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Abstract

Interpretability of learned models is considered from the
point of view of a system using the model as a component,
for tasks such as reasoning about its properties. We study
the approximability of Bayesian network classifiers by Or-
dered Binary Decision Diagrams (OBDD). This generalizes
an approach introduced by Chan and Darwiche. We show
that for Tree Augmented Naive Bayes Classifiers (TAN)
there is an efficiently computable approximation of polyno-
mial size. Approximation error is measured with respect to
the marginal distribution over the input variables generated
by the classifier. This distribution can be approximated
by a distribution of polynomial width. TAN can be rep-
resented by a quadratic threshold function of logarithmic
path-width. The OBDD approximation algorithm applies
to any such Boolean function and any distribution which
can be approximated by a polynomial-width distribution.

1 Introduction
The broadening scope of machine learning applications
brought to the fore several requirements beyond predic-
tive accuracy for models obtained by machine learning.
These aspects may have been around for a long time but
the current scope of applications raises new aspects and
motivates a reconsideration of previous approaches and
the development of new ones. The requirements include
interpretability, trust, fairness and safety.

Interpretability is a central aspect as it is a useful fea-
ture for the other requirements. Its long history is well
illustrated by a sentence in the abstract of a 1996 paper
by Sommer [28]: “This paper reopens the issue of under-
standability of induced theories, which, while prominent
in the early days of ML, seems to have fallen out of favor
in the sequel.”

Interpretability is a many-faceted concept which is hard
to formalize. Versions of interpretability include learning
interpretable models, and post hoc approaches, such as
developing interpretable global approximations to learned
models and local explanations for individual inputs, e.g.,
for deep learning.
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Interpretability is usually meant from the point of view
of the human user, for instance, in the case of a loan appli-
cation. However, the “user” of a learned model can also
be a system, which uses the learned model as a component.
In that case one could specify the system requirements
for the model such as the procedures which should be
performed efficiently (e.g., building composite models or
performing reasoning). Appropriate representations would
then be those which provide a suitable data structure for
the intended application.

In this paper we consider interpretability in the con-
text of Bayesian networks. Although most interpretability
research deals with deep learning, probabilistic models
provide an interesting challenge as well.

Koller [8] noted that “Probabilistic models lie on a con-
tinuum between those that try to encode the domain struc-
ture in an interpretable way [...] and those that just try to
capture the statistical properties of data.” Interpretability
of probabilistic graphical models appears to be simpler
than that of deep neural networks, and therefore it may
provide a first step towards understanding the general prob-
lem.

While Bayesian networks are considered to be inter-
pretable in the sense of being informative about dependen-
cies between the variables, they are not easily interpretable
(either in the human or in the system sense) for inferring
the mapping implicit in the network (e.g., for the clas-
sification of a disease based on symptoms) or for other
inference purposes. Explainability of Bayesian networks
has been studied for a long time (see, e.g., the survey of
Lacave and Diez [19] and the recent work of Timmer et
al. [31]).

A Bayesian network classifier has input variables
X1, . . . , Xn and a classification variable C such that C
is a parent of every input variable. A special case is the
Naive Bayes classifier, where there are no edges between
the input variables. The Tree Augmented Naive Bayes
Classifier (TAN), introduced by Friedman et al. [9], ex-
tends Naive Bayes by having an in-forest over the input
variables.

Chan and Darwiche [2] proposed to represent Bayesian
network classifiers by Ordered Binary Decision Diagrams
(OBDD). As interpretability is so far an informal notion,
the justification of particular frameworks is informal in
general. For the relevance of OBDD one can provide two



arguments, which are still informal but arguably principled:
simulatability (or evaluatability) and “reason-ableness".

OBDD can be evaluated easily by a user, in the sense
that the classification of an input can be determined by
walking through the diagram using the values of the input
variables in a fixed order and in a single pass. This resem-
bles the way the simplest computational device, a finite
automaton, evaluates an input string, and indeed, OBDD is
a non-uniform generalization of finite automata. Bayesian
network classifiers, neural networks, and even decision
trees require more complicated evaluation procedures.

Also, corresponding to the system-based view of inter-
pretability outlined above, OBDD is a basic data struc-
ture for representing Boolean functions. It provides a
good compromise between expressibility and the tractabil-
ity of implementing operations and answering queries.
Thus OBDD is a “reason-able" representation for using a
learned model as a component within a larger system.

Chan and Darwiche [2] give an algorithm to translate (or
compile) a Naive Bayes classifier into an OBDD. The study
of the knowledge compilation approach to interpretability
is continued, e.g., in Shih et al. [26, 27].

As Naive Bayes classifiers are linear threshold functions,
the translation of [2] is about turning linear threshold
functions into OBDD. It was shown by Hosaka et al. [14]
that this can be done with OBDD of size O(2n/2), and
Takenaga et al. [29] gave a Ω(2cn

1−ε

) lower bound. Chan
and Darwiche prove the upper bound and give further
results.

In this paper we consider the construction of polynomial
size OBDD approximating Bayesian network classifiers.
One motivation is the lower bound of [29] showing that
polynomial size exact representation is not possible even
for Naive Bayes classifiers. Another motivation is that
relaxing exact representation to approximation seems rea-
sonable as learned models are supposed to be only approx-
imately correct anyway.

