T is a linear transformation, the set of all distinct eigen-
values of T is called the spectrum of T and it is denoted by spec T .

Proposition 5.8.10 Let V be an IPS over C and T ∈ N(V). Then

(a) T is self − adjoint if and only if spec T ⊂ R,
(b) T is unitary if and only if spec T ⊂ S1 = {z ∈ C ∶ ∣z∣ = 1}.
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Proof. Since T is normal, there exists an orthonormal basis {e1, ...,en} such
that Tei = λiei, i = 1, ..., n. Hence, T ∗ei = λ̄iei. Then

T = T ∗ if and only if λi = λ̄i, i = 1, ..., n,

TT ∗ = T ∗T = I if and only if ∣λi∣ = 1, i = 1, ..., n.

◻

Combine Proposition 5.8.4 and Corollary 5.8.8 with the above proposition to
deduce the following corollary:

Corollary 5.8.11 Let V be an IPS over R and T ∈ S(V). Then, spec T ⊂ R
and V has an orthonormal basis consisting of the eigenvectors of T .

Corollary 5.8.11 gives another key factor about hermitian matrices and states that
all eigenvalues of a hermitian matrix must be real. Note that a matrix A ∈ Rn×n with

all real eigenvalues need not be hermitian. For instance, A = [1 2
0 2

] has eigenvalues

1 and 2 but A ≠ A∗.

Proposition 5.8.12 Let V be an IPS over R and let T ∈ U(V). Then, V =
⊕i∈{−1,1,2,...,k}Vi, where k ≥ 1, Vi and Vj are orthogonal for i ≠ j, such that
(a) T ∣V−1 = −IV−1 dimV−1 ≥ 0,
(b) T ∣V1 = IV1 , dimV1 ≥ 0,
(c) TVi = Vi, dimVi = 2, spec (T ∣Vi) ⊂ S1/{−1,1}, for i = 2, ..., k.

We leave the proof as Problem 5.10.2-7.

Proposition 5.8.13 Let V be an IPS over R and T ∈ AS(V). Then, V =
⊕i∈{1,2,...,k}Vi, where k ≥ 1, Vi and Vj are orthogonal, for i ≠ j, such that
(a) T ∣V1 = 0V1 dimV0 ≥ 0,
(b) TVi = Vi, dimVi = 2, spec (T ∣Vi) ⊂

√
−1R/{0}, for i = 2, ..., k.

We leave the proof as Problem 5.10.2-8.

Theorem 5.8.14 Let V be an IPS over C of dimension n and T ∈ L(V). Let
λ1, ..., λn ∈ C be n eigenvalues of T counted with their multiplicities. Then, there
exists an orthonormal basis {g1, ...,gn} of V with the following properties:

T span{g1, ...,gi} ⊂ span{g1, ...,gi}, ⟨Tgi,gi⟩ = λi, i = 1, ..., n. (5.8.2)

Let V be an IPS over R of dimension n and T ∈ L(V) and assume that spec T ⊂ R.
Let λ1, ..., λn ∈ R be n eigenvalues of T counted with their multiplicities. Then, there
exists an orthonormal basis {g1, ...,gn} of V such that (5.8.2) holds.

Proof. Assume first that V is IPS over C of dimension n. The proof is by
induction on n. For n = 1, the theorem is trivial. Assume that n > 1. Since
λ1 ∈ spec T , it follows that there exists g1 ∈ V, ⟨g1,g1⟩ = 1, such that Tg1 = λ1g1.
Let U ∶= span(g1)⊥. Let P be the orthogonal projection on U. Observe that
Pv = v − ⟨v,g1⟩g1, for any vector v ∈ V. Let T1 ∶= PT ∣U. Clearly, T1 ∈ L(V). Let
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λ̃2, ..., λ̃n be the eigenvalues of T1 counted with their multiplicities. The induction
hypothesis yields the existence of an orthonormal basis {g2, ...,gn} of U such that

T1span{g2, ...,gi} ⊂ span{g2, ...,gi}, ⟨T1gi,gi⟩ = λ̃i, i = 1, ..., n.

As T1u = Tu − ⟨Tu,g1⟩g1, it follows that T span{g1, ...,gi} ⊂ span{g1, ...,gi},
for i = 1, ..., n. Hence, in the orthonormal basis {g1, ...,gn}, T is presented by an
upper diagonal matrix B = [bij]n1 , with b11 = λ1 and bii = λ̃i, i = 2, ..., n. Therefore,
λ1, λ̃2, ..., λ̃n are the eigenvalues of T counted with their multiplicities. This estab-
lishes the theorem in this case. The real case is treated similarly. ◻

Combine the above results with Problems 5.10.2-6 and 5.10.2-12 to deduce the
following corollary:

Corollary 5.8.15 Let A ∈ Cn×n and λ1, ..., λn ∈ C be n eigenvalues of A counted
with their multiplicities. Then, there exists an upper triangular matrix B = [bij]n1 ∈
Cn×n, such that bii = λi, i = 1, ..., n, and a unitary matrix U ∈ Un such that A =
UBU−1. If A ∈ N(n,C), then B is a diagonal matrix.

Let A ∈ Rn×n and assume that spec T ⊂ R. Then, A = UBU−1, where U can be
chosen a real orthogonal matrix and B a real upper triangular matrix. If A ∈ N(n,R)
and spec A ⊂ R, then B is a diagonal matrix.

It is easy to show that U in the above corollary can be chosen in SUn or SO(n,R),
respectively (Problem 5.10.2-11).

Definition 5.8.16 Let V be a vector space and assume that T ∶ V → V is a
linear operator. Let 0 ≠ v ∈ V. Then, W = span{v, Tv, T 2v, . . .} is called a cyclic
invariant subspace of T generated by v. (It is also referred as a Krylov subspace
of T generated by v.) Sometimes, we will call W just a cyclic subspace, or Krylov
subspace.

Theorem 5.8.17 Let V be a finite dimensional IPS and T ∶ V →V be a linear
operator. For 0 ≠ v ∈ V, let W = span{v, Tv, ..., T r−1v} be a cyclic T -invariant
subspace of dimension r generated by v. Let {u1, ...,ur} be an orthonormal basis of
W obtained by the Gram-Schmidt process from the basis {v, Tv, . . . , T r−1v} of W.
Then, ⟨Tui,uj⟩ = 0, for 1 ≤ i ≤ j − 2, i.e. the representation matrix of T ∣W in the
basis {u1, . . . ,u} is upper Hessenberg. If T is self-adjoint, then the representation
matrix of T ∣W in the basis {u1, . . . ,ur} is a tridiagonal hermitian matrix.

Proof. Let Wj = span{v, . . . , T j−1v}, for j = 1, ..., r + 1. Clearly, TWj ⊂
Wj+1, for j = 1, ..., r. The assumption that W is T -invariant subspace yields
W = Wr = Wr+1. Since dimW = r, it follows that v, ..., T r−1v are linearly indepen-
dent. Hence, {v, . . . , T r−1v} is a basis for W. Recall that span{u1, ...,uj} = Wj , for
j = 1, . . . , r. Let r ≥ j ≥ i+2. Then, Tui ∈ TWi ⊂ Wi+1. As uj ⊥Wi+1, it follows that
⟨Tui,uj⟩ = 0. Assume that T ∗ = T . Let r ≥ i ≥ j+2. Then, ⟨Tui,uj⟩ = ⟨ui, Tuj⟩ = 0.
Hence, the representation matrix of T ∣W in the basis {u1, . . . ,ur} is a tridiagonal
hermitian matrix. ◻
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5.9 Symmetric bilinear and hermitian forms

Definition 5.9.1 Let V be a vector space over F and Q ∶ V×V → F. Q is called
a symmetric bilinear form (on V) if the following conditions are satisfied:
(i) Q(x,y) = Q(y,x), for all x,y ∈ V (symmetricity);
(ii) Q(ax + bz, y) = aQ(x,y) + bQ(z,y), for all a, b ∈ F and x,y,z ∈ V (bilinearity).

For F = C, Q it is called hermitian form or sesquilinear (on V) if Q satisfies the
conditions (iii) and (ii) where
(iii) Q(x,y) = Q(y,x), for all x,y ∈ V (barsymmetricity).

Something to notice about the definition of a bilinear form is the similarity it
has to an inner product. In essence, a bilinear form is a generalization of an inner
product.

Example 5.9.2 The dot product on Rn is a symmetric bilinear form.

Example 5.9.3 On Cn, let Q((x1, . . . , xn), (y1, . . . , yn)) = ∑ni=1 xiȳi. Regarding
Cn as a real vector space, Q is bilinear. But veiwing Cn as a complex vector space,
Q is not bilinear (it is not linear in its second component). Moreover, Q(x,y) =
Q(y,x). Then Q is a hermitian form.

The following results are elementary, we leave their proofs as Problems 5.10.2-14
and 5.10.2-15.

Proposition 5.9.4 Let V be a vector space over F with a basis E = {e1, ...,en}.
Then, there is a 1 − 1 correspondence between a symmetric bilinear form Q on V
and A ∈ S(n,F):

Q(x,y) = η⊺Aξ,

x =
n

∑
i=1

ξiei, y =
n

∑
i=1

ηiei, ξ = (ξ1, ..., ξn)⊺, η = (η1, ..., ηn)⊺ ∈ Fn.

Let V be a vector space over C with a basis E = {e1, ...,en}. Then, there is 1 − 1
correspondence between a hermitian form Q on V and A ∈ Hn:

Q(x,y) = η∗Aξ,

x =
n

∑
i=1

ξiei, y =
n

∑
i=1

ηiei, ξ = (ξ1, ..., ξn)⊺, η = (η1, ..., ηn)⊺ ∈ Cn.

Definition 5.9.5 Let the assumptions of Proposition 5.9.4 hold. Then, A is
called the representation matrix of Q in the basis E.

Proposition 5.9.6 Let the assumptions of Proposition 5.9.4 hold and assume
that F = {f1, ..., fn} is another basis of V. Then, the symmetric bilinear form Q is
represented by B ∈ S(n,F) in the basis F , where B is congruent to A:

B = U⊺AU, U ∈ GL(n,F),
and U is the matrix corresponding to the basis change from F to E. For F = C the
hermitian form Q is presented by B ∈ Hn in the basis F , where B hermite congruent
to A:

B = U∗AU, U ∈ GL(n,C),
and U is the matrix corresponding to the basis change from F to E.
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Proposition 5.9.7 Let V be an n-dimensional vector space over R. Let Q ∶
V ×V → R be a symmetric bilinear form and A ∈ S(n,R) the representation matrix
of Q with respect to a basis E in V and Vc be the extension of V over C. Then,
there exists a unique hermitian form Qc ∶ Vc ×Vc → C such that Qc∣V×V = Q and
Qc is presented by A with respect to the basis E in Vc.

We leave its proof as Problem 5.10.2-16.

Convention 5.9.8 Let V be a finite dimensional IPS over F. Let Q ∶ V×V → F
be either a symmetric bilinear form for F = R or a hermitian form for F = C. Then,
a representation matrix A of Q is chosen with respect to an orthonormal basis E.

The following proposition is straightforward.

Proposition 5.9.9 Let V is an n-dimensional IPS over F and Q ∶ V ×V → F
be either a symmetric bilinear form for F = R or a hermitian form for F = C. Then,
there exists a unique T ∈ S(V) such that Q(x,y) = ⟨Tx,y⟩, for any x,y ∈ V. In any
orthonormal basis of V, Q and T represented by the same matrix A. In particular,
the characteristic polynomial p(λ) of T is called the characteristic polynomial of Q.
Here, Q has only real roots:

λ1(Q) ≥ ... ≥ λn(Q),

which are called the eigenvalues of Q. Furthermore, there exists an orthonormal
basis F = {f1, ..., fn} in V such that D = diag(λ1(Q), ..., λn(Q)) is the representation
matrix of Q in F .

Vice versa, for any T ∈ S(V) and any subspace U ⊂ V, the form Q(T,U) defined
by

Q(T,U)(x,y) ∶= ⟨Tx,y⟩, for x,y ∈ U

is either a symmetric bilinear form for F = R or a hermitian form for F = C.

In the rest of the book, we use the following normalization unless stated other-
wise.

Normalization 5.9.10 Let V is an n-dimensional IPS over F. Assume that
T ∈ S(V). Then, arrange the eigenvalues of T counted with their multiplicities in
the decreasing order

λ1(T ) ≥ ... ≥ λn(T ).

The same normalization applies to real symmetric matrices and complex hermitian
matrices.

5.10 Max-min characterizations of eigenvalues

Given a hermitian matrix (linear transformation), we can obtain its largest (resp.
smallest) eigenvalue by maximizing (resp. minimizing) the corresponding quadratic
form over all the unit vectors. This section is devoted to the max-min characteriza-
tion of eigenvalues of hermitian matrices.
First, we recall the Grassmannian of given dimensional in a fixed vector space.
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Definition 5.10.1 Let V be a finite dimensional space over the field F. Denote
by Gr(m,V) the set of all m-dimensional subspaces in V of dimension m ∈ [n]∪{0}.

Theorem 5.10.2 (The convoy principle ) Let V be an n-dimensional IPS and
T ∈ S(V). Then

λk(T ) = max
U∈Gr(k,V)

min
0≠x∈U

⟨Tx,x⟩
⟨x,x⟩ = max

U∈Gr(k,V)
λk(Q(T,U)), k = 1, ..., n,(5.10.1)

where the form Q(T,U) is defined in Proposition 5.9.9. For k ∈ [n], let U be
an invariant subspace of T spanned by eigenvectors e1, ...,ek corresponding to the
eigenvalues λ1(T ), ..., λk(T ). Then, λk(T ) = λk(Q(T,U)). Let U ∈ Gr(k,V) and
assume that λk(T ) = λk(Q(T,U)). Then, the subspace U contains an eigenvector
of T corresponding to λk(T ).

In particular

λ1(T ) = max
0≠x∈V

⟨Tx,x⟩
⟨x,x⟩ , λn(T ) = min

0≠x∈V

⟨Tx,x⟩
⟨x,x⟩ (5.10.2)

Moreover for any x ≠ 0:

λ1(T ) = ⟨Tx,x⟩
⟨x,x⟩ if and only if Tx = λ1(T )x,

λn(T ) = ⟨Tx,x⟩
⟨x,x⟩ if and only if Tx = λn(T )x,

The quotient
⟨Tx,x⟩
⟨x,x⟩ , 0 ≠ x ∈ V is called Rayleigh quotient. The characterization

(5.10.2) is called convoy principle.
Proof. Choose an orthonormal basis E = {e1, ...,en} such that

Tei = λi(T )ei, < ei,ej >= δij i, j = 1, ..., n. (5.10.3)

Then
⟨Tx,x⟩
⟨x,x⟩ = ∑

n
i=1 λi(T )∣xi∣2

∑ni=1 ∣xi∣2
, x =

n

∑
i=1

xiei ≠ 0. (5.10.4)

The above equality yields straightforward (5.10.2) and the equality cases in these
characterizations. Let U ∈ Gr(k,V). Then, the minimal characterization of λk(Q(T,U))
yields the equality

λk(Q(T,U)) = min
0≠x∈U

⟨Tx,x⟩
⟨x,x⟩ , for any U ∈ Gr(k,U). (5.10.5)

Next, there exists 0 ≠ x ∈ U such that ⟨x,ei⟩ = 0, for i = 1, ..., k − 1. (For k = 1 this
condition is void.) Hence

⟨Tx,x⟩
⟨x,x⟩ = ∑

n
i=k λi(T )∣xi∣2

∑ni=k ∣xi∣2
≤ λk(T ) ⇒ λk(T ) ≥ λk(Q(T,U)).
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Let

λ1(T ) = ... = λn1(T ) > λ(T )n1+1(T ) = ... = λn2(T ) > ... >
λnr−1+1(T ) = ... = λnr(T ) = λn(T ), n0 = 0 < n1 < ... < nr = n. (5.10.6)

Assume that nj−1 < k ≤ nj and λk(Q(T,U)) = λk(T ). Then, for x ∈ U with
⟨x,ei⟩ = 0, we have equality λk(Q(T,U)) = λk(T ) if and only if x = ∑nji=k xiei. Thus,
Tx = λk(T )x.

Let Uk = span{e1, ...,ek} and 0 ≠ x = ∑ki=1 xiei ∈ Uk. Then

⟨Tx,x⟩
⟨x,x⟩ = ∑

k
i=1 λi(T )∣xi∣2

∑ki=1 ∣xi∣2
≥ λk(T ) ⇒ λk(Q(T,Uk)) ≥ λk(T ).

Hence, λk(Q(T,Uk)) = λk(T ). ◻

Note that (5.10.1) can be stated as

max{min{⟨Tx,x⟩,x ∈ U, ∥x∥ = 1 and U ∈ Gr(k,V)}}.

It can be shown that for k > 1 and λ1(T ) > λk(T ), there exists U ∈ Gr(k,V) such
that λk(T ) = λk(T,U) and U is not an invariant subspace of T , in particular U
does not contain all e1, ...,ek satisfying (5.10.3). (See Problem 5.10.2-18.)

Corollary 5.10.3 Let the assumptions of Theorem 5.10.2 hold. Let 1 ≤ ` ≤ n.
Then

λk(T ) = max
W∈Gr(`,V)

λk(Q(T,W)), k = 1, ..., `. (5.10.7)

Proof. For k ≤ `, apply Theorem 5.10.2 to λk(Q(T,W)) to deduce that λk(Q(T,W)) ≤
λk(T ). Let U` = span{e1, ...,e`}. Then

λk(Q(T,U`)) = λk(T ), k = 1, ..., `.

◻

Theorem 5.10.4 (Courant-Fischer principle) Let V be an n-dimensional IPS
and T ∈ S(V). Then

λk(T ) = min
W∈Gr(k−1,V)

max
0≠x∈W⊥

⟨Tx,x⟩
⟨x,x⟩ , k = 1, ..., n.

See Problem 5.10.2-19 for the proof of the theorem and the following corollary.

Corollary 5.10.5 Let V be an n-dimensional IPS and T ∈ S(V). Let k, ` ∈ [n]
be integers satisfying k ≤ `. Then

λn−`+k(T ) ≤ λk(Q(T,W)) ≤ λk(T ), for any W ∈ Gr(`,V).

The following theorem, by Weyl, allows us to obtain an upper bound for the
k-th eigenvalue of S + T .
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Theorem 5.10.6 Let V be an n-dimensional IPS and S,T ∈ S(V). Then, for
any i, j ∈ N, i + j − 1 ≤ n the inequality λi+j−1(S + T ) ≤ λi(S) + λj(T ) holds.(This
inequality is well-known as Weyl inequality.)

Proof. Let Ui−1,Vj−1 ⊂ V be eigenspaces of S and T spanned by the first
i − 1, j − 1 eigenvectors of S and T , respectively. So

⟨Sx,x⟩ ≤ λi(S)⟨x,x⟩, ⟨Ty,y⟩ ≤ λj(T )⟨y,y⟩, for all x ∈ U⊥i−1,y ∈ V⊥j−1.

