
DOI: 10.1007/s00224-003-1112-8

Theory Comput. Systems 37, 193–220 (2004) Theory of
Computing

Systems
© 2003 Springer-Verlag

New York Inc.

Learnability and Definability in Trees and Similar Structures∗

Martin Grohe1 and Gy. Turán2

1Institut für Informatik, Humboldt-Universität zu Berlin,
Unter den Linden 6, 10099 Berlin, Germany
grohe@informatik.hu-berlin.de

2Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago,
851 S. Morgan Street, Chicago, IL 60607-7045, USA
and
Research Group on AI, Hungarian Academy of Sciences,
Szeged, Hungary
gyt@uic.edu

Abstract. We prove upper bounds for combinatorial parameters of finite rela-
tional structures, related to the complexity of learning a definable set. We show that
monadic second-order (MSO) formulas with parameters have bounded Vapnik–
Chervonenkis dimension over structures of bounded clique-width, and first-order
formulas with parameters have bounded Vapnik–Chervonenkis dimension over
structures of bounded local clique-width (this includes planar graphs). We also show
that MSO formulas of a fixed size have bounded strong consistency dimension over
MSO formulas of a fixed larger size, for labeled trees. These bounds imply positive
learnability results for the PAC and equivalence query learnability of a definable
set over these structures. The proofs are based on bounds for related definability
problems for tree automata.

1. Introduction

The general problem of concept learning is to identify an unknown set from a given
family of sets. The given family, referred to as the concept class, represents the possible
classifications of the elements of the universe, and the unknown set, also called the target

∗ Gy. Turán was partially supported by NSF Grants CCR-9800070 and CCR-0100336 and OTKA Grant
T-025271.

194 M. Grohe and Gy. Turán

concept, is the actual classification. The identification can be exact or approximate (for
example, in a probabilistic sense, as in the model of Probably Approximately Correct
(PAC) learning). In order to specify a formal model of learning, one also has to determine
what type of information is available to the learner (for example, random examples or
certain types of queries), and what complexity measures are considered (for example,
sample size, number of queries, or computation time).

It is an interesting fact that several notions of learning complexity turn out to be
closely related to certain combinatorial parameters of the concept class. The best known
example is sample size for PAC learning, which is of the same order of magnitude as
the Vapnik–Chervonenkis dimension or VC-dimension of the concept class (see, e.g.,
[23]). Other examples include the query complexity of learning with equivalence and
membership queries, closely related to certificate size [21], and the query complexity of
learning with equivalence queries, closely related to the strong consistency dimension
[6]. Determining these combinatorial parameters for specific concept classes thus gives
useful information about learning complexity.

The measures mentioned above are related to the informational complexity of learn-
ing and not to its computational complexity. There are also results relating learning
complexity to the complexity of computational problems associated with the concept
class, such as the hypothesis finding problem for PAC learning (see [23]) and the repre-
sentation problem for learning with equivalence and membership queries [1].

In this paper we consider some of the informational complexity measures for learning
in the context of predicate logic, which is a frequently used framework in machine
learning, besides, for example, propositional logic and neural networks.

A general setup for predicate logic learning is to assume that examples are elements
(or, more generally, tuples of elements) of a finite structure, and concepts are represented
by a class of predicate logic formulas. This framework can be appropriate when the data
for learning are provided by a relational database, but some other models can also be
represented in this way. For instance, a standard setup for inductive logic programming
is to learn a single nonrecursive Horn clause with ground background knowledge (see,
e.g., [28]). This is equivalent to learning an existential sentence having a conjunction of
atoms as its quantifier-free part (also called a conjunctive query), over the finite structure
formed by the ground atoms in the background knowledge.

In the predicate logic framework, questions about the learning-related combinatorial
parameters lead to combinatorial questions about classes of definable sets, which are
much studied in model theory, mostly for infinite structures [22]. In fact, one of the three
simultaneous sources for the notion of VC-dimension is [35] in model theory (besides
[33] and [40]). The relationship between our results and the related results in model
theory is discussed at the end of Section 6. A model-theoretic approach to learnability
was proposed in [29], and some results for finite models are given in [27] and [38].
In particular, [27] gives an explicit upper bound for the VC-dimension of first-order
formulas over structures with unary predicates and a single unary function.

The model-checking problem for finite models is to decide, given a finite structure
and a formula with a variable assignment, whether the formula holds in the structure.
There are several results for this problem, putting together a picture of the borderline
between tractable and intractable cases [18]. These results establish connections between
the expressiveness of the logic and the computational complexity of computational prob-

Learnability and Definability in Trees and Similar Structures 195

lems associated with the logic. Our results show that for the learning complexity we get
a very similar borderline between tractable and intractable cases. On a more technical
level, our results show that the techniques developed for the model-checking problem,
in particular the use of tree automata and the notions of graph width, are also useful in
the learning context.

We show that the class of sets definable by monadic second-order (MSO) formulas
with parameters has bounded VC-dimension for classes of structures of bounded clique-
width. As a tool for proving this result, we introduce tree automata versions of definability
in a structure. These notions appear to be new, and may be of some interest in themselves.
On the other hand, we note that MSO formulas can have unbounded VC-dimension
on grids. We also show that first-order formulas with parameters have bounded VC-
dimension for classes of structures of bounded local clique-width. This includes, for
example, the class of planar graphs and all classes of graphs of bounded degree. The
main step in proving these results is a lemma that may be of interest in itself; it states that
bounded VC-dimension of first-order formulas is a local property of structures, that is, it
only depends on bounded radius neighborhoods of elements of the structures. All these
bounded VC-dimension results imply bounded sample complexity for PAC-learnability
using the standard results of computational learning theory (see [23]).

Besides discussing the VC-dimension, we also give some initial results on the strong
consistency dimension [6], a much less studied and understood notion. The potential
relevance of the strong consistency dimension for logic is discussed in [4]. We show that
on labeled trees, fixed size MSO formulas with one free variable and several parameters
have a bounded strong consistency dimension with respect to MSO formulas of some
fixed, larger size. Using the characterization given by [6], this implies that on trees, such
MSO formulas can be learned using logarithmically many (in the size of the underlying
structure) equivalence queries that are larger, but fixed-size MSO formulas. This, perhaps
somewhat surprising, result is among the first applications of the strong consistency
dimension for proving positive learnability results. We note that the result is not practical,
for two reasons: it does not provide an efficient algorithm to compute the queries, and
it involves huge constants. A computationally efficient query learning algorithm for
quantifier-free formulas over structures with unary predicates and functions is given in
[27].

The paper is organized as follows. Sections 2 and 3 give background for definability
and the VC-dimension. Sections 4 and 5 contain the automaton and MSO definability
results for trees, respectively, for graphs of bounded clique-width and tree-width. First-
order definability results for structures of bounded local clique-width and tree-width are
given in Section 6. The strong consistency dimension results are presented in Section 7.
Finally, Section 8 contains some further remarks and open problems. The Appendix
gives a schematic overview of all the classes of structures considered in this paper.

2. Definability

A vocabulary is a finite set of relation symbols. In the following, τ always denotes a
vocabulary. A τ -structureA consists of a nonempty set A, called the universe ofA, and
a relation RA ⊆ Ar for every r -ary relation symbol R ∈ τ . For a vocabulary τ ′ ⊇ τ ,

196 M. Grohe and Gy. Turán

a τ ′-expansion of a τ -structure A is a τ ′-structure A′ with universe A′ = A and RA
′ =

RA for all R ∈ τ . Unless explictly mentioned otherwise, in this paper we only
consider structures whose universe is finite.

An atomic formula, or atom, is a formula of the form x = y or Rx1, . . . , xr ,
where R is an r -ary relation symbol and x, y, x1, . . . , xr are (individual) variables. The
formulas of first-order logic are built up from atomic formulas using the usual Boolean
connectives and existential and universal quantification over the elements of the universe
of a structure. The class of all formulas of first-order logic is denoted by FO.

Monadic second-order logic is the extension of first-order logic allowing quantifi-
cation not only over elements of the universe of a structure, but also over subsets of
the universe. Formally, we have two types of variables—individual variables, which
are interpreted by elements of the universe of a structure, and set variables, which
are interpreted by subsets of the universe of a structure. In addition to the first-order
atoms, in monadic second-order logic we also have atoms X x saying that the element
interpreting the individual variable x is contained in the set interpreting the set vari-
able X . Furthermore, we have existential and universal quantification over both indivi-
dual and set variables. MSO denotes the set of all formulas of monadic second-order
logic.

We always use lowercase letters x, y, . . . to denote individual variables and up-
percase letters X, Y, . . . to denote set variables. A free variable of a formula ϕ is an
(individual or set) variable v that does not occur in the scope of a quantifier ∃v or
∀v. The set of free variables of a formula ϕ is denoted by free(ϕ). A sentence is
a formula without free variables. We write ϕ(X1, . . . , Xk, x1, . . . , xl) to indicate that
free(ϕ) ⊆ {X1, . . . , Xk, x1, . . . , xl}. For a structure A, subsets A1, . . . , Ak ⊆ A, and
elements a1, . . . , al ∈ A we write A |= ϕ(A1, . . . , Ak, a1, . . . , al) to denote that A
satisfies ϕ if the set variables X1, . . . , Xk are interpreted by A1, . . . , Ak , respectively,
and the individual variables x1, . . . , xl are interpreted by a1, . . . , al , respectively. We
only consider formulas that only have free individual variables.

For a formula ϕ(x1, . . . , xk, y1, . . . , yl), a structureA, and elements b1, . . . , bl ∈ A
we let

ϕ(A, b1, . . . , bl) = {(a1, . . . , ak) ∈ Ak | A |= ϕ(a1, . . . , ak, b1, . . . , bl)}.

