
Information Processing Letters 110 (2010) 174–177
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Finding bipartite subgraphs efficiently

Dhruv Mubayi a,∗,1, György Turán a,b,2

a Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, IL 60607, United States
b Research Group on Artificial Intelligence, Hungarian Academy of Sciences, University of Szeged, Hungary

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 May 2009
Received in revised form 8 October 2009
Accepted 26 November 2009
Available online 4 December 2009
Communicated by B. Doerr

Keywords:
Algorithms
Graph algorithm
Bipartite graph
Extremal graph theory

Polynomial algorithms are given for the following two problems:

• given a graph with n vertices and m edges, find a complete balanced bipartite
subgraph Kq,q with q = � lnn

ln(2en2/m)
�,

• given a graph with n vertices, find a decomposition of its edges into complete balanced
bipartite graphs having altogether O (n2/ ln n) vertices.

The first algorithm can be modified to have running time linear in m and find a Kq′,q′ with
q′ = �q/5�. Previous proofs of the existence of such objects, due to Kővári, Sós and Turán
(1954) [10], Chung, Erdős and Spencer (1983) [5], Bublitz (1986) [4] and Tuza (1984) [13]
were non-constructive.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Determining the minimal number of edges in a bi-
partite graph which guarantees the existence of a com-
plete balanced bipartite subgraph Kq,q is known as the
Zarankiewicz problem (see, e.g., Bollobás [3]). It was shown
by Kővári, Sós and Turán [10] that every bipartite graph
with n vertices in both sides and cqn2−1/q edges contains
a Kq,q . The same bound (with different constant cq) holds
for general n-vertex graphs. The argument from [10] also
shows that n-vertex graphs of constant density, i.e., graphs
with εn2 edges, contain a complete bipartite graph with
parts of size at least cε ln n. The proofs of all these results
are based on counting, and thus are non-constructive. Nev-
ertheless, as a referee pointed out to us, the counting ar-
gument easily yields a randomized polynomial time algo-
rithm that finds a copy of Kq,q . The algorithm is very sim-
ple: namely choose a random set of q vertices and check

* Corresponding author.
E-mail addresses: mubayi@math.uic.edu (D. Mubayi), gyt@uic.edu

(G. Turán).
1 Research supported in part by NSF grant DMS 0653946.
2 Research supported in part by NSF grant CCF 0916708.
0020-0190/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.11.015
if they have a common neighborhood of size q. The count-
ing argument shows that the expected number of common
neighbors of a random q-set of vertices is at least q. Since
the number of common neighbors is certainly at most n,
we conclude that the probability that a random q-set has
at least q neighbors is at least 1/n and therefore the algo-
rithm succeeds in finding a Kq,q with probability at least
3/4 if we repeat this procedure O (n) times.

We consider the question whether such subgraphs can
be found by deterministic polynomial time algorithms. This
question has been considered recently by Kirchner [9], who
gave a deterministic polynomial time algorithm to find a
complete balanced bipartite subgraph with parts of size
Ω(

√
ln n) in graphs of constant density.

We improve this result by giving a deterministic poly-
nomial time algorithm which finds a complete balanced
bipartite subgraph with parts of size Ω(ln n), i.e. of the
optimal order of magnitude, in graphs of constant den-
sity. Our algorithm gives subgraphs of similar size as the
counting argument in other ranges as well.3 The algorithm

3 Note that the problem becomes meaningless in the sense studied here
for fewer than n3/2 edges, as such graphs do not always contain even K2,2

subgraphs.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:mubayi@math.uic.edu
mailto:gyt@uic.edu
http://dx.doi.org/10.1016/j.ipl.2009.11.015

D. Mubayi, G. Turán / Information Processing Letters 110 (2010) 174–177 175
works by restricting the search to a search space of polyno-
mial size; the correctness proof uses the original counting
argument. There is a trade-off between efficiency and the
size of the subgraphs: the algorithm can be modified to
run in linear time and produce subgraphs that are smaller
by a constant factor. We emphasize that obtaining a deter-
ministic algorithm from a randomized one in such settings
is not necessarily an easy task, indeed, already the subop-
timal result from [9] had a quite complicated proof.