We show that efficiently computable, polynomial size
OBDD approximation is possible for Tree Augmented
Naive Bayes Classifiers (TAN) having Boolean variables.
The theorem gives a fully polynomial approximation
scheme (FPTAS) in the context of knowledge compila-
tion. Approximate knowledge compilation in this sense
provides a formal approach to post-hoc interpretability.

One question that needs clarification is the distribution
over the inputs used to measure the quality of approxi-
mation. A natural candidate here is the input distribution
generated by the network, i.e., the marginal distribution
over the input variables X1, . . . , Xn. This is the distribu-
tion used in the statement of Theorem 1.1 below.
Theorem 1.1. For every Tree Augmented Naive Bayes
Classifier (TAN) having n Boolean variables and d-bit
conditional probabilities, and every ε > 0 there is an
OBDD of size poly(n, d, 1/ε) approximating the classifier
with error at most ε with respect to the input distribu-
tion of the TAN. The OBDD can be constructed in time
poly(n, d, 1/ε).

We use the fact that the Boolean function corresponding
to a TAN can be represented as a polynomial threshold

function (PTF), in particular, as a quadratic threshold
function (QTF) where the graph of the quadratic terms is
a forest. Such PTF are called forest QTF. More generally,
one can consider path-width-k QTF, where the graph of
quadratic terms has path-width at most k. Naive Bayes
is a special case, which corresponds to linear threshold
functions. Forest QTF have logarithmic path-width. Thus
an OBDD approximation of a TAN can be obtained as an
OBDD approximation for forest QTF, or for QTF with
logarithmic path-width.

We consider the class of probability distributions of
bounded width for measuring approximation error. This
is a class of syntactically defined discrete distributions,
defined by Kamp et al. [16], and studied further in Gopalan
et al. [11, 12] using a somewhat different definition. In
these papers the class is called small-space sources. A
bounded-width distribution is generated by a bounded-
width OBDD with edge probabilities assigned to its edges.
The probability of an input is the product of probabilities
assigned to the edges of the path followed by the input.

In Theorem 1.2 we consider the OBDD approximability
of QTF of bounded path-width, when the error is measured
by a bounded-width distribution.

Theorem 1.2. For every n-variable, path-width-k QTF
with integer coefficients of at most d bits, every width-w
distribution D over the input variables with d-bit prob-
abilities and every ε > 0 there is an OBDD of size
poly(n, 2k, d, w, 1/ε) approximating the QTF with error
at most ε with respect toD. The OBDD can be constructed
in time poly(n, 2k, d, w, 1/ε).

It follows from Theorem 1.2 that every QTF of logarith-
mic path-width has a polynomial size OBDD approxima-
tion over any distribution of polynomial width. The con-
struction generalizes the OBDD construction of Gopalan
et al. [11, 12] for approximating the number of solutions
of knapsack problems. The input distribution of a TAN
is the mixture of two polynomial width distributions, and
thus it is not of polynomial width in general. However, it
can be approximated by a polynomial width distribution,
and so applying Theorem 1.2 to this distribution implies
Theorem 1.1.

The paper is structured as follows. After discussing
related work in the next section, Sections 3-4 give pre-
liminaries. Sections 5-6 describe exact, exponential-size
OBDDs for a path-width-k QTF, in the second version
extended with a bounded-width distribution to compute ac-
ceptance probabilities. Theorem 1.2 is proven in Section 7
by transforming the exact OBDD to a smaller approximate
one. The approximability of the TAN input distribution,
implying Theorem 1.1, is proven in Section 8.

2 Related work
Background on interpretability is given in Lipton [20] and
Doshi-Velez and Kim [7]. Guidotti et al. [13] is a survey
of interpretability providing a taxonomy of the various
approaches. An early paper discussing theoretical aspects
of interpretability is Golea [10]. Tickle et al. [30] is a
survey of previous work on rule extraction.



The representational power of probabilistic classifiers is
discussed by Jaeger [15] and Varando et al. [32]. Lacave
and Diez [19] give a survey of explanation methods for
Bayesian networks. Compilation results for Bayesian net-
works are described in Darwiche [3]. A general overview
on knowledge compilation is given by Darwiche and Mar-
quis [4]. Del Val [6] discusses the approximation quality
of knowledge compilation using Horn LUB. Tractable op-
erations and complexity aspects of OBDD are described
in the monograph of Wegener [33].

Complexity aspects of polynomials with bounded tree-
width term structure are studied by Makowsky and
Meer [21, 22]. Amarilli et al. [1] give a characterization
of OBDD representability of monotone CNF expressions
in terms of path-width.

Gopalan et al. [11, 12] gave an approximation algo-
rithm for counting the number of knapsack solutions us-
ing OBDD. Levelwise monotonicity of OBDD is used
by Meka and Zuckerman [23] in the context of pseudo-
random generation. The approximation algorithm of De
and Servedio [5] for low-degree PTF uses a different ap-
proach. While multiplicative approximation is possible
in the linear case, for degree at least two only additive
approximation can be expected (see, e.g., [5]).