We call ϕ(A, b1, . . . , bl) the set defined by ϕ in A with parameters b1, . . . , bl . We let

C(ϕ,A) = {ϕ(A, b1, . . . , bl) | b1, . . . , bl ∈ A}.

We often denote tuples (a1, . . . , ak) of elements of a set A by ā, and we write ā ∈ A
instead of ā ∈ Ak . Similarly, we denote tuples of individual variables by x̄ . For tuples ā
and b̄, we write āb̄ to denote their concatenation.

The quantifier-rank of a first-order or MSO formula ϕ, denoted by qr(ϕ), is the
maximum number of nested quantifiers in ϕ. It is easy to see that for all q, 	 ≥ 0, up
to logical equivalence there are only finitely many first-order or MSO formulas ϕ with
qr(ϕ) ≤ q and | free(ϕ)| ≤ 	. The size of a formula ϕ is denoted by ||ϕ||.

Learnability and Definability in Trees and Similar Structures 197

3. Vapnik–Chervonenkis Dimension

Let V be a set and let C ⊆ 2V be a family of subsets of V , also referred to as a concept
class. For a subset U ⊆ V , we let C ∩U = {C ∩U | C ∈ C}. The set U is shattered by
C if C ∩U = 2U .

The Vapnik–Chervonenkis dimension, or VC-dimension, of C, denoted by VC(C),
is the maximum of the sizes of the shattered subsets of V , or∞ if this maximum does
not exist.

The VC-dimension characterizes the sample complexity needed for learning the con-
cept class C in the PAC model of learning. For completeness, we give a brief description
of this model.

For a function m(ε, δ), the concept class C is PAC-learnable with sample size m(ε, δ)
if there is an algorithm which, given ε and δ, draws m(ε, δ) many random examples of
an unknown target concept C ∈ C from a distribution P on X , and produces a hypothesis
H from C, such that P(P(C ⊕ H) ≥ ε) ≤ δ for every C and P (where C ⊕ H denotes
the symmetric difference of C and H). As we said in the Introduction, we are only
concerned with the informational complexity of learning in this paper and not with the
computational complexity; this is why we ignore issues of algorithmic efficiency in the
PAC model.

Theorem 1 [8], [40]. Every concept class C is PAC-learnable with sample size

m(ε, δ) = O

(
1

ε
log

1

δ
+ V C(C)

ε
log

1

ε

)
.

If C is PAC-learnable with sample size m(ε, δ), then

m(ε, δ) = �
(

1

ε
log

1

δ
+ V C(C)

ε

)
.

The following combinatorial result is an important ingredient in the proof of Theo-
rem 1, and we also use it in Section 6.

Theorem 2 [33], [35], [40]. Let V be a set, d ≥ 1, and C ⊆ 2V such that VC(C) ≤ d.
Then for every set U ⊆ V we have

|C ∩U | ≤
d∑

i=0

(|U |
i

)
= O(|U |d).

For a formula ϕ(x̄, ȳ) and a structure A we let VC(ϕ,A) = VC(C(ϕ,A)). We say
that a formula ϕ(x̄, ȳ) has bounded VC-dimension on a class K of structures if there is
a c such that for every A ∈ K we have VC(ϕ,A) ≤ c.

The following standard example shows that even very simple formulas can have
unbounded VC-dimension if we do not put any restriction on the structures considered.

198 M. Grohe and Gy. Turán

Example 3. Let τ consist of a single binary relation E for graph adjacency, and consider
the formula ϕ = E(x, y). Let Gn be the (n + 2n)-vertex graph, where for each subset of
the first n vertices, there is a distinct vertex which is connected to just the vertices in this
subset. Then clearly V C(ϕ,Gn) ≥ n.

In this paper we show that MSO formulas and first-order formulas have bounded
VC-dimension on a variety of classes of structures. This following general result shows
that in order to prove the boundedness of the VC-dimension for a class of structures, one
may restrict attention to formulas with a single free variable.

Lemma 4 [34]. Let K be a class of structures such that every first-order formula
ϕ(x, ȳ) has bounded VC-dimension on K . Then every first-order formula ϕ(x̄, ȳ) has
bounded VC-dimension on K . The analogous statement holds for formulas of monadic
second-order logic.

Laskowski [24] gave a purely combinatorial proof of this result, which yields an explicit
upper bound for the VC-dimension of ϕ(x̄, ȳ). This is important for us, because in our
results we also provide explicit bounds.

Usually, the lemma is only stated for first order, but it is easy to verify that Laskow-
ski’s proof goes through for MSO, and actually for any class of formulas that is closed
under renaming of variables, Boolean combinations, and existential quantification
(see [39]). Recall here that we only consider MSO formulas with only free individual
variables.

Remark 5. We phrase our main results in the form: every formula of first-order logic or
monadic second-order logic has bounded VC-dimension on a certain class of structures.
In a typical learning application, we may not be interested in the concept class C(ϕ,A)
defined by a single formula ϕ, but actually in the class of all concepts defined by formulas
of a certain size or quantifier rank, or more generally in the class

⋃
ϕ∈ C(ϕ,A) for some

finite class of formulas. However, it is a consequence of Theorem 2 that for all m, c
there is a d such that if concept classes C1, . . . , Cm ⊆ 2V have VC-dimension at most
c, then their union

⋃m
i=1 Ci has VC-dimension at most d . Thus whenever we prove that

every formula of first-order or monadic second-order logic has bounded VC-dimension
on some class K of structures, all finite unions

⋃
ϕ C(ϕ,A) also have bounded VC-

dimension on K .

4. Definability in Trees

4.1. Trees

The trees we consider are finite-ordered binary trees. We view such trees as {S1, S2,�}-
structures, where S1, S2, and � are binary relation symbols. In a tree T = (T, ST1 , ST2 ,
�T), ST1 is the left child relation and ST2 the right child relation. Moreover, �T is the
tree-order, that is, the transitive closure of ST1 ∪ ST2 . We do not require each inner node
of a tree to have exactly two children. Thus, in particular, we may also view strings as
trees, in which every inner node only has a left child.

Learnability and Definability in Trees and Similar Structures 199

We are mainly interested in trees whose vertices are labeled with letters from some
finite alphabet. For a finite alphabet�, we let τ(�) = {S1, S2,�}∪ {Ps | s ∈ �}, where
for all s ∈ �, Ps is a unary relation symbol. A �-tree is a τ(�)-structure

T = (T, ST1 , ST2 ,�T , (PTs)s∈�)
such that (T, ST1 , ST2 ,�T) is an ordered binary tree and for each a ∈ T there exists
exactly one s ∈ � such that a ∈ PTs . We denote this a by σT (a)

In order to be able to study subsets of trees defined by formulas with k free variables,
for some k ≥ 1, we let �k = � × {0, 1}k . For a �-tree T and a tuple ā = (a1, . . . , ak)

of vertices of T , we let Tā be the �k-tree with the same underlying tree as T and

σTā (a) = (σT (a), ε1, . . . , εk),

where εi = 1 if, and only if, a = ai .
We may view Tā as a �-tree with k distinguishable pebbles placed on a1, . . . , ak ,

respectively.

4.2. Tree Automata

Let � be a finite alphabet. A �-tree automaton is a tuple A = (Q, δ, F), where Q is a
finite set of states, F ⊆ Q is the set of accepting states, and δ : (Q ∪ {∗})2 ×�→ Q is
the transition function. Here ∗ is a special symbol not contained in Q.

A run ρ: T → Q of A on a �-tree T is defined in a bottom-up manner. If
a is a leaf, then ρ(a) = δ(∗, ∗, σT (a)). If a has two children b1, b2, then ρ(a) =
δ(ρ(b1), ρ(b2), σ

T (a)). If a only has a left child b, then ρ(a) = δ(ρ(b), ∗, σT (a)), and
similarly if a only has a right child b, then ρ(a) = δ(∗, ρ(b), σT (a)). The automaton
accepts T if ρ(r) ∈ F for the root r of T .

We are mainly interested in automata running on trees Tā , for some �-tree T and
tuple ā = (a1, . . . , ak) ∈ T k . Recall that we view Tā as T with pebbles placed on
a1, . . . , ak . Then a �k-tree automaton running on Tā is not only controlled by the labels
σT (a) of the vertices a, but also by the pebbles placed on a. Instead of asking which
trees the automaton accepts, in the following we ask which pebble tuples on a fixed tree
the automaton accepts. For a �k-automaton A and a �-tree T , we let

A(T) = {ā ∈ T k | A accepts Tā}.
In this sense, a �k-tree automaton defines a k-ary relation on each �-tree.

4.3. The VC-Dimension of Automaton Definable Families

We need to extend the definition just made to definability with parameters. Let � be a
finite alphabet, let T be a�-tree, let k, 	 ≥ 1, and let A be a�k+	-tree automaton. Then
for every tuple b̄ ∈ T 	 we let

A(T , b̄) = {ā ∈ T k | A accepts Tāb̄}.
Furthermore, we let

C(A, T) = {A(T , b̄) | b̄ ∈ T 	}

200 M. Grohe and Gy. Turán

and

VC(A, T) = VC(C(A, T)).

The notations C(A, T) and VC(A, T) are slightly ambiguous, because they do not ex-
plicitly mention 	, but 	 will always be clear from the context.

Theorem 6. Let 	,m ≥ 1, and let A be a�1+	-tree automaton with m states. Then for
every �-tree T we have

VC(A, T) < 8m(+ 1).

The proof depends on the following lemma:

Lemma 7. Let 	,m,A, T be as in the statement of the theorem and let U be a subset
of T of size p = 8m(+ 1). Then there is a subset Y ⊆ U such that for every b̄ =
(b1, . . . , b) there exist c ∈ Y and d ∈ U\Y for which A accepts Tcb̄ if, and only if, A

accepts Tdb̄.

Proof. The strategy of the proof is to find subsets V1, . . . , V	+1 of T that contain many
elements of U , but have “little communication with each other,” and then to form Y by
a cut-and-paste argument based on these subsets.

