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We consider the complexity of computing Boolean functions by
analog circuits of bounded fan-in, i.e., by circuits of gates computing
real-valued functions, either exactly or as sign-representation. Sharp
upper bounds are obtained for the complexity of the most difficult
n-variable function over certain bases (sign-representation by
arithmetic circuits and exact computation by piecewise linear circuits).
Bounds are given for the computational power gained by adding dis-
continuous gate functions and nondeterminism. We also prove explicit
nonlinear lower bounds for the formula size of analog circuits over
bases containing addition, subtraction, multiplication, the sign func-
tion and all real constants. ] 1997 Academic Press

1. INTRODUCTION

Boolean circuits form a basic model for computing
Boolean functions. One can also build circuits using analog
gates, i.e., gates that compute real-valued functions. Circuits
of this kind will be called analog circuits in what follows.
Important examples are provided by arithmetic circuits (i.e.,
circuits built of gates for arithmetic operations) and analog
neural networks. Analog circuits can be viewed in several
different ways. Let us first give a brief overview of some of
the different possibilities.

Analog circuits can be considered as computing functions
of real variables, either exactly or in some approximate
sense. This is the approach of algebraic complexity theory
for arithmetic circuits (Strassen [39]), of the theory of
representing real functions as superposition of simpler func-
tions, originating in Kolmogorov's theorem (Vitushkin

[42]), respectively of the growing number of results on the
approximating power of neural networks (e.g., Cybenko [10]).

Analog circuits can also be used to compute Boolean
functions. Gashkov [14] studied the exact computation of
Boolean functions by such circuits. One of the goals of
neural computation is to approximate Boolean functions by
analog neural networks (Rumelhart and McClelland [33],
McClelland and Rumelhart [26]). Maass, Schnitger, and
Sontag [24] and DasGupta and Schnitger [11] considered
the relation of this model and threshold circuits. Siegelmann
and Sontag [35, 36] studied the computational power of
recurrent neural networks. Also, results on the sign-representa-
tion of Boolean functions by polynomials (see, e.g., the survey
of Saks [34]) can be viewed in this context, using another
notion of approximation.

A different approach to real-valued computation that
received a lot of attention recently is the real Turing machine
introduced by Blum, Shub, and Smale [2] and its variants
(Koiran [21], Cucker, Karpinski, Koiran, Lickteig, and
Werther [7]). A complexity theory based on these machines
is developed [4�9, 20, 21]. The analog circuits corresponding
to real Turing machines are arithmetic threshold circuits, i.e.,
circuits built using arithmetic and sign gates (Cucker and
Torrecillas [9], Cucker and Grigoriev [6], Montan~ a and
Pardo [28]; we note that in these papers these circuits are
called algebraic circuits, respectively arithmetic networks).
Thus the model of arithmetic threshold circuits can be
viewed as the nonuniform version of real Turing machines.
Another related model is that of algebraic computation trees
(Ben-Or [1]).

It appears that analog circuits form a natural model
of computation, and studying the complexity of Boolean
functions in this framework may, among other things,
contribute to the understanding of the relation between the
discrete and continuous aspects of computation. As noted
by Gashkov [14], an important task here is to explore the
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new phenomena that arise when compared to Boolean com-
plexity. One of these new phenomena (also noted by Sontag
[38] for neural networks) is that complexity depends very
much on the basis, i.e., on the set of gate functions, that may
be used. In certain bases, permitting the use of encoding
Boolean functions as a single number, every Boolean func-
tion can be computed by a linear number of gates. Another
related issue is the additional power gained by using large,
or large precision, numbers. Concerning lower bounds, it is
to be noted that if real constant inputs can be used then the
number of circuits with a fixed structure is infinite. There-
fore, even determining the Shannon function (the complexity
of the most difficult function), that is considered to be a
well-understood chapter of Boolean complexity theory,
requires different techniques. This problem is also of interest
from the point of view of determining the range of
``pathological'' bases mentioned above. A closely related
problem, studied in the context of neural networks is that
of determining the Vapnik�Chervonenkis dimension of
classes of neural networks (see, e.g., Goldberg and Jerrum
[15], Maass [22, 23], Macintyre and Sontag [25], and
Karpinski and Macintyre [19]). There are several
apparently different ways of introducing nondeterminism in
this context. Another, perhaps not entirely hopeless,
research direction is to extend explicit lower bounds for
restricted classes of Boolean circuits to classes of analog
circuits.

In this paper we consider some of these issues. It is to be
noted that we only consider analog circuits of bounded
fan-in. Before formulating our results, let us describe some
of the relevant results of Gashkov [14]. He proved that if
the basis consists of finitely many polynomials and all real
numbers can be used as constant inputs then almost all
n-variable Boolean functions require circuit size 0(2n�2).
The proof of this bound is based on connected component
counting (for applications of this method in another context
where the inputs are real numbers see, e.g., Ben-Or [1]). His
argument remains valid if the circuits are only required to
compute a sign-representation, i.e., to output a nonnegative
(resp. negative) value if the function has value 1 (resp. 0).
Gashkov also showed that if the basis contains finitely many
Lipschitz functions and the constant inputs are restricted to
some fixed interval, then almost all n-variable Boolean func-
tions require 0(2n�2) gates. If, in addition, the basis func-
tions are Lipschitz functions with Lipschitz norm �1, then
the lower bound jumps up to 0(2n�n). These results show
the limitations of analog computation even if one allows
infinite precision operations with real numbers. Gashkov's
argument for arithmetic circuits is presented in Section 3 for
completeness, along with some of its extensions to more
general classes. We discuss the important class of arithmetic
threshold circuits referred to above and the nondeterministic
version of these circuits. The lower bounds proved for these
classes are 0(2n�2) (resp. 0(2n�4)). We note that these

lower bounds can also be derived from the results of
Goldberg and Jerrum [15].

A question raised by these results is whether 2n�2 can
occur as the order of magnitude of the Shannon function for
some basis. It may be of some interest to note that in the
context of Boolean complexity, orders of magnitude around
2n�2 typically occur as Shannon functions for bases with
unbounded fan-in, while for complete bases with bounded
fan-in one has always 3(2n�n).

In Section 4 we prove upper bounds that imply a positive
answer to this question. It is shown that every n-variable
Boolean function has a sign-representation of size O(2n�2) by
arithmetic circuits, i.e., circuits over the basis of addition,
subtraction, and multiplication, using constant inputs from
[0, 1]. Also, every n-variable Boolean function can be com-
puted exactly by a piecewise linear (PL) circuit of size
O(2n�2), i.e., by a circuit over the basis of addition, subtrac-
tion, halving, and absolute value, using constant inputs from
[0, 1]. In contrast, if addition and subtraction are replaced
by (x+ y)�2 and (x& y)�2, then, as all basis functions have
Lipschitz norm �1, the result of Gashkov implies that
almost all n-variable Boolean functions need 0(2n�n) gates.