3 Preliminaries
Bayesian network classifiers
We use Xi, xi, resp., ai, to denote binary random vari-
ables, Boolean variables, resp., Boolean constants1. A
Bayesian network classifier N is a directed acyclic graph
(DAG) over binary input variables X1, . . . , Xn and a bi-
nary classifier variable C, with local conditional prob-
abilities specified for each vertex. It is assumed that
(C,Xi) is an edge for every i = 1, . . . , n. Let Πi =
{j : Xj is a parent of Xi} be the set of parents of Xi

other than C. The family of i is {i} ∨ Πi. Let dN =
1 + maxi |Πi| be the maximal size of families in N , re-
ferred to as the degree of the Bayesian network. The
local conditional probabilities are p0

c = PN (C = c) and
pi(ai,aΠi

,c) = PN (Xi = ai |XΠi
= aΠi

, C = c) for
i = 1, . . . , n. Here XΠi is the vector formed by the com-
ponents Xj of X = (X1, . . . , Xn) such that j ∈ Πi, and
similarly for aΠi

.
The directed acyclic graph (DAG) of the Bayesian net-

work classifier over the X-nodes is denoted by GN . In a
Naive Bayes Classifier GN is an empty graph. In a Tree
Augmented Naive Bayes Classifier (TAN) the DAG is an
in-forest with edge set EN . Thus every node has at most
one parent.

The joint distribution of the variables is

PN (X1 = a1, . . . , Xn = an, C = c) = p0
c

n∏
i=1

pi(ai,aΠi
,c).

The marginal distribution over the input variables, also

1For Bayesian networks, constants are usually denoted by x.
We distinguish between random variables and Boolean variables.

referred to as the input distribution, is

PN,X(X1 = a1, . . . , Xn = an) =

=
∑1
c=0 PN (X1 = a1, . . . , Xn = an, C = c).

We also use the simpler notations such as
PN (a1, . . . , an, c) and PN,X(a1, . . . , an).

The Bayesian network classifier corresponding to
N is a Boolean function fN (x1, . . . , xn) where
fN (a1, . . . , an) = 1 iff

PN (a1, . . . , an, 1) ≥ PN (a1, . . . , an, 0).

OBDD and GOBDD
An ordered binary decision diagram (OBDD) over
Boolean variables x1, . . . , xn computes a Boolean func-
tion f . An OBDD is a DAG with two sinks labeled 0 and
1, and the other nodes labeled with variables. The DAG is
assumed to be layered, with directed edges going from a
layer to the next layer, and sinks on the last layer. There
are n + 1 layers and a permutation π(i) of [n] such that
nodes on the i’th layer are labeled with variable xπ(i). On
the first layer there is a single start node labeled xπ(1).
Every non-sink node has two outgoing edges, labeled with
0, resp., 1. For every truth assignment x = (x1, . . . , xn),
f(x) is the label of the sink reached by following edge
labels corresponding to the bits in x, evaluated in the order
given by the labels of the layers. The width of an OBDD
is the maximal number of nodes in a layer.

A generator OBDD (GOBDD) D generates a probabil-
ity distribution over {0, 1}n. It is similar to an OBDD,
except edges are also labeled with probabilities, and there
is a single sink. A probability pu is associated with every
non-sink vertex u, and the 0-edge (resp. 1-edge) leaving u
is labeled p0

u = pu (resp., p1
u = 1− pu). For every truth

assignment x = (x1, . . . , xn), the GOBDD determines a
path from the source to the sink, and PD(x) is the product
of edge probabilities along the path. Product distributions
are generated by width-one GOBDD.

The definitions of Kamp et al. [16] and Gopalan et
al. [11, 12] differ in that [11, 12] use the definition above,
while [16] allows several 0-edges or 1-edges leaving a
vertex, and assigns a distribution to edges leaving a vertex.

4 Polynomial threshold function
representation of Bayesian network

classifiers
A polynomial threshold function (PTF) is a Boolean func-
tion of the form sgn(p(x1, . . . , xn)), where sgn is the
sign function and p is a multilinear polynomial. The degree
of the representation is the degree of p, i.e., the maximal
number of variables in a term. In particular, a quadratic
threshold function (QTF) is specified by a quadratic poly-
nomial

q(x1, . . . , xn) =
∑

(i,j)∈E

βijxixj +

n∑
i=1

αixi + γ.

The term-graph of the quadratic polynomial q is the undi-
rected graph Gq = ([n], E). Thus the term-graph of a
linear threshold function is the empty graph.



Given an undirected graph G = (V,E), a tree-
decomposition of G is given by a tree T and “bags”
Vt ⊆ V for every node t of T , such that for every edge
(u, v) of G there is a bag containing both u and v, and for
every node v of G the nodes of T with bags containing v
form a subtree of T . The width of a tree decomposition is
the maximal bag size minus one, and the tree-width of G
is the minimal width of a tree-decomposition of G. Trees
are connected graphs of tree-width one. The path-width
of a graph is defined the same way with trees restricted
to paths. The tree-width (resp., path-width) of a QTF is
the tree-width (resp., path-width) of its term-graph Gq . A
QTF function which has a forest term-graph is called a
forest QTF.