We start by with a few remarks concerning our terminology: a subtree of a tree is a
substructure that is itself a tree and that is upward closed with respect to the tree-order,
which means that children of vertices in the subtree also belong to the subtree.

For a set Z of vertices in the tree, let the largest common ancestor of Z be the
unique vertex lca(Z) such that lca(Z) �T z for all z ∈ Z , and there is no y such that
lca(Z) ≺T y and y �T z for all z ∈ Z . We let G(Z), the subgraph generated by Z , be
the union of all paths connecting the elements of Z with lca(Z). Thus G(Z) is a tree,
but it is in general different from the subtree rooted at lca(Z).

From the bottom up, take a minimal subtree of T (minimal with respect to inclusion)
that contains at least 2m elements of U . Let U1 be the elements of U in this subtree;
then the root of this subtree is lca(U1). As the tree is binary, it holds that |U1| < 4m.
Remove this subtree, and repeat the same procedure 2(+ 1) times, to obtains sets
U1, . . . ,U2(+1). Since p = 4m · 2(+ 1), U is sufficiently large to form all the sets
U1, . . . ,U2(+1). By construction, the subgraphs G(Ui) are pairwise vertex disjoint and
the vertices lca(Ui) are all distinct.

We define a binary relation F on H = {U1, . . . ,U2(+1)} to be the set of all pairs
(Ui ,Uj) such that lca(Ui) ≺T lca(Uj) and there is no k with lca(Ui) ≺T lca(Uk) ≺T
lca(Uj). Then (H, F) is a forest with 2(+ 1) vertices and thus with at most 2	 + 1
edges. Therefore, at most 	 vertices of this forest have more than one child. Without loss
of generality we can assume that U1, . . . ,U	+1 have at most one child.

If Ui has no children, we let Vi = {v ∈ T | lca(Ui) �T v}, i.e., the set of
vertices of the subtree of T rooted at lca(Ui). If Ui has one child Uj , then we let
Vi = {v ∈ T | lca(Ui) �T v, lca(Uj) ��T v}, i.e., the set of all vertices of the subtree of
T rooted at lca(Ui) that are not in the subtree rooted at lca(Uj).

Learnability and Definability in Trees and Similar Structures 201

Now we turn to the second part of the proof, the construction of Y based on the Vi ’s.
Let 1 ≤ i ≤ 	+ 1. If Ui has no children (in the forest (H, F)), then since |Ui | > m we
can find distinct vertices ci , di of Ui such that:

(1) There is a state qi of A such that if none of the parameters b1, . . . , b	 is contained
in Vi and A is running on either Tci b̄ or Tdi b̄, then it reaches lca(Ui) in state qi .

Now let us assume that Ui has a child Uj . Let the states of A be q1, . . . , qm . We de-
fine elements ci,k, di,k for k = 1, . . . ,m by induction on k. Suppose that 1 ≤ k ≤
m and we have already defined ci,k ′ and di,k ′ for 1 ≤ k ′ < k. Since |Ui | ≥ 2m
we have Ui\{di,1, . . . , di,k−1} > m, therefore there are distinct elements ci,k, di,k ∈
Ui\{di,1, . . . , di,k−1} such that:

(2) There is a state qi,k of A such that if none of the parameters b1, . . . , b	 is
contained in Vi , the automaton A is running on either Tci,k b̄ or Tdi,k b̄, and it
leaves lca(Uj) in state qk , then it reaches lca(Ui) in state qi,k .

Note that some of the ci,k’s may be identical, but all the ci,k’s differ from all the di ′,k ′ ’s.
We let Y = {ci : Ui has no children} ∪ {ci,k : Ui has one child, 1 ≤ k ≤ m}

and claim that Y satisfies the requirements of the lemma. Consider any choice of the
parameters b̄ = (b1, . . . , b). Then for some i, 1 ≤ i ≤ 	+ 1, the set Vi contains no bj .
If Ui has no children, then A accepts Tci b̄ if, and only if, A accepts Tdi b̄. If Ui has one
child Uj and the automaton leaves lca(Uj) in state qj , then A accepts Tci, j b̄ if, and only
if, A accepts Tdi, j b̄.

Proof of Theorem 6. Let 	,m,A, T be as in the statement of the theorem and let U, p
be as in the statement of Lemma 7. Let Y be the subset of U provided by the lemma. Then
there is no parameter setting b̄ such that A(T , b̄)∩U = Y , so U cannot be shattered by
C(A, T).

As an important special case we obtain that the VC-dimension of sets defined by
string automata is bounded. Our proof simplifies in the string case and yields a better
bound.

The following example shows that, up to a constant factor, the upper bound of the
theorem is optimal:

Example 8. Let� = {0, 1}. We show that for every m ≥ 1 there is a�2-tree automaton
A with 3m-states and a�-tree S such that VC(A,S) ≥ m. Actually, S is just a�-string.
The universe of S is {1, . . . ,m · (2m + 1)}, with �S being the natural ordering. The
labeling σS is defined by

σS(i) =

0 if 1 ≤ i ≤ m,
ε if (j + 1)m < i ≤ (j + 2)m and ε is the (i − (j + 1)m)th bit in

the binary representation of j .

The automaton A is constructed in a such a way that for each b = (j + 1)m for
some j , 0 ≤ j ≤ 2m − 1, it accepts precisely those Sab for which the ath bit of the

202 M. Grohe and Gy. Turán

binary representation of j is 1. We leave it as an exercise for the reader to construct the
automaton.

Similarly, one can can show that there is a �	-tree automaton A with O(m) states
and a string S such that VC(A,S) ∈ �(m ·).

4.4. VC-Dimension of MSO-Definable Families

There is a well-known correspondence between tree-automata and sentences of monadic
second-order logic: a class K of trees is definable by a sentence of monadic second-
order logic if, and only if, there is a tree-automaton that accepts precisely the trees
in K [37]. We define the function tower: N → N by letting tower(0) = 1 and, for
i ≥ 1, tower(i) = 2tower(i−1). It is known that in the worst case the size of an automaton
equivalent to an MSO formula of length n is in tower(�(n)) [36].

We need the following straightforward extension of the equivalence between MSO
sentences and tree automata to formulas with free variables. A �k-tree automaton A is
equivalent to an MSO formula ϕ(x1, . . . , xk) of vocabulary τ(�) if for all�-trees T we
have

A(T) = ϕ(T).

Lemma 9. For every MSO formula ϕ(x1, . . . , xk) of vocabulary τ(�) there is a �k-
tree automaton A that is equivalent to ϕ. Furthermore, the size of the automaton A is in
tower(O(n)), where n is the length of the formula ϕ(x1, . . . , xk).

Theorem 10. Every formula of monadic second-order logic (and thus every formula
of first-order logic) has bounded VC-dimension on the class of all trees. Furthermore,
the VC-dimension of an MSO formula ϕ(x, ȳ) of length n is in tower(O(n)).

Proof. Let ϕ(x, y1, . . . , y) be an MSO formula of vocabulary τ(�), for some finite
alphabet �, and let n be the length of ϕ. Let A be an automaton with m ≤ tower(O(n))
states that is equivalent to ϕ. Then, by Theorem 6, for every �-tree T we have

VC(ϕ, T) = VC(A, T) < 8 · m(+ 1) ≤ tower(O(n)).

To bound the VC-dimension of formulas ϕ(x1, . . . , xk, y1, . . . , y), we apply
Lemma 4.

We will now show that the upper bound tower(O(n)) stated in the theorem is close
to optimal, even the case of first-order formulas on strings. The basic idea of our lower
bound proof is the same as the one used in Example 8, but it requires some technical
machinery, which is provided by [15]. There a family µh , for h ≥ 1, of encodings of
natural numbers by strings over certain finite alphabets has been introduced. They have
the property that they can be decoded by shorter and shorter first-order formulas.

For all n, i ∈ N we let bit(i, n) denote the i th bit in the binary representation
of n. (Here we count the lowest priority bit as the zeroth bit.) For all h ≥ 1 we let
�(h) = {0,1, 〈1〉, 〈/1〉, . . . , 〈h〉, 〈/h〉}. Note that the “tags” 〈i〉 and 〈/i〉 are single

Learnability and Definability in Trees and Similar Structures 203

symbols of the alphabet that are just used to improve readability. We define L: N→ N

by L(0) = 0, L(1) = 1, L(n) = �lg(n− 1)� + 1 for n ≥ 2. Note that for n ≥ 1, L(n) is
precisely the length of the binary representation of n − 1.

We are now ready to define the encodings µh : N → �(h)∗, for h ≥ 1. We let
µ1(0) = 〈1〉〈/1〉 and for n ≥ 1

µ1(n) = 〈1〉 bit(0, n − 1) bit(1, n − 1) · · · bit(L(n)− 1, n − 1) 〈/1〉

for n ≥ 1. For h ≥ 2, we let µh(0) = 〈h〉 〈/h〉 and

µh(n) = 〈h〉µh−1(0) bit(0, n − 1) µh−1(1) bit(1, n − 1) · · ·µh−1(L(n)− 1)

bit(L(n)− 1, n − 1) 〈/h〉.

The key result is the following lemma:

Lemma 11 [15]. Let h ≥ 1 and let� ⊇ �(h). There is a first-order formulaχh(x1, x2)

of vocabulary τ(�(h)) and size O(h) such that for all strings S ∈ �∗, a1, a2 ∈ S, and
n1, n2 ∈ {0, . . . , tower(h)} the following holds:

If a1 is the first position of a substring S1 of S that is isomorphic to µh(n1) and a2

is the first position of a substring S2 of S that is isomorphic to µh(n2), then

S |= χh(a1, a2) ⇔ n1 = n2.

