552 HOMEWORK 2

This assignment is due September 12, via upload to Gradescope. Unless otherwise specified, we work over an algebraically closed field k.

Exercise 1. Verify that the Segre variety $\operatorname{Seg}(n,m) \subseteq \mathbb{P}^{(n+1)(m+1)-1}$, together with its projections to \mathbb{P}^n and \mathbb{P}^m , is the categorical product of \mathbb{P}^n and \mathbb{P}^m in the category of varieties Var_k .

Exercise 2. Let $S = k[x_0, \ldots, x_n]$ and let I be a homogeneous ideal in S.

- (1) Let $I_{irr} = (x_0, \ldots, x_n)$ denote the *irrelevant ideal* in S. If I contains I_{irr}^m for some m, prove that $V(I) \subset \mathbb{P}^n$ is empty.
- (2) Let \mathbb{A}_i^n be the complement of $V(x_i)$ in \mathbb{P}^n . The *n* coordinate functions on \mathbb{A}_i^n are then $\frac{x_j}{x_i}$ for $i \neq j$. If $V(I) \cap \mathbb{A}_i^n = \emptyset$, use the Nullstellensatz to show $x_i^m \in I$ for some *m*.
- (3) Use the previous part to show the converse to (1); if $V(I) = \emptyset$, then I contains the irrelevant ideal. (This question implies that one can multiply in or factor out irrelevant ideals from an ideal I without changing V(I), hence the name).

Exercise 3 (Harris 1.3). Let $\Gamma \subset \mathbb{P}^n$ consist of d points. Show that Γ is the zero set of a collection of polynomials of degree at most d. If not every point of Γ lies on a single line, show that Γ is the zero set of a collection of polynomials of degree at most d-1.

Exercise 4 (Harris 1.12). Show that any 4 distinct points on a twisted cubic $C \subset \mathbb{P}^3$ are in *general position*, that is, they do not lie on any hyperplane. (Hint: how many points are in the intersection of C with a hyperplane H?)

Exercise 5. Let $X \subset \mathbb{P}^n$ be a hypersurface. Show that its complement $\mathbb{P}^n \setminus X$ is isomorphic to an affine variety.