Varando et al. [32] formulated the representability of
Bayesian network classifiers as PTF for the general case
of categorical distributions. They assumed that all condi-
tional probabilities are non-zero.
Proposition 4.1. (see, e.g., Varando et al. [32] ) Let N be
a Bayesian network classifier with non-zero conditional
probabilities. The classifier fN is a degree-dN PTF such
that every term is a subset of a family.

Proof. Let Ia(x) be the binary indicator function, i.e.,
I1(x) = x and I0(x) = 1−x. It holds that PN (C = c) =
(p0

0)1−c(p0
1)c = (p0

0)I0(c)(p0
1)I1(c) and

PN (Xi = xi |XΠi
= xΠi

, C = c) =

=
∏

(ai,aΠi
,c) p

i
(ai,aΠi

,c)

Iai
(xi)

∏
j∈Πi

Iaj
(xj)

.

Taking logarithms

logPN (Xi = xi |XΠi
= xΠi

, C = c) =

=
∑

(ai,aΠi
,c) log(pi(ai,aΠi

,c)) · Iai(xi)
∏
j∈Πi

Iaj (xj).

Thus

logPN (X1 = x1, . . . , Xn = xn, C = c) = log p0
c +

+

n∑
i=1

∑
(ai,aΠi

,c)

log(pi(ai,aΠi
,c)) · Iai(xi)

∏
j∈Πi

Iaj (xj)

and the claim follows by the definition of fN .

Korach and Solel [18] showed that the path-width of
every n-vertex tree T is at most (2/ log 3) log n. Thus for
TAN the following holds.
Corollary 4.2. The classifier fN (x1, . . . , xn) represented
by a TAN N with non-zero conditional probabilities is
a forest QTF, and thus a QTF of path-width at most
(2/ log 3) log n. It can be written as

sgn

 ∑
(i,j)∈EN

βijxixj +

n∑
i=1

αixi + γ

 . (1)

Zero handling and precision
Proposition 4.1 and Corollary 4.2 remain valid in the gen-
eral case as well, as replacing zero conditional probabili-
ties by sufficiently small numbers (chosen depending on
the non-zero entries) gives the same classifier.

We consider d-bit conditional probabilities, and there-
fore we need bounds for the coefficients and we also need
to consider the complexity of computing the coefficients.
The coefficients are obtained by taking logarithms. It can
be shown that O(nd) bits precision and poly(n, d) time is
sufficient in the case of non-zero probabilities. Thus one
can assume that the coefficients are O(nd) bit integers in
the non-zero case. In the general case it then follows that
poly(n, d) precision and time is sufficient to handle the
small numbers replacing zeros. Thus for the remainder
of the paper we assume that Bayesian network classifiers
have non-zero conditional probabilities.

The construction of approximate OBDD for TAN can
be implemented using the original product form without
taking logarithms and handling information about zero
probabilities in the joint and input distributions symboli-
cally (which could then also be used for reasoning). These
modifications improve efficiency and interpretability.

5 The exact OBDD for bounded
path-width QTF

In this section we describe an OBDD B to compute a
path-width-k QTF

f(x1, . . . , xn) = sgn

 ∑
(i,j)∈E

βijxixj +

n∑
i=1

αixi + γ

 ,

where the coefficients are integers, and the sum of their
absolute values is at most W . The OBDD is an extension
of the standard OBDD for linear threshold functions, keep-
ing track of partial sums.
Given an ordering of the vertices of the term-graph
G([n], E) of the QTF, let

H` = {j : j ≤ ` and (j, k) ∈ E for some k > `}.
For later reference, let us note that

H`+1 ⊆ H` ∪ {`+ 1}, (2)

as `+ 1 is the only additional candidate for consideration
when formingH`+1. The vertex separation number ofG is
the minimum of max{|H`| : 1 ≤ ` ≤ n} over all linear
orderings of V . Kinnersley [17] proved that the vertex
separation number of a graph equals its path-width. For
trees, an optimal vertex ordering can be found efficiently
(Scheffler [24]). We use this ordering of the variables for
B.

Description of B

Nodes are of the form v`s,b, where 1 ≤ ` ≤ n+ 1 is the
level of the node, −W ≤ s ≤ W and b ∈ {0, 1}|H`−1|.
The start node on level 1 is v1

0,∅.
The children of a node v`s,b are v`+1

s0,b0
and v`+1

s1,b1
corre-

sponding to the evaluations x` = 0 and x` = 1. These
are determined as follows: s0 = s + h`(0) = s and
s1 = s+ h`(1), where

h`(x`) =

α` +
∑

`:(j,`)∈E,j<`

βj`bj

 · x`.



Note that the j values involved in the sum are contained
in H`−1, so the bits bj are those in b. The bit assignments
b0, b1 of the children correspond to level update as in (2),
i.e., bits corresponding to components which are not in H`

are deleted and if ` ∈ H` then x` is added.
On the last level there are nodes of the form vn+1

s,∅ .
Nodes with s < 0 (resp., s ≥ 0) are replaced by the
sink labeled 0 (resp., 1).

Lemma 5.1. The OBDD B computes f .

Note that B may be of exponential size, but it will
be used in a “virtual” manner for the construction of a
compressed, approximate version.