Using this lemma we can easily prove our lower bound:

Theorem 12. There is a family of MSO formulas ϕn(x, y) and strings Sn , for n ≥ 1,
such that the length of ϕn is O(n), and

VC(ϕn,Sn) ≥ tower(n).

Proof. Let n ≥ 1. We let Sn be the string

µn(0)µn(1) · · ·µn(tower(n)− 1)#µn+1(0)µn+1(1) · · ·µn+1(tower(n + 1)),

over the alphabet �(n + 1) ∪ {#}.
The formula ϕn(x, y) says

• σ(x) = 〈n〉 and x appears before #.
Thus in Sn , x is the first position of a substring of the form µn(r) for some
r ≤ tower(n)− 1, and this substring appears before #.
• σ(y) = 〈n+ 1〉.

Thus in Sn , y is the first position of a substring Sy of the form µn+1(s) for some
s ≤ tower(n + 1).
• There exists an x ′ between y and the next closing 〈/n+ 1〉 such that σ(x ′) = 〈n〉,

the bit after the next closing 〈/n〉 is “1,” and χn(x, x ′).
Here χn is the formula provided by Lemma 11. Thus in Sn , x ′ is the first position

204 M. Grohe and Gy. Turán

of a substring of Sy of the form µn(r ′) for some r ′ ≤ L(tower(n + 1))− 1, and
the r ′th bit of s is 1, and r ′ = r .

We can easily write this in first-order logic:

ϕn(x, y) = P〈n〉(x) ∧ ∃z(P#(z) ∧ x < z)

∧ P〈n+1〉(y)

∧ ∃x ′
(

P〈n〉(x ′) ∧ y < x ′ ∧ ∀z((y < z ∧ z < x)→ ¬P〈/n+1〉)

∧ ∃v∃w(P〈/n〉(v) ∧ ∀z((x ′ < z ∧ z < v)→ ¬P〈/n〉) ∧ S(v,w)

∧ P1(w)) ∧ χn(x, x ′)
)
.

Recall that S is the successor relation in a string.
Since L(tower(n+1)) = tower(n), the stringµn+1(tower(n+1)) contains precisely

tower(n) substrings µn(r) whose first positions may serve as x ′. Thus C(ϕn(x, y),Sn)

shatters the set of all first positions of subwords µn(r) appearing before #. This set has
size tower(n), thus VC(ϕn(x, y),Sn) ≥ tower(n).

Remark 13. The alphabet of the formulas ϕn and strings Sn in Theorem 12 depends on
n; its size is O(n). We do not know if the statement remains true for a fixed alphabet. Of
course we can simply encode the symbols in�(n) by words over {0, 1} and translate the
formula ϕn and the string Sn to the alphabet {0, 1}, but this would increase the formula
size by a logarithmic factor.

Remark 14. Theorem 10 is closely related to recent results of Benedikt et al. [7] on
the VC-dimension of first-order formulas and MSO formulas on infinite trees. (Note
that our results speak about finite trees.) Their setting and methods are quite different;
they study algebras of strings, which can be considered as infinite trees, and then use
model-theoretic techniques to prove bounded VC-dimension.

It seems that the fact that the VC-dimension of MSO formulas on trees is bounded
can also be derived by their techniques.

5. Tree-Like Structures

There are different ways of defining classes of structures that are similar to trees. The
best-known notion measuring the similarity of a graph to a tree is tree-width [31]. It is
well known that structures of bounded tree-width inherit many of the nice properties
of trees; we shall see that bounded VC-dimension of MSO-definable families of sets is
among them.

However, instead of tree-width we measure the similarity of structures to trees by
their clique-width [9]. It is well known that all classes of structures of bounded tree-
width have bounded clique-width. There are natural classes of structures of bounded
clique-width that have unbounded tree-width, maybe the simplest example is the class
of all linear orders. Another example is the class of trees. If the partial order� is present,

Learnability and Definability in Trees and Similar Structures 205

then trees do not have bounded tree-width, but it is easy to see that they do have bounded
clique-width.

A k-colored τ -structure is a pair (A, γ) consisting of a τ -structureA and a mapping
γ : A → {1, . . . , k}. A basic k-colored τ -structure is a k-colored τ -structure (A, γ)
where |A| = 1 and RA = ∅ for all R ∈ τ .

We let �k[τ] be the smallest class of k-colored τ -structures that contains all basic
k-colored τ -structures and is closed under the following operations:

• Union: take two k-colored τ -structures on disjoint vertex sets and form their
union.
• (i → j)-recoloring, for 1 ≤ i, j ≤ k: take a k-colored τ -structure and recolor

all vertices colored i to j .
• (R, i1, . . . , ir)-connecting, for every r ≥ 1, every r-ary R ∈ τ and 1 ≤ i1, . . . , ir

≤ k: take a k-colored τ -structure (A, γ) and add all tuples (a1, . . . , ar) ∈ Ar

with γ (aj) = i j for 1 ≤ j ≤ r toRA.

Definition 15. The clique-width of a τ -structureA, denoted by cw(A), is the minimum
k such that there exists a k-coloring γ : A→ {1, . . . , k} such that (A, γ) ∈ �k[τ].

For every k-colored structure (A, γ) ∈ �k[τ] we can define a binary, labeled parse-
tree in a straightforward way. The leaves of this tree are the elements of A labeled by
their color, and each inner node is labeled by the operation it corresponds to. A parse-tree
of a structure A of clique-width k is a parse tree of some (A, γ) ∈ �k[τ]. For the next
lemma, it is important to note that if T is a parse-tree for a structure A, then A ⊆ T .

Lemma 16. Let k ≥ 1. For every MSO formula ϕ(x̄) there is a formula ϕ̃(x̄) such
that for every structure A of clique-width k and for every parse-tree T of A we have
ϕ(A) = ϕ̃(T). Furthermore, there are constants c, d (only depending on k and the
vocabulary) such that ||ϕ̃|| ≤ c||ϕ|| and qr(ϕ̃) ≤ qr(ϕ)+ d.

Proof. The proof is a straightforward induction, the only nontrivial case being ϕ(x̄) =
Rx1 · · · xr for some r -ary relation symbol R. For a vertex t ∈ T , we let Tt denote the
subtree of T with root t . Note that for each t ∈ T there exists a substructureAt ⊆ A and
a labeling γt : At → {1, . . . , k} such that Tt is a parse-tree for (At , γt). For every tuple
ā = (a1, . . . , ar) ∈ Ar we have ā ∈ RA if, and only if, there exists a node t of T and
indices i1, . . . , ir ∈ {1, . . . , k} such that t is labeled by the operation “(R, i1, . . . , ir)-
connecting,” and γt (aj) = i j for 1 ≤ j ≤ r .

We claim that for all i ∈ {1, . . . , k} there is an MSO formula ψi (x, y) such that for
all a ∈ A, t ∈ T we have

T |= ψi (a, t) ⇐⇒ a ∈ At and γt (a) = i.

To see this, consider the path from t to a as a string and observe that the language of all
such strings with γt (a) = i is regular. Indeed, a finite automaton moving along this path
can keep track of all the relabelings, and thus it can compute the label of a at t . Thus by
Büchi’s theorem, the language is MSO-definable.

206 M. Grohe and Gy. Turán

Let PR,i1,...,ir be the predicate symbol indicating that a node t is labeled by the
operation

“(R, i1, . . . , ir)-connecting,”

and let ζ(x) be a formula saying that x is a leaf of the tree. We let

ϕ̃(x1, . . . , xr) = ∃y

(
PR,i1,...,ir y ∧

r∧
j=1

(ζ(xi) ∧ ψi j (xi , y))

)
.

Then, recalling that ϕ(x̄) = Rx1 . . . xr , for all a1, . . . , ar ∈ A we have

A |= ϕ(a1, . . . , ar) ⇐⇒ T |= ϕ̃(a1, . . . , ar).

Theorem 17. Let w ≥ 1. Then every formula of monadic second-order logic has
bounded VC-dimension on the class of all structures of clique-width at most w.

Proof. This follows immediately from Theorem 10 and Lemma 16.

Note that the proof of this result does not involve any large constants, so the bounds
on the VC-dimension we obtain are essentially the same as those of Theorem 10.

As we have mentioned before, the clique-width of a structure is bounded in terms
of its tree-width; more precisely, a structure of tree-width at most k has clique-width at
most 2k [10].

Corollary 18. Let w ≥ 1. Then every formula of monadic second-order logic has
bounded VC-dimension on the class of all structures of tree-width width at most w.

We now show that in some weak sense, our previous results for the VC-dimension
of MSO formulas are optimal. As a first step, in the following example we observe that
MSO formulas have unbounded VC-dimension on grids.

Example 19. Let n,m ≥ 0. The (n × m)-grid is the graph Gn×m with vertex set
{0, . . . ,m − 1} × {0, . . . , n − 1} and an edge between (i, j) and (i ′, j ′) if, and only if,
either i = i ′ and | j − j ′| = 1 or j = j ′ and |i − i ′| = 1. We think of the vertices of a
grid as being numbered as a matrix, i.e., (0, 0) is the upper left corner, and (i, j) is the
vertex in the i th row and j th column.

It is not hard to see that there is an MSO formula ϕ(x, y) such that for all n ≥ 1,

VC(C(ϕ,Gn×n)) ≥ log(n).

We sketch a proof of this result: We show that there is an MSO formula ψ(x, y1, y2)

such that for 1 ≤ i ≤ n we have

(0, j) ∈ ϕ(Gn×n, (0, 0), (i, 0))

⇐⇒ the j th bit in the binary representation of i is 1.

Learnability and Definability in Trees and Similar Structures 207

This shows that C(ψ,Gn×n) shatters the set {(0, j) | 0 ≤ j < log(n)}. It is easy to
eliminate the additional parameter on (0, 0), which is only used to fix our coordinate
system (together with the second parameter).