Finding a largest balanced complete bipartite subgraph
is an important optimization problem, which is known
to be NP-hard, and even hard to approximate (see, e.g.,
Feige and Kogan [6]). We would like to emphasize that
we are not trying to give an approximation algorithm for
this problem. Our objective is to give an efficient algorithm
which finds a balanced complete bipartite subgraph of size
close to the largest size that is guaranteed to exist know-
ing only the number of edges in the graph. Thus, even in a
dense graph, we are finding a subgraph of logarithmic size
only. Results of this type could perhaps be referred to as
algorithmic extremal graph theory, and are given, for ex-
ample, in Alon et al. [1].

The counting argument of [10] has several applications
to other combinatorial problems. It seems to be an in-
teresting question whether the algorithmic version of the
counting argument leads to further algorithmic results in
these applications. As a case in point, we consider the
question of decomposing, or partitioning, the edge set of
a graph into complete bipartite graphs. The motivation to
look for such algorithms comes from an application in ap-
proximation algorithms [2].

Every n-vertex graph can be decomposed into at most
n − 1 stars, and Graham and Pollak [7] showed that n − 1
complete bipartite graphs are necessary for the n-vertex
complete graph. Instead of minimizing the number of com-
plete bipartite graphs in a decomposition, one can also try
to minimize the complexity of decompositions, measured
by the sum of the number of vertices of the complete bipartite
graphs used in the decomposition. This measure of complex-
ity was suggested by Tarján [12] in the context of circuit
complexity. For recent connections to circuit complexity
see Jukna [8].

It was shown by Chung, Erdős and Spencer [5], and by
Bublitz [4], that there is always a decomposition of com-
plexity O (n2/ ln n), and this order of magnitude is best
possible. Similar results were obtained by Tuza [13] for
decomposing bipartite graphs. These results are obtained
by repeatedly applying the counting argument to show the
existence of a large complete bipartite graph and remov-
ing its edges. Thus the decomposition results obtained in
[4,5,13] are also non-constructive. As a direct application
of our algorithm for finding bipartite subgraphs, we obtain
efficient algorithms to find decompositions of complexity
O (n2/ ln n).

2. Complete balanced bipartite subgraphs

Searching for a Kq,q by checking all subgraphs of that
size would give an algorithm with superpolynomial run-
ning time if q is, say, logarithmic in the number of vertices.
A polynomial algorithm could be given by restricting the
search space to a polynomial size set of candidate sub-
graphs. One possibility for that would be to find a bipartite
subgraph (R, S) with the following properties:

• it is dense enough for the known results to guarantee
the existence of a Kq,q , and

• the number of q-element subsets of R is only polyno-
mial.

If such an (R, S) can be found efficiently then a re-
quired Kq,q is obtained by checking the common neighbor-
hood of all q-element subsets of R . It turns out that this
approach indeed works if one chooses R to be the right
number of vertices with maximal degree and S to be the
remaining vertices. Thus, we consider the following proce-
dure.

The inputs are a graph G = (V , E) with |V | = n and
|E| = m, and parameters s and t .

Algorithm FIND-BIPARTITE (G, s, t)
if 0 < m � 8n3/2 then return any ({u}, {v}) with (u, v) ∈ E
else

R := s vertices having highest degree
for all subsets C ⊆ R with |C | = t do

D := ⋂{N(v) − R: v ∈ C}
if |D| � t then D ′ := any set of t elements of D , re-
turn (C, D ′)

The algorithm can be implemented to run in time

O

(
m +

(
s

t

)
nt

)
. (1)

We assume that graphs are represented by adjacency
lists. The claim about the running time is trivial if m �
8n3/2. Otherwise, a size n array A containing the vertex
degrees can be computed in time O (m) by traversing the
adjacency lists. The entries of A can be sorted in time
O (n log n), which is o(m). This provides the set R required
by the algorithm. For the implementation of the for loop
note that all t-subsets of R can be listed in O (

(s
t

)
) steps

(see, e.g. [11]). For a given t-subset T of R , the common
neighbors of T outside of T can be found in O (nt) steps,
for example, by counting in a separate array B of size n the
number of times each vertex of G occurs in the adjacency
lists of vertices in T . This can be done by initializing B to
0, traversing the adjacency lists of vertices in T , and in-
creasing the occurrence count in B each time a new edge
is encountered.