For a node v`s,b on level `, let the acceptance set A`s,b be
the set of partial truth assignments to variables x`, . . . , xn
which are accepted when applied from v`s,b. The accep-
tance set for the 0-sink is ∅, the acceptance set for the
1-sink is the empty string, and for ` ≤ n it holds that
A`s,b = 0 ·A`s0,b0 ∪ 1 ·A`s1,b1 , where · denotes concatena-
tion. The sets A`s,b have the following monotone property.

Lemma 5.2. Let v`s1,b and v`s2,b be nodes such that s1 <

s2. Then A`s1,b ⊆ A
`
s2,b

.

6 The exact OBDD for bounded
path-width QTF with acceptance

probabilities
The construction of the OBDD B in Section 5 is now
extended to incorporate a width-w GOBDD D. It is analo-
gous to the product of automata or OBDD.

Description of B ×D

Nodes are of the form v`s,b,u, where the additional com-
ponent u is a node of D on level `. The start node on level
1 is v1

0,∅,ustart
, where ustart is the start node of D.

The children of a node v`s,b,u are v`+1
s0,b0,u0

and v`+1
s1,b1,u1

,
where the additional parameters u0, u1 are the children
of u in D. On the last level there are nodes of the form
vn+1
s,∅,usink

, where usink is the sink ofD. Nodes with s < 0
(resp., s ≥ 0) are replaced by the sink labeled 0 (resp., 1).

Acceptance sets are like in the previous section, and as
acceptance does not depend on the u-component, it holds
that A`s,b,u = A`s,b.

Acceptance probability PD(v`s,b,u) is the probability
that a random truth assignment to the variables x`, . . . , xn
is accepted when started from v`s,b,u when probabilities are
evaluated inD starting from u. The acceptance probability
of the 0-sink is 0, and that of the 1-sink is 1. For ` ≤ n it
holds that

PD(v`s,b,u) = p0
uPD(v`+1

s0,b0,u0
) + p1

uPD(v`+1
s1,b1,u1

).

Thus acceptance probabilities can be computed in a
bottom-up manner. The analog of Lemma 5.2 is as fol-
lows.

Lemma 6.1. Let v`s1,b,u and v`s2,b,u be nodes such that
s1 < s2. Then

a) A`s1,b,u ⊆ A
`
s2,b,u

,
b) PD(v`s1,b,u) ≤ PD(v`s2,b,u).

7 Proof of Theorem 1.2
The approximate OBDD B̃ ×D satisfying the require-
ments is constructed by compressing B ×D, processing
its levels from the bottom up and within each level from
left to right. We set W = n 2d+2. Each level of B ×D is
partitioned into blocks

V `b,u = {v`s,b,u : −W ≤ s ≤W}.
In each block a polynomial size set of distinguished nodes

S`b,u ⊆ V `b,u

is selected. These are the nodes of B̃ ×D. The children
of distinguished nodes are modified to be the closest dis-
tinguished node with a larger s-value. The processing of a
level also includes the calculation of modified acceptance
probabilities P̃D(v`s,b,u), which are the acceptance proba-
bilities of the modified children. B ×D is used implicitly,
by doing binary search on the s values.

Description of B̃ ×D

The construction of B̃ ×D uses the procedure
BUILD(v`s,b,u).

Procedure BUILD(v`s,b,u)

if ` = n then children and acceptance probabilities are
unchanged

else
modify the children: the new 0-child is v`+1

s′,b0,u0
, resp.

the new 1-child is v`+1
s′′,b1,u1

, where

s′ = min{t : v`+1
t,b0,u0

∈ S`+1
b0,u0

, s0 ≤ t},

s′′ = min{t : v`+1
t,b1,u1

∈ S`+1
b1,u1

, s1 ≤ t},

compute the new acceptance probability:

P̃D(v`s,b,u) = p0
uP̃D(v`+1

s′,b0,u0
) + p1

uP̃D(v`+1
s′′,b1,u1

).

Applying the procedure BUILD repeatedly, we find
the set of distinguished vertices S`b,u with s-values s∗0 <
s∗1 < . . ., where s∗0 = −W and

s∗i+1 =

{
s∗i + 1 if P̃D(v`s∗i +1,b,u) > (1 + δ)P̃D(v`s∗i ,b,u

)

max{t : P̃D(v`t,b,u) ≤ (1 + δ)P̃D(v`s∗i ,b,u
)} else,

(3)
where δ is to be specified later. After all the distinguished
sets are constructed, there may be nodes remaining which
are not reachable from the start node; they are removed by
one pass from the start node.

Note that it follows by induction from the definition
of children that P̃ (v`s,b,u) is monotonic in s. Let Ã`s,b,u
denote the acceptance sets in B̃ ×D.



Lemma 7.1. For any level ` ≤ n and any distinguished
node v`s,b,u ∈ S`b,u it holds that

a) A`s,b,u ⊆ Ã`s,b,u,

b) PD(v`s,b,u) ≤ P̃D(v`s,b,u) ≤ (1 + δ)n−`PD(v`s,b,u).