ψ says that:

• There exists a set X such that for 0 ≤ p, q ≤ n we have (p, q) ∈ X if, and only
if, the qth bit in the binary representation of p is 1. To express this in MSO, we
say that for 1 ≤ p ≤ n − 2, the (p + 1)st row is one plus the pth row if we read
the rows as binary numbers with elements of X being ones, starting with the least
significant bit.
• There is a path from y2 to x that goes horizontally to the right from y2 to an

element of X , then vertically up to x .

It is easy to formalize this in MSO.

The excluded grid theorem due to Robertson and Seymour [32] says that a class K
of graphs has bounded tree-width if, and only if, there is an n ≥ 1 such that Gn×n is not
a minor of any graph in K .

Corollary 20. Let K be a class of graphs that is closed under taking subgraphs. Then
every MSO formula has bounded VC-dimension on K if, and only if, K has bounded
tree-width.

Proof. For classes K that are closed under taking minors, the statement of the corollary
follows immediately from Corollary 18, Example 19, and the excluded grid theorem.

To obtain the stronger statement for classes that are merely closed under taking
subgraphs, we work with walls (or hexagonal grids) instead of the grids of Example
19 and use a variant of the excluded grid theorem stating that a class K of graphs has
bounded tree-width if, and only if, there is an n ≥ 1 such that no subdivision of a wall
of height and width n is a subgraph of any graph in K [32]. Then we note that Example
19 can easily be extended to subdivisions of walls.

Note that Corollary 20 does not contradict Theorem 17, because the class of all
graphs of clique-width at most k is not closed under taking subgraphs for any k ≥ 2.
Bounded clique-width is not a necessary condition for bounded VC-dimension of MSO
formulas on arbitrary classes of graphs, as the following example shows.

Example 21. LetHn be the graph obtained from the complete graphKn by subdividing
each edge by a new vertex. Then it follows directly from symmetry considerations that
every MSO formula has bounded VC-dimension on this class. On the other hand, the
clique-width of Hn is �(

√
n), as Hn contains an m × m grid with m = �(

√
n) as

an induced subgraph, and the class of graphs of clique-width w is closed under taking
induced subgraphs [10].

208 M. Grohe and Gy. Turán

6. Locally Tree-Like Structures

While Example 19 and Corollary 20 indicate that we cannot extend the range of struc-
tures where formulas of monadic second-order logic have bounded VC-dimension much
further, we show in this section that formulas of first-order logic have bounded VC-
dimension on many other interesting classes of structures, most notably the class of
planar graphs and classes of graphs of bounded degree.

Our main technical tool is the locality of first-order logic. We need some new
notation: The Gaifman graph of a τ -structureA is the graph GA with vertex set GA = A
and an edge between two distinct vertices a, b ∈ A if there exists an R ∈ τ and a tuple
(a1, . . . , ak) ∈ RA such that a, b ∈ {a1, . . . , ak}. The distance dA(a, b) between two
elements a, b ∈ A of a structure A is the length of the shortest path in GA connecting a
and b. The distance between two tuples ā = (a1, . . . , ak) ∈ Ak, b̄ = (b1, . . . , bl) ∈ Al

of elements of a structure A is the minimum distance between their elements, i.e., the
number dA(ā, b̄) = min{dA(ai , bj) | 1 ≤ i ≤ k, 1 ≤ j ≤ l}. For r ≥ 1 and a ∈ A
we define the r-neighborhood of a in A to be NAr (a) = {b ∈ A | dA(a, b) ≤ r}. For a
tuple ā = (a1, . . . , ak) ∈ Ak we let NAr (ā) =

⋃k
i=1 NAr (ai). By NAr (ā) we denote the

induced substructure of A with universe NAr (ā).
One of the features that distinguish first-order logic from second-order logic is the

locality of first-order logic, as it is described in Gaifman’s locality theorem [16]. The
following lemma, which is the main technical result of this section, states that bounded
VC-dimension of first-order formulas is a local property. For an r ≥ 1 and a class K of
structures, we let N (r, K) = {NAr (a) | A ∈ K , a ∈ A}.

Lemma 22. Let K be a class of structures such that for every r ≥ 1, every first-order
formula has bounded VC-dimension on the class N (r, K). Then every first-order formula
has bounded VC-dimension on K .

The proof of this lemma requires some additional terminology and a few model-
theoretic facts. We fix a vocabulary τ . Let q, k ≥ 0. Let A be a τ -structure and ā ∈ Ak .
The (q, k)-type of ā in A, denoted by tpAq (ā), is the set of all first-order formulas
ϕ(x1, . . . , xk) of quantifier rank at most q such thatA |= ϕ(ā). A (q, k)-type is a maximal
consistent set of first-order formulas ϕ(x1, . . . , xk) of quantifier rank at most q. Equiva-
lently, a (q, k)-type is the (q, k)-type of some k-tuple ā in some structureA. For all q, k
there are only finitely many (q, k)-types; we denote the number of (q, k)-types by t (q, k).

Since up to logical equivalence there are only finitely many first-order formulas
ϕ(x1, . . . , xk) of quantifier rank at most q, for every (q, k)-type � there is a first-order
formula θ(x̄) of quantifier rank q such that for all structures A and tuples ā ∈ Ak we
have tpAq (ā) = � ⇐⇒ A |= θ(ā). We say that θ isolates the type �.

The union of two τ -structuresA, B is the structureA∪B with universe A ∪ B and
relations RA ∪B = RA ∪ RB for R ∈ τ . The following lemma is a simple consequence
of the well-known Feferman–Vaught theorem; it can easily be proved directly using the
Ehrenfeucht–Fraı̈ssé game for first-order logic (see, e.g., [12]).

Lemma 23. Let k, l, q ≥ 0, and let A,B,A′,B′ be structures with A ∩ B = ∅, A′ ∩
B ′ = ∅ and ā ∈ Ak, ā′ ∈ (A′)k, b̄ ∈ Bl , b̄′ ∈ (B ′)l such that tpAq (ā) = tpA

′
q (ā

′),

Learnability and Definability in Trees and Similar Structures 209

tpBq (b̄) = tpB
′

q (b̄
′). Then

tpAq ∪B(āb̄) = tpA
′

q ∪B′(ā′b̄′).

We exploit the locality of first-order logic using the following lemma. We remark that
for a larger value of r , it is an immediate consequence of Gaifman’s locality theorem
[16]:

Lemma 24 [25]. Let q ≥ 0 and r = 2q − 1. Then for all structuresA and all k-tuples
ā, b̄ ∈ Ak we have

tpAq (ā) = tpAq (b̄) ⇐⇒ tpN
A
r (ā)

q (ā) = tpN
A(b̄)
r

q (b̄).

Combining the previous two lemmas, we obtain the following:

Corollary 25. Let q ≥ 0 and r = 2q−1. LetAbe a structure and ā, ā′ ∈ Ak, b̄, b̄′ ∈ Al

such that tpAq (ā) = tpAq (ā
′), tpAq (b̄) = tpAq (b̄

′) and dA(ā, b̄) > 2r + 1, dA(ā′, b̄′) >
2r + 1. Then tpAq (āb̄) = tpAq (ā

′b̄′).

Proof (of Lemma 22). We only prove that every first-order formulaϕ(x, ȳ)has bounded
VC-dimension on K ; the extension to formulas ϕ(x̄, ȳ) then follows from Lemma 4.

So let ϕ(x, y1, . . . , y) be a first-order formula of quantifier rank q and r = 2q − 1.
Let A ∈ K , C = C(ϕ,A), and X ⊆ A be a set that is shattered by C.

Step 1. We prove that X has no subset Y of size (2	+ 1) · t (q, 1)+ 1 such that for all
a, b ∈ Y we have dA(a, b) > 4r + 2.

To see this, suppose that Y is such a set. Then there are pairwise distinct a1, . . . ,

a2	+2 ∈ Y such that tpAq (ai) = tpAq (aj) for 1 ≤ i, j ≤ 2	+ 2. We claim that there is no
choice of parameters b1, . . . , b	 ∈ A such that

ϕ(A, b1, . . . , b) ∩ Y = {a1, . . . , a	+1}.

If this claim is correct, then Y and therefore X is not shattered by C(ϕ,A), which is a
contradiction.

So we have to prove the claim. Let b̄ = (b1, . . . , b) ∈ Al . Since dA(ai , aj) > 4r+2,
for each bi there exists at most one aj such that dA(bi , aj) ≤ 2r + 1. Thus there are at
least one j ∈ {1, . . . , 	+1} and one j ′ ∈ {	+2, . . . , 2	+2} such that dA(b̄, aj) > 2r+1
and dA(b̄, aj ′) > 2r + 1. Since tpAq (aj) = tpAq (aj ′), by Corollary 25 we have

tpAq (aj b̄) = tpAq (aj ′ b̄).

However, then aj ∈ ϕ(A, b̄) if, and only if, aj ′ ∈ ϕ(A, b̄). This proves that ϕ(A, b1, . . . ,

b) ∩ Y �= {a1, . . . , a	+1} and thus completes Step 1.

Step 2. We prove that there is a number s(, q) such that X has no subset Y of size
s(, q) for which there exists an a0 ∈ A such that Y ⊆ NA4r+2(a0).

210 M. Grohe and Gy. Turán

To see this suppose that a0 ∈ A and Y ⊆ X such that Y ⊆ NA4r+2(a0). Since X
is shattered by C, for every Z ⊆ Y there is a tuple b̄Z = (bZ

1 , . . . , bZ
) ∈ A	 such that

ϕ(A, b̄Z) ∩ Y = Z . Consider the 	+ 1 disjoint sets

NA2(2r+1)(a0), NA3(2r+1)(a0)\NA2(2r+1)(a0), . . . , NA(2+)(2r+1)(a0)\NA(2+	−1)(2r+1)(a0).