In Section 5 we show that ``discontinuity can be traded for
nondeterminism,'' by giving an efficient simulation of
arithmetic threshold circuits by nondeterministic arithmetic
circuits computing a sign-representation. The construction
uses some techniques of Blum, Shub, and Smale [2]. We also
show that nondeterministic arithmetic circuits with integer
guesses are ``too powerful'' in the sense that every n-variable
Boolean function can be sign-represented by such circuits of
linear size. This can be contrasted with digital nondeterminism
discussed, e.g., in Cucker, Karpinski, Koiran, Lickteig, and
Werther [7], where the guesses are required to be Boolean.
In this case the Shannon function is 0(2n�2).

Section 6 contains explicit nonlinear lower bounds. It is
shown that every arithmetic expression (i.e., formula over
the basis of addition and multiplication, using arbitrary real
constants) that is a sign-representation of the ELEMENT
DISTINCTNESS function has size 0(n2�log2 n). The lower
bound also applies to arbitrary finite bases of multilinear
polynomials, and thus it generalizes the corresponding
lower bound for Boolean formula size. This appears to be
one of the first explicit lower bounds known for analog cir-
cuits. (Such a lower bound follows for a class of analog
neural networks from the simulation results of Maass,
Schnitger, and Sontag [24] and the lower bounds of
Hajnal, Maass, Pudla� k, Szegedy, and Tura� n [17] for the
corresponding class of Boolean threshold circuits. Our
lower bounds do not follow by simulation.) The proof com-
bines connected component counting with Nechiporuk's
method for Boolean formula complexity. Interpreted in the
context of sign-representation of Boolean functions by poly-
nomials referred to above (Saks [34]), this appears to be a
new type of lower bound. Previous lower bounds apply to
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the degree, the number of terms or decision tree complexity
(see Nisan [29], Saks [34], Vatan [41]).

We extend this result by showing that every arithmetic
threshold formula (i.e., a formula over the basis of addition,
multiplication, the sign function, and all real constants) for
ELEMENT DISTINCTNESS has size 0(n3�2�log n).

As an application of the lower bound for arithmetic
threshold formulas, we derive a lower bound for Boolean
threshold circuit complexity. It follows that every unbounded
fan-in threshold circuit of depth d with unrestricted weights,
computing ELEMENT DISTINCTNESS, a function that
belongs to AC0, has size 0(n1�2(d&1)�(log n)1�(d&1)) for every
constant d. The previous similar lower bounds either apply
to PARITY or INNER PRODUCT MOD 2, that are not in
AC0, or assume restricted weights (Dic� iu� nas [13], Gro� ger
and Tura� n [16], Impagliazzo, Paturi, and Saks [18],
Roychowdhury, Siu, and Orlitsky [32], Siu, Roychowdhury,
and Kailath [37]).

2. PRELIMINARIES

The difference between the standard concepts of circuit
complexity theory (see, e.g., Wegener [44]) and the defini-
tions used here is that we consider bases B consisting of
finitely many functions f1 , ..., fk , where fi : Rni � R is a real
function of arity ni�1, and of a set of constants 2�R,
where either 2=R or 2=[a, b] for some a�b. The input
nodes of a circuit are labelled by variables or constants from
2. The function computed by a circuit is defined in the usual
manner. If x=(x1 , ..., xn) are the inputs of C and a=
(a1 , ..., am) are its constant inputs, then the function com-
puted by C is denoted by C(x, a).

A circuit C can also be viewed as computing a Boolean
function in the following way. C is a sign-representation of a
Boolean function f (x) if for every x # [0, 1]n it holds that
f (x)=1 iff C(x, a)�0.

Circuits over the basis x+ y, x& y, x } y and R are called
arithmetic circuits. Formulas, i.e., circuits of fan-out one,
over this basis are called arithmetic expressions.

Circuits over the basis x+ y, x& y, x�2, |x| and [0, 1] are
called PL ( piecewise linear) circuits.

A function f (x1 , ..., xm) : Rm � R is a Lipschitz function if
for every y=( y1 , ..., ym) and z=(z1 , ..., zm) in Rm it holds
that | f (y)& f (z)|�M maxi | yi&zi |. The inf of all M for
which this property holds is called the Lipschitz norm of f.
A basis is called a Lipschitz basis if all its functions are
Lipschitz, and its constant inputs belong to some interval
[a, b]. A basis is a Lipschitz basis of norm �1 if, in addi-
tion, all its functions have Lipschitz norm �1.

We also study the effect of allowing discontinuous basis
functions and nondeterminism. For this purpose we con-
sider different extensions of arithmetic circuits.

Circuits over the basis of x+ y, x& y, x } y, the function
sign(x) defined by

1 if x>0,

sign(x)={0 if x=0,

&1 if x<0,

and R are called arithmetic threshold circuits. Formulas over
this basis are called arithmetic threshold expressions.

A nondeterministic arithmetic circuit is an arithmetic
circuit C with inputs x=(x1 , ..., xn), constant inputs
a=(a1 , ..., am) and nondeterministic inputs (called nd-inputs
in what follows) y=( y1 , ..., yk). As the results below refer to
sign-representation, we formulate the definition of the
Boolean function computed by a nondeterministic circuit
only in that case. Thus, if we denote the function computed
by C by C(x, y, a), then C sign-represents the Boolean func-
tion f if for every x # [0, 1]n it holds that f (x)=1 iff for
some y # R, C(x, y, a)�0. For nondeterministic arithmetic
threshold circuits it may be assumed w.l.o.g. that the output
is always 0 or 1. The Boolean function computed by such a
circuit is defined in the usual manner.

Nondeterministic arithmetic circuits can be generalized
further by allowing restricted guesses. We formulate this for
the case when the restricted guesses can be integer or
Boolean. An (R, Z)-nondeterministic arithmetic circuit C
has inputs x=(x1 , ..., xn), constant inputs a=(a1 , ..., am),
and nondeterministic inputs y=( y1 , ..., yk). Furthermore,
each nd-input yi has a type Ai , where Ai is R or Z. If
C(x, y, a) denotes the function computed by C, then C
sign-represents the Boolean function f if for every x # [0, 1]n

it holds that f (x)=1 iff for some y1 # A1 , ..., yk # Ak it holds
that C(x, y, a)�0. The definition of [0, 1]-nondeter-
ministic circuits are analogous (in this case only Boolean
guesses are considered).

The main tool used in the lower bound arguments is
usually referred to as connected component counting, based
on the Milnor�Thom theorem [27]. The theorem of
Warren [43] provides a convenient formulation of the
bounds used in these arguments. We state this result and its
corollary from Goldberg and Jerrum [15].

Let p1 , ..., pu be polynomials of degree at most d in v
variables. A consistent (+, &)-sign assignment is a solvable
system

p1 210, ..., pu2u 0, (1)

where 2i # [<, >] for i=1, ..., u. A consistent (+, 0, &)-
sign assignment is a solvable system (1) where 2i #
[<, =, >] for i=1, ..., u.

Theorem 2.1 (Warren [43]). There are at most
(4edu�v)v consistent (+, &)-sign assignments of the form (1).