Proof. Part a) follows from Lemma 6.1 by noting that
the s-values are always increased. For part b), the first
inequality follows from a). For the second inequality we
claim that

P̃D(v`+1
s′,b0,u0

) ≤ (1 + δ)P̃D(v`+1
s0,b0,u0

), (4)

where s0 is the 0-child of s in B × D, and s′ is its new
0-child found by procedure BUILD. This holds by def-
inition if v`+1

s′,b0,u0
is included in S`+1

b0,u0
using the second

case in (3). Otherwise s0 = s′, so the claim holds again.
The analogous statement holds for 1 instead of 0 as well.

Using the definition of P̃D, (4) and induction

P̃D(v`s,b,u) = p0
uP̃D(v`+1

s′,b0,u0
) + p1

uP̃D(v`+1
s′′,b1,u1

) ≤

≤ (1 + δ)(p0
uP̃D(v`+1

s0,b0,u0
) + p1

uP̃D(v`+1
s1,b1,u1

)) ≤

≤ (1 + δ)n−`(p0
uPD(v`+1

s0,b0,u0
) + p1

uPD(v`+1
s1,b1,u1

)) =

= (1 + δ)n−`PD(v`s,b,u).

By Lemma 7.1 b) choosing the value δ = O(ε/n)
gives that for the root v1

0,∅,∅ it holds that P (v1
0,∅,∅) ≤

P̃ (v1
0,∅,∅) ≤ (1 + ε)P (v1

0,∅,∅). Lemma 7.1 a) implies

that B̃ ×D has one-sided error at most ε w.r.t. D.
The monotonicity of the acceptance probabilities im-

plies that the next distinguished node s∗i+1 can be found by
binary search over the interval [s∗i ,W ], calling the proce-
dure BUILD in each step to compute P̃ . Binary search is
polynomial in the parameters. As s-values of distinguished
nodes increase exponentially, the number of distinguished
nodes is also polynomial, and thus the size of the OBDD
constructed and the running time of the algorithm are both
polynomial.

8 Approximation of the input distribution
and the proof of Theorem 1.1

In this section we use Theorem 1.2 to prove Theorem 1.1.
Given a TAN N , we again assume that X1, . . . , Xn is
an optimal ordering and consider the variable ordering
π = (C,X1, . . . , Xn). Adding C increases path-width
by one. We first show that the joint distribution PN has
polynomial width.
Theorem 8.1. The joint distribution PN with ordering π
has width O(n1.6).

Proof. Consider a GOBDD generating PN and let C =
c,X1 = a1, . . . , X`−1 = a`−1 be a partial truth as-
signment. Then the product of edge weights along the
corresponding path is PN (c, a1, . . . , a`−1). Thus the
probability assigned to the a`-child of that node has
to be PN (a` | c, a1, . . . , a`−1). The construction of the
GOBDD D′ generating PN is based on the following
lemma.

Lemma 8.2.

P (X` = a` |C = c,X1 = a1, . . . , X`−1 = a`−1) =

= P (X` = a` |C = c,Xj = aj for every j ∈ H`−1).

Proof. It has to be shown thatH`−1∪{C} is a d-separator
of {`} and {1, . . . , `− 1}\H`−1, i.e., every path between
the two sets is blocked by H`−1 ∪ {C}. If C is on the
path then the valve containing it is not convergent (using
the terminology of Darwiche [3]), and hence the path is
blocked by C. Other paths cannot contain convergent
valves. Hence it is sufficient to show that such paths must
contain a vertex from H`−1. This follows directly from
the definition of H`−1.

Description of D′

From the start node C on level 0 there are two edges
to the first level corresponding to x1, with probabilities
PN (C = 0), resp., PN (C = 1). On level ` evaluating x`
there are 2|H`−1|+1 nodes corresponding to truth assign-
ments to C and to the variables xj for j ∈ H`−1. The
nodes are denoted u`b, where b ∈ {0, 1}|H`−1|+1 is such a
truth assignment.

The a`-child is x`+1-node u`+1
ba`

. Here b0 (resp., b1) is
the truth assignment obtained by switching from H`−1

to H`, using x` = a` if necessary. By (2), the truth as-
signment b and the value of x` (evaluated at u`b) determine
these nodes. The probability assigned to edge (u`b, u

`+1
ba`

) is
given by PN (X` = a` |C = c,Xj as in b for j ∈ H`−1).

The conditional probabilities can be computed effi-
ciently using standard methods.

As the input distribution PN,X(a1, . . . , an) can be writ-
ten as

1∑
c=0

PN (a1, . . . , an | c)PN (c),

it is a mixture of two polynomial-width distributions. It
is not necessarily of polynomial width itself (see Shen et
al. [25]). On the other hand, we now show that it can be
approximated by a polynomial-width distribution.

Note that the edge probabilities in a GOBDD for the
input distribution can be written as

PN (a` | a1, . . . , a`−1) =

= PN (a1,...,a`)
PN (a1,...,a`−1) =

∑1
c=0 PN (a1,...,a`,c)∑1

c=0 PN (a1,...,a`−1,c)
(5)

and the partial truth assignments in the last expression
correspond to paths in D′ beginning with the start node.

Lemma 8.3. There is a distribution D(X1, . . . , Xn) of
width poly(n, d, 1/ε) such that for every a = (a1, . . . , an)
it holds that

(1− ε)PD(a) ≤ PN,X(a) ≤ (1 + ε)PD(a).