Theorem 1. Let

q :=
⌊

ln(n/2)

ln(2en2/m)

⌋
, r :=

⌊
qn2

m

⌋
.

If n is sufficiently large and m � 8n3/2 then Algorithm FIND-
BIPARTITE (G, r,q) returns a Kq,q with q � 2. The running time
of the algorithm is polynomial in n.

Remark. Note that our algorithm finds a Kq,q in an n-
vertex graph with m = cqn2−1/q edges as long as cq is
large. This is optimal for q = 2,3 as there exist n-vertex

176 D. Mubayi, G. Turán / Information Processing Letters 110 (2010) 174–177
graphs with c′
qn2−1/q edges and no Kq,q , and if certain con-

jectures in extremal graph theory are true (see [3]), then it
is also optimal for fixed q > 3.

Proof. After selecting i < r vertices, the number of edges
incident to these vertices is less than rn. Hence in the sub-
graph induced by the remaining vertices there is a vertex
of degree at least 2(m − rn)/n. Thus if R is the set of r
highest degree vertices in G then

∑
v∈R

degG(v) � 2r(m − rn)

n
.

Hence the bipartite graph H with parts R , V − R and
edge set comprising those edges of G with one endpoint in
R and the other in V − R has at least 2rm/n − 3r2 edges.

We will now argue that rm/n � 3r2. Indeed, rm/n �
3r2 is equivalent to r � m/3n. Now r � qn2/m so it is
enough to show that qn2/m � m/3n or equivalently, that
3qn3 � m2. Using the definition of q, we see that 3qn3 �
m2 follows from

m2 ln
(
2en2/m

)
� 3n3 ln(n/2).

Suppose first that 8n3/2 � m � 3n3/2
√

lnn. Since n is suffi-
ciently large

m2 ln

(
2en2

m

)

� 64n3 ln

(
2en2

3n3/2
√

lnn

)

> 64n3 ln

(√
n

ln n

)
> 4n3 lnn > 3n3 ln(n/2).

On the other hand, if m � 3n3/2
√

ln n, then using m < n2/2
we have

m2 ln
(
2en2/m

)
� 9n3 ln n ln

(
2en2/m

)
> 9n3 ln n ln(4e)

> 3n3 ln(n/2).

We conclude that H has at least 2rm/n−3r2 � rm/n edges.
For the correctness of the algorithm it is sufficient to

show that H contains a copy of Kq,q . This follows by the
counting argument referred to in the introduction which
we now describe in detail. Let b denote the number of
stars with centers in V − R and q leaves. Then

b =
∑

v∈V −R

(
degH (v)

q

)
� |V − R|

(∑
v∈H degH (v)

n

q

)

� n

2

(
rm/n2

q

)
.

Explanation: the first inequality uses the convexity of
the function which is

(x
q

)
if x � q − 1 and 0 otherwise, and

the second inequality uses the lower bound for the num-
ber of edges in H , and the inequality r � n/2 which follows
by the lower bound on m.

If the latter quantity is greater than (q − 1)
(r

q

)
then

there is a q-subset of R which is the leaf set for at least
q distinct stars, and this gives a copy of Kq,q . Observe that
the definition of q implies that n/2 � (2en2/m)q and this
is equivalent to

n

2

(
rm

n2q

)q

�
(

2er

q

)q

.

Now the inequality above and standard estimates of the
binomial coefficients give

n

2

(
rm/n2

q

)
>

n

2

(
rm

n2q

)q

�
(

2er

q

)q

� q

(
re

q

)q

> (q − 1)

(
r

q

)
.