Note that dimUi−1 = i − 1,dimVj−1 = j − 1.. Let W = Ui−1 + Vj−1. Then,
dimW = l−1 ≤ i+j−2. Assume that z ∈ W⊥. Then, ⟨(S+T )z,z⟩ = ⟨Sz,z⟩+⟨Tz,z⟩ ≤
(λi(S) + λj(T ))⟨z,z⟩. Hence, max0≠z∈W⊥

⟨(S+T )z,z⟩
⟨z,z⟩ ≤ λi(S) + λj(T ). Use Theorem

5.10.4 to deduce that λi+j−1(S + T ) ≤ λl(S + T ) ≤ λi(S) + λj(T ). ◻

Definition 5.10.7 Let V be an n-dimensional IPS. Fix an integer k ∈ [n].
Then, Fk = {f1, ..., fk} is called an orthonormal k-frame if < fi, fj >= δij, for i, j =
1, ..., k. Denote by Fr(k,V) the set of all orthonormal k-frames in V.

Note that each Fk ∈ Fr(k,V) induces U = spanFk ∈ Gr(k,V). Vice versa, any
U ∈ Gr(k,V) induces the set Fr(k,U) of all orthonormal k-frames which span U.

Theorem 5.10.8 Let V be an n-dimensional IPS and T ∈ S(V). Then, for any
integer k ∈ [n]

k

∑
i=1

λi(T ) = max
{f1,...,fk}∈Fr(k,V)

k

∑
i=1

⟨T fi, fi⟩.

Furthermore
k

∑
i=1

λi(T ) =
k

∑
i=1

⟨T fi, fi⟩,

for some k-orthonormal frame Fk = {f1, ..., fk} if and only if spanFk is spanned by
e1, ...,ek satisfying (5.10.3).

Proof. Define

trQ(T,U) ∶=
k

∑
i=1

λi(Q(T,U)), for U ∈ Gr(k,V),

(5.10.8)

trk T ∶=
k

∑
i=1

λi(T ).

Let Fk = {f1, ..., fk} ∈ Fr(k,V). Set U = spanFk. Then, in view of Corollary 5.10.3

k

∑
i=1

⟨T fi, fi⟩ = trQ(T,U) ≤
k

∑
i=1

λi(T ).

Let Ek ∶= {e1, ...,ek}, where e1, ...,en are given by (5.10.3). Clearly, trk T = trQ(T, spanEk).
This shows the maximal characterization of trk T .
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Let U ∈ Gr(k,V) and assume that trk T = trQ(T,U). Hence, λi(T ) = λi(Q(T,U)),
for i = 1, ..., k. Then, there exists Gk = {g1, ...,gk} ∈ Fr(k,U)) such that

min
0≠x∈span{g1,...,gi}

⟨Tx,x⟩
⟨x,x⟩ = λi(Q(T,U)) = λi(T ), i = 1, ..., k.

Use Theorem 5.10.2 to deduce that Tgi = λi(T )gi, for i = 1, ..., k. ◻

Theorem 5.10.9 Let V be an n-dimensional IPS and T ∈ S(V). Then, for any
integer k, l ∈ [n], such that k + l ≤ n

l+k
∑
i=l+1

λi(T ) = min
W∈Gr(l,V)

max
{f1,...,fk}∈Fr(k,V∩W⊥)

k

∑
i=1

⟨T fi, fi⟩.

Proof. Let Wj ∶= span{e1, ...,ej}, j = 1, . . . , n, where e1, ...,en are given by
(5.10.3). Then, V1 ∶= V ∩Wl is an invariant subspace of T . Let T1 ∶= T ∣V1. Then,
λi(T1) = λl+i(T ), for i = 1, . . . , n − l. Theorem 5.10.8 for T1 yields

max
{f1,...,fk}∈Fr(k,V∩W⊥

l
)

k

∑
i=1

⟨T fi, fi⟩ =
l+k
∑
i=l+1

λi(T ).

Let T2 ∶= T ∣Wl+k and W ∈ Gr(l,V). Set U ∶= Wl+k ∩W⊥. Then, dimU ≥ k. Apply
Theorem 5.10.8 to −T2 to deduce

k

∑
i=1

λi(−T2) ≥
k

∑
i=1

⟨−T fi, fi⟩, for {f1, ..., fk} ∈ Fr(k,U).

The above inequality is equivalent to the inequality

l+k
∑
i=l+1

λi(T ) ≤
k

∑
i=1

⟨T fi, fi⟩, for {f1, ..., fk} ∈ Fr(k,U) ≤

max
{f1,...,fk}∈Fr(k,V∩W⊥)

k

∑
i=1

⟨T fi, fi⟩.

The above inequalities yield the theorem. ◻

5.10.1 Worked-out Problems

1. Let A,B ∈Hn.

(a) Show that λi(A +B) ≤ λi(A) + λi(B), for any i ∈ [n].
(b) Show that λi(A) + λn(B) ≤ λi(A +B).
(c) Give the necessary and sufficient condition to have the equality λ1(A +

B) = λ1(A) + λ1(B).

Solution:

(a) Apply the Weyl inequality for j = 1.
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(b) Replace A and B by −A and −B and i by j in the previous part:

λj(−A −B) ≤ λj(−A) + λj(−B).

We have λj(−A−B) = −λn−j+1(A+B), λj(−A) = −λn−j+1(A) and λ1(−B) =
−λn(B).
Then, λn−j+1(A+B) ≥ λn−j+1(A)+λn(B). Setting i = n− j +1, we obtain
the desired inequality.

(c) Assume that λ1(A +B)x = (A +B)x, where ∥x∥ = 1. Then, λ1(A +B) =
x∗(A +B)x = x∗Ax + x∗Bx ≤ λ1(A) + λ1(B). Equality holds if and only
if x is an eigenvector of A and B corresponding to λ1(A) and λ1(B),
i.e. equality holds if and only if A and B have a common eigenvector x
corresponding to λ1(A) and λ1(B).

2. Let S,T ∈ S(V). We say T≻S if ⟨Tx,x⟩ > ⟨Sx,x⟩, for all 0 ≠ x ∈ V. T is called
positive definite if T≻0 , where 0 is the zero operator in L(V).
Assume that K ∈ S(n,R) is a positive definite matrix. Define in Rn an inner
product ⟨x,y⟩ ∶= y⊺Kx. Let A ∈ Rn×n and view AK as a linear transformation
from Rn to Rn by x ↦ (AK)x. Show that AK is self-adjoint with respect to
the above inner product if and only if A ∈ S(n,R).
Solution:
Assume first that AK is self-adjoint, then we have:

⟨AKx,y⟩ = y⊺KAKx = y⊺K⊺A⊺Kx = y⊺(AK)⊺K = ⟨x,AKy⟩.

On the other hand, since KA is self-adjoint (as AK is), then we have:

y⊺KAKx = y⊺K⊺A⊺Kx.

Since this is true for all x and y, then KAK = KA⊺K and as K is positive
definite, then A ∈ S(n,R).
Conversely, assume that A ∈ S(n,R). Then

⟨x,Ay⟩ = ⟨Ax,y⟩ ⇒
AyKx = yKAx⇒
yAKx = yKAx. (5.10.9)

As K ∈ S(n,R), then (5.10.9) yields yAKx = yKAx. Since this is true for all
x and y, then KA =KA = (KA)⊺. This implies that AK is self-adjoint.

3. Prove that every real square matrix is the sum of a symmetric matrix and a
skew-symmetric matrix.
Solution:
For any matrix A = [aij], consider the symmetric matrix B = [bij] and skew-
symmetric matrix C = [cij] with bij = aij+aji

2 and cij = aij−aji
2 , for i ≤ j. Then,

note that for i ≤ j, we have bij + cij = aij and bji + cji = bij − cij = aji, so
A = B +C as desired.

4. Let ⟨, ⟩ be a bilinear form on a real vector space V. Show that there is a
symmetric form (, ) and a skew-symmetric form [, ] so that ⟨, ⟩ = (, ) + [, ].
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Solution:
Note that a bilinear form is symmetric or skew-symmetric if and only if its
corresponding matrix is symmetric or skew-symmetric. Then, let A be the
matrix for ⟨, ⟩; by the previous problem, we can find B symmetric and C skew-
symmetric such that A = B +C. Then, take (u, v) = u⊺Bv and [u, v] = u⊺Cv.
Note that ⟨u, v⟩ = (u, v) + [u, v] and (, ) and [, ] are symmetric and skew-
symmetric, as desired.

5.10.2 Problems

1. Prove Proposition 5.8.1.

2. Let P,Q ∈ L(V), a, b ∈ F. Show that (aP + bQ)∗ = āP ∗ + b̄Q∗.

3. Prove Proposition 5.8.3.

4. Prove Proposition 5.8.4 for finite dimensional V. (Hint: Choose an orthonor-
mal basis in V.)

5. Show the following statements:

SO(n,F) ⊂ O(n,F) ⊂ GL(n,F),
S(n,R) ⊂ Hn ⊂ N(n,C),
AS(n,R) ⊂ AHn ⊂ N(n,C),
S(n,R),AS(n,R) ⊂ N(n,R) ⊂ N(n,C),
O(n,R) ⊂ Un ⊂ N(n,C),
SO(n,F), O(n,F), SUn, Un are groups

S(n,F) is an F−vector space of dimension (n + 1

2
),

AS(n,F) is an F−vector space of dimension (n
2
),

Hn is an R−vector space of dimension n2,

AHn = iHn,

6. Let E = {e1, ...,en} be an orthonormal basis in IPS V over F. Let G =
{g1, ...,gn} be another basis in V. Show that F is an orthonormal basis if and
only if the the matrix of change of bases either from E to G or from G to E
is a unitary matrix.

7. Prove Proposition 5.8.12

8. Prove Proposition 5.8.13

9. a. Show that A ∈ SO(2,R) is of the form A = [cos θ − sin θ
sin θ cos θ

] , θ ∈ R.

b. Show that SO(2,R) = eAS(2,R). That is, for any B ∈ AS(2,R), eB ∈
SO(2,R) , and for any A ∈ SO(n,R) one can find B ∈ AS(2,R) such that

A = eB. (Hint : Consider the power series for eB, B = [0 −θ
θ 0

].)

160



c. Show that SO(n,R) = eAS(n,R). (Hint : Use Propositions 5.8.12 and 5.8.13
and part b.)

d. Show that SO(n,R) is a path connected space. (See part e.)

e. Let V be an n-dimensional IPS over F = R with n > 1. Let p ∈ [n − 1].
Assume that {x1, ...,xp} and {y1, ...,yp} are two orthonormal systems in V.
Show that these two orthonormal systems are path connected. That is, there
are p continuous mappings zi(t) ∶ [0,1] → V, i = 1, ..., p, such that for each
t ∈ [0,1], {z1(t), ...,zp(t)} is an orthonormal system and zi(0) = xi,zi(1) =
yi, i = 1, ..., p.
(See also Problem 1.10.2-4.)

10. a. Show that Un = eAHn . (Hint : Use Proposition 5.8.10 and its proof.)

b. Show that Un is path connected.

c. Prove Problem 9e for F = C.

11. Show that

(a) D1DD
∗
1 =D, for any D ∈ D(n,C), D1 ∈ DUn.

(b) A ∈ N(n,C) if and only if A = UDU∗, U ∈ SUn, D ∈ D(n,C).
(c) A ∈ N(n,R), σ(A) ⊂ R if and only if A = UDU⊺, U ∈ SOn, D ∈ D(n,R).

12. Show that an upper triangular or a lower triangular matrix B ∈ Cn×n is normal
if and only if B is diagonal. (Hint: consider the equality (BB∗)11 = (B∗B)11.)

13. Let the assumptions of Theorem 5.8.17 hold. Show that instead of performing
the Gram-Schmidt process on v, Tv, ..., T r−1v, one can perform the following
process. Let w1 ∶= 1

∥v∥v. Assume that one already obtained i orthonormal

vectors w1, ...,wi. Let w̃i+1 ∶= Twi − ∑ij=1⟨Twi,wj⟩wj . If w̃i+1 = 0, then
stop the process, i.e. one is left with i orthonormal vectors. If wi+1 ≠ 0 then
wi+1 ∶= 1

∥w̃i+1∥w̃i+1 and continue the process. Show that the process ends after

obtaining r orthonormal vectors w1, . . . ,wr and ui = wi, for i = 1, ..., r. (This
is a version of Lanczos tridiagonalization process.)

14. Prove Proposition 5.9.4.

15. Prove Proposition 5.9.6.

16. Prove Proposition 5.9.7.

17. Prove Proposition 5.9.9.

18. Let V be a 3-dimensional IPS and T ∈ L(V) be self-adjoint. Assume that

λ1(T ) > λ2(T ) > λ3(T ), Tei = λi(T )ei, i = 1,2,3.

Let W = span{e1,e3}.

(a) Show that for each t ∈ (λ3(T ), λ1(T )), there exists W(t) ∈ Gr(1,W) such
that λ1(Q(T,W(t))) = t.
(b) Let t ∈ [λ2(T ), λ1(T )] and set U(t) = span{W(t),e2} ∈ Gr(2,V). Show
that λ2(T ) = λ2(Q(T,U(t)).

161



19. (a) Let the assumptions of Theorem 5.10.4 hold and W ∈ Gr(k − 1,V). Show
that there exists 0 ≠ x ∈ W⊥ such that ⟨x,ei⟩ = 0, for k+1, ..., n, where e1, ...,en
satisfy (5.10.3). Conclude that λ1(Q(T,W⊥)) ≥ ⟨Tx,x⟩

⟨x,x⟩ ≥ λk(T ).
(b) Let U` = span{e1, ...,e`}. Show that λ1(Q(T,U⊥` )) = λ`+1(T ), for ` =
1, ..., n − 1.

(c) Prove Theorem 5.10.4.

(d) Prove Corollary 5.10.5. (Hint: Choose U ∈ Gr(k,W) such that U ⊂
W∩span{en−`+k+1, ...,en}⊥. Then, λn−`+k(T ) ≤ λk(Q(T,U)) ≤ λk(Q(T,W)).)

20. Let B = [bij]ni,j=1 ∈ Hn and denote by A ∈ Hn−1 the matrix obtained from B
by deleting the j − th row and column.

(a) Show the Cauchy interlacing inequalities

λi(B) ≥ λi(A) ≥ λi+1(B), for i = 1, ..., n − 1.

(b) Prove the inequality λ1(B) + λn(B) ≤ λ1(A) + bii.
(Hint. Express the traces of B and A respectively in terms of eigenvalues
to obtain

λ1(B) + λn(B) = bii + λ1(A) +
n−1

∑
i=2

(λi(A) − λi(B)).

Then use the Cauchy interlacing inequalities.)

21. Let B ∈ Hn be the following 2 × 2 block matrix B = [ B11 B12

B∗
12 B22

]. Show that

λ1(B) + λn(B) ≤ λ1(B11) + λ1(B22).

(Hint. Assume that Bx = λ1(B)x,x⊺ = {x⊺1 ,x⊺2}, partitioned as B. Consider
U = span{(x⊺1 ,0)⊺, (0,x⊺2)⊺}. Analyze λ1(Q(T,U)) + λ2(Q(T,U)).)

22. Let T ∈ S(V). Denote by ι+(T ), ι0(T ), ι−(T ) the number of positive, zero
and negative eigenvalues among λ1(T ) ≥ ... ≥ λn(T ). The triple ι(T ) ∶=
(ι+(T ), ι0(T ), ι−(T )) is called the inertia of T . For B ∈ Hn, let ι(B) ∶=
(ι+(B), ι0(B), ι−(B)) be the inertia of B, where ι+(B), ι0(B), ι−(B) is the
number of positive, zero and negative eigenvalues of B, respectively. Let
U ∈ Gr(k,V). Prove the statements (a), (b), (c) and (d).

(a) Assume that λk(Q(T,U)) > 0, i.e. Q(T,U) > 0. Then, k ≤ ι+(T ). If
k = ι+(T ), then one can choose U to be an invariant subspace of V spanned
by the eigenvectors of T corresponding to positive eigenvalues of T . (Usually
such a subspace is not unique.)

(b) Assume that λk(Q(T,U)) ≥ 0, i.e. Q(T,U) ≥ 0. Then, k ≤ ι+(T ) + ι0(T ).
If k = ι+(T )+ ι0(T ), then U is the unique invariant subspace of V spanned by
the eigenvectors of T corresponding to non-negative eigenvalues of T .

(c) Assume that λ1(Q(T,U)) < 0, i.e. Q(T,U) < 0. Then, k ≤ ι−(T ). If
k = ι−(T ), then U can be chosen to be an invariant subspace of V spanned
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by the eigenvectors of T , corresponding to negative eigenvalues of T . (Usually
such a subspace may not be unique.)

(d) Assume that λ1(Q(T,U)) ≤ 0, i.e. Q(T,U) ≤ 0. Then, k ≤ ι−(T ) + ι0(T ).
If k = ι−(T ) + ι0(T ), then U is a unique invariant subspace of V spanned by
the eigenvectors of T corresponding to non-positive eigenvalues of T .

23. Let B ∈ Hn and assume that A = PBP ∗, for some P ∈ GL(n,C). Show that
ι(A) = ι(B).

24. Prove that for symmetric real matrices the signs of pivots are the signs of
eigenvalues.

25. Show the following statements:

(a) The set of hermitian matrices is not a subspace of Cn×n over C, (with the
usual addition and scalar multiplication)

(b) The set of hermitian matrices is subspace of Cn×n over R, (with the usual
addition and scalar multiplication.)

26. Let V be a complex vector space, T ∈ N(V) and f ∈ C[z]. Show the following
statements:

(a) f(T ) ∈ N(V),
(b) The minimal polynomial of T has distinct roots.

27. Let A ∈ Cn×n be a hermitian matrix. Prove that rank A equals the number of
non-zero eigenvalues of A.

5.11 Positive definite operators and matrices

To find the matrix analogues of positive (non-negative) real numbers, we introduce
positive (non-negative) definite matrices.

Definition 5.11.1 Let V be a finite dimensional IPS over F. Let S and T ∈
S(V). Then, T≻S, (T⪰S) if ⟨Tx,x⟩ > ⟨Sx,x⟩, (⟨Tx,x⟩ ≥ ⟨Sx,x⟩), for all 0 ≠ x ∈
V. Also, T is called positive (non-negative) definite if T≻0 (T⪰0), where 0 is the
zero operator in L(V).

Denote by S+(V)o and S+(V) the open set of positive definite self-adjoint operators
and the closed set of non-negative self-adjoint operators, respectively.
(S+(V)o⊂S+(V)⊂ S(V)).

Definition 5.11.2 Let P and Q be either symmetric bilinear forms or hermitian
forms. Then, Q≻P, (Q⪰P ) if Q(x,x) > P (x,x), (Q(x,x) ≥ P (x,x)), for all 0 ≠
x ∈ V. Also, Q is called positive (non-negative) definite if Q≻0 (Q⪰0), where 0 is
the zero operator in L(V).

Note that for A ∈ Cn×n, A is hermitian if and only if x∗Ax is real for all x ∈ Cn. This
suggests the following definition of positive (non-negative) definiteness for A ∈ Hn.
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Definition 5.11.3 For A and B ∈ Hn, B≻A (B⪰A) if x∗Bx > x∗Ax (x∗Bx ≥
x∗Ax), for all 0 ≠ x ∈ Cn. Moreover, B∈ Hn is called positive (non-negative) definite
if B≻0 (B⪰0). Denote by Ho

n,+ ⊂ Hn,+ ⊂ Hn the open set of positive definite n × n
hermitian matrices and the closed set of n × n non-negative hermitian matrices,
respectively. Let S+(n,R) ∶= S(n,R) ∩Hn,+, S+(n,R)o ∶= S(n,R) ∩Ho

n,+.