Proof. First we describe an auxiliary construction D′′,
which adds approximate evaluation of probabilities as-
signed to paths beginning at the start node of D′, as sug-
gested by (5). D′′ is “almost” a GOBDD, except it has
many sinks.



Description of D′′

Levels are 0, . . . , n + 1. Nodes are of the form (u, k),
where u is a node of D′ (including the sink), and k ∈ N
(possible values for k are bounded by a polynomial in the
parameters).

Assume that a partial truth assignment C = c,X1 =
a1, . . . , X`−1 = a`−1 ends at u on level ` in D′ and
thus the product of edge probabilities along its path is
PN (c, a1, . . . , a`−1). Then in D′′ it ends in (u, k) where

(1− δ)k+` < PN (c, a1, . . . , a`−1) ≤ (1− δ)k (6)

for a parameter δ to be determined later.
Thus each node in D′ is split into several copies, col-

lecting paths with similar probabilities. If u is a node in
D′ on level ` then the children of (u, k) in D′′ are

(uj , k + blog1−δ p
j
uc),

where uj is the j-child of u in D′. Then (6) follows by
induction, considering (1− δ)t+1 < pju ≤ (1− δ)t.

The OBDD D approximating PN,X is built using D′′.

Description of D
The levels are now 1, . . . , n+ 1, with x1 evaluated on

level 1. Nodes on level ` are of the form (v0, v1), where
v0, v1 are level ` nodes of D′′. The start node is (v∗0 , v

∗
1),

where v∗0 , v
∗
1 are the children of the start node in D′′. The

j-child of (v0, v1) in D is (vj0, v
j
1), where vji is the j-child

of vi in D′′.
If v0 = (u0, k0) and v1 = (u1, k1) with children vji =

(uji , k
j
i ) then the probability of the edge from (v0, v1) to

its j-child (vj0, v
j
1) is the approximation of (5), i.e.,

(1− δ)k
j
0 + (1− δ)k

j
1

(1− δ)k0 + (1− δ)k1
.

The multiple sinks of D′′ are combined into a single sink.

In order to verify the approximation property of the dis-
tribution generated by D, consider a partial truth assign-
ment a1, . . . , a`. Let the nodes reached by the extensions
(c, a1, . . . , a`−1) in D′′ be (u0, k0), (u1, k1), and those
reached by (c, a1, . . . , a`) be (ua`0 , k

a`
0 ), (ua`1 , k

a`
1 ). Then

from (5) and (6) it follows that

(1− δ)k
a`
0 +(`+1) + (1− δ)k

a`
1 +(`+1)

(1− δ)k0 + (1− δ)k1
≤

≤ PN (a` | a1, . . . , a`−1) ≤ (7)

≤ (1− δ)k
a`
0 + (1− δ)k

a`
1

(1− δ)k0+` + (1− δ)k1+`
.

Note that

(1− δ)k
a`
0 + (1− δ)k

a`
1

(1− δ)k0 + (1− δ)k1
= PD(a` | a1, . . . , a`−1).

Hence (7) can be written as

(1− δ)`+1PD(a` | a1, . . . , a`−1) ≤
≤ PN (a` | a1, . . . , a`−1) ≤ (8)

≤ PD(a` | a1, . . . , a`−1)(1− δ)−(`+1).

Multiplying the inequalities (8) we get

(1−δ)n(n+1)PD(a) ≤ PN,X(a) ≤ PD(a)(1−δ)−n(n+1)

for every truth assignment a. Thus the theorem follows
with choosing δ = Θ(ε/n2).

Theorem 1.1 follows from applying Theorem 1.2 to the
QTF obtained from the TAN N and the distribution D
approximating the input distribution PN,X , using error
parameter ε/3 in both cases.

References
[1] A. Amarilli, M. Monet, and P. Senellart. Connecting

width and structure in knowledge compilation. In
21st International Conference on Database Theory
(ICDT 2018), volume 98 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 6:1–6:17,
2018.

[2] H. Chan and A. Darwiche. Reasoning about
Bayesian network classifiers. In UAI ’03, Proceed-
ings of the 19th Conference in Uncertainty in Artifi-
cial Intelligence, pages 107–115, 2003.

[3] A. Darwiche. Modeling and Reasoning with
Bayesian Networks. Cambridge University Press,
2009.

[4] A. Darwiche and P. Marquis. A knowledge compila-
tion map. J. Artif. Intell. Res., 17:229–264, 2002.

[5] A. De and R. A. Servedio. Efficient determinis-
tic approximate counting for low-degree polynomial
threshold functions. CoRR, abs/1311.7178, 2013.

[6] A. del Val. An analysis of approximate knowledge
compilation. In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI 95, pages 830–836, 1995.

[7] F. Doshi-Velez and B. Kim. A roadmap for a rigorous
science of interpretability. CoRR, abs/1702.08608,
2017.

[8] M. Ford. Architects of Intelligence: The truth about
AI from the people building it. Packt Publ., 2018.

[9] N. Friedman, D. Geiger, and M. Goldszmidt.
Bayesian network classifiers. Machine Learning,
29(2-3):131–163, 1997.