Thus H indeed contains a Kq,q .
In order to estimate the running time bound given

in (1) note that(
r

q

)
�

(
re

q

)q

� eq
(

n2

m

)q

= eqeq ln(n2/m).

Now m < n2/2 implies that

eq � eln n/ ln 4e = n1/ ln 4e < n0.4195, (2)

and q < ln n/ ln(n2/m) implies that

eq ln(n2/m) < eln n = n. (3)

Combining these bounds with the other terms in (1)
it follows that the running time of the algorithm is
O (n2.42). �

As noted above, the size of the bipartite graphs found
in Theorem 1 is optimal in a certain range of values of m if
certain conjectures in extremal graph theory hold. We now
show that bipartite graphs that are smaller by a constant
factor can be found in linear time.

Theorem 2. Let q, r be as in Theorem 1 and q′ = �q/5�. If
n is sufficiently large and m � 8n3/2 then Algorithm FIND-
BIPARTITE (G, r,q′) returns a Kq′,q′ . The running time of the
algorithm is O (m).

Proof. As r is the same as in Theorem 1 and q′ < q, the
proof of Theorem 1 implies that the algorithm finds a copy
of Kq′,q′ . Thus it is sufficient to show that the running time
bound (1) becomes O (m). Let us repeat the computation
for bounding

(r
q

)
, with q replaced by q′ . Using q/5 < r/2,

we have

(
r

q′

)
�

(
r

q/5

)
�

(
5re

q

) q
5

� 5
q
5 e

q
5

(
n2

m

) q
5

= 5
q
5 e

q
5 e

q
5 ln(n2/m) = 5

q
5
(
eqeq ln(n2/m)

) 1
5 .

Now by (2)

5
q
5 = e

q
5 ln 5 = (

eq) ln 5
5 �

(
n0.42) ln 5

5 ,

and applying (3) we obtain(
r
′

)
= O

(
n

0.42(1+ln 5)+1
5

) = O
(
n0.4192).
q

D. Mubayi, G. Turán / Information Processing Letters 110 (2010) 174–177 177
So the last term in (1) is o(n3/2) = o(m), as m � 3n3/2.
Thus, apart from finding the r largest degree vertices in
the beginning, the running time of the algorithm is actu-
ally sublinear in m. �
3. Decomposition into balanced complete bipartite
subgraphs

Given a graph G = (V , E), we consider complete bipar-
tite subgraphs Gi = (Ai, Bi, Ei), i = 1, . . . , t such that the
edges sets Ei form a partition of E . The complexity of such
a decomposition is measured by the total number of ver-
tices, i.e., by

t∑
i=1

|Ai| + |Bi|.

We find a decomposition of complexity O (n2/ ln n). The
decomposition contains balanced bipartite graphs, thus
|Ai| = |Bi | holds as well. The algorithm uses Algorithm
FIND-BIPARTITE in a straightforward manner. As stated,
Algorithm FIND-BIPARTITE is guaranteed to work only if
n � n0 for some n0. As we are only interested in proving
an asymptotic result, let us assume that graphs on fewer
vertices are handled by some brute-force method.

Algorithm FIND-DECOMPOSITION (G)

Given an n-vertex input graph G = (V , E), if n < n0,
use a brute-force method to find an optimal decompo-
sition of G . Else, use Algorithm FIND-BIPARTITE (with
parameters r and q as in Theorem 1) repeatedly to
find a complete balanced bipartite subgraph and delete
it from the current graph, as long as there are more
than n2/ ln n edges. After that, form a separate bipartite
graph from each remaining edge.

Theorem 3. For every n-vertex graph G, Algorithm FIND-
DECOMPOSITION (G) finds a decomposition of G into balanced
complete bipartite graphs, having complexity

O

(
n2

lnn

)
.

The running time of the algorithm is polynomial in n.