Use Theorem 5.10.2 to deduce the following corollary which states that all
eignevalues of a positive definite matrix (or linear operator) are strictly positive
real numbers.

Corollary 5.11.4 Let V be n-dimensional IPS and T ∈ S(V). Then, T≻0 (T⪰0)
if and only if λn(T ) > 0 (λn(T ) ≥ 0). Let S ∈ S(V) and assume that T≻S (T⪰S).
Then, λi(T ) > λi(S) (λi(T ) ≥ λi(S)), for i = 1, ..., n.

We can apply Corollary 5.11.4 to derive an equivalent definition for positive (non-
negative) definite operators as follows.
An operator is positive (non-negative) definite if it is symmetric and all its eigenval-
ues are positive (non-negative). Moreover, since the trace of a matrix is the sum of
its eigenvalues then the trace of a positive definite matrix is a positive real number.
Also, since the determinant of a matrix is the product of its eigenvalues, then the
determinant of a positive definite matrix is a positive real number. In particular,
positive definite matrices are always invertible.

Proposition 5.11.5 Let V be a finite dimensional IPS. Assume that T ∈ S(V).
Then, T⪰0 if and only if there exists S ∈ S(V) such that T = S2. Furthermore, T≻0
if and only if S is invertible. For T ∈ S(V) with T⪰0, there exists a unique S⪰0 in

S(V) such that T = S2. This S is called the square root of T and is denoted by T
1
2 .

Proof. Assume first that T⪰0. Let {e1, ...,en} be an orthonormal basis consist-
ing of eigenvectors of T as in (5.10.3). Since λi(T ) ≥ 0, i = 1, ..., n, we can define
P ∈ L(V) as follows

Pei =
√
λi(T )ei, i = 1, ..., n.

Clearly, P is self-adjoint non-negative and T = P 2.
Suppose now that T = S2, for some S ∈ S(V). Then, T ∈ S(V) and ⟨Tx,x⟩ =

⟨Sx, Sx⟩ ≥ 0. Hence, T⪰0. Clearly, ⟨Tx,x⟩ = 0 if and only if Sx = 0. Hence, T≻0
if and only if S ∈ GL(V). Suppose that S⪰0. Then, λi(S) =

√
λi(T ), i = 1, ..., n.

Furthermore, each eigenvector of S is an eigenvector of T . It is straightforward to
show that S = P , where P is defined above. Clearly, T≻0 if and only if

√
λn(T ) > 0,

i.e. if and only if S is invertible. ◻

Corollary 5.11.6 Let B ∈ Hn (or S(n,R)). Then, B⪰0 if and only there exists
A ∈ Hn (or S(n,R)) such that B = A2. Furthermore, B≻0 if and only if A is
invertible. For B⪰0, there exists a unique A⪰0 such that B = A2. This A is denoted

by B
1
2 .
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Definition 5.11.7 Let V be an IPS. Given a list of vectors x1, . . . ,xn ∈ V, the
matrix ⎡⎢⎢⎢⎢⎢⎣

⟨x1,x1⟩ ⋯ ⟨x1,xn⟩
⋮ ⋯ ⋮

⟨xn,x1⟩ ⋯ ⟨xn,xn⟩

⎤⎥⎥⎥⎥⎥⎦
is denoted by G(x1, . . . ,xn) and is called the Gramian matrix.

Theorem 5.11.8 Let V be an IPS over F. Let x1, ...,xn ∈ V. Then, the
Gramian matrix G(x1, ...,xn) ∶= (⟨xi,xj⟩)n1 is a hermitian non-negative definite ma-
trix. (If F = R, then G(x1, ...,xn) is real symmetric non-negative definite.) Also,
G(x1, ...,xn) > 0 if and only x1, ...,xn are linearly independent. Furthermore, for
any integer k ∈ [n − 1],

detG(x1, ...,xn) ≤ detG(x1, ...,xk) detG(xk+1, ...,xn). (5.11.1)

Equality holds if and only if either detG(x1, ...,xk) detG(xk+1, ...,xn) = 0 or ⟨xi,xj⟩ =
0, for i = 1, ..., k and j = k + 1, ..., n.

Proof. Clearly, G(x1, ...,xn) ∈ Hn. If V is an IPS over R then G(x1, ...,xn) ∈
S(n,R). Let a = (a1, ..., an)⊺ ∈ Fn. Then

a∗G(x1, ...,xn)a = ⟨
n

∑
i=1

aixi,
n

∑
j=1

ajxj⟩ ≥ 0.

Equality holds if and only if∑ni=1 aixi = 0. Hence, G(x1, ...,xn) ≥ 0 andG(x1, ...,xn) >
0 if and only if x1, ...,xn are linearly independent. In particular, detG(x1, ...,xn) ≥ 0
and detG(x1, ...,xn) > 0 if and only if x1, ...,xn are linearly independent.

We now prove the inequality (5.11.1). Assume first that the right-hand side of
(5.11.1) is zero. Then, either x1, ...,xk or xk+1, ...,xn are linearly dependent. Hence,
x1, ...,xn are linearly dependent and detG = 0.

Assume now that the right-hand side of (5.11.1) is positive. Hence, x1, ...,xk
and xk+1, ...,xn are linearly independent. If x1, ...,xn are linearly dependent, then
detG = 0 and strict inequality holds in (5.11.1). It is left to show the inequality
(5.11.1) and the equality case when x1, ...,xn are linearly independent. Perform the
Gram-Schmidt algorithm on x1, ...,xn as given in (5.1.1). Let Sj = span{x1, ...,xj},
for j = 1, ..., n. Corollary 5.1.1 yields that span{e1, ...,en−1} = Sn−1. Hence, yn = xn−
∑n−1
j=1 bjxj , for some b1, ..., bn−1 ∈ F. Let G′ be the matrix obtained from G(x1, ...,xn)

by subtracting from the n-th row bj times j-th row. Thus, the last row of G′ is
(⟨yn,x1⟩, ..., ⟨yn,xn⟩) = (0, ...,0, ∥yn∥2). Clearly, detG(x1, ...,xn) = detG′. Expand
detG′ by the last row to deduce

detG(x1, ...,xn) = detG(xi, ...,xn−1) ∥yn∥2 = ... =

detG(x1, ...,xk)
n

∏
i=k+1

∥yi∥2 = (5.11.2)

detG(x1, ...,xk)
n

∏
i=k+1

dist(xi, Si−1)2, k = n − 1, ...,1.

165



Perform the Gram-Schmidt process on xk+1, ...,xn to obtain the orthogonal set of
vectors ŷk+1, ..., ŷn such that

Ŝj ∶= span{xk+1, ...,xj} = span{ŷk+1, ..., ŷj}, dist(xj , Ŝj−1) = ∥ŷj∥,

for j = k + 1, ..., n, where Ŝk = {0}. Use (5.11.2) to deduce that detG(xk+1, ...,xn) =
∏n
j=k+1 ∥ŷj∥2. As Ŝj−1 ⊂ Sj−1, for j > k, it follows that

∥yj∥ = dist(xj , Sj−1) ≤ dist(xj , Ŝj−1) = ∥ŷj∥, j = k + 1, ..., n.

This shows (5.11.1). Assume now equality holds in (5.11.1). Then, ∥yj∥ = ∥ŷj∥,
for j = k + 1, ..., n. Since Ŝj−1 ⊂ Sj−1 and ŷj − xj ∈ Ŝj−1 ⊂ Sj−1, it follows that
dist(xj , Sj−1) = dist(ŷj , Sj−1) = ∥yj∥. Hence, ∥ŷj∥ = dist(ŷj , Sj−1). Part (h) of
Problem 5.1.4 yields that ŷj is orthogonal on Sj−1. In particular each ŷj is orthog-
onal to Sk, for j = k + 1, ..., n. Hence, xj ⊥ Sk, for j = k + 1, ..., n, i.e. ⟨xj ,xi⟩ = 0,
for j > k and i ≤ k. Clearly, if the last condition holds, then detG(x1, ...,xn) =
detG(x1, ...,xk) detG(xk+1, ...,xn). ◻

Note that detG(x1, ...,xn) has the following geometric meaning. Consider a
parallelepiped Π in V spanned by x1, ...,xn starting from the origin 0. That is,
Π is a convex hull spanned by the vectors 0 and ∑i∈S xi for all nonempty subsets
S ⊂ {1, ..., n}. Then,

√
detG(x1, ...,xn) is the n-volume of Π. The inequality (5.11.1)

and equalities (5.11.2) are ”obvious” from this geometrical point of view.

Corollary 5.11.9 Let 0 ≤ B = [bij]n1 ∈ Hn,+. Then

detB ≤ det [bij]k1 det [bij]nk+1, for k = 1, ..., n − 1.

For a fixed k, equality holds if and only if either the right-hand side of the above
inequality is zero or bij = 0, for i = 1, ..., k and j = k + 1, ..., n.

Proof. From Corollary 5.11.6, it follows that B = X2, for some X ∈ Hn. Let
x1, ...,xn ∈ Cn be the n-columns of XT = (x1, ...,xn). Let ⟨x,y⟩ = y∗x. Since
X ∈ Hn, we deduce that B = G(x1, ...,xn). ◻

Theorem 5.11.10 Let V be an n-dimensional IPS and T ∈ S(V), then the
following statements are equivalent
(a) T≻0.
(b) Let {g1, ...,gn} be a basis of V. Then, det(⟨Tgi,gj⟩)ki,j=1 > 0, k = 1, ..., n.

Proof. (a) ⇒ (b). According to Proposition 5.11.5, T = S2, for some S ∈ S(V)∩
GL(V). Then, ⟨Tgi,gj⟩ = ⟨Sgi, Sgj⟩. Hence, det(⟨Tgi,gj⟩)ki,j=1 = detG(Sg1, ..., Sgk).
Since, S is invertible and g1, ...,gk linearly independent, it follows that Sg1, ..., Sgk
are linearly independent. Theorem 5.11.1 implies that detG(Sg1, ..., Sgk) > 0, for
k = 1, ..., n.
(b) ⇒ (a). The proof is by induction on n. For n = 1, (a) is obvious. Assume
that (a) holds for n = m − 1. Let U ∶= span{g1, ...,gn−1} and Q ∶= Q(T,U). Then,
there exists P ∈ S(U) such that < Px,y >= Q(x,y) =< Tx,y >, for any x,y ∈ U.
By induction P≻0. Corollary 5.10.3 yields that λn−1(T ) ≥ λn−1(P ) > 0. Hence,
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T has at least n − 1 positive eigenvalues. Let e1, ...,en be given by (5.10.3). Then,
det(⟨Tei,ej⟩)ni,j=1 = ∏n

i=1 λi(T ) > 0. Let A = [apq]n1 ∈ GL(n,C) be the transformation
matrix from the basis g1, ...,gn to e1, ...,en, i.e.

gi =
n

∑
p=1

apiep, i = 1, ..., n.

It is straightforward to show that

(⟨Tgi,gj⟩)n1 = AT (⟨Tep,eq⟩)Ā⇒
(5.11.3)

det(⟨Tgi,gj⟩)n1 = det(⟨Tei,ej⟩)n1 ∣detA∣2 = ∣detA∣2
n

∏
i=1

λi(T ).

Since, det(⟨Tgi,gj⟩)n1 > 0 and λ1(T ) ≥ ... ≥ λn−1(T ) > 0, it follows that λn(T ) > 0. ◻

The following result is straightforward, its proof is left as Problem 5.12.2-1.

Proposition 5.11.11 Let V be a finite dimensional IPS over F with the inner
product ⟨⋅, ⋅⟩. Assume that T ∈ S(V). Then, T≻0 if and only if (x,y) ∶= ⟨Tx,y⟩ is
an inner product on V. Vice versa any inner product (⋅, ⋅) ∶ V × V → R is of the
form (x,y) =< Tx,y > for a unique self-adjoint positive definite operator T ∈ L(V).

Example 5.11.12 Each B ∈ Hn with B≻0 induces an inner product on Cn:
⟨x,y⟩ = y∗Bx. Each B ∈ S(n,R) with B≻0 induces an inner product on Rn: ⟨x,y⟩ =
yTBx. Furthermore, any inner product on Cn or Rn is of the above form. In
particular, the standard inner products on Cn and Rn are induced by the identity
matrix I.

5.12 Inequalities for traces

Let V be a finite dimensional IPS over F. Let T ∶ V →V be a linear operator. Then,
trT is the trace of the representation matrix A of with respect to any orthonormal
basis of V. See Problem 5.12.2-3.

Theorem 5.12.1 Let V be an n-dimensional IPS over F. Assume that S,T ∈
S(V). Then, trST is bounded from below and above by ∑ni=1 λi(S)λn−i+1(T ) and

∑ni=1 λi(S)λi(T ), respectively. Namely, we have:

n

∑
i=1

λi(S)λn−i+1(T ) ≤ trST ≤
n

∑
i=1

λi(S)λi(T ). (5.12.1)

Equality for the upper bound holds if and only if ST = TS and there exists an
orthonormal basis {x1, ...,xn} in V such that

Sxi = λi(S)xi, Txi = λi(T )xi, i = 1, ..., n. (5.12.2)

Equality for the lower bound holds if and only if ST = TS and there exists an
orthonormal basis {x1, ...,xn} of V such that

Sxi = λi(S)xi, Txi = λn−i+1(T )xi, i = 1, ..., n. (5.12.3)
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Proof. Let {y1, ...,yn} be an orthonormal basis of V such that

Tyi = λi(T )yi, i = 1, ..., n,

λ1(T ) = ... = λi1(T ) > λi1+1(T ) = ... = λi2(T ) > ... >
λik−1+1(T ) = ... = λik(T ) = λn(T ), 1 ≤ i1 < ... < ik = n.

If k = 1, then i1 = n and it follows that T = λ1I. Then, the theorem is trivial in this
case. Assume that k > 1. Then

trST =
n

∑
i=1

λi(T )⟨Syi,yi⟩ =

n−1

∑
i=1

(λi(T ) − λi+1(T ))(
i

∑
l=1

⟨Syl,yl⟩) + λn(T )(
n

∑
l=1

⟨Syl,yl⟩) =

k−1

∑
j=1

(λij(T ) − λij+1(T ))
ij

∑
l=1

⟨Syl,yl⟩ + λn(T ) trS.

Theorem 5.10.8 yields that ∑ijl=1⟨Syl,yl⟩ ≤ ∑
ij
l=1 λl(S). Substitute these inequalities

for j = 1, ..., k−1 in the above identity to deduce the upper bound in (5.12.1). Clearly
the condition (5.12.2) implies that trST is equal to the upper bound in (5.12.1). As-

sume now that trST is equal to the upper bound in (5.12.1). Then, ∑ijl=1⟨Syl,yl⟩ =
∑ijl=1 λl(S) for j = 1, ..., k−1. Theorem 5.10.8 yields that span{y1, ...,yij} is spanned
by some ij eigenvectors of S corresponding to the first ij eigenvalues of S, for
j = 1, ..., k − 1. Let {x1, ...,xi1} be an orthonormal basis of span{y1, ...,yi1} consist-
ing of the eigenvectors of S corresponding to the eigenvalues of λ1(S), ..., λi1(S).
Since any 0 ≠ x ∈ span{y1, ...,yi1} is an eigenvector of T corresponding to the eigen-
value λi1(T ), it follows that (5.12.2) holds, for i = 1, ..., i1. Consider span{y1, ...,yi2}.
The above arguments imply that this subspace contains i2 eigenvectors of S and T
corresponding to the first i2 eigenvalues of S and T . Hence, U2 is the orthogo-
nal complement of span{x1, ...,xi1} in span{y1, ...,yi2}, spanned by xi1+1, ...,xi2 ,
which are i2 − i1 orthonormal eigenvectors of S corresponding to the eigenvalues
λi1+(S), ..., λi2(S). Since any non-zero vector in U2 is an eigenvector of T corre-
sponding to the eigenvalue λi2(T ), we deduce that (5.12.2) holds for i = 1, ..., i2.
Continuing in the same manner we obtain (5.12.2).

To prove the equality case in the lower bound, consider the equality in the upper
bound for trS(−T ). ◻

Corollary 5.12.2 Let V be an n-dimensional IPS over F. Assume that S and
T ∈ S(V). Then

n

∑
i=1

(λi(S) − λi(T ))2 ≤ tr(S − T )2. (5.12.4)

Equality holds if and only if ST = TS and V has an orthonormal basis {x1, ...,xn}
satisfying (5.12.2).

Proof. Note that

n

∑
i=1

(λi(S) − λi(T ))2 = trS2 + trT 2 − 2
n

∑
i=1

λi(S)λi(T ).
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◻

Corollary 5.12.3 Let S,T ∈ Hn. Then, the inequalities (5.12.1) and (5.12.4)
hold. Equality in the upper bounds holds if and only if there exists U ∈ Un such that
S = U diagλ(S)U∗, T = U diagλ(T )U∗. Equality in the lower bound of (5.12.1) holds
if and only if there exists V ∈ Un such that S = V diagλ(S)V ∗,−T = V diagλ(−T )V ∗.

5.12.1 Worked-out Problems

1. Let V denote the vector space of real n×nmatrices. Prove that ⟨A,B⟩ = trA⊺B
is a positive definite bilinear form on V. Find an orthonormal basis for this
form.
Solution:
First note that ⟨A1 + A2,B⟩ = tr((A1 + A2)⊺B) = tr(A⊺

1B + A⊺
2B) = trA⊺

1B +
trA⊺

2B = ⟨A1,B⟩ + ⟨A2,B⟩ and ⟨cA,B⟩ = tr cA⊺B = c trA⊺B = c⟨A,B⟩, so the
form is bilinear in A. The exact same proof establishes bilinearity in B. Now,
note that ⟨0,0⟩ = 0, and

⟨A,A⟩ = trA⊺A =
n

∑
i=1

(A⊺A)ii =
n

∑
i=1

n

∑
j=1

(A⊺)ijAji =
n

∑
i=1

n

∑
j=1

A2
ij > 0,

for A ≠ 0, so the form is positive definite and bilinear.
For the next part, let Mij be the matrix with a 1 in the (i, j) entry and 0’s
elsewhere. We claim that Mij for 1 ≤ i, j ≤ n forms the desired orthonormal
basis; it is clear that these matrices form a basis for V. Then, note that for
(a, b) ≠ (x, y) we have

⟨Mab,Mxy⟩ = tr(M⊺
abMxy) =

n

∑
i=1

(M⊺
abMxy)ii =

n

∑
i=1

n

∑
j=1

(M⊺
ab)ij(Mxy)ji =

n

∑
i=1

n

∑
j=1

δajδbiδxjδyi = 0,

where δ is the Kronecker delta function and where we’ve used the fact that a
term in the sum is non-zero only when a = x = j and b = y = i, which never
occurs. Thus, this basis is orthogonal. Furthermore, we find

⟨Mab,Mab⟩ = tr(M⊺
abMab) = trMbb = 1,

since M⊺
abMab =Mbb. Therefore, Mij ’s form the desired orthonormal basis.

5.12.2 Problems

1. Show Proposition 5.11.11.

2. Consider the Hölder inequality

n

∑
l=1

xlylal ≤ (
n

∑
l=1

xpl al)
1
p (

n

∑
l=1

yql al)
1
q , (5.12.5)

for any x = (x1, . . . , xn)⊺,y = (y1, . . . , yn)⊺,a = (a1, . . . , an) ∈ Rn+ and p, q ∈
(1,∞) such that 1

p +
1
q = 1.
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(a) Let A ∈ Hn,+,x ∈ Cn and 0 ≤ i < j < k be three integers. Show that

x∗Ajx ≤ (x∗Aix)
k−j
k−i (x∗Akx)

j−i
k−i . (5.12.6)

(Hint: Diagonalize A.)

