552 HOMEWORK 2

This assignment is due September 12, via upload to Gradescope. Unless otherwise specified, we work over an algebraically closed field k.

Exercise 1. Verify that the Segre variety $\operatorname{Seg}(n, m) \subseteq \mathbb{P}^{(n+1)(m+1)-1}$, together with its projections to \mathbb{P}^{n} and \mathbb{P}^{m}, is the categorical product of \mathbb{P}^{n} and \mathbb{P}^{m} in the category of varieties Var_{k}.
Exercise 2. Let $S=k\left[x_{0}, \ldots, x_{n}\right]$ and let I be a homogeneous ideal in S.
(1) Let $I_{i r r}=\left(x_{0}, \ldots, x_{n}\right)$ denote the irrelevant ideal in S. If I contains $I_{i r r}^{m}$ for some m, prove that $V(I) \subset \mathbb{P}^{n}$ is empty.
(2) Let \mathbb{A}_{i}^{n} be the complement of $V\left(x_{i}\right)$ in \mathbb{P}^{n}. The n coordinate functions on \mathbb{A}_{i}^{n} are then $\frac{x_{j}}{x_{i}}$ for $i \neq j$. If $V(I) \cap \mathbb{A}_{i}^{n}=\emptyset$, use the Nullstellensatz to show $x_{i}^{m} \in I$ for some m.
(3) Use the previous part to show the converse to (1); if $V(I)=\emptyset$, then I contains the irrelevant ideal. (This question implies that one can multiply in or factor out irrelevant ideals from an ideal I without changing $V(I)$, hence the name).

Exercise 3 (Harris 1.3). Let $\Gamma \subset \mathbb{P}^{n}$ consist of d points. Show that Γ is the zero set of a collection of polynomials of degree at most d. If not every point of Γ lies on a single line, show that Γ is the zero set of a collection of polynomials of degree at most $d-1$.

Exercise 4 (Harris 1.12). Show that any 4 distinct points on a twisted cubic $C \subset \mathbb{P}^{3}$ are in general position, that is, they do not lie on any hyperplane. (Hint: how many points are in the intersection of C with a hyperplane H ?)

Exercise 5. Let $X \subset \mathbb{P}^{n}$ be a hypersurface. Show that its complement $\mathbb{P}^{n} \backslash X$ is isomorphic to an affine variety.