One of these sets will contain no bZ
i for 1 ≤ i ≤ 	. Thus there exists a set IZ ⊆

{1, . . . , 	} and a pZ , 0 ≤ pZ ≤ 	, such that bZ
i ∈ N(2+pZ)(2r+1)(a0) for all i ∈ IZ

and bZ
i �∈ N(2+pZ+1)(2r+1)(a0) for all i ∈ {1, . . . , 	}\IZ . We let c̄Z be the subtuple of

b̄Z consisting of all bZ
i with i ∈ IZ and let d̄ Z be the subtuple of b̄Z consisting of the

remaining bZ
i (it may happen that either c̄Z or d̄ Z is the empty tuple). Note that if both

tuples are nonempty, we have dA(c̄Z , d̄ Z) > 2r + 1. Moreover, if d̄ Z is nonempty, we
have dA(a0, d̄ Z) > 6r + 3 and thus for all a ∈ Y , dA(a, d̄ Z) > 2r + 1.

Let

T = {(IZ , pZ , tpAq (d̄
Z)) | Z ⊆ Y }

and t = 2	 · (+1) ·∑	
k=0 t (q, k). Recall that t (q, k) denote the number of (q, k)-types.

Thus |T | ≤ t , so there exists an I ⊆ {1, . . . , 	}, a p, 0 ≤ p ≤ 	, a (q, 	− |I |)-type �,
and a subset Z ⊆ 2Y of size at least 2|Y |/t such that for all Z ∈ Z we have IZ = I ,
pZ = p, and tpAq (d̄

Z) = �. Without loss of generality we assume that I = {1, . . . , k}
for some k ≤ 	.

For all Z ∈ Z and a ∈ Z we let θZ ,a(x, y1, . . . , yk) be a formula isolating the type
tpAq (a, c̄Z). Moreover, we let

ψ(x, y1, . . . , yk) =
∨

Z ∈ Z
a ∈ Z

θZ ,a(x, y1, . . . , yk).

Claim. For all Z ∈ Z we have ψ(A, c̄Z) ∩ Y = Z .

Let Z ∈ Z . To see that Z ⊆ ψ(A, c̄Z)∩ Y , note that by the definition of θZ ,a(x, ȳ),
for all a ∈ Z we have A |= θZ ,a(a, c̄Z) and thus A |= ψ(a, c̄Z).

To prove the converse inclusion, let a ∈ ψ(A, c̄Z) ∩ Y . Let Z ′ ∈ Z and a′ ∈ Z ′

such that a ∈ θZ ′,a′(A, c̄Z). Thus

tpAq (ac̄Z) = tpAq (a
′c̄Z ′). (∗)

Recall that

• b̄Z ′ = c̄Z ′ d̄ Z ′ and dA(c̄Z ′ , d̄ Z ′) > 2r + 1,
• b̄Z = c̄Z d̄ Z and dA(c̄Z , d̄ Z) > 2r + 1,
• tpAq (d̄

Z ′) = tpAq (d̄
Z) = �,

• for all a′′ ∈ Y , dA(a′′, d̄ Z ′) > 2r + 1 and dA(a′′, d̄ Z) > 2r + 1.

Learnability and Definability in Trees and Similar Structures 211

By Corollary 25 and (∗), this implies that

tpAq (ab̄Z) = tpAq (a
′b̄Z ′).

Thus a ∈ ϕ(A, b̄Z) if, and only if, a′ ∈ ϕ(A, b̄Z ′). Since a′ ∈ Z ′ = ϕ(A, b̄Z ′) ∩ Y , we
have a ∈ ϕ(A, b̄Z) and thus, recalling that a ∈ Y ,

a ∈ Z = ϕ(A, b̄Z) ∩ Y.

This proves the claim.
It is an immediate consequence of the claim that for W, Z ∈ Z such that W �= Z

we have

ψ(A, c̄Z) ∩ Y �= ψ(A, c̄W) ∩ Y. (∗∗)

Let N = NA(2+p)(2r+1)+r (a0). By Lemma 24, (∗∗) implies

ψ(N , c̄Z) ∩ Y �= ψ(N , c̄W) ∩ Y,

because NAr (ac̄Z) ⊆ NA(2+p)(2r+1)+r (a0) for every a ∈ Y . Since |Z| ≥ 2|Y |/t , this implies

C(ψ,N) ∩ Y ≥ 2|Y |

t
.

Let d be an upper bound for the VC-dimension ofψ on N ((2+)(2r+1)+r, K); we can
find such a bound only depending on q and 	. Note thatN ∈ N ((2+)(2r +1)+ r, K).
Thus by Lemma 2, we have

2|Y |

t
≤ c · |Y |d ,

for some constant c. This puts a bound s(, q) on the size of |Y | and completes Step 2.
Steps 1 and 2 together imply that

|X | ≤ 2	 · t (q, 1) · s(, q).

This proves Lemma 22.

Remark 26. It is worthwhile noting that the class K of structures in Lemma 22 may
contain finite as well as infinite structures.

Combined with the results of the previous section, this lemma shows that first-order
formulas have bounded VC-dimension on a number of interesting classes of structures.
We say that a class K of structures has bounded local clique-width if there is a function
f : N→ N such that for every r ≥ 1, A ∈ C , and a ∈ A we have cw(NAr (a)) ≤ f (r).

212 M. Grohe and Gy. Turán

Theorem 27. Let τ be a vocabulary and let K be a class of τ -structures of bounded
local clique-width. Then every first-order formula has bounded VC-dimension on K .

Proof. If K has bounded local clique-width, then by Theorem 17, for every r ≥ 0
every first-order formula has bounded VC-dimension on the class N (r, K). The theorem
follows from Lemma 22.

Surprisingly many natural classes of structures have bounded local clique-width,
among them the class of all planar graphs, and more generally all classes of graphs of
bounded genus, and all classes of graphs of bounded degree. As a matter of fact, all these
classes have bounded local tree-width [13], [19].

Corollary 28. Let K be a class of graphs of bounded genus or bounded degree. Then
every first-order formula ϕ has bounded VC-dimension on K .

As a matter of fact, the corollary also follows from known results in model-theory.
We a call a graph Kn-free if it does not contain a subdivision of the complete graph on
n-vertices as a subgraph. We call a class K of graphs Kn-free if every graph in K is
Kn-free. It is easy to see that for every class K of graphs of bounded genus or bounded
degree there exists an n such that K is Kn-free.

Podewski and Ziegler [30] proved that an infinite graph that is Kn-free for some
n ≥ 1 has a stable theory. It is known that if a structure A has a stable theory, then
VC(C(ϕ,A)) < ∞ for every first-order formula ϕ (in model-theoretic terminology, a
stable structure does not have the independence property). It is easy to see that if a
structure A is the disjoint union of all structures of a class K of finite structures, and
VC(C(ϕ,A)) <∞ for every first-order formula ϕ, then every first-order formula ϕ has
bounded VC-dimension on K . Thus we obtain:

Theorem 29 [30]. Let n ≥ 1 and let K be a Kn-free class of graphs. Then every
first-order formula ϕ has bounded VC-dimension on K .

In particular, this gives another proof of Corollary 28. Note, however, that unions
of classes of finite structures of bounded local clique-width or bounded clique-width are
not stable in general. For example, the clique-width of a linear order is just 2.

We close this section with an example of a natural class of structures that has bounded
local clique-width, but neither bounded clique-width nor bounded local tree-width:

Example 30. Let k ≥ 0 and τ = {E1, E2,≡, P1, . . . , Pk}, where E1, E2, and ≡ are
binary and P1, . . . , Pk are unary. We let K be the class of all τ -structures T whose
restriction to τ\{≡} is a labeled binary tree without the tree-order �, and on which ≡T
is the “equal-height” relation. Thus for a, b ∈ T we have a ≡T b if the paths from a
and b to the root of T have the same length.

To see that the class K has bounded local clique-width, we first observe that for each
h the class of all h-labeled (remember the definition of clique-width) forests of height
at most h, where all vertices of the same height have the same label, has clique-width

Learnability and Definability in Trees and Similar Structures 213

at most h. Since neighborhoods of radius r in trees T ∈ K are essentially forests of
height 2r + 1 with an “equal-height” relation, it follows that such neighborhoods have
clique-width at most 2r + 1.

To see that the class K does not have bounded local tree-width, we note that the Gaif-
man graphs of trees T ∈ K may contain arbitrarily large cliques, and this is impossible
in a class of structures of bounded local tree-width.

Finally, we claim that MSO formulas may have unbounded VC-dimension on K ;
by Theorem 17 this implies that K has unbounded clique-width. To prove the claim,
consider T ∈ K such that the underlying tree of T is the complete binary tree of height
h. We let X ⊆ T be the set of vertices of the leftmost path in T from the root to
a leaf, except the root itself. Then X is shattered by an MSO formula ϕ(x, y) which
says:

There exists a z on the path from the root to y such that x has the same height
as z and z is a right child of its parent.

7. Strong Consistency Dimension

Let V be a set, and let C ⊆ H ⊆ 2V be two families of subsets of V . A partially specified
subset U of V is a mapping U : V → {0, 1, ∗}, where v ∈ U if U (v) = 1, v �∈ U if
U (v) = 0 (in these cases we say that the membership of v in U is specified), and the
membership of v in U is unspecified otherwise. The size of U is the number of elements
whose membership in U is specified. A partially specified subset U ′ is a restriction of
a partially specified subset U if U ′(v) = U (v) for every v such that U ′(v) ∈ {0, 1}. In
this case we also say that U is an extension of U ′.

The strong consistency dimension [6] of C with respect toH, denoted by SC(C,H),
is the smallest number d for which the following holds:

For every partially specified subset U of V , if every size d restriction U ′ of U
has an extension in C, then U has an extension inH.

As we consider only finite sets V , the strong consistency dimension is defined, as |V | is
a possible value for d .