(b) Assume that A = eB, for some B ∈ Hn. Show that (5.12.6) holds for any
three real numbers i < j < k.

3. Let V be an n-dimensional IPS over F.

(a) Assume that T ∶ V → V is a linear transformation. Show that for any
orthonormal basis {x1, ...,xn},

trT =
n

∑
i=1

⟨Txi,xi⟩.

Furthermore, if F = C, then trT is the sum of the n eigenvalues of T .

(b) Let S,T ∈ S(V). Show that trST = trTS ∈ R.

4. Let A ∈ Rm×n and rank A = n. Show that A⊺A is positive definite.

5. Let A ∈ Rn×n be symmetric. Show that eA is symmetric and positive definite.

6. Show that a matrix A ∈ Fm×n is positive definite if it is symmetric and all its
pivots are positive.
(Hint: Use Problem 5.10.2-24.)

7. Determine whether the following matrices are positive definite.

(a) A =
⎡⎢⎢⎢⎢⎢⎣

−2 1 0
−1 2 −1
0 1 2

⎤⎥⎥⎥⎥⎥⎦

(b) B =
⎡⎢⎢⎢⎢⎢⎣

2 −1 0
−1 2 1
0 1 2

⎤⎥⎥⎥⎥⎥⎦
(Hint: Use Problem 5.10.2-24 and Problem 5.12.2-4.)

5.13 Schur’s Unitary Triangularization

Schur’s unitary triangularization theorem says that every matrix is unitarily equiv-
alent to a triangular matrix. Precisely, it reals as follows. (See Theorem 5.8.7)

Theorem 5.13.1 Let A ∈ Fn×n. Then, there exists a unitary U ∈ Fn×n and an
upper triangular Λ ∈ Fn×n such that A = UΛU∗. The diagonal entries of Λ are the
eigenvalues of A. (Here F = C.)
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Proof. by induction on n: The results holds for n = 1. Assume that n > 1 and
the statement holds for matrices of order n−1. Let A ∈ Fn×n and λ be an eigenvalue
of it, and x1 ∈ Fn be a corresponding eigenvector with ∥x1∥2 = 1. Extend x1 to an
orthonormal basis {x1, . . . ,xn} of Fn. Set U1 = [x1, . . . ,xn]. Then U1 is unitary and

U∗
1AU1 = [λ y⊺

0 A1
] ,

where A1 ∈ F(n−1)×(n−1). By induction hypothesis, there exists a unitary U2 ∈
F(n−1)×(n−1) such that U∗

2A1U2 is upper triangular. Set U = U1 diag(1, U2) ∈ Fn×n.
Then, U is unitary and

U∗AU = [λ y⊺U2

0 U∗
2A1U2

] = Λ,

is upper triangular. The diagonal entries of the upper triangular matrix Λ are the
eigenvalues of A. ◻

5.14 Singular Value Decomposition

Singular value decomposition is based on a theorem which says that a rectangular
matrix A can be broken down into the product of three matrices; a unitary matrix
U , a diagonal matrix Σ, and the transpose of a unitary matrix V.

Let U and V be two finite dimensional IPS over F, with the inner products
⟨⋅, ⋅⟩U and ⟨⋅, ⋅⟩V, respectively. Let {u1, ...,um} and {v1, ...,vn} be bases in U and
V, respectively. Let T ∶ V →U be a linear operator. In these bases, T is represented
by a matrix A = [aij] ∈ Fm×n as given by

Tvj =
m

∑
i=1

aijui, j = 1, . . . , n.

Let T ∗ ∶ U∗ = U → V∗ = V. Then, T ∗T ∶ V → V and TT ∗ ∶ U → U are self-adjoint
operators. As

⟨T ∗Tv,v⟩V = ⟨Tv, Tv⟩V ≥ 0, ⟨TT ∗u,u⟩U = ⟨T ∗u, T ∗u⟩U ≥ 0,

it follows that T ∗T⪰0, TT ∗⪰0. Assume that:

T ∗Tci = λi(T ∗T )ci, ⟨ci,ck⟩V = δik, i, k = 1, ..., n, (5.14.1)

λ1(T ∗T ) ≥ ... ≥ λn(T ∗T ) ≥ 0,

TT ∗dj = λj(TT ∗)dj , ⟨dj ,dl⟩U = δjl, j, l = 1, ...,m, (5.14.2)

λ1(TT ∗) ≥ ... ≥ λm(TT ∗) ≥ 0,

Proposition 5.14.1 Let U and V be two finite dimensional IPS over F and
T ∶ V → U be a linear transformation. Then, rank T = rank T ∗ = rank T ∗T =
rank TT ∗ = r. Furthermore, the self-adjoint non-negative definite operators T ∗T
and TT ∗ have exactly r positive eigenvalues, and

λi(T ∗T ) = λi(TT ∗) > 0, i = 1, ..., rank T. (5.14.3)
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Moreover, for i ∈ [r], Tci and T ∗di are eigenvectors of TT ∗ and T ∗T corresponding
to the eigenvalue λi(TT ∗) = λi(T ∗T ), respectively. Furthermore, if c1, ...,cr satisfy
(5.14.1), then d̃i ∶= Tci

∣∣Tci∣∣ , i = 1, ..., r satisfies (5.14.2), for i = 1, ..., r. Similar result
holds for d1, ...,dr.

Proof. Clearly, Tx = 0 if and only if ⟨Tx, Tx⟩ = 0 if and only if T ∗Tx = 0.
Hence

rank T ∗T = rank T = rank T ∗ = rank TT ∗ = r.
Thus, T ∗T and TT ∗ have exactly r positive eigenvalues. Let i ∈ [r]. Then, T ∗Tci ≠
0. Hence, Tci ≠ 0. (5.14.1) yields that TT ∗(Tci) = λi(T ∗T )(Tci). Similarly,
T ∗T (T ∗di) = λi(TT ∗)(T ∗di) ≠ 0. Hence, (5.14.3) holds. Assume that c1, ...,cr
satisfy (5.14.1). Let d̃1, ..., d̃r be defined as above. By the definition, ∣∣d̃i∣∣ = 1, i =
1, ..., r. Assume that 1 ≤ i < j ≤ r. Then

0 = ⟨ci,cj⟩ = λi(T ∗T )⟨ci,cj⟩ = ⟨T ∗Tci,cj⟩ = ⟨Tci, Tcj⟩ ⇒ ⟨d̃i, d̃j⟩ = 0.

Hence, {d̃1, ..., d̃r} is an orthonormal system. ◻

Definition 5.14.2 Let

Rn↘ ∶= {x = (x1, . . . , xn)⊺ ∈ Rn;x1 ≥ x2 ≥ ⋯ ≥ xn}.

For x = (x1, . . . , xn)⊺ ∈ Rn, let x = (x1, . . . , xn)⊺ ∈ Rn↘ be the unique rearrangement
of the coordinates of x in a decreasing order. That is, there exists a permutation π
in [n] such that xi = xπ(i), i = 1, . . . , n.
Let x = (x1, . . . , xn)⊺, y = (y1, . . . , yn)⊺ ∈ Rn. Then x is weakly majorized by y (or
y weakly majorizes x), denoted by x ⪯, if

k

∑
i=1

xi ≤
k

∑
i=1

yi, k = 1, . . . , n.

Also, x is majorized by y, denoted by x ≺ y, x ⪯ y and ∑ni=1 xi = ∑ni=1 yi.

Theorem 5.14.3 (Hardy-Littlewood-Pólya) Let x,y ∈ Rn. Then x ≺ y if
and only if there exists A ∈ Ωn such that x = Ay, [7].

Let

σi(T ) =
√
λi(T ∗T ), for i = 1, ...r, σi(T ) = 0 for i > r,

(5.14.4)

σ(p)(T ) ∶= (σ1(T ), ..., σp(T ))⊺ ∈ Rp↘, p ∈ N.

Then, σi(T ) = σi(T ∗), i = 1, ...,min(m,n) are called the singular values of T
and T ∗, respectively. Note that the singular values are arranged in a decreasing
order. The positive singular values are called principal singular values of T and T ∗,
respectively. Note that

∣∣Tci∣∣2 = ⟨Tci, Tci⟩ = ⟨T ∗Tci,ci⟩ = λi(T ∗T ) = σ2
i ⇒

∣∣Tci∣∣ = σi, i = 1, ..., n,

∣∣T ∗dj ∣∣2 = ⟨T ∗dj , T ∗dj⟩ = ⟨TT ∗dj ,di⟩ = λi(TT ∗) = σ2
j ⇒

∣∣Tdj ∣∣ = σj , j = 1, ...,m.
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Let {c1, ...cn} be an orthonormal basis of V satisfying (5.14.1). Choose an orthonor-
mal basis {d1, ...,dm} as follows:
Set di ∶= Tci

σi
, i = 1, ..., r. Then, complete the orthonormal set {d1, ...,dr} to an or-

thonormal basis of U. Since span{d1, ...,dr} is spanned by all eigenvectors of TT ∗

corresponding to non-zero eigenvalues of TT ∗, it follows that kerT ∗ = span{dr+1, ...,dm}.
Hence, (5.14.2) holds. In these orthonormal bases of U and V, the operators T and
T ∗ are represented quite simply:

Tci = σi(T )di, i = 1, ..., n, where di = 0, for i >m,
(5.14.5)

T ∗dj = σj(T )cj , j = 1, ...,m, where cj = 0, for j > n.

Let

Σ = [sij]m,ni,j=1, sij = 0, for i ≠ j, sii = σi, for i = 1, ...,min(m.n). (5.14.6)

In the case m ≠ n, we call Σ a diagonal matrix with the diagonal σ1, ..., σmin(m,n).
Then, in the bases [d1, ...,dm] and [c1, ...,cn], T and T ∗ are represented by the
matrices Σ and Σ⊺, respectively.

Lemma 5.14.4 Let U, V, T , Σ, [c1, ...,cn] and [d1, ...,dm] be as above. As-
sume that

(i) T is presented by the matrix A ∈ Fm×n (then T ∗ is presented by A∗.)

(ii) U ∈ U(m) is the unitary matrix representing the change of basis [d1, ...,dm]
to [c1, ...,cn].

(iii) V ∈ U(n) is the unitary matrix representing the change of basis [u1, ...,um] to
[v1, ...,vn].

(iv) {u1, . . . ,um} is an orthonormal set.

(v) {v1, . . . ,vn} is an orthonormal set.

Then
A = UΣV ∗ ∈ Fm×n. (5.14.7)

Proof. By the definition, Tvj = ∑mi=1 aijui. Let U = [uip]mi,p=1, V = [vjq]nj,q=1.
Then

Tcq =
n

∑
j=1

vjqTvj =
n

∑
j=1

vjq
m

∑
i=1

aijui =
n

∑
j=1

vjq
m

∑
i=1

aij
m

∑
p=1

ūipdp.

Use the first equality of (5.14.5) to deduce that U∗AV = Σ. ◻

Definition 5.14.5 (5.14.7) is called the singular value decomposition (SVD) of
A.
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Theorem 5.14.6 (Singular value decomposition) Let A ∈ Fm×n where F =
R or C. Then there exists a factorization, called singular value decomposition of A
of the form

A = UΣV ∗,

where U ∈ U(m), V ∈ U(n) and Σ ∈ Fm×n is a matrix with non-negative real entries
in its diagonal.

Proof. It is immediate from Lemma 5.14.4. ◻

Proposition 5.14.7 For the field F, denote by Rm,n,k(F) ⊂ Fm×n the set of all
matrices of rank k ∈ [min(m,n)] at most. Then, A ∈ Rm,n,k(F) if and only if A can
be expressed as a sum of at most k matrices of rank 1. Furthermore, Rm,n,k(F) is
a variety in Fm×n given by the polynomial conditions: Each (k + 1) × (k + 1) minor
of A is equal to zero. (By variety one means a set of points in Fn satisfying a finite
number of polynomial equation.)

For the proof see Problem 5.14.2-2.

Definition 5.14.8 Let A ∈ Cm×n and assume that A has the SVD given by
(5.14.7), where U = [u1, . . . ,um] and V = [v1, . . . ,vn]. Denote by Ak ∶= ∑ki=1 σiuiv

∗
i ∈

Cm×n, for k = 1, . . . , rank A. For k > rank A, we define Ak ∶= A (= Arank A).

Note that for 1 ≤ k < rank A, the matrix Ak is uniquely defined if and only if
σk > σk+1. (See Problem 5.14.2-1.)

An m ×m matrix B is called an m ×m principal submatrix of an n × n matrix
A, if B is obtained from A by removing n −m rows and the same n −m columns.
Let B be a square submatrix of A. Then, detB is called a minor of A. Moreover,
detB is called a principal minor of order m if B is an m×m principal submatrix of
A.

Theorem 5.14.9 For the field F and A = [aij] ∈ Fm×n, the following conditions
hold:

∣∣A∣∣F ∶=
√

trA∗A =
√

trAA∗ =

¿
ÁÁÀrank A

∑
i=1

σi(A)2. (5.14.8)

∣∣A∣∣2 ∶= max
x∈Fn,∣∣x∣∣2=1

∣∣Ax∣∣2 = σ1(A). (5.14.9)

min
B∈Rm,n,k(F)

∣∣A −B∣∣2 = ∣∣A −Ak∣∣ = σk+1(A), k = 1, ..., rank A − 1. (5.14.10)

σi(A) ≥ σi((aipjq)m
′,n′

p=1,q=1) ≥ σi+(m−m′)+(n−n′)(A),
(5.14.11)

m′ ∈ [m], n′ ∈ [n], 1 ≤ i1 < ... < im′ ≤m, 1 ≤ j1 < ... < jn′ ≤ n.

Proof. The proof of (5.14.8) is left as Problem 5.14.2-7. We now show the
equality in (5.14.9). View A as an operator A ∶ Cn → Cm. From the definition of
∣∣A∣∣2, it follows

∣∣A∣∣22 = max
0≠x∈Rn

x∗A∗Ax

x∗x
= λ1(A∗A) = σ1(A)2,
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which proves (5.14.9).
We now prove (5.14.10). In the SVD of A, assume that U = {u1, ...,um} and

V = {v1, ...,vn}. Then, (5.14.7) is equivalent to the following representation of A:

A =
r

∑
i=1

σiuiv
∗
i , u1, ...,ur ∈ Rm, v1, ...,vr ∈ Rn, u∗i uj = v∗i vj = δij , i, j = 1, ..., r,

(5.14.12)
where r = rank A. Let B = ∑ki=1 σiuiv

∗
i ∈ Rm,n,k. Then, in view of (5.14.9)

∣∣A −B∣∣2 = ∣∣
r

∑
k+1

σiuiv
∗
i ∣∣2 = σk+1.

Let B ∈ Rm,n,k. To show (5.14.10), it is enough to show that ∣∣A −B∣∣2 ≥ σk+1. Let

W ∶= {x ∈ Rn ∶ Bx = 0}.

Then codim W ≥ k. Furthermore

∣∣A −B∣∣22 ≥ max
∣∣x∣∣2=1,x∈W

∣∣(A −B)x∣∣2 = max
∣∣x∣∣2=1,x∈W

x∗A∗Ax ≥ λk+1(A∗A) = σ2
k+1,

where the last inequality follows from the min-max characterization of λk+1(A∗A).
Let C = [aijq]m,n

′

i,q=1. Then, C∗C is a principal submatrix of A∗A of dimension n′.
The interlacing inequalities between the eigenvalues of A∗A and C∗C yield (5.14.11),

for m′ =m. Let D = (aipjq)m
′,n′

p,q=1 . Then, DD∗ is a principle submatrix of CC∗. Use
the interlacing properties of the eigenvalues of CC∗ and DD∗ to deduce (5.14.11). ◻

We now restate the above materials for linear operators.

Definition 5.14.10 Let U and V be finite dimensional vector spaces over F.
For k ∈ Z+, denote Lk(V,U) ∶= {T ∈ L(V,U) ∶ rank T ≤ k}. Assume furthermore
that U and V are IPS. Let T ∈ L(V,U) and assume that the orthonormal bases
of [d1, . . . ,dm] and [c1, . . . ,cn] of U and V, respectively satisfy (5.14.5). Define
T0 ∶= 0 and Tk ∶= T , for an integer k ≥ rank T . Let k ∈ [rank T − 1]. Define
Tk ∈ L(V,U) by the equality Tk(v) = ∑ki=1 σi(T )⟨v,ci⟩di, for any v ∈ V.

It is straightforward to show that Tk ∈ Lk(V,U) and Tk is unique if and only
if σk(T ) > σk+1(T ). See Problem 5.14.2-8. Theorem 5.14.9 yields the following
corollary:

Corollary 5.14.11 Let U and V be finite dimensional IPS over F and T ∶ V →
U be a linear operator. Then

∣∣T ∣∣F ∶=
√

trT ∗T =
√

trTT ∗ =

¿
ÁÁÀrank T

∑
i=1

σi(T )2. (5.14.13)

∣∣T ∣∣2 ∶= max
x∈V,∣∣x∣∣2=1

∣∣Tx∣∣2 = σ1(T ). (5.14.14)

min
Q∈Lk(V,U)

∣∣T −Q∣∣2 = σk+1(T ), k = 1, ..., rank T − 1. (5.14.15)
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5.15 Characterizations of singular values

Theorem 5.15.1 For the field F, assume that A ∈ Fm×n. Define

H(A) = [ 0 A
A∗ 0

] ∈ Hm+n(F). (5.15.1)

Then

λi(H(A)) = σi(A), λm+n+1−i(H(A)) = −σi(A), i = 1, ..., rank A,

(5.15.2)

λj(H(A)) = 0, j = rank A + 1, ..., n +m − rank A.

View A as an operator A ∶ Fn → Fm. Choose orthonormal bases [d1, ...,dm] and
[c1, ...,cn] in Fm and Fn, respectively satisfying (5.14.5). Then

[ 0 A
A∗ 0

] [di
ci

] = σi(A) [di
ci

] , [ 0 A
A∗ 0

] [ di
−ci

] = −σi(A) [ di
−ci

] ,

i = 1, ..., rank A, (5.15.3)

kerH(A) = span{(d∗r+1,0)∗, ..., (d∗m,0)∗, (0,c∗r+1)∗, ..., (0,c∗n)∗}, r = rank A.

Proof. It is straightforward to show the equalities (5.15.3). Since all the eigen-
vectors appearing in (5.15.3) are linearly independent, we deduce (5.15.2). ◻

Corollary 5.15.2 For the field F, assume that A ∈ Fm×n. Let Â ∶= A[α,β] ∈
Fp×q be a submatrix of A, formed by the set of rows and columns α ∈ Qp,m, β ∈ Qq,n,
respectively. Then

σi(Â) ≤ σi(A) for i = 1, . . . . (5.15.4)

For l ∈ [rank A], the equalities σi(Â) = σi(A), i = 1, . . . , l hold if and only if there
exist two orthonormal systems of l right and left singular vectors c1, . . . ,cl ∈ Fn,
d1, . . . ,dl ∈ Fn satisfying (5.15.3), for i = 1, . . . , l such that the non-zero coordinates
vectors c1, . . . ,cl and d1, . . . ,dl are located at the indices β and α, respectively. (See
Problem 5.14.2-10.)