Corollary 2.2 (Goldberg and Jerrum [15]). There
are at most (8edu�v)v consistent (+, 0, &)-sign assignments
of the form (1).
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We also need the bound for quantifier-elimination to deal
with the nondeterministic model. For this purpose we use
Renegar's theorem [31] in the case of existential formulas.

Theorem 2.3 (Renegar [31]). Consider an existential
formula

(_y # Rk) Q(x, y), (2)

where x=(x1 , ..., xm) is a vector of free variables,
y=( y1 , ..., yk) is a vector of quantified variables, and Q
is a Boolean combination of l polynomial equalities or
inequalities of degree bounded by d. Then (2) is equivalent
to a quantifier-free formula of the form

�
I

i=1

�
Ji

j=1

(hij 2ij0), where I�(ld)O(mk), Ji�(ld )O(k),

the degree of hij is at most (ld )O(k), and 2ij #
[<, �, =, {, �, >].

3. LOWER BOUNDS FROM COUNTING

In this section we discuss lower bounds for the complexity
of almost all Boolean functions in different circuit models.

Theorem 3.1 (Gashkov [14]). Almost all n-variable
Boolean functions require arithmetic circuits of size 0(2n�2) to
be sign-represented.

Proof. The proof is a variant of the standard counting
argument in Boolean complexity theory (see Wegener
[44]). For fixed positive integer N, we count the number of
different Boolean functions that can be sign-represented by
arithmetic circuits of size �N. We assume that n�N. By
adding an additional gate we may assume that the sign-
representation is strict; i.e., the output is never 0. To
construct such circuits, one can use Boolean variable inputs
x1 , ..., xn , real constant inputs a1 , ..., aN and arithmetic
gates G1 , ..., GN . (It can be assumed w.l.o.g. that the circuit
has at most N constant inputs.) Every input of each gate Gk

can be the output of any other gate or any of the inputs xi

or aj . So there are at most (4N2)N ways to wire up these
gates. Each gate computes one of the three basic arithmetic
operations, +, &, or _; so there are at most (4N2)N } 3N

arithmetic circuits of size N, not taking into consideration
how the constant inputs are fixed.

Now, fix one such circuit C, with constant inputs
a1 , ..., am (where m�N). We have to count the number of
different Boolean functions sign-represented by C, when we
fix the constant inputs a1 , ..., am in all (infinitely many)
possible ways. The output of C is a polynomial C(x, a), for

x=(x1 , ..., xn) and a=(a1 , ..., am). An induction shows that
the degree of C is at most 2N. Now consider the system

C(xi , a) 2i0, i=1, ..., 2n, (3)

of 2n polynomials in the variables a. Here x1 , ..., x2n is an
enumeration of all vectors in [0, 1]n, and 2i # [<, >].
If the system (3) is consistent, then the circuit C with any
solution of (3) as its constant inputs, strictly sign-represents
the same Boolean function. So the number of different
Boolean functions strictly sign-represented by changing the
constant inputs of C is actually the number of different
consistent (+, &)-sign assignments of the system (3). By
Warren's theorem (Theorem 2.1), this number is at most

\4e2n } 2N

m +
m

<23N2
,

assuming n�4. Therefore the number of different n-variable
Boolean functions that can be sign-represented by arithmetic
circuits of size �N is at most (4N2)N } 3N } 23N2

<24N2
, when

N is large enough. Now, comparing this number with the
number of n-variable Boolean functions, i.e., 22n

, concludes
the proof. K

We note that the lower bound remains valid if division is
added to the basis. In fact, in this case the output of the
circuit C is a rational function of the form

C(x, a)=
f (x, a)
g(x, a)

,

where f and g are polynomials of degree �2N. Then instead
of the system (3), we consider the system

f (xi , a) } g(xi , a) 2i0, i=1, ..., 2n.

Thus the same argument as above implies the following.

Corollary 3.2. Almost all n-variable Boolean functions
require 0(2n�2) gates to be sign-represented by a circuit over
the basis [+, &, _, � ] and R.

Now we consider the extension of these lower bounds to
arithmetic threshold circuits.

Theorem 3.3. Almost all n-variable Boolean functions
require 0(2n�2) gates to be computed by an arithmetic
threshold circuit. The same bound holds if division is also
added to the basis.

Proof. The proof is similar to the proof of Theorem 3.1.
Our goal is to count the number of different Boolean func-
tions that can be computed by arithmetic threshold circuits
of size �N, for any fixed positive integer N.
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There are at most (4N2)N } 4N arithmetic threshold
circuits of size �N with Boolean inputs x=(x1 , ..., xn) and
constant inputs a=(a1 , ..., aN), without fixing the constant
inputs.

Let C be such a circuit with constant inputs a1 , ..., am ,
where m�N. We want to count the number of different
Boolean functions computed by C, when we fix the constant
inputs a1 , ..., am in all (infinitely many) possible ways.

Let v1 , ..., vt be the sign gates of C, where t�N. W.l.o.g.
we can assume that vt is the output gate of C. The output of
each vi is either &1 or 0 or +1. So for each gate vi , 1�i�t,
there is a polynomial Pi (x, a, :) such that if : # [&1, 0, 1]t

is the vector of the outputs of v1 , ..., vt , then the input of
each vi , 1�i�t, is Pi (x, a, :). We note that : is a function
of x and a. The polynomial Pi has degree at most 2N and
depends on the j th component of the vector : only if the
input of vi depends on the output of vj . We claim that
the number of different Boolean functions computed by C
with different assignments to the constants a1 , ..., am , is at
most the number of different consistent (+, 0, &) sign-
assignments to the polynomials

Pi (xj , a, :), 1�i�t, 1� j�2n, : # [&1, 0, 1]t.

Here x1 , ..., x2n is a list of all vectors in [0, 1]n. Let a, a$ # Rm

be solutions of

Pi (xj , a, :l) 2ijl0, 1�i�t, 1� j�2n, 1�l�3t,

for some 2ijl # [<, =, >], where :1 , ..., :3t is a list of all
vectors in [&1, 0, 1]t. Then it holds that if the constant
inputs are fixed to be a (resp. a$), then the circuit produces
the same output for every Boolean input vector x. This
follows by induction on the number of sign gates.

By Warren's theorem (Corollary 2.2), the number of
consistent (+, 0, &) sign-assignments is at most

\8e } 2N } t } 2n } 3t

m +
m

�23N2
,

assuming that n is sufficiently large. Therefore the number of
different n-variable Boolean functions can be computed by
arithmetic threshold circuits of size �N is at most

(4N 2)N } 4N } 23N2
�24N2

.

This gives the desired bound.
As it is noted after the Theorem 3.1, even if the division

gate is added to the basis of arithmetic threshold circuits,
the same bound can be obtained. K

As a corollary, one obtains the same lower bound for
arithmetic circuits with sign(x), |x| and arbitrary real
constants, noting |x|=x } sign(x). This includes PL circuits

with arbitrary real constants. The lower bound of Gashkov
[14] for Lipschitz bases, applicable to PL circuits assumes
that the constants are restricted to some bounded interval.