[10] M. Golea. On the complexity of rule extraction from
neural networks and network querying. In Rule Ex-
traction for Trained Artificial Neural Networks Work-
shop, pages 51–59, 1996.

[11] P. Gopalan, A. R. Klivans, and R. Meka. Polynomial-
time approximation schemes for knapsack and re-
lated counting problems using branching programs.
CoRR, abs/1008.3187, 2010.

[12] P. Gopalan, A. R. Klivans, R. Meka, D. Stefankovic,
S. Vempala, and E. Vigoda. An FPTAS for #knapsack
and related counting problems. In IEEE 52nd Annual
Symposium on Foundations of Computer Science,
FOCS 2011, pages 817–826, 2011.



[13] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini,
F. Giannotti, and D. Pedreschi. A survey of meth-
ods for explaining black box models. ACM Comput.
Surv., 51(5):93:1–93:42, 2019.

[14] K. Hosaka, Y. Takenaga, T. Kaneda, and S. Yajima.
Size of ordered binary decision diagrams represent-
ing threshold functions. Theor. Comput. Sci., 180(1-
2):47–60, 1997.

[15] M. Jaeger. Probabilistic classifiers and the concepts
they recognize. In Machine Learning, Proceedings
of the Twentieth International Conference (ICML
2003), pages 266–273, 2003.

[16] J. Kamp, A. Rao, S. P. Vadhan, and D. Zuckerman.
Deterministic extractors for small-space sources. In
Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, pages 691–700, 2006.

[17] N. G. Kinnersley. The vertex separation number of
a graph equals its path-width. Inf. Process. Lett.,
42(6):345–350, 1992.

[18] E. Korach and N. Solel. Tree-width, path-width, and
cut-width. Discrete Applied Mathematics, 43(1):97–
101, 1993.

[19] C. Lacave and F. Javier Díez. A review of explanation
methods for Bayesian networks. Knowledge Eng.
Review, 17(2):107–127, 2002.

[20] Z. C. Lipton. The mythos of model interpretability.
Commun. ACM, 61(10):36–43, 2018.

[21] J. Makowsky and K. Meer. Polynomials of bounded
tree-width. In D. Krob et al., editor, Formal Power
Series and Algebraic Combinatorics, pages 692–703.
Springer, 2000.

[22] K. Meer. Tree-width in algebraic complexity. Fun-
dam. Inform., 98(4):391–409, 2010.

[23] R. Meka and D. Zuckerman. Pseudorandom gen-
erators for polynomial threshold functions. In Pro-
ceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, pages 427–436, 2010.

[24] P. Scheffler. A linear algorithm for the pathwidth of
trees. In R. Bodendiek and R. Henn, editors, Topics
in Combinatorics and Graph Theory, pages 613–620.
Physica-Verlag HD, 1990.

[25] Y. Shen, A. Choi, and A. Darwiche. Tractable opera-
tions for arithmetic circuits of probabilistic models.
In Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Information
Processing Systems 2016, pages 3936–3944, 2016.

[26] A. Shih, A. Choi, and A. Darwiche. A symbolic
approach to explaining Bayesian network classifiers.
In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI
2018, pages 5103–5111, 2018.

[27] A. Shih, A. Choi, and A. Darwiche. Compiling
Bayesian network classifiers into decision graphs. In
The Thirty-Third AAAI Conference on Artificial Intel-
ligence, AAAI 2019, The Thirty-First Innovative Ap-
plications of Artificial Intelligence Conference, IAAI

2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, pages
7966–7974, 2019.

[28] E. Sommer. An approach to measuring theory quality.
In Advances in Knowledge Acquisition, 9th European
Knowledge Acquisition Workshop, EKAW’96, pages
195–211, 1996.

[29] Y. Takenaga, M. Nouzoe, and S. Yajima. Size and
variable ordering of OBDDs representing thresh-
old functions. In Computing and Combinatorics,
Third Annual International Conference, pages 91–
100, 1997.

[30] A. B. Tickle, R. Andrews, M. Golea, and J. Diederich.
The truth will come to light: directions and chal-
lenges in extracting the knowledge embedded within
trained artificial neural networks. IEEE Trans. Neu-
ral Networks, 9:1057–1068, 1998.

[31] S. T. Timmer, J.-J. Ch. Meyer, H. Prakken,
S. Renooij, and B. Verheij. A two-phase method
for extracting explanatory arguments from Bayesian
networks. Int. J. Approx. Reasoning, 80:475–494,
2017.

[32] G. Varando, C. Bielza, and P. Larrañaga. Decision
boundary for discrete Bayesian network classifiers.
Journal of Machine Learning Research, 16:2725–
2749, 2015.

[33] I. Wegener. Branching Programs and Binary Deci-
sion Diagrams. SIAM, 2000.


	Introduction
	Related work
	Preliminaries
	Bayesian network classifiers
	OBDD and GOBDD

	Polynomial threshold function representation of Bayesian network classifiers
	Zero handling and precision

	The exact OBDD for bounded path-width QTF
	The exact OBDD for bounded path-width QTF with acceptance probabilities
	Proof of Theorem 1.2
	Approximation of the input distribution and the proof of Theorem 1.1