Proof. As the size of the subgraphs produced by Algo-
rithm FIND-BIPARTITE is of the same order of magnitude
as guaranteed by the existence theorems, the theorem fol-
lows as in [4,5,13]. For completeness, we give the argu-
ment, following [13].

Let the subgraphs produced by the calls of Algo-
rithm FIND-BIPARTITE be Gi = (Ai, Bi) with |Ai | =
|Bi | = qi , where i = 1, . . . , t for some t . We need to show
that∑

i

qi = O

(
n2

lnn

)
. (4)
Let us divide the iterations of the algorithm into phases.
The �th phase consists of those iterations where the
number of edges in the input graph of Algorithm FIND-
BIPARTITE is more than n2/(� + 1) and at most n2/�.
Dividing up the term qi in (4) between the q2

i edges of
Gi , each edge gets a weight of 1/qi . We have to upper
bound the sum of the weights assigned to the edges.

It follows from the definition of qi in Theorem 1 that
graphs formed in the �th phase have qi = Θ(ln n/ ln �).
Thus edges, which get their weight in the �th phase, get a
weight of Θ(ln �/ ln n). The number of edges getting their
weight in the �th phase is Θ((1

�
− 1

�+1)n2) = Θ(n2/�2).
Hence the total weight assigned to the edges is at most
of the order of magnitude

∞∑
�=1

ln�

lnn
· n2

�2
= Θ

(
n2

lnn

)
,

as
∑ ln�

�2 is convergent. The polynomiality of the running
time follows directly from the polynomial running time of
Algorithm FIND-BIPARTITE. �
Acknowledgements

We thank Stefan Kirchner for sending us his Ph.D. dis-
sertation and the referees for very helpful comments that
improved the presentation.

References

[1] N. Alon, R.A. Duke, H. Lefmann, V. Rödl, R. Yuster, The algorithmic
aspects of the regularity lemma, J. of Algorithms 16 (1994) 80–109.

[2] A. Bhattacharya, B. DasGupta, D. Mubayi, Gy. Turán: On approximate
Horn minimization, in preparation.

[3] B. Bollobás, Extremal Graph Theory, Academic Press, 1978.
[4] S. Bublitz, Decomposition of graphs and monotone formula size of

homogeneous functions, Acta Informatica 23 (1986) 689–696.
[5] F.R.K. Chung, P. Erdős, J. Spencer, On the decomposition of graphs

into complete bipartite graphs, in: Studies in Pure Mathematics, To
the Memory of Paul Turán, Akadémiai Kiadó, 1983, pp. 95–101.

[6] U. Feige, S. Kogan, Hardness of approximation of the balanced com-
plete bipartite subgraph problem, Tech. Rep. MCS04-04, Dept. of
Comp. Sci. and Appl. Math., The Weizmann Inst. of Science, 2004.

[7] R.L. Graham, H.O. Pollak, On the addressing problem for loop switch-
ing, Bell Syst. Techn. J. 50 (1971) 2495–2519.

[8] S. Jukna, Disproving the single level conjecture, SIAM J. Comp. 36
(2006) 83–98.

[9] S. Kirchner, Lower bounds for Steiner tree algorithms and the con-
struction of bicliques in dense graphs, Ph.D. Dissertation, Humboldt-
Universität zu Berlin, 2008 (in German).

[10] T. Kővári, V.T. Sós, P. Turán, On a problem of K. Zarankiewicz, Colloq.
Math. 3 (1954) 50–57.

[11] E.M. Reingold, J. Nievergelt, N. Deo, Combinatorial Algorithms, Pren-
tice Hall, 1977.

[12] T. Tarján, Complexity of lattice-configurations, Studia Sci. Math.
Hung. 10 (1975) 203–211.

[13] Zs. Tuza, Covering of graphs by complete bipartite subgraphs; com-
plexity of 0–1 matrices, Combinatorica 4 (1984) 111–116.

	Finding bipartite subgraphs efficiently
	Introduction
	Complete balanced bipartite subgraphs
	Decomposition into balanced complete bipartite subgraphs
	Acknowledgements
	References