Corollary 3.4. Almost all n-variable Boolean functions
require 0(2n�2) gates to be computed by PL circuits using
arbitrary real constants.

We close this section by discussing the case of nondeter-
ministic circuits.

Theorem 3.5. Almost all n-variable Boolean functions
require 0(2n�4) gates to be computed by a nondeterministic
arithmetic threshold circuit. The same bound holds if division
is also added to the basis.

Proof. The proof is similar to the proofs of Theorems 3.1
and 3.3; so we do not go through all the details.

Let C be a nondeterministic arithmetic circuit of size �N
with Boolean inputs x1 , ..., xn , nd-inputs y1 , ..., yk , and con-
stant inputs a1 , ..., am (where k, m�N). We want to count
the number of different Boolean functions computed by C
with all possible assignments to the constants a1 , ..., am .

Let v1 , ..., vt be the sign-gates of C (t�N), where vt is the
output gate of C. As in the proof of Theorem 3.3, we can
associate a polynomial Pi (x, y, a, :) to the sign-gate vi ,
1�i�t, such that if : # [&1, 0, 1]t is the vector of the
outputs of v1 , ..., vt then the input of vi , 1�i�t, is
Pi (x, y, a, :). Here : is a function of x, y, and a. Note that
the degree of Pi is at most 2N.

Let us consider a setting a of the constant inputs of C. Then
a Boolean input x is accepted iff there is a setting y of the
nondeterministic variables and a sequence : # [&1, 0, 1]t

of the outputs of the sign gates such that :t=1 and for every
i=1, ..., t it holds that sign(Pi (x, y, a, :))=:i . Thus x is
accepted iff

_y # Rm \ �

:t=1
: # [&1, 0, 1]t

�
t

i=1

sign(Pi (x, y, a, :))=:i + .

Note that for a polynomial P and : # [&1, 0, 1], the
formula sign(P)=: is equivalent to P<0 if :=&1, to
P=0 if :=0 and to P>0 if :=1. By the bound for quan-
tifier elimination (Theorem 2.3), this formula is equivalent
to a Boolean combination of

(3t } t } 2N )O(N 2)=2O(N3)

polynomial equations or inequalities of degree at most
2O(N2) in m variables. Thus the Boolean function represented
by the nondeterministic circuit C with the setting a of the
constant inputs depends on the number of consistent
(+, 0, &) sign-assignments to 2n } 2O(N3) polynomials of
degree at most 2O(N2) in m variables.
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Again, by Warren's theorem (Corollary 2.2) this is at
most

\8e } 2N } 2n } 2O(N3)

m +
m

=2O(N4).

The rest of the proof is analogous to the previous
arguments. K

4. UPPER BOUNDS

In this section we prove matching upper bounds for some
of the lower bounds of the previous section.

4.1. Arithmetic Circuits

The first upper bound shows that the lower bound of
Theorem 3.1 is tight.

Theorem 4.1. Every Boolean function f : [0, 1]n �
[0, 1] can be sign-represented by an arithmetic circuit of size
O(2n�2).

Proof. We can assume w.l.o.g. that n is even. For every
:=(:1 , ..., :n�2) # [0, 1]n�2, let f: be the subfunction of f on
[xn�2+1 , ..., xn] defined by

f: (xn�2+1 , ..., xn)= f (:1 , ..., :n�2 , xn�2+1 , ..., xn).

Each subfunction f: can be represented as a vector [ f :] #
[0, 1]2n�2

. The following lemma shows that we can encode
vectors in [0, 1]2n�2

as real numbers so that every vector can
be recovered from its code by a small size circuit up to
its sign. In the following we use another form of the sign
function defined as

sg(x)={1 if x�0,
0 if x<0.

Lemma 4.2. For every m, there is a function �m :
[0, 1]m � R and an arithmetic circuit Cm of size O(m) having
a single input and m outputs such that the following holds. For
every x=(x1 , ..., xm) # [0, 1]m, the circuit Cm over the input
�m(x) gives the output y=( y1 , ..., ym) such that yi {0 and
xi=sg( yi), for every i=1, ..., m.

Proof. Consider the quadratic polynomial g(z)=
&z2+4z. Then g([0, 4])=[0, 4]. For any 0<a<4, the
set g&1(a) contains two numbers; let us call them a0 and a1

where a0<2<a1.
We define the encoding �m inductively. For m=1, let

�1(0)=1 and �1(1)=3. Suppose �m is defined. Consider

==(=1 , ..., =m , =m+1) # [0, 1]m+1. Let a=�m(=1 , ..., =m).
Then define

�m+1(=)={a0 if =m+1=0;
a1 if =m+1=1.

(4)

More explicitly, �m is defined inductively as

�1(0)=1, ,1(1)=3

�m+1(=1 , ..., =m , =m+1)=2&(&1)=m+1 - 4&�m(=1 , ..., =m).

This completes the definition of the encoding �m .
Now consider x=(x1 , ..., xm) # [0, 1]m; and suppose

�m(x)=a. From the definition of �m it follows that xm=1
iff a>2; xm&1=1 iff g(a)>2, and so on. In general, it holds
that

xm&i =sg(g(i)(a)&2)

(here g(i) is the result of i times iterating g). So an arithmetic
circuit of size O(m) computes all ym&i= g(i)(a)&2, for
0�i�m&1. K

Now we describe the arithmetic circuit Cf which com-
putes f. Let :0 , ..., :t&1 (for t=2n�2) be the list of all vectors
in [0, 1]n�2. Let di=�t([ f: i]) (for i=0, ..., t&1), where �t

is the encoding defined by Lemma 4.2.
The desired circuit has the di 's as its constant inputs. For

the input (x1 , ..., xn) first it computes the sequences

(_0 , ..., _t&1) and (_$0 , ..., _$t&1) (5)

such that _j=0 for j{i0 and _i0=1, where
i0=�n�2

i=1 xi 2
i&1, and similarly _$j=0 for j{i1 and _$i1=1

for i1=�n�2
i=1 xi+n�22

i&1. A standard recursive construction
gives a Boolean circuit of size O(t) which computes these
sequences. This circuit can be simulated by an arithmetic
circuit of size O(t). Then �t&1

i=0 _i di=di0=�t([ f : i0
]), where

:i0
=(x1 , ..., xn�2). Next di0 is fed in the circuit Ct of

Lemma 4.2. Suppose y0 , ..., yt&1 is the output of Ct ; then
the desired output is �t&1

i=0 _$i yi . K

4.2. Piecewise Linear Circuits

Gashkov [14] showed that if B is any Lipschitz basis
with constant inputs from some bounded interval 2, then
almost all n-variable Boolean functions require circuits
of size 0(2n�2) over B. We show that for PL circuits this
bound is tight. This also implies that the lower bound of
Theorem 3.3 is tight.

The construction is a modification of the previous one.
Before we go through the construction, let us note that the
Boolean gates c, 6 , and 7 can be simulated by constant
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size PL circuits. For example, an 7-gate is simulated by
|x+ y& 1

2 |& 1
2 .