Corollary 5.15.3 Let V and U be two IPS over F. Assume that W is a
subspace of V, T ∈ L(V,U) and denote by T̂ ∈ L(W,U) the restriction of T
to W. Then, σi(T̂ ) ≤ σi(T ), for any i ∈ N. Furthermore, σi(T̂ ) = σi(T ), for
i = 1, . . . , l ≤ rank T if and only if U contains a subspace spanned by the first l right
singular vectors of T . (See Problem 5.14.2-11.)

We now translate Theorem 5.15.1 to the operator setting.

Lemma 5.15.4 Let U and V be two finite dimensional IPS spaces with the
inner products ⟨⋅, ⋅⟩U, ⟨⋅, ⋅⟩V, respectively. Define W ∶= V⊕U as the induced IPS by

⟨(y,x), (v,u)⟩W ∶= ⟨y,v⟩V + ⟨x,u⟩U.

Let T ∶ V →U be a linear operator and T ∗ ∶ U →V be the adjoint of T . Define the
operator

T̂ ∶ W →W, T̂ (y,x) ∶= (T ∗x, Ty). (5.15.5)
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Then, T̂ is self-adjoint operator and T̂ 2 = T ∗T ⊕ TT ∗. Hence, the spectrum of T̂ is
symmetric with respect to the origin and T̂ has exactly 2rank T non-zero eigenvalues.
More precisely, if dimU =m,dimV = n then:

λi(T̂ ) = −λm+n−i+1(T̂ ) = σi(T ), for i = 1, . . . , rank T, (5.15.6)

λj(T̂ ) = 0, for j = rank T + 1, . . . , n +m − rank T.

Let {d1, . . . ,dmin(m,n)} ∈ Fr(min(m,n),U) and {c1, . . . ,cmin(m,n)} ∈ Fr(min(m,n),V)
be the set of vectors satisfying (5.14.5). Define

zi ∶=
1√
2
(ci,di),zm+n−i+1 ∶=

1√
2
(ci,−di), i = 1, . . . ,min(m,n). (5.15.7)

Then, {z1,zm+n, . . . ,zmin(m,n),zm+n−min(m,n)+1} ∈ Fr(2 min(m,n),W). Furthermore,

T̂zi = σi(T )zi and T̂zm+n−i+1 = −σi(T )zm+n−i+1, for i = 1, . . . ,min(m,n).

The proof is left as Problems 5.14.2-12.

Theorem 5.15.5 Let U and V be finite dimensional IPS over C, with dimU =
m, dimV = n and T ∶ V →U be a linear operator. Then, for each k ∈ [min(m,n)],
we have

k

∑
i=1

σi(T ) = max
{f1,...,fk}∈Fr(k,U),{g1,...,gk}∈Fr(k,V)

k

∑
i=1

R⟨Tgi, fi⟩U = (5.15.8)

max
{f1,...,fk}∈Fr(k,U),{g1,...,gk}∈Fr(k,V)

k

∑
i=1

∣⟨Tgi, fi⟩U∣.

R stands for the real part of a complex number
Furthermore, ∑ki=1 σi(T ) = ∑ki=1 R⟨Tgi, fi⟩U, for some two k-orthonormal frames
Fk = {f1, ..., fk},Gk = {g1, ...,gk} if and only span{(g1, f1), . . . , (gk, fk)} is spanned
by k eigenvectors of T̂ corresponding to the first k eigenvalues of T̂ .

Proof. Assume that {f1, ..., fk} ∈ Fr(k,U) and {g1, ...,gk} ∈ Fr(k,V). Let
wi ∶= 1√

2
(gi, fi), i = 1, . . . , k. Then, {w1, . . . ,wk} ∈ Fr(k,W). A straightforward

calculation shows ∑ki=1⟨T̂wi,wi⟩W = ∑ki=1 R⟨Tgi, fi⟩U. The maximal characteriza-
tion of ∑ki=1 λi(T̂ ), (Theorem 5.10.8), and (5.15.6) yield the inequality ∑ki=1 σi(T̂ ) ≥
∑ki=1 R⟨Tgi, fi⟩U for k ∈ [min(m,n)]. Let c1, . . . ,cmin(m,n) and d1, . . . ,dmin(m,n)
satisfy (5.14.5). Then, Lemma 5.15.4 yields that ∑ki=1 σi(T̂ ) = ∑ki=1 R⟨Tci,di⟩U, for
k ∈ [min(m,n)]. This proves the first equality of (5.15.8). The second equality of
(5.15.8) is straightforward. (See Problem 5.14.2-13).
Assume now that ∑ki=1 σi(T ) = ∑ki=1 R⟨Tgi, fi⟩U, for some two k-orthonormal frames
Fk = {f1, ..., fk},Gk = {g1, ...,gk}. Define w1, . . . ,wk as above. The above ar-
guments yield that ∑ki=1⟨T̂wi,wi⟩W = ∑ki=1 λi(T̂ ). Theorem 5.10.8 implies that
span{(g1, f1), . . . , (gk, fk)} is spanned by k eigenvectors of T̂ corresponding to the
first k eigenvalues of T̂ . Vice versa, assume that {f1, ..., fk} ∈ Fr(k,U),{g1, ...,gk} ∈
Fr(k,V) and span{(g1, f1), . . . , (gk, fk)} is spanned by k eigenvectors of T̂ corre-
sponding to the first k eigenvalues of T̂ . Define {w1, . . . ,wk} ∈ Fr(W) as above.
Then, span{w1, . . . ,wk} contains k linearly independent eigenvectors corresponding
to the first k eigenvalues of T̂ . Theorem 5.10.8 and Lemma 5.15.4 conclude that
σi(T ) = ∑ki=1⟨T̂wi,wi⟩W = ∑ki=1 R⟨Tgi, fi⟩U. ◻
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Theorem 5.15.6 Let U and V be m and n dimensional IPS spaces with dimU =
m and dimV = n. Assume that S and T ∶ V →U be two linear operators. Then

R tr(S∗T ) ≤
min(m,n)
∑
i=1

σi(S)σi(T ). (5.15.9)

Equality holds if and only if there exist two orthonormal sets {d1, . . . ,dmin(m,n)} ∈
Fr(min(m,n),U) and {c1, . . . ,cmin(m,n)} ∈ Fr(min(m,n),V) such that

Sci = σi(S)di, Tci = σi(T )di, S∗di = σi(S)ci, T ∗di = σi(T )ci, i = 1, . . . ,min(m,n).
(5.15.10)

Proof. Let A,B ∈ Cn×m. Then
trB∗A = trAB∗. Hence, 2R trAB∗ = trH(A)H(B). Therefore, 2R trS∗T = tr ŜT̂ .
Use Theorem 5.12.1, for Ŝ, T̂ and Lemma 5.15.4 to deduce (5.15.9). Equality in
(5.15.9) holds if and only if tr ŜT̂ = ∑m+ni=1 λi(Ŝ)λi(T̂ ).
Clearly, the assumptions that {d1, . . . ,dmin(m,n)} ∈ Fr(min(m,n),U), {c1, . . . ,cmin(m,n)} ∈
Fr(min(m,n),V) and the equalities (5.15.10) imply equality in (5.15.9).
Assume equality in (5.15.9). Theorem 5.12.1 and the definitions of Ŝ and hatT
yield the existence {d1, . . . ,dmin(m,n)} ∈ Fr(min(m,n),U) and {c1, . . . ,cmin(m,n)} ∈
Fr(min(m,n),V), such that (5.15.10) hold. ◻

Theorem 5.15.7 Let U and V be finite dimensional IPS over F and T ∶ V →U
be a linear operator. Then

min
Q∈Lk(V,U)

∣∣T −Q∣∣F =

¿
ÁÁÀrank T

∑
i=k+1

σ2
i (T ), k = 1, ..., rank T − 1. (5.15.11)

Furthermore, ∣∣T − Q∣∣F =
√
∑rank T
i=k+1 σ2

i (T ), for some Q ∈ Lk(V,U), k < rank T , if
and only there Q = Tk, where Tk is defined in Definition 5.14.10.

Proof. Use Theorem 5.15.6 to deduce that for any Q ∈ L(V,U) one has

∣∣T −Q∣∣2F = trT ∗T − 2R trQ∗T + trQ∗Q ≥
rank T

∑
i=1

σ2
i (T ) − 2

k

∑
i=1

σi(T )σi(Q) +
k

∑
i=1

σ2
i (Q) =

k

∑
i=1

(σi(T ) − σi(Q))2 +
rank T

∑
i=k+1

σ2
i (T ) ≥

rank T

∑
i=k+1

σ2
i (T ).

Clearly, ∣∣T − Tk∣∣2F = ∑rank T
i=k+1 σ2

i (T ). Hence, (5.15.11) holds. Vice versa if Q ∈
Lk(V,U) and ∣∣T −Q∣∣2F = ∑rank T

i=k+1 σ2
i (T ), then the equality case in Theorem 5.15.6

implies that Q = Tk. ◻

Corollary 5.15.8 For the field F, let A ∈ Fm×n. Then

min
B∈Rm,n,k(F)

∣∣A −B∣∣F =

¿
ÁÁÀrank A

∑
i=k+1

σ2
i (A), k = 1, ..., rank A − 1. (5.15.12)
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Furthermore, ∣∣A − B∣∣F =
√
∑rank A
i=k+1 σ2

i (A), for some B ∈ Rm,n,k(F), k < rank A, if
and only if B = Ak, where Ak is defined in Definition 5.14.8.

Theorem 5.15.9 For the matrix A ∈ Fm×n, we have

min
B∈Rm,n,k(F)

j

∑
i=1

σi(A−B) =
k+j
∑
i=k+1

σi(A), j = 1, ...,min(m,n)−k, k = 1, . . . ,min(m,n)−1.

(5.15.13)

Proof. Clearly, for B = Ak, we have the equality ∑ji=1 σi(A−B) = ∑k+ji=k+1 σi(A).
Let B ∈ Rm,n,k(F). Assume that X ∈ Gr(k,Cn) is a subspace which contains the
columns of B. Let W = {(0⊺,x⊺)⊺ ∈ Fm+n,x ∈ X}. Observe that for any z ∈ W⊥,
one has the equality z∗H((A − B))z = z∗H(A)z. Combine Theorems 5.10.9 and
5.15.1 to deduce ∑ji=1 σi(B −A) ≥ ∑k+ji=k+1 σi(A). ◻

Theorem 5.15.10 Let V be an n-dimensional IPS over C and T ∶ V → V
be a linear operator. Assume the n eigenvalues of T λ1(T ), . . . , λn(T ) are ar-
ranged the order ∣λ1(T )∣ ≥ . . . ≥ ∣λn(T )∣. Let λa(T ) ∶= (∣λ1(T )∣, . . . , ∣λn(T )∣),σ(T ) ∶=
(σ1(T ), . . . , σn(T )). Then, λa(T ) ⪯ σ(T ). That is

k

∑
i=1

∣λi(T )∣ ≤
k

∑
i=1

σi(T ), i = 1, . . . , n. (5.15.14)

Furthermore, ∑ki=1 ∣λi(T )∣ = ∑ki=1 σi(T ), for some k ∈ [n] if and only if the following
conditions are satisfied. There exists an orthonormal basis {x1, . . . ,xn} of V such
that:

1. Txi = λi(T )xi, T ∗xi = λi(T )xi, for i = 1, . . . , k.

2. Denote by S ∶ U → U the restriction of T to the invariant subspace U =
span{xk+1, . . . ,xn}. Then, ∣∣S∣∣2 ≤ ∣λk(T )∣.

Proof. Use Theorem 5.8.14 to choose an orthonormal basis {g1, . . . ,gn} of V
such that T is represented by an upper diagonal matrix A = [aij] ∈ Cn×n such
that aii = λi(T ), i = 1, . . . , n. Let εi ∈ C, ∣εi∣ = 1 such that ε̄iλi(T ) = ∣λi(T )∣, for
i = 1, . . . , n. Let S ∈ L(V) be presented in the basis {g1, . . . ,gn} by a diagonal
matrix diag(ε1, . . . , εk,0, . . . ,0). Clearly, σi(S) = 1, for i = 1, . . . , k and σi(S) = 0, for
i = k + 1, . . . , n. Furthermore, R trS∗C = ∑ki=1 ∣λi(T )∣. Hence, Theorem 5.15.6 yields
(5.15.14).
Assume now that ∑ki=1 ∣λi(T )∣ = ∑ki=1 σi(T ). Hence, equality sign holds in (5.15.9).
Hence, there exist two orthonormal bases {c1, . . . ,cn} and {d1, . . . ,dn} in V such
that (5.15.10) holds. It easily follows that {c1, . . . ,ck} and {d1, . . . ,dk} are or-
thonormal bases of W ∶= span{g1, . . . ,gk}. Hence, W is an invariant subspace
of T and T ∗. Then, A = A1 ⊕ A2, i.e. A is a block diagonal matrix. Thus,
A1 = [aij]ki,j=1 ∈ Ck×k,A2 = [aij]ni,j=k+1 ∈ C(n−k)×(n−k) represent the restriction of
T to W,U ∶= W⊥, denoted by T1 and T2, respectively. Hence, σi(T1) = σi(T ),
for i = 1, . . . , k. Note that the restriction of S to W, denoted by S1 is given
by the diagonal matrix D1 ∶= diag(ε1, . . . , εk) ∈ U(k). Next, (5.15.10) yields that
S−1

1 T1ci = σi(T )ci, for i = 1, . . . , k, i.e. σ1(T ), . . . , σk(T ) are the eigenvalues of S−1
1 T1.
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Clearly, S−1
1 T1 is presented in the basis [g1, . . . ,gk] by the matrix D−1

1 A1, which is
a diagonal matrix with ∣λ1(T )∣, . . . , ∣λk(T )∣ on the main diagonal. That is, S−1

1 T1

has eigenvalues ∣λ1(T )∣, . . . , ∣λk(T )∣. Therefore, σi(T ) = ∣λi(T )∣, for i = 1, . . . , k.
Theorem 5.14.9 yields that

trA∗
1A1 =

k

∑
i,j=1

∣aij ∣2 =
k

∑
i=1

σ2
i (A1) =

k

∑
i=1

σ2
i (T1) =

k

∑
i=1

∣λi(T )∣2.

As λ1(T ), . . . , λk(T ) are the diagonal elements of A1, it follows from the above
equality that A1, is a diagonal matrix. Hence, we can choose xi = gi, for i = 1, . . . , n
to obtain the part 1 of the equality case.
Let Tx = λx, where ∣∣x∣∣ = 1 and ρ(T ) = ∣λ∣. Recall that ∣∣T ∣∣2 = σ1(T ), where
σ1(T )2 = λ1(T ∗T ) is the maximal eigenvalue of the self-adjoint operator T ∗T . The
maximum characterization of λ1(T ∗T ) yields that ∣λ∣2 = ⟨Tx, Tx⟩ = ⟨T ∗Tx,x⟩ ≤
λ1(T ∗T ) = ∣∣T ∣∣22. Hence, ρ(T ) ≤ ∣∣T ∣∣2.
Assume now that ρ(T ) = ∣∣T ∣∣2. If ρ(T ) = 0, then ∣∣T ∣∣2 = 0. This means T = 0
and theorem holds trivially in this case. Assume that ρ(T ) > 0. Hence, the eigen-
vector x1 ∶= x is also the eigenvector of T ∗T corresponding to λ1(T ∗T ) = ∣λ∣2.
Hence, ∣λ∣2x = T ∗Tx = T ∗(λx), which implies that T ∗x = λ̄x. Let U = span(x)⊥
be the orthogonal complement of span(x). Since T span(x) = span(x), it follows
that T ∗U ⊆ U. Similarly, since T ∗span(x) = span(x), then TU ⊆ U. Thus,
V = span(x) ⊕U and span(x) and U are invariant subspaces of T and T ∗. Hence,
span(x) and U are invariant subspaces of T ∗T and TT ∗. Let T1 be the restriction of
T to U. Then, T ∗1 T1 is the restriction of T ∗T . Therefore, ∣∣T1∣∣22 ≥ λ1(T ∗T ) = ∣∣T ∣∣22.
The above result implies the equality ρ(T ) = ∣∣T ∣∣2. ◻

Corollary 5.15.11 Let U be an n-dimensional IPS over C and T ∶ U→U be a
linear operator. Denote by ∣λ(T )∣ = (∣λ1(T )∣, ..., ∣λn(T )∣)T the absolute eigenvalues
of T , (counting with their multiplicities), arranged in a decreasing order. Then,
∣λ(T )∣ = (σ1(T ), ..., σn(T ))⊺ if and only if T is a normal operator.

5.15.1 Worked-out Problems

1. Let A ∈ Cn×n and σ1(A) ≥ ⋯ ≥ σn(A) ≥ 0 be the singular values of A. Let
λ1(A), . . . , λn(A) be the eigenvalues of A listed with their multiplicities and
∣λ1(A)∣ ≥ ⋯ ≥ ∣λn(A)∣.

(a) Show that ∣λ1(A)∣ ≤ σ1(A).
(b) What is a necessary and sufficient condition for the equality ∣λ1(A)∣ =

σ1(A)?
(c) Is it true that σn(A) ≤ ∣λn(A)∣?
(d) Show that ∑ni=1 σi(A)2 ≥ ∑ni=1 ∣λi(A)∣2.

Solution:

(a) Let Ax = λ1(A)x, for ∥x∥ = 1. Then, ∥Ax∥ = ∣λ1(A)∣∥x∥ = ∣λ1(A)∣ ≤
max∥y∥=1(∥Ay∥) = σ1(A).
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(b) Equality holds if and only if A∗Ax = λ1(A∗A)x, i.e. A∗x = λ1x and
∣λ1(A)∣ = σ1(A).

(c) Yes. We have σn(A)2 = min
∥y∥=1

y∗A∗Ay. Now, Ay = λn(A)y, ∥y∥ = 1.

Hence, σn(A)2 ≤ ∣λn(A)∣2.

(d) Let B = UAU∗, where U is unitary and B is upper-triangular. If B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 b12 . . . b1n
0 λ2 b23 . . . b2n
0 0 ⋱ ⋮
⋮ ⋮ ⋮
0 . . . 0 λn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [bij], then trBB∗ = ∑ni,j=0 ∣bij ∣2 = ∑ni=1 ∣λi(B)∣2+

∑ni=2∑nj=i+1 ∣bij ∣2 = ∑ni=1 σi(B)2. Then, ∑ni=1 ∣λi(B)∣2 ≤ ∑ni=1 σi(B)2.

2. Find the SVD of A = [3 2 2
2 3 −2

].

Solution:
First, we compute the singular values σi by finding the eigenvalues of AA⊺.

AA⊺ = [17 8
8 17

] .

The characteristic polynomial is det(AA⊺−zI) = z2−34z+225 = (z−25)(z−9),
so the singular values are σ1 =

√
25 = 5 and σ2 =

√
9 = 3.

Now we find an orthonormal set of eigenvectors of A⊺A. The eigenvalues of
A⊺A are 25, 9, and 0, and since A⊺A is symmetric we know that the eigenvec-
tors will be orthogonal.
For λ = 25, we have

A⊺A − 25I =
⎡⎢⎢⎢⎢⎢⎣

−12 12 2
12 −12 −2
2 −2 −17

⎤⎥⎥⎥⎥⎥⎦
,

which has the row reduced form

⎡⎢⎢⎢⎢⎢⎣

1 −1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
. A unit-length vector in the kernel

of that matrix is v1 =

⎡⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

0

⎤⎥⎥⎥⎥⎥⎥⎦

.