The strong consistency dimension turns out to be relevant for learning with equiv-
alence queries. In order to present the learnability implications of our result, we give
a brief description of this model. The families of sets C and H above are called the
concept class, respectively the hypothesis class. The learner has to identify an unknown
target concept C ∈ C by asking equivalence queries from H. An equivalence query is
a hypothesis H ∈ H. If C = H , then the answer to the query is “yes,” and the learning
process terminates. Otherwise, the answer is a counterexample, i.e., an element x from
C ⊕ H . The complexity EQ(C,H) of learning C with equivalence queries fromH is the
minimal worst-case number of queries asked by any learning algorithm identifying the
target, for every choice of the target and the counterexamples.

Learning algorithms using equivalence queries can be turned into PAC learning al-
gorithms that produce hypotheses from H, by replacing every equivalence query with
several random examples [2]. If a counterexample is found, the simulation of the query

214 M. Grohe and Gy. Turán

learning algorithm can continue. Otherwise, the final equivalence query is an approxi-
mately correct hypothesis, with high probability.

Theorem 31 [6].

SC(C,H) ≤ EQ(C,H) ≤ *SC(C,H) · ln|C|+ + 1.

Let m, 	 ≥ 1 and T be a �-tree. Then AUT (m, 	, T) is the class of all subsets of T
definable by m-state �	+1-tree automata in T , or more formally,

AUT (m, 	, T) =
⋃
A

C(A, T),

where the union is over all m-state �	+1-tree automata A.

Theorem 32. Let� be a finite alphabet. For every m and 	 there is an M such that for
every �-tree T it holds that

SC(AUT (m, 	, T),AUT (M, 	, T)) ≤ 2(+ 1).

We introduce some additional notions used in the proof. A partial�-tree is defined
the same way as a�-tree, except that for every leaf, its label can be either an element of
� or the special symbol �. Given a �-tree automaton A, an A-initialized partial �-tree
is of the form (T , β), where T is a partial�-tree, and β is an assignment of states of A to
the �-leaves of T . An A-initialized partial�-tree (T , β) determines a run ρ: V → Q of
A in the natural way. The state ρ(r) obtained at the root r of T is denoted by ρ(T , β,A).

Let a be a vertex of a partial �-tree T , such that the label of a is not �. Recall that
�1 = � × {0, 1}. In accordance with our previous notation, we let Ta be the partial
�1-tree with the same underlying tree as T where vertex a has label (σT (a), 1), every
vertex b �= a with σT (b) �= � has label (σT (b), 0), and every b with σT (b) = � has
label �.

Vertices c and d of a partial �-tree T are called indistinguishable, if for every
m-state �1-tree automaton A and every initialization β it holds that

ρ(Tc, β,A) = ρ(Td , β,A).

Let T be a �-tree. Consider a partially specified subset U of T such that every size
2(+ 1) restriction of U has an extension inAUT (m, 	, T). Remember that this means
that for every size 2(+ 1) restriction U ′ of U there is a �	+1-automaton A with m
states and an 	-tuple b̄ ∈ T 	 of parameters such that A(T , b̄) is an extension of U ′. We
need to show that U has an extension in AUT (M, 	, T), for some M only depending
on � and m. Thus, we have to construct a �	+1-tree automaton A� with M states and
a parameter tuple b̄ ∈ T 	 such that for every a ∈ T , if U (a) = 1, then A� accepts Tab̄,
and if U (a) = 0, then A� rejects Tab̄.

We define a sequence of partial �-trees Ti for i = 0, 1, . . . , k by induction on i ,
starting withT0 = T . If there are no indistinguishable vertices c, d ∈ Ti such that U (c) =

Learnability and Definability in Trees and Similar Structures 215

1, U (d) = 0, then the construction terminates. Otherwise, consider a minimal subtree Si

of Ti which contains vertices U (ci) = 1 and U (di) = 0 that are indistinguishable in the
tree Si . (Here a subtree is considered to be upward closed with respect to the tree-order
�T , i.e., its universe is a set {v ∈ T | t �T v} for some t ∈ T .) Ti+1 is obtained
by removing Si from Ti , and replacing it with a �-labeled leaf. As we always delete at
least two vertices from the current tree and replace them by at most one new leaf, the
procedure terminates, and so k is well defined.

Claim. k ≤ 	.

To prove this claim, suppose for contradiction k > 	 and consider the size 2(+ 1)
restriction of U to Y = {ci , di : i = 0, . . . , 	}. By our assumption that every 2(+ 1)-
element subset of U has an extension in AUT (m, 	, T), there exists a �	+1-automaton
A with at most m states and a tuple b = (b1, . . . , b) ∈ T 	 such that A(T , b̄) is an
extension of Y .

By the pigeonhole principle, there is an i , 0 ≤ i ≤ 	, such that Si does not contain
a bj , 1 ≤ j ≤ 	. Since ci and di are indistinguishable in Si , A accepts Tci b̄ if, and only
if, it accepts Tdi b̄. However, we have U (ci) = 1 and U (di) = 0, so A(T , b̄) cannot be
an extension of U . This is a contradiction, and the claim is proved.

As we mentioned on page 199, it is useful to think of a �	+1-tree automaton as
being controlled by the labels of the vertices and (+ 1) pebbles placed on the tree.
We call the first pebble the variable-pebble and the remaining pebbles the parameter-
pebbles. We show how to construct an automaton A� and place the 	 parameter-pebbles
in such a way that whenever the variable-pebble is on a c with U (c) = 1 the automaton
will accept and whenever the variable-pebble is on a d with U (d) = 0 the automaton
will reject.

The automatonA� essentially simulates all size m automata (actually, multiple copies
of all these automata) in parallel, with a certain switching mechanism at the parameter-
pebbles. We only need k parameter-pebbles, which will be placed on the roots of the
subtrees Si constructed above.

We assume first that k = 0, i.e., there are no indistinguishable vertices c, d ∈ T
such that U (c) = 1, U (d) = 0. Let A1, . . . ,AN be a list of all �1-tree automata with m
states. The standard product construction, or, in other words, the parallel simulation of
all these automata, computes a length N vector of states at the root of T . As there are
no indistinguishable pairs, the set of vectors (called good states) corresponding to trees
with the variable-pebble placed on a c ∈ T (i.e., trees Tc) with U (c) = 1 and the set
of vectors (called bad states) corresponding to trees with the variable-pebble placed on
a d ∈ T with U (d) = 0 are disjoint. Hence the required automaton can be constructed
with a suitable choice of its set of final states, without using any parameters.

Assume now that k > 0, and we consider a subtree Si which does not have any
�-leaf. Let r be the root of Si . Furthermore, let r1 and r2 be the two children of r and
let S1 and S2 be the subtrees rooted at r1 and r2, respectively. By the minimality of S,
neither S1 nor S2 contains an indistinguishable pair c, d such that U (c) = 1,U (d) = 0.
So for j = 1, 2 the product automaton constructed above will be able to recognize at r
whether the variable-pebble is placed on a c ∈ S j with U (c) = 1, or on a d ∈ S j with
U (d) = 0, or whether it is not placed on an element of S j at all. The parameter-pebble

216 M. Grohe and Gy. Turán

placed on r is used to

1. send the automaton straight to the root of T in an accepting state if, for either
j = 1 or j = 2, the state at r j is a good state (i.e., it indicates that the variable-
pebble is placed on a c ∈ S j with U (c) = 1),

2. send the automaton straight to the root of T in a rejecting state if, for either j = 1
or j = 2, the state at r j is a bad state (i.e., it indicates that the variable-pebble is
placed on a d ∈ S j with U (d) = 0),

3. send the automaton straight to the root (it does not matter in which state), if, for
either j = 1 or j = 2, the state at r j indicates that the variable-pebble is placed
on an e ∈ S j but it is neither a good nor a bad state,

4. reset the automaton and continue otherwise (we explain below what we mean by
“resetting the automaton”).

To implement (1)–(3) our automaton needs two separate states, one accepting and one
rejecting, that cause it to proceed upwards no matter what it reads.

Now we turn to the discussion of an Si that has �-leaves. By our construction, there
can be at most k such leaves; to simplify the notation, we assume that indeed we have k
leaves labeled �.

Let r be the root of Si . Furthermore, let r1 and r2 be the two children of r and let
S1 and S2 be the subtrees rooted at r1 and r2, respectively. By the minimality of Si ,
neither S1 nor S2 contains an indistinguishable pair c, d such that U (c) = 1,U (d) = 0.
This means that for j = 1, 2 and for all c, d ∈ S j with U (c) = 1,U (d) = 0 there is a
�1-tree automaton A with at most m states and an initialization β that assigns a state of
A to each of the k �-leaves such that

ρ(S j
c , β,A) �= ρ(S j

d , β,A).

(Recall that ρ(S j
c , β,A) denotes the state of A at the root of S j

c if it is run on S j
c with

initialization β.) So now we not only have to simulate all�1-tree automata with at most
m states in parallel, but actually all these automata with all mk possible initializations
of states at the k �-leaves. So we actually need an even bigger product automaton. How-
ever, we can construct such an automaton, and then proceed as in the case without
�-leaves.

It remains to explain what it means to reset the automaton at the root ri of some
subtree Si , which happens if the variable-pebble is not in this subtree. Then ri becomes
a �-leaf in Ti+1. Recall that A1, . . . ,AN is a list of all �1-tree automata with m states.
Without loss of generality we can assume that the state set of all these automata is
{1, . . . ,m}. We are running mk copies of each of these automata in parallel. We can
think of all these m-state automata as being identified by a tuple (n, s1, . . . , sk), where
1 ≤ n ≤ N and 1 ≤ sj ≤ m for 1 ≤ j ≤ k.

What we do at ri if the variable-pebble is not in the subtree Si is start auto-
maton number (n, s1, . . . , sk) in state si . This guarantees that in a subtree with
�-leaves we indeed run a copy of each possible m-state automaton with each possible
initialization.