First, we introduce an encoding of Boolean functions very
similar to what is introduced in Lemma 4.2. Note that here,
from the code of a vector we can recover each of its bits
exactly, and not only up to their sign.

Lemma 4.3. (i) For every m there is a function
.m : [0, 1]m � [0, 1] and a PL circuit Cm of size O(m)
having a single input and m outputs such that the following
holds. For every x=(x1 , ..., xm) # [0, 1]m, the circuit Cm over
the input .m(x) gives the output y=( y1 , ..., ym) so that yi {0
and xi=sg( yi), for every i=1, ..., m.

(ii) There is a PL circuit C$m of size O(m) having a single
input and a single output which for every output yj of the
circuit Cm in (i) outputs sg( yj).

Proof. (i) Here we use the function h defined by

h(z)={2z
&2z+2

if z� 1
2 ,

if z> 1
2 ,

instead of the quadratic polynomial g(z) in Lemma 4.2.
Then h([0, 1])=[0, 1], and as h(z)=1&|2z&1|, h can be
computed by using four PL gates. Put .1(0)= 1

3 and
.1(1)= 2

3 . The inductive definition of .m is analogous to
the definition of �m by (4) in Lemma 4.2; and with same
reasoning if x=(x1 , ..., xm) # [0, 1]m and a=.m(x), then

xm&i=sg(h(i)(a)& 1
2).

Thus a PL circuit of size O(m) can compute all
ym&i=h(i)(a)& 1

2 .

(ii) Let Am be the range of the function .m in (i); i.e., Am

is the set of encodings of the strings of length m. It follows
by induction that

Am={ i
3 } 2m&1 : 0<i<3 } 2m&1, 3 |% i= .

This shows Am /Am+1 for every m�1. For the set

A$m=[a& 1
2: a # Am]

it follows that

A$m={ i
3 } 2m&1 : &3 } 2m&2<i<3 } 2m&2, 3 |% i= (6)

if m>1 and A$1=[& 1
6 , 1

6]. Note A$m �[ 1
2 , 1

2].
Let yj be an output of Cm for some input a=.m(x). Then

yj=h(m& j)(a)& 1
2 . As, by definition, h(Al)=Al&1 , for every

l>1, it follows that yj # A$j .

Now consider the function

&2z&1 if z�& 1
4,

u(z)={2z if & 1
4<z< 1

4 ,

&2z+1 if z� 1
4.

Note that u(z)=|2z+ 1
2 |+|&2z+ 1

2 |&2z; so it can be
computed by using nine PL gates.

The definition of u and (6) implies

u(A$l)=A$l&1 , (7)

for every l>1. Since u([& 1
2 , 0])=[& 1

2 , 0] and
u([0, 1

2])=[0, 1
2], we have

u(Al) & [0, 1
2]=Al&1 & [0, 1

2]

u(Al) & [& 1
2 , 0]=Al&1 & [&1

2, 0].

We claim that the circuit C$m computing 1
2(3u(m+1)( y)+1)

satisfies the requirements. This follows from the following
claim.

Claim. For every j�1, if yj>0 then u(m+1)( yj)= 1
3 and

if yj<0 then u(m+1)( yj)=&1
3.

Proof. Follows from (7) and the facts that &1
3 and 1

3 are
fixed-points of the mapping u and u(A$1)=[& 1

3 , 1
3]. K

This completes the proof of Lemma 4.3. K

Theorem 4.4. Every Boolean function f : [0, 1]n �
[0, 1] can be computed exactly by a PL circuit of size
O(2n�2).

Proof. We describe the structure of the desired PL
circuit Cf which computes f. As in the previous section, for
: # [0, 1]n�2, the vector [ f: ] # [0, 1]2n�2

represents the sub-
function f: . Again, let :0 , ..., :t&1 (for t=2n�2) be the list of
vectors in [0, 1]n�2. Let ei=.t([ f : i]) (for i=0, ..., t&1),
where .t is the encoding defined by Lemma 4.3. Note that
0<ei<1. The circuit Cf has the ei 's as its constant inputs.

For the input x=(x1 , ..., xn), Cf first finds
ei0=.t([ f: i0

]), where :i0=(x1 , ..., xn�2). To do this, Cf

computes the sequence (_0 , ..., _t&1) as in (5), where _i=1
iff (x1 , ..., xn�2)=: i . This needs O(2n�2) Boolean gates and it
can be simulated by O(2n�2) PL gates. Note that exactly one
of the _i 's is 1. Next Cf adds each _i to ei to obtain
hi=_i+ei . So hi0>1 and hi<1 for all i{i0 . Next Cf

applies a circuit of size O(2n�2) over the sequence
(h0 , ..., ht&1) to find hi0 . For this Cf utilizes max(x, y) which
can be computed by a constant size PL circuit, because
max(x, y)= 1

2 (x+ y+|x& y| ). After finding hi0 , ei0 is
obtained using ei0=hi0&1. Using the circuit Ct from
Lemma 4.3(i) with input ei0 , Cf obtains outputs y0 , ..., yt&1.
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Computing (_$0 , ..., _$t&1) from xn�2+1 , ..., xn as in (5),
Cf then finds yi1

for which _$i1
=1 using the same procedure

as above. Finally, the circuit C$t in Lemma 4.3(ii) can be
used to find the desired output sg( yi1). K

We would like to mention that the encoding and decoding
procedures described in the proofs of Lemmas 4.2 and 4.3
can be viewed as utilizing the orbits of the dynamical
systems (see [12]) defined by the logistic map g(z) and the
tent maps h(z) and u(z).

5. DISCONTINUITY AND NONDETERMINISM

In this section we show that there is a relationship
between arithmetic threshold and nondeterministic
arithmetic circuits, as nondeterministic arithmetic circuits
can simulate arithmetic threshold circuits with only a
constant factor increase in size.

Theorem 5.1. If the Boolean function f is computed by
an arithmetic threshold circuit C, then it can be sign-represented
by a nondeterministic arithmetic circuit of size O(size(C)).

Proof. Suppose C is an arithmetic threshold circuit
which computes the Boolean function f : [0, 1]n � [0, 1].
Suppose C has t sign gates G1 , ..., Gt , listed in topological
ordering, and let zi (x) be the input of Gi (note that zi is not
necessarily a polynomial function). We can assume that
zi (x){0 for each i and each input x # [0, 1]n. Indeed, for
each i=1, ..., t, let :i=

1
2 min[ |zi (x)|: x # [0, 1]n, zi (x){0].

Then substitute the sign gate Gi by a subcircuit of constant
size computing 1

2(sign(zi+:i)+sign(zi&:i)). The result is a
new circuit of size �6size(C) which computes the same
Boolean function and the input of each sign gate in it is
always nonzero.