For λ = 9, we have A⊺A−9I =
⎡⎢⎢⎢⎢⎢⎣

4 12 2
12 4 −2
2 −2 −1

⎤⎥⎥⎥⎥⎥⎦
, which row-reduces to

⎡⎢⎢⎢⎢⎢⎣

1 0 −1
4

0 1 1
4

0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

A unit-length vector in the kernel is v2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1√
18

− 1√
18

4√
18

⎤⎥⎥⎥⎥⎥⎥⎦

.

For λ = 0, we have A⊺A−0I =
⎡⎢⎢⎢⎢⎢⎣

13 12 2
12 13 −2
2 −2 8

⎤⎥⎥⎥⎥⎥⎦
, which row-reduces to

⎡⎢⎢⎢⎢⎢⎣

1 0 2
0 1 −2
0 0 0

⎤⎥⎥⎥⎥⎥⎦
.
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A unit-length vector in its kernel is

⎡⎢⎢⎢⎢⎢⎣

2
3
−2

3
−1

3

⎤⎥⎥⎥⎥⎥⎦
.

So at this point, we know that

A = UΣV ⊺ = U [5 0 0
0 3 0

]

⎡⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

0
1√
18

− 1√
18

4√
18

2
3 −2

3 −1
3

⎤⎥⎥⎥⎥⎥⎥⎦

.

Finally, we can compute U by the formula σui = Avi. This gives U =
⎡⎢⎢⎢⎢⎣

1√
2

1√
2

1√
2

− 1√
2

⎤⎥⎥⎥⎥⎦
.

So the SVD is:

A = UΣV ⊺ =
⎡⎢⎢⎢⎢⎣

1√
2

1√
2

1√
2

− 1√
2

⎤⎥⎥⎥⎥⎦
[5 0 0
0 3 0

]

⎡⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

0
1√
18

− 1√
18

4√
18

2
3 −2

3 −1
3

⎤⎥⎥⎥⎥⎥⎥⎦

.

5.15.2 Problems

1. Let U and V be two finite dimensional inner product spaces. Assume that
T ∈ L(U,V). Show that for any complex number t ∈ C, σi(tT ) = ∣t∣σi(T ), for
all i.

2. Prove Proposition 5.14.7. (Use SVD to prove the nontrivial part of the Propo-
sition.)

3. Let A ∈ Cm×n and assume that U ∈ Um and V ∈ Vn. Show that σi(UAV ) =
σi(A), for all i.

4. Let A ∈ GL(n,C). Show that σ1(A−1) = σn(A)−1.

5. Let U and V be two IPS of dimensions m and n, respectively. Assume that

U = U1 ⊕U2,dimU1 =m1,dimU2 =m2,U1 ⊥U2,

V = V1 ⊕V2,dimV1 = n1,dimV2 = n2,V1 ⊥V2.

Suppose furthermore that T ∈ L(V,U), TV1 ⊆ U1 and TV2 ⊆ U2. Let
Ti ∈ L(Vi,Ui) be the restriction of T to Vi, for i = 1,2. Then, rank T =
rank T1 + rank T2 and {σ1(T ), . . . , σrank T (T )} = {σ1(T1), . . . , σrank T1(T1)} ∪
{σ1(T2), . . . , σrank T2(T2)}.

6. Let the assumptions of the Definition 5.14.8 hold. Show that for 1 ≤ k < rank A,
Ak is uniquely defined if and only if σk > σk+1.

7. Prove the equalities in (5.14.8).

8. Let the assumptions of Definition 5.14.10 hold. Show that for k ∈ [rank T − 1],
rank Tk = k and Tk is unique if and only if σk(T ) > σk+1(T ).
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9. Let V be an n-dimensional IPS. Assume that T ∈ L(V) is a normal operator.
Let λ1(T ), . . . , λn(T ) be the eigenvalues of T arranged in the order ∣λ1(T )∣ ≥
. . . ≥ ∣λn(T )∣. Show that σi(T ) = ∣λi(T )∣, for i = 1, . . . , n.

10. Let the assumptions of Corollary 5.15.2 hold.

(a) Since rank Â ≤ rank A, show that the inequalities (5.15.4) reduce to
σi(Â) = σi(A) = 0 for i > rank A.

(b) Since H(Â) is a submatrix of H(A), use the Cauchy interlacing principle
to deduce the inequalities (5.15.4) for i = 1, . . . , rank A. Furthermore, if
p′ ∶=m−#α, q′ = n−#β, then the Cauchy interlacing principle gives the
complementary inequalities σi(Â) ≥ σi+p′+q′(A) for any i ∈ N.

(c) Assume that σi(Â) = σi(A), for i = 1, . . . , l ≤ rank A. Compare the
maximal characterization of the sum of the first k eigenvalues of H(Â)
and H(A) given by Theorem 5.10.8, for k = 1, . . . , l to deduce the last
part of Corollary (5.15.2).

11. Prove Corollary 5.15.3 by choosing any orthonormal basis in U, an orthonor-
mal basis in V whose first dimW elements span W, and using Problem 10.

12. Prove Lemma 5.15.4.

13. Under the assumptions of Theorem 5.15.5, show the equalities.

max
{f1,...,fk}∈Fr(k,U),{g1,...,gk}∈Fr(k,V)

k

∑
i=1

R⟨Tgi, fi⟩U =

max
{f1,...,fk}∈Fr(k,U),{g1,...,gk}∈Fr(k,V)

k

∑
i=1

∣⟨Tgi, fi⟩U∣.

14. Let U and V be and finite dimensional IPS. Assume that P and T ∈ L(U,V).
Show that R tr(P ∗T ) ≥ −∑min(m,n)

i=1 σi(S)σi(T ). Equality holds if and only if
S = −P and T satisfies the conditions of Theorem 5.15.6.

15. Show that if A,B ∈ Fm×n and B is a submatrix of A, then ∥B∥∞ ≤ ∥A∥∞.

16. Let A ∈ Fm×n be with singular value decomposition UΣV ∗.

(a) Show that ∥A∥2 = σ1 (the largest singular value).

(b) If A is invertible, show that

∥A−1∥2 =
1

σn
.

17. Show that the singular values of a positive definite hermitian matrix are the
same as its eigenvalues.
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5.16 Moore-Penrose generalized inverse

The purpose of constructing a generalized inverse is to obtain a matrix that can
serve as the inverse in some sense for a wider class of matrices than invertible ones.
A generalized inverse exists for an arbitrary matrix A ∈ Cm×n.
Let A ∈ Cm×n. Then, (5.14.12) is called the reduced SVD of A. It can be written as

A = UrΣrV
∗
r , r = rank A, Σr ∶= diag(σ1(A), . . . , σr(A)) ∈ Sr(R),

(5.16.1)

Ur = [u1, . . . ,ur] ∈ Cm×r, Vr = [v1, . . . ,vr] ∈ Cn×r, U∗
r Ur = V ∗

r Vr = Ir, .

Note that

AA∗ui = σi(A)2ui,A
∗Avi = σi(A)2vi,

vi =
1

σi(A)A
∗ui,ui =

1

σi(A)Avi, i = 1, . . . , r.

Then
A� ∶= VrΣ−1

r U
∗
r ∈ Cn×m, (5.16.2)

is the Moore-Penrose generalized inverse of A. If A ∈ Rm×n, then we assume that
U ∈ Rm×r and V ∈ Rn×r, i.e. U and V are real values matrices over the real numbers
R.

Theorem 5.16.1 Let A ∈ Cm×n. Then, the Moore-Penrose generalized inverse
A� ∈ Cn×m satisfies the following properties.

1. rank A = rank A�.

2. A�AA� = A�, AA�A = A, A∗AA� = A�AA∗ = A∗.

3. A�A and AA� are Hermitian non-negative definite idempotent matrices, i.e.
(A�A)2 = A�A and (AA�)2 = AA�, having the same rank as A.

4. The least square solution of Ax = b, i.e. the solution of the system A∗Ax =
A∗b, has a solution y = A�b. This solution has the minimal norm ∣∣y∣∣, for all
possible solutions of A∗Ax = A∗b.

5. If rank A = n, then A� = (A∗A)−1A∗. In particular, if A ∈ Cn×n is invertible
then A� = A−1.

To prove the above theorem we need the following proposition.

Proposition 5.16.2 Let E ∈ Cl×m and G ∈ Cm×n. Then
rank EG ≤ min(rank E, rank G). If l = m and E is invertible, then rank EG =
rank G. If m = n and G is invertible, then rank EG = rank E.

Proof. Let e1, . . . ,em ∈ Cl,g1, . . . ,gn ∈ Cm be the columns of E and G, respec-
tively. Then, rank E = dim span{e1, . . . ,el}. Observe that EG = [Eg1, . . . ,Egn] ∈
Cl×n. Clearly Egi is a linear combination of the columns of E. Hence, Egi ∈
span{e1, . . . ,el}. Therefore, span{Eg1, . . . ,Egn} ⊆ span{e1, . . . ,el}, which implies
that rank EG ≤ rank E. Note that (EG)T = GTET . Hence
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rank EG = rank (EG)T ≤ rank GT = rank G. Thus
rank EG ≤ min(rank E, rank G). Suppose E is invertible. Then, rank EG ≤ rank G =
rank E−1(EG) ≤ rank EG. It follows rank EG = rank G. Similarly, rank EG =
rank E if G is invertible. ◻

Proof of Theorem 5.16.1.

1. Proposition 5.16.2 yields that rank A� = rank VrΣ
−1
r U

∗
r ≤ rank Σ−1

r U
∗
r ≤ rank Σ−1

r =
r = rank A. Since Σr = V ∗

r A
�Ur, Proposition 5.16.2 implies that rank A� ≥

rank Σ−1
r = r. Hence, rank A = rank A�.

2. AA� = (UrΣrV
∗
r )(VrΣ−1

r U
∗
r ) = UrΣrΣ

−1
r U

∗
r = UrU∗

r . Hence

AA�A = (UrU∗
r )(UrΣrV

∗
r ) = UrΣV ∗

r = A.

Hence A∗AA� = (VrΣrU
∗
r )(UrU∗

r ) = A∗. Similarly A�A = VrV ∗
r and A�AA� =

A�,A�AA∗ = A∗.

3. Since AA� = UrU∗
r , we deduce that (AA�)∗ = (UrU∗

r )∗ = (U∗
r )∗U∗

r = AA�, i.e.
AA� is Hermitian. Next, (AA�)2 = (UrU∗

r )2 = (UrU∗
r )(UrU∗

r ) = (UrU∗
r ) = AA�,

i.e. AA� is idempotent. Thus, AA� is non-negative definite. As AA� = UrIrU∗
r ,

the arguments of part 1 yield that rank AA� = r. Similar arguments apply to
A�A = VrV ∗

r .

4. Since A∗AA� = A∗, it follows that A∗A(A�b) = A∗b, i.e. y = A�b is a least
square solution. It is left to show that if A∗Ax = A∗b, then ∣∣x∣∣ ≥ ∣∣A�b∣∣ and
equality holds if and only if x = A�b.
We now consider the system A∗Ax = A∗b. To analyze this system, we use the
full form of SVD given in (5.14.7). It is equivalent to

(V ΣTU∗)(UΣV ∗)x = V ΣTU∗b. Multiplying by V ∗, we obtain the system
ΣTΣ(V ∗x) = ΣT (U∗b). Let z = (z1, . . . , zn)T ∶= V ∗x,

c = (c1, . . . , cm)T ∶= U∗b. Note that z∗z = x∗V V x = x∗x, i.e. ∣∣z∣∣ = ∣∣x∣∣. After
these substitutions, the least square system in z1, . . . , zn variables is given in
the form σi(A)2zi = σi(A)ci, for i = 1, . . . , n. Since σi(A) = 0, for i > r, we
obtain that zi = 1

σi(A)ci, for i = 1, . . . , r while zr+1, . . . , zn are free variables.

Thus, ∣∣z∣∣2 = ∑ri=1
1

σi(A)2 + ∑
n
i=r+1 ∣zi∣2. Hence, the least square solution with

the minimal length ∣∣z∣∣ is the solution with zi = 0, for i = r + 1, . . . , n. This
solution corresponds to the x = A�b.

5. Since rank A∗A = rank A = n, it follows that A∗A is an invertible matrix.
Hence, the least square solution is unique and is given by x = (A∗A)−1A∗b.
Thus, for each b one has (A∗A)−1A∗b = A�b, hence A� = (A∗A)−1A∗.
If A is an n×n invertible matrix, it follows that (A∗A)−1A∗ = A−1(A∗)−1A∗ =
A−1. ◻

5.16.1 Worked-out Problems

1. A linear transformation T on a vector space V is called a projection if T 2 = T .
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(a) Show that if T is a projection on V, then so is I − T , where I is the
identity operator on V.

(b) Show that if T is a projection on V, then V = kerT ⊕ ImT .

(c) Show that if T is a projection on T , its only possible eigenvalues are 0
and 1.

(d) Show that if T is a projection on V and V is finite-dimensional, then T
is diagonalizable.

Solution:

(a) For any v ∈ V, (I−T )2v = (I−T )(I−T )v = (I−T )(v−Tv) = v−Tv−T (v−
Tv) = v −Tv −Tv +T 2v. Using T 2 = T , this reduces to v −Tv = (I −T )v.
So, (I − T )2 = I − T and I − T is a projection, too.

(b) For any v ∈ V, of course Tv ∈ Im(T ). Now, T (v − Tv) = Tv − T 2v = 0, so
v −Tv ∈ ker(T ). As v = (v −Tv) +Tv, we have v ∈ ker(T ) + Im(T ) and so
V = ker(T ) + Im(T ).
To show the sum is direct, suppose that v ∈ ker(T )∩Im(T ). Then, Tv = 0
and also v = Tw, for some w ∈ V. Then, 0 = Tv = T (Tw) = T 2w = Tw = v.
So ker(T ) ∩ Im(T ) = {0}, and thus V = ker(T ) ⊕ Im(T ).

(c) One can do this directly, using the definition of eigenvalues. Supposing
that λ is an eigenvalue of the projection T , we have Tv = λv, for some
non-zero vector v. Then, T 2v = T (Tv) = T (λv) = λTv = λ2v. But as
T 2 = T , this is also Tv = λv; since v ≠ 0, λ2 = λ and so λ is either 0 or 1.

(d) Since V = ker(T )⊕ Im(T ), if we choose a basis for ker(T ) and a basis for
Im(T ), together they form a basis for V. Clearly, each element of the
basis for ker(T ) is an eigenvector corresponding to 0. Also, any vector
in the basis for Im(T ) is v = Tw, for some w ∈ V; as such Tv = T 2w =
Tw = 1v and so an eigenvector corresponding to 1. We have a basis of V
consisting of eigenvectors, so T is diagonalizable.

5.16.2 Problems

1. A matrix P ∈ Rn×n is called an orthogonal projection if P is a projection and
a symmetric matrix. Let V ⊆ Rn be the subspace spanned by the columns
of P . Show that for any a ∈ Rn and b ∈ PV the following inequality holds:
∣∣a − b∣∣ ≥ ∣∣a − Pa∣∣. Furthermore, equality holds if and only if b = Pa. That
is, Pa is the orthogonal projection of a on the column space of P .

2. Let A ∈ Rm×n and assume that the SVD of A is given by (5.14.7), where
U ∈ O(m,R), V ∈ O(n,R).

(a) What is the SVD of AT ?

(b) Show that (AT )� = (A�)T .

(c) Suppose that B ∈ Rl×m. Is it true that (BA)� = A�B�? Justify!

3. Let A ∈ Cm×n. Show that

(a) N(A∗) = N(A�).
(b) R(A∗) = R(A�).
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Chapter 6

Perron-Frobenius theorem

The Perron-Frobenius theorem provides a simple characterization of the eigenvec-
tors and eigenvalues of certain types of matrices called non-negative matrices in
particular irreducible and primitive matrices. The importance of this theorem lies
in the fact the eigenvalue problems on these types of matrices aries in many different
fields of mathematics. As an example of applications of Perron-Frobenius theorem,
at the end of this chapter, we will show that it can be used as a tool to give a
generalization of Kepler’s Theorem.

6.1 Perron-Frobenius theorem

Denote by Rm×n+ , the set of matrices A = [aij]m,ni,j=1, where each entry aij ∈ R, aij ≥ 0.
We denote a non-negative matrix by A ≥ 0. We say that A is a non-zero non-negative
if A ≥ 0 and A ≠ 0. This is denoted by A ≩ 0. We say that A is a positive matrix
if all the entries of A are positive, i.e. aij > 0, for all i, j. We denote that by A > 0.
Similar notation is for vectors, i.e. n = 1. From now on, we assume that all matrices
are square matrices unless stated otherwise. A non-negative square matrix A ∈ Rn×n+
is called irreducible, if (I +A)n−1 > 0. A non-negative matrix is called primitive if
Ap > 0, for some positive integer p.

Theorem 6.1.1 (Perron-Frobenius) Let A ∈ Rn×n+ . Denote by ρ(A), the
spectral radius of A, i.e. the maximum of the absolute values of the eigenvalues
of A. Then, the following conditions hold.

1. ρ(A) is an eigenvalue of A.

2. There exists x ≩ 0 such that Ax = ρ(A)x.

3. Assume that λ is an eigenvalue of A, λ ≠ ρ(A) and ∣λ∣ = ρ(A). Then,
index (λ) ≤ index (ρ(A)). Furthermore, ζ = λ

ρ(A) is a root of unity of order n
at most, i.e. ζm = 1, for some m with m ≤ n.

4. Suppose that A is primitive. Then, ρ(A) > 0 and ρ(A) is a simple root of
the characteristic polynomial, and there exists x > 0 such that Ax = ρ(A)x.
Furthermore, if λ is an eigenvalue of A different from ρ(A), then ∣λ∣ < ρ(A).

5. Suppose that A is irreducible. Then, ρ(A) > 0 and ρ(A) is a simple root of
the characteristic polynomial and there exists x > 0 such that Ax = ρ(A)x. Let
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λ0 ∶= ρ(A), λ1, . . . , λm−1 be all distinct eigenvalues of A satisfying ∣λ∣ = ρ(A).
Then, all these eigenvalues are simple roots of the characteristic polynomial of

A. Furthermore, λj = ρ(A)ζj, for j = 0, . . . ,m−1, where ζ = e 2πi
m is a primitive

m−th root of 1. Finally, the characteristic polynomials of ζA and A are equal.

We first prove this result for symmetric non-negative matrices.

Proposition 6.1.2 Let A = A⊺ ≥ 0 be a symmetric matrix with non-negative
entries. Then, the conditions of Theorem 6.1.1 hold.

Proof. Recall that A is diagonalizable by an orthogonal matrix. Hence, the
index of each eigenvalue of A is 1. Next, recall that each eigenvalue is given by the
Rayleigh quotient x⊺Ax

x⊺x . For x = (x1, . . . , xn)⊺, let ∣x∣ ∶= (∣x1∣, . . . , ∣xn∣)⊺. Note that

x⊺x = ∣x∣⊺∣x∣. Also ∣x⊺Ax∣ ≤ ∣x∣⊺A∣x∣. Hence, ∣x⊺Axx⊺x ∣ ≤ ∣x∣⊺A∣x∣
∣x∣⊺∣x∣ . Thus, the maximum

of the Rayleigh quotient is achieved for some x ≩ 0. This shows that ρ(A) is an
eigenvalue of A, and there exists an eigenvector x ≩ 0 corresponding to A.

