552 HOMEWORK 3

This assignment is due September 19, via upload to Gradescope. Unless otherwise specified, we work over an algebraically closed field k.

Exercise 1. Show that if $n \geq 2$, then the two varieties $\mathbb{A}^n \setminus \{(0, 0, \ldots)\}$ and $\mathbb{P}^n \setminus \{(1, 0, 0, \ldots)\}$ are not isomorphic to a projective variety or an affine variety.

- **Exercise 2.** (1) Show that the dimension of the space $V_{n,d}$ of homogeneous polynomials of degree d in n + 1 variables is $N := \binom{n+d}{d}$.
 - (2) The space of degree d hypersurfaces in \mathbb{P}^n is given by $\mathbb{P}V_{n,d} \cong \mathbb{P}^{N-1}$. For $p \in \mathbb{P}^n$, show that the subvariety $Z_p \subset \mathbb{P}V_{n,d}$ consisting of all hypersurfaces X such that $p \in X$ is a hyperplane in $\mathbb{P}V_{n,d}$.
 - (3) A collection of k points Γ is said to impose independent conditions on hypersurfaces of degree d if the dimension of the set of degree d hypersurfaces that contain Γ has dimension N - k - 1. Show that a set of points $\Gamma \subset \mathbb{P}^n$ imposes independent conditions on hyperplanes if and only if Γ is in general position.¹

Exercise 3. Let $\Gamma \subset \mathbb{P}^2$ be a set of 5 points in linearly general position. Show that there is a unique conic passing through the points. (Hint: one possible approach uses the fact that within the space of conics \mathbb{P}^5 , there is a 4 dimensional projective variety of reducible conics, i.e. pairs of lines).

Exercise 4 (Shafaraevich 1.6.1). Let $\Lambda \subset \mathbb{P}^n$ be a hyperplane, $X \subset \Lambda$ an irreducible projective variety, and $p \in \mathbb{P}^n \setminus \Lambda$ a point. Show that the union of all lines through p and a point $x \in X$ is a variety, and that this variety has dimension $\dim(X) + 1$.

Exercise 5. Let $X \subset \mathbb{P}^n$ be a projective variety, and define $\tilde{X} \subset \mathbb{A}^{n+1}$ by

$$\tilde{X} = \{(0, 0, \dots, 0)\} \cup \{(x_1, \dots, x_{n+1}) \in \mathbb{A}^{n+1} | (x_1, \dots, x_{n+1}) \in X \subset \mathbb{P}^n.$$

- (1) Show that $\tilde{X} \subset \mathbb{A}^{n+1}$ is closed. (It's called the *affine cone over* X).
- (2) If $X, Y \subset \mathbb{P}^N$ are irreducible projective varieties of dimension n, m. Applying the theorem we proved in class to \tilde{X} and \tilde{Y} (Shafarevich 1.24, first paragraph), show that $X \cap Y$ is nonempty if $n + m N \ge 0$.

 $^{^{1}}$ In the sense of Harris, Lecture 1 or class. This condition is referred to as *linearly general position* most of the time.