We now construct a nondeterministic arithmetic circuit C�
which simulates C. The circuit C� has t nd-inputs u1 , ..., ut ,
which are used to produce the numbers vi=u2

i , 1�i�t. To
obtain C� , we first construct a nondeterministic arithmetic
circuit C$ by the following process. Substitute each sign gate
Gi of C by a multiplication gate Gi such that one of its
inputs is the (only) input of Gi and its other input is vi . Let
si (x, u) denote the input of Gi other than vi , where
x=(x1 , ..., xn) and u=(u1 , ..., ut). Then si is a polynomial
function of x and u. Thus the output of Gi can be written as
Gi (x, u)=si (x, u) } vi . The output of C$ is the polynomial
C$(x,u).

Then the output of the desired circuit C� is defined as

C� (x, u) :=C$(x, u)&#C"(x, u)[S(x, u)&1]& 1
2 , (8)

where #�1 is a constant input, C" is an arithmetic circuit
that will be defined later, and

S(x, u)= `
t

i=1

((si (x, u) vi&1)2 (si (x, u) vi+1)2+1).

We formulate some properties of S(x, u) that will be used
later on.

Lemma 5.2. (a) For every x # [0, 1]n and u # Rt it
holds that S(x, u)�1.

(b) For every x # [0, 1]n and u # Rt it holds that
S(x, u)=1 iff for every i=1, ..., t

ui=\
1

- |zi (x)|
, vi=

1
|zi (x)|

(9)

and for every i=1, ..., t

si (x, u)=zi (x), Gi (x, u)=Gi (x). (10)

(c) If S(x, u)=1 then C$(x, u)=C(x).

(d) For every x # [0, 1]n there is a rectangle 4x �Rt

such that S(x, u)>2 for every u � 4x .

Proof. (a) is obvious.
We assumed that the sign gates of C are ordered as

G1 , ..., Gt such that the input of Gi does not depend on the
output of Gj for j>i. To prove (b), first assume S(x, u)=1.
Then an induction on i shows that (9) and (10) hold.
Conversely, if (9) and (10) hold then

(si (x, u) vi&1)(si (x, u) vi+1)=0

for every i=1, ..., t. Therefore S(x, u)=1.
(c) follows obviously from (b).
To show (d) we write

S(x, u)=((s1(x, u) v1&1)2 (s1(x, u) v1+1)2+1)

_ `
t

i=2

((si (x, u) vi&1)2 (si (x, u) vi+1)2+1).

As G1 is the first sign-gate, s1 only depends on x and
s1(x)=z1(x){0. Thus solving

(s1(x) u2
1&1)(s1(x) u2

1+1)+1�2

for u1 , we get a closed interval I1 such that

4x :=I1_[0, 1]t&1

satisfies the requirement. K

The following lemma will be used to define the circuit C".

Lemma 5.3. Suppose the polynomial P( y1 , ..., ym) is the
output of an arithmetic circuit P. Then there is an arithmetic
circuit Q computing a polynomial Q( y1 , ..., ym) such that
size(Q)�3size(P), Q( y1 , ..., ym)�1 and |P( y1 , ..., ym)|<
Q( y1 , ..., ym) for all y1 , ..., ym # R.
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Proof. The circuit Q is obtained from P by replacing
subtractions by additions, substituting each input yi By
y2

i +1 and each constant input aj by the constant input
a2

j +1. So size(Q)�3size(P). Now induction on size(P)
shows that the circuit Q has the desired properties. K

The circuit C" in (8) is obtained from C$ as in the above
lemma. So C"(x, u)�1 and |C$(x, u)|<C"(x, u), for all x
and u.

In view of Lemma 5.2, we define

1x := `
t

i=1 {\
1

- |zi (x)|=�Rt

as the set of correct guesses for x # [0, 1]n. Then Lemma 5.2
implies that for every u # 1x we have C$(x, u)=C(x)= f (x).

Lemma 5.2 implies that if u # 1x then

C� (x, u)=C$(x, u)& 1
2=C(x)& 1

2= f (x)& 1
2 .

Hence if f (x)=1 then C� accepts x (with a correct guess u
from 1x). It remains to be shown that the constant # in (8)
can be chosen in such a way that if f (x)=0 then C� (x, u)<0
for every u # Rt.

Fix x # [0, 1]n such that f (x)=0. Let

0x=[u # Rt : C$(x, u)� 1
2].

Therefore 0x�Rt"1x .
Since C$(x, u) is a continuous function and C$(x, u0)=0

for every u0 # 1x , there is a $x>0 so that for every u0 # 1x

u # 0x O d(u, u0)�$x , (11)

where d is the Euclidean metric for Rt.
Now let

#x=min{S(x, u)&1: u # 4x> .
u # 1x

B(u ; $x)= ,

where B(u ; r)=[v # Rt : d(u, v)<r] and 4x is the rectangle
in Lemma 5.2(d). Then #x>0 exists, because it realizes the
minimum value of a nonzero continuous function over a
compact set. Define

#= max
f (x)=0

[1�# x , 1].

Let f (x)=0 and u # Rt. If u � 0x , i.e. C$(x, u)< 1
2 then,

because #�1, C"(x, u)�1 (by Lemma 5.3) and S(x, u)�1,
Eq. (8) implies C� (x, u)<0. Otherwise, we consider two
cases:

If u # 0x"4x then S(x, u)>2, and since C"(x, u)>
|C$(x, u)| and #�1, it follows from (8) that C� (x, u)<0.

Finally, if u # 0x & 4 x then (by (11)) since

u � .
u0 # 1x

B(u0 ; $x)

and by the very definition of #, #[S(x, u)&1]�1, so

#C"(x, u)[S(x, u)&1]>C$(x, u)

and, again, C� (x, u)<0.

This completes the description and the proof of correct-
ness of the circuit C� .

The bound on the size of C� follows by noting that the size
of C$ and C" is O(size(C)) by construction. As each si is
computed at some gate of C$, S(x, u) can also be computed
with O(size(C)) additional gates. K

We also observe that the (R, Z)-nondeterministic circuits
are ``too powerful,'' providing a different kind of example of
the ``pathologies'' mentioned in the Introduction.

Theorem 5.4. Every Boolean function f: [0, 1]n � [0, 1]
can be sign-represented by some (R, Z)-nondeterministic
arithmetic circuit of size O(n).

Proof. Let [ f ] # [0, 1]2n
represent f as a vector. This

means that if [ f ]=(=2n&1 , ..., =1 , =0) then for x # [0, 1]n,
f (x)==j , where

j= :
n

i=1

xi2
i&1. (12)

We also consider [ f ] as the nonnegative integer �2n&1
i=0 =i 2

i.
The constant inputs of the circuit are the numbers 2i and

22i
for 0�i�n&1, and [ f ]. It has four nd-inputs:

u1 # R, u2 # R, v # Z, w # R.

On input x=(x1 , ..., xn) # [0, 1]n, the circuit first com-
putes j by (12) and

m=2 j= `
n

i=1

((22i&1
&1) xi+1).

Then f (x)=1 iff for some integers v and w with 0�w<m
we have

[ f ]=2vm+m+w. (13)
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This holds as (13) implies v�0; and the j th bit of 2vm+w
(for v�0) is zero. Actually we can write a weaker condition,
only requiring the integrality of v:

f (x)=1

iff

(_v # Z)(_w # R)[&1<w<m and [ f ]=2vm+m+w].