Learnability and Definability in Trees and Similar Structures 217

Let q, 	 ≥ 1 and T be a �-tree. We let

MSO(q, 	, T) =
⋃
ϕ

C(ϕ, T),

where the union is over all MSO formulas ϕ(x, y1, . . . , y) (with a single free variable
and 	 parameters) of quantifier-rank at most q. The following result is an immediate
consequence of Theorem 32 and Lemma 9.

Corollary 33. Let � be a finite alphabet. For every q and 	 there is a Q such that for
every �-tree T it holds that

SC(MSO(q, 	, T),MSO(Q, 	, T)) ≤ 2(+ 1).

Finally, combining this with Theorem 31, we obtain:

Corollary 34. Let � be a finite alphabet. For every q and 	 there is a Q such that for
every �-tree T it holds that

EQ(MSO(q, 	, T),MSO(Q, 	, T)) = O(log|T |).

The following simple example shows that without any restriction on the structures
considered, no such result holds in general.

Example 35. Let q = 0, 	 = 1, let Q, L , d be arbitrary, and put N = 2d L + 2. Let
GL ,d be the N + (N

d

)
vertex graph where for every size d subset of the first N vertices

there is a distinct vertex that is connected to just these vertices. Consider a partially
specified subset U that assigns 0, resp. 1, to half of the first N vertices. Then every size
d restriction of U is consistent with E(x, a) for some choice of the parameter a, where
E is the binary adjacency relation. On the other hand, for symmetry reasons, U is not
consistent with any formula having at most L parameters. Thus

SC(MSO(0, 1,GL ,d),MSO(Q, L ,GL ,d)) > d.

Note that the bound of Corollary 34 is sharp—to learn a prefix of a string S (which
is defined as ϕ(S, b) for the formula x � y of quantifier-rank 0 and a suitable parameter
b) one needs at least �(log |S|) queries, even if equivalence queries with arbitrary sets
and membership queries of the form “Is x ∈ C?” are allowed [26].

8. Conclusions

In this paper we presented upper bounds for the VC-dimension and the strong consistency
dimension of the classes of definable sets in finite relational structures for monadic
second-order logic and first-order logic. As these quantities characterize the sample

218 M. Grohe and Gy. Turán

complexity of PAC-learnability, respectively, the complexity of learning with equivalence
queries, the bounds imply upper bounds for learning complexity in these models.

Finite upper bounds for some of the cases considered follow from previous results
in model theory, but even in these cases we obtain explicit bounds, as opposed to the
nonconstructive previous results.

Although our bounds are explicit, the resulting learnability results are not practical
in the sense that they only refer to the informational (sample, resp., query) complexity of
the learning algorithms, and they do not provide efficient algorithms to find a consistent
hypothesis, resp., to form the next query.

Our results are based on a new view of definability for tree automata. It is an inter-
esting question whether one can develop computationally efficient learning algorithms
for the corresponding learning problem.

There are many open problems related to the strong consistency dimension. It would
be of interest to extend our results to formulas with more than one free variable and to
more general structures than trees. Also, it is not clear, what the relationship between
the strong consistency dimension of MSO and FO is (they may be unrelated).

Acknowledgments

We thank Michael Benedikt for clarifying the relation between our Theorem 10 and the results of [7].

Appendix. Properties of Classes of Structures

Figure 1 gives an overview of the properties of classes of structures considered in this
papers, amended by examples separating the different properties.

bounded
VC-dimension
for MSO

bounded
VC-dimension
for FO

bounded
clique-width bounded

local clique-width

bounded
local tree-width

SUBDIVIDED
COMPLETE
GRAPH

TREE WITH
EQUAL HEIGHT

bounded
tree-width

GRID

LINEAR ORDER

Fig. 1. Properties of classes of structures.

Learnability and Definability in Trees and Similar Structures 219

References

[1] H. Aizenstein, T. Hegedűs, L. Hellerstein, and L. Pitt. Complexity-theoretic hardness results for query
learning. Computational Complexity, 7:19–53, 1998.

[2] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.
[3] L. Babai and Gy. Turán. The complexity of defining a relation on a finite graph. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik, 33:277–288, 1987.
[4] J.L. Balcázar. The consistency dimension, compactness and query learning. In J. Flum and

M. Rodriguez-Artalejo, editors, Computer Science Logic, 13th International Workshop CSL ’99, pages
2–13. Volume 1683 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1999.

[5] J.L. Balcázar, J. Castro, and D. Guijarro. A new abstract combinatorial dimension for exact learning via
queries. In S.A. Goldman and N. Cesa-Bianchi, editors, Proceedings of the 13th Annual Conference on
Computational Learning Theory (COLT 2000), pages 248–254. Morgan-Kaufmann, San Mateo, CA,
2000.

[6] J.L. Balcázar, J. Castro, D. Guijarro, and H.U. Simon. The consistency dimension and distribution-
dependent learning from queries. In O. Watanabe and T. Yokomori, editors, Algorithmic Learning
Theory, 10th International Conference, ALT ’99, pages 77–92. Volume 1720 of Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, 1999.

[7] M. Benedikt, L. Libkin, T. Schwentick, and L. Segoufin. A model-theoretic approach to regular string
relations. In Proceedings of the 16th IEEE Symposium on Logic in Computer Science, pages 431–440,
2001.

[8] A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and the Vapnik–Chervonenkis
dimension. Journal of the ACM, 36:929–965, 1989.

[9] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars. Journal of
Computer and System Sciences, 46:218–270, 1993.

[10] B. Courcelle and S. Olariu. Upper bounds to the clique-width of graphs. Discrete Applied Mathematics,
101:77–114, 2000.

[11] H.-D. Ebbinghaus and J. Flum. Finite Model Theory, 2nd edition. Springer-Verlag, New York, 1999.
[12] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic, 2nd edition. Springer-Verlag, New

York, 1994.
[13] D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27:275–291, 2000.
[14] M. Frazier and L. Pitt. CLASSIC learning. Machine Learning, 25:151–193, 1996.
[15] M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revisited. In

Proceedings of the 17th IEEE Symposium on Logic in Computer Science, pages 215–224, 2002.
[16] H. Gaifman. On local and non-local properties. In J. Stern, editor, Proceedings of the Herbrand

Symposium, Logic Colloquium ‘81, pages 105–135. North Holland, Amsterdam, 1982.
[17] M.C. Golumbic and U. Rotics. On the clique-width of some perfect graph classes. International Journal

of Foundations of Computer Science, 11:423–443, 2000.
[18] M. Grohe. Generalized model-checking problems for first-order logic. In H. Reichel and A. Ferreira,

editors, Proceedings of the 18th Annual Symposium on Theoretical Aspects of Computer Science, pages
12–26. Volume 2010 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2001.

[19] M. Grohe. Local tree-width, excluded minors, and approximation algorithms. Combinatorica. To
appear.

[20] T. Hegedűs. Generalized teaching dimensions and the query complexity of learning. In Proceedings of
the 8th Annual Conference on Computational Learning Theory (COLT 1995), pages 108–117, 1995.

[21] L. Hellerstein, K. Pillaipakkamnatt, V. Raghavan, and D. Wilkins. How many queries are needed to
learn? Journal of the ACM, 43:840–862, 1996.

[22] W. Hodges. Model Theory. Cambridge University Press, Cambridge, 1993.
[23] M.J. Kearns and U.V. Vazirani. An Introduction to Computational Learning Theory. MIT Press,

Cambridge, MA, 1994.
[24] M.C. Laskowski. Vapnik–Chervonenkis classes of definable sets. Journal of the London Mathematical

Society (2), 45:377–384, 1992.
[25] L. Libkin. Logics with counting and local properties. ACM Transactions on Computational Logic,

1:33–59, 2000.
[26] W. Maass and Gy. Turán. Lower bound methods and separation results for on-line learning models.

Machine Learning, 9:107–145, 1992.

220 M. Grohe and Gy. Turán

[27] W. Maass and Gy. Turán. On learnability and predicate logic. In Proceedings of the Bar–Ilan Symposium
on the Foundations of Artificial Intelligence (BISFAI-95), pages 75–85, 1995.

[28] S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming. Volume 1228 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1997.

[29] D.N. Osherson, M. Stob, and S. Weinstein. New directions in automated scientific discovery. Information
Sciences, 57–58:217–230, 1991.

[30] K.P. Podewski and M. Ziegler. Stable graphs. Fundamenta Mathematicae, 100:101–107, 1978.
[31] N. Robertson and P.D. Seymour. Graph minors, II. Algorithmic aspects of tree-width. Journal of

Algorithms, 7:309–322, 1986.
[32] N. Robertson and P.D. Seymour. Graph minors, V. Excluding a planar graph. Journal of Combinatorial

Theory, Series B, 41:92–114, 1986.
[33] N. Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A, 13:145–147,

1972.
[34] S. Shelah. Stability, the f.c.p. and superstability. Annals of Mathematical Logic, 3:271–362, 1971.
[35] S. Shelah. A combinatorial problem: stability and order for models and theories in infinitary languages.

Pacific Journal of Mathematics, 41:241–261, 1972.
[36] L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time. In Proceedings of the

5th ACM Symposium on Theory of Computing, pages 1–9, 1973.
[37] J.W. Thatcher and J.B. Wright. Generalised finite automata theory with an application to a decision

problem of second-order logic. Mathematical Systems Theory, 2:57–81, 1968.
[38] I. Tsapara and Gy.Turán. Learning atomic formulas with prescribed properties. In Proceedings of the

11th Annual Conference on Computational Learning Theory (COLT ’98), pages 166–174, 1998.
[39] L. van den Dries. Tame Topology and O-minimal Structures. Cambridge University Press, Cambridge,

1998.
[40] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their

probabilities. Theory of Probability and its Applications, 16:264–280, 1971.

Online publication November 14, 2003.