Suppose that A > 0. Then, Ax = ρ(A)x,x ≩ 0. So, Ax > 0. Hence, ρ(A) > 0
and x > 0. Assume that there exists another eigenvector y, which is not collinear
with x, corresponding to ρ(A). Then, y can be chosen to be orthogonal to the
positive eigenvector x corresponding to ρ(A), i.e. x⊺y = 0. Hence, y has positive
and negative coordinates. Therefore

∣y
⊺Ay

y⊺y
∣ < ∣y∣⊺A∣y∣

∣y∣⊺∣y∣ ≤ ρ(A).

This gives the contradiction ρ(A) < ρ(A). Therefore, ρ(A) is a simple root of the
characteristic polynomial of A. In a similar way, we deduce that each eigenvalue λ
of A, different from ρ(A), satisfies ∣λ∣ < ρ(A).

Since the eigenvectors of Ap are the same as A, we deduce the same results if A is
a non-negative symmetric matrix which is primitive. Suppose that A is irreducible.
Then, (tI+A)n−1 > 0, for any t > 0. Clearly, ρ(tI+A) = ρ(A)+t. Hence, the eigenvec-
tor corresponding to ρ(A) is positive. Therefore, ρ(A) > 0. Each eigenvalue of tI+A
is of the form λ + t, for some eigenvalue λ of A. Since (tI +A) is primitive for any
t > 0, it follows that ∣λ+ t∣ < ρ(A)+ t. Let t→ 0+ to deduce that ∣λ∣ ≤ ρ(A). Since all
the eigenvalues of A are real, we can have an equality for some eigenvalue λ ≠ ρ(A)

if and only if λ = −ρ(A). This will be the case if A has the form C = [ 0 B
B⊺ 0

], for

some B ∈ Rm×l+ . It can be shown that if A is a symmetric irreducible matrix such
that −ρ(A) is an eigenvalue of A, then A = PCP ⊺, for some permutation matrix P .
We already showed that C and −C have the same eigenvalues, counted with their
multiplicities. Hence, −A and A have the same characteristic polynomial. ◻

Recall the `∞ norm on Cn and the corresponding operator norm on Cn×n:

∥(x1, . . . , xn)⊺∥∞ ∶= max
i∈[n]

∣xi∣, ∥A∥∞ ∶= max
∥x∥∞≤1

∥Ax∥∞, A ∈ Cn×n. (6.1.1)

Lemma 6.1.3 Let A = [aij]i,j∈[n] ∈ Cn×n. Then

∥A∥∞ = max
i∈[n]

∑
j∈[n]

∣aij ∣. (6.1.2)
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Proof. Let a ∶= maxi∈[n]∑j∈[n] ∣aij ∣. Assume that ∥(x1, . . . , xn)⊺∥ ≤ 1. Then

∣(Ax)i∣ = ∣ ∑
j∈[n]

aijxj ∣ ≤ ∑
j∈[n]

∣aij ∣ ∣xj ∣ ≤ ∑
j∈[n]

∣aij ∣ ≤ a,

for each i ∈ [n]. Hence, ∥A∥∞ ≤ a.
From the definition of a, it follows that a = ∑j∈[n] ∣akj ∣, for some k ∈ [n]. Let

xj be a complex number of modulus 1, i.e. xj = 1, such that ∣akj ∣ = akjxj , for each
j ∈ [n]. Let x = (x1, . . . , xn)⊺. Clearly ∥x∥∞ = 1. Furthermore, a = ∑j∈[n] akjxj .
Hence, maxi∈[n] ∥Ax∥∞ ≥ a. Therefore a = ∥A∥∞. ◻

Definition 6.1.4 Let A = [aij] ∈ Cn×n. Denote ∣A∣ ∶= [∣aij ∣] ∈ Rn×n+ . For x =
(x1, . . . , xn)⊺ ≥ 0, define r(A,x) ∶= min{t ≥ 0, ∣A∣x ≤ tx}.

(Note that r(A,x) may take a value ∞.) It is straightforward to show that

r(A,x) ∶= max
i∈[n]

∑j∈[n] ∣aij ∣xj
xi

, for x > 0. (6.1.3)

Lemma 6.1.5 Let A = [aij] ∈ Cn×n and 1 ∶= (1, . . . ,1)⊺ ∈ Cn. Then

1. ∥A∥∞ = r(A,1).

2. Assume that x = (x1, . . . , xn)⊺ > 0. Then, each eigenvalue λ of A satisfies
∣λ∣ ≤ r(A,x). That is, ρ(A) ≤ r(A,x). In particular

ρ(A) ≤ ∥A∥∞. (6.1.4)

Proof. The statement ∥A∥∞ = r(A,1) follows straightforward from the definition
of ∥A∥∞ and r(A,1).

We now show (6.1.4). Assume that Az = λz, where z = (z1, . . . , zn)⊺ ∈ Cn ∖ {0}.
Without loss of generality, we may assume that ∣zk∣ = ∥z∥∞ = 1, for some k ∈ [n].
Then

∣λ∣ = ∣λzk∣ = ∣(Az)k∣ ≤
n

∑
j=1

∣akj ∣ ∣zj ∣ ≤
n

∑
j=1

∣akj ∣ ≤ ∥A∥∞.

Assume that x = (x1, . . . , xn)⊺ > 0. Let D = diag(x1, . . . , xn). Define A1 ∶= D−1AD.
A straightforward calculation shows that r(A,x) = r(A1,1) = ∥A1∥∞. Clearly, A
and A1 are similar. Use (6.1.4) for A1 to deduce that ∣λ∣ ≤ r(A,x). ◻

Lemma 6.1.6 Let A ∈ Rn×n+ . Then, r(A,x) ≥ r(A, (I +A)x).

Proof. As Ax ≤ r(A,x)x, we deduce

A((I +A)x) = (I +A)(Ax) ≤ (I +A)(r(A,x)x) = r(A,x)A((I +A)x)).

The definition of r(A, (I +A)x) yields the lemma. ◻

The next result is a basic step in the proof of Theorem 6.1.1 and is due to
Wielandt, e.g., [7].
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Theorem 6.1.7 Let A ∈ Rn×n+ be an irreducible matrix. Then

ρ(A) = min
x>0

r(A,x) > 0. (6.1.5)

Equality holds if and only if Ax = ρ(A)x. There is a unique positive eigenvector
x > 0 corresponding to ρ(A), up to a multiple by a constant. (This eigenvector is
called Perron-Frobenius eigenvector) That is, rank (ρ(A)I −A) = n − 1. Any other
real eigenvector of A corresponding to λ ≠ ρ(A) has two coordinates with opposite
signs.

Proof. Since for any a > 0 and x > 0, we have that r(A,ax) = r(A,x), it is
enough to assume that x is a probability vector, i.e. ∥x∥1 = ∑ni=1 xi = 1. Clearly, Πn,
the set of all probability vectors in Rn, is a compact set. (Problem 1.13.2-7) We
now consider the extremal problem

r(A) ∶= inf
x∈Πn

r(A,x). (6.1.6)

We claim that this infimum is achieved for some y ∈ Πn. As r(A,x) ≥ 0, for x ≥ 0, it
follows that there exists a sequence xm ∈ Πn such limm→∞ r(A,xm) = r(A). Clearly,
r(A,xm) ≥ r(A). Hence, by considering a subsequence if necessary, we can assume
that r(A,xm) is a nonincreasing sequence, i.e., r(A,xl) ≥ r(A,xm), for m > l. Thus,
r(A,xl)xm ≥ r(A,xm)xm ≥ Axm. As limm→∞ xm = y, it follows that r(A,xl)y ≥ Ay.
Hence, r(A,xl) ≥ r(A,y) ⇒ r(A) ≥ r(A,y). From the definition of r(A), we deduce
that r(A) ≤ r(A,y). Hence, r(A) = r(A,y).

Assume first that y is not an eigenvector of A. Let z ∶= r(A)y −Ay. So z ≥ 0
and z ≠ 0. Since A is irreducible, then (I +A)n−1 > 0. Hence, (I +A)n−1z > 0. This
is equivalent to

r(A)((I +A)n−1y) > (I +A)n−1(Ay) = A((I +A)n−1y).

Let u ∶= (I + A)n−1y. Then, the above inequality yields that r(A,u) < r(A). Let
v = bu ∈ Πn, for a corresponding b > 0. So r(A,v) = r(A,u) < r(A). This contradicts
the definition of r(A). Hence, Ay = r(A)y. Clearly, (I +A)n−1y = (1 + r(A))n−1y.
As y ∈ Πn and (I +A)n−1 > 0, it follows that (I +A)n−1y > 0. Hence, y > 0. Part 2
of Lemma 6.1.5 yields that ρ(A) ≤ r(A,y) = r(A). As r(A) is an eigenvalue of A, it
follows that r(A) = ρ(A). Since A is irreducible, A ≠ 0. Hence r(A) = r(A,y) > 0.
Combine the definition of r(A) with the fact that Ay = r(A)y to deduce (6.1.5).

We next claim that rank (ρ(A)I−A) = n−1, i.e. the dimension of the eigenspace
of A corresponding to A is one. Assume to the contrary that w ∈ Rn is an eigenvector
of A corresponding to ρ(A) which is not collinear with y, i.e. w ≠ ty, for any t ∈ R.
Consider w + ty. Since y > 0 for t ≫ 0 and −t ≫ 0, we have that w + ty > 0 and
w + ty < 0, respectively. Hence, there exists t0 ∈ R such that u ∶= w + t0y ≥ 0 and at
least one of the coordinates of u equals zero. As w and y are linearly independent,
it follows that u ≠ 0. Also, Au = ρ(A)u. Since A is irreducible, we obtain that
(1 + ρ(A))n−1u = (I + A)n−1u > 0. This contradicts the assumption that u has at
least one zero coordinates.

Suppose finally that Av = λv, for some λ ≠ ρ(A) and v ≠ 0. Observe that
A⊺ ≥ 0 and (I +A⊺)n−1 = ((I +A)n−1)⊺ > 0. That is, A⊺ is irreducible. Hence, there
exists u > 0 such that A⊺u = ρ(A⊺)u. Recall that ρ(A⊺) = ρ(A). Consider now

190



u⊺Av = λu⊺v = ρ(A)u⊺v. As ρ(A) ≠ λ, we deduce that u⊺v = 0. As u > 0, it follows
that v has two coordinates with opposite signs. ◻

We now give the full proof of Theorem 6.1.1. We use the following well-known
result for the roots of monic polynomials of complex variables [15].

Lemma 6.1.8 (Continuity of the roots of a polynomial) Let p(z) = zn +
a1z

n−1+. . .+an be a monic polynomial of degree n with complex coefficients. Assume
that p(z) = ∏n

j=1(z−zj(p)). Given ε > 0, then there exists δ(ε) > 0 such that for each

coefficient vector b = (b1, . . . , bn) satisfying ∑nj=1 ∣bj − aj ∣2 < δ(ε)2 one can rearrange

the roots of q(z) = zn+ b1zn−1+ . . .+ bn = ∏n
j=1(z−zj(q)) such that ∣zj(q)−zj(p)∣ < ε,

for each j ∈ [n].

Corollary 6.1.9 Assume that Am ∈ Cn×n converges to A ∈ Cn×n, m ∈ N. Then,
limm→∞ ρ(Am) = ρ(A). That is, the function ρ(⋅) ∶ Cn×n → [0,∞), that assigns to
each A its spectral radius, is a continuous function.

Proof of 1. and 2. of Theorem 6.1.1. Assume that A ∈ Rn×n+ , i.e. A
has non-negative entries. Let Jn ∈ Rn×n+ be a matrix whose all entries are 1. Let
Am = A+ 1

mJn, for m ∈ N. Then, each Am is a positive matrix and limm→∞Am = A.
Corollary 6.1.9 yields that limm→∞ ρ(Am) = ρ(A). Clearly, each Am is irreducible.
Hence, by Theorem 6.1.7, there exists a probability vector xm ∈ Πn such that
Amxm = ρ(Am)xm. As Πn is compact, there exists a subsequence mk, k ∈ N such
that limk→∞ xmk = x ∈ Πn. Consider the equalities Amkxmk = ρ(Amk)xmk . Let
k → ∞ to deduce that Ax = ρ(A)x. So ρ(A) is an eigenvector of A with a corre-
sponding probability vector x. ◻
In what follows, we need the following lemma:

Lemma 6.1.10 Let B ∈ Cn×n and assume that rank B = n − 1. Then, adj B =
uv⊺ ≠ 0, where Bu = B⊺v = 0. Suppose furthermore that A ∈ Rn×n+ and ρ(A) is a
geometrically simple eigenvalue, i.e. rank B = n − 1, where B = ρ(A)In −A. Then,
adj B = uv⊺ and u,v ≩ 0 are the eigenvectors of A and A⊺ corresponding to the
eigenvalue ρ(A).

Proof. Recall that the entries of adj B are all n−1 minors of B. Since rank B =
n−1, we deduce that adj B ≠ 0. Recall next thatB(adj B) = (adj B)B = detB In = 0,
as rank B = n − 1. Let adj B = [u1 u2 . . .un]. As B(adj B) = 0, we deduce that
Bui = 0, for i ∈ [n]. Since rank B = n − 1, the dimension of the null space is one.
So the null space of B is spanned by u ≠ 0. Hence, ui = viu, for some vi, i ∈ [n].
Let v = (v1, . . . , vn)⊺. Then, adj B = uv⊺. Since adj B ≠ 0, it follows that v ≠ 0. As
0 = (adj B)B = uv⊺B = u(B⊺v) and u ≠ 0, it follows that B⊺v = 0.

Assume now that A ∈ Rn×n+ . Then, part 1 of Theorem 6.1.1 yields that ρ(A)
is an eigenvalue of A. Hence, B = ρ(A)In − A is singular. Suppose that rank B =
n − 1. We claim that adj B ≥ 0. We first observe that for t > ρ(A), we have
det(tIn −A) = ∏n

j=1(t − λj(A)) > 0. Indeed, if λj(A) is real, then t − λj(A) > 0. If
λj(A) is not real, i.e. a complex number, then λ̄j(A) is also an eigenvalue of A.
Recall that t > ρ(A) ≥ ∣λj(A)∣. Hence, (t − λj(A))(t − λ̄j(A)) = ∣t − λj(A)∣2 > 0. So
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det(tIn −A) > 0. Furthermore,

adj (tIn −A) = det(tIn −A)(tIn −A)−1 =

det(tIn −A)t−1(In − t−1A)−1 = det(tIn −A)t−1
∞
∑
j=0

(t−1A)j .

As Aj ≥ 0, for each non-negative integer j, it follows that adj (tIn − A) ≥ 0, for
t > ρ(A). Let t↘ ρ(A), (t converges to ρ(A) from above), to deduce that adj B ≩ 0.
As B = uv⊺, we can assume that u,v ≩ 0. ◻

Lemma 6.1.11 Let A ∈ Rn×n+ be an irreducible matrix. Then, ρ(A) is an alge-
braically simple eigenvalue.

Proof. We may assume that n > 1. Theorem 6.1.7 implies that ρ(A) is geomet-
rically simple, i.e. null(ρ(A)I − A) = 1. Hence, rank (ρ(A)I − A) = n−1. Lemma
6.1.10 yields that adj (ρ(A)I −A) = uv⊺, where Au = ρ(A)u,A⊺v = ρ(A)v,u,v � 0.
Theorem 6.1.7 implies that u,v > 0. Hence, uv⊺ is a positive matrix. In particular,
truv⊺ = v⊺u > 0. Since

(det(λI −A))′(λ = ρ(A)) = tr adj (ρ(A)I −A) = v⊺u > 0,

we deduce that ρ(A) is a simple root of the characteristic polynomial of A. ◻
For A ∈ Rn×n+ and x � 0 denote s(A,x) = max{t ≥ 0,Ax ≥ tx}. From the defini-
tion of r(A,x), we immediately conclude that r(A,x) ≥ s(A,x). We now give a
complementary part of Theorem 6.1.7.

Lemma 6.1.12 Let A ∈ Rn×n+ be an irreducible matrix. Then

ρ(A) = max
x>0

s(A,x) > 0. (6.1.7)

Equality holds if and only if Ax = ρ(A)x.

The proof of this lemma is similar to the proof of Theorem 6.1.7, and we skip it.

As usual, denote by S1 ∶= {z ∈ C, ∣z∣ = 1} the unit circle in the complex plane.

Lemma 6.1.13 Let A ∈ Rn×n+ be irreducible, C ∈ Cn×n. Assume that ∣C ∣ ≤ A.
Then, ρ(C) ≤ ρ(A). Equality holds, i.e. there exists λ ∈ spec C, such that λ = ζρ(A),
for some ζ ∈ S1, if and only if there exists a complex diagonal matrix D ∈ Cn×n, whose
diagonal entries are equal to 1, such that C = ζDAD−1. The matrix D is unique up
to a multiplication by t ∈ S1.

Proof. We can assume that n > 1. Suppose that A = [aij],C = [cij]. Theorem
6.1.7 yields that there exists u > 0 such that Au = ρ(A)u. Hence, r(A,u) = ρ(A).
Since ∣C ∣ ≤ A, it follows that r(C,u) ≤ r(A,u) = ρ(A). Lemma 6.1.5 yields that
ρ(C) ≤ r(C,u). Hence, ρ(C) ≤ ρ(A).

Suppose that ρ(C) = ρ(A). Hence, we have equalities ρ(C) = r(C,u) = ρ(A) =
r(A,u). So, λ = ζρ(A) is an eigenvalue of C, for some ζ ∈ S1. Furthermore, for the
corresponding eigenvector z of C we have

∣λ∣ ∣z∣ = ∣Cz∣ ≤ ∣C ∣ ∣z∣ ≤ A∣z∣.
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Hence, ρ(A)∣z∣ ≤ A∣z∣. Therefore s(A, ∣z∣) ≥ ρ(A). Lemma 6.1.12 yields that
s(A, ∣z∣) = ρ(A) and ∣z∣ is the corresponding non-negative eigenvector. Therefore,
∣Cz∣ = ∣C ∣∣z∣ = A∣z∣. Theorem 6.1.7 yields that ∣z∣ = u.

Let zi = diui, ∣di∣ = 1, for i = 1, . . . , n. The equality ∣Cz∣ = ∣C ∣ ∣z∣ = A∣z∣ combined
with the triangle inequality and ∣C ∣ ≤ A, yields first that ∣C ∣ = A. Furthermore, for
each fixed i, the non-zero complex numbers ci1z1, . . . , cinzn have the same argument,
i.e. cij = ζiaij d̄j , for j = 1, . . . , n and some complex number ζj , where ∣ζi∣ = 1.
Recall that λzi = (Cz)i. Hence, ζi = ζdi, for i = 1, . . . , n. Thus, C = ζDAD−1,
where D = diag(d1, . . . , dn). It is straightforward to see that D is unique up to a
multiplication by t, for any t ∈ S1.