To check the conditions inside the brackets note that if
A>0 then there exists a u # R such that Au2&1=0 and if
A�0 then for all u # R, Au2&1<0. Therefore,

f (x)=1

iff

(_u1 # R)(_u2 # R)(_v # Z)(_w # R)[T(u1 , u2 , v, w)=1],

where

T(u1 , u2 , v, w)=(((w+1) u2
1&1)2+((m&w) u2

2&1)2+1)

_(([ f ]&2vm&m&w)2+1).

Note that T(u1 , u2 , v, w)�1 for every (u1 , u2 , v, w) # R4; if
f (x)=1 then the equation T(u1 , u2 , v, w)=1 has a solution
with v # Z, and if f (x)=0 then for all values of u1 , u2 , v, and
w we have T(u1 , u2 , v, w)>1. Consequently, f (x)=1 iff

(_u1 # R)(_u2 # R)(_v # Z)(_w # R)[1&T(u1 , u2 , v, w)�0].

Since a circuit of size O(n) can compute j, m, and T, the
proof is complete. K

It may be of interest to compare Theorem 5.4 with the
following bound for [0, 1]-nondeterministic circuits.

Proposition 5.5. Almost all n-variable Boolean func-
tions require size 0(2n�2) to be computed by a [0, 1]-non-
deterministic arithmetic threshold circuit.

Proof. The argument is a slight modification of the
proof of Theorem 3.3. K

6. EXPLICIT LOWER BOUNDS

In this section we prove lower bounds that hold for
explicitly defined Boolean functions.

6.1. Arithmetic Expressions and Their Generalizations

For the first lower bound, we consider bases consisting of
finitely many multilinear polynomials and all constants
from R.

Let f : [0, 1]n � [0, 1] be a Boolean function with
variables X=[x1 , ..., xn] and (S1 , ..., Sp) be a partition of X
with |Si |=li , i=1, ..., p. Furthermore, let si be the number
of subfunctions of f on Si obtained by fixing the variables
outside Si in all possible ways, and let ri be defined by

(2li+4ri)
ri=si , (14)

for i=1, ..., p.

Theorem 6.1. Let B be any basis of finitely many multi-
linear polynomials and all constants from R. Then every
formula sign-representing f over B has size

0 \ :
1�i�p

ri+ .

Proof. We assume w.l.o.g. that the basis contains addi-
tion and the function

�(x, y, z)=xy+z.

(Adding these functions to the basis only makes the lower
bounds stronger.)

Let F be a formula over B sign-representing f, and let ti

be the number of leaves labelled by variables from Si .
Adding a final gate that adds a small positive constant to the
output of F, if necessary, it may be assumed that F(x){0
for all x # [0, 1]n; i.e., the sign-representation is strict.

Let 6i be the set of all paths from a leaf labelled by some
xj # Si to the output of F. Let 1i be the set of all gates of F
where two paths from 6i meet. Then it holds that |1i |�ti .

Consider an assignment _ of the variables outside Si . Let
F_ be the resulting formula, and suppose that

P=(G1 , G2 , ..., Gm), (15)

for m>2, is a path in F_ so that G1 is a leaf of F_ or a gate
in 1i , Gm is a gate in 1i , or the root of F_ , and Gj � 1i

for 1< j<m. Then, since B contains only multilinear poly-
nomials, P is equivalent to the path (G1 , G� , Gm), where the
gate G� computes �(x, a, b) for constants a and b which
depend on the constants of F, the assignment _, and the
gates Gj , 1< j<m. On each path like (15), substitute gates
G2 , ..., Gm&1 by the single �-gate G� and feed in the corre-
sponding constant a and b as inputs y and z. Denote the
resulting formula by F_ . So F_ is a formula with size
t$i=3(ti). Note that for different assignments _ and _$ of the
variables outside Si , the formula F_ and F_$ only differ on
their constant inputs.

Let G be any formula of size t over a basis of multilinear
polynomials, having inputs Y=[ y1 , ..., yk]. Consider the
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family G of formulas by assigning constants to the constant
inputs of G in all possible ways. The following lemma is a
slight modification of a result of Gashkov [14].

Lemma 6.2. The number of Boolean functions strictly
sign-represented by formulas in G is at most

(2k+4t)t.

Proof. Let a=(a1 , ..., am) be the constants of G and let
the polynomial computed by G be Q(y, a) (note that m�t).
Consider the set of polynomials

P=[Q(y, a) : y # [0, 1]k],

in the variables a1 , ..., am , as in the proof of Theorem 3.1.
The difference between circuits and formulas is that in the
case of formulas one can give a better bound for the degree
of the polynomials involved. It follows by induction on the
depth of G, using the multilinearity of the gates, that the
degree of Q(y, a) is at most t. The number of Boolean
functions strictly sign-represented by formulas in G is
exactly the number of consistent (+, &) sign-assignments
to the polynomials in P. Thus the lemma follows from
Theorem 2.1. K

The lemma implies that the number of subfunctions on Si

that are strictly sign-represented by F_ , for some _, is at
most (2li+4t$i)t$i. This number has to be at least si , com-
pleting the proof of Theorem 6.1. K

This lower bound can be applied for example to the ELE-
MENT DISTINCTNESS function (Beame and Cook; see
Boppana and Sipser [3]). Assume that n is of the form
2l log l. Then every input x may be viewed as representing
l numbers of 2 log l bits each. Let EDn(x)=1 iff these
numbers are pairwise different. We note that the formula
size of EDn is O(n2�log n) over the Boolean basis
[�, �, c], and EDn is an AC0 function.

Theorem 6.3. Let B be any basis of finitely many multi-
linear polynomials and all constants from R. Then any
formula sign-representing EDn over B has size 0(n2�log2 n).

Proof. Consider the partition of the variables into l sets
of 2 log l variables corresponding to the numbers repre-
sented. Then the number of subfunctions on each set is at
least ( l2

l&1). Hence for ri in (14) it holds that

(22 log l+4ri)
ri�\ l2

l&1+>ll&1 ,

so ri=0(l). Thus Theorem 6.1 implies that any formula
sign-representing EDn has size 0(l2)=0(n2�log2 n). K

Corollary 6.4. Every arithmetic expression sign-repre-
senting EDn has size 0(n2�log2 n).

Now we turn to the extension of the lower bound to bases
that include the sign function as well. We may again assume
w.l.o.g. that the basis contains addition, multiplication and
the function � described in the proof of Theorem 6.1. In this
case sign-representation and exact computation are equiv-
alent up to three additional gates. Let f, Si , li , and si

(i=1, ..., p) be as in the beginning of the section.

Theorem 6.5. Let B be any basis of finitely many multi-
linear polynomials, the sign function, and all constants from
R. Then every formula computing f over B has size

0 \ :
1�i�p

- log si+ .

