552 HOMEWORK 3

This assignment is due September 19, via upload to Gradescope. Unless otherwise specified, we work over an algebraically closed field k.

Exercise 1. Show that if $n \geq 2$, then the two varieties $\mathbb{A}^{n} \backslash\{(0,0, \ldots)\}$ and $\mathbb{P}^{n} \backslash$ $\{(1,0,0, \ldots)\}$ are not isomorphic to a projective variety or an affine variety.

Exercise 2. (1) Show that the dimension of the space $V_{n, d}$ of homogeneous polynomials of degree d in $n+1$ variables is $N:=\binom{n+d}{d}$.
(2) The space of degree d hypersurfaces in \mathbb{P}^{n} is given by $\mathbb{P} V_{n, d} \cong \mathbb{P}^{N-1}$. For $p \in \mathbb{P}^{n}$, show that the subvariety $Z_{p} \subset \mathbb{P} V_{n, d}$ consisting of all hypersurfaces X such that $p \in X$ is a hyperplane in $\mathbb{P} V_{n, d}$.
(3) A collection of k points Γ is said to impose independent conditions on hypersurfaces of degree d if the dimension of the set of degree d hypersurfaces that contain Γ has dimension $N-k-1$. Show that a set of points $\Gamma \subset \mathbb{P}^{n}$ imposes independent conditions on hyperplanes if and only if Γ is in general position $\|^{\top}$

Exercise 3. Let $\Gamma \subset \mathbb{P}^{2}$ be a set of 5 points in linearly general position. Show that there is a unique conic passing through the points. (Hint: one possible approach uses the fact that within the space of conics \mathbb{P}^{5}, there is a 4 dimensional projective variety of reducible conics, i.e. pairs of lines).
Exercise 4 (Shafaraevich 1.6.1). Let $\Lambda \subset \mathbb{P}^{n}$ be a hyperplane, $X \subset \Lambda$ an irreducible projective variety, and $p \in \mathbb{P}^{n} \backslash \Lambda$ a point. Show that the union of all lines through p and a point $x \in X$ is a variety, and that this variety has dimension $\operatorname{dim}(X)+1$.
Exercise 5. Let $X \subset \mathbb{P}^{n}$ be a projective variety, and define $\tilde{X} \subset \mathbb{A}^{n+1}$ by

$$
\tilde{X}=\{(0,0, \ldots, 0)\} \cup\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{A}^{n+1} \mid\left(x_{1}, \ldots, x_{n+1}\right) \in X \subset \mathbb{P}^{n}\right.
$$

(1) Show that $\tilde{X} \subset \mathbb{A}^{n+1}$ is closed. (It's called the affine cone over X).
(2) If $X, Y \subset \mathbb{P}^{N}$ are irreducible projective varieties of dimension n, m. Applying the theorem we proved in class to \tilde{X} and \tilde{Y} (Shafarevich 1.24, first paragraph), show that $X \cap Y$ is nonempty if $n+m-N \geq 0$.

[^0]
[^0]: ${ }^{1}$ In the sense of Harris, Lecture 1 or class. This condition is referred to as linearly general position most of the time.