Suppose now that for D = diag(d1, . . . , dn), where ∣d1∣ = . . . = ∣dn∣ = 1 and ∣ζ ∣ = 1,
we have that C = ζDAD−1. Then, λi(C) = ζλi(A), for i = 1, . . . , n. So ρ(C) = ρ(A).
Furthermore, cij = ζdicij d̄j , i, j = 1, . . . , n. Then, ∣C ∣ = A. ◻

Lemma 6.1.14 Let ζ1, . . . , ζh ∈ S1 be h distinct complex numbers which form a
multiplicative semi-group, i.e. for any integers i, j ∈ [h], ζiζj ∈ {ζ1, . . . , ζh}. Then,

the set {ζ1, . . . , ζh} is the set, (the group), of all h roots of 1: e
2πi
√
−1

h , i = 1, . . . , h.

(Here, we denote the complex number i by
√
−1 to simplify notations.)

Proof. Let ζ ∈ T ∶= {ζ1, . . . ζh}. Consider the sequence ζi, i = 1, . . .. Since
ζi+1 = ζζi, for i = 1, . . . , and T is a semigroup, it follows that each ζi is in T . As T is
a finite set, we must have two positive integers such that ζk = ζ l, for k < l. Assume
that k and l are the smallest possible positive integers. So ζp = 1, where p = l−k ≥ 1,
and Tp ∶= {ζ, ζ2, . . . , ζp−1, ζp = 1} are all p roots of 1. Here, ζ is called a p-primitive

root of 1, i.e. ζ = e
2πp1

√
−1

p , where p1 is an positive integer less than p. Furthermore,
p1 and p are coprime, which is denoted by (p1, p) = 1. Note that ζi ∈ T , for any
integer i.

Next, we choose ζ ∈ T , such that ζ is a primitive p-root of 1 of the maximal
possible order. We claim that p = h, which is equivalent to the equality T = Tp.
Assume to the contrary that Tp ⊊ T . Let η ∈ T /Tp. The previous arguments show
that η is a q-primitive root of 1. Therefore, Tq ⊂ T , and Tq ⊊ Tp. Thus, q cannot
divide p. Also, the maximality of p yields that q ≤ p. Let (p, q) = r be the g.c.d., the
greatest common divisor of p and q. So 1 ≤ r < q. Recall that Euclid’s algorithm,
which is applied to the division of p by q with a residue, yields that there exist two
integers i, j such that ip + jq = r. Let l ∶= pq

r > p be the least common multiplier of

p and q. Observe that ζ ′ = e
2π
√
−1

p ∈ Tp, η′ = e
2π
√
−1

q ∈ Tq. So

ξ ∶= (η′)i(ζ ′)j = e
2π(ip+jq)

√
−1

pq = e
2π
√
−1
l ∈ T .

As ξ is an l-primitive root of 1, we obtain a contradiction to the maximality of p.
So p = h and T is the set of all h-roots of unity. ◻

Theorem 6.1.15 Let A ∈ Rn×n+ be irreducible and assume that for a positive
integer h ≥ 2, A has h − 1 distinct eigenvalues λ1, . . . , λh−1, which are distinct from
ρ(A), such that ∣λ1∣ = . . . = ∣λh−1∣ = ρ(A). Then, the following conditions hold
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1. Assume that A is imprimitive, i.e. not primitive. Then, there exist exactly
h − 1 ≥ 1 distinct eigenvalues λ1, . . . , λh−1 different from ρ(A) and satisfying
∣λi∣ = ρ(A). Furthermore, the following conditions hold.

(a) λi is an algebraically simple eigenvalue of A, for i = 1, . . . , h − 1.

(b) The complex numbers λi
ρ(A) , i = 1, . . . , h − 1 and 1 are all h roots of unity,

i.e. λi = ρ(A)e 2π
√
−1i
h , for i = 1, . . . , h − 1. Furthermore, if Azi = λizi,zi ≠

0, then ∣zi∣ = u > 0, the Perron-Frobenius eigenvector u given in Theorem
6.1.7.

(c) Let ζ be any h-root of 1, i.e. ζh = 1. Then, the matrix ζA is similar to A.
Hence, if λ is an eigenvalue of A, then ζλ is an eigenvalue of A having
the same algebraic and geometric multiplicity as λ.

(d) There exists a permutation matrix P ∈ Pn such that P ⊺AP = B has a
block h-circulate form

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 B12 0 0 . . . 0 0
0 0 B23 0 . . . 0 0
⋮ ⋮ ⋮ ⋮ . . . ⋮ ⋮
0 0 0 0 ⋮ 0 B(h−1)h
Bh1 0 0 0 ⋮ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bi(i+1) ∈ Rni×ni+1 , i = 1, . . . , h,Bh(h+1) = Bh1,

nh+1 = n1, n1 + . . . + nh = n.

Furthermore, the diagonal blocks of Bh are all irreducible primitive ma-
trices, i.e.

Ci ∶= Bi(i+1) . . .B(h−1)hBh1 . . .B(i−1)i ∈ Rni×ni+ , i = 1, . . . , h, (6.1.8)

are irreducible and primitive.

(In the whole theorem we denote the complex number i by
√
−1 to simplify nota-

tions.)
Proof. Assume that ζi ∶= λi

ρ(A) ∈ S1, for i = 1, . . . , h−1 and ζh = 1. Apply Lemma

6.1.13 to C = A and λ = ζiρ(A) to deduce that A = ζiDiAD
−1
i , where Di is a diagonal

matrix such that ∣D∣ = I, for i = 1, . . . , h. Hence, if λ is an eigenvalue of A, then ζiλ
is an eigenvalue of A, with the same algebraic and geometric multiplicities as λ. In
particular, since ρ(A) is an algebraically simple eigenvalue of A, λi = ζiρ(A) is an
algebraically simple eigenvalue of A, for i = 1, . . . , h − 1. This establishes (1a).

Let T = {ζ1, . . . , ζh}. Note that

A = ζiDiAD
−1
i = ζiDi(ζjDjAD

−1
j )D−1

i = (ζiζj)(DiDj)A(DiDj)−1. (6.1.9)

Therefore, ζiζjρ(A) is an eigenvalue of A. Hence, ζiζj ∈ T , i.e. T is a semigroup.
Lemma 6.1.14 yields that ζ1, . . . , ζn are all h roots of 1. Note that if Azi = λizi,zi ≠ 0,
then zi = tDiu, for some 0 ≠ t ∈ C, where u > 0 is the Perron-Frobenius vector given
in Theorem 6.1.7. This establishes (1b).

Let ζ = e 2π
√
−1

h ∈ T . Then, A = ζDAD−1, where D is a diagonal matrix D =
(d1, . . . , dn), ∣D∣ = I. Since D can be replaced by d̄1D, we can assume that d1 = 1.
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(6.1.9) yields that A = ζhDhAD−h = IAI−1. Lemma 6.1.13 implies that Dh =
diag(dh1 , . . . , dhn) = tI. Since d1 = 1, it follows that Dh = I. So all the diagonal
entries of D are h-roots of unity. Let P ∈ Pn be a permutation matrix such that the
diagonal matrix E = P ⊺DP is of the following block diagonal form

E = In1 ⊕ µ1In2 ⊕ . . .⊕ µl−1Inl , µi = e
2πki

√
−1

h ,

i = 1, . . . , l − 1, 1 ≤ k1 < k2 < . . . < kl−1 ≤ h − 1.

Note that l ≤ h and equality holds if and only if ki = i. Let µ0 = 1.
Let B = P ⊺AP . Partition B to a block matrix [Bij]li=j=1, where Bij ∈ Rni×nj+ , for

i, j = 1, . . . , l. Then, the equality A = ζDAD−1 yields B = ζEBE−1. The structure
of B and E implies the equalities

Bij = ζ
µi−1

µj−1
Bij , i, j = 1, . . . , l.

Since all the entries of Bij are non-negative, we obtain that Bij = 0 if ζ µi−1µj−1
≠

1. Hence, Bii = 0, for i = 1, . . . , l. Since B is irreducible, it follows that not all
Bi1, . . . ,Bil are zero matrices for each i = 1, . . . , l. First, start with i = 1. Since
µ0 = 1 and j1 ≥ 1, it follows that µj ≠ ζ, for j > 1. Then, B1j = 0 for j = 3, . . . , l.
Hence, B12 ≠ 0, which implies that µ1 = ζ, i.e. k1 = 1. Now, let i = 2 and consider
j = 1, . . . , l. As ki ∈ {k1 + 1, k1 + 2, . . . , h − 1}, for i > 1, it follows that B2j = 0, for
j ≠ 3. Hence, B23 ≠ 0 which yields that k2 = 2. Applying these arguments for
i = 3, . . . , l−1, we deduce that Bij = 0 for j ≠ i+1, Bi(i+1) ≠ 0, ki = i for i = 1, . . . , l−1.
It is left to consider i = l. Note that

ζµl−1

µj−1
= ζ l

ζj−1
= ζ l−(j−1), which is different from 1, for j ∈ [`] ∖ {1}.

Hence, Blj = 0 for j > 1. Since B is irreducible, B11 ≠ 0. So ζ l = 1. As l ≤ h we
deduce that l = h. Hence, B has the block form given in (1d). ◻

6.2 Irreducible matrices

Denote by R+ ⊃ Z+ the set of non-negative real numbers and non-negative integers,
respectively. Let S ⊂ C. By Sn(S) ⊂ Sn×n denote the set of all symmetric matrices
A = [aij] with entries in S. Assume that 0 ∈ S. Then, by Sn,0(S) ⊂ Sn(S) the
subset of all symmetric matrices with entries in S and zero diagonal. Denote by
1 = (1, . . . ,1)⊺ ∈ Rn the vector of length n whose all coordinates are 1. For any t ∈ R,
we let signt = 0 if t = 0 and signt = t

∣t∣ if t ≠ 0.

Let D = (V,E) be a multidigraph. Assume that #V = n and label the vertices of V
as 1, . . . , n. We have a bijection φ1 ∶ V → [n]. This bijection induces an isomorphic
graph D1 = ([n],E1). With D1 we associate the following matrix A(D1) = [aij]ni,j=1 ∈
Zn×n+ . Then, aij is the number of directed edges from the vertex i to the vertex j.
(If aij = 0 then there no diedges from i to j.) When no confusion arises, we let
A(D) ∶= A(D1), and we call A(D) the adjacency matrix of D. Note that a different
bijection φ2 ∶ V → [n] gives rise to a different A(D2), where A(D2) = P ⊺A(D1)P ,
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for some permutation matrix P ∈ Pn.
If D is a simple digraph then A(D) ∈ {0,1}n×n. If D is a multidigraph, then aij ∈ Z+
is the number of diedges from i to j. Hence A(G) ∈ Zn×n+ . If G is a multigraph, then
A(G) = A(D(G)) ∈ Sn(Z+). If G is a simple graph, then A(G) ∈ Sn,0({0,1}).

Proposition 6.2.1 Let D = (V,E) be a multidigraph on n vertices. Let A(D)
be a representation matrix of D. For an integer k ≥ 1 let A(D)k = [a(k)ij ] ∈ Zn×n+ .

Then, a
(k)
ij is the number of walks of length k from the vertex i to the vertex j. In

particular, 1⊺A1 and trA are the total number of walks and the toral number of
closed walks of length k in D.

Proof. For k = 1 the proposition is obvious. Assume that k > 1. Recall that

a
(k)
ij = ∑

i1,...,ik−1∈[n]
aii1ai1i2⋯aik−1j . (6.2.1)

The summand aii1ai1i2⋯aik−1j gives the number of walks of the form i0i1i2⋯ik−1ik,
where i0 = i, ik = j. Indeed, if one of the terms in this product is zero, i.e. there
is no diedge (ip, ip+1), then the product is zero. Otherwise each positive integer
aipip+1 counts the number of diedges (ip, ip+1). Hence, aii1ai1i2⋯aik−1j is the number
of walks of the form i0i1i2⋯ik−1ik. The total number of walks from i = i0 to j = ik
of length k is the sum given by (6.2.1). To find out the total number of walks in D

of length k is ∑ni=j=1 a
(k)
ij = 1⊺A1. The total number of closed walks in D of length

k is ∑ki=1 a
(k)
ii = trA(D)k. ◻

With a multipartite graph G = (V1∪V2,E), where #V1 =m, #V2 = n, we associate a
representation matrix B(G) = [bij]m,ni=j=1 as follows. Let ψ1 ∶ V1 → [m], φ1 ∶ V2 → [m]
be bijections. This bijection induces an isomorphic graph D1 = ([m] ∪ [n],E1).
Then, bij is the number of edges connecting i ∈ [m] to j ∈ [n] in D1.
A non-negative matrix A = [aij]ni=j=1 ∈ Rn×n+ induces the following digraph D(A) =
([n],E). The diedge (i, j) is in E if and only if aij > 0. Note that of A(D(A)) =
[signaij] ∈ {0,1}n×n.

Theorem 6.2.2 Let D = ([n],E) be a multidigraph. Then, D is strongly con-
nected if and only if (I+A(D))n−1 > 0, in particular, a non-negative matrix A ∈ Rn×n+
is irreducible if and only if (I +A)n−1 > 0.

Proof. Apply the Newton binomial theorem for (1 + t)n−1 to the matrix (I +
A(D))n−1

(I +A(D))n−1 =
n−1

∑
p=0

(n − 1

p
)A(D)p.

Recall that all the binomial coefficients (n−1
p

) are positive for p = 0, . . . , n−1. Assume

first that (I +A(D))n−1 is positive. Hence the (i, j) entry of A(D)p is positive for
some p = p(i, j). Let i ≠ j. Since A(D)0 = I, we deduce that p(i, j) > 0. Use
Proposition 6.2.1 to deduce that there is a walk of length p from the vertex i to the
vertex j.
Suppose that D is strongly connected. Then, for each i ≠ j we must have a path
pf length p ∈ [1, n − 1] which connects i and j. Hence, all off-diagonal entries of
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(I +A(D))n−1 are positive. Clearly, (I +A(D))n−1 ≥ I. Hence, (I +A(D))n−1 > 0.
Let A ∈ Rn×n+ . Then, the (i, j) entry of (I + A)n−1 is positive if and only if the
(i, j) entry of (I + A(D(A)))n−1 is positive. Hence, A is irreducible if and only if
(I +A)n−1 > 0. ◻

6.3 Recurrence equation with non-negative coefficients

Recall that the matrix A = [aij] ∈ Rn×n+ is called irreducible if (I + A)n−1 > 0. We
now correspond a digraph D = D(A) of order n to A as follows. The vertex set is
V = {a1, . . . , an}. There is an arcα = (ai, aj) from ai to aj if and only if aij > 0,
(i, j ∈ [n]). It is shown that A is irreducible if and only if D is strongly connected.
(Theorem 6.2.2.)
We have already seen that A ∈ Rn×n+ is called primitive if Ap > 0, for some positive
integer p. It is proved that if A is an irreducible matrix such that the g.c.d. of the
lengths of all cycles in D(A) is 1, then A is primitive. See [7] for more details on
primitive matrices.
Consider the following homogeneous recurrence equation:

xk = Axk−1, k = 1,2, . . . (6.3.1)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0 0
0 0 1 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 . . . 0 1
an an−1 an−2 . . . a2 a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×n, xk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

uk
uk+1

⋮
uk+n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn

(See subsection 4.1.1.)
Assume that a1, . . . , an ≥ 0. Note that from the form of A, we have 1→ 2→ 3→ ⋯→
n. Thus, the condition for A to be irreducible is that a1 > 0, i.e. n→ 1. Note that the
condition a1 > 0 implies that D(A) has a Hamiltonian cycle. For example, if a2 > 0
(in addition to a1 > 0), then D(A) has a cycle of length n − 1 ∶ 2 → 3 → ⋯ → n → 2.
Since A is assumed to be irreducible (a1 > 0) and the g.c.d. of the cycles in DA is 1
(as the g.c.d. of n and n − 1 is 1), then A is primitive.
Now, we are ready to give a generalization of Kepler’s Theorem for Fibonacci num-
bers which can be considered as an application of Perron-Frobenius theorem.

Theorem 6.3.1 Consider the homogeneous recurrence equation (6.3.1). As-
sume that a1 > 0 and a2, . . . , an ≥ 0. Suppose furthermore that an1 , . . . , ani > 0 where
1 < n1 < ⋯ < ni ≤ n. Assume that the g.c.d. of n,n − ni + 1 is 1. Suppose that
(u0, . . . , un−1)⊺ ≩ 0. Then

lim
m→∞

um+1

um
= ρ(A). (6.3.2)

More precisely:

lim
k→∞

1

ρ(A)kxk = (v⊺x0)u, (6.3.3)

where u, v are defined below.
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Proof. The assumptions of the theorem yield that A is primitive. Then, Perron-
Frobenius theorem yields that ρ(A) > 0, is a simple eigenvalue of A, and all other
eigenvalues of A satisfy ∣λ∣ < ρ(A). The component of A corresponding to ρ(A) is
of the form uv⊺, where u,v > 0 are the right and the left eigenvector of A satisfying

Au = ρ(A)u, A⊺v = ρ(A)v, v⊺u = 1.

Hence, writing down Am in terms of its components and taking Amx0, we see that
the leading term is

xk = ρ(A)kuv⊺x0 +O(tk), t = max{∣λj(A)∣, ∣λj(A)∣ < ρ(A)}.

As v⊺x0 > 0, we deduce the theorem. ◻

6.3.1 Worked-out Problems

1. Let A ∈ Rn×n+ be irreducible. Show that A is primitive if and only if one of the
following conditions hold:

(a) n = 1 and A > 0.

(b) n > 1 and each eigenvalue λ of A different from ρ(A) satisfies the inequal-
ity ∣λ∣ < ρ(A).

Solution:
If n = 1, then A is primitive if and only if A > 0. Assume now that n > 1. So
ρ(A) > 0. Considering B = 1

ρ(A)A, it is enough to consider the case ρ(A) = 1.

Assume first that if λ ≠ 1 is an eigenvalue of A, then ∣λ∣ < 1. Theorem 6.1.7
implies Au = u,A⊺w = w for some u,w > 0. So w⊺u > 0. Let v ∶= (w⊺u)−1w.
Then, A⊺v = v and v⊺u = 1. Part 2. of Theorem 4.6 yields limk→∞A

k = Z10 ≥
0, where Z10 is the component of A corresponding to an algebraically simple
eigenvalue 1 = ρ(A). Problem 4.1.3-1.a yields that Z10 = uv⊺ > 0. So there
exists an integer k0 ≥ 1, such that Ak > 0, for k ≥ k0, i.e. A is primitive.
Assume now A has exactly h > 1 distinct eigenvalues λ satisfying ∣λ∣ = 1.
Lemma 6.1.15 implies that there exists a permutation matrix P such that B =
P ⊺AP is of the form (1d) of Theorem 6.1.15 . Note that Bh is a block diagonal
matrix. Hence, Bhj = (Bh)j is a block diagonal matrix for j = 1, . . . , .... Hence,
Bhj is never a positive matrix, so Ahj is never a positive matrix. Hence A is
not primitive.

6.3.2 Problems

1. Let B ∈ Rn×n+ be an irreducible, imprimitive matrix, having h > 1 distinct
eigenvalues λ satisfying ∣λ∣ = ρ(B). Suppose furthermore that B has the form
(1d) of Theorem 6.1.15 . Show that Bh is a block diagonal matrix, where
each diagonal block is an irreducible primitive matrix whose spectral radius
is ρ(B)h. In particular, show that the last claim of (1d) of Theorem 6.1.15
holds.
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