Proof. Let F be a formula over B computing f, and let
ti be the number of leaves labelled by variables from Si . Let
6i , 1i , _ and P=(G1 , G2 , ..., Gm) be as in the proof of
Theorem 6.1. Now P is a chain of gates that compute either
a multilinear polynomial or the sign function.

Lemma 6.6. P can be replaced by a path (G1 , G1 , ...,
G5 , Gm), where the Gi , i=1, ..., 5, are either � or sign gates,
and the y and z inputs of the �-gates are constants.

Proof. A subchain of P that consists of gates computing
multilinear polynomials can be replaced by a single �-gate
�(x, y, z), where y and z are constant inputs, as in the proof
of Theorem 6.1. Thus we can assume that G2 , ..., Gm&1 is an
alternating sequence of � and sign gates. It may also be
assumed w.l.o.g. that G2 is a �-gate (otherwise one can add
a dummy �-gate) and that there is at least one sign gate
(otherwise we are done). Then the function computed by the
chain P can be written as Hy, z, u(x) :=h(sign(xy+z), u),
where u contains the constant inputs of the gates
G4 , ..., Gm&1 and h is some function.

For an arbitrary setting of the constant inputs y, z, and u,
there are the following possibilities for H:

(i) for some a, b # R, b{0,

H(x)=a if xy+z<0

H(x)=a+b if xy+z=0

H(x)=a+2b if xy+z>0;

(ii) for some a, b # R, a{b,

H(x)=a
H(x)=b

if xy+z�0
if xy+z>0;
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(iii) for some a, b # R, a{b,

H(x)=a
H(x)=b

if xy+z<0
if xy+z�0;

(iv) for a # R,

H(x)#a.

Each possibility can be realized by a chain G1 , ..., G5 ,
where G1 , G3 , and G5 are �-gates and G2 and G4 are sign
gates. K

Let F_ denote the formula obtained by performing the
above replacements for all paths. Again, it holds that for
different assignments _ and _$ of the variables outside Si ,
the formulas F_ and F_$ only differ on their constant inputs.

Now we formulate an analogue of Lemma 6.2. Let G be a
formula of size t over a basis of multilinear polynomials and
the sign function, having inputs Y=[ y1 , ..., yk]. Let G be
the family of formulas obtained by assigning constants to
the constant inputs of G in all possible ways.

Lemma 6.7. The number of Boolean functions computed
by formulas in G is at most 24t2+5t.

Proof. We argue as in the proof of Theorem 3.3. Let
a=(a1 , ..., am) be the constants of G, and v1 , ..., vr be the
sign gates and vr be the output gate of G, where each gate
vi computes a value :i . We consider the polynomials

Pi (y, a, :).

Then it holds that the number of different Boolean func-
tions computed by G with different assignments to the
constants is at most the number of different consistent
(+, 0, &) sign-assignments to the polynomials Pi (y, a, :)
for y # [0, 1]k, : # [&1, 0, 1]r. Again, each polynomial has
degree at most t. Thus Corollary 2.2 implies the upper
bound

\8et 2k3t

t +
t

<24t2+5t. K

Lemma 6.7 implies 24ti
2+5ti�si , completing the proof of

Theorem 6.5. K

Applying Theorem 6.5 for the function EDn we get the
following lower bound.

Theorem 6.8. Let B be any basis of finitely many multi-
linear polynomials, the sign function, and all constants from
R. Then any formula computing EDn over B has size
0(n3�2�log n).

Proof. Arguing as in Theorem 6.3, we have a lower
bound of the form 0(l - l log l )=0(n3�2�log n). K

As a special case, we obtain a lower bound for arithmetic
threshold expressions.

Corollary 6.9. Every arithmetic threshold expression
for EDn has size 0(n3�2�log n).

6.2. An Application to Boolean Linear Threshold Circuits

Finally we formulate an application of the lower bound of
Corollary 6.9 for Boolean complexity, considering Boolean
threshold circuits of unbounded fan-in with arbitrary
weights. For definitions see, e.g., Hajnal et al [17].

Theorem 6.10. Every depth d threshold circuit computing
EDn has size 0(n1�(2(d&1))�(log n)1�(d&1)).

Proof. Consider a threshold circuit of depth d and size
s computing EDn , with si gates on level i, i=1, ..., d&1. The
last level contains a single gate. By repeating gates several
times if necessary, the circuit can be transformed into a
threshold formula with at most (s1+1) } } } (sd&1+1) } 2n
leaves. Each threshold gate with fan-in u can be replaced by
an arithmetic threshold expression of size O(u) containing
one occurrence of each input of the gate. Hence
Corollary 6.9 implies

(s1+1) } } } (sd&1+1) } 2n=0 \ n3�2

log n+ ,

and this with (s1+1) } } } (sd&1+1)�(s+1)d&1 gives the
desired bound. K

7. SOME FURTHER REMARKS AND
OPEN PROBLEMS

It appears that ``powerful'' functions such as sin (x) lead
to a linear Shannon function when added to the basis of
arithmetic circuits (Gashkov [14], Sontag [38]), and at the
same time their inclusion in the theory of real numbers leads
to undecidability. On the other hand, if sign(x) and |x| are
added to the basis, the Shannon function remains exponen-
tial. As these functions are definable over the reals, adding
them as new functions does not change the theory and thus
it remains decidable. We also note that applications of
important recent results in logic, relating decidability and
the Vapnik�Chervonenkis dimension, are given in Macintyre
and Sontag [25] and in Karpinski and Macintyre [19].

Theorem 4.1 implies that every n variable Boolean func-
tion can be computed by an arithmetic threshold circuit of
size O(2n�2). The circuits constructed in the proof have
depth 0(2n�2). On the other hand, we showed in [40] that
if the depth of the arithmetic threshold circuits is restricted
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to be polynomial in n, then almost all functions require size
0(2n&O(log n)). Thus for most Boolean functions there is a
size-depth trade-off in this model. This is in contrast with
Boolean circuits, where almost all functions can be com-
puted by circuits that have asymptotically optimal size and
depth.

We mention some recent results on the complexity of
analog circuits. Wegener [45] considered the complexity
of encoding n bits by a real number, i.e., the complexity of
computing any injection from [0, 1]n to R. He showed that
the natural method of using the binary representation is not
optimal and he determined the optimal bound for formula
size. Pudla� k [30] extended the exponential lower bound of
Razborov from monotone Boolean circuits to circuits of
arbitrary real-valued gates computing monotone functions.
He used this result to prove an exponential lower bound for
cutting plane proofs.

There are many open problems related to the results of
this paper. The question whether arithmetic circuits or
arithmetic threshold circuits are superpolynomially more
powerful than Boolean circuits is open. This is also men-
tioned as an open problem in Koiran [21]. The correspond-
ing problem for real Turing machines is noted as an open
problem in Cucker and Grigoriev [6]. It is not known if all
n-variable Boolean functions can be computed exactly by
arithmetic circuits of size O(2n�2). It would be also interest-
ing to extend the lower bounds of Section 6 to formulas that
may also use x2 or |x|, and to prove explicit lower bounds
for planar arithmetic circuits.
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