552 HOMEWORK 4

This assignment is due September 26, via upload to Gradescope. Unless otherwise specified, we work over an algebraically closed field k.

The general point of an irreducible variety X is said to have some property P if there is an open nonempty subset U of X such that every point in U satisfies P.

Exercise 1. Show that the locus of colinear triples of points in $\left(\mathbb{P}^{2}\right)^{3}$ is closed of dimension 5, and hence that the general triple of points in $\left(\mathbb{P}^{2}\right)^{3}$ is not colinear. In this problem, if you use an incidence correspondence, you do not need to explicitly verify that it is closed in whatever product you use.

Exercise 2. Let S be a general quadric surface in \mathbb{P}^{3}. Show that S contains a onedimensional family of lines. This has two steps:
(1) Set up an incidence correspondence describing lines on all quadric surfaces in \mathbb{P}^{3}. Show that it is an irreducible variety and compute its dimension.
(2) Find a quadric surface in \mathbb{P}^{3} with a one-dimensional family of lines. Use the theorem on fiber dimension to prove the result.

Exercise 3. (1) Let C be a rational normal curve in \mathbb{P}^{n}, i.e., the image of \mathbb{P}^{1} by the inclusion $i(s, t)=\left(s^{n}, s^{n-1} t, \ldots, t^{n}\right)$. Show that if we regard \mathbb{P}^{n} as the projective space of all matrices of the form

$$
\left[\begin{array}{cccc}
x_{0} & x_{1} & \ldots & x_{n-1} \\
x_{1} & x_{2} & \ldots & x_{n},
\end{array}\right]
$$

then C is the locus of such matrices having rank at most 1 .
(2) In the case $n=3$, use the previous part to determine a set of polynomials that cut out the twisted cubic.
Exercise 4. Given two regular maps $f: X \rightarrow Z, g: Y \rightarrow Z$, show that the set $X \times{ }_{Z} Y \subseteq X \times Y$ given by

$$
X \times_{Z} Y:=\{(x, y) \mid f(x)=g(y)\}
$$

is a closed subvariety of $X \times Y$. This variety is called the fiber product of X and Y over Z.

Exercise 5. Show the Segre variety $\mathbb{P}^{2} \times \mathbb{P}^{2} \subset \mathbb{P}^{8}$ is deficient (i.e., has secant variety of smaller than expected dimension). Bonus: can you generalize this fact to other Segre varieties $\mathbb{P}^{n} \times \mathbb{P}^{m} \subset \mathbb{P}^{(n+1)(m+1)-1}